1
|
Xu X, Brasier AR. SMARCA4 regulates inducible BRD4 genomic redistribution coupling intrinsic immunity and plasticity in epithelial injury-repair. Nucleic Acids Res 2025; 53:gkaf211. [PMID: 40131774 PMCID: PMC11934928 DOI: 10.1093/nar/gkaf211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 02/25/2025] [Accepted: 03/06/2025] [Indexed: 03/27/2025] Open
Abstract
Coordinated expression of differentiation and innate pathways is essential for successful mucosal injury-repair. Previously, we discovered that the core SWI/SNF complex ATPase, SWI/SNF-related, matrix associated, actin dependent regulator of chromatin, subfamily A, member 4 (SMARCA4)/Brg1, maintains tumor protein 63 + basal progenitor cells in an epithelial-committed state. In response to viral injury, SMARCA4 complexes BRD4 to activate innate inflammation and promote mesenchymal transition/plasticity. To investigate how innate inflammation couples with plasticity, Cleavage Under Targets and Release Using Nuclease of BRD4 binding was applied to wild type and SMARCA4 knockdown (KD) in mock- or respiratory syncytial virus (RSV)-infected basal cells. In mock-infected cells, BRD4 binds 4017 high-confidence peaks within gene bodies controlling mesenchymal transition pathways. By contrast, RSV replication repositions 2339 BRD4 peaks to open chromatin regions upstream of the genes controlling inducible cytokine, cell adherence, and antiviral programs. Also, we note RSV redistributes BRD4 into super enhancers regulating immune response-associated long noncoding (lnc)RNAs. In SMARCA4 KD cells, BRD4 distribution is reduced on 739 peaks after RSV infection. The boundaries of nucleosome-free regions are reduced by SMARCA4 KD, suggesting its role in maintaining open chromatin of super enhancers. Specifically, SMARCA4-BRD4 enhancer controls lncRNAs important in interferon response factor 1 autoregulation. These data indicate how SWI/SNF ATPases couple BRD4 to lncRNA expression controlling cell state and intrinsic immunity in epithelial injury-repair.
Collapse
Affiliation(s)
- Xiaofang Xu
- Department of Medicine, University of Wisconsin–Madison School of Medicine and Public Health (SMPH), Madison, WI 53705, United States
| | - Allan R Brasier
- Department of Medicine, University of Wisconsin–Madison School of Medicine and Public Health (SMPH), Madison, WI 53705, United States
- Institute for Clinical and Translational Research, University of Wisconsin–Madison, Madison, WI 53705, United States
| |
Collapse
|
2
|
Doughty BR, Hinks MM, Schaepe JM, Marinov GK, Thurm AR, Rios-Martinez C, Parks BE, Tan Y, Marklund E, Dubocanin D, Bintu L, Greenleaf WJ. Single-molecule states link transcription factor binding to gene expression. Nature 2024; 636:745-754. [PMID: 39567683 DOI: 10.1038/s41586-024-08219-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 10/15/2024] [Indexed: 11/22/2024]
Abstract
The binding of multiple transcription factors (TFs) to genomic enhancers drives gene expression in mammalian cells1. However, the molecular details that link enhancer sequence to TF binding, promoter state and transcription levels remain unclear. Here we applied single-molecule footprinting2,3 to measure the simultaneous occupancy of TFs, nucleosomes and other regulatory proteins on engineered enhancer-promoter constructs with variable numbers of TF binding sites for both a synthetic TF and an endogenous TF involved in the type I interferon response. Although TF binding events on nucleosome-free DNA are independent, activation domains recruit cofactors that destabilize nucleosomes, driving observed TF binding cooperativity. Average TF occupancy linearly determines promoter activity, and we decompose TF strength into separable binding and activation terms. Finally, we develop thermodynamic and kinetic models that quantitatively predict both the enhancer binding microstates and gene expression dynamics. This work provides a template for the quantitative dissection of distinct contributors to gene expression, including TF activation domains, concentration, binding affinity, binding site configuration and recruitment of chromatin regulators.
Collapse
Affiliation(s)
| | - Michaela M Hinks
- Bioengineering Department, Stanford University, Stanford, CA, USA
| | - Julia M Schaepe
- Bioengineering Department, Stanford University, Stanford, CA, USA
| | | | - Abby R Thurm
- Biophysics Program, Stanford University, Stanford, CA, USA
| | | | - Benjamin E Parks
- Computer Science Department, Stanford University, Stanford, CA, USA
| | - Yingxuan Tan
- Computer Science Department, Stanford University, Stanford, CA, USA
| | - Emil Marklund
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | | | | | - William J Greenleaf
- Genetics Department, Stanford University, Stanford, CA, USA.
- Department of Applied Physics, Stanford University, Stanford, CA, USA.
| |
Collapse
|
3
|
Babadei O, Strobl B, Müller M, Decker T. Transcriptional control of interferon-stimulated genes. J Biol Chem 2024; 300:107771. [PMID: 39276937 PMCID: PMC11489399 DOI: 10.1016/j.jbc.2024.107771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 08/27/2024] [Accepted: 08/29/2024] [Indexed: 09/17/2024] Open
Abstract
Interferon-induced genes are among the best-studied groups of coregulated genes. Nevertheless, intense research into their regulation, supported by new technologies, is continuing to provide insights into their many layers of transcriptional regulation and to reveal how cellular transcriptomes change with pathogen-induced innate and adaptive immunity. This article gives an overview of recent findings on interferon-induced gene regulation, paying attention to contributions beyond the canonical JAK-STAT pathways.
Collapse
Affiliation(s)
- Olga Babadei
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria; University of Vienna, Center for Molecular Biology, Department of Microbiology, Immunobiology and Genetics, Vienna, Austria
| | - Birgit Strobl
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Mathias Müller
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Thomas Decker
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria; University of Vienna, Center for Molecular Biology, Department of Microbiology, Immunobiology and Genetics, Vienna, Austria.
| |
Collapse
|
4
|
Doughty BR, Hinks MM, Schaepe JM, Marinov GK, Thurm AR, Rios-Martinez C, Parks BE, Tan Y, Marklund E, Dubocanin D, Bintu L, Greenleaf WJ. Single-molecule chromatin configurations link transcription factor binding to expression in human cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.02.578660. [PMID: 38352517 PMCID: PMC10862896 DOI: 10.1101/2024.02.02.578660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
The binding of multiple transcription factors (TFs) to genomic enhancers activates gene expression in mammalian cells. However, the molecular details that link enhancer sequence to TF binding, promoter state, and gene expression levels remain opaque. We applied single-molecule footprinting (SMF) to measure the simultaneous occupancy of TFs, nucleosomes, and components of the transcription machinery on engineered enhancer/promoter constructs with variable numbers of TF binding sites for both a synthetic and an endogenous TF. We find that activation domains enhance a TF's capacity to compete with nucleosomes for binding to DNA in a BAF-dependent manner, TF binding on nucleosome-free DNA is consistent with independent binding between TFs, and average TF occupancy linearly contributes to promoter activation rates. We also decompose TF strength into separable binding and activation terms, which can be tuned and perturbed independently. Finally, we develop thermodynamic and kinetic models that quantitatively predict both the binding microstates observed at the enhancer and subsequent time-dependent gene expression. This work provides a template for quantitative dissection of distinct contributors to gene activation, including the activity of chromatin remodelers, TF activation domains, chromatin acetylation, TF concentration, TF binding affinity, and TF binding site configuration.
