1
|
Majou D, Dermenghem AL. Effects of DHA (omega-3 fatty acid) and estradiol on amyloid β-peptide regulation in the brain. Brain Res 2024; 1823:148681. [PMID: 37992797 DOI: 10.1016/j.brainres.2023.148681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/13/2023] [Accepted: 11/15/2023] [Indexed: 11/24/2023]
Abstract
In the early stages of sporadic Alzheimer's disease (SAD), there is a strong correlation between memory impairment and cortical levels of soluble amyloid-β peptide oligomers (Aβ). It has become clear that Aβ disrupt glutamatergic synaptic function, which can in turn lead to the characteristic cognitive deficits of SAD, but the actual pathways are still not well understood. This opinion article describes the pathogenic mechanisms underlying cerebral amyloidosis. These mechanisms are dependent on the amyloid precursor protein and concern the synthesis of Aβ peptides with competition between the non-amyloidogenic pathway and the amyloidogenic pathway (i.e. a competition between the ADAM10 and BACE1 enzymes), on the one hand, and the various processes of Aβ residue clearance, on the other hand. This clearance mobilizes both endopeptidases (NEP, and IDE) and removal transporters across the blood-brain barrier (LRP1, ABCB1, and RAGE). Lipidated ApoE also plays a major role in all processes. The disturbance of these pathways induces an accumulation of Aβ. The description of the mechanisms reveals two key molecules in particular: (i) free estradiol, which has genomic and non-genomic action, and (ii) free DHA as a preferential ligand of PPARα-RXRα and PPARɣ-RXRα heterodimers. DHA and free estradiol are also self-regulating, and act in synergy. When a certain level of chronic DHA and free estradiol deficiency is reached, a permanent imbalance is established in the central nervous system. The consequences of these deficits are revealed in particular by the presence of Aβ peptide deposits, as well as other markers of the etiology of SAD.
Collapse
Affiliation(s)
- Didier Majou
- ACTIA, 149, rue de Bercy, 75595 Paris Cedex 12, France.
| | | |
Collapse
|
2
|
Kim MJ, Kulkarni V, Goode MA, Sivesind TE. Exploring the interactions of antihistamine with retinoic acid receptor beta (RARB) by molecular dynamics simulations and genome-wide meta-analysis. J Mol Graph Model 2023; 124:108539. [PMID: 37331258 PMCID: PMC10529808 DOI: 10.1016/j.jmgm.2023.108539] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 06/03/2023] [Accepted: 06/05/2023] [Indexed: 06/20/2023]
Abstract
Kaposi sarcoma (KS) is one of the most common AIDS-related malignant neoplasms, which can leave lesions on the skin among HIV patients. These lesions can be treated with 9-cis-retinoic acid (9-cis-RA), an endogenous ligand of retinoic acid receptors that has been FDA-approved for treatment of KS. However, topical application of 9-cis-RA can induce several unpleasant side effects, like headache, hyperlipidemia, and nausea. Hence, alternative therapeutics with less side effects are desirable. There are case reports associating over-the-counter antihistamine usage with regression of KS. Antihistamines competitively bind to H1 receptor and block the action of histamine, best known for being released in response to allergens. Furthermore, there are already dozens of antihistamines that are FDA-approved with less side effects than 9-cis-RA. This led our team to conduct a series of in-silico assays to determine whether antihistamines can activate retinoic acid receptors. First, we utilized high-throughput virtual screening and molecular dynamics simulations to model high-affinity interactions between antihistamines and retinoic acid receptor beta (RARβ). We then performed systems genetics analysis to identify a genetic association between H1 receptor itself and molecular pathways involved in KS. Together, these findings advocate for exploration of antihistamines against KS, starting with our two promising hit compounds, bepotastine and hydroxyzine, for experimental validation study in the future.
Collapse
Affiliation(s)
- Minjae J Kim
- University of Tennessee Health Sciences Center School of Medicine, Memphis, TN, USA.
| | | | - Micah A Goode
- University of Tennessee Health Sciences Center School of Medicine, Memphis, TN, USA.
| | - Torunn E Sivesind
- Department of Dermatology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
3
|
Antagonizing RARγ Drives Necroptosis of Cancer Stem Cells. Int J Mol Sci 2022; 23:ijms23094814. [PMID: 35563205 PMCID: PMC9105400 DOI: 10.3390/ijms23094814] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 04/25/2022] [Accepted: 04/25/2022] [Indexed: 12/23/2022] Open
Abstract
There is a need for agents that eliminate cancer stem cells, which sustain cancer and are also largely responsible for disease relapse and metastasis. Conventional chemotherapeutics and radiotherapy are often highly effective against the bulk of cancer cells, which are proliferating, but spare cancer stem cells. Therapeutics that target cancer stem cells may also provide a bona fide cure for cancer. There are two rationales for targeting the retinoic acid receptor (RAR)γ. First, RARγ is expressed selectively within primitive cells. Second, RARγ is a putative oncogene for a number of human cancers, including cases of acute myeloid leukemia, cholangiocarcinoma, and colorectal, renal and hepatocellular carcinomas. Prostate cancer cells depend on active RARγ for their survival. Antagonizing all RARs caused necroptosis of prostate and breast cancer stem cell-like cells, and the cancer stem cells that gave rise to neurospheres from pediatric patients’ primitive neuroectodermal tumors and an astrocytoma. As tested for prostate cancer, antagonizing RARγ was sufficient to drive necroptosis. Achieving cancer-selectively is a longstanding paradigm for developing new treatments. The normal prostate epithelium was less sensitive to the RARγ antagonist and pan-RAR antagonist than prostate cancer cells, and fibroblasts and blood mononuclear cells were insensitive. The RARγ antagonist and pan-RAR antagonist are promising new cancer therapeutics.
Collapse
|
4
|
Huang H, Christidi E, Shafaattalab S, Davis MK, Tibbits GF, Brunham LR. RARG S427L attenuates the DNA repair response to doxorubicin in induced pluripotent stem cell-derived cardiomyocytes. Stem Cell Reports 2022; 17:756-765. [PMID: 35364012 PMCID: PMC9023798 DOI: 10.1016/j.stemcr.2022.03.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 03/02/2022] [Accepted: 03/02/2022] [Indexed: 11/26/2022] Open
Abstract
Doxorubicin is a commonly used chemotherapeutic drug, but its use is limited by doxorubicin-induced cardiotoxicity (DIC), which can lead to irreversible heart failure and death. A missense variant rs2229774 (p.S427L) in the retinoic acid receptor gamma (RARG) gene is associated with increased susceptibility to DIC, but the precise mechanism underlying this association is incompletely understood. We performed molecular dynamic simulations to determine the effect of this variant on RARG structure and then validated these predictions using CRISPR-Cas9-genome-edited, induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs). We found that this variant leads to reduced activation of its target genes in response to doxorubicin, including gene pathways involved in DNA repair and consequently an inability to mediate DNA repair after exposure to doxorubicin. Our findings establish a role of RARG p.S427L in attenuating DNA repair in DIC and provide insight into the pathogenesis of this cardiotoxic effect. RARG p.S427L is predicted to alter the stability of the C terminus of the protein The RARG p.S427L variant has impaired ability to activate its target genes This variant attenuates the DNA repair response to doxorubicin
Collapse
Affiliation(s)
- Haojun Huang
- Centre for Heart Lung Innovation, Department of Medicine, University of British Columbia, Vancouver, BC V6Z 1Y6, Canada
| | - Effimia Christidi
- Centre for Heart Lung Innovation, Department of Medicine, University of British Columbia, Vancouver, BC V6Z 1Y6, Canada
| | - Sanam Shafaattalab
- Molecular Cardiac Physiology Group, Departments of Biomedical Physiology and Kinesiology and Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Margot K Davis
- Division of Cardiology, Department of Medicine, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
| | - Glen F Tibbits
- Molecular Cardiac Physiology Group, Departments of Biomedical Physiology and Kinesiology and Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada; Cellular and Regenerative Medicine Centre, British Columbia Children's Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada
| | - Liam R Brunham
- Centre for Heart Lung Innovation, Department of Medicine, University of British Columbia, Vancouver, BC V6Z 1Y6, Canada; Department of Medicine, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; Department of Medical Genetics, University of British Columbia, Vancouver, BC V6H 3N1, Canada.
| |
Collapse
|
5
|
Cosio T, Di Prete M, Gaziano R, Lanna C, Orlandi A, Di Francesco P, Bianchi L, Campione E. Trifarotene: A Current Review and Perspectives in Dermatology. Biomedicines 2021; 9:biomedicines9030237. [PMID: 33652835 PMCID: PMC7996910 DOI: 10.3390/biomedicines9030237] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/06/2021] [Accepted: 02/18/2021] [Indexed: 12/12/2022] Open
Abstract
Retinoids have numerous applications in inflammatory, dyskeratotic, and oncohematology diseases. Retinoids have now reached the fourth generation, progressively reducing toxicity whilst increasing their efficacy. Trifarotene is a new fourth-generation retinoid with a selective action on RAR-γ. In this review, we reported the trials—both concluded and in progress—including the use of trifarotene in dermatological diseases. Studies were identified by searching electronic databases (MEDLINE, EMBASE, PubMed, Cochrane, Trials.gov) from 2012 to today and reference lists of respective articles. Only articles published in English language were included. Randomized trials evaluating trifarotene tolerability, safety, and efficacy in congenital ichthyosis and acne have demonstrated great results and mild side effects, leading to the approval by the FDA of trifarotene for the treatment of lamellar ichthyosis in 2014, and of acne vulgaris in October 2019. No high-quality randomized clinical trials have evaluated the treatment of primary cutaneous lymphomas with trifarotene. Finally, we are hypothesizing future perspectives in the treatment of non-melanoma skin cancers, fungal infections, photoaging, and hand-foot skin reactions with trifarotene.
Collapse
Affiliation(s)
- Terenzio Cosio
- Dermatology Unit, Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (T.C.); (C.L.); (L.B.)
| | - Monia Di Prete
- Anatomic Pathology Unit, Department of Biomedicine and Prevention, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (M.D.P.); (A.O.)
| | - Roberta Gaziano
- Microbiology Section, Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (R.G.); (P.D.F.)
| | - Caterina Lanna
- Dermatology Unit, Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (T.C.); (C.L.); (L.B.)
| | - Augusto Orlandi
- Anatomic Pathology Unit, Department of Biomedicine and Prevention, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (M.D.P.); (A.O.)
| | - Paolo Di Francesco
- Microbiology Section, Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (R.G.); (P.D.F.)
| | - Luca Bianchi
- Dermatology Unit, Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (T.C.); (C.L.); (L.B.)
| | - Elena Campione
- Dermatology Unit, Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (T.C.); (C.L.); (L.B.)
