1
|
Martin-Vega A, Cobb MH. Navigating the ERK1/2 MAPK Cascade. Biomolecules 2023; 13:1555. [PMID: 37892237 PMCID: PMC10605237 DOI: 10.3390/biom13101555] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/16/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023] Open
Abstract
The RAS-ERK pathway is a fundamental signaling cascade crucial for many biological processes including proliferation, cell cycle control, growth, and survival; common across all cell types. Notably, ERK1/2 are implicated in specific processes in a context-dependent manner as in stem cells and pancreatic β-cells. Alterations in the different components of this cascade result in dysregulation of the effector kinases ERK1/2 which communicate with hundreds of substrates. Aberrant activation of the pathway contributes to a range of disorders, including cancer. This review provides an overview of the structure, activation, regulation, and mutational frequency of the different tiers of the cascade; with a particular focus on ERK1/2. We highlight the importance of scaffold proteins that contribute to kinase localization and coordinate interaction dynamics of the kinases with substrates, activators, and inhibitors. Additionally, we explore innovative therapeutic approaches emphasizing promising avenues in this field.
Collapse
Affiliation(s)
- Ana Martin-Vega
- Department of Pharmacology, UT Southwestern Medical Center, 6001 Forest Park Rd., Dallas, TX 75390, USA;
| | - Melanie H. Cobb
- Department of Pharmacology, UT Southwestern Medical Center, 6001 Forest Park Rd., Dallas, TX 75390, USA;
- Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, 6001 Forest Park Rd., Dallas, TX 75390, USA
| |
Collapse
|
2
|
Luna AJ, Young JM, Sterk RT, Bondu V, Schultz FA, Kusewitt DF, Kang H, Ozbun MA. The antiviral effects of a MEK1/2 inhibitor promote tumor regression in a preclinical model of human papillomavirus infection-induced tumorigenesis. Antiviral Res 2023; 216:105667. [PMID: 37429527 PMCID: PMC10530289 DOI: 10.1016/j.antiviral.2023.105667] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/06/2023] [Accepted: 07/07/2023] [Indexed: 07/12/2023]
Abstract
Human papillomaviruses (HPVs) are a significant public health concern due to their widespread transmission, morbidity, and oncogenic potential. Despite efficacious vaccines, millions of unvaccinated individuals and those with existing infections will develop HPV-related diseases for the next two decades and beyond. The continuing burden of HPV-related diseases is exacerbated by the lack of effective therapies or cures for infections, highlighting the need to identify and develop antivirals. The experimental murine papillomavirus type 1 (MmuPV1) model provides opportunities to study papillomavirus pathogenesis in cutaneous epithelium, the oral cavity, and the anogenital tract. However, to date the MmuPV1 infection model has not been used to demonstrate the effectiveness of potential antivirals. We previously reported that inhibitors of cellular MEK/ERK signaling suppress oncogenic HPV early gene expression in three-dimensional tissue cultures. Herein, we adapted the MmuPV1 infection model to determine whether MEK inhibitors have anti-papillomavirus properties in vivo. We demonstrate that oral delivery of a MEK1/2 inhibitor promotes papilloma regression in immunodeficient mice that otherwise would have developed persistent infections. Quantitative histological analyses reveal that inhibition of MEK/ERK signaling reduces E6/E7 mRNA, MmuPV1 DNA, and L1 protein expression within MmuPV1-induced lesions. These data suggest that MEK1/2 signaling is essential for both early and late MmuPV1 replication events supporting our previous findings with oncogenic HPVs. We also provide evidence that MEK inhibitors protect mice from developing secondary tumors. Thus, our data suggest that MEK inhibitors have potent antiviral and anti-tumor properties in a preclinical mouse model and merit further investigation as papillomavirus antiviral therapies.
Collapse
Affiliation(s)
- Adrian J Luna
- Department of Molecular Genetics & Microbiology, The University of New Mexico School of Medicine, Albuquerque, NM, 87131, USA
| | - Jesse M Young
- Department of Molecular Genetics & Microbiology, The University of New Mexico School of Medicine, Albuquerque, NM, 87131, USA
| | - Rosa T Sterk
- Department of Molecular Genetics & Microbiology, The University of New Mexico School of Medicine, Albuquerque, NM, 87131, USA
| | - Virginie Bondu
- Department of Molecular Genetics & Microbiology, The University of New Mexico School of Medicine, Albuquerque, NM, 87131, USA
| | - Fred A Schultz
- Department of Pathology, The University of New Mexico School of Medicine, Albuquerque, NM, 87131, USA
| | - Donna F Kusewitt
- Department of Pathology, The University of New Mexico School of Medicine, Albuquerque, NM, 87131, USA; The University of New Mexico Comprehensive Cancer Center, Albuquerque, NM, 87131, USA
| | - Huining Kang
- Department of Internal Medicine, Division of Epidemiology, Biostatistics and Preventive Medicine, The University of New Mexico School of Medicine, Albuquerque, NM, 87131, USA; The University of New Mexico Comprehensive Cancer Center, Albuquerque, NM, 87131, USA
| | - Michelle A Ozbun
- Department of Molecular Genetics & Microbiology, The University of New Mexico School of Medicine, Albuquerque, NM, 87131, USA; The University of New Mexico Comprehensive Cancer Center, Albuquerque, NM, 87131, USA.
| |
Collapse
|
3
|
Luna AJ, Young JM, Sterk RT, Bondu V, Schultz FA, Kusewitt DF, Kang H, Ozbun MA. Inhibition of Cellular MEK/ERK Signaling Suppresses Murine Papillomavirus Type 1 Replicative Activities and Promotes Tumor Regression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.14.532042. [PMID: 36993217 PMCID: PMC10054951 DOI: 10.1101/2023.03.14.532042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
Human papillomaviruses (HPVs) are a significant public health concern due to their widespread transmission, morbidity, and oncogenic potential. Despite efficacious vaccines, millions of unvaccinated individuals and those with existing infections will develop HPV-related diseases for the next two decades. The continuing burden of HPV-related diseases is exacerbated by the lack of effective therapies or cures for most infections, highlighting the need to identify and develop antivirals. The experimental murine papillomavirus type 1 (MmuPV1) model provides opportunities to study papillomavirus pathogenesis in cutaneous epithelium, the oral cavity, and the anogenital tract. However, to date the MmuPV1 infection model has not been used to demonstrate the effectiveness of potential antivirals. We previously reported that inhibitors of cellular MEK/ERK signaling suppress oncogenic HPV early gene expression in vitro . Herein, we adapted the MmuPV1 infection model to determine whether MEK inhibitors have anti-papillomavirus properties in vivo . We demonstrate that oral delivery of a MEK1/2 inhibitor promotes papilloma regression in immunodeficient mice that otherwise would have developed persistent infections. Quantitative histological analyses revealed that inhibition of MEK/ERK signaling reduces E6/E7 mRNAs, MmuPV1 DNA, and L1 protein expression within MmuPV1-induced lesions. These data suggest that MEK1/2 signaling is essential for both early and late MmuPV1 replication events supporting our previous findings with oncogenic HPVs. We also provide evidence that MEK inhibitors protect mice from developing secondary tumors. Thus, our data suggest that MEK inhibitors have potent anti-viral and anti-tumor properties in a preclinical mouse model and merit further investigation as papillomavirus antiviral therapies. Significance Statement Persistent human papillomavirus (HPV) infections cause significant morbidity and oncogenic HPV infections can progress to anogenital and oropharyngeal cancers. Despite the availability of effective prophylactic HPV vaccines, millions of unvaccinated individuals, and those currently infected will develop HPV-related diseases over the next two decades and beyond. Thus, it remains critical to identify effective antivirals against papillomaviruses. Using a mouse papillomavirus model of HPV infection, this study reveals that cellular MEK1/2 signaling supports viral tumorigenesis. The MEK1/2 inhibitor, trametinib, demonstrates potent antiviral activities and promotes tumor regression. This work provides insight into the conserved regulation of papillomavirus gene expression by MEK1/2 signaling and reveals this cellular pathway as a promising therapeutic target for the treatment of papillomavirus diseases.
Collapse
|
4
|
Singh A, Hermann BP. Conserved Transcriptome Features Define Prepubertal Primate Spermatogonial Stem Cells as A dark Spermatogonia and Identify Unique Regulators. Int J Mol Sci 2023; 24:4755. [PMID: 36902187 PMCID: PMC10002546 DOI: 10.3390/ijms24054755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/25/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
Antineoplastic treatments for cancer and other non-malignant disorders can result in long-term or permanent male infertility by ablating spermatogonial stem cells (SSCs). SSC transplantation using testicular tissue harvested before a sterilizing treatment is a promising approach for restoring male fertility in these cases, but a lack of exclusive biomarkers to unequivocally identify prepubertal SSCs limits their therapeutic potential. To address this, we performed single-cell RNA-seq on testis cells from immature baboons and macaques and compared these cells with published data from prepubertal human testis cells and functionally-defined mouse SSCs. While we found discrete groups of human spermatogonia, baboon and rhesus spermatogonia appeared less heterogenous. A cross-species analysis revealed cell types analogous to human SSCs in baboon and rhesus germ cells, but a comparison with mouse SSCs revealed significant differences with primate SSCs. Primate-specific SSC genes were enriched for components and regulators of the actin cytoskeleton and participate in cell-adhesion, which may explain why the culture conditions for rodent SSCs are not appropriate for primate SSCs. Furthermore, correlating the molecular definitions of human SSC, progenitor and differentiating spermatogonia with the histological definitions of Adark/Apale spermatogonia indicates that both SSCs and progenitor spermatogonia are Adark, while Apale spermatogonia appear biased towards differentiation. These results resolve the molecular identity of prepubertal human SSCs, define novel pathways that could be leveraged for advancing their selection and propagation in vitro, and confirm that the human SSC pool resides entirely within Adark spermatogonia.
Collapse
Affiliation(s)
| | - Brian P. Hermann
- Department of Neuroscience, Developmental and Regenerative Biology, The University of Texas at San Antonio, 1 UTSA Circle, San Antonio, TX 78249, USA
| |
Collapse
|
5
|
AlZahrani WM, AlGhamdi SA, Sohrab SS, Rehan M. Investigating a Library of Flavonoids as Potential Inhibitors of a Cancer Therapeutic Target MEK2 Using in Silico Methods. Int J Mol Sci 2023; 24:4446. [PMID: 36901876 PMCID: PMC10002492 DOI: 10.3390/ijms24054446] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/16/2023] [Accepted: 02/20/2023] [Indexed: 02/26/2023] Open
Abstract
The second leading cause of death in the world is cancer. Mitogen-activated protein kinase (MAPK) and extracellular signal-regulated protein kinase (ERK) 1 and 2 (MEK1/2) stand out among the different anticancer therapeutic targets. Many MEK1/2 inhibitors are approved and widely used as anticancer drugs. The class of natural compounds known as flavonoids is well-known for their therapeutic potential. In this study, we focus on discovering novel inhibitors of MEK2 from flavonoids using virtual screening, molecular docking analyses, pharmacokinetic prediction, and molecular dynamics (MD) simulations. A library of drug-like flavonoids containing 1289 chemical compounds prepared in-house was screened against the MEK2 allosteric site using molecular docking. The ten highest-scoring compounds based on docking binding affinity (highest score: -11.3 kcal/mol) were selected for further analysis. Lipinski's rule of five was used to test their drug-likeness, followed by ADMET predictions to study their pharmacokinetic properties. The stability of the best-docked flavonoid complex with MEK2 was examined for a 150 ns MD simulation. The proposed flavonoids are suggested as potential inhibitors of MEK2 and drug candidates for cancer therapy.
Collapse
Affiliation(s)
- Wejdan M. AlZahrani
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Shareefa A. AlGhamdi
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Sayed S. Sohrab
- Special Infectious Agents Unit-BSL3, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mohd Rehan
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
6
|
Moriizumi H, Kubota Y, Tsuchiya T, Naka R, Takekawa M. Caspase 3-specific cleavage of MEK1 suppresses ERK signaling and sensitizes cells to stress-induced apoptosis. FEBS Open Bio 2023; 13:684-700. [PMID: 36776127 PMCID: PMC10068311 DOI: 10.1002/2211-5463.13574] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 01/30/2023] [Accepted: 02/10/2023] [Indexed: 02/14/2023] Open
Abstract
Proper regulation of apoptotic cell death is crucial for normal development and homeostasis in multicellular organisms and is achieved by the balance between pro-apoptotic processes, such as caspase activation, and pro-survival signaling, such as extracellular signal-regulated kinase (ERK) activation. However, the functional interplay between these opposing signaling pathways remains incompletely understood. Here, we identified MAPK/ERK kinase (MEK) 1, a central component of the ERK pathway, as a specific substrate for the executioner caspase-3. During apoptosis, MEK1 is cleaved at an evolutionarily conserved Asp282 residue in the kinase domain, thereby losing its catalytic activity. Gene knockout experiments showed that MEK1 cleavage was mediated by caspase-3, but not by the other executioner caspases, caspase-6 or -7. Following exposure of cells to osmotic stress, elevated ERK activity gradually decreased, and this was accompanied by increased cleavage of MEK1. In contrast, the expression of a caspase-uncleavable MEK1(D282N) mutant in cells maintained stress-induced ERK activity and thereby attenuated apoptotic cell death. Thus, caspase-3-mediated, proteolytic inhibition of MEK1 sensitizes cells to apoptosis by suppressing pro-survival ERK signaling. Furthermore, we found that a RASopathy-associated MEK1(Y130C) mutation prevented this caspase-3-mediated proteolytic inactivation of MEK1 and efficiently protected cells from stress-induced apoptosis. Our data reveal the functional crosstalk between ERK-mediated cell survival and caspase-mediated cell death pathways and suggest that its dysregulation by a disease-associated MEK1 mutation is at least partly involved in the pathophysiology of congenital RASopathies.
Collapse
Affiliation(s)
- Hisashi Moriizumi
- Division of Cell Signaling and Molecular Medicine, Institute of Medical Science, The University of Tokyo, Japan.,Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Yuji Kubota
- Division of Cell Signaling and Molecular Medicine, Institute of Medical Science, The University of Tokyo, Japan
| | - Tomoyuki Tsuchiya
- Division of Cell Signaling and Molecular Medicine, Institute of Medical Science, The University of Tokyo, Japan
| | - Ryosuke Naka
- Division of Cell Signaling and Molecular Medicine, Institute of Medical Science, The University of Tokyo, Japan
| | - Mutsuhiro Takekawa
- Division of Cell Signaling and Molecular Medicine, Institute of Medical Science, The University of Tokyo, Japan.,Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| |
Collapse
|
7
|
Boato F, Guan X, Zhu Y, Ryu Y, Voutounou M, Rynne C, Freschlin CR, Zumbo P, Betel D, Matho K, Makarov SN, Wu Z, Son YJ, Nummenmaa A, Huang JZ, Edwards DJ, Zhong J. Activation of MAP2K signaling by genetic engineering or HF-rTMS promotes corticospinal axon sprouting and functional regeneration. Sci Transl Med 2023; 15:eabq6885. [PMID: 36599003 DOI: 10.1126/scitranslmed.abq6885] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Facilitating axon regeneration in the injured central nervous system remains a challenging task. RAF-MAP2K signaling plays a key role in axon elongation during nervous system development. Here, we show that conditional expression of a constitutively kinase-activated BRAF in mature corticospinal neurons elicited the expression of a set of transcription factors previously implicated in the regeneration of zebrafish retinal ganglion cell axons and promoted regeneration and sprouting of corticospinal tract (CST) axons after spinal cord injury in mice. Newly sprouting axon collaterals formed synaptic connections with spinal interneurons, resulting in improved recovery of motor function. Noninvasive suprathreshold high-frequency repetitive transcranial magnetic stimulation (HF-rTMS) activated the BRAF canonical downstream effectors MAP2K1/2 and modulated the expression of a set of regeneration-related transcription factors in a pattern consistent with that induced by BRAF activation. HF-rTMS enabled CST axon regeneration and sprouting, which was abolished in MAP2K1/2 conditional null mice. These data collectively demonstrate a central role of MAP2K signaling in augmenting the growth capacity of mature corticospinal neurons and suggest that HF-rTMS might have potential for treating spinal cord injury by modulating MAP2K signaling.