Collapse
Affiliation(s)
| | - Michaela M Hinks
- Bioengineering Department, Stanford University, Stanford, CA 94305, USA
| | - Julia M Schaepe
- Bioengineering Department, Stanford University, Stanford, CA 94305, USA
| | - Georgi K Marinov
- Genetics Department, Stanford University, Stanford, CA 94305, USA
| | - Abby R Thurm
- Biophysics Graduate Program, Stanford University, Stanford, CA 94305, USA
| | | | - Benjamin E Parks
- Computer Science Department, Stanford University, Stanford, CA 94305, USA
| | - Yingxuan Tan
- Computer Science Department, Stanford University, Stanford, CA 94305, USA
| | - Emil Marklund
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Danilo Dubocanin
- Genetics Department, Stanford University, Stanford, CA 94305, USA
| | - Lacramioara Bintu
- Bioengineering Department, Stanford University, Stanford, CA 94305, USA
| | - William J Greenleaf
- Genetics Department, Stanford University, Stanford, CA 94305, USA
- Department of Applied Physics, Stanford University, Stanford, CA 94205, USA
| |
Collapse
|
5
|
Chen Q, Li L, Guo S, Liu Z, Liu L, Tan C, Chen H, Wang X. African swine fever virus pA104R protein acts as a suppressor of type I interferon signaling. Front Microbiol 2023; 14:1169699. [PMID: 37089552 PMCID: PMC10119599 DOI: 10.3389/fmicb.2023.1169699] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 03/20/2023] [Indexed: 04/25/2023] Open
Abstract
This study evaluates the role of the late viral protein, pA104R, in African swine fever virus immunosuppression. ASFV-encoded pA104R is a putative histone-like protein that is highly conserved throughout different virulent and non-virulent isolates. Previous studies have demonstrated that pA104R plays a vital role in the ASFV replication cycle and is a potential target for antiviral therapy. Here, we demonstrated that pA104R is a potent antagonist of type I interferon signaling. IFN-stimulated response element activity and subsequent transcription of co-transfected and endogenous interferon-stimulated genes were attenuated by pA104R treatment in HEK-293 T cells. Immunoprecipitation assay and reciprocal pull-down showed that pA104R does not interact directly with STAT1, STAT2, or IRF9. However, pA104R could inhibit IFN signaling by attenuating STAT1 phosphorylation, and we identified the critical amino acid residues (R/H69,72 and K/R92,94,97) involved through the targeted mutation functional assays. Although pA104R is a histone-like protein localized to the nucleus, it did not inhibit IFN signaling through its DNA-binding capacity. In addition, activation of the ISRE promoter by IRF9-Stat2(TA), a STAT1-independent pathway, was inhibited by pA104R. Further results revealed that both the transcriptional activation and recruitment of transcriptional stimulators by interferon-stimulated gene factor 3 were not impaired. Although we failed to determine a mechanism for pA104R-mediated IFN signaling inhibition other than attenuating the phosphorylation of STAT1, these results might imply a possible involvement of epigenetic modification by ASFV pA104R. Taken together, these findings support that pA104R is an antagonist of type I interferon signaling, which may interfere with multiple signaling pathways.
Collapse
Affiliation(s)
- Qichao Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Liang Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Shibang Guo
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Zhankui Liu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Lixinjie Liu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Chen Tan
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
- Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs, Wuhan, China
- International Research Center for Animal Disease, Ministry of Science and Technology of the People’s Republic of China, Wuhan, China
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
- Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs, Wuhan, China
- International Research Center for Animal Disease, Ministry of Science and Technology of the People’s Republic of China, Wuhan, China
| | - Xiangru Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
- Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs, Wuhan, China
- International Research Center for Animal Disease, Ministry of Science and Technology of the People’s Republic of China, Wuhan, China
- *Correspondence: Xiangru Wang,
| |
Collapse
|
6
|
The JAK-STAT pathway at 30: Much learned, much more to do. Cell 2022; 185:3857-3876. [PMID: 36240739 PMCID: PMC9815833 DOI: 10.1016/j.cell.2022.09.023] [Citation(s) in RCA: 349] [Impact Index Per Article: 116.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/01/2022] [Accepted: 09/14/2022] [Indexed: 11/24/2022]
Abstract
The discovery of the Janus kinase (JAK)-signal transducer and activator of transcription (STAT) pathway arose from investigations of how cells respond to interferons (IFNs), revealing a paradigm in cell signaling conserved from slime molds to mammals. These discoveries revealed mechanisms underlying rapid gene expression mediated by a wide variety of extracellular polypeptides including cytokines, interleukins, and related factors. This knowledge has provided numerous insights into human disease, from immune deficiencies to cancer, and was rapidly translated to new drugs for autoimmune, allergic, and infectious diseases, including COVID-19. Despite these advances, major challenges and opportunities remain.
Collapse
|
7
|
Ball CB, Parida M, Li M, Spector BM, Suarez GA, Meier JL, Price DH. Human Cytomegalovirus Infection Elicits Global Changes in Host Transcription by RNA Polymerases I, II, and III. Viruses 2022; 14:v14040779. [PMID: 35458509 PMCID: PMC9026722 DOI: 10.3390/v14040779] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 12/29/2022] Open
Abstract
How human cytomegalovirus (HCMV) infection impacts the transcription of the host genome remains incompletely understood. Here, we examine the global consequences of infection of primary human foreskin fibroblasts (HFFs) on transcription by RNA polymerase I, II, and III over the course of a lytic infection using PRO-Seq. The expected rapid induction of innate immune response genes is observed with specific subsets of genes exhibiting dissimilar expression kinetics. We find minimal effects on Pol II initiation, but increased rates of the release of paused Pol II into productive elongation are detected by 24 h postinfection and pronounced at late times postinfection. Pol I transcription increases during infection and we provide evidence for a potential Pol I elongation control mechanism. Pol III transcription of tRNA genes is dramatically altered, with many induced and some repressed. All effects are partially dependent on viral genome replication, suggesting a link to viral mRNA levels and/or a viral early–late or late gene product. Changes in tRNA transcription are connected to distinct alterations in the chromatin state around tRNA genes, which were probed with high-resolution DFF-ChIP. Additionally, evidence is provided that the Pol III PIC stably contacts an upstream −1 nucleosome. Finally, we compared and contrasted our HCMV data with results from published experiments with HSV-1, EBV, KSHV, and MHV68. We report disparate effects on Pol II transcription and potentially similar effects on Pol III transcription.
Collapse
Affiliation(s)
- Christopher B. Ball
- Department of Biochemistry and Molecular Biology, University of Iowa, Iowa City, IA 52242, USA; (C.B.B.); (M.P.); (B.M.S.); (G.A.S.)
| | - Mrutyunjaya Parida
- Department of Biochemistry and Molecular Biology, University of Iowa, Iowa City, IA 52242, USA; (C.B.B.); (M.P.); (B.M.S.); (G.A.S.)
| | - Ming Li
- Departments of Internal Medicine and Epidemiology, University of Iowa and Iowa City Veterans Affairs Health Care System, Iowa City, IA 52242, USA; (M.L.); (J.L.M.)
| | - Benjamin M. Spector
- Department of Biochemistry and Molecular Biology, University of Iowa, Iowa City, IA 52242, USA; (C.B.B.); (M.P.); (B.M.S.); (G.A.S.)
| | - Gustavo A. Suarez
- Department of Biochemistry and Molecular Biology, University of Iowa, Iowa City, IA 52242, USA; (C.B.B.); (M.P.); (B.M.S.); (G.A.S.)
| | - Jeffery L. Meier
- Departments of Internal Medicine and Epidemiology, University of Iowa and Iowa City Veterans Affairs Health Care System, Iowa City, IA 52242, USA; (M.L.); (J.L.M.)
| | - David H. Price
- Department of Biochemistry and Molecular Biology, University of Iowa, Iowa City, IA 52242, USA; (C.B.B.); (M.P.); (B.M.S.); (G.A.S.)
- Correspondence:
| |
Collapse
|
8
|
Xu X, Mann M, Qiao D, Li Y, Zhou J, Brasier AR. Bromodomain Containing Protein 4 (BRD4) Regulates Expression of its Interacting Coactivators in the Innate Response to Respiratory Syncytial Virus. Front Mol Biosci 2021; 8:728661. [PMID: 34765643 PMCID: PMC8577543 DOI: 10.3389/fmolb.2021.728661] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 09/24/2021] [Indexed: 12/12/2022] Open
Abstract
Bromodomain-containing protein 4 plays a central role in coordinating the complex epigenetic component of the innate immune response. Previous studies implicated BRD4 as a component of a chromatin-modifying complex that is dynamically recruited to a network of protective cytokines by binding activated transcription factors, polymerases, and histones to trigger their rapid expression via transcriptional elongation. Our previous study extended our understanding of the airway epithelial BRD4 interactome by identifying over 100 functionally important coactivators and transcription factors, whose association is induced by respiratory syncytial virus (RSV) infection. RSV is an etiological agent of recurrent respiratory tract infections associated with exacerbations of chronic obstructive pulmonary disease. Using a highly selective small-molecule BRD4 inhibitor (ZL0454) developed by us, we extend these findings to identify the gene regulatory network dependent on BRD4 bromodomain (BD) interactions. Human small airway epithelial cells were infected in the absence or presence of ZL0454, and gene expression profiling was performed. A highly reproducible dataset was obtained which indicated that BRD4 mediates both activation and repression of RSV-inducible gene regulatory networks controlling cytokine expression, interferon (IFN) production, and extracellular matrix remodeling. Index genes of functionally significant clusters were validated independently. We discover that BRD4 regulates the expression of its own gene during the innate immune response. Interestingly, BRD4 activates the expression of NFκB/RelA, a coactivator that binds to BRD4 in a BD-dependent manner. We extend this finding to show that BRD4 also regulates other components of its functional interactome, including the Mediator (Med) coactivator complex and the SWI/SNF-related, matrix-associated, actin-dependent regulator of chromatin (SMARC) subunits. To provide further insight into mechanisms for BRD4 in RSV expression, we mapped 7,845 RSV-inducible Tn5 transposase peaks onto the BRD4-dependent gene bodies. These were located in promoters and introns of cytostructural and extracellular matrix (ECM) formation genes. These data indicate that BRD4 mediates the dynamic response of airway epithelial cells to RNA infection by modulating the expression of its coactivators, controlling the expression of host defense mechanisms and remodeling genes through changes in promoter accessibility.