- Correspondence:
| |
Collapse
|
6
|
Maimaitiyiming Y, Wang QQ, Hsu CH, Naranmandura H. Arsenic induced epigenetic changes and relevance to treatment of acute promyelocytic leukemia and beyond. Toxicol Appl Pharmacol 2020; 406:115212. [PMID: 32882258 DOI: 10.1016/j.taap.2020.115212] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 08/18/2020] [Accepted: 08/22/2020] [Indexed: 12/13/2022]
Abstract
Epigenetic alterations regulate gene expression without changes in the DNA sequence. It is well-demonstrated that aberrant epigenetic changes contribute to the leukemogenesis of acute promyelocytic leukemia (APL). Arsenic trioxide (ATO) is one of the most common drugs used in the frontline treatment of APL that act through targeting and destabilizing the PML/RARα oncofusion protein. ATO together with all-trans retinoic acid (ATRA) lead to durable remission of more than 90% non-high-risk APL patients, turning APL treatment into a paradigm of oncoprotein targeted cure. Although relapse and drug resistance in APL are yet to be resolved in the clinic, epigenetic machineries might hold the key to address this issue. Further, ATO also showed promising anticancer activities against a variety of malignancies, but its application is particularly restricted due to limited understanding of the mechanism. Thus, a thorough understanding of epigenetic mechanism behind anti-leukemic effects of ATO would benefit the development of ATO-based anticancer strategy. Role of ATRA on APL associated epigenetic alterations has been extensively studied and reviewed. Recently, accumulating evidence suggest that ATO also induces some epigenetic changes that might favor APL eradication. In this article, we comprehensively discuss arsenic induced epigenetic changes and its relevance in APL treatment and beyond, so as to provide novel insights into overcoming arsenic resistance in APL and promote application of this drug to other malignancies.
Collapse
Affiliation(s)
- Yasen Maimaitiyiming
- Department of Hematology of First Affiliated Hospital, Department of Public Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Qian Qian Wang
- Department of Hematology of First Affiliated Hospital, Department of Public Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Chih-Hung Hsu
- Department of Public Health, and Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| | - Hua Naranmandura
- Department of Hematology of First Affiliated Hospital, Department of Public Health, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
7
|
Christidi E, Huang H, Shafaattalab S, Maillet A, Lin E, Huang K, Laksman Z, Davis MK, Tibbits GF, Brunham LR. Variation in RARG increases susceptibility to doxorubicin-induced cardiotoxicity in patient specific induced pluripotent stem cell-derived cardiomyocytes. Sci Rep 2020; 10:10363. [PMID: 32587261 PMCID: PMC7316788 DOI: 10.1038/s41598-020-65979-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 05/11/2020] [Indexed: 01/04/2023] Open
Abstract
Doxorubicin is a potent anticancer drug used to treat a variety of cancer types. However, its use is limited by doxorubicin-induced cardiotoxicity (DIC). A missense variant in the RARG gene (S427L; rs2229774) has been implicated in susceptibility to DIC in a genome wide association study. The goal of this study was to investigate the functional role of this RARG variant in DIC. We used induced pluripotent stem cell derived cardiomyocytes (iPSC-CMs) from patients treated with doxorubicin. iPSC-CMs from individuals who experienced DIC (cases) showed significantly greater sensitivity to doxorubicin compared to iPSC-CMs from doxorubicin-treated individuals who did not develop DIC (controls) in cell viability and optical mapping experiments. Using CRISPR/Cas9, we generated isogenic cell lines that differed only at the RARG locus. Genetic correction of RARG-S427L to wild type resulted in reduced doxorubicin-induced double stranded DNA breaks, reactive oxygen species production, and cell death. Conversely, introduction of RARG-S427L increased susceptibility to doxorubicin. Finally, genetic disruption of the RARG gene resulted in protection from cell death due to doxorubicin treatment. Our findings suggest that the presence of RARG-S427L increases sensitivity to DIC, establishing a direct, causal role for this variant in DIC.
Collapse
Affiliation(s)
- Effimia Christidi
- Centre for Heart Lung Innovation, Department of Medicine, University of British Columbia, Vancouver, Canada
| | - Haojun Huang
- Centre for Heart Lung Innovation, Department of Medicine, University of British Columbia, Vancouver, Canada
| | - Sanam Shafaattalab
- Molecular Cardiac Physiology Group, Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, Canada
- Department of Cardiovascular Science, British Columbia Children's Hospital, Vancouver, Canada
| | | | - Eric Lin
- Molecular Cardiac Physiology Group, Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, Canada
| | - Kate Huang
- Centre for Heart Lung Innovation, Department of Medicine, University of British Columbia, Vancouver, Canada
| | - Zachary Laksman
- Heart Rhythm Services, Division of Cardiology, Department of Medicine, University of British Columbia, Vancouver, Canada
- Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Margot K Davis
- Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Glen F Tibbits
- Molecular Cardiac Physiology Group, Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, Canada
- Department of Cardiovascular Science, British Columbia Children's Hospital, Vancouver, Canada
| | - Liam R Brunham
- Centre for Heart Lung Innovation, Department of Medicine, University of British Columbia, Vancouver, Canada.
- Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada.
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
8
|
Conserva MR, Anelli L, Zagaria A, Specchia G, Albano F. The Pleiotropic Role of Retinoic Acid/Retinoic Acid Receptors Signaling: From Vitamin A Metabolism to Gene Rearrangements in Acute Promyelocytic Leukemia. Int J Mol Sci 2019; 20:ijms20122921. [PMID: 31207999 PMCID: PMC6627493 DOI: 10.3390/ijms20122921] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 06/07/2019] [Accepted: 06/13/2019] [Indexed: 12/18/2022] Open
Abstract
The family of retinoic acid receptors (RARs: RARα, -β, and -γ) has remarkable pleiotropy characteristics, since the retinoic acid/RARs pathway is involved in numerous biological processes not only during embryonic development, but also in the postnatal phase and during adulthood. In this review, we trace the roles of RA/RARs signaling in the immune system (where this pathway has both an immunosuppressive role or is involved in the inflammatory response), in hematopoiesis (enhancing hematopoietic stem cell self-renewal, progenitor cells differentiation or maintaining the bone marrow microenvironment homeostasis), and in bone remodeling (where this pathway seems to have controversial effects on bone formation or osteoclast activation). Moreover, in this review is shown the involvement of RAR genes in multiple chromosomal rearrangements generating different fusion genes in hematological neoplasms, with a particular focus on acute promyelocytic leukemia and its variant subtypes. The effect of different RARs fusion proteins on leukemic transformation, on patients’ outcome, and on therapy response is also discussed.
Collapse
Affiliation(s)
- Maria Rosa Conserva
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology Section, University of Bari, 70124 Bari, Italy.
| | - Luisa Anelli
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology Section, University of Bari, 70124 Bari, Italy.
| | - Antonella Zagaria
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology Section, University of Bari, 70124 Bari, Italy.
| | - Giorgina Specchia
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology Section, University of Bari, 70124 Bari, Italy.
| | - Francesco Albano
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology Section, University of Bari, 70124 Bari, Italy.
| |
Collapse
|
9
|
Grace CS, Mikkola HKA, Dou DR, Calvanese V, Ronn RE, Purton LE. Protagonist or antagonist? The complex roles of retinoids in the regulation of hematopoietic stem cells and their specification from pluripotent stem cells. Exp Hematol 2018; 65:1-16. [PMID: 29981365 DOI: 10.1016/j.exphem.2018.06.287] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 06/24/2018] [Accepted: 06/26/2018] [Indexed: 10/28/2022]
Abstract
Hematopoietic stem cells (HSCs) are multipotent cells responsible for the maintenance of the hematopoietic system throughout life. Dysregulation of the balance in HSC self-renewal, death, and differentiation can have serious consequences such as myelodysplastic syndromes or leukemia. All-trans retinoic acid (ATRA), the biologically active metabolite of vitamin A/RA, has been shown to have pleiotropic effects on hematopoietic cells, enhancing HSC self-renewal while also increasing differentiation of more mature progenitors. Furthermore, ATRA has been shown to have key roles in regulating the specification and formation of hematopoietic cells from pluripotent stem cells including embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs). Here, we summarize the known roles of vitamin A and RA receptors in the regulation of hematopoiesis from HSCs, ES, and iPSCs.
Collapse
Affiliation(s)
- Clea S Grace
- St. Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia; The University of Melbourne, Department of Medicine at St. Vincent's Hospital, Fitzroy, Victoria, Australia
| | - Hanna K A Mikkola
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA, USA; Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA, USA
| | - Diana R Dou
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA, USA; Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA, USA
| | - Vincenzo Calvanese
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA, USA; Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA, USA
| | - Roger E Ronn
- Medical Research Council Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Louise E Purton
- St. Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia; The University of Melbourne, Department of Medicine at St. Vincent's Hospital, Fitzroy, Victoria, Australia.
| |
Collapse
|
10
|
Miro Estruch I, Melchers D, Houtman R, de Haan LHJ, Groten JP, Louisse J, Rietjens IMCM. Characterization of the differential coregulator binding signatures of the Retinoic Acid Receptor subtypes upon (ant)agonist action. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2017; 1865:1195-1206. [PMID: 28642153 DOI: 10.1016/j.bbapap.2017.06.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 06/02/2017] [Accepted: 06/17/2017] [Indexed: 10/19/2022]
Abstract
Retinoic Acid Receptor alpha (RARα/NR1B1), Retinoic Acid Receptor beta (RARβ/NR1B2) and Retinoic Acid Receptor gamma (RARγ/NR1B3) are transcription factors regulating gene expression in response to retinoids. Within the RAR genomic pathways, binding of RARs to coregulators is a key intermediate regulatory phase. However, ligand-dependent interactions between the wide variety of coregulators that may be present in a cell and the different RAR subtypes are largely unknown. The aim of this study is to characterize the coregulator binding profiles of RARs in the presence of the pan-agonist all-trans-Retinoic Acid (AtRA); the subtype-selective agonists Am80 (RARα), CD2314 (RARβ) and BMS961 (RARγ); and the antagonist Ro415253. To this end, we used a microarray assay for coregulator-nuclear receptor interactions to assess RAR binding to 154 motifs belonging to >60 coregulators. The results revealed a high number of ligand-dependent RAR-coregulator interactions among all RAR variants, including many binding events not yet described in literature. Next, this work confirmed a greater ligand-independent activity of RARβ compared to the other RAR subtypes based on both higher basal and lower ligand-driven coregulator binding. Further, several coregulator motifs showed selective binding to a specific RAR subtype. Next, this work showed that subtype-selective agonists can be successfully discriminated by using coregulator binding assays. Finally this study demonstrated the possible applications of a coregulator binding assay as a tool to discriminate between agonistic/antagonistic actions of ligands. The RAR-coregulator interactions found will be of use to direct further studies to better understand the mechanisms driving the eventual actions of retinoids.