Collapse
Affiliation(s)
- Francesco Boato
- Molecular Regeneration and Neuroimaging Laboratory, Burke Neurological Institute, White Plains, NY 10605, USA.,Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, USA
| | - Xiaofei Guan
- Molecular Regeneration and Neuroimaging Laboratory, Burke Neurological Institute, White Plains, NY 10605, USA.,Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, USA
| | - Yanjie Zhu
- Molecular Regeneration and Neuroimaging Laboratory, Burke Neurological Institute, White Plains, NY 10605, USA.,Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, USA
| | - Youngjae Ryu
- Molecular Regeneration and Neuroimaging Laboratory, Burke Neurological Institute, White Plains, NY 10605, USA.,Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, USA
| | - Mariel Voutounou
- Molecular Regeneration and Neuroimaging Laboratory, Burke Neurological Institute, White Plains, NY 10605, USA.,Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, USA
| | - Christopher Rynne
- Molecular Regeneration and Neuroimaging Laboratory, Burke Neurological Institute, White Plains, NY 10605, USA.,Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, USA
| | - Chase R Freschlin
- Molecular Regeneration and Neuroimaging Laboratory, Burke Neurological Institute, White Plains, NY 10605, USA.,Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, USA
| | - Paul Zumbo
- Applied Bioinformatics Core, Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10065, USA
| | - Doron Betel
- Applied Bioinformatics Core, Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10065, USA
| | - Katie Matho
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Sergey N Makarov
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.,Electrical and Computer Engineering Department, Worcester Polytechnic Institute, Worcester, MA 01609, USA
| | - Zhuhao Wu
- Icahn School of Medicine at Mount Sinai, New York, NY 10065, USA
| | - Young-Jin Son
- Shriners Hospitals Pediatric Research Center, Temple University, Philadelphia, PA 19140, USA
| | - Aapo Nummenmaa
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Josh Z Huang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.,Department of Neurobiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Dylan J Edwards
- Molecular Regeneration and Neuroimaging Laboratory, Burke Neurological Institute, White Plains, NY 10605, USA.,Moss Rehabilitation Research Institute, Elkins Park, PA 19027, USA.,Thomas Jefferson University, Philadelphia, PA 19108, USA.,Exercise Medicine Research Institute, School of Biomedical and Health Sciences, Edith Cowan University, Joondalup 6027, Australia
| | - Jian Zhong
- Molecular Regeneration and Neuroimaging Laboratory, Burke Neurological Institute, White Plains, NY 10605, USA.,Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, USA
| |
Collapse
|
8
|
Scalia P, Williams SJ, Fujita-Yamaguchi Y, Giordano A. Cell cycle control by the insulin-like growth factor signal: at the crossroad between cell growth and mitotic regulation. Cell Cycle 2023; 22:1-37. [PMID: 36005738 PMCID: PMC9769454 DOI: 10.1080/15384101.2022.2108117] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
In proliferating cells and tissues a number of checkpoints (G1/S and G2/M) preceding cell division (M-phase) require the signal provided by growth factors present in serum. IGFs (I and II) have been demonstrated to constitute key intrinsic components of the peptidic active fraction of mammalian serum. In vivo genetic ablation studies have shown that the cellular signal triggered by the IGFs through their cellular receptors represents a non-replaceable requirement for cell growth and cell cycle progression. Retroactive and current evaluation of published literature sheds light on the intracellular circuitry activated by these factors providing us with a better picture of the pleiotropic mechanistic actions by which IGFs regulate both cell size and mitogenesis under developmental growth as well as in malignant proliferation. The present work aims to summarize the cumulative knowledge learned from the IGF ligands/receptors and their intracellular signaling transducers towards control of cell size and cell-cycle with particular focus to their actionable circuits in human cancer. Furthermore, we bring novel perspectives on key functional discriminants of the IGF growth-mitogenic pathway allowing re-evaluation on some of its signal components based upon established evidences.
Collapse
Affiliation(s)
- Pierluigi Scalia
- ISOPROG-Somatolink EPFP Research Network, Philadelphia, PA, USA, Caltanissetta, Italy,CST, Biology, Sbarro Institute for Cancer Research and Molecular Medicine, Temple University, Philadelphia, PA, United states,CONTACT Pierluigi Scalia ISOPROG-Somatolink EPFP Research Network, Philadelphia, PA9102, USA
| | - Stephen J Williams
- ISOPROG-Somatolink EPFP Research Network, Philadelphia, PA, USA, Caltanissetta, Italy,CST, Biology, Sbarro Institute for Cancer Research and Molecular Medicine, Temple University, Philadelphia, PA, United states
| | - Yoko Fujita-Yamaguchi
- Arthur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Antonio Giordano
- ISOPROG-Somatolink EPFP Research Network, Philadelphia, PA, USA, Caltanissetta, Italy,School of Medical Biotechnology, University of Siena, Italy
| |
Collapse
|
9
|
The Synergistic Hepatoprotective Activity of Rosemary Essential Oil and Curcumin: The Role of the MEK/ERK Pathway. Molecules 2022; 27:molecules27248910. [PMID: 36558044 PMCID: PMC9781795 DOI: 10.3390/molecules27248910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/08/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Curcumin is a natural product obtained from the rhizome of Curcuma longa. Rosemary (Rosmarinus officinalis) is a medicinal and aromatic plant that is widely spread in the Mediterranean region. Both Curcumin and rosemary essential oil are natural products of high medicinal and pharmacological significance. The hepatoprotective effect of both natural products is well-established; however, the mechanism of such action is not fully understood. Thus, this study is an attempt to explore the hepatoprotective mechanism of action of these remedies through their effect on MEK and ERK proteins. Furthermore, the effect of rosemary essential oil on the plasma concentration of curcumin has been scrutinized. MATERIALS AND METHODS The major constituents of REO were qualitatively and quantitatively determined by GC/MS and GC/FID, respectively. Curcumin and rosemary essential oil were given to mice in a pre-treatment model, followed by induction of liver injury through a high dose of paracetamol. Serum liver enzymes, lipid peroxidation, antioxidant activities, the inflammatory and apoptotic biomarkers, as well as the MEK and ERK portions, were verified. The plasma levels of curcumin were determined in the presence and absence of rosemary essential oil. RESULTS The major constituents of REO were 1,8-cineole (51.52%), camphor (10.52%), and α-pinene (8.41%). The results revealed a superior hepatoprotective activity of the combination when compared to each natural product alone, as demonstrated by the lowered liver enzymes, lipid peroxidation, mitigated inflammatory and apoptotic biomarkers, and enhanced antioxidant activities. Furthermore, the combination induced the overexpression of MEK and ERK proteins, providing evidence for the involvement of this cascade in the hepatoprotective activity of such natural products. The administration of rosemary essential oil with curcumin enhanced the curcuminoid plasma level. CONCLUSION The co-administration of both curcumin and rosemary essential oil together enhanced both their hepatoprotective activity and the level of curcumin in plasma, indicating a synergistic activity between both natural products.
Collapse
|
10
|
Kim JM, Yang YS, Hong J, Chaugule S, Chun H, van der Meulen MCH, Xu R, Greenblatt MB, Shim JH. Biphasic regulation of osteoblast development via the ERK MAPK-mTOR pathway. eLife 2022; 11:78069. [PMID: 35975983 PMCID: PMC9417416 DOI: 10.7554/elife.78069] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 08/16/2022] [Indexed: 11/13/2022] Open
Abstract
Emerging evidence supports that osteogenic differentiation of skeletal progenitors is a key determinant of overall bone formation and bone mass. Despite extensive studies showing the function of mitogen-activated protein kinases (MAPKs) in osteoblast differentiation, none of these studies show in vivo evidence of a role for MAPKs in osteoblast maturation subsequent to lineage commitment. Here, we describe how the extracellular signal-regulated kinase (ERK) pathway in osteoblasts controls bone formation by suppressing the mechanistic target of rapamycin (mTOR) pathway. We also show that, while ERK inhibition blocks the differentiation of osteogenic precursors when initiated at an early stage, ERK inhibition surprisingly promotes the later stages of osteoblast differentiation. Accordingly, inhibition of the ERK pathway using a small compound inhibitor or conditional deletion of the MAP2Ks Map2k1 (MEK1) and Map2k2 (MEK2), in mature osteoblasts and osteocytes, markedly increased bone formation due to augmented osteoblast differentiation. Mice with inducible deletion of the ERK pathway in mature osteoblasts also displayed similar phenotypes, demonstrating that this phenotype reflects continuous postnatal inhibition of late-stage osteoblast maturation. Mechanistically, ERK inhibition increases mitochondrial function and SGK1 phosphorylation via mTOR2 activation, which leads to osteoblast differentiation and production of angiogenic and osteogenic factors to promote bone formation. This phenotype was partially reversed by inhibiting mTOR. Our study uncovers a surprising dichotomy of ERK pathway functions in osteoblasts, whereby ERK activation promotes the early differentiation of osteoblast precursors, but inhibits the subsequent differentiation of committed osteoblasts via mTOR-mediated regulation of mitochondrial function and SGK1.
Collapse
Affiliation(s)
- Jung-Min Kim
- Department of Medicine, University of Massachusetts Medical School, Worcester, United States
| | - Yeon-Suk Yang
- Department of Medicine, University of Massachusetts Medical School, Worcester, United States
| | - Jaehyoung Hong
- Department of Mathematical Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Sachin Chaugule
- Department of Medicine, University of Massachusetts Medical School, Worcester, United States
| | - Hyonho Chun
- Department of Mathematical Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Marjolein C H van der Meulen
- Meinig School of Biomedical Engineering and Sibley School of Mechanical & Aerospace Engineering, Cornell University, Ithaca, United States.,Research Division, Hospital for Special Surgery, New York, United States
| | - Ren Xu
- State Key Laboratory of Cellular Stress Biology, School of Medicine, Xiamen University, Fujian, China.,Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Matthew B Greenblatt
- Research Division, Hospital for Special Surgery, New York, United States.,Department of Pathology and Laboratory Medicine, Weill Cornell, New York, United States
| | - Jae-Hyuck Shim
- Department of Medicine, University of Massachusetts Medical School, Worcester, United States.,Horae Gene Therapy Center, Worcester, United States.,Li Weibo Institute for Rare Diseases Research, University of Massachusetts Chan Medical School, Worcester, Worcester, United States
| |
Collapse
|
11
|
Comparative whole-genome transcriptome analysis in renal cell populations reveals high tissue specificity of MAPK/ERK targets in embryonic kidney. BMC Biol 2022; 20:112. [PMID: 35550069 PMCID: PMC9102746 DOI: 10.1186/s12915-022-01309-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 04/25/2022] [Indexed: 12/19/2022] Open
Abstract
Background MAPK/ERK signaling is a well-known mediator of extracellular stimuli controlling intracellular responses to growth factors and mechanical cues. The critical requirement of MAPK/ERK signaling for embryonic stem cell maintenance is demonstrated, but specific functions in progenitor regulation during embryonic development, and in particular kidney development remain largely unexplored. We previously demonstrated MAPK/ERK signaling as a key regulator of kidney growth through branching morphogenesis and normal nephrogenesis where it also regulates progenitor expansion. Here, we performed RNA sequencing-based whole-genome expression analysis to identify transcriptional MAPK/ERK targets in two distinct renal populations: the ureteric bud epithelium and the nephron progenitors. Results Our analysis revealed a large number (5053) of differentially expressed genes (DEGs) in nephron progenitors and significantly less (1004) in ureteric bud epithelium, reflecting likely heterogenicity of cell types. The data analysis identified high tissue-specificity, as only a fraction (362) of MAPK/ERK targets are shared between the two tissues. Tissue-specific MAPK/ERK targets participate in the regulation of mitochondrial energy metabolism in nephron progenitors, which fail to maintain normal mitochondria numbers in the MAPK/ERK-deficient tissue. In the ureteric bud epithelium, a dramatic decline in progenitor-specific gene expression was detected with a simultaneous increase in differentiation-associated genes, which was not observed in nephron progenitors. Our experiments in the genetic model of MAPK/ERK deficiency provide evidence that MAPK/ERK signaling in the ureteric bud maintains epithelial cells in an undifferentiated state. Interestingly, the transcriptional targets shared between the two tissues studied are over-represented by histone genes, suggesting that MAPK/ERK signaling regulates cell cycle progression and stem cell maintenance through chromosome condensation and nucleosome assembly. Conclusions Using tissue-specific MAPK/ERK inactivation and RNA sequencing in combination with experimentation in embryonic kidneys, we demonstrate here that MAPK/ERK signaling maintains ureteric bud tip cells, suggesting a regulatory role in collecting duct progenitors. We additionally deliver new mechanistic information on how MAPK/ERK signaling regulates progenitor maintenance through its effects on chromatin accessibility and energy metabolism. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-022-01309-z.
Collapse
|
12
|
Gong KQ, Mikacenic C, Long ME, Frevert CW, Birkland TP, Charron J, Gharib SA, Manicone AM. MAP2K2 Delays Recovery in Murine Models of Acute Lung Injury and Associates with Acute Respiratory Distress Syndrome Outcome. Am J Respir Cell Mol Biol 2022; 66:555-563. [PMID: 35157553 PMCID: PMC9116357 DOI: 10.1165/rcmb.2021-0252oc] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 12/30/2021] [Indexed: 12/15/2022] Open
Abstract
Acute respiratory distress syndrome (ARDS) remains a significant problem in need of new pharmaceutical approaches to improve its resolution. Studies comparing gene expression signatures in rodents and humans with lung injury reveal conserved pathways, including MAPK (mitogen-activated protein kinase)/ERK (extracellular signal-related protein kinase) activation. In preclinical acute lung injury (ALI) models, inhibition of MAP2K1 (MAPK kinase 1)/MAP2K2 (MAPK kinase 2) improves measures of ALI. Myeloid cell deletion of MAP2K1 results in sustained MAP2K2 activation and nonresolving ALI, suggesting that MAP2K2 deactivation may be a key driver of ALI resolution. We used human genomic data from the iSPAAR (Identification of SNPs Predisposing to Altered Acute Lung Injury Risk) Consortium to assess genetic variants in MAP2K1 and MAP2K2 for association with mortality from ARDS. To determine the role of MAP2K2 in ALI recovery, we studied mice deficient in Map2k2 (Mek2-/-) and wild-type control mice in ALI models. We identified a MAP2K2 variant that was associated with death in ARDS and MAP2K2 expression. In Pseudomonas aeruginosa ALI, Mek2-/- mice had similar early alveolar neutrophilic recruitment but faster resolution of alveolar neutrophilia and vascular leak. Gene expression analysis revealed a role for MAP2K2 in promoting and sustaining select proinflammatory pathway activation in ALI. Bone marrow chimera studies indicate that leukocyte MAP2K2 is the key regulator of ALI duration. These studies implicate a role for MAP2K2 in ALI duration via transcriptional regulation of inflammatory programming with potential relevance to ARDS. Targeting leukocyte MAP2K2 may be an effective strategy to promote ALI resolution.