Collapse
Affiliation(s)
- Xiaofang Xu
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health (SMPH), Madison, WI, United States
| | - Morgan Mann
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health (SMPH), Madison, WI, United States
| | - Dianhua Qiao
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health (SMPH), Madison, WI, United States
| | - Yi Li
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, United States
| | - Jia Zhou
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, United States
| | - Allan R Brasier
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health (SMPH), Madison, WI, United States.,Institute for Clinical and Translational Research (ICTR), University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
9
|
Börold J, Eletto D, Busnadiego I, Mair NK, Moritz E, Schiefer S, Schmidt N, Petric PP, Wong WWL, Schwemmle M, Hale BG. BRD9 is a druggable component of interferon-stimulated gene expression and antiviral activity. EMBO Rep 2021; 22:e52823. [PMID: 34397140 PMCID: PMC8490982 DOI: 10.15252/embr.202152823] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 07/23/2021] [Accepted: 07/27/2021] [Indexed: 12/13/2022] Open
Abstract
Interferon (IFN) induction of IFN-stimulated genes (ISGs) creates a formidable protective antiviral state. However, loss of appropriate control mechanisms can result in constitutive pathogenic ISG upregulation. Here, we used genome-scale loss-of-function screening to establish genes critical for IFN-induced transcription, identifying all expected members of the JAK-STAT signaling pathway and a previously unappreciated epigenetic reader, bromodomain-containing protein 9 (BRD9), the defining subunit of non-canonical BAF (ncBAF) chromatin-remodeling complexes. Genetic knockout or small-molecule-mediated degradation of BRD9 limits IFN-induced expression of a subset of ISGs in multiple cell types and prevents IFN from exerting full antiviral activity against several RNA and DNA viruses, including influenza virus, human immunodeficiency virus (HIV1), and herpes simplex virus (HSV1). Mechanistically, BRD9 acts at the level of transcription, and its IFN-triggered proximal association with the ISG transcriptional activator, STAT2, suggests a functional localization at selected ISG promoters. Furthermore, BRD9 relies on its intact acetyl-binding bromodomain and unique ncBAF scaffolding interaction with GLTSCR1/1L to promote IFN action. Given its druggability, BRD9 is an attractive target for dampening ISG expression under certain autoinflammatory conditions.
Collapse
Affiliation(s)
- Jacob Börold
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland.,Life Science Zurich Graduate School, ETH and University of Zurich, Zurich, Switzerland
| | - Davide Eletto
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Idoia Busnadiego
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Nina K Mair
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland.,Life Science Zurich Graduate School, ETH and University of Zurich, Zurich, Switzerland
| | - Eva Moritz
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Samira Schiefer
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland.,Life Science Zurich Graduate School, ETH and University of Zurich, Zurich, Switzerland
| | - Nora Schmidt
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Philipp P Petric
- Faculty of Medicine, Institute of Virology, Freiburg University Medical Center, University of Freiburg, Freiburg, Germany.,Spemann Graduate School of Biology and Medicine, University of Freiburg, Freiburg, Germany
| | - W Wei-Lynn Wong
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Martin Schwemmle
- Faculty of Medicine, Institute of Virology, Freiburg University Medical Center, University of Freiburg, Freiburg, Germany
| | - Benjamin G Hale
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
10
|
Pardal AJ, Piquerez SJM, Dominguez-Ferreras A, Frungillo L, Mastorakis E, Reilly E, Latrasse D, Concia L, Gimenez-Ibanez S, Spoel SH, Benhamed M, Ntoukakis V. Immunity onset alters plant chromatin and utilizes EDA16 to regulate oxidative homeostasis. PLoS Pathog 2021; 17:e1009572. [PMID: 34015058 PMCID: PMC8171942 DOI: 10.1371/journal.ppat.1009572] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 06/02/2021] [Accepted: 04/19/2021] [Indexed: 01/23/2023] Open
Abstract
Perception of microbes by plants leads to dynamic reprogramming of the transcriptome, which is essential for plant health. The appropriate amplitude of this transcriptional response can be regulated at multiple levels, including chromatin. However, the mechanisms underlying the interplay between chromatin remodeling and transcription dynamics upon activation of plant immunity remain poorly understood. Here, we present evidence that activation of plant immunity by bacteria leads to nucleosome repositioning, which correlates with altered transcription. Nucleosome remodeling follows distinct patterns of nucleosome repositioning at different loci. Using a reverse genetic screen, we identify multiple chromatin remodeling ATPases with previously undescribed roles in immunity, including EMBRYO SAC DEVELOPMENT ARREST 16, EDA16. Functional characterization of the immune-inducible chromatin remodeling ATPase EDA16 revealed a mechanism to negatively regulate immunity activation and limit changes in redox homeostasis. Our transcriptomic data combined with MNase-seq data for EDA16 functional knock-out and over-expressor mutants show that EDA16 selectively regulates a defined subset of genes involved in redox signaling through nucleosome repositioning. Thus, collectively, chromatin remodeling ATPases fine-tune immune responses and provide a previously uncharacterized mechanism of immune regulation.
Collapse
Affiliation(s)
- Alonso J. Pardal
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Sophie J. M. Piquerez
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRAE, Université de Paris, Orsay, France
| | | | - Lucas Frungillo
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | | | - Emma Reilly
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - David Latrasse
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRAE, Université de Paris, Orsay, France
| | - Lorenzo Concia
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRAE, Université de Paris, Orsay, France
| | - Selena Gimenez-Ibanez
- Plant Molecular Genetics Department, Centro Nacional de Biotecnología-CSIC (CNB-CSIC), Madrid, Spain
| | - Steven H. Spoel
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Moussa Benhamed
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRAE, Université de Paris, Orsay, France
| | - Vardis Ntoukakis
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| |
Collapse
|
11
|
Xu X, Qiao D, Dong C, Mann M, Garofalo RP, Keles S, Brasier AR. The SWI/SNF-Related, Matrix Associated, Actin-Dependent Regulator of Chromatin A4 Core Complex Represses Respiratory Syncytial Virus-Induced Syncytia Formation and Subepithelial Myofibroblast Transition. Front Immunol 2021; 12:633654. [PMID: 33732255 PMCID: PMC7957062 DOI: 10.3389/fimmu.2021.633654] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 01/18/2021] [Indexed: 12/15/2022] Open
Abstract
Epigenetics plays an important role in the priming the dynamic response of airway epithelial cells to infectious and environmental stressors. Here, we examine the epigenetic role of the SWI/SNF Related, Matrix Associated, Actin Dependent Regulator of Chromatin A4 (SMARCA4) in the epithelial response to RSV infection. Depletion of SMARCA4 destabilized the abundance of the SMARCE1/ARID1A SWI/SNF subunits, disrupting the innate response and triggering a hybrid epithelial/mesenchymal (E/M) state. Assaying SMARCA4 complex-regulated open chromatin domains by transposase cleavage -next generation sequencing (ATAC-Seq), we observed that the majority of cleavage sites in uninfected cells have reduced chromatin accessibility. Paradoxically, SMARCA4 complex-depleted cells showed enhanced RSV-inducible chromatin opening and gene expression in the EMT pathway genes, MMP9, SNAI1/2, VIM, and CDH2. Focusing on the key MMP9, we observed that SMARCA4 complex depletion reduced basal BRD4 and RNA Polymerase II binding, but enhanced BRD4/Pol II binding in response to RSV infection. In addition, we observed that MMP9 secretion in SMARCA4 complex deficient cells contributes to mesenchymal transition, cellular fusion (syncytia) and subepithelial myofibroblast transition. We conclude the SMARCA4 complex is a transcriptional repressor of epithelial plasticity, whose depletion triggers a hybrid E/M state that affects the dynamic response of the small airway epithelial cell in mucosal remodeling via paracrine MMP9 activity.