Collapse
Affiliation(s)
- Ignacio Miro Estruch
- Division of Toxicology, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands.
| | - Diana Melchers
- PamGene International B.V., Wolvenhoek 10, 5211 HH 's-Hertogenbosch, The Netherlands
| | - René Houtman
- PamGene International B.V., Wolvenhoek 10, 5211 HH 's-Hertogenbosch, The Netherlands
| | - Laura H J de Haan
- Division of Toxicology, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - John P Groten
- Division of Toxicology, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands; PamGene International B.V., Wolvenhoek 10, 5211 HH 's-Hertogenbosch, The Netherlands
| | - Jochem Louisse
- Division of Toxicology, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Ivonne M C M Rietjens
- Division of Toxicology, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| |
Collapse
|
11
|
Brown G, Marchwicka A, Cunningham A, Toellner KM, Marcinkowska E. Antagonizing Retinoic Acid Receptors Increases Myeloid Cell Production by Cultured Human Hematopoietic Stem Cells. Arch Immunol Ther Exp (Warsz) 2017; 65:69-81. [PMID: 27412076 PMCID: PMC5274652 DOI: 10.1007/s00005-016-0411-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 04/20/2016] [Indexed: 02/07/2023]
Abstract
Activities of the retinoic acid receptor (RAR)α and RARγ are important to hematopoiesis. Here, we have investigated the effects of receptor selective agonists and antagonists on the primitive human hematopoietic cell lines KG1 and NB-4 and purified normal human hematopoietic stem cells (HSCs). Agonizing RARα (by AGN195183) was effective in driving neutrophil differentiation of NB-4 cells and this agonist synergized with a low amount (10 nM) of 1α,25-dihydroxyvitamin D3 to drive monocyte differentiation of NB-4 and KG1 cells. Treatment of cultures of human HSCs (supplemented with stem cell factor ± interleukin 3) with an antagonist of all RARs (AGN194310) or of RARα (AGN196996) prolonged the lifespan of cultures, up to 55 days, and increased the production of neutrophils and monocytes. Slowing down of cell differentiation was not observed, and instead, hematopoietic stem and progenitor cells had expanded in number. Antagonism of RARγ (by AGN205728) did not affect cultures of HSCs. Studies of CV-1 and LNCaP cells transfected with RAR expression vectors and a reporter vector revealed that RARγ and RARβ are activated by sub-nM all-trans retinoic acid (EC50-0.3 nM): ~50-fold more is required for activation of RARα (EC50-16 nM). These findings further support the notion that the balance of expression and activity of RARα and RARγ are important to hematopoietic stem and progenitor cell expansion and differentiation.
Collapse
Affiliation(s)
- Geoffrey Brown
- Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| | - Aleksandra Marchwicka
- Laboratory of Protein Biochemistry, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - Alan Cunningham
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Kai-Michael Toellner
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Ewa Marcinkowska
- Laboratory of Protein Biochemistry, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| |
Collapse
|
12
|
Olivares AM, Moreno-Ramos OA, Haider NB. Role of Nuclear Receptors in Central Nervous System Development and Associated Diseases. J Exp Neurosci 2016; 9:93-121. [PMID: 27168725 PMCID: PMC4859451 DOI: 10.4137/jen.s25480] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 01/06/2016] [Accepted: 01/07/2016] [Indexed: 11/13/2022] Open
Abstract
The nuclear hormone receptor (NHR) superfamily is composed of a wide range of receptors involved in a myriad of important biological processes, including development, growth, metabolism, and maintenance. Regulation of such wide variety of functions requires a complex system of gene regulation that includes interaction with transcription factors, chromatin-modifying complex, and the proper recognition of ligands. NHRs are able to coordinate the expression of genes in numerous pathways simultaneously. This review focuses on the role of nuclear receptors in the central nervous system and, in particular, their role in regulating the proper development and function of the brain and the eye. In addition, the review highlights the impact of mutations in NHRs on a spectrum of human diseases from autism to retinal degeneration.
Collapse
Affiliation(s)
- Ana Maria Olivares
- Department of Ophthalmology, Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Oscar Andrés Moreno-Ramos
- Departamento de Ciencias Biológicas, Facultad de Ciencias, Universidad de los Andes, Bogotá, Colombia
| | - Neena B Haider
- Department of Ophthalmology, Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
13
|
Abstract
Early in the age of modern medicine the consequences of vitamin A deficiency drew attention to the fundamental link between retinoid-dependent homeostatic regulation and malignant hyperproliferative diseases. The term "retinoid" includes a handful of endogenous and a large group of synthetic derivatives of vitamin A. These multifunctional lipid-soluble compounds directly regulate target genes of specific biological functions and critical signaling pathways to orchestrate complex functions from vision to development, metabolism, and inflammation. Many of the retinoid activities on the cellular level have been well characterized and translated to the regulation of processes like differentiation and cell death, which play critical roles in the outcome of malignant transformation of tissues. In fact, retinoid-based differentiation therapy of acute promyelocytic leukemia was one of the first successful examples of molecularly targeted treatment strategies. The selectivity, high receptor binding affinity and the ability of retinoids to directly modulate gene expression programs present a distinct pharmacological opportunity for cancer treatment and prevention. However, to fully exploit their potential, the adverse effects of retinoids must be averted. In this review we provide an overview of the biology of retinoid (activated by nuclear retinoic acid receptors [RARs]) and rexinoid (engaged by nuclear retinoid X receptors [RXRs]) action concluded from a long line of preclinical studies, in relation to normal and transformed states of cells. We will also discuss the past and current uses of retinoids in the treatment of malignancies, the potential of rexinoids in the cancer prevention setting, both as single agents and in combinations.
Collapse
Affiliation(s)
- Iván P Uray
- Department of Clinical Cancer Prevention, The University of Texas, MD Anderson Cancer Center, Houston, TX, USA.
| | - Ethan Dmitrovsky
- Department of Clinical Cancer Prevention, The University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Powel H Brown
- Department of Clinical Cancer Prevention, The University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
14
|
di Masi A, Leboffe L, De Marinis E, Pagano F, Cicconi L, Rochette-Egly C, Lo-Coco F, Ascenzi P, Nervi C. Retinoic acid receptors: from molecular mechanisms to cancer therapy. Mol Aspects Med 2015; 41:1-115. [PMID: 25543955 DOI: 10.1016/j.mam.2014.12.003] [Citation(s) in RCA: 271] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 12/15/2014] [Indexed: 02/07/2023]
Abstract
Retinoic acid (RA), the major bioactive metabolite of retinol or vitamin A, induces a spectrum of pleiotropic effects in cell growth and differentiation that are relevant for embryonic development and adult physiology. The RA activity is mediated primarily by members of the retinoic acid receptor (RAR) subfamily, namely RARα, RARβ and RARγ, which belong to the nuclear receptor (NR) superfamily of transcription factors. RARs form heterodimers with members of the retinoid X receptor (RXR) subfamily and act as ligand-regulated transcription factors through binding specific RA response elements (RAREs) located in target genes promoters. RARs also have non-genomic effects and activate kinase signaling pathways, which fine-tune the transcription of the RA target genes. The disruption of RA signaling pathways is thought to underlie the etiology of a number of hematological and non-hematological malignancies, including leukemias, skin cancer, head/neck cancer, lung cancer, breast cancer, ovarian cancer, prostate cancer, renal cell carcinoma, pancreatic cancer, liver cancer, glioblastoma and neuroblastoma. Of note, RA and its derivatives (retinoids) are employed as potential chemotherapeutic or chemopreventive agents because of their differentiation, anti-proliferative, pro-apoptotic, and anti-oxidant effects. In humans, retinoids reverse premalignant epithelial lesions, induce the differentiation of myeloid normal and leukemic cells, and prevent lung, liver, and breast cancer. Here, we provide an overview of the biochemical and molecular mechanisms that regulate the RA and retinoid signaling pathways. Moreover, mechanisms through which deregulation of RA signaling pathways ultimately impact on cancer are examined. Finally, the therapeutic effects of retinoids are reported.
Collapse
Affiliation(s)
- Alessandra di Masi
- Department of Science, Roma Tre University, Viale Guglielmo Marconi 446, Roma I-00146, Italy
| | - Loris Leboffe
- Department of Science, Roma Tre University, Viale Guglielmo Marconi 446, Roma I-00146, Italy
| | - Elisabetta De Marinis
- Department of Medical and Surgical Sciences and Biotechnologies, University of Roma "La Sapienza", Corso della Repubblica 79, Latina I-04100
| | - Francesca Pagano
- Department of Medical and Surgical Sciences and Biotechnologies, University of Roma "La Sapienza", Corso della Repubblica 79, Latina I-04100
| | - Laura Cicconi
- Department of Biomedicine and Prevention, University of Roma "Tor Vergata", Via Montpellier 1, Roma I-00133, Italy; Laboratory of Neuro-Oncohematology, Santa Lucia Foundation, Via Ardeatina, 306, Roma I-00142, Italy
| | - Cécile Rochette-Egly
- Department of Functional Genomics and Cancer, IGBMC, CNRS UMR 7104 - Inserm U 964, University of Strasbourg, 1 rue Laurent Fries, BP10142, Illkirch Cedex F-67404, France.
| | - Francesco Lo-Coco
- Department of Biomedicine and Prevention, University of Roma "Tor Vergata", Via Montpellier 1, Roma I-00133, Italy; Laboratory of Neuro-Oncohematology, Santa Lucia Foundation, Via Ardeatina, 306, Roma I-00142, Italy.
| | - Paolo Ascenzi
- Interdepartmental Laboratory for Electron Microscopy, Roma Tre University, Via della Vasca Navale 79, Roma I-00146, Italy.
| | - Clara Nervi
- Department of Medical and Surgical Sciences and Biotechnologies, University of Roma "La Sapienza", Corso della Repubblica 79, Latina I-04100.
| |
Collapse
|
15
|
Doi A, Ishikawa K, Shibata N, Ito E, Fujimoto J, Yamamoto M, Shiga H, Mochizuki H, Kawamura Y, Goshima N, Semba K, Watanabe S. Enhanced expression of retinoic acid receptor alpha (RARA) induces epithelial-to-mesenchymal transition and disruption of mammary acinar structures. Mol Oncol 2014; 9:355-64. [PMID: 25300573 DOI: 10.1016/j.molonc.2014.09.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 09/15/2014] [Accepted: 09/15/2014] [Indexed: 01/01/2023] Open
Abstract
The early steps of mammary tumorigenesis include loss of epithelial cell polarity, escape from anoikis, and acquisition of proliferative capacity. The genes responsible for these processes are predicted to be early diagnostic markers or new therapeutic targets. Here we tested 51 genes coamplified with ERBB2 in the 17q12-21 amplicon for these tumorigenic activities using an MCF10A 3D culture-based screening system. We found that overexpression of retinoic acid receptor α (RARA) disrupted normal acinar structure and induced epithelial-to-mesenchymal transition (EMT). The mRNA levels of known EMT-inducing factors, including SLUG, FOXC2, ZEB1, and ZEB2, were significantly increased upon RARA overexpression. Knockdown of ZEB1 suppressed the RARA-mediated EMT phenotype. These results suggest that overexpression of RARA enhances malignant transformation during mammary tumorigenesis.