Collapse
Affiliation(s)
- Ke-Qin Gong
- Division of Pulmonary, Critical Care and Sleep Medicine, and
| | - Carmen Mikacenic
- Division of Pulmonary, Critical Care and Sleep Medicine, and
- Benaroya Research Institute, Seattle, Washington
| | - Matthew E. Long
- Division of Pulmonary, Critical Care and Sleep Medicine, and
- Division of Pulmonary, Critical Care and Sleep Medicine, the Ohio State University Wexner Medical Center, Columbus, Ohio; and
| | - Charles W. Frevert
- Division of Pulmonary, Critical Care and Sleep Medicine, and
- Department of Comparative Medicine, University of Washington, Seattle, Washington
| | | | - Jean Charron
- Oncology Division, Quebec University Hospital Center–Laval University Research Center, Laval University Research Center and Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University, Quebec City, Quebec, Canada
| | - Sina A. Gharib
- Division of Pulmonary, Critical Care and Sleep Medicine, and
| | | |
Collapse
|
13
|
Chou YT, Bivona TG. Inhibition of SHP2 as an approach to block RAS-driven cancers. Adv Cancer Res 2022; 153:205-236. [PMID: 35101231 DOI: 10.1016/bs.acr.2021.07.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The non-receptor protein tyrosine phosphatase SHP2 (encoded by PTPN11) is a critical component of RAS/MAPK signaling by acting upstream of RAS to promote oncogenic signaling and tumor growth. Over three decades, SHP2 was considered "undruggable" because enzymatic active-site inhibitors generally showed off-target inhibition of other proteins and low membrane permeability. More recently, allosteric SHP2 inhibitors with striking inhibitory potency have been developed. These small molecules effectively block the signal transduction between receptor tyrosine kinases (RTKs) and RAS/MAPK signaling and show efficacy in preclinical cancer models. Moreover, clinical evaluation of these allosteric SHP2 inhibitors is ongoing. RAS proteins which harbor transforming properties by gain-of-function mutations are present in various cancer types. While inhibitors of KRASG12C show early clinical promise, resistance remains a challenge and other forms of oncogenic RAS remain to be selectively inhibited. Here, we summarize the role of SHP2 in RAS-driven cancers and the therapeutic potential of allosteric SHP2 inhibitors as a strategy to block RAS-driven cancers.
Collapse
Affiliation(s)
- Yu-Ting Chou
- Department of Medicine, Division of Hematology and Oncology, and The Helen Diller Comprehensive Cancer Center, University of California, San Francisco, CA, United States
| | - Trever G Bivona
- Department of Medicine, Division of Hematology and Oncology, and The Helen Diller Comprehensive Cancer Center, University of California, San Francisco, CA, United States.
| |
Collapse
|
14
|
Abstract
The RASopathies are a group of disorders caused by a germline mutation in one of the genes encoding a component of the RAS/MAPK pathway. These disorders, including neurofibromatosis type 1, Noonan syndrome, cardiofaciocutaneous syndrome, Costello syndrome and Legius syndrome, among others, have overlapping clinical features due to RAS/MAPK dysfunction. Although several of the RASopathies are very rare, collectively, these disorders are relatively common. In this Review, we discuss the pathogenesis of the RASopathy-associated genetic variants and the knowledge gained about RAS/MAPK signaling that resulted from studying RASopathies. We also describe the cell and animal models of the RASopathies and explore emerging RASopathy genes. Preclinical and clinical experiences with targeted agents as therapeutics for RASopathies are also discussed. Finally, we review how the recently developed drugs targeting RAS/MAPK-driven malignancies, such as inhibitors of RAS activation, direct RAS inhibitors and RAS/MAPK pathway inhibitors, might be leveraged for patients with RASopathies.
Collapse
Affiliation(s)
- Katie E Hebron
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Edjay Ralph Hernandez
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Marielle E Yohe
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| |
Collapse
|
15
|
Houde N, Beuret L, Bonaud A, Fortier-Beaulieu SP, Truchon-Landry K, Aoidi R, Pic É, Alouche N, Rondeau V, Schlecht-Louf G, Balabanian K, Espéli M, Charron J. Fine-tuning of MEK signaling is pivotal for limiting B and T cell activation. Cell Rep 2022; 38:110223. [PMID: 35021072 DOI: 10.1016/j.celrep.2021.110223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 10/05/2021] [Accepted: 12/15/2021] [Indexed: 01/17/2023] Open
Abstract
MEK1 and MEK2, the only known activators of ERK, are attractive therapeutic candidates for both cancer and autoimmune diseases. However, how MEK signaling finely regulates immune cell activation is only partially understood. To address this question, we specifically delete Mek1 in hematopoietic cells in the Mek2 null background. Characterization of an allelic series of Mek mutants reveals the presence of distinct degrees of spontaneous B cell activation, which are inversely proportional to the levels of MEK proteins and ERK activation. While Mek1 and Mek2 null mutants have a normal lifespan, 1Mek1 and 1Mek2 mutants retaining only one functional Mek1 or Mek2 allele in hematopoietic cell lineages die from glomerulonephritis and lymphoproliferative disorders, respectively. This establishes that the fine-tuning of the ERK/MAPK pathway is critical to regulate B and T cell activation and function and that each MEK isoform plays distinct roles during lymphocyte activation and disease development.
Collapse
Affiliation(s)
- Nicolas Houde
- Centre de Recherche sur le Cancer de l'Université Laval, Centre de Recherche du CHU de Québec-Université Laval (Oncology Axis), L'Hôtel-Dieu de Québec, 9, Rue McMahon, Québec, QC G1R 3S3 Canada
| | - Laurent Beuret
- Centre de Recherche sur le Cancer de l'Université Laval, Centre de Recherche du CHU de Québec-Université Laval (Oncology Axis), L'Hôtel-Dieu de Québec, 9, Rue McMahon, Québec, QC G1R 3S3 Canada
| | - Amélie Bonaud
- Université de Paris, Institut de Recherche Saint Louis, EMiLy, INSERM U1160, Paris 75010, France; OPALE Carnot Institute, The Organization for Partnerships in Leukemia, Hôpital Saint-Louis, Paris 75010, France
| | - Simon-Pierre Fortier-Beaulieu
- Centre de Recherche sur le Cancer de l'Université Laval, Centre de Recherche du CHU de Québec-Université Laval (Oncology Axis), L'Hôtel-Dieu de Québec, 9, Rue McMahon, Québec, QC G1R 3S3 Canada
| | - Kim Truchon-Landry
- Centre de Recherche sur le Cancer de l'Université Laval, Centre de Recherche du CHU de Québec-Université Laval (Oncology Axis), L'Hôtel-Dieu de Québec, 9, Rue McMahon, Québec, QC G1R 3S3 Canada
| | - Rifdat Aoidi
- Centre de Recherche sur le Cancer de l'Université Laval, Centre de Recherche du CHU de Québec-Université Laval (Oncology Axis), L'Hôtel-Dieu de Québec, 9, Rue McMahon, Québec, QC G1R 3S3 Canada
| | - Émilie Pic
- Centre de Recherche sur le Cancer de l'Université Laval, Centre de Recherche du CHU de Québec-Université Laval (Oncology Axis), L'Hôtel-Dieu de Québec, 9, Rue McMahon, Québec, QC G1R 3S3 Canada
| | - Nagham Alouche
- Université de Paris, Institut de Recherche Saint Louis, EMiLy, INSERM U1160, Paris 75010, France; OPALE Carnot Institute, The Organization for Partnerships in Leukemia, Hôpital Saint-Louis, Paris 75010, France
| | - Vincent Rondeau
- Université de Paris, Institut de Recherche Saint Louis, EMiLy, INSERM U1160, Paris 75010, France; OPALE Carnot Institute, The Organization for Partnerships in Leukemia, Hôpital Saint-Louis, Paris 75010, France
| | - Géraldine Schlecht-Louf
- Université Paris-Saclay, INSERM, Inflammation, Microbiome and Immunosurveillance, Clamart 92140, France
| | - Karl Balabanian
- Université de Paris, Institut de Recherche Saint Louis, EMiLy, INSERM U1160, Paris 75010, France; OPALE Carnot Institute, The Organization for Partnerships in Leukemia, Hôpital Saint-Louis, Paris 75010, France
| | - Marion Espéli
- Université de Paris, Institut de Recherche Saint Louis, EMiLy, INSERM U1160, Paris 75010, France; OPALE Carnot Institute, The Organization for Partnerships in Leukemia, Hôpital Saint-Louis, Paris 75010, France
| | - Jean Charron
- Centre de Recherche sur le Cancer de l'Université Laval, Centre de Recherche du CHU de Québec-Université Laval (Oncology Axis), L'Hôtel-Dieu de Québec, 9, Rue McMahon, Québec, QC G1R 3S3 Canada; Department of Molecular Biology, Medical Biochemistry & Pathology, Université Laval, Québec, QC G1V 0A6, Canada.
| |
Collapse
|
16
|
Balasubramanian R, Min X, Quinn PMJ, Giudice QL, Tao C, Polanco K, Makrides N, Peregrin J, Bouaziz M, Mao Y, Wang Q, da Costa BL, Buenaventura D, Wang F, Ma L, Tsang SH, Fabre PJ, Zhang X. Phase transition specified by a binary code patterns the vertebrate eye cup. SCIENCE ADVANCES 2021; 7:eabj9846. [PMID: 34757798 PMCID: PMC8580326 DOI: 10.1126/sciadv.abj9846] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 09/21/2021] [Indexed: 05/27/2023]
Abstract
The developing vertebrate eye cup is partitioned into the neural retina (NR), the retinal pigmented epithelium (RPE), and the ciliary margin (CM). By single-cell analysis, we showed that fibroblast growth factor (FGF) signaling regulates the CM in its stem cell–like property of self-renewal, differentiation, and survival, which is balanced by an evolutionarily conserved Wnt signaling gradient. FGF promotes Wnt signaling in the CM by stabilizing β-catenin in a GSK3β-independent manner. While Wnt signaling converts the NR to either the CM or the RPE depending on FGF signaling, FGF transforms the RPE to the NR or CM dependent on Wnt activity. The default fate of the eye cup is the NR, but synergistic FGF and Wnt signaling promotes CM formation both in vivo and in human retinal organoid. Our study reveals that the vertebrate eye develops through phase transition determined by a combinatorial code of FGF and Wnt signaling.
Collapse
Affiliation(s)
| | - Xuanyu Min
- Department of Ophthalmology, Columbia University, New York, NY, USA
| | | | - Quentin Lo Giudice
- Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland
| | - Chenqi Tao
- Department of Ophthalmology, Columbia University, New York, NY, USA
| | - Karina Polanco
- Department of Psychology, Columbia University, New York, NY, USA
| | - Neoklis Makrides
- Department of Ophthalmology, Columbia University, New York, NY, USA
| | - John Peregrin
- Department of Ophthalmology, Columbia University, New York, NY, USA
| | - Michael Bouaziz
- Department of Ophthalmology, Columbia University, New York, NY, USA
| | - Yingyu Mao
- Department of Ophthalmology, Columbia University, New York, NY, USA
| | - Qian Wang
- Department of Ophthalmology, Columbia University, New York, NY, USA
| | | | | | - Fen Wang
- Center for Cancer Biology and Nutrition, Institute of Biosciences and Technology, Texas A&M, Houston, TX, USA
| | - Liang Ma
- Division of Dermatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Stephen H. Tsang
- Department of Ophthalmology, Columbia University, New York, NY, USA
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, USA
- Jonas Children’s Vision Care, and Bernard and Shirley Brown Glaucoma Laboratory, Columbia Stem Cell Initiative, Institute of Human Nutrition, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Edward S. Harkness Eye Institute, New York Presbyterian Hospital, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
| | - Pierre J. Fabre
- Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland
| | - Xin Zhang
- Department of Ophthalmology, Columbia University, New York, NY, USA
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, USA
| |
Collapse
|
17
|
Beuret L, Fortier-Beaulieu SP, Rondeau V, Roy S, Houde N, Balabanian K, Espéli M, Charron J. Mek1 and Mek2 Functional Redundancy in Erythropoiesis. Front Cell Dev Biol 2021; 9:639022. [PMID: 34386488 PMCID: PMC8353236 DOI: 10.3389/fcell.2021.639022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 06/21/2021] [Indexed: 12/23/2022] Open
Abstract
Several studies have established the crucial role of the extracellular signal–regulated kinase (ERK)/mitogen-activated protein kinase pathway in hematopoietic cell proliferation and differentiation. MEK1 and MEK2 phosphorylate and activate ERK1 and ERK2. However, whether MEK1 and MEK2 differentially regulate these processes is unknown. To define the function of Mek genes in the activation of the ERK pathway during hematopoiesis, we generated a mutant mouse line carrying a hematopoietic-specific deletion of the Mek1 gene function in a Mek2 null background. Inactivation of both Mek1 and Mek2 genes resulted in death shortly after birth with a severe anemia revealing the essential role of the ERK pathway in erythropoiesis. Mek1 and Mek2 functional ablation also affected lymphopoiesis and myelopoiesis. In contrast, mice that retained one functional Mek1 (1Mek1) or Mek2 (1Mek2) allele in hematopoietic cells were viable and fertile. 1Mek1 and 1Mek2 mutants showed mild signs of anemia and splenomegaly, but the half-life of their red blood cells and the response to erythropoietic stress were not altered, suggesting a certain level of Mek redundancy for sustaining functional erythropoiesis. However, subtle differences in multipotent progenitor distribution in the bone marrow were observed in 1Mek1 mice, suggesting that the two Mek genes might differentially regulate early hematopoiesis.
Collapse
Affiliation(s)
- Laurent Beuret
- Centre de Recherche sur le Cancer de l'Université Laval, Centre de Recherche du CHU de Québec-Université Laval (Oncology), Québec, QC, Canada
| | - Simon-Pierre Fortier-Beaulieu
- Centre de Recherche sur le Cancer de l'Université Laval, Centre de Recherche du CHU de Québec-Université Laval (Oncology), Québec, QC, Canada
| | - Vincent Rondeau
- Université de Paris, Institut de Recherche Saint Louis, EMiLy, Inserm U1160, Paris, France.,OPALE Carnot Institute, The Organization for Partnerships in Leukemia, Hôpital Saint-Louis, Paris, France
| | - Sophie Roy
- Centre de Recherche sur le Cancer de l'Université Laval, Centre de Recherche du CHU de Québec-Université Laval (Oncology), Québec, QC, Canada
| | - Nicolas Houde
- Centre de Recherche sur le Cancer de l'Université Laval, Centre de Recherche du CHU de Québec-Université Laval (Oncology), Québec, QC, Canada
| | - Karl Balabanian
- Université de Paris, Institut de Recherche Saint Louis, EMiLy, Inserm U1160, Paris, France.,OPALE Carnot Institute, The Organization for Partnerships in Leukemia, Hôpital Saint-Louis, Paris, France
| | - Marion Espéli
- Université de Paris, Institut de Recherche Saint Louis, EMiLy, Inserm U1160, Paris, France.,OPALE Carnot Institute, The Organization for Partnerships in Leukemia, Hôpital Saint-Louis, Paris, France
| | - Jean Charron
- Centre de Recherche sur le Cancer de l'Université Laval, Centre de Recherche du CHU de Québec-Université Laval (Oncology), Québec, QC, Canada.,Department of Molecular Biology, Medical Biochemistry and Pathology, Université Laval, Québec, QC, Canada
| |
Collapse
|
18
|
Ikushima YM, Awazawa M, Kobayashi N, Osonoi S, Takemiya S, Kobayashi H, Suwanai H, Morimoto Y, Soeda K, Adachi J, Muratani M, Charron J, Mizukami H, Takahashi N, Ueki K. MEK/ERK Signaling in β-Cells Bifunctionally Regulates β-Cell Mass and Glucose-Stimulated Insulin Secretion Response to Maintain Glucose Homeostasis. Diabetes 2021; 70:1519-1535. [PMID: 33906910 DOI: 10.2337/db20-1295] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 04/23/2021] [Indexed: 11/13/2022]
Abstract
In diabetic pathology, insufficiency in β-cell mass, unable to meet peripheral insulin demand, and functional defects of individual β-cells in production of insulin are often concurrently observed, collectively causing hyperglycemia. Here we show that the phosphorylation of ERK1/2 is significantly decreased in the islets of db/db mice as well as in those of a cohort of subjects with type 2 diabetes. In mice with abrogation of ERK signaling in pancreatic β-cells through deletion of Mek1 and Mek2, glucose intolerance aggravates under high-fat diet-feeding conditions due to insufficient insulin production with lower β-cell proliferation and reduced β-cell mass, while in individual β-cells dampening of the number of insulin exocytosis events is observed, with the molecules involved in insulin exocytosis being less phosphorylated. These data reveal bifunctional roles for MEK/ERK signaling in β-cells for glucose homeostasis, i.e., in regulating β-cell mass as well as in controlling insulin exocytosis in individual β-cells, thus providing not only a novel perspective for the understanding of diabetes pathophysiology but also a potential clue for new drug development for diabetes treatment.