Collapse
Affiliation(s)
- Xiaofang Xu
- Department of Internal Medicine, University of Wisconsin-Madison School of Medicine and Public Health (SMPH), Madison, WI, United States
| | - Dianhua Qiao
- Department of Internal Medicine, University of Wisconsin-Madison School of Medicine and Public Health (SMPH), Madison, WI, United States
| | - Chenyang Dong
- Department of Statistics, University of Wisconsin-Madison, Madison, WI, United States
| | - Morgan Mann
- Department of Internal Medicine, University of Wisconsin-Madison School of Medicine and Public Health (SMPH), Madison, WI, United States
| | - Roberto P. Garofalo
- Department of Pediatrics, University of Texas Medical Branch, Galveston, TX, United States
| | - Sunduz Keles
- Department of Statistics, University of Wisconsin-Madison, Madison, WI, United States
- Department of Biostatistics & Medical Informatics, University of Wisconsin-Madison, Madison, WI, United States
| | - Allan R. Brasier
- Department of Internal Medicine, University of Wisconsin-Madison School of Medicine and Public Health (SMPH), Madison, WI, United States
- Institute for Clinical and Translational Research (ICTR), University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
12
|
Zhang Y, Sun Z, Jia J, Du T, Zhang N, Tang Y, Fang Y, Fang D. Overview of Histone Modification. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1283:1-16. [PMID: 33155134 DOI: 10.1007/978-981-15-8104-5_1] [Citation(s) in RCA: 253] [Impact Index Per Article: 63.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Epigenetics is the epi-information beyond the DNA sequence that can be inherited from parents to offspring. From years of studies, people have found that histone modifications, DNA methylation, and RNA-based mechanism are the main means of epigenetic control. In this chapter, we will focus on the general introductions of epigenetics, which is important in the regulation of chromatin structure and gene expression. With the development and expansion of high-throughput sequencing, various mutations of epigenetic regulators have been identified and proven to be the drivers of tumorigenesis. Epigenetic alterations are used to diagnose individual patients more accurately and specifically. Several drugs, which are targeting epigenetic changes, have been developed to treat patients regarding the awareness of precision medicine. Emerging researches are connecting the epigenetics and cancers together in the molecular mechanism exploration and the development of druggable targets.
Collapse
Affiliation(s)
- Yanjun Zhang
- Life Sciences Institute, Zhejiang University, Hangzhou, P.R. China
| | - Zhongxing Sun
- Life Sciences Institute, Zhejiang University, Hangzhou, P.R. China
| | - Junqi Jia
- Life Sciences Institute, Zhejiang University, Hangzhou, P.R. China
| | - Tianjiao Du
- Life Sciences Institute, Zhejiang University, Hangzhou, P.R. China
| | - Nachuan Zhang
- Life Sciences Institute, Zhejiang University, Hangzhou, P.R. China
| | - Yin Tang
- Life Sciences Institute, Zhejiang University, Hangzhou, P.R. China
| | - Yuan Fang
- Life Sciences Institute, Zhejiang University, Hangzhou, P.R. China
| | - Dong Fang
- Life Sciences Institute, Zhejiang University, Hangzhou, P.R. China.
| |
Collapse
|
13
|
Loesch R, Chenane L, Colnot S. ARID2 Chromatin Remodeler in Hepatocellular Carcinoma. Cells 2020; 9:cells9102152. [PMID: 32977645 PMCID: PMC7598172 DOI: 10.3390/cells9102152] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/03/2020] [Accepted: 09/16/2020] [Indexed: 12/14/2022] Open
Abstract
Chromatin remodelers are found highly mutated in cancer including hepatocellular carcinoma. These mutations frequently occur in ARID (AT-rich Interactive Domain) genes, encoding subunits of the ATP-dependent SWI/SNF remodelers. The increasingly prevalent complexity that surrounds the functions and specificities of the highly modular BAF (BG1/BRM-associated factors) and PBAF (polybromo-associated BAF) complexes, including ARID1A/B or ARID2, is baffling. The involvement of the SWI/SNF complexes in diverse tissues and processes, and especially in the regulation of gene expression, multiplies the specific outcomes of specific gene alterations. A better understanding of the molecular consequences of specific mutations impairing chromatin remodelers is needed. In this review, we summarize what we know about the tumor-modulating properties of ARID2 in hepatocellular carcinoma.
Collapse
Affiliation(s)
- Robin Loesch
- INSERM, Centre de Recherche des Cordeliers (CRC), Sorbonne Université, Université de Paris, F-75006 Paris, France; (R.L.); (L.C.)
- Equipe labellisée “Ligue Nationale Contre le Cancer”, F-75013 Paris, France
| | - Linda Chenane
- INSERM, Centre de Recherche des Cordeliers (CRC), Sorbonne Université, Université de Paris, F-75006 Paris, France; (R.L.); (L.C.)
- Equipe labellisée “Ligue Nationale Contre le Cancer”, F-75013 Paris, France
| | - Sabine Colnot
- INSERM, Centre de Recherche des Cordeliers (CRC), Sorbonne Université, Université de Paris, F-75006 Paris, France; (R.L.); (L.C.)
- Equipe labellisée “Ligue Nationale Contre le Cancer”, F-75013 Paris, France
- Correspondence:
| |
Collapse
|
14
|
SMARCB1 Acts as a Quiescent Gatekeeper for Cell Cycle and Immune Response in Human Cells. Int J Mol Sci 2020; 21:ijms21113969. [PMID: 32492816 PMCID: PMC7312701 DOI: 10.3390/ijms21113969] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 05/26/2020] [Accepted: 05/27/2020] [Indexed: 12/20/2022] Open
Abstract
Switch/sucrose non-fermentable (SWI/SNF)-related matrix-associated actin-dependent regulator of chromatin (SMARC) subfamily B member 1 (SMARCB1) is a core subunit of the switch/sucrose non-fermentable (SWI/SNF) complex, one of the adenosine triphosphate (ATP)-dependent chromatin remodeler complexes. The unique role of SMARCB1 has been reported in various cellular contexts. Here, we focused on the general role of the ubiquitous expression of SMARCB1 in a normal cell state. We selected ARPE19 (human primary retinal pigment epithelium) and IMR90 (from human fetal lung fibroblasts) cell lines as they have completely different contexts. Furthermore, although these cell lines have been immortalized, they are relatively close to normal human cells. The loss of SMARCB1 in ARPE19 and IMR90 cells reduced cell cycle progression via the upregulation of P21. Transcriptome analysis followed by SMARCB1 knockdown in both cell lines revealed that SMARCB1 was not only involved in cell maintenance but also conferred immunomodulation. Of note, SMARCB1 bound to interleukin (IL) 6 promoter in a steady state and dissociated in an active immune response state, suggesting that SMARCB1 was a direct repressor of IL6, which was further confirmed via loss- and gain-of-function studies. Taken together, we demonstrated that SMARCB1 is a critical gatekeeper molecule of the cell cycle and immune response.
Collapse
|
15
|
Kim SH, In Choi H, Choi MR, An GY, Binas B, Jung KH, Chai YG. Epigenetic regulation of IFITM1 expression in lipopolysaccharide-stimulated human mesenchymal stromal cells. Stem Cell Res Ther 2020; 11:16. [PMID: 31910882 PMCID: PMC6945778 DOI: 10.1186/s13287-019-1531-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 11/21/2019] [Accepted: 12/13/2019] [Indexed: 12/17/2022] Open
Abstract
Background Toll-like receptor 4 (TLR4) ligands such as lipopolysaccharide (LPS) activate immunomodulatory functions and the migration of human mesenchymal stromal cells (hMSCs). Here, we study the migration-related gene expression of LPS-stimulated hMSCs and the role and regulation of one of the upregulated genes, encoding the interferon-induced transmembrane protein 1 (IFITM1). Methods Gene expression profiles were determined by whole-transcriptome analysis (RNA-seq) and quantitative real-time PCR (qRT-PCR). Bioinformatics approaches were used to perform network and pathway analyses. The cell migration-related genes were identified with an in vitro wound healing assay. RNA interference (RNAi) was used to suppress the IFITM1 gene expression. The IFITM1 gene enhancer was analyzed by chromatin immunoprecipitation (ChIP) sequencing, ChIP-to-PCR, luciferase reporter assays, and qRT-PCR for enhancer RNAs (eRNAs). Results RNA-seq confirmed IFITM1 as an LPS-stimulated gene, and RNAi demonstrated its importance for the LPS-stimulated migration. LPS treatment increased the eRNA expression in enhancer region R2 (2 kb upstream) of the IFITM1 gene and enriched R2 for H3K27ac. Bioinformatics implicated the transcription factors NF-κB and IRF1, ChIP assays revealed their binding to R2, and chemical inhibition of NF-κB and RNAi directed against IRF1 prevented R2 eRNA and IFITM1 gene expression. Conclusions Increased expression of the IFITM1 gene is required for LPS-stimulated hMSC migration. We described several underlying changes in the IFITM1 gene enhancer, most notably the NF-κB-mediated activation of enhancer region R2.