Collapse
Affiliation(s)
- Ayano Doi
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan.
| | - Kosuke Ishikawa
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan; Japan Biological Informatics Consortium (JBiC), 2-45 Aomi, Koto-ku, Tokyo 135-8073, Japan.
| | - Nao Shibata
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Emi Ito
- Division of Gene Expression Analysis, Translational Research Center (Tokyo Branch), Fukushima Medical University, Shibuya-ku, Tokyo 151-0051, Japan
| | - Jiro Fujimoto
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan; Japan Biological Informatics Consortium (JBiC), 2-45 Aomi, Koto-ku, Tokyo 135-8073, Japan
| | - Mizuki Yamamoto
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Hatsuki Shiga
- Japan Biological Informatics Consortium (JBiC), 2-45 Aomi, Koto-ku, Tokyo 135-8073, Japan
| | - Hiromi Mochizuki
- Japan Biological Informatics Consortium (JBiC), 2-45 Aomi, Koto-ku, Tokyo 135-8073, Japan
| | - Yoshifumi Kawamura
- Japan Biological Informatics Consortium (JBiC), 2-45 Aomi, Koto-ku, Tokyo 135-8073, Japan
| | - Naoki Goshima
- Quantitative Proteomics Team, Molecular Profiling Research Center for Drug Discovery (molprof), National Institute of Advanced Industrial Science and Technology (AIST), 2-4-7 Aomi, Koto-ku, Tokyo 135-0064, Japan
| | - Kentaro Semba
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan; Division of Gene Function Analysis, Translational Research Center, Fukushima Medical University, 1 Hikarigaoka, Fukushima-city, Fukushima 960-1295, Japan.
| | - Shinya Watanabe
- Division of Gene Expression Analysis, Translational Research Center (Tokyo Branch), Fukushima Medical University, Shibuya-ku, Tokyo 151-0051, Japan
| |
Collapse
|
16
|
Schroeder A, Jimenez R, Young B, Privalsky ML. The ability of thyroid hormone receptors to sense t4 as an agonist depends on receptor isoform and on cellular cofactors. Mol Endocrinol 2014; 28:745-57. [PMID: 24673558 DOI: 10.1210/me.2013-1335] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
T4 (3,5,3',5'-tetraiodo-l-thyronine) is classically viewed as a prohormone that must be converted to the T3 (3,5,3'-triiodo-l-thyronine) form for biological activity. We first determined that the ability of reporter genes to respond to T4 and to T3 differed for the different thyroid hormone receptor (TR) isoforms, with TRα1 generally more responsive to T4 than was TRβ1. The response to T4 vs T3 also differed dramatically in different cell types in a manner that could not be attributed to differences in deiodinase activity or in hormone affinity, leading us to examine the role of TR coregulators in this phenomenon. Unexpectedly, several coactivators, such as steroid receptor coactivator-1 (SRC1) and thyroid hormone receptor-associated protein 220 (TRAP220), were recruited to TRα1 nearly equally by T4 as by T3 in vitro, indicating that TRα1 possesses an innate potential to respond efficiently to T4 as an agonist. In contrast, release of corepressors, such as the nuclear receptor coreceptor NCoRω, from TRα1 by T4 was relatively inefficient, requiring considerably higher concentrations of this ligand than did coactivator recruitment. Our results suggest that cells, by altering the repertoire and abundance of corepressors and coactivators expressed, may regulate their ability to respond to T4, raising the possibility that T4 may function directly as a hormone in specific cellular or physiological contexts.
Collapse
Affiliation(s)
- Amy Schroeder
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California at Davis, Davis, California 95616
| | | | | | | |
Collapse
|
17
|
Al Tanoury Z, Piskunov A, Andriamoratsiresy D, Gaouar S, Lutzing R, Ye T, Jost B, Keime C, Rochette-Egly C. Genes involved in cell adhesion and signaling: a new repertoire of retinoic acid receptor target genes in mouse embryonic fibroblasts. J Cell Sci 2014; 127:521-33. [PMID: 24357724 DOI: 10.1242/jcs.131946] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023] Open
Abstract
Nuclear retinoic acid (RA) receptors (RARα, β and γ) are ligand-dependent transcription factors that regulate the expression of a battery of genes involved in cell differentiation and proliferation. They are also phosphoproteins and we previously showed the importance of their phosphorylation in their transcriptional activity. In the study reported here, we conducted a genome-wide analysis of the genes that are regulated by RARs in mouse embryonic fibroblasts (MEFs) by comparing wild-type MEFs to MEFs lacking the three RARs. We found that in the absence of RA, RARs control the expression of several gene transcripts associated with cell adhesion. Consequently the knockout MEFs are unable to adhere and to spread on substrates and they display a disrupted network of actin filaments, compared with the WT cells. In contrast, in the presence of the ligand, RARs control the expression of other genes involved in signaling and in RA metabolism. Taking advantage of rescue cell lines expressing the RARα or RARγ subtypes (either wild-type or mutated at the N-terminal phosphorylation sites) in the null background, we found that the expression of RA-target genes can be controlled either by a specific single RAR or by a combination of RAR isotypes, depending on the gene. We also selected genes that require the phosphorylation of the receptors for their regulation by RA. Our results increase the repertoire of genes that are regulated by RARs and highlight the complexity and diversity of the transcriptional programs regulated by RARs, depending on the gene.
Collapse
Affiliation(s)
- Ziad Al Tanoury
- IGBMC (Institut de Génétique et de Biologie Moléculaire et Cellulaire), INSERM, U964, CNRS, UMR7104, Université de Strasbourg, 1 rue Laurent Fries, BP 10142, 67404 Illkirch Cedex, France
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Piskunov A, Al Tanoury Z, Rochette-Egly C. Nuclear and extra-nuclear effects of retinoid acid receptors: how they are interconnected. Subcell Biochem 2014; 70:103-127. [PMID: 24962883 DOI: 10.1007/978-94-017-9050-5_6] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The nuclear retinoic acid receptors (RAR α, β and γ) and their isoforms are ligand-dependent regulators of transcription Transcription , which mediate the effects of all-trans retinoic acid (RA), the active endogenous metabolite of Vitamin A. They heterodimerize with Retinoid X Receptors (RXRs α, β and γ), and regulate the expression of a battery of target genes Target genes involved in cell growth and differentiation Differentiation . During the two last decades, the description of the crystallographic structures of RARs, the characterization of the polymorphic response elements of their target genes Target genes , and the identification of the multiprotein complexes involved in their transcriptional activity have provided a wealth of information on their pleiotropic effects. However, the regulatory scenario became even more complicated once it was discovered that RARs are phosphoproteins and that RA can activate kinase signaling cascades via a pool of RARs present in membrane lipid rafts. Now it is known that these RA-activated kinases Kinases translocate to the nucleus where they phosphorylate RARs and other retinoid signaling factors. The phosphorylation Phosphorylation state of the RARs dictates whether the transcriptional programs which are known to be induced by RA are facilitated and/or switched on. Thus, kinase signaling pathways appear to be crucial for fine-tuning the appropriate physiological activity of RARs.
Collapse
Affiliation(s)
- Aleksandr Piskunov
- IGBMC (Institut de Génétique et de Biologie Moléculaire et Cellulaire), INSERM, U964, CNRS, UMR7104, Université de Strasbourg, 1 rue Laurent Fries, BP 10142, 67404, Illkirch Cedex, France,
| | | | | |
Collapse
|
19
|
Al Tanoury Z, Piskunov A, Rochette-Egly C. Vitamin A and retinoid signaling: genomic and nongenomic effects. J Lipid Res 2013; 54:1761-75. [PMID: 23440512 DOI: 10.1194/jlr.r030833] [Citation(s) in RCA: 282] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Vitamin A or retinol is arguably the most multifunctional vitamin in the human body, as it is essential from embryogenesis to adulthood. The pleiotropic effects of vitamin A are exerted mainly by one active metabolite, all-trans retinoic acid (atRA), which regulates the expression of a battery of target genes through several families of nuclear receptors (RARs, RXRs, and PPARβ/δ), polymorphic retinoic acid (RA) response elements, and multiple coregulators. It also involves extranuclear and nontranscriptional effects, such as the activation of kinase cascades, which are integrated in the nucleus via the phosphorylation of several actors of RA signaling. However, vitamin A itself proved recently to be active and RARs to be present in the cytosol to regulate translation and cell plasticity. These new concepts expand the scope of the biologic functions of vitamin A and RA.
Collapse
Affiliation(s)
- Ziad Al Tanoury
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Institut National de la Santé et de la Recherche Médicale (INSERM), U964, CNRS, UMR7104, Université de Strasbourg, 67404 Illkirch Cedex, France
| | | | | |
Collapse
|
20
|
Chee LCY, Hendy J, Purton LE, McArthur GA. ATRA and the specific RARα agonist, NRX195183, have opposing effects on the clonogenicity of pre-leukemic murine AML1-ETO bone marrow cells. Leukemia 2012; 27:1369-80. [PMID: 23228968 DOI: 10.1038/leu.2012.362] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
All-trans retinoic acid (ATRA) is used successfully in the treatment of acute promyelocytic leukemia (APL). ATRA enhances hematopoietic stem cell self-renewal through retinoic acid receptor (RAR)γ activation while promoting differentiation of committed myeloid progenitors through RARα activation. Its lack of success in the treatment of non-APL acute myeloid leukemia (AML) may be related to ATRA's non-selectivity for the RARα and RARγ isotypes, and specific RARα activation may be more beneficial in promoting myeloid differentiation. To investigate this hypothesis, the effects of ATRA and the specific RARα agonist NRX195183 was assessed in AML1-ETO (AE)-expressing murine bone marrow (BM) progenitors. ATRA potentiated the in vitro clonogenicity of these cells while NRX195183 had the opposite effect. Morphological and flow cytometric analysis confirmed a predominantly immature myeloid population in the ATRA-treated AE cells while the NRX195183-treated cells demonstrated an increase in the mature myeloid population. Similarly, NRX195183 treatment promoted myeloid differentiation in an AE9a in vivo murine model. In the ATRA-treated AE cells, gene expression analyses revealed functional networks involving SERPINE1 and bone morphogenetic protein 2; AKT phosphorylation was upregulated. Collectively, these findings confirm the contrasting roles of specific RARα and RARγ activation in the clonogenicity and differentiation of AE cells with potential significant implications in the treatment of non-APL AML using a specific RARα agonist.