Collapse
Affiliation(s)
- Yoshiko Matsumoto Ikushima
- Department of Molecular Diabetic Medicine, Diabetes Research Center, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Motoharu Awazawa
- Department of Molecular Diabetic Medicine, Diabetes Research Center, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Naoki Kobayashi
- Department of Molecular Diabetic Medicine, Diabetes Research Center, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Sho Osonoi
- Department of Pathology and Molecular Medicine, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Seiichi Takemiya
- Department of Molecular Diabetic Medicine, Diabetes Research Center, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Hiroshi Kobayashi
- Department of Stem Cell Biology, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Hirotsugu Suwanai
- Department of Diabetes, Metabolism and Endocrinology, Tokyo Medical University, Tokyo, Japan
| | - Yuichi Morimoto
- Laboratory of Structural Physiology, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
- International Research Center for Neurointelligence (WPI-IRCN), University of Tokyo Institutes for Advanced Study (UTIAS), The University of Tokyo, Tokyo, Japan
| | - Kotaro Soeda
- Department of Molecular Diabetic Medicine, Diabetes Research Center, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Jun Adachi
- Laboratory of Proteome Research, Laboratory of Proteomics for Drug Discovery, Center for Drug Design Research, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Masafumi Muratani
- Department of Genome Biology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Jean Charron
- Centre de Recherche sur le Cancer de l'Université Laval, L'Hôtel-Dieu de Québec, Quebec City, Quebec, Canada
| | - Hiroki Mizukami
- Department of Pathology and Molecular Medicine, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Noriko Takahashi
- Department of Physiology, Kitasato University School of Medicine, Sagamihara, Japan
| | - Kohjiro Ueki
- Department of Molecular Diabetic Medicine, Diabetes Research Center, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
- Department of Molecular Diabetology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
19
|
Jiang M, Fang Y, Li Y, Huang H, Wei Z, Gao X, Sung HK, Hu J, Qiang L, Ruan J, Chen Q, Jiang D, Whitsett JA, Ai X, Que J. VEGF receptor 2 (KDR) protects airways from mucus metaplasia through a Sox9-dependent pathway. Dev Cell 2021; 56:1646-1660.e5. [PMID: 34010630 DOI: 10.1016/j.devcel.2021.04.027] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 03/08/2021] [Accepted: 04/23/2021] [Indexed: 01/02/2023]
Abstract
Mucus-secreting goblet cells are the dominant cell type in pulmonary diseases, e.g., asthma and cystic fibrosis (CF), leading to pathologic mucus metaplasia and airway obstruction. Cytokines including IL-13 are the major players in the transdifferentiation of club cells into goblet cells. Unexpectedly, we have uncovered a previously undescribed pathway promoting mucous metaplasia that involves VEGFa and its receptor KDR. Single-cell RNA sequencing analysis coupled with genetic mouse modeling demonstrates that loss of epithelial VEGFa, KDR, or MEK/ERK kinase promotes excessive club-to-goblet transdifferentiation during development and regeneration. Sox9 is required for goblet cell differentiation following Kdr inhibition in both mouse and human club cells. Significantly, airway mucous metaplasia in asthmatic and CF patients is also associated with reduced KDR signaling and increased SOX9 expression. Together, these findings reveal an unexpected role for VEGFa/KDR signaling in the defense against mucous metaplasia, offering a potential therapeutic target for this common airway pathology.
Collapse
Affiliation(s)
- Ming Jiang
- National Clinical Research Center for Child Health of the Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310058 Zhejiang, P.R. China; Columbia Center for Human Development & Division of Digestive and Liver Disease, Department of Medicine, Columbia University Medical Center, NY 10032, USA
| | - Yinshan Fang
- Columbia Center for Human Development & Division of Digestive and Liver Disease, Department of Medicine, Columbia University Medical Center, NY 10032, USA
| | - Yu Li
- Columbia Center for Human Development & Division of Digestive and Liver Disease, Department of Medicine, Columbia University Medical Center, NY 10032, USA; Tianjin Key Laboratory of Lung Regenerative Medicine, Haihe Hospital, Tianjin 300350, P.R. China
| | - Huachao Huang
- Columbia Center for Human Development & Division of Digestive and Liver Disease, Department of Medicine, Columbia University Medical Center, NY 10032, USA
| | - Zichen Wei
- National Clinical Research Center for Child Health of the Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310058 Zhejiang, P.R. China
| | - Xia Gao
- Columbia Center for Human Development & Division of Digestive and Liver Disease, Department of Medicine, Columbia University Medical Center, NY 10032, USA
| | - Hoon-Ki Sung
- Translation Medicine Program, the Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Jim Hu
- Translation Medicine Program, the Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Li Qiang
- Department of Pathology and Cell Biology, Naomi Berrie Diabetes Center, Columbia University College of Physicians & Surgeons, New York, NY 10032, USA
| | - Jian Ruan
- Department of Medical Oncology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003 Zhejiang, P.R. China
| | - Qixuan Chen
- Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Dianhua Jiang
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, 90048 CA, USA
| | - Jeffrey A Whitsett
- Department of Pediatrics, University of Cincinnati and Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Xingbin Ai
- Division of Newborn Medicine, Department of Pediatrics, Massachusetts General Hospital for Children, Boston, MA 02114, USA
| | - Jianwen Que
- Columbia Center for Human Development & Division of Digestive and Liver Disease, Department of Medicine, Columbia University Medical Center, NY 10032, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, NY 10032, USA.
| |
Collapse
|
20
|
Ullah R, Yin Q, Snell AH, Wan L. RAF-MEK-ERK pathway in cancer evolution and treatment. Semin Cancer Biol 2021; 85:123-154. [PMID: 33992782 DOI: 10.1016/j.semcancer.2021.05.010] [Citation(s) in RCA: 235] [Impact Index Per Article: 58.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/03/2021] [Accepted: 05/06/2021] [Indexed: 12/13/2022]
Abstract
The RAF-MEK-ERK signaling cascade is a well-characterized MAPK pathway involved in cell proliferation and survival. The three-layered MAPK signaling cascade is initiated upon RTK and RAS activation. Three RAF isoforms ARAF, BRAF and CRAF, and their downstream MEK1/2 and ERK1/2 kinases constitute a coherently orchestrated signaling module that directs a range of physiological functions. Genetic alterations in this pathway are among the most prevalent in human cancers, which consist of numerous hot-spot mutations such as BRAFV600E. Oncogenic mutations in this pathway often override otherwise tightly regulated checkpoints to open the door for uncontrolled cell growth and neoplasia. The crosstalk between the RAF-MEK-ERK axis and other signaling pathways further extends the proliferative potential of this pathway in human cancers. In this review, we summarize the molecular architecture and physiological functions of the RAF-MEK-ERK pathway with emphasis on its dysregulations in human cancers, as well as the efforts made to target the RAF-MEK-ERK module using small molecule inhibitors.
Collapse
Affiliation(s)
- Rahim Ullah
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Qing Yin
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Aidan H Snell
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Lixin Wan
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA; Department of Cutaneous Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA.
| |
Collapse
|
21
|
Schapansky J, Grinberg YY, Osiecki DM, Freeman EA, Walker SG, Karran E, Gopalakrishnan SM, Talanian RV. MEK1/2 activity modulates TREM2 cell surface recruitment. J Biol Chem 2020; 296:100218. [PMID: 33839686 PMCID: PMC7948395 DOI: 10.1074/jbc.ra120.014352] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 12/17/2020] [Accepted: 12/21/2020] [Indexed: 11/18/2022] Open
Abstract
Rare sequence variants in the microglial cell surface receptor TREM2 have been shown to increase the risk for Alzheimer’s disease (AD). Disease-linked TREM2 mutations seem to confer a partial loss of function, and increasing TREM2 cell surface expression and thereby its function(s) might have therapeutic benefit in AD. However, druggable targets that could modulate microglial TREM2 surface expression are not known. To identify such targets, we conducted a screen of small molecule compounds with known pharmacology using human myeloid cells, searching for those that enhance TREM2 protein at the cell surface. Inhibitors of the kinases MEK1/2 displayed the strongest and most consistent increases in cell surface TREM2 protein, identifying a previously unreported pathway for TREM2 regulation. Unexpectedly, inhibitors of the downstream effector ERK kinases did not have the same effect, suggesting that noncanonical MEK signaling regulates TREM2 trafficking. In addition, siRNA knockdown experiments confirmed that decreased MEK1 and MEK2 were required for this recruitment. In iPSC-derived microglia, MEK inhibition increased cell surface TREM2 only modestly, so various cytokines were used to alter iPSC microglia phenotype, making cells more sensitive to MEK inhibitor-induced TREM2 recruitment. Of those tested, only IFN-gamma priming prior to MEK inhibitor treatment resulted in greater TREM2 recruitment. These data identify the first known mechanisms for increasing surface TREM2 protein and TREM2-regulated function in human myeloid cells and are the first to show a role for MEK1/MEK2 signaling in TREM2 activity.
Collapse
Affiliation(s)
- Jason Schapansky
- AbbVie Inc, Cambridge Research Center, Cambridge, Massachusetts, USA.
| | - Yelena Y Grinberg
- AbbVie Inc, Cambridge Research Center, Cambridge, Massachusetts, USA
| | - David M Osiecki
- AbbVie Inc, Drug Discovery Science and Technology, North Chicago, Illinois, USA
| | - Emily A Freeman
- AbbVie Inc, Cambridge Research Center, Cambridge, Massachusetts, USA
| | - Stephen G Walker
- AbbVie Inc, Drug Discovery Science and Technology, North Chicago, Illinois, USA
| | - Eric Karran
- AbbVie Inc, Cambridge Research Center, Cambridge, Massachusetts, USA
| | | | - Robert V Talanian
- AbbVie Inc, Cambridge Research Center, Cambridge, Massachusetts, USA
| |
Collapse
|
22
|
ERK1/2 Signaling Pathway Activated by EGF Promotes Proliferation, Transdifferentiation, and Migration of Cultured Primary Newborn Rat Lung Fibroblasts. BIOMED RESEARCH INTERNATIONAL 2020; 2020:7176169. [PMID: 33083482 PMCID: PMC7559493 DOI: 10.1155/2020/7176169] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 08/25/2020] [Indexed: 12/16/2022]
Abstract
Background Bronchopulmonary dysplasia (BPD) is a common and serious complication in premature infants. Lung fibroblasts (LFs) are present in the extracellular matrix and participate in pulmonary development in response to BPD. The aim of this study was to investigate the effect of extracellular signal-regulated kinase (ERK) on LFs cultured from newborn rats. Material and Methods. Primary LFs were isolated and treated with epidermal growth factor (EGF, 20 ng/mL) in the presence or absence of an ERK inhibitor, PD98059 (10 μmol/L). Phosphorylated ERK1/2 (p-ERK1/2) protein levels were determined using immunocytochemistry, western blotting, and real-time reverse transcription quantitative (RT–q)PCR. LF proliferation was examined by flow cytometry and a cell counting kit-8 assay. LF transdifferentiation was examined by protein and mRNA expression of α-smooth muscle actin (α-SMA) by immunocytochemistry, western blotting, and RT–qPCR. LF migration was examined by the transwell method. Results Phosphorylated ERK1/2, which was activated by EGF, promoted LF proliferation by accelerating cell-cycle progression from the G1 to S phase. After treatment with PD98059, the expression of p-ERK1/2 in LFs, cellular proliferation, and the percentage of cells in S phase were significantly decreased. Phosphorylated ERK1/2 also promoted the differentiation of LFs into myofibroblasts through increased α-SMA synthesis and migration. Conclusion The activation of ERK promotes proliferation, transdifferentiation, and migration of lung fibroblasts from newborn rats.
Collapse
|
23
|
Miyamoto Y, Tanaka M, Ito H, Ooizumi H, Ohbuchi K, Mizoguchi K, Torii T, Yamauchi J. Expression of kinase-deficient MEK2 ameliorates Pelizaeus-Merzbacher disease phenotypes in mice. Biochem Biophys Res Commun 2020; 531:445-451. [PMID: 32800341 DOI: 10.1016/j.bbrc.2020.07.131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 07/28/2020] [Indexed: 10/23/2022]
Abstract
Pelizaeus-Merzbacher disease (PMD) is characterized as a congenital hypomyelinating disorder in oligodendrocytes, myelin-forming glial cells in the central nervous system (CNS). The responsible gene of PMD is plp1, whose multiplication, deletion, or mutation is associated with PMD. We previously reported that primary oligodendrocytes overexpressing proteolipid protein 1 (PLP1) do not have the ability to differentiate morphologically, whereas inhibition of mitogen-activated protein kinase/extracellular signal-regulated protein kinase (MAPK/ERK) by its cognate siRNA or chemical inhibitor reverses their undifferentiated phenotypes. Here, we show that oligodendrocyte-specific expression of kinase-deficient dominant-inhibitory mutant (MEK2K101A) of MAPK/ERK kinase 2 (MEK2), as the direct upstream molecule of MAPK/ERK in PMD model mice, promotes myelination in CNS tissues. Expression of MEK2K101A in PMD model mice also improves Rotor-rod test performance, which is often used to assess motor coordination in a rodent model with neuropathy. These results suggest that in PMD model mice, MEK2K101A can ameliorate impairments of myelination and motor function and that the signaling through MAPK/ERK may involve potential therapeutic target molecules of PMD in vivo.