Collapse
Affiliation(s)
- Sun Hwa Kim
- Department of Molecular & Life Science, Hanyang University, Ansan, 15588, Republic of Korea
| | - Hae In Choi
- Department of Bionanotechnology, Hanyang University, Seoul, 04673, Republic of Korea
| | - Mi Ran Choi
- Department of Psychiatry, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Ga Yeong An
- Department of Bionanotechnology, Hanyang University, Seoul, 04673, Republic of Korea
| | - Bert Binas
- Department of Molecular & Life Science, Hanyang University, Ansan, 15588, Republic of Korea.
| | - Kyoung Hwa Jung
- Convergence Technology Campus of Korea Polytechnic II, Incheon, 21417, Republic of Korea.
| | - Young Gyu Chai
- Department of Molecular & Life Science, Hanyang University, Ansan, 15588, Republic of Korea. .,Department of Bionanotechnology, Hanyang University, Seoul, 04673, Republic of Korea.
| |
Collapse
|
16
|
El Hadidy N, Uversky VN. Intrinsic Disorder of the BAF Complex: Roles in Chromatin Remodeling and Disease Development. Int J Mol Sci 2019; 20:ijms20215260. [PMID: 31652801 PMCID: PMC6862534 DOI: 10.3390/ijms20215260] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 10/12/2019] [Accepted: 10/21/2019] [Indexed: 12/13/2022] Open
Abstract
The two-meter-long DNA is compressed into chromatin in the nucleus of every cell, which serves as a significant barrier to transcription. Therefore, for processes such as replication and transcription to occur, the highly compacted chromatin must be relaxed, and the processes required for chromatin reorganization for the aim of replication or transcription are controlled by ATP-dependent nucleosome remodelers. One of the most highly studied remodelers of this kind is the BRG1- or BRM-associated factor complex (BAF complex, also known as SWItch/sucrose non-fermentable (SWI/SNF) complex), which is crucial for the regulation of gene expression and differentiation in eukaryotes. Chromatin remodeling complex BAF is characterized by a highly polymorphic structure, containing from four to 17 subunits encoded by 29 genes. The aim of this paper is to provide an overview of the role of BAF complex in chromatin remodeling and also to use literature mining and a set of computational and bioinformatics tools to analyze structural properties, intrinsic disorder predisposition, and functionalities of its subunits, along with the description of the relations of different BAF complex subunits to the pathogenesis of various human diseases.
Collapse
Affiliation(s)
- Nashwa El Hadidy
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd. MDC07, Tampa, FL 33612, USA.
| | - Vladimir N Uversky
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd. MDC07, Tampa, FL 33612, USA.
- Laboratory of New Methods in Biology, Institute for Biological Instrumentation of the Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Pushchino, 142290 Moscow Region, Russia.
| |
Collapse
|
17
|
Abstract
Renal cell carcinomas (RCCs) are a diverse set of malignancies that have recently been shown to harbour mutations in a number of chromatin modifier genes - including PBRM1, SETD2, BAP1, KDM5C, KDM6A, and MLL2 - through high-throughput sequencing efforts. Current research focuses on understanding the biological activities that chromatin modifiers employ to suppress tumorigenesis and on developing clinical approaches that take advantage of this knowledge. Unsurprisingly, several common themes unify the functions of these epigenetic modifiers, particularly regulation of histone post-translational modifications and nucleosome organization. Furthermore, chromatin modifiers also govern processes crucial for DNA repair and maintenance of genomic integrity as well as the regulation of splicing and other key processes. Many chromatin modifiers have additional non-canonical roles in cytoskeletal regulation, which further contribute to genomic stability, expanding the repertoire of functions that might be essential in tumorigenesis. Our understanding of how mutations in chromatin modifiers contribute to tumorigenesis in RCC is improving but remains an area of intense investigation. Importantly, elucidating the activities of chromatin modifiers offers intriguing opportunities for the development of new therapeutic interventions in RCC.
Collapse
Affiliation(s)
- Aguirre A de Cubas
- Department of Medicine, Division of Hematology and Oncology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - W Kimryn Rathmell
- Department of Medicine, Division of Hematology and Oncology, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
18
|
Stanifer ML, Pervolaraki K, Boulant S. Differential Regulation of Type I and Type III Interferon Signaling. Int J Mol Sci 2019; 20:E1445. [PMID: 30901970 PMCID: PMC6471306 DOI: 10.3390/ijms20061445] [Citation(s) in RCA: 146] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 03/15/2019] [Accepted: 03/18/2019] [Indexed: 12/12/2022] Open
Abstract
Interferons (IFNs) are very powerful cytokines, which play a key role in combatting pathogen infections by controlling inflammation and immune response by directly inducing anti-pathogen molecular countermeasures. There are three classes of IFNs: type I, type II and type III. While type II IFN is specific for immune cells, type I and III IFNs are expressed by both immune and tissue specific cells. Unlike type I IFNs, type III IFNs have a unique tropism where their signaling and functions are mostly restricted to epithelial cells. As such, this class of IFN has recently emerged as a key player in mucosal immunity. Since the discovery of type III IFNs, the last 15 years of research in the IFN field has focused on understanding whether the induction, the signaling and the function of these powerful cytokines are regulated differently compared to type I IFN-mediated immune response. This review will cover the current state of the knowledge of the similarities and differences in the signaling pathways emanating from type I and type III IFN stimulation.
Collapse
Affiliation(s)
- Megan L Stanifer
- Schaller research group at CellNetworks, Department of Infectious Diseases, Heidelberg University Hospital, 69120 Heidelberg, Germany.
- Research Group "Cellular polarity and viral infection" (F140), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.
| | - Kalliopi Pervolaraki
- Schaller research group at CellNetworks, Department of Infectious Diseases, Heidelberg University Hospital, 69120 Heidelberg, Germany.
- Research Group "Cellular polarity and viral infection" (F140), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.
| | - Steeve Boulant
- Schaller research group at CellNetworks, Department of Infectious Diseases, Heidelberg University Hospital, 69120 Heidelberg, Germany.
- Research Group "Cellular polarity and viral infection" (F140), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.
| |
Collapse
|
19
|
Escher TE, Lui AJ, Geanes ES, Walter KR, Tawfik O, Hagan CR, Lewis-Wambi J. Interaction Between MUC1 and STAT1 Drives IFITM1 Overexpression in Aromatase Inhibitor-Resistant Breast Cancer Cells and Mediates Estrogen-Induced Apoptosis. Mol Cancer Res 2019; 17:1180-1194. [PMID: 30655323 DOI: 10.1158/1541-7786.mcr-18-0916] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 11/30/2018] [Accepted: 01/03/2019] [Indexed: 12/19/2022]
Abstract
The human oncoprotein, mucin 1 (MUC1), drives tumorigenesis in breast carcinomas by promoting epithelial-to-mesenchymal transition (EMT), epigenetic reprogramming, and evasion of immune response. MUC1 interacts with STAT1, through JAK/STAT signaling, and stimulates transcription of IFN-stimulated genes, specifically IFN-induced transmembrane protein 1 (IFITM1). Our laboratory has previously shown that IFITM1 overexpression in aromatase inhibitor (AI)-resistant breast cancer cells promotes aggressiveness. Here, we demonstrate that differential regulation of MUC1 in AI-sensitive (MCF-7 and T-47D) compared with AI-resistant (MCF-7:5C) cells is critical in mediating IFITM1 expression. A tumor microarray of 94 estrogen receptor-positive human breast tumors correlated coexpression of MUC1 and IFITM1 with poor recurrence-free survival, poor overall survival, and AI-resistance. In this study, we investigated the effects of MUC1/IFITM1 on cell survival and proliferation. We knocked down MUC1 levels with siRNA and pharmacologic inhibitors, which abrogated IFITM1 mRNA and protein expression and induced cell death in AI-resistant cells. In vivo, estrogen and ruxolitinib significantly reduced tumor size and decreased expression of MUC1, P-STAT1, and IFITM1. IMPLICATIONS: MUC1 and IFITM1 overexpression drives AI resistance and can be targeted with currently available therapies.Visual Overview: http://mcr.aacrjournals.org/content/molcanres/17/5/1180/F1.large.jpg.