Collapse
Affiliation(s)
- L C Y Chee
- Molecular Oncology Laboratory, Research Division, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia
| | | | | | | |
Collapse
|
21
|
Linney E, Donerly S, Mackey L, Dobbs-McAuliffe B. The negative side of retinoic acid receptors. Neurotoxicol Teratol 2011; 33:631-40. [PMID: 21767634 PMCID: PMC3208776 DOI: 10.1016/j.ntt.2011.06.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Revised: 06/03/2011] [Accepted: 06/30/2011] [Indexed: 10/18/2022]
Abstract
This is a review of research that supports a hypothesis regarding early restriction of gene expression in the vertebrate embryo. We hypothesize that vertebrate retinoic acid receptors (RARs for several vertebrates but rars for zebrafish) are part of an embryonic, epigenetic switch whose default position, at the time of fertilization is "OFF". This is due to the assemblage of a rar-corepressor-histone deacetylase complex on retinoic acid response elements (RAREs) in regulatory regions of a subset of genes. In addition, selective and precise allocation of retinoic acid during early development through the interaction of Phase I enzymes throws the switch "ON" in a predictable, developmental manner. We are proposing that this is a basic, early embryonic switch that can cause the initiation of cascades of gene expression that are responsible for at least some early, diversification of cell phenotypes. Dehydrogenases and a subset of cytochrome p450 genes (cyp26a1, cyp26b1, and cyp26c1) play the major role in providing the retinoic acid and limiting its access. We also suggest that this mechanism may be playing a significant role in the repression of genes in undifferentiated stem cells.
Collapse
Affiliation(s)
- Elwood Linney
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, United States.
| | | | | | | |
Collapse
|
22
|
Linney E, Perz-Edwards A, Kelley B. Identification and characterization of a functional zebrafish smrt corepressor (ncor2). Gene 2011; 486:31-6. [PMID: 21767619 PMCID: PMC3224961 DOI: 10.1016/j.gene.2011.06.033] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Revised: 06/24/2011] [Accepted: 06/30/2011] [Indexed: 12/31/2022]
Abstract
The retinoic acid receptors (RARs or rars) and the thyroid hormone receptors are members of the steroid receptor superfamily that interact with their DNA response elements (for RARs: retinoic acid response elements or RAREs) in the regulatory regions of promoters in the absence of their ligand. In this ligand minus configuration, it has been suggested that the RAR provides a binding site for a corepressor (SMRT or N-CoR) that also brings in other proteins to repress the gene. In the presence of the ligand, the receptor goes through an allosteric change eliminating the corepressor binding site and providing a coactivator binding site. In this manuscript we describe the isolation of the zebrafish corepressor, smrt. We show that its association with the zebrafish rar aa is sensitive to retinoic acid and that the corepressor mRNA is present in 8 cell zebrafish embryos - a time at which the embryonic genome is not active. We suggest that this rar-corepressor complex may be part of an embryonic, epigenetic switch that keeps retinoic acid responsive genes off before retinoic becomes available to the embryo.
Collapse
Affiliation(s)
- Elwood Linney
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA.
| | | | | |
Collapse
|
23
|
Waxman JS, Yelon D. Zebrafish retinoic acid receptors function as context-dependent transcriptional activators. Dev Biol 2011; 352:128-40. [PMID: 21276787 PMCID: PMC3207040 DOI: 10.1016/j.ydbio.2011.01.022] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2009] [Revised: 01/18/2011] [Accepted: 01/19/2011] [Indexed: 11/17/2022]
Abstract
RA receptors (RARs) have been thought to function through a binary repressor-activator mechanism: in the absence of ligand, they function as transcriptional repressors, and, in the presence of ligand, they function as transcriptional activators. This prevailing model of RAR mechanism has been derived mostly from in vitro studies and has not been widely tested in developmental contexts. Here, we investigate whether zebrafish RARs function as transcriptional activators or repressors during early embryonic anterior-posterior patterning. Ectopic expression of wild-type zebrafish RARs does not disrupt embryonic patterning and does not sensitize embryos to RA treatment, indicating that RAR availability is not limiting in the embryo. In contrast, ectopic expression of hyperactive zebrafish RARs induces expression of a RA-responsive reporter transgene as well as ectopic expression of endogenous RA-responsive target genes. However, ectopic expression of dominant negative zebrafish RARs fails to induce embryonic phenotypes that are consistent with loss of RA signaling, despite their ability to function as transcriptional repressors in heterologous cell culture assays. Together, our studies suggest that zebrafish RAR function is context-dependent and that, during early patterning, zebrafish RARs function primarily as transcriptional activators and may only have minimal ability to act as transcriptional repressors. Thus, it seems that the binary model for RAR function does not apply to all in vivo scenarios. Taking into account studies of RA signaling in tunicates and tetrapods, we propose a parsimonious model of the evolution of RAR function during chordate anterior-posterior patterning.
Collapse
Affiliation(s)
| | - Deborah Yelon
- Correspondence: , Phone: (858) 534-1822; Fax: (858) 822-4612
| |
Collapse
|
24
|
Tremmel C, Schaefer M, Azoitei A, Ruff H, Spindler-Barth M. Interaction of the N-terminus of ecdysone receptor isoforms with the ligand-binding domain. Mol Cell Endocrinol 2011; 332:293-300. [PMID: 21094674 DOI: 10.1016/j.mce.2010.11.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2010] [Revised: 11/09/2010] [Accepted: 11/11/2010] [Indexed: 10/18/2022]
Abstract
Ecdysone receptor (EcR) isoforms exert different biological functions, although they vary only in their N-terminal domain. Despite identical C-termini, which mediate hormone-induced activity, the influence of ligand is isoform specific, which indicates an N/C-interaction. The position of helix 12 with and without hormone varies among isoforms and modifies N/C-interaction determined by fluorescence resonance-energy transfer (FRET), which depends on the salt bridge between helices 4 and 12 of the ligand-binding domain (LBD). Disruption of the salt bridge by mutation of K497 (helix 4) had no effect on basal N/C-interaction, but prevented the hormone-induced increase, which was partially restored by a salt bridge with reversed polarity. The heterodimerization partner Ultraspiracle (Usp) can compensate for the disruption of the salt bridge. Without ligand the AB-domains of EcR-A and EcR-B1, but not EcR-B2, interact with the LBD via K497 and repress transcriptional activity. This intramolecular cross talk between N- and C-terminus along with the position of helix 12 stabilized by K497 regulates transcriptional activity of EcR isoforms.
Collapse
Affiliation(s)
- Ch Tremmel
- Institute of General Zoology and Endocrinology, Ulm University, 89069 Ulm, Germany
| | | | | | | | | |
Collapse
|
25
|
Mengeling BJ, Phan TQ, Goodson ML, Privalsky ML. Aberrant corepressor interactions implicated in PML-RAR(alpha) and PLZF-RAR(alpha) leukemogenesis reflect an altered recruitment and release of specific NCoR and SMRT splice variants. J Biol Chem 2010; 286:4236-47. [PMID: 21131350 DOI: 10.1074/jbc.m110.200964] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human acute promyelocytic leukemia is causally linked to chromosomal translocations that generate chimeric retinoic acid receptor-α proteins (x-RARα fusions). Wild-type RARα is a transcription factor that binds to the SMRT/NCoR family of corepressors in the absence of hormone but releases from corepressor and binds coactivators in response to retinoic acid. In contrast, the x-RARα fusions are impaired for corepressor release and operate in acute promyelocytic leukemia as dominant-negative inhibitors of wild-type RARα. We report that the two most common x-RARα fusions, PML-RARα and PLZF-RARα, have gained the ability to recognize specific splice variants of SMRT and NCoR that are poorly recognized by RARα. These differences in corepressor specificity between the normal and oncogenic receptors are further magnified in the presence of a retinoid X receptor heteromeric partner. The ability of retinoids to fully release corepressor from PML-RARα differs for the different splice variants, a phenomenon relevant to the requirement for supraphysiological levels of this hormone in differentiation therapy of leukemic cells. We propose that this shift in the specificity of the x-RARα fusions to a novel repertoire of corepressors contributes to the dominant-negative and oncogenic properties of these oncoproteins and helps explain previously paradoxical aspects of their behavior.
Collapse
Affiliation(s)
- Brenda J Mengeling
- Department of Microbiology, College of Biological Sciences, University of California at Davis, Davis, California 95616, USA
| | | | | | | |
Collapse
|
26
|
Lalevée S, Bour G, Quinternet M, Samarut E, Kessler P, Vitorino M, Bruck N, Delsuc MA, Vonesch JL, Kieffer B, Rochette-Egly C. Vinexinß, an atypical "sensor" of retinoic acid receptor gamma signaling: union and sequestration, separation, and phosphorylation. FASEB J 2010; 24:4523-34. [PMID: 20634350 DOI: 10.1096/fj.10-160572] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
The transcriptional activity of nuclear retinoic acid receptors (RARs) relies on the association/dissociation of coregulators at the ligand-binding domain. However, we determined that the N-terminal domain (NTD) also plays a role through its phosphorylation, and we isolated vinexinβ, a cytoskeleton protein with three SH3 domains, as a new partner of the RARγ NTD. Here we deciphered the mechanism of the interaction and its role in RARγ-mediated transcription. By combining molecular and biophysical (surface plasmon resonance, NMR, and fluorescence resonance energy transfer) approaches, we demonstrated that the third SH3 domain of vinexinβ interacts with a proline-rich domain (PRD) located in RARγ NTD and that phosphorylation at a serine located in the PRD abrogates the interaction. The affinity of the interaction was also evaluated. In vivo, vinexinβ represses RARγ-mediated transcription and we dissected the underlying mechanism in chromatin immunoprecipitation experiments performed with F9 cells expressing RARγ wild type or mutated at the phosphorylation site. In the absence of retinoic acid (RA), vinexinβ does not occupy RARγ target gene promoters and sequesters nonphosphorylated RARγ out of promoters. In response to RA, RARγ becomes phosphorylated and dissociates from vinexinβ. This separation allows RARγ to occupy promoters. This is the first report of an RAR corepressor association/dissociation out of promoters and regulated by phosphorylation.
Collapse
Affiliation(s)
- Sébastien Lalevée
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Institut National de la Santé et de la Recherche Médicale (INSERM), U596, Illkirch, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Gurevich I, Aneskievich BJ. Liganded RARalpha and RARgamma interact with but are repressed by TNIP1. Biochem Biophys Res Commun 2009; 389:409-14. [PMID: 19732752 PMCID: PMC2759858 DOI: 10.1016/j.bbrc.2009.08.159] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2009] [Accepted: 08/24/2009] [Indexed: 01/28/2023]
Abstract
Nuclear receptor (NR) transcriptional activity is controlled by agonist binding and concomitant exchange of receptor-associating corepressor proteins for NR box-containing, receptor AF-2-targeting coactivator proteins. We report here that TNIP1 is an atypical NR coregulator. Requirements for TNIP1-RAR interaction-its NR boxes, ligand, and the receptor's AF-2 domain-are characteristic of coactivators. However, TNIP1 reduces RAR activity. Repression is partially relieved by SRC1, suggesting interference with coactivator recruitment as a mechanism of TNIP1 repression. TNIP1 does not bind RXRalpha and RARalpha AF-2 domain, necessary for that receptor's association with TNIP1, is insufficient to confer upon RXRalpha interaction with TNIP1. Preferential interaction of RARalpha over RARgamma with TNIP1 can be mapped to RARalpha ligand binding domain helices 5-9 and suggests regions outside the receptor helix 12 modulate interaction of NRs and NR box-containing corepressors. TNIP1 repression of RARs in the presence of RA places it in a small category of corepressors of agonist-bound NRs.