Collapse
Affiliation(s)
- Yuki Miyamoto
- Laboratory of Molecular Neuroscience and Neurology, Hachioji, Tokyo, 192-0392, Japan; Laboratory of Molecular Pharmacology, National Research Institute for Child Health and Development, Setagaya, Tokyo, 157-8535, Japan
| | - Marina Tanaka
- Laboratory of Molecular Neuroscience and Neurology, Hachioji, Tokyo, 192-0392, Japan
| | - Hisanaka Ito
- Laboratory of Bioorganic Chemistry, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, 192-0392, Japan
| | - Hiroaki Ooizumi
- Tsumura Research Laboratories, Tsumura & Co., Inashiki, Ibaraki, 200-1192, Japan
| | - Katsuya Ohbuchi
- Tsumura Research Laboratories, Tsumura & Co., Inashiki, Ibaraki, 200-1192, Japan
| | - Kazushige Mizoguchi
- Tsumura Research Laboratories, Tsumura & Co., Inashiki, Ibaraki, 200-1192, Japan
| | - Tomohiro Torii
- Laboratory of Ion Channel Pathophysiology, Doshisha University, Kyotanabe, Kyoto, 610-0394, Japan
| | - Junji Yamauchi
- Laboratory of Molecular Neuroscience and Neurology, Hachioji, Tokyo, 192-0392, Japan; Laboratory of Molecular Pharmacology, National Research Institute for Child Health and Development, Setagaya, Tokyo, 157-8535, Japan.
| |
Collapse
|
24
|
Wu PK, Becker A, Park JI. Growth Inhibitory Signaling of the Raf/MEK/ERK Pathway. Int J Mol Sci 2020; 21:ijms21155436. [PMID: 32751750 PMCID: PMC7432891 DOI: 10.3390/ijms21155436] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 07/28/2020] [Indexed: 12/14/2022] Open
Abstract
In response to extracellular stimuli, the Raf/MEK/extracellular signal-regulated kinase (ERK) pathway regulates diverse cellular processes. While mainly known as a mitogenic signaling pathway, the Raf/MEK/ERK pathway can mediate not only cell proliferation and survival but also cell cycle arrest and death in different cell types. Growing evidence suggests that the cell fate toward these paradoxical physiological outputs may be determined not only at downstream effector levels but also at the pathway level, which involves the magnitude of pathway activity, spatial-temporal regulation, and non-canonical functions of the molecular switches in this pathway. This review discusses recent updates on the molecular mechanisms underlying the pathway-mediated growth inhibitory signaling, with a major focus on the regulation mediated at the pathway level.
Collapse
Affiliation(s)
- Pui-Kei Wu
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA;
- Correspondence: (P.-K.W.); (J.-I.P.)
| | - Andrew Becker
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA;
| | - Jong-In Park
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA;
- Department of Surgery, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Correspondence: (P.-K.W.); (J.-I.P.)
| |
Collapse
|
25
|
Qiao C, Richter GT, Pan W, Jin Y, Lin X. Extracranial arteriovenous malformations: from bedside to bench. Mutagenesis 2020; 34:299-306. [PMID: 31613971 DOI: 10.1093/mutage/gez028] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 09/14/2019] [Indexed: 01/08/2023] Open
Abstract
Arteriovenous malformation (AVM) is defined as a fast-flow vascular anomaly that shunts blood from arteries directly to veins. This short circuit of blood flow contributes to progressive expansion of draining veins, resulting in ischaemia, tissue deformation and in some severe cases, congestive heart failure. Various medical interventions have been employed to treat AVM, however, management of which remains a huge challenge because of its high recurrence rate and lethal complications. Thus, understanding the underlying mechanisms of AVM development and progression will help direct discovery and a potential cure. Here, we summarize current findings in the field of extracranial AVMs with the aim to provide insight into their aetiology and molecular influences, in the hope to pave the way for future treatment.
Collapse
Affiliation(s)
- Congzhen Qiao
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Gresham T Richter
- Center for Investigation of Congenital Anomalies of Vascular Development, Arkansas Vascular Biology Program, Arkansas Children's Hospital, Little Rock, AR, USA.,Department of Otolaryngology-Head and Neck Surgery, University of Arkansas for Medical Sciences, Little Rock, AR, USA.,Division of Pediatric Otolaryngology, Arkansas Children's Hospital, Little Rock, AR, USA
| | - Weijun Pan
- Key Laboratory of Stem Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yunbo Jin
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoxi Lin
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
26
|
Drosten M, Barbacid M. Targeting the MAPK Pathway in KRAS-Driven Tumors. Cancer Cell 2020; 37:543-550. [PMID: 32289276 DOI: 10.1016/j.ccell.2020.03.013] [Citation(s) in RCA: 318] [Impact Index Per Article: 63.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/26/2020] [Accepted: 03/16/2020] [Indexed: 12/19/2022]
Abstract
KRAS mutations occur in a quarter of all of human cancers, yet no selective drug has been approved to treat these tumors. Despite the recent development of drugs that block KRASG12C, the majority of KRAS oncoproteins remain undruggable. Here, we review recent efforts to validate individual components of the mitogen-activated protein kinase (MAPK) pathway as targets to treat KRAS-mutant cancers by comparing genetic information derived from experimental mouse models of KRAS-driven lung and pancreatic tumors with the outcome of selective MAPK inhibitors in clinical trials. We also review the potential of RAF1 as a key target to block KRAS-mutant cancers.
Collapse
Affiliation(s)
- Matthias Drosten
- Molecular Oncology Programme, Centro Nacional de Investigaciones Oncológicas (CNIO), Melchor Fernández Almagro 3, 28029 Madrid, Spain.
| | - Mariano Barbacid
- Molecular Oncology Programme, Centro Nacional de Investigaciones Oncológicas (CNIO), Melchor Fernández Almagro 3, 28029 Madrid, Spain.
| |
Collapse
|
27
|
Miningou N, Blackwell KT. The road to ERK activation: Do neurons take alternate routes? Cell Signal 2020; 68:109541. [PMID: 31945453 PMCID: PMC7127974 DOI: 10.1016/j.cellsig.2020.109541] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 01/11/2020] [Accepted: 01/12/2020] [Indexed: 01/29/2023]
Abstract
The ERK cascade is a central signaling pathway that regulates a wide variety of cellular processes including proliferation, differentiation, learning and memory, development, and synaptic plasticity. A wide range of inputs travel from the membrane through different signaling pathway routes to reach activation of one set of output kinases, ERK1&2. The classical ERK activation pathway beings with growth factor activation of receptor tyrosine kinases. Numerous G-protein coupled receptors and ionotropic receptors also lead to ERK through increases in the second messengers calcium and cAMP. Though both types of pathways are present in diverse cell types, a key difference is that most stimuli to neurons, e.g. synaptic inputs, are transient, on the order of milliseconds to seconds, whereas many stimuli acting on non-neural tissue, e.g. growth factors, are longer duration. The ability to consolidate these inputs to regulate the activation of ERK in response to diverse signals raises the question of which factors influence the difference in ERK activation pathways. This review presents both experimental studies and computational models aimed at understanding the control of ERK activation and whether there are fundamental differences between neurons and other cells. Our main conclusion is that differences between cell types are quite subtle, often related to differences in expression pattern and quantity of some molecules such as Raf isoforms. In addition, the spatial location of ERK is critical, with regulation by scaffolding proteins producing differences due to colocalization of upstream molecules that may differ between neurons and other cells.
Collapse
Affiliation(s)
- Nadiatou Miningou
- Department of Chemistry and Biochemistry, George Mason University, Fairfax, VA 22030, United States of America
| | - Kim T Blackwell
- Interdisciplinary Program in Neuroscience and Bioengineering Department, George Mason University, Fairfax, VA 22030, United States of America.
| |
Collapse
|
28
|
Chen J, Che L, Xu C, Zhao S, Yang J, Li M, Li G, Shen Y. Cardio-facio-cutaneous syndrome-associated pathogenic MAP2K1 variants activate autophagy. Gene 2020; 733:144369. [PMID: 31972311 DOI: 10.1016/j.gene.2020.144369] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 01/12/2020] [Accepted: 01/13/2020] [Indexed: 02/08/2023]
Abstract
MAP2K1 encodes mitogen-activated protein kinase 1 (MEK1). Mutations in MAP2K1 lead to continuous activation of MEK/ERK signaling pathway, giving rise to cardio-facio-cutaneous syndrome (CFCS). However, the molecular mechanisms of abnormal activation of MEK/ERK signaling pathway and the role of autophagy, if any, in manifesting CFCS in MAP2K mutants remain unclear. Here, we report three Chinese children with CFCS having MAP2K1 pathogenic variants, identified by exome sequencing. They presented with dysmorphic facial features, seizures, psychomotor retardation, and short stature. Additionally, the third child showed pulmonary valve stenosis, multiple skeletal deformities, and osteoporosis. Whole exome sequencing revealed two heterozygous missense mutations in exon 3 of MAP2K1 (c.383G>T; p.Gly128Val and c.389A>G; p.Tyr130Cys), as well as a novel heterozygous missense variant (c.170A>T; p.Lys57Met) in exon 2 of MAP2K1. In SH-SY5Y cells, we identified, for the first time, that MAP2K1 mutations can activate the p-ERK-dependent cell cycle progression and autophagy, and cause CFCS. Our results extended the mutational spectrum of MAP2K1, examined the role of MEK1 protein in nerve cell functions, and demonstrated, for the first time, that autophagy may mediate the altered MAP2K1 function, leading to CFCS phenotypes.
Collapse
Affiliation(s)
- Jing Chen
- Department of Child Health, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, Fujian, China; School of Public Health, Xiamen University, Xiamen, Fujian, China
| | - Lin Che
- School of Public Health, Xiamen University, Xiamen, Fujian, China
| | - Chao Xu
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China; Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, China; Shandong Clinical Medical Center of Endocrinology and Metabolism, Jinan, China
| | - Suzhou Zhao
- Fulgent Technologies Inc, Minhang District, Shanghai, China
| | - Jiangfei Yang
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Mengting Li
- Genetic and Metabolic Central Laboratory, Birth Defect Prevention Research Institute, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Guimei Li
- Department of Pediatrics, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China.
| | - Yiping Shen
- Genetic and Metabolic Central Laboratory, Birth Defect Prevention Research Institute, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China; Division of Genetics and Genomics, Boston Children's Hospital, Department of Neurology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
29
|
Liang RY, Liu BH, Huang CJ, Lin KT, Ko CC, Huang LL, Hsu B, Wu CY, Chuang SM. MEK2 is a critical modulating mechanism to down-regulate GCIP stability and function in cancer cells. FASEB J 2019; 34:1958-1969. [PMID: 31907980 DOI: 10.1096/fj.201901911r] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 09/29/2019] [Accepted: 10/15/2019] [Indexed: 02/03/2023]
Abstract
Loss of tumor suppressor activity and upregulation of oncogenic pathways simultaneously contribute to tumorigenesis. Expression of the tumor suppressor, GCIP (Grap2- and cyclin D1-interacting protein), is usually reduced or lost in advanced cancers, as seen in both mouse tumor models and human cancer patients. However, no previous study has examined how cancer cells down-regulate GCIP expression. In this study, we first validate the tumor suppressive function of GCIP using clinical gastric cancer tissues and online database analysis. We then reveal a novel mechanism whereby MEK2 directly interacts with and phosphorylates GCIP at its Ser313 and Ser356 residues to promote the turnover of GCIP by ubiquitin-mediated proteasomal degradation. We also reveal that decreased GCIP stability enhances cell proliferation and promotes cancer cell migration and invasion. Taken together, these findings provide a more comprehensive view of GCIP in tumorigenesis and suggest that the oncogenic MEK/ERK signaling pathway negatively regulates the protein level of GCIP to promote cell proliferation and migration.
Collapse
Affiliation(s)
- Ruei-Yue Liang
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Bang-Hung Liu
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Chih-Jou Huang
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Kuan-Ting Lin
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Chih-Chung Ko
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Lin-Lun Huang
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Bin Hsu
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Chun-Ying Wu
- Division of Gastroenterology & Hepatology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Show-Mei Chuang
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
30
|
Xie X, Zu X, Liu F, Wang T, Wang X, Chen H, Liu K, Wang P, Liu F, Zheng Y, Bode AM, Dong Z, Kim DJ. Purpurogallin is a novel mitogen-activated protein kinase kinase 1/2 inhibitor that suppresses esophageal squamous cell carcinoma growth in vitro and in vivo. Mol Carcinog 2019; 58:1248-1259. [PMID: 31100197 DOI: 10.1002/mc.23007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 03/05/2019] [Accepted: 03/08/2019] [Indexed: 12/28/2022]
Abstract
Purpurogallin is a natural compound that is extracted from nutgalls and oak bark and it possesses antioxidant, anticancer, and anti-inflammatory properties. However, the anticancer capacity of purpurogallin and its molecular target have not been investigated in esophageal squamous cell carcinoma (ESCC). Herein, we report that purpurogallin suppresses ESCC cell growth by directly targeting the mitogen-activated protein kinase kinase 1/2 (MEK1/2) signaling pathway. We found that purpurogallin inhibits anchorage-dependent and -independent ESCC growth. The results of in vitro kinase assays and cell-based assays indicated that purpurogallin also strongly attenuates the extracellular signal-regulated kinase 1/2 (ERK1/2) signaling pathway and also directly binds to and inhibits MEK1 and MEK2 activity. Furthermore, purpurogallin contributed to S and G2 phase cell cycle arrest by reducing cyclin A2 and cyclin B1 expression and also induced apoptosis by activating poly (ADP ribose) polymerase (PARP). Notably, purpurogallin suppressed patient-derived ESCC tumor growth in an in vivo mouse model. These findings indicated that purpurogallin is a novel MEK1/2 inhibitor that could be useful for treating ESCC.
Collapse
Affiliation(s)
- Xiaomeng Xie
- Department of Molecular and Cellular Biology, China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, China
| | - Xueyin Zu
- Department of Molecular and Cellular Biology, China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, China.,Department of Pathophysiology, The School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Feifei Liu
- Department of Molecular and Cellular Biology, China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, China
| | - Ting Wang
- Department of Molecular and Cellular Biology, China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, China.,Department of Pathophysiology, The School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Xiangyu Wang
- Department of Molecular and Cellular Biology, China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, China
| | - Hanyong Chen
- The Hormel Institute, University of Minnesota, Austin, Minnesota
| | - Kangdong Liu
- Department of Molecular and Cellular Biology, China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, China.,Department of Pathophysiology, The School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China.,The Affiliated Cancer Hospital, Zhengzhou University, Zhengzhou, Henan, China.,The Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, Henan, China
| | - Penglei Wang
- Department of Molecular and Cellular Biology, China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, China.,Department of Pathophysiology, The School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Fangfang Liu
- Department of Molecular and Cellular Biology, China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, China.,Department of Pathophysiology, The School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Yan Zheng
- The Affiliated Cancer Hospital, Zhengzhou University, Zhengzhou, Henan, China
| | - Ann M Bode
- The Hormel Institute, University of Minnesota, Austin, Minnesota
| | - Zigang Dong
- Department of Molecular and Cellular Biology, China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, China.,Department of Pathophysiology, The School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China.,The Hormel Institute, University of Minnesota, Austin, Minnesota.,The Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, Henan, China.,International Joint Research Center of Cancer Chemoprevention, Zhengzhou, China
| | - Dong Joon Kim
- Department of Molecular and Cellular Biology, China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, China.,Department of Pathophysiology, The School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
31
|
The ERK MAPK Pathway Is Essential for Skeletal Development and Homeostasis. Int J Mol Sci 2019; 20:ijms20081803. [PMID: 31013682 PMCID: PMC6514701 DOI: 10.3390/ijms20081803] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 04/09/2019] [Accepted: 04/10/2019] [Indexed: 12/11/2022] Open
Abstract
Mitogen-activated protein kinases (MAPKs) are a family of protein kinases that function as key signal transducers of a wide spectrum of extracellular stimuli, including growth factors and pro-inflammatory cytokines. Dysregulation of the extracellular signal-regulated kinase (ERK) MAPK pathway is associated with human skeletal abnormalities including Noonan syndrome, neurofibromatosis type 1, and cardiofaciocutaneous syndrome. Here, we demonstrate that ERK activation in osteoprogenitors is required for bone formation during skeletal development and homeostasis. Deletion of Mek1 and Mek2, kinases upstream of ERK MAPK, in osteoprogenitors (Mek1OsxMek2−/−), resulted in severe osteopenia and cleidocranial dysplasia (CCD), similar to that seen in humans and mice with impaired RUNX2 function. Additionally, tamoxifen-induced deletion of Mek1 and Mek2 in osteoprogenitors in adult mice (Mek1Osx-ERTMek2−/−) significantly reduced bone mass. Mechanistically, this corresponded to decreased activation of osteoblast master regulators, including RUNX2, ATF4, and β-catenin. Finally, we identified potential regulators of osteoblast differentiation in the ERK MAPK pathway using unbiased phospho-mass spectrometry. These observations demonstrate essential roles of ERK activation in osteogenesis and bone formation.