Collapse
Affiliation(s)
- Taylor E Escher
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, Kansas
| | - Asona J Lui
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, Kansas
- Department of Physiology, University of Kansas Medical Center, Kansas City, Kansas
| | - Eric S Geanes
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, Kansas
| | - Katherine R Walter
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, Kansas
| | - Ossama Tawfik
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Christy R Hagan
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, Kansas
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas
- The University of Kansas Cancer Center, Kansas City, Kansas
| | - Joan Lewis-Wambi
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, Kansas.
- Department of Physiology, University of Kansas Medical Center, Kansas City, Kansas
- The University of Kansas Cancer Center, Kansas City, Kansas
| |
Collapse
|
20
|
Au-Yeung N, Horvath CM. Transcriptional and chromatin regulation in interferon and innate antiviral gene expression. Cytokine Growth Factor Rev 2018; 44:11-17. [PMID: 30509403 DOI: 10.1016/j.cytogfr.2018.10.003] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 10/18/2018] [Indexed: 12/21/2022]
Abstract
In response to virus infections, a cell-autonomous, transcription-based antiviral program is engaged to create resistance, impair pathogen replication, and alert professional cells in innate and adaptive immunity. This dual phase antiviral program consists of type I interferon (IFN) production followed by the response to IFN signaling. Pathogen recognition leads to activation of IRF and NFκB factors that function independently and together to recruit cellular coactivators that remodel chromatin, modify histones and activate RNA polymerase II (Pol II) at target gene loci, including the well-characterized IFNβ enhanceosome. In the subsequent response to IFN, a receptor-mediated JAK-STAT signaling cascade directs the assembly of the IRF9-STAT1-STAT2 transcription factor complex called ISGF3, which recruits its own cohort of remodelers, coactivators, and Pol II machinery to activate transcription of a wide range of IFN-stimulated genes. Regulation of the IFN and antiviral gene regulatory networks is not only important for driving innate immune responses to infections, but also may inform treatment of a growing list of chronic diseases that are characterized by hyperactive and constitutive IFN and IFN-stimulated gene (ISG) expression. Here, gene-specific and genome-wide investigations of the chromatin landscape at IFN and ISGs is discussed in parallel with IRF- and STAT- dependent regulation of Pol II transcription.
Collapse
Affiliation(s)
- Nancy Au-Yeung
- Department of Molecular Biosciences, Northwestern University, 2200 Campus Drive, Evanston, IL 60208, USA
| | - Curt M Horvath
- Department of Molecular Biosciences, Northwestern University, 2200 Campus Drive, Evanston, IL 60208, USA.
| |
Collapse
|
21
|
Au-Yeung N, Horvath CM. Histone H2A.Z Suppression of Interferon-Stimulated Transcription and Antiviral Immunity Is Modulated by GCN5 and BRD2. iScience 2018; 6:68-82. [PMID: 30240626 PMCID: PMC6137307 DOI: 10.1016/j.isci.2018.07.013] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 06/27/2018] [Accepted: 07/16/2018] [Indexed: 12/21/2022] Open
Abstract
Type I interferon (IFN)-stimulated gene (ISG) expression requires interaction between a transcription factor complex, ISGF3, and target gene promoters to initiate transcription and protection against infection. To uncover chromatin regulatory features of this antiviral immune response, IFN-induced nucleosome and histone dynamics of human ISG loci were examined. ISGF3 recruitment after IFN stimulation was accompanied by nucleosome reorganization at promoters and gene bodies. IFN stimulation induced loss of core histones H2B, H3, and H4, as well as H2A.Z at ISG promoters. A strong correlation was found between H2A.Z occupancy and ISGF3 target sites, and IFN-stimulated H2A.Z removal requires STAT1, STAT2, and IRF9. Neither INO80 nor SWI/SNF participate in IFN-driven H2A.Z eviction, but GCN5 and BRD2 are required. Interference with H2A.Z expression enhanced ISGF3 recruitment to ISG promoters, ISG mRNA expression, and IFN-stimulated antiviral immunity. This indicates that H2A.Z nucleosomes at ISG promoters restrict optimal ISGF3 engagement and modulate the biological response to IFN.
Collapse
Affiliation(s)
- Nancy Au-Yeung
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Curt M Horvath
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA.
| |
Collapse
|
22
|
Green R, Ireton RC, Gale M. Interferon-stimulated genes: new platforms and computational approaches. Mamm Genome 2018; 29:593-602. [PMID: 29982912 DOI: 10.1007/s00335-018-9755-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 06/22/2018] [Indexed: 12/12/2022]
Abstract
Interferon-stimulated genes (ISGs) are the effectors of interferon (IFN) actions and play major roles in innate immune defense against microbial infection. During virus infection, ISGs impart antiviral actions to control virus replication and spread but can also contribute to disease pathology if their expression is unchecked. Antiviral ISGs have been identified by a variety of biochemical, genetic, and virologic methods. New computational approaches are expanding and redefining ISGs as responders to a variety of stimuli beyond IFNs, including virus infection, stress, and other events that induce cytokines. These studies reveal that the expression of ISG subsets link to interferon regulatory factors (IRF)s, NF-kB, and other transcription factors that impart gene expression in specific cell types independently of IFNs, including stem cells and other cell types where ISGs are constitutively expressed. Here, we provide a broad overview of ISGs, define virus-induced genes (VSG)s, and discuss the application of computational approaches and bioinformatics platforms to evaluate the functional role of ISGs in epigenetics, immune programming, and vaccine responses.
Collapse
Affiliation(s)
- Richard Green
- Department of Immunology and the Center for Innate Immunity and Immune Disease (CIIID), University of Washington, Seattle, WA, USA.
| | - Reneé C Ireton
- Department of Immunology and the Center for Innate Immunity and Immune Disease (CIIID), University of Washington, Seattle, WA, USA
| | - Michael Gale
- Department of Immunology and the Center for Innate Immunity and Immune Disease (CIIID), University of Washington, Seattle, WA, USA
| |
Collapse
|
23
|
Partial Inactivation of the Chromatin Remodelers SMARCA2 and SMARCA4 in Virus-Infected Cells by Caspase-Mediated Cleavage. J Virol 2018; 92:JVI.00343-18. [PMID: 29848589 DOI: 10.1128/jvi.00343-18] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 05/22/2018] [Indexed: 01/18/2023] Open
Abstract
The BAF-chromatin remodeling complex, with its mutually exclusive ATPases SMARCA2 and SMARCA4, is essential for the transcriptional activation of numerous genes, including a subset of interferon-stimulated genes (ISGs). Here, we show that C-terminally truncated forms of both SMARCA2 and SMARCA4 accumulate in cells infected with different RNA or DNA viruses. The levels of truncated SMARCA2 or SMARCA4 strongly correlate with the degree of cell damage and death observed after virus infection. The use of a pan-caspase inhibitor and genetically modified cell lines unable to undergo apoptosis revealed that the truncated forms result from the activity of caspases downstream of the activated intrinsic apoptotic pathway. C-terminally cleaved SMARCA2 and SMARCA4 lack potential nuclear localization signals as well as the bromo- and SnAC domain, with the latter two domains believed to be essential for chromatin association and remodeling. Consistent with this belief, C-terminally truncated SMARCA2 was partially relocated to the cytoplasm. However, the remaining nuclear protein was sufficient to induce ISG expression and inhibit the replication of vesicular stomatitis virus and influenza A virus. This suggests that virus-induced apoptosis does not occur at the expense of an intact interferon-mediated antiviral response pathway.IMPORTANCE Efficient induction of interferon-stimulated genes (ISGs) prior to infection is known to effectively convert a cell into an antiviral state, blocking viral replication. Additionally, cells can undergo caspase-mediated apoptosis to control viral infection. Here, we identify SMARCA2 and SMARCA4 to be essential for the efficient induction of ISGs but also to be targeted by cellular caspases downstream of the intrinsic apoptotic pathway. We find that C-terminally cleaved SMARCA2 and SMARCA4 accumulate at late stages of infection, when cell damage already had occurred. Cleavage of the C terminus removes domains important for nuclear localization and chromatin binding of SMARCA2 and SMARCA4. Consequently, the cleaved forms are unable to efficiently accumulate in the cell nucleus. Intriguingly, the remaining nuclear C-terminally truncated SMARCA2 still induced ISG expression, although to lower levels. These data suggest that in virus-infected cells caspase-mediated cell death does not completely inactivate the SMARCA2- and SMARCA4-dependent interferon signaling pathway.