Collapse
Affiliation(s)
- Igor Gurevich
- Graduate Program in Pharmacology and Toxicology, Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269-3092; USA
| | - Brian J. Aneskievich
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, CT 06269-3092; USA
| |
Collapse
|
28
|
Nasr R, Lallemand-Breitenbach V, Zhu J, Guillemin MC, de Thé H. Therapy-induced PML/RARA proteolysis and acute promyelocytic leukemia cure. Clin Cancer Res 2009; 15:6321-6. [PMID: 19808868 DOI: 10.1158/1078-0432.ccr-09-0209] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Acute promyelocytic leukemia (APL) is characterized by a specific t(15;17) chromosomal translocation that yields the PML/RARA fusion gene. Clinically, besides chemotherapy, two drugs induce clinical remissions: retinoic acid (RA) and arsenic trioxide (As). Both agents directly target PML/RARA-mediated transcriptional repression and protein stability, inducing to various extent promyelocyte differentiation and clinical remission of APL patients. RA targets the RARA moiety of the fusion, whereas arsenic targets its PML part. PML/RARA expression in the mouse is sufficient to initiate APL. The RA-As association, which synergizes for PML/RARA degradation but not for differentiation, rapidly clears leukemia initiating cells (LIC), resulting in APL eradication in murine APL models, but also in several APL clinical trials. Cyclic AMP triggered PML/RARA phosphorylation also enhances RA-induced APL regression, PML/RARA degradation, and LIC clearance, raising new options for therapy-resistant patients. Although differentiation has a major role in debulking of the tumor, PML/RARA degradation seems to be the primary basis for APL eradication by the RA-As association. Oncoprotein degradation could be a general therapeutic strategy that may be extended beyond APL.
Collapse
Affiliation(s)
- Rihab Nasr
- Department of Internal Medicine, American University of Beirut, Beirut, Lebanon
| | | | | | | | | |
Collapse
|
29
|
Privalsky ML, Lee S, Hahm JB, Young BM, Fong RNG, Chan IH. The p160 coactivator PAS-B motif stabilizes nuclear receptor binding and contributes to isoform-specific regulation by thyroid hormone receptors. J Biol Chem 2009; 284:19554-63. [PMID: 19487700 DOI: 10.1074/jbc.m109.007542] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Thyroid hormone receptors (TRs) are hormone-regulated transcription factors that play multiple roles in vertebrate endocrinology and development. TRs are expressed as a series of distinct receptor isoforms that mediate different biological functions. The TRbeta2 isoform is expressed primarily in the hypothalamus, pituitary, cochlea, and retina, and displays an enhanced response to hormone agonist relative to the other TR isoforms. We report here that the unusual transcriptional properties of TRbeta2 parallel the ability of this isoform to bind p160 coactivators cooperatively through multiple contact surfaces; the more broadly expressed TRbeta1 isoform, in contrast, utilizes a single contact mechanism. Intriguingly, the PAS-B domain in the p160 N terminus plays a previously unanticipated role in permitting TRbeta2 to recruit coactivator at limiting triiodothyronine concentrations. The PAS-B sequences also play an important role in coactivator binding by estrogen receptor-alpha. We propose that the PAS-B domain of the p160 coactivators is an important modulator of coactivator recruitment for a specific subset of nuclear receptors, permitting stronger transcriptional activation at lower hormone concentrations than would otherwise occur, and allowing isoform-specific mRNA splicing to customize the hormone response in different tissues.
Collapse
Affiliation(s)
- Martin L Privalsky
- Department of Microbiology, College of Biological Sciences, University of California, Davis, California 95616, USA.
| | | | | | | | | | | |
Collapse
|
30
|
Rochette-Egly C, Germain P. Dynamic and combinatorial control of gene expression by nuclear retinoic acid receptors (RARs). NUCLEAR RECEPTOR SIGNALING 2009; 7:e005. [PMID: 19471584 PMCID: PMC2686084 DOI: 10.1621/nrs.07005] [Citation(s) in RCA: 183] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2009] [Accepted: 04/17/2009] [Indexed: 12/12/2022]
Abstract
Nuclear retinoic acid receptors (RARs) are transcriptional regulators controlling the expression of specific subsets of genes in a ligand-dependent manner. The basic mechanism for switching on transcription of cognate target genes involves RAR binding at specific response elements and a network of interactions with coregulatory protein complexes, the assembly of which is directed by the C-terminal ligand-binding domain of RARs. In addition to this scenario, new roles for the N-terminal domain and the ubiquitin-proteasome system recently emerged. Moreover, the functions of RARs are not limited to the regulation of cognate target genes, as they can transrepress other gene pathways. Finally, RARs are also involved in nongenomic biological activities such as the activation of translation and of kinase cascades. Here we will review these mechanisms, focusing on how kinase signaling and the proteasome pathway cooperate to influence the dynamics of RAR transcriptional activity.
Collapse
Affiliation(s)
- Cécile Rochette-Egly
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Department of Functional Genomics, INSERM U596, CNRS UMR7104, Université Louis Pasteur de Strasbourg, Strasbourg, France.
| | | |
Collapse
|
31
|
Rosen MD, Privalsky ML. Thyroid hormone receptor mutations found in renal clear cell carcinomas alter corepressor release and reveal helix 12 as key determinant of corepressor specificity. Mol Endocrinol 2009; 23:1183-92. [PMID: 19407221 DOI: 10.1210/me.2009-0126] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Thyroid hormone receptors (TRs) regulate multiple normal physiological and developmental pathways, whereas mutations in TRs can result in endocrine and neoplastic disease. A particularly high rate of TR mutations has been found in human renal clear cell carcinomas (RCCCs). We report here that the majority of these RCCC TR mutants tested are defective for transcriptional activation and behave as dominant-negative inhibitors of wild-type receptor function. Although several of the dominant-negative RCCC TR mutants are impaired for hormone binding, all fail to release from corepressors appropriately in response to T(3), a trait that closely correlates with their defective transcriptional properties. Notably, many of these mutants exhibit additional changes in their specificity for different corepressor splice forms that may further contribute to the disease phenotype. Mapping of the relevant mutations reveals that the C-terminal receptor helix 12 is not simply a hormone-operated switch that either permits or prevents all corepressor binding, but is instead a selective gatekeeper that actively discriminates between different forms of corepressor even in the absence of T(3).
Collapse
Affiliation(s)
- Meghan D Rosen
- Department of Microbiology, University of California at Davis, Davis, California 95616, USA
| | | |
Collapse
|
32
|
Su D, Gudas LJ. Gene expression profiling elucidates a specific role for RARgamma in the retinoic acid-induced differentiation of F9 teratocarcinoma stem cells. Biochem Pharmacol 2008; 75:1129-60. [PMID: 18164278 PMCID: PMC2988767 DOI: 10.1016/j.bcp.2007.11.006] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2007] [Revised: 11/09/2007] [Accepted: 11/15/2007] [Indexed: 12/27/2022]
Abstract
The biological effects of all-trans-retinoic acid (RA), a major active metabolite of retinol, are mainly mediated through its interactions with retinoic acid receptor (RARs alpha, beta, gamma) and retinoid X receptor (RXRs alpha, beta, gamma) heterodimers. RAR/RXR heterodimers activate transcription by binding to RA-response elements (RAREs or RXREs) in the promoters of primary target genes. Murine F9 teratocarcinoma stem cells have been widely used as a model for cellular differentiation and RA signaling during embryonic development. We identified and characterized genes that are differentially expressed in F9 wild type (Wt) and F9 RARgamma-/- cells, with and without RA treatment, through the use of oligonucleotide-based microarrays. Our data indicate that RARgamma, in the absence of exogenous RA, modulates gene expression. Genes such as Sfrp2, Tie1, Fbp2, Emp1, and Emp3 exhibited higher transcript levels in RA-treated Wt, RARalpha-/- and RARbeta2-/- lines than in RA-treated RARgamma-/- cells, and represent specific RARgamma targets. Other genes, such as Runx1, were expressed at lower levels in both F9 RARbeta2-/- and RARgamma-/- cell lines than in F9 Wt and RARalpha-/-. Genes specifically induced by RA at 6h with the protein synthesis inhibitor cycloheximide in F9 Wt, but not in RARgamma-/- cells, included Hoxa3, Hoxa5, Gas1, Cyp26a1, Sfrp2, Fbp2, and Emp1. These genes represent specific primary RARgamma targets in F9 cells. Several genes in the Wnt signaling pathway were regulated by RARgamma. Delineation of the receptor-specific actions of RA with respect to cell proliferation and differentiation should result in more effective therapies with this drug.
Collapse
Affiliation(s)
- Dan Su
- Department of Pharmacology, Weill Cornell Medical College, and Weill Graduate School of Biomedical Sciences of Cornell University
| | - Lorraine J Gudas
- Department of Pharmacology, Weill Cornell Medical College, and Weill Graduate School of Biomedical Sciences of Cornell University
| |
Collapse
|
33
|
Skafar DF, Zhao C. The multifunctional estrogen receptor-alpha F domain. Endocrine 2008; 33:1-8. [PMID: 18363044 DOI: 10.1007/s12020-008-9054-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2007] [Revised: 02/04/2008] [Accepted: 03/04/2008] [Indexed: 10/22/2022]
Abstract
The members of the nuclear receptor superfamily act as transcriptional regulatory factors and exhibit a multidomain structure characterized as domains A-E/F. This review focuses on a small, relatively understudied region at the extreme carboxy-terminus of the estrogen receptor (ER) alpha, the F domain. The F domain contributes to differences in the activity of ER alpha and beta subtypes; it is required for tamoxifen's agonist activity on an estrogen response element, and it modifies the receptor's interactions with coregulators including steroid receptor coactivator-1. The differences between the F domains of the ER alpha and beta subtypes and among the other members of the nuclear hormone receptor superfamily may offer opportunities for selective control of the activity of these proteins.
Collapse
Affiliation(s)
- Debra F Skafar
- Department of Physiology, Wayne State University School of Medicine, 540 E. Canfield, Detroit, MI, 48201, USA.
| | | |
Collapse
|
34
|
Gillespie RF, Gudas LJ. Retinoic acid receptor isotype specificity in F9 teratocarcinoma stem cells results from the differential recruitment of coregulators to retinoic response elements. J Biol Chem 2007; 282:33421-33434. [PMID: 17875646 DOI: 10.1074/jbc.m704845200] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The retinoic acid receptor (RAR) alpha, beta(2), and gamma isotypes each regulate specific subsets of target genes in F9 teratocarcinoma stem cells. We used chromatin immunoprecipitation assays to monitor the association of RARgamma, retinoic X receptor (RXR) alpha, and coregulators with the RARbeta(2), Hoxa1, and Cyp26A1 retinoic acid response elements (RAREs) in F9 wild type and RARalpha, -beta(2), and -gamma null cells. Additionally we quantitatively monitored expression of the corresponding mRNAs. We demonstrated that the association of RARgamma and/or RXRalpha with a RARE was not sufficient for retinoic acid (RA)-mediated transcription of the corresponding target gene. However, the ability of RARgamma and/or RXRalpha to recruit pCIP (AIB1/ACTR/RAC-3/TRAM-1/SRC-3) and p300 to a RARE did correlate with RA-associated transcription of target mRNAs. Therefore, the specific functions of the RAR isotypes do not manifest at the level of their DNA binding but rather from a differential ability to recruit specific components of the transcriptional machinery. We also demonstrated that RA-mediated displacement of the polycomb group protein SUZ12 from a RARE was inhibited in the absence of RARgamma. Thus, transcriptional components of the RAR signaling pathway are specifically required for displacement of SUZ12 from RAREs during RA-mediated differentiation of F9 cells.