Collapse
|
32
|
Kurtzeborn K, Kwon HN, Kuure S. MAPK/ERK Signaling in Regulation of Renal Differentiation. Int J Mol Sci 2019; 20:E1779. [PMID: 30974877 PMCID: PMC6479953 DOI: 10.3390/ijms20071779] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 04/04/2019] [Accepted: 04/08/2019] [Indexed: 12/20/2022] Open
Abstract
Congenital anomalies of the kidney and urinary tract (CAKUT) are common birth defects derived from abnormalities in renal differentiation during embryogenesis. CAKUT is the major cause of end-stage renal disease and chronic kidney diseases in children, but its genetic causes remain largely unresolved. Here we discuss advances in the understanding of how mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) activity contributes to the regulation of ureteric bud branching morphogenesis, which dictates the final size, shape, and nephron number of the kidney. Recent studies also demonstrate that the MAPK/ERK pathway is directly involved in nephrogenesis, regulating both the maintenance and differentiation of the nephrogenic mesenchyme. Interestingly, aberrant MAPK/ERK signaling is linked to many cancers, and recent studies suggest it also plays a role in the most common pediatric renal cancer, Wilms' tumor.
Collapse
Affiliation(s)
- Kristen Kurtzeborn
- Helsinki Institute of Life Science, University of Helsinki, FIN-00014 Helsinki, Finland.
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, FIN-00014 Helsinki, Finland.
| | - Hyuk Nam Kwon
- Helsinki Institute of Life Science, University of Helsinki, FIN-00014 Helsinki, Finland.
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, FIN-00014 Helsinki, Finland.
| | - Satu Kuure
- Helsinki Institute of Life Science, University of Helsinki, FIN-00014 Helsinki, Finland.
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, FIN-00014 Helsinki, Finland.
- GM-unit, Laboratory Animal Center, Helsinki Institute of Life Science, University of Helsinki, FIN-00014 Helsinki, Finland.
| |
Collapse
|
33
|
Talwar H, Bouhamdan M, Bauerfeld C, Talreja J, Aoidi R, Houde N, Charron J, Samavati L. MEK2 Negatively Regulates Lipopolysaccharide-Mediated IL-1β Production through HIF-1α Expression. THE JOURNAL OF IMMUNOLOGY 2019; 202:1815-1825. [PMID: 30710049 DOI: 10.4049/jimmunol.1801477] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 01/15/2019] [Indexed: 01/09/2023]
Abstract
LPS-activated macrophages require metabolic reprogramming and glucose uptake mediated by hypoxia-inducible factor (HIF)-1 α and glucose transporter 1 (Glut1) expression for proinflammatory cytokine production, especially IL-1β. This process is tightly regulated through activation of MAPK kinases, including the MEK/ERK pathway as well as several transcription factors including HIF-1α. Although MAPK kinase (MEK) 2 deficiency had no significant effect on NO, TNF-α, or IL-12 production in response to LPS challenge, MEK2-deficient murine bone marrow-derived macrophages (BMDMs) exhibited lower IL-10 production. Importantly, MEK2-deficient BMDMs exhibited a preserved ERK1/2 phosphorylation, higher HIF-1α and Glut1 levels, and substantially increased IL-1β as well as IL-6 production in response to LPS stimulation. Knockdown of HIF-1α expression via short interference RNA decreased the level of HIF-1α expression in MEK2-deficient BMDMs and decreased IL-1β production in response to LPS treatment. Furthermore, we performed gain of function experiments by overexpressing MEK2 protein in RAW264.7 cells. LPS stimulation of MEK2 overexpressed in RAW264.7 cells led to a marked decreased IL-1β production. Finally, we investigated the role of Mek1 and Mek2 double and triple mutation on ERK phosphorylation, HIF-1α expression, and IL-1β production. We found that MEK2 is the major kinase, which inversely proportionally regulates HIF-1α and IL-1β expression independent of ERK activation. Our findings demonstrate a novel regulatory function for MEK2 in response to TLR4 activation in IL-1β production through modulating HIF-1α expression.
Collapse
Affiliation(s)
- Harvinder Talwar
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Wayne State University School of Medicine and Detroit Medical Center, Detroit, MI 48201
| | - Mohamad Bouhamdan
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Wayne State University School of Medicine and Detroit Medical Center, Detroit, MI 48201
| | - Christian Bauerfeld
- Division of Critical Care, Department of Pediatrics, Wayne State University School of Medicine and Detroit Medical Center, Detroit, MI 48201
| | - Jaya Talreja
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Wayne State University School of Medicine and Detroit Medical Center, Detroit, MI 48201
| | - Rifdat Aoidi
- The Francis Crick Institute, London NW1 1AT, United Kingdom
| | - Nicolas Houde
- Centre de Recherche sur le Cancer de l'Université Laval, L'Hôtel-Dieu de Québec, Quebec City, Quebec, Canada; and
| | - Jean Charron
- Centre de Recherche sur le Cancer de l'Université Laval, L'Hôtel-Dieu de Québec, Quebec City, Quebec, Canada; and
| | - Lobelia Samavati
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Wayne State University School of Medicine and Detroit Medical Center, Detroit, MI 48201; .,Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201
| |
Collapse
|
34
|
Mo ZQ, Han R, Wang JL, Ni LY, Su YL, Lai XL, He ZC, Chen HP, Li YW, Sun HY, Luo XC, Dan XM. Characterization and functional analysis of grouper (Epinephelus coioides) MEK1 and MEK2. FISH & SHELLFISH IMMUNOLOGY 2019; 84:1090-1097. [PMID: 30419398 DOI: 10.1016/j.fsi.2018.11.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 11/02/2018] [Accepted: 11/05/2018] [Indexed: 06/09/2023]
Abstract
MEK dual-specificity protein kinases are a group of mitogen-activated protein kinase kinases, which act as an integration point by transferring extracellular signals to the nucleus. To investigate the function of MEK in teleost fish, we cloned MEK1 and MEK2 cDNA sequences from the orange-spotted grouper (Epinephelus coioides). EcMEK1 and EcMEK2 shared 80% amino acid identity with each other. EcMEK1 had 89-99% amino acid identity with teleosts or mammals, whereas EcMEK2 shared 85-97% amino acid identity. The exon structures of the grouper MEK1/2 genes were conserved with zebrafish and human MEK1/2. Tissue distribution analysis showed that EcMEK1 and EcMEK2 had a similar expression pattern in grouper tissues and was mainly transcribe in systemic immune organs. Both EcMEK1 and EcMEK2 were distributed throughout the cytoplasm of transfected GS or HEK293T cells. Overexpression of EcMEK1 or EcMEK2 activated Activator protein 1 dependent luciferase. The phosphorylation levels of EcMEK1/2 and EcERK1/2 were significantly increased in head kidney leukocytes by stimulation with PMA treatment. The grouper MEK1/2-ERK1/2 axis was activated in Cryptocaryon irritans infection and showed an enhanced phosphorylation after immunization.
Collapse
Affiliation(s)
- Ze-Quan Mo
- Joint Laboratory of Guangdong Province and Hong Kong Regions on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, Guangdong Province, PR China
| | - Rui Han
- Joint Laboratory of Guangdong Province and Hong Kong Regions on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, Guangdong Province, PR China
| | - Jiu-Le Wang
- Joint Laboratory of Guangdong Province and Hong Kong Regions on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, Guangdong Province, PR China
| | - Lu-Yun Ni
- Joint Laboratory of Guangdong Province and Hong Kong Regions on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, Guangdong Province, PR China
| | - Yu-Ling Su
- Joint Laboratory of Guangdong Province and Hong Kong Regions on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, Guangdong Province, PR China
| | - Xue-Li Lai
- Joint Laboratory of Guangdong Province and Hong Kong Regions on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, Guangdong Province, PR China
| | - Zhi-Chang He
- Joint Laboratory of Guangdong Province and Hong Kong Regions on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, Guangdong Province, PR China
| | - Hong-Ping Chen
- Joint Laboratory of Guangdong Province and Hong Kong Regions on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, Guangdong Province, PR China
| | - Yan-Wei Li
- Joint Laboratory of Guangdong Province and Hong Kong Regions on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, Guangdong Province, PR China
| | - Hong-Yan Sun
- Joint Laboratory of Guangdong Province and Hong Kong Regions on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, Guangdong Province, PR China
| | - Xiao-Chun Luo
- School of Bioscience and Biotechnology, South China University of Technology, Guangzhou, 510006, PR China.
| | - Xue-Ming Dan
- Joint Laboratory of Guangdong Province and Hong Kong Regions on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, Guangdong Province, PR China.
| |
Collapse
|
35
|
Dinsmore CJ, Soriano P. MAPK and PI3K signaling: At the crossroads of neural crest development. Dev Biol 2018; 444 Suppl 1:S79-S97. [PMID: 29453943 PMCID: PMC6092260 DOI: 10.1016/j.ydbio.2018.02.003] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 02/06/2018] [Accepted: 02/06/2018] [Indexed: 02/08/2023]
Abstract
Receptor tyrosine kinase-mediated growth factor signaling is essential for proper formation and development of the neural crest. The many ligands and receptors implicated in these processes signal through relatively few downstream pathways, frequently converging on the MAPK and PI3K pathways. Despite decades of study, there is still considerable uncertainty about where and when these signaling pathways are required and how they elicit particular responses. This review summarizes our current understanding of growth factor-induced MAPK and PI3K signaling in the neural crest.
Collapse
Affiliation(s)
- Colin J Dinsmore
- Department of Cell, Developmental and Regenerative Biology, Tisch Cancer Institute, Icahn School of Medicine at Mt. Sinai, New York, NY 10029, USA
| | - Philippe Soriano
- Department of Cell, Developmental and Regenerative Biology, Tisch Cancer Institute, Icahn School of Medicine at Mt. Sinai, New York, NY 10029, USA.
| |
Collapse
|
36
|
Hu Y, Fu J, Xue X. Association of the proliferation of lung fibroblasts with the ERK1/2 signaling pathway in neonatal rats with hyperoxia-induced lung fibrosis. Exp Ther Med 2018; 17:701-708. [PMID: 30651853 PMCID: PMC6307421 DOI: 10.3892/etm.2018.6999] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 11/08/2018] [Indexed: 01/02/2023] Open
Abstract
Bronchopulmonary dysplasia (BPD) is a common, serious complication occurring in premature infants. Although clinical characteristics and pathologic changes are well described, the pathogenesis of alveolar dysplasia and interstitial fibrosis is less clear. Lung fibroblasts (LFs) are present in the extracellular matrix and serve essential roles during pulmonary epithelial injury and in response to fibrosis development in BPD. The current study investigated hyperoxia-induced proliferation of primary LFs in vitro and mechanisms that may be involved. Newborn rats were exposed to 90% oxygen, while control rats were kept in normal atmosphere. Primary LFs were isolated on postnatal day 3, 7 and 14. Hyperoxia-induced proliferation of LFs isolated on day 7 and 14 by accelerating the cell cycle progression from G1 to S phase. Collagen type I protein secretion and mRNA expression on day 7 and 14 were increased by hyperoxia compared with the controls. Hyperoxia significantly increased the phosphorylation of extracellular signal-regulated kinase (ERK) and significantly increased collagen type I expression compared with the room air control group. The findings indicated that an increase in LF proliferation in response to hyperoxia was associated with ERK1/2 phosphorylation. This mechanism may contribute to over-proliferation of LFs leading to disturbed formation of normal alveoli.
Collapse
Affiliation(s)
- Yu Hu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Jianhua Fu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Xindong Xue
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| |
Collapse
|
37
|
Pfeiffer V, Götz R, Camarero G, Heinsen H, Blum R, Rapp UR. Impaired neuronal maturation of hippocampal neural progenitor cells in mice lacking CRAF. PLoS One 2018; 13:e0192067. [PMID: 29590115 PMCID: PMC5873938 DOI: 10.1371/journal.pone.0192067] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 01/16/2018] [Indexed: 11/19/2022] Open
Abstract
RAF kinases are major constituents of the mitogen activated signaling pathway, regulating cell proliferation, differentiation and cell survival of many cell types, including neurons. In mammals, the family of RAF proteins consists of three members, ARAF, BRAF, and CRAF. Ablation of CRAF kinase in inbred mouse strains causes major developmental defects during fetal growth and embryonic or perinatal lethality. Heterozygous germline mutations in CRAF result in Noonan syndrome, which is characterized by neurocognitive impairment that may involve hippocampal physiology. The role of CRAF signaling during hippocampal development and generation of new postnatal hippocampal granule neurons has not been examined and may provide novel insight into the cause of hippocampal dysfunction in Noonan syndrome. In this study, by crossing CRAF-deficiency to CD-1 outbred mice, a CRAF mouse model was established which enabled us to investigate the interplay of neural progenitor proliferation and postmitotic differentiation during adult neurogenesis in the hippocampus. Albeit the general morphology of the hippocampus was unchanged, CRAF-deficient mice displayed smaller granule cell layer (GCL) volume at postnatal day 30 (P30). In CRAF-deficient mice a substantial number of abnormal, chromophilic, fast dividing cells were found in the subgranular zone (SGZ) and hilus of the dentate gyrus (DG), indicating that CRAF signaling contributes to hippocampal neural progenitor proliferation. CRAF-deficient neural progenitor cells showed an increased cell death rate and reduced neuronal maturation. These results indicate that CRAF function affects postmitotic neural cell differentiation and points to a critical role of CRAF-dependent growth factor signaling pathway in the postmitotic development of adult-born neurons.