Collapse
|
24
|
Dornfeld D, Dudek AH, Vausselin T, Günther SC, Hultquist JF, Giese S, Khokhlova-Cubberley D, Chew YC, Pache L, Krogan NJ, Garcia-Sastre A, Schwemmle M, Shaw ML. SMARCA2-regulated host cell factors are required for MxA restriction of influenza A viruses. Sci Rep 2018; 8:2092. [PMID: 29391557 PMCID: PMC5794779 DOI: 10.1038/s41598-018-20458-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 01/18/2018] [Indexed: 11/29/2022] Open
Abstract
The human interferon (IFN)-induced MxA protein is a key antiviral host restriction factor exhibiting broad antiviral activity against many RNA viruses, including highly pathogenic avian influenza A viruses (IAV) of the H5N1 and H7N7 subtype. To date the mechanism for how MxA exerts its antiviral activity is unclear, however, additional cellular factors are believed to be essential for this activity. To identify MxA cofactors we performed a genome-wide siRNA-based screen in human airway epithelial cells (A549) constitutively expressing MxA using an H5N1 reporter virus. These data were complemented with a proteomic screen to identify MxA-interacting proteins. The combined data identified SMARCA2, the ATPase subunit of the BAF chromatin remodeling complex, as a crucial factor required for the antiviral activity of MxA against IAV. Intriguingly, our data demonstrate that although SMARCA2 is essential for expression of some IFN-stimulated genes (ISGs), and the establishment of an antiviral state, it is not required for expression of MxA, suggesting an indirect effect on MxA activity. Transcriptome analysis of SMARCA2-depleted A549-MxA cells identified a small set of SMARCA2-regulated factors required for activity of MxA, in particular IFITM2 and IGFBP3. These findings reveal that several virus-inducible factors work in concert to enable MxA restriction of IAV.
Collapse
Affiliation(s)
- Dominik Dornfeld
- Institute of Virology, Medical Center, University of Freiburg, 79104, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany
| | - Alexandra H Dudek
- Institute of Virology, Medical Center, University of Freiburg, 79104, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine, University of Freiburg, 79104, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany
- Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
| | - Thibaut Vausselin
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Sira C Günther
- Institute of Virology, Medical Center, University of Freiburg, 79104, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany
| | - Judd F Hultquist
- Quantitative Biosciences Institute, QBI, Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, 94158, USA
- J. David Gladstone Institutes, San Francisco, CA, 94158, USA
| | - Sebastian Giese
- Institute of Virology, Medical Center, University of Freiburg, 79104, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany
| | | | - Yap C Chew
- Zymo Research Corp, Irvine, CA, 92614, USA
| | - Lars Pache
- Sanford Burnham Prebys Medical Discovery Institute, Infectious and Inflammatory Disease Center, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Nevan J Krogan
- Quantitative Biosciences Institute, QBI, Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, 94158, USA
- J. David Gladstone Institutes, San Francisco, CA, 94158, USA
| | - Adolfo Garcia-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| | - Martin Schwemmle
- Institute of Virology, Medical Center, University of Freiburg, 79104, Freiburg, Germany.
- Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany.
| | - Megan L Shaw
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| |
Collapse
|
25
|
Li P, Shi ML, Shen WL, Zhang Z, Xie DJ, Zhang XY, He C, Zhang Y, Zhao ZH. Coordinated regulation of IFITM1, 2 and 3 genes by an IFN-responsive enhancer through long-range chromatin interactions. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2017; 1860:885-893. [PMID: 28511927 PMCID: PMC7102783 DOI: 10.1016/j.bbagrm.2017.05.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 04/21/2017] [Accepted: 05/08/2017] [Indexed: 11/26/2022]
Abstract
Interferon-induced transmembrane protein (IFITM) 1, 2 and 3 genes encode a family of interferon (IFN)-induced transmembrane proteins that block entry of a broad spectrum of pathogens. However, the transcriptional regulation of these genes, especially whether there exist any enhancers and their roles during the IFN induction process remain elusive. Here, through public data mining, episomal luciferase reporter assay and in vivo CRISPR-Cas9 genome editing, we identified an IFN-responsive enhancer located 35kb upstream of IFITM3 gene promoter upregulating the IFN-induced expression of IFITM1, 2 and 3 genes. Chromatin immunoprecipitation (ChIP), electrophoretic mobility shift assay (EMSA) and luciferase reporter assay demonstrated that signal transducers and activators of transcription (STAT) 1 bound to the enhancer with the treatment of IFN and was indispensable for the enhancer activity. Furthermore, using chromosome conformation capture technique, we revealed that the IFITM1, 2 and 3 genes physically clustered together and constitutively looped to the distal enhancer through long-range interactions in both HEK293 and A549 cells, providing structural basis for coordinated regulation of IFITM1, 2 and 3 by the enhancer. Finally, we showed that in vivo truncation of the enhancer impaired IFN-induced resistance to influenza A virus (IAV) infection. These findings expand our understanding of the mechanisms underlying the transcriptional regulation of IFITM1, 2 and 3 expression and its ability to mediate IFN signaling.
Collapse
Affiliation(s)
- Ping Li
- Beijing Institute of Biotechnology, No. 20, Dongdajie Street, Fengtai District, Beijing 100071, China
| | - Ming-Lei Shi
- Beijing Institute of Biotechnology, No. 20, Dongdajie Street, Fengtai District, Beijing 100071, China
| | - Wen-Long Shen
- Beijing Institute of Biotechnology, No. 20, Dongdajie Street, Fengtai District, Beijing 100071, China
| | - Zhang Zhang
- Beijing Institute of Biotechnology, No. 20, Dongdajie Street, Fengtai District, Beijing 100071, China
| | - De-Jian Xie
- Beijing Institute of Biotechnology, No. 20, Dongdajie Street, Fengtai District, Beijing 100071, China
| | - Xiang-Yuan Zhang
- Beijing Institute of Biotechnology, No. 20, Dongdajie Street, Fengtai District, Beijing 100071, China
| | - Chao He
- Beijing Institute of Biotechnology, No. 20, Dongdajie Street, Fengtai District, Beijing 100071, China
| | - Yan Zhang
- Beijing Institute of Biotechnology, No. 20, Dongdajie Street, Fengtai District, Beijing 100071, China.
| | - Zhi-Hu Zhao
- Beijing Institute of Biotechnology, No. 20, Dongdajie Street, Fengtai District, Beijing 100071, China.
| |
Collapse
|
26
|
Wang W, Xu L, Su J, Peppelenbosch MP, Pan Q. Transcriptional Regulation of Antiviral Interferon-Stimulated Genes. Trends Microbiol 2017; 25:573-584. [PMID: 28139375 PMCID: PMC7127685 DOI: 10.1016/j.tim.2017.01.001] [Citation(s) in RCA: 143] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 01/02/2017] [Accepted: 01/04/2017] [Indexed: 12/16/2022]
Abstract
Interferon-stimulated genes (ISGs) are a group of gene products that coordinately combat pathogen invasions, in particular viral infections. Transcription of ISGs occurs rapidly upon pathogen invasion, and this is classically provoked via activation of the Janus kinase/signal transducer and activator of transcription (JAK–STAT) pathway, mainly by interferons (IFNs). However, a plethora of recent studies have reported a variety of non-canonical mechanisms regulating ISG transcription. These new studies are extremely important for understanding the quantitative and temporal differences in ISG transcription under specific circumstances. Because these canonical and non-canonical regulatory mechanisms are essential for defining the nature of host defense and associated detrimental proinflammatory effects, we comprehensively review the state of this rapidly evolving field and the clinical implications of recently acquired knowledge in this respect. Transcriptional regulation of ISGs defines the state of host anti-pathogen defense. In light of the recently identified regulatory elements and mechanisms of the IFN–JAK–STAT pathway, new insights have been gained into this classical cascade in regulating ISG transcription. A variety of non-canonical mechanisms have been recently revealed that coordinately regulate ISG transcription. With regards to the adverse effects of IFNs in clinic, ISG-based antiviral strategy could be the next promising frontier in drug discovery.