Collapse
Affiliation(s)
- Robert F Gillespie
- Molecular Biology Program, Weill Graduate School of Medical Sciences, Cornell University
| | - Lorraine J Gudas
- Molecular Biology Program, Weill Graduate School of Medical Sciences, Cornell University; Pharmacology Department, Weill Medical College of Cornell University, New York, New York 10021.
| |
Collapse
|
35
|
Alvarez S, Germain P, Alvarez R, Rodríguez-Barrios F, Gronemeyer H, de Lera AR. Structure, function and modulation of retinoic acid receptor beta, a tumor suppressor. Int J Biochem Cell Biol 2007; 39:1406-15. [PMID: 17433757 DOI: 10.1016/j.biocel.2007.02.010] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2006] [Revised: 02/05/2007] [Accepted: 02/10/2007] [Indexed: 02/01/2023]
Abstract
Only one of the three-retinoic acid receptors, RARbeta, is frequently deleted or epigenetically silenced at early stages in tumor progression and there is compelling evidence that RARbeta corresponds to a tumor suppressor. Recent discoveries may help to reveal the molecular basis of the tumor suppressive action of this retinoic acid receptor subtype and provide new tools for its analysis and, possibly, therapeutic exploitation. The first concerns the recent elucidation of the crystal structure of the ligand-binding domain of the agonist-bound receptor. The second is the discovery of selective agonists, including isoform selective ligands, which are important tools to facilitate the pharmacological analysis of the tumor suppressor function of this protein in vivo. Lastly, its involvement in a retinoic acid-induced tumor-specific apoptosis program mediated by tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). Herein we describe the structure, function and ligand-dependent transcription mechanism of retinoic acid receptor beta, and use rational drug design to understand the selectivity of these modulators.
Collapse
Affiliation(s)
- Susana Alvarez
- Departamento de Química Orgánica, Facultad de Química, Universidade de Vigo, 36310 Vigo, Spain
| | | | | | | | | | | |
Collapse
|
36
|
Marinelli A, Bossi D, Pelicci PG, Minucci S. A redundant oncogenic potential of the retinoic receptor (RAR) alpha, beta and gamma isoforms in acute promyelocytic leukemia. Leukemia 2007; 21:647-50. [PMID: 17252005 DOI: 10.1038/sj.leu.2404572] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2006] [Revised: 11/07/2006] [Accepted: 11/30/2006] [Indexed: 11/09/2022]
Abstract
Alterations of the retinoic acid receptor (RAR)alpha locus are found in 100% of acute promyelocytic leukemia patients, where chromosomal translocations generate the promyelocytic leukemia (PML)-RARalpha chimeric protein. Here, we have investigated the biological properties of the other RAR isoforms (RARbeta and RARgamma), through the generation and characterization of artificial PML-RAR'x' fusion proteins. Surprisingly, we found that all of the RAR isoforms share an identical oncogenic potential in vitro, thus implying that the selection of the RARalpha locus in leukemia patients must occur--rather than through functional differences among the various RAR isoforms-as the consequence of the nuclear architecture of the different RAR loci.
Collapse
Affiliation(s)
- A Marinelli
- Department of Biomolecular Sciences and Biotechnology, University of Milan, Milan, Italy
| | | | | | | |
Collapse
|
37
|
Germain P, Chambon P, Eichele G, Evans RM, Lazar MA, Leid M, De Lera AR, Lotan R, Mangelsdorf DJ, Gronemeyer H. International Union of Pharmacology. LX. Retinoic acid receptors. Pharmacol Rev 2006; 58:712-25. [PMID: 17132850 DOI: 10.1124/pr.58.4.4] [Citation(s) in RCA: 297] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Retinoid is a term for compounds that bind to and activate retinoic acid receptors (RARalpha, RARbeta, and RARgamma), members of the nuclear hormone receptor superfamily. The most important endogenous retinoid is all-trans-retinoic acid. Retinoids regulate a wide variety of essential biological processes, such as vertebrate embryonic morphogenesis and organogenesis, cell growth arrest, differentiation and apoptosis, and homeostasis, as well as their disorders. This review summarizes the considerable amount of knowledge generated on these receptors.
Collapse
Affiliation(s)
- Pierre Germain
- Centre National de la Recherche Scientifique/Institut National de la Santé et de la Recherche Médicale/Université Louis Pasteur, Illkirch, Communauté Urbaine de Strasbourg, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Malartre M, Short S, Sharpe C. Xenopus embryos lacking specific isoforms of the corepressor SMRT develop abnormal heads. Dev Biol 2006; 292:333-43. [PMID: 16500640 DOI: 10.1016/j.ydbio.2006.01.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2005] [Revised: 12/22/2005] [Accepted: 01/07/2006] [Indexed: 11/18/2022]
Abstract
The corepressor SMRT acts on a range of transcription factors, including the retinoid and thyroid hormone nuclear receptors. The carboxy-terminal region of SMRT contains CoRNR box motifs that mediate these interactions. We have shown, in Xenopus, that SMRT can exist as isoforms containing either two or three CoRNR boxes depending on the alternative splicing of exon 37b. The number of SMRT transcript isoforms expressed increases during development until all sixteen possible isoforms are identified in the swimming tadpole. To eliminate specific SMRT isoforms, we have developed a process that uses an antisense morpholino oligonucleotide in Xenopus to dictate the outcome of alternative splicing at a defined exon and used this to inhibit the formation of transcripts containing exon 37b. These embryos are therefore limited to the expression of SMRT isoforms that contain two rather than three CoRNR boxes. Analysis of responsive genes in these embryos shows that targets of thyroid hormone, but not retinoid signaling are affected by the elimination of exon 37b. Morpholino-injected embryos have swimming abnormalities and develop altered head morphology, an expanded olfactory epithelium and disorganized peripheral axons. These experiments indicate a critical role for the alternative splicing of SMRT in development.
Collapse
Affiliation(s)
- Marianne Malartre
- School of Biological Sciences, Institute of Biomedical and Biomolecular Sciences, University of Portsmouth, PO1 2DY, UK
| | | | | |
Collapse
|
39
|
Elhaji YA, Stoica I, Dennis S, Purisima EO, Lumbroso R, Beitel LK, Trifiro MA. Impaired helix 12 dynamics due to proline 892 substitutions in the androgen receptor are associated with complete androgen insensitivity. Hum Mol Genet 2006; 15:921-31. [PMID: 16449235 DOI: 10.1093/hmg/ddl009] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Structural studies of the ligand-binding domain (LBD) of several steroid receptors have revealed that the dynamic properties of the C-terminal helix 12 (H12) are the major determinant of the activation mode of these receptors. H12 exhibits high mobility and different conformations in the absence of ligand. Upon ligand binding, H12 is stabilized in a precise position to seal the ligand-binding pocket and finalize the assembly of the activation function (AF-2) domain. In this study, we investigated the role of the conserved proline 892 of the androgen receptor (AR) in directing the dynamic location and orientation of the AR-H12. We used a combined approach including kinetic and biochemical assays with molecular dynamic simulations to analyze two substitutions (P892A and P892L) identified in individuals with complete androgen insensitivity syndrome. Our analyses revealed distinct mechanisms by which these substitutions impair H12 function resulting in severely defective receptors. The AR-P892A receptor exhibited reduced ligand binding and transactivational potential because of an increased flexibility in H12. The AR-P892L substitution renders the receptor inactive due to a distorted, unstructured and misplaced H12. To confirm the mutants' inability to stabilize H12 in an active position, we have developed a novel in vivo assay to evaluate the accessibility of the H12-docking site on the AR-LBD surface. An extrinsic AR-H12 peptide was able to interact with wild-type and mutant LBDs in the absence of ligand. Ligand-induced proper positioning of the intrinsic H12 of wild-type AR prevented these interactions, whereas the misplacement of the mutants' H12 did not. Proline at this position may be critical for H12 dynamics not only in the AR, but also in other nuclear receptors where this proline is conserved.
Collapse
Affiliation(s)
- Youssef A Elhaji
- Lady Davis Institute for Medical Research, Sir Mortimer B. Davis Jewish General Hospital, McGill University, National Research Council of Canada, Montreal, Que., Canada.
| | | | | | | | | | | | | |
Collapse
|
40
|
Short S, Malartre M, Sharpe C. SMRT has tissue-specific isoform profiles that include a form containing one CoRNR box. Biochem Biophys Res Commun 2005; 334:845-52. [PMID: 16026760 DOI: 10.1016/j.bbrc.2005.06.175] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2005] [Accepted: 06/30/2005] [Indexed: 11/21/2022]
Abstract
SMRT acts as a corepressor for a range of transcription factors. The amino-terminal part of the protein includes domains that mainly mediate transcriptional repression whilst the carboxy-terminal part includes domains that interact with nuclear receptors using up to three motifs called CoRNR boxes. The region of the SMRT primary transcript encoding the interaction domains is subject to alternative splicing that varies the inclusion of the third CoRNR box. The profile in mice includes an abundant, novel SMRT isoform that possesses just one CoRNR box. Mouse tissues therefore express SMRT isoforms containing one, two or three CoRNR boxes. In frogs, the SMRT isoform profile is tissue-specific. The mouse also shows distinct profiles generated by differential expression levels of the SMRT transcript isoforms. The formation of multiple SMRT isoforms and their tissue-specific regulation indicates a mechanism, whereby cells can define the repertoire of transcription factors regulated by SMRT.