Collapse
Affiliation(s)
- Verena Pfeiffer
- University of Würzburg, Institute of Anatomy and Cell Biology, Koellikerstraße 6, Würzburg, Germany
- University of Würzburg, Institute for Medical Radiation and Cell Research (MSZ), Versbacher Strasse 5, Würzburg, Germany
- * E-mail:
| | - Rudolf Götz
- University of Würzburg, Institute for Medical Radiation and Cell Research (MSZ), Versbacher Strasse 5, Würzburg, Germany
- Institute for Clinical Neurobiology, University Hospital Würzburg, Versbacher Strasse 5, Würzburg, Germany
| | - Guadelupe Camarero
- University of Würzburg, Institute for Medical Radiation and Cell Research (MSZ), Versbacher Strasse 5, Würzburg, Germany
| | - Helmut Heinsen
- University of Würzburg, Department of Psychiatry, Psychosomatics and Psychotherapy, Margarethe-Höppel-Platz 1, Würzburg, Germany
- Universidade de Sao Paulo Faculdade de Medicina, Pathology—LIM 44 Sao Paulo, SP, Brazil
| | - Robert Blum
- Institute for Clinical Neurobiology, University Hospital Würzburg, Versbacher Strasse 5, Würzburg, Germany
| | - Ulf Rüdiger Rapp
- University of Würzburg, Institute for Medical Radiation and Cell Research (MSZ), Versbacher Strasse 5, Würzburg, Germany
- Department of Lung Development and Remodeling, Max Planck Institute for Heart and Lung Research, Parkstr.1, Bad Nauheim, Germany
| |
Collapse
|
38
|
Aoidi R, Houde N, Landry-Truchon K, Holter M, Jacquet K, Charron L, Krishnaswami SR, Yu BD, Rauen KA, Bisson N, Newbern J, Charron J. Mek1Y130C mice recapitulate aspects of human cardio-facio-cutaneous syndrome. Dis Model Mech 2018; 11:dmm.031278. [PMID: 29590634 PMCID: PMC5897723 DOI: 10.1242/dmm.031278] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 02/07/2018] [Indexed: 12/28/2022] Open
Abstract
The RAS/MAPK signaling pathway is one of the most investigated pathways, owing to its established role in numerous cellular processes and implication in cancer. Germline mutations in genes encoding members of the RAS/MAPK pathway also cause severe developmental syndromes collectively known as RASopathies. These syndromes share overlapping characteristics, including craniofacial dysmorphology, cardiac malformations, cutaneous abnormalities and developmental delay. Cardio-facio-cutaneous syndrome (CFC) is a rare RASopathy associated with mutations in BRAF, KRAS, MEK1 (MAP2K1) and MEK2 (MAP2K2). MEK1 and MEK2 mutations are found in ∼25% of the CFC patients and the MEK1Y130C substitution is the most common one. However, little is known about the origins and mechanisms responsible for the development of CFC. To our knowledge, no mouse model carrying RASopathy-linked Mek1 or Mek2 gene mutations has been reported. To investigate the molecular and developmental consequences of the Mek1Y130C mutation, we generated a mouse line carrying this mutation. Analysis of mice from a Mek1 allelic series revealed that the Mek1Y130C allele expresses both wild-type and Y130C mutant forms of MEK1. However, despite reduced levels of MEK1 protein and the lower abundance of MEK1 Y130C protein than wild type, Mek1Y130C mutants showed increased ERK (MAPK) protein activation in response to growth factors, supporting a role for MEK1 Y130C in hyperactivation of the RAS/MAPK pathway, leading to CFC. Mek1Y130C mutant mice exhibited pulmonary artery stenosis, cranial dysmorphia and neurological anomalies, including increased numbers of GFAP+ astrocytes and Olig2+ oligodendrocytes in regions of the cerebral cortex. These data indicate that the Mek1Y130C mutation recapitulates major aspects of CFC, providing a new animal model to investigate the physiopathology of this RASopathy. This article has an associated First Person interview with the first author of the paper. Summary: A mouse model for cardio-facio-cutaneous syndrome caused by MEK1 Y130C mutant protein reveals the role of hyperactivation of the RAS/MAPK pathway in the development of the syndrome.
Collapse
Affiliation(s)
- Rifdat Aoidi
- Centre de recherche sur le cancer de l'Université Laval, CRCHU de Québec, L'Hôtel-Dieu de Québec, Québec G1R 3S3, Canada.,Department of Molecular Biology, Medical Biochemistry and Pathology, Université Laval, Québec G1V 0A6, Canada
| | - Nicolas Houde
- Centre de recherche sur le cancer de l'Université Laval, CRCHU de Québec, L'Hôtel-Dieu de Québec, Québec G1R 3S3, Canada.,Department of Molecular Biology, Medical Biochemistry and Pathology, Université Laval, Québec G1V 0A6, Canada
| | - Kim Landry-Truchon
- Centre de recherche sur le cancer de l'Université Laval, CRCHU de Québec, L'Hôtel-Dieu de Québec, Québec G1R 3S3, Canada.,Department of Molecular Biology, Medical Biochemistry and Pathology, Université Laval, Québec G1V 0A6, Canada
| | - Michael Holter
- School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA
| | - Kevin Jacquet
- Centre de recherche sur le cancer de l'Université Laval, CRCHU de Québec, L'Hôtel-Dieu de Québec, Québec G1R 3S3, Canada.,Department of Molecular Biology, Medical Biochemistry and Pathology, Université Laval, Québec G1V 0A6, Canada
| | - Louis Charron
- Centre de recherche sur le cancer de l'Université Laval, CRCHU de Québec, L'Hôtel-Dieu de Québec, Québec G1R 3S3, Canada
| | - Suguna Rani Krishnaswami
- Institute for Genomic Medicine, Division of Dermatology, University of California San Diego, La Jolla, CA 92093-0761, USA
| | - Benjamin D Yu
- Institute for Genomic Medicine, Division of Dermatology, University of California San Diego, La Jolla, CA 92093-0761, USA.,Interpreta Inc., San Diego, CA 92121, USA
| | - Katherine A Rauen
- Department of Pediatrics, Division of Genomic Medicine, University of California Davis, Sacramento, CA 95817, USA
| | - Nicolas Bisson
- Centre de recherche sur le cancer de l'Université Laval, CRCHU de Québec, L'Hôtel-Dieu de Québec, Québec G1R 3S3, Canada.,Department of Molecular Biology, Medical Biochemistry and Pathology, Université Laval, Québec G1V 0A6, Canada
| | - Jason Newbern
- School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA
| | - Jean Charron
- Centre de recherche sur le cancer de l'Université Laval, CRCHU de Québec, L'Hôtel-Dieu de Québec, Québec G1R 3S3, Canada .,Department of Molecular Biology, Medical Biochemistry and Pathology, Université Laval, Québec G1V 0A6, Canada
| |
Collapse
|
39
|
Zheng S, Fan X, Wang J, Zhao J, Chen PR. Dissection of Kinase Isoforms through Orthogonal and Chemical Inducible Signaling Cascades. Chembiochem 2017; 18:1593-1598. [DOI: 10.1002/cbic.201700255] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Indexed: 11/12/2022]
Affiliation(s)
- Siqi Zheng
- Beijing National Laboratory for Molecular Sciences; Synthetic and Functional Biomolecules Center; Key Laboratory of Bioorganic Chemistry and; Molecular Engineering of the Ministry of Education; College of Chemistry and Molecular Engineering; Peking University; Haidian District Beijing 100871 China
| | - Xinyuan Fan
- Academy for Advanced Interdisciplinary Studies; Peking-Tsinghua Center for Life Sciences; Peking University; Haidian District Beijing 100871 China
| | - Jie Wang
- Academy for Advanced Interdisciplinary Studies; Peking-Tsinghua Center for Life Sciences; Peking University; Haidian District Beijing 100871 China
| | - Jingyi Zhao
- Academy for Advanced Interdisciplinary Studies; Peking-Tsinghua Center for Life Sciences; Peking University; Haidian District Beijing 100871 China
| | - Peng R. Chen
- Beijing National Laboratory for Molecular Sciences; Synthetic and Functional Biomolecules Center; Key Laboratory of Bioorganic Chemistry and; Molecular Engineering of the Ministry of Education; College of Chemistry and Molecular Engineering; Peking University; Haidian District Beijing 100871 China
- Academy for Advanced Interdisciplinary Studies; Peking-Tsinghua Center for Life Sciences; Peking University; Haidian District Beijing 100871 China
| |
Collapse
|
40
|
Xue P, Zeng F, Duan Q, Xiao J, Liu L, Yuan P, Fan L, Sun H, Malyarenko OS, Lu H, Xiu R, Liu S, Shao C, Zhang J, Yan W, Wang Z, Zheng J, Zhu F. BCKDK of BCAA Catabolism Cross-talking With the MAPK Pathway Promotes Tumorigenesis of Colorectal Cancer. EBioMedicine 2017; 20:50-60. [PMID: 28501528 PMCID: PMC5478211 DOI: 10.1016/j.ebiom.2017.05.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Revised: 05/01/2017] [Accepted: 05/01/2017] [Indexed: 01/13/2023] Open
Abstract
Branched-chain amino acids catabolism plays an important role in human cancers. Colorectal cancer is the third most commonly diagnosed cancer in males and the second in females, and the new global incidence is over 1.2 million cases. The branched-chain α-keto acid dehydrogenase kinase (BCKDK) is a rate-limiting enzyme in branched-chain amino acids catabolism, which plays an important role in many serious human diseases. Here we investigated that abnormal branched-chain amino acids catabolism in colorectal cancer is a result of the disease process, with no role in disease initiation; BCKDK is widely expressed in colorectal cancer patients, and those patients that express higher levels of BCKDK have shorter survival times than those with lower levels; BCKDK promotes cell transformation or colorectal cancer ex vivo or in vivo. Mechanistically, BCKDK promotes colorectal cancer by enhancing the MAPK signaling pathway through direct MEK phosphorylation, rather than by branched-chain amino acids catabolism. And the process above could be inhibited by a BCKDK inhibitor, phenyl butyrate.
Collapse
Affiliation(s)
- Peipei Xue
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | - Fanfan Zeng
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | - Qiuhong Duan
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | - Juanjuan Xiao
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | - Lin Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | - Ping Yuan
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | - Linni Fan
- Department of Pathology, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, PR China
| | - Huimin Sun
- Department of Urology, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, PR China
| | - Olesya S Malyarenko
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China; G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of Russian Academy of Sciences, Laboratory of Enzyme Chemistry, Vladivostok, Russia
| | - Hui Lu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | - Ruijuan Xiu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | - Shaoqing Liu
- Department of State Key Laboratory of Cancer Biology, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, PR China
| | - Chen Shao
- Department of Urology, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, PR China
| | - Jianmin Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | - Wei Yan
- Department of Pathology, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, PR China.
| | - Zhe Wang
- Department of Pathology, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, PR China.
| | - Jianyong Zheng
- Department of State Key Laboratory of Cancer Biology, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, PR China.
| | - Feng Zhu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China.
| |
Collapse
|
41
|
Luo Z, Shen Y, Chen W, Ma X, Liu L, Huang X, Yang Z, Sun H. Association Analysis of Nonsyndromic Congenital Heart Disease and Tag Single Nucleotide Polymorphisms of TBX20 and Genes in the Ras-MAPK Pathway. Genet Test Mol Biomarkers 2017; 21:440-444. [PMID: 28525297 DOI: 10.1089/gtmb.2016.0369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
AIMS The present study was performed to determine whether there are variants in TBX20 and genes of the Ras-MAPK pathway associated with nonsyndromic congenital heart disease (ns-CHD). MATERIALS AND METHODS A total of 223 ns-CHD patients and 273 healthy controls from China were selected as study subjects to perform an association analysis using 22 tag single-nucleotide polymorphisms (tag SNPs) located either in one of three genes in the Ras-MAPK pathway (MAP2K2, BRAF, and RAF1) or the TBX20 gene that have previously been associated with syndromic congenital heart disease. RESULTS The results showed that none of these tag SNPs are associated with ns-CHD. CONCLUSIONS The results suggested that these disease-causing genes, which were previously discovered in familial cases, might not be the major genetic factors causing the development of ns-CHD in Chinese.
Collapse
Affiliation(s)
- Zhiling Luo
- 1 Department of Cardiology, The First Affiliated Hospital of Kunming Medical University , Kunming, China
| | - Yan Shen
- 1 Department of Cardiology, The First Affiliated Hospital of Kunming Medical University , Kunming, China
| | - Wei Chen
- 2 Department of Radiology, The First Affiliated Hospital of Kunming Medical University , Kunming, China
| | - Xuejuan Ma
- 1 Department of Cardiology, The First Affiliated Hospital of Kunming Medical University , Kunming, China
| | - Liping Liu
- 1 Department of Cardiology, The First Affiliated Hospital of Kunming Medical University , Kunming, China
| | - Xiaoqin Huang
- 3 Department of Medical Genetics, The Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College , Kunming, China
| | - Zhaoqing Yang
- 3 Department of Medical Genetics, The Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College , Kunming, China
| | - Hao Sun
- 3 Department of Medical Genetics, The Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College , Kunming, China
| |
Collapse
|
42
|
Affiliation(s)
- Christian Bauerfeld
- Department of Pediatrics, Division of Critical Care, Wayne State University School of Medicine and Children's Hospital of Michigan, Detroit, USA
| | - Lobelia Samavati
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, Wayne State University School of Medicine and Detroit Medical Center, Detroit, USA.,Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, USA
| |
Collapse
|
43
|
Dorard C, Vucak G, Baccarini M. Deciphering the RAS/ERK pathway in vivo. Biochem Soc Trans 2017; 45:27-36. [PMID: 28202657 DOI: 10.1042/bst20160135] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 11/03/2016] [Accepted: 11/07/2016] [Indexed: 12/19/2022]
Abstract
The RAS/ERK pathway has been intensely studied for about three decades, not least because of its role in human pathologies. ERK activation is observed in the majority of human cancers; in about one-third of them, it is driven by mutational activation of pathway components. The pathway is arguably one of the best targets for molecule-based pharmacological intervention, and several small-molecule inhibitors are in clinical use. Genetically engineered mouse models have greatly contributed to our understanding of signaling pathways in development, tissue homeostasis, and disease. In the specific case of the RAS/ERK pathway, they have revealed unique biological roles of structurally and functionally similar proteins, new kinase-independent effectors, and unsuspected relationships with other cascades. This short review summarizes the contribution of mouse models to our current understanding of the pathway.