Collapse
Affiliation(s)
- Wenshi Wang
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center and Postgraduate School Molecular Medicine, Rotterdam, The Netherlands
| | - Lei Xu
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center and Postgraduate School Molecular Medicine, Rotterdam, The Netherlands
| | - Junhong Su
- Medical Faculty, Kunming University of Science and Technology, Kunming, PR China
| | - Maikel P Peppelenbosch
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center and Postgraduate School Molecular Medicine, Rotterdam, The Netherlands
| | - Qiuwei Pan
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center and Postgraduate School Molecular Medicine, Rotterdam, The Netherlands.
| |
Collapse
|
27
|
Stuart JH, Sumner RP, Lu Y, Snowden JS, Smith GL. Vaccinia Virus Protein C6 Inhibits Type I IFN Signalling in the Nucleus and Binds to the Transactivation Domain of STAT2. PLoS Pathog 2016; 12:e1005955. [PMID: 27907166 PMCID: PMC5131898 DOI: 10.1371/journal.ppat.1005955] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 09/26/2016] [Indexed: 12/17/2022] Open
Abstract
The type I interferon (IFN) response is a crucial innate immune signalling pathway required for defense against viral infection. Accordingly, the great majority of mammalian viruses possess means to inhibit this important host immune response. Here we show that vaccinia virus (VACV) strain Western Reserve protein C6, is a dual function protein that inhibits the cellular response to type I IFNs in addition to its published function as an inhibitor of IRF-3 activation, thereby restricting type I IFN production from infected cells. Ectopic expression of C6 inhibits the induction of interferon stimulated genes (ISGs) in response to IFNα treatment at both the mRNA and protein level. C6 inhibits the IFNα-induced Janus kinase/signal transducer and activator of transcription (JAK/STAT) signalling pathway at a late stage, downstream of STAT1 and STAT2 phosphorylation, nuclear translocation and binding of the interferon stimulated gene factor 3 (ISGF3) complex to the interferon stimulated response element (ISRE). Mechanistically, C6 associates with the transactivation domain of STAT2 and this might explain how C6 inhibits the type I IFN signalling very late in the pathway. During virus infection C6 reduces ISRE-dependent gene expression despite the presence of the viral protein phosphatase VH1 that dephosphorylates STAT1 and STAT2. The ability of a cytoplasmic replicating virus to dampen the immune response within the nucleus, and the ability of viral immunomodulators such as C6 to inhibit multiple stages of the innate immune response by distinct mechanisms, emphasizes the intricacies of host-pathogen interactions and viral immune evasion. In response to a viral infection, infected host cells mount an early, innate immune response to limit viral replication and spread. Type I interferons (IFNs) are produced by a cell when a viral infection is detected and are a crucial aspect of this early immune response. IFNs are released from the infected cell and can act on the infected cell itself or neighbouring cells to initiate a signalling pathway that results in the production of hundreds of anti-viral proteins. In this work we investigated a vaccinia virus protein called C6, a known inhibitor of type I IFN production. Here we show that C6 also inhibits signalling initiated in response to type I IFNs, therefore providing a dual defence against this essential immune response. The results show that, unlike the majority of viral inhibitors of IFN signalling, C6 inhibits the signalling pathway at a late stage once the proteins required for IFN-stimulated gene transcription have reached the nucleus and bound to the DNA. This work illustrates the complex relationship between infecting viruses and the host immune response and further investigation of the mechanism by which C6 inhibits this important immune pathway will likely increase our knowledge of the pathway itself.
Collapse
Affiliation(s)
- Jennifer H. Stuart
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Rebecca P. Sumner
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Yongxu Lu
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Joseph S. Snowden
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Geoffrey L. Smith
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
- * E-mail:
| |
Collapse
|
28
|
Inhibition of interleukin-3- and interferon- α-induced JAK/STAT signaling by the synthetic α-X-2′,3,4,4′-tetramethoxychalcones α-Br-TMC and α-CF3-TMC. Biol Chem 2016; 397:1187-1204. [DOI: 10.1515/hsz-2016-0148] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 06/21/2016] [Indexed: 12/18/2022]
Abstract
Abstract
The JAK/STAT pathway is an essential mediator of cytokine signaling, often upregulated in human diseases and therefore recognized as a relevant therapeutic target. We previously identified the synthetic chalcone α-bromo-2′,3,4,4′-tetramethoxychalcone (α-Br-TMC) as a novel JAK2/STAT5 inhibitor. We also found that treatment with α-Br-TMC resulted in a downward shift of STAT5 proteins in SDS-PAGE, suggesting a post-translational modification that might affect STAT5 function. In the present study, we show that a single cysteine within STAT5 is responsible for the α-Br-TMC-induced protein shift, and that this modification does not alter STAT5 transcriptional activity. We also compared the inhibitory activity of α-Br-TMC to that of another synthetic chalcone, α-trifluoromethyl-2′,3,4,4′-tetramethoxychalcone (α-CF3-TMC). We found that, like α-Br-TMC, α-CF3-TMC inhibits JAK2 and STAT5 phosphorylation in response to interleukin-3, however without altering STAT5 mobility in SDS-PAGE. Moreover, we demonstrate that both α-Br-TMC and α-CF3-TMC inhibit interferon-α-induced activation of STAT1 and STAT2, by inhibiting their phosphorylation and the expression of downstream interferon-stimulated genes. Together with the previous finding that α-Br-TMC and α-CF3-TMC inhibit the response to inflammation by inducing Nrf2 and blocking NF-κB activities, our data suggest that synthetic chalcones might be useful as anti-inflammatory, anti-cancer and immunomodulatory agents in the treatment of human diseases.
Collapse
|
29
|
Mancino A, Natoli G. Specificity and Function of IRF Family Transcription Factors: Insights from Genomics. J Interferon Cytokine Res 2016; 36:462-9. [DOI: 10.1089/jir.2016.0004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Alessandra Mancino
- Department of Experimental Oncology, European Institute of Oncology (IEO), Milan, Italy
| | - Gioacchino Natoli
- Department of Experimental Oncology, European Institute of Oncology (IEO), Milan, Italy
| |
Collapse
|
30
|
Mazina MY, Vorobyeva NE. The role of ATP-dependent chromatin remodeling complexes in regulation of genetic processes. RUSS J GENET+ 2016. [DOI: 10.1134/s1022795416050082] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
31
|
Chun HJE, Lim EL, Heravi-Moussavi A, Saberi S, Mungall KL, Bilenky M, Carles A, Tse K, Shlafman I, Zhu K, Qian JQ, Palmquist DL, He A, Long W, Goya R, Ng M, LeBlanc VG, Pleasance E, Thiessen N, Wong T, Chuah E, Zhao YJ, Schein JE, Gerhard DS, Taylor MD, Mungall AJ, Moore RA, Ma Y, Jones SJM, Perlman EJ, Hirst M, Marra MA. Genome-Wide Profiles of Extra-cranial Malignant Rhabdoid Tumors Reveal Heterogeneity and Dysregulated Developmental Pathways. Cancer Cell 2016; 29:394-406. [PMID: 26977886 PMCID: PMC5094835 DOI: 10.1016/j.ccell.2016.02.009] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 01/05/2016] [Accepted: 02/16/2016] [Indexed: 12/18/2022]
Abstract
Malignant rhabdoid tumors (MRTs) are rare lethal tumors of childhood that most commonly occur in the kidney and brain. MRTs are driven by SMARCB1 loss, but the molecular consequences of SMARCB1 loss in extra-cranial tumors have not been comprehensively described and genomic resources for analyses of extra-cranial MRT are limited. To provide such data, we used whole-genome sequencing, whole-genome bisulfite sequencing, whole transcriptome (RNA-seq) and microRNA sequencing (miRNA-seq), and histone modification profiling to characterize extra-cranial MRTs. Our analyses revealed gene expression and methylation subgroups and focused on dysregulated pathways, including those involved in neural crest development.
Collapse
Affiliation(s)
- Hye-Jung E Chun
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Emilia L Lim
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Alireza Heravi-Moussavi
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Saeed Saberi
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Karen L Mungall
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Mikhail Bilenky
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Annaick Carles
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Kane Tse
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Inna Shlafman
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Kelsey Zhu
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Jenny Q Qian
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Diana L Palmquist
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - An He
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - William Long
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Rodrigo Goya
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Michelle Ng
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Veronique G LeBlanc
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Erin Pleasance
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Nina Thiessen
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Tina Wong
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Eric Chuah
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Yong-Jun Zhao
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Jacquie E Schein
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Daniela S Gerhard
- Office of Cancer Genomics, National Cancer Institute, US National Institutes of Health, Bethesda, MD 20892, USA
| | - Michael D Taylor
- The Arthur and Sonia Labatt Brain Tumour Research Centre, Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Andrew J Mungall
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Richard A Moore
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Yussanne Ma
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Steven J M Jones
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, BC V5Z 1L3, Canada; Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada; Department of Medical Genetics, University of British Columbia, Vancouver, BC V6H 3N1, Canada
| | - Elizabeth J Perlman
- Department of Pathology and Laboratory Medicine, Lurie