Collapse
Affiliation(s)
- Stephen Short
- University of Portsmouth, School of Biological Sciences and Institute of Biomolecular and Biomedical Sciences, King Henry Building, King Henry I St, Portsmouth PO1 2DY, UK
| | | | | |
Collapse
|
41
|
Lefebvre P, Martin PJ, Flajollet S, Dedieu S, Billaut X, Lefebvre B. Transcriptional activities of retinoic acid receptors. VITAMINS AND HORMONES 2005; 70:199-264. [PMID: 15727806 DOI: 10.1016/s0083-6729(05)70007-8] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Vitamin A derivatives plays a crucial role in embryonic development, as demonstrated by the teratogenic effect of either an excess or a deficiency in vitamin A. Retinoid effects extend however beyond embryonic development, and tissue homeostasis, lipid metabolism, cellular differentiation and proliferation are in part controlled through the retinoid signaling pathway. Retinoids are also therapeutically effective in the treatment of skin diseases (acne, psoriasis and photoaging) and of some cancers. Most of these effects are the consequences of retinoic acid receptors activation, which triggers transcriptional events leading either to transcriptional activation or repression of retinoid-controlled genes. Synthetic molecules are able to mimic part of the biological effects of the natural retinoic acid receptors, all-trans retinoic acid. Therefore, retinoic acid receptors are considered as highly valuable therapeutic targets and limiting unwanted secondary effects due to retinoid treatment requires a molecular knowledge of retinoic acid receptors biology. In this review, we will examine experimental evidence which provide a molecular basis for the pleiotropic effects of retinoids, and emphasize the crucial roles of coregulators of retinoic acid receptors, providing a conceptual framework to identify novel therapeutic targets.
Collapse
Affiliation(s)
- Philippe Lefebvre
- INSERM U459 and Ligue Nationale Contre le Cancer, Faculté de Médecine de Lille, 59045 Lille cedex, France
| | | | | | | | | | | |
Collapse
|
42
|
Abstract
Nuclear receptors modulate transcription through ligand-mediated recruitment of transcriptional coregulator proteins. The structural connection between ligand and coregulator is mediated by a molecular switch, made up of the most carboxy-terminal helix in the ligand-binding domain, helix 12. The dynamics of this switch are thought to underlie ligand specificity of nuclear receptor signaling, but the details of this control mechanism have remained elusive. This review highlights recent structural work on how the ligand controls this molecular switch and the modulation of this signaling pathway by receptor subtype and dimer partner.
Collapse
Affiliation(s)
- Kendall W Nettles
- The University of Chicago, The Ben May Institute for Cancer Research, Chicago, Illinois 60637, USA.
| | | |
Collapse
|
43
|
Goodson ML, Jonas BA, Privalsky ML. Alternative mRNA splicing of SMRT creates functional diversity by generating corepressor isoforms with different affinities for different nuclear receptors. J Biol Chem 2005; 280:7493-503. [PMID: 15632172 PMCID: PMC2720035 DOI: 10.1074/jbc.m411514200] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Many eukaryotic transcription factors are bimodal in their regulatory properties and can both repress and activate expression of their target genes. These divergent transcriptional properties are conferred through recruitment of auxiliary proteins, denoted coactivators and corepressors. Repression plays a particularly critical role in the functions of the nuclear receptors, a large family of ligand-regulated transcription factors involved in metazoan development, differentiation, reproduction, and homeostasis. The SMRT corepressor interacts directly with nuclear receptors and serves, in turn, as a platform for the assembly of a larger corepressor complex. We report here that SMRT is expressed in cells by alternative mRNA splicing to yield two distinct variants or isoforms. We designate these isoforms SMRTalpha and SMRTtau and demonstrate that these isoforms have significantly different affinities for different nuclear receptors. These isoforms are evolutionarily conserved and are expressed in a tissue-specific manner. Our results suggest that differential mRNA splicing serves to customize corepressor function in different cells, allowing the transcriptional properties of nuclear receptors to be adapted to different contexts.
Collapse
MESH Headings
- Alternative Splicing
- Animals
- Blotting, Western
- Cell Line
- Cell Line, Tumor
- DNA/chemistry
- DNA/metabolism
- DNA, Complementary/metabolism
- DNA-Binding Proteins/biosynthesis
- DNA-Binding Proteins/genetics
- Databases as Topic
- Dimerization
- Dose-Response Relationship, Drug
- Expressed Sequence Tags
- Genes, Dominant
- Humans
- Mice
- Mice, Inbred C57BL
- Muramidase/chemistry
- Nuclear Receptor Co-Repressor 2
- Open Reading Frames
- Plasmids/metabolism
- Protein Binding
- Protein Isoforms
- Protein Structure, Tertiary
- RNA, Messenger/metabolism
- Repressor Proteins/biosynthesis
- Repressor Proteins/genetics
- Reverse Transcriptase Polymerase Chain Reaction
- Sequence Analysis, DNA
- Software
- Tissue Distribution
- Transcription, Genetic
Collapse
Affiliation(s)
| | | | - Martin L. Privalsky
- To whom correspondence should be addressed: Section of Microbiology, Div. of Biological Sciences, One Shields Ave., University of California, Davis, CA 95616. Tel.: 530-752-3013; Fax: 530-752-9014; E-mail:
| |
Collapse
|
44
|
Farboud B, Privalsky ML. Retinoic acid receptor-alpha is stabilized in a repressive state by its C-terminal, isotype-specific F domain. Mol Endocrinol 2004; 18:2839-53. [PMID: 15331758 DOI: 10.1210/me.2004-0236] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Retinoic acid receptors (RARs) are hormone-regulated transcription factors that play multiple roles in vertebrate development and differentiation. Three isotypes of RARs, alpha, beta, and gamma, are encoded by distinct genetic loci and possess distinct transcriptional properties. Typically, RARalpha represses target gene transcription in the absence of hormone, whereas RARbeta and gamma fail to repress under these conditions. This inability of RARbeta and RARgamma to repress transcription is due to intramolecular interactions between helix 3 and helix 12 of the hormone binding domains of these isotypes that inhibit corepressor binding while favoring coactivator binding. We report here that the converse ability of RARalpha to repress requires the integrity of the receptor F domain, a domain that maps C-terminal to helix 12, varies in sequence among different nuclear receptors, and is of poorly understood function. The F domain appears to help stabilize helix 12 of RARalpha in a more open position that enhances corepressor binding and inhibits coactivator binding in the absence of hormone. Intriguingly, the RARalpha F domain is isotype autonomous in its function. We speculate that the RARalpha F domain may dock elsewhere on the receptor surface, and this intramolecular interaction may maintain RARalpha helix 12 in an open, repression-competent conformation.
Collapse
Affiliation(s)
- Behnom Farboud
- Section of Microbiology, Division of Biological Sciences, One Shields Avenue, University of California at Davis, Davis, California 95616, USA
| | | |
Collapse
|
45
|
Jonas BA, Privalsky ML. SMRT and N-CoR corepressors are regulated by distinct kinase signaling pathways. J Biol Chem 2004; 279:54676-86. [PMID: 15491994 PMCID: PMC2653424 DOI: 10.1074/jbc.m410128200] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
N-CoR and SMRT are corepressor paralogs that partner with and mediate transcriptional repression by a wide variety of metazoan transcription factors, including nuclear hormone receptors. Although encoded by distinct genetic loci, N-CoR and SMRT share substantial sequence interrelatedness, form analogous assemblies with histone deacetylases and auxiliary factors, can interact with overlapping sets of transcription factor partners, and exert overlapping functions in cells. SMRT is subject to negative regulation by MAPK signaling pathways operating downstream of growth factor and stress signaling pathways. We report here that whereas activation of MEKK1 leads to phosphorylation of SMRT, its dissociation from its transcription factor partners in vivo and in vitro, and its redistribution from the cell nucleus to a cytoplasmic compartment, N-CoR is refractory to all these forms of regulation. In contrast to this MAPK cascade, other signal transduction pathways operating downstream of growth factor/cytokine receptors appear able to affect both corepressor paralogs. Our results indicate that SMRT and N-CoR are embedded in distinct regulatory networks and that the two corepressors interpret growth factor, cytokine, differentiation, and prosurvival signals differently.
Collapse
Affiliation(s)
| | - Martin L. Privalsky
- To whom correspondence should be addressed: Section of Microbiology, University of California, One Shields Ave., Davis, CA 95616. Tel.: 530−752−3013; Fax: 530−752−9014; E-mail:
| |
Collapse
|
46
|
Affiliation(s)
- Eytan R Barnea
- UMDNJ/RWJMS, Society for the Investigation of Early Pregnancy, Camden, NJ, USA.
| |
Collapse
|
47
|
Abstract
Nuclear receptors (also known as nuclear hormone receptors) are hormone-regulated transcription factors that control many important physiological and developmental processes in animals and humans. Defects in receptor function result in disease. The diverse biological roles of these receptors reflect their surprisingly versatile transcriptional properties, with many receptors possessing the ability to both repress and activate target gene expression. These bipolar transcriptional properties are mediated through the interactions of the receptors with two distinct classes of auxiliary proteins: corepressors and coactivators. This review focuses on how corepressors work together with nuclear receptors to repress gene transcription in the normal organism and on the aberrations in this process that lead to neoplasia and endocrine disorders. The actions of coactivators and the contributions of the same corepressors to the functions of nonreceptor transcription factors are also touched on.
Collapse
Affiliation(s)
- Martin L Privalsky
- Section of Microbiology, Division of Biological Sciences, University of California, Davis, California 95616, USA.
| |
Collapse
|
48
|
Abrams KL, Xu J, Nativelle-Serpentini C, Dabirshahsahebi S, Rogers MB. An evolutionary and molecular analysis of Bmp2 expression. J Biol Chem 2004; 279:15916-28. [PMID: 14757762 DOI: 10.1074/jbc.m313531200] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The coding regions of many metazoan genes are highly similar. For example, homologs to the key developmental factor bone morphogenetic protein (BMP) 2 have been cloned by sequence identity from arthropods, mollusks, cnidarians, and nematodes. Wide conservation of protein sequences suggests that differential gene expression explains many of the vast morphological differences between species. To test the hypothesis that the regulatory mechanisms controlling this evolutionarily ancient and critical gene are conserved, we compared sequences flanking Bmp2 genes of several species. We identified numerous conserved noncoding sequences including some retained because the fish lineage separated 450 million years ago. We tested the function of some of these sequences in the F9 cell model system of Bmp2 expression. We demonstrated that both mouse and primate Bmp2 promoters drive a reporter gene in an expression pattern resembling that of the endogenous transcript in F9 cells. A conserved Sp1 site contributes to the retinoic acid responsiveness of the Bmp2 promoter, which lacks a classical retinoic acid response element. We have also discovered a sequence downstream of the stop codon whose conservation between humans, rodents, deer, chickens, frogs, and fish is striking. A fragment containing this region influences reporter gene expression in F9 cells. The conserved region contains elements that may mediate the half-life of the Bmp2 transcript. Together, our molecular and evolutionary analysis has identified new regulatory elements controlling Bmp2 expression.
Collapse
Affiliation(s)
- Kevin L Abrams
- Department of Biology, University of South Florida, Tampa, Florida 33620, USA
| | | | | | | | | |
Collapse
|
49
|
Abstract
Three new publications reveal that the nuclear receptors LRH-1, DHR38, and Nurr1 can assume active conformations in the absence of a ligand agonist. These reports help elucidate how transcriptional regulators are themselves regulated.
Collapse
Affiliation(s)
- Martin L Privalsky
- Section of Microbiology, Division of Biological Sciences, University of California at Davis, Davis, CA 95616, USA
| |
Collapse
|