Collapse
Affiliation(s)
- Coralie Dorard
- Max F. Perutz Laboratories, Center for Molecular Biology, University of Vienna, Vienna 1030, Austria
| | - Georg Vucak
- Max F. Perutz Laboratories, Center for Molecular Biology, University of Vienna, Vienna 1030, Austria
| | - Manuela Baccarini
- Max F. Perutz Laboratories, Center for Molecular Biology, University of Vienna, Vienna 1030, Austria
| |
Collapse
|
44
|
Boucherat O, Landry-Truchon K, Aoidi R, Houde N, Nadeau V, Charron J, Jeannotte L. Lung development requires an active ERK/MAPK pathway in the lung mesenchyme. Dev Dyn 2016; 246:72-82. [PMID: 27748998 DOI: 10.1002/dvdy.24464] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 10/06/2016] [Accepted: 10/06/2016] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Reciprocal epithelial-mesenchymal communications are critical throughout lung development, dictating branching morphogenesis and cell specification. Numerous signaling molecules are involved in these interactions, but the way epithelial-mesenchymal crosstalk is coordinated remains unclear. The ERK/MAPK pathway transduces several important signals in lung formation. Epithelial inactivation of both Mek genes, encoding ERK/MAPK kinases, causes lung agenesis and death. Conversely, Mek mutation in mesenchyme results in lung hypoplasia, trachea cartilage malformations, kyphosis, omphalocele, and death. Considering the negative impact of kyphosis and omphalocele on intrathoracic space and, consequently, on lung growth, the exact role of ERK/MAPK pathway in lung mesenchyme remains unresolved. RESULTS To address the role of the ERK/MAPK pathway in lung mesenchyme in absence of kyphosis and omphalocele, we used the Tbx4Cre deleter mouse line, which acts specifically in lung mesenchyme. These Mek mutants did not develop kyphosis and omphalocele but they presented lung hypoplasia, tracheal defects, and neonatal death. Tracheal cartilage anomalies suggested a role for the ERK/MAPK pathway in the control of chondrocyte hypertrophy. Moreover, expression data indicated potential interactions between the ERK/MAPK and canonical Wnt pathways during lung formation. CONCLUSIONS Lung development necessitates a functional ERK/MAPK pathway in the lung mesenchymal layer in order to coordinate efficient epithelial-mesenchymal interactions. Developmental Dynamics 246:72-82, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Olivier Boucherat
- Centre de Recherche sur le Cancer de l'Université Laval, CRCHUQ, L'Hôtel-Dieu de Québec, Québec, Canada, G1R 3S3
| | - Kim Landry-Truchon
- Centre de Recherche sur le Cancer de l'Université Laval, CRCHUQ, L'Hôtel-Dieu de Québec, Québec, Canada, G1R 3S3
| | - Rifdat Aoidi
- Centre de Recherche sur le Cancer de l'Université Laval, CRCHUQ, L'Hôtel-Dieu de Québec, Québec, Canada, G1R 3S3
| | - Nicolas Houde
- Centre de Recherche sur le Cancer de l'Université Laval, CRCHUQ, L'Hôtel-Dieu de Québec, Québec, Canada, G1R 3S3
| | - Valérie Nadeau
- Centre de Recherche sur le Cancer de l'Université Laval, CRCHUQ, L'Hôtel-Dieu de Québec, Québec, Canada, G1R 3S3
| | - Jean Charron
- Centre de Recherche sur le Cancer de l'Université Laval, CRCHUQ, L'Hôtel-Dieu de Québec, Québec, Canada, G1R 3S3
- Department of Molecular Biology, Medical Biochemistry and Pathology, Université Laval, Québec, Canada, G1V 0A6
| | - Lucie Jeannotte
- Centre de Recherche sur le Cancer de l'Université Laval, CRCHUQ, L'Hôtel-Dieu de Québec, Québec, Canada, G1R 3S3
- Department of Molecular Biology, Medical Biochemistry and Pathology, Université Laval, Québec, Canada, G1V 0A6
| |
Collapse
|
45
|
Halbrook CJ, Wen HJ, Ruggeri JM, Takeuchi KK, Zhang Y, Pasca di Magliano M, Crawford HC. Mitogen-activated Protein Kinase Kinase Activity Maintains Acinar-to-Ductal Metaplasia and Is Required for Organ Regeneration in Pancreatitis. Cell Mol Gastroenterol Hepatol 2016; 3:99-118. [PMID: 28090569 PMCID: PMC5235341 DOI: 10.1016/j.jcmgh.2016.09.009] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND & AIMS Mitogen-activated protein kinase (MAPK) signaling in the exocrine pancreas has been extensively studied in the context of pancreatic cancer, where its potential as a therapeutic target is limited by acquired drug resistance. However, its role in pancreatitis is less understood. We investigated the role of mitogen-activated protein kinase kinase (MEK)-initiated MAPK signaling in pancreatitis to determine the potential for MEK inhibition in treating pancreatitis patients. METHODS To examine the role of MEK signaling in pancreatitis, we used both genetic and pharmacologic approaches to inhibit the MAPK signaling pathway in a murine model of cerulein-induced pancreatitis. We generated mice harboring inducible short hairpins targeting the MEK isoforms Map2k1 and/or Map2k2 specifically in the pancreatic epithelium. We also used the MEK inhibitor trametinib to determine the efficacy of systemic inhibition in mice with pancreatitis. RESULTS We demonstrated an essential role for MEK signaling in the initiation of pancreatitis. We showed that both systemic and parenchyma-specific MEK inhibition in established pancreatitis induces epithelial differentiation and stromal remodeling. However, systemic MEK inhibition also leads to a loss of the proliferative capacity of the pancreas, preventing the restoration of organ mass. CONCLUSIONS MEK activity is required for the initiation and maintenance of pancreatitis. MEK inhibition may be useful in the treatment of chronic pancreatitis to interrupt the vicious cycle of destruction and repair but at the expense of organ regeneration.
Collapse
Affiliation(s)
- Christopher J. Halbrook
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan,Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Hui-Ju Wen
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan,Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Jeanine M. Ruggeri
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan,Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Kenneth K. Takeuchi
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan,Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Yaqing Zhang
- Department of Surgery, University of Michigan, Ann Arbor, Michigan
| | | | - Howard C. Crawford
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan,Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan,Reprint requests Address requests for reprints to: Howard Crawford, PhD, NCRC Building 520, Room 1347, 1600 Huron Parkway, Ann Arbor, Michigan 48109-1600. fax: (734) 647-6977.NCRC Building 520Room 1347, 1600 Huron ParkwayAnn ArborMichigan 48109-1600
| |
Collapse
|
46
|
Huth HW, Albarnaz JD, Torres AA, Bonjardim CA, Ropert C. MEK2 controls the activation of MKK3/MKK6-p38 axis involved in the MDA-MB-231 breast cancer cell survival: Correlation with cyclin D1 expression. Cell Signal 2016; 28:1283-1291. [PMID: 27181679 DOI: 10.1016/j.cellsig.2016.05.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 05/10/2016] [Accepted: 05/11/2016] [Indexed: 10/21/2022]
Abstract
The Ras-Raf-MEK-ERK1/2 signaling pathway regulates fundamental processes in malignant cells. However, the exact contributions of MEK1 and MEK2 to the development of cancer remain to be established. We studied the effects of MEK small-molecule inhibitors (PD98059 and U0126) and MEK1 and MEK2 knock-down on cell proliferation, apoptosis and MAPK activation. We showed a diminution of cell viability that was associated with a downregulation of cyclin D1 expression and an increase of apoptosis marker in MEK2 silenced cells; by contrast, a slight increase of cell survival was observed in the absence of MEK1 that correlated with an augment of cyclin D1 expression. These data indicate that MEK2 but not MEK1 is essential for MDA-MB-231 cell survival. Importantly, the role of MEK2 in cell survival appeared independent on ERK1/2 phosphorylation since its absence did not alter the level of activated ERK1/2. Indeed, we have reported an unrevealed link between MEK2 and MKK3/MKK6-p38 MAPK axis where MEK2 was essential for the phosphorylation of MKK3/MKK6 and p38 MAPK that directly impacted on cyclin D1 expression. Importantly, the MEK1 inhibitor PD98059, like MEK1 silencing, induced an augment of cyclin D1 expression that correlated with an increase of MDA-MB-231 cell proliferation suggesting that MEK1 may play a regulatory role in these cells. In sum, the crucial role of MEK2 in MDA-MB-231 cell viability and the unknown relationship between MEK2 and MKK3/MKK6-p38 axis here revealed may open new therapeutic strategies for aggressive breast cancer.
Collapse
Affiliation(s)
- Hugo W Huth
- Departamento de Morfologia, Universidade Federal de Minas Gerais, 31270-910 Belo Horizonte, Minas Gerais, Brazil
| | - Jonas D Albarnaz
- Departamento de Microbiologia, Universidade Federal de Minas Gerais, 31270-910 Belo Horizonte, Minas Gerais, Brazil; Department of Pathology, University of Cambridge, Cambridge, UK
| | - Alice A Torres
- Departamento de Microbiologia, Universidade Federal de Minas Gerais, 31270-910 Belo Horizonte, Minas Gerais, Brazil
| | - Claudio A Bonjardim
- Departamento de Microbiologia, Universidade Federal de Minas Gerais, 31270-910 Belo Horizonte, Minas Gerais, Brazil
| | - Catherine Ropert
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, 31270-910 Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
47
|
Xing L, Larsen RS, Bjorklund GR, Li X, Wu Y, Philpot BD, Snider WD, Newbern JM. Layer specific and general requirements for ERK/MAPK signaling in the developing neocortex. eLife 2016; 5. [PMID: 26848828 PMCID: PMC4758957 DOI: 10.7554/elife.11123] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 01/04/2016] [Indexed: 12/11/2022] Open
Abstract
Aberrant signaling through the Raf/MEK/ERK (ERK/MAPK) pathway causes pathology in a family of neurodevelopmental disorders known as 'RASopathies' and is implicated in autism pathogenesis. Here, we have determined the functions of ERK/MAPK signaling in developing neocortical excitatory neurons. Our data reveal a critical requirement for ERK/MAPK signaling in the morphological development and survival of large Ctip2+ neurons in layer 5. Loss of Map2k1/2 (Mek1/2) led to deficits in corticospinal tract formation and subsequent corticospinal neuron apoptosis. ERK/MAPK hyperactivation also led to reduced corticospinal axon elongation, but was associated with enhanced arborization. ERK/MAPK signaling was dispensable for axonal outgrowth of layer 2/3 callosal neurons. However, Map2k1/2 deletion led to reduced expression of Arc and enhanced intrinsic excitability in both layers 2/3 and 5, in addition to imbalanced synaptic excitation and inhibition. These data demonstrate selective requirements for ERK/MAPK signaling in layer 5 circuit development and general effects on cortical pyramidal neuron excitability. DOI:http://dx.doi.org/10.7554/eLife.11123.001 In the nervous system, cells called neurons form networks that relay information in the form of electrical signals around the brain and the rest of the body. Typically, an electrical signal travels from branch-like structures at one end of the cell, through the cell body and then along a long fiber called an axon to reach junctions with another neurons. The connections between neurons start to form as the nervous system develops in the embryo, and any errors or delays in this process can cause severe neurological disorders and intellectual disabilities. For example, genetic mutations affecting a communication system within cells known as the ERK/MAPK pathway can lead to a family of syndromes called the “RASopathies”. Abnormalities in this pathway may also contribute to certain types of autism. However, it is not clear how alterations to the ERK/MAPK pathway cause these conditions. Xing et al. investigated whether ERK/MAPK signaling regulates the formation of connections between neurons and the activity of neurons in mouse brains. The experiments showed that the growth of axons that extend from an area of the brain called the cerebral cortex towards the spinal cord are particularly sensitive to changes in the level of signaling through the ERK/MAPK pathway. On the other hand, inhibiting the pathway has relatively little effect on the growth of axons within the cerebral cortex. Further experiments showed that many neurons in the cerebral cortex require the ERK/MAPK pathway to activate genes that alter neuronal activity and the strength of the connections between neurons. Xing et al.’s findings suggest that defects in the connections between the cerebral cortex and different regions of the nervous system may contribute to the symptoms observed in patients with conditions linked to alterations in ERK/MAPK activity. Future studies will focus on understanding the molecular mechanisms by which ERK/MAPK pathway influences the organization and activity of neuron circuits during the development of the nervous system. DOI:http://dx.doi.org/10.7554/eLife.11123.002
Collapse
Affiliation(s)
- Lei Xing
- University of North Carolina Neuroscience Center, The University of North Carolina School of Medicine, Chapel Hill, United States
| | - Rylan S Larsen
- Allen Institute for Brain Science, Seattle, United States
| | | | - Xiaoyan Li
- University of North Carolina Neuroscience Center, The University of North Carolina School of Medicine, Chapel Hill, United States
| | - Yaohong Wu
- University of North Carolina Neuroscience Center, The University of North Carolina School of Medicine, Chapel Hill, United States
| | - Benjamin D Philpot
- University of North Carolina Neuroscience Center, The University of North Carolina School of Medicine, Chapel Hill, United States.,Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, United States.,Carolina Institute for Developmental Disabilities, The University of North Carolina School of Medicine, Chapel Hill, United States
| | - William D Snider
- University of North Carolina Neuroscience Center, The University of North Carolina School of Medicine, Chapel Hill, United States.,Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, United States.,Carolina Institute for Developmental Disabilities, The University of North Carolina School of Medicine, Chapel Hill, United States
| | - Jason M Newbern
- School of Life Sciences, Arizona State University, Tempe, United States
| |
Collapse
|
48
|
Aoidi R, Maltais A, Charron J. Functional redundancy of the kinases MEK1 and MEK2: Rescue of theMek1mutant phenotype byMek2knock-in reveals a protein threshold effect. Sci Signal 2016; 9:ra9. [DOI: 10.1126/scisignal.aad5658] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
49
|
Bouhamdan M, Bauerfeld C, Talreja J, Beuret L, Charron J, Samavati L. MEK1 dependent and independent ERK activation regulates IL-10 and IL-12 production in bone marrow derived macrophages. Cell Signal 2015; 27:2068-76. [PMID: 26208884 PMCID: PMC4540637 DOI: 10.1016/j.cellsig.2015.07.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 06/24/2015] [Accepted: 07/13/2015] [Indexed: 01/21/2023]
Abstract
The mitogen activated protein kinases ERK1/2 play an important role in response to toll like receptor (TLR) activation and cytokine production, including IL-10 and IL-12. Here, we examined the role of MEK1 in ERK1/2 activation in response to TLR4 agonist by using bone marrow-derived macrophages (BMDMs) from wild type (WT) and Mek1(d/d)Sox2(Cre) mice. Our data demonstrates that MEK1 is essential for ERK1/2 activation in response to LPS. Furthermore, stimulation of the TLR4 receptor of BMDMs derived from Mek1(d/d)Sox2(Cre) mice showed enhanced STAT4 phosphorylation and increased IL-12 secretion, but exhibited a significantly lower IL-10 production as compared to WT macrophages. Most interestingly, TLR ligation in the presence of recombinant IL-10 (rIL-10) or retinoic acid (RA) led to ERK1/2 activation independent of MEK1 in BMDMs derived from Mek1(d/d)Sox2(Cre) mice and led to inhibition of STAT4 and decreased IL-12 levels. Collectively, these data suggest that MEK1 is required for TLR4 mediated ERK activation and in turn regulates the production of IL-10 and IL-12. It also indicates that ERK1/2 can be activated independent of MEK1 in the presence of IL-10 and RA and this activation negatively regulates IL-12, but positively regulates IL-10 production. These findings may have significant implications for the development of drugs that modulate MEK1 activity in the treatment of inflammatory, autoimmune and proliferative diseases such as cancer.
Collapse
Affiliation(s)
- Mohamad Bouhamdan
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, Wayne State University School of Medicine and Detroit Medical Center, Detroit, MI 48201, USA
| | - Christian Bauerfeld
- Department of Pediatrics, Division of Critical Care, Wayne State University School of Medicine and Children's Hospital of Michigan, Detroit, MI 48201, USA
| | - Jaya Talreja
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, Wayne State University School of Medicine and Detroit Medical Center, Detroit, MI 48201, USA
| | - Laurent Beuret
- Centre de Recherche sur le Cancer de l'Université Laval, CRCHU de Québec, L'Hôtel-Dieu de Québec, Québec, Canada
| | - Jean Charron
- Centre de Recherche sur le Cancer de l'Université Laval, CRCHU de Québec, L'Hôtel-Dieu de Québec, Québec, Canada
| | - Lobelia Samavati
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, Wayne State University School of Medicine and Detroit Medical Center, Detroit, MI 48201, USA; Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| |
Collapse
|
50
|
Caunt CJ, Sale MJ, Smith PD, Cook SJ. MEK1 and MEK2 inhibitors and cancer therapy: the long and winding road. Nat Rev Cancer 2015; 15:577-92. [PMID: 26399658 DOI: 10.1038/nrc4000] [Citation(s) in RCA: 436] [Impact Index Per Article: 43.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The role of the ERK signalling pathway in cancer is thought to be most prominent in tumours in which mutations in the receptor tyrosine kinases RAS, BRAF, CRAF, MEK1 or MEK2 drive growth factor-independent ERK1 and ERK2 activation and thence inappropriate cell proliferation and survival. New drugs that inhibit RAF or MEK1 and MEK2 have recently been approved or are currently undergoing late-stage clinical evaluation. In this Review, we consider the ERK pathway, focusing particularly on the role of MEK1 and MEK2, the 'gatekeepers' of ERK1/2 activity. We discuss their validation as drug targets, the merits of targeting MEK1 and MEK2 versus BRAF and the mechanisms of action of different inhibitors of MEK1 and MEK2. We also consider how some of the systems-level properties (intrapathway regulatory loops and wider signalling network connections) of the ERK pathway present a challenge for the success of MEK1 and MEK2 inhibitors, discuss mechanisms of resistance to these inhibitors, and review their clinical progress.
Collapse
Affiliation(s)
- Christopher J Caunt
- Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath BA2 7AY, UK
| | - Matthew J Sale
- Signalling Laboratory, The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Paul D Smith
- AstraZeneca, Oncology iMed, Cancer Biosciences, Cancer Research UK, Li Ka Shing Centre, Cambridge Institute, Robinson Way, Cambridge CB2 0RE, UK
| | - Simon J Cook
- Signalling Laboratory, The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK
| |
Collapse
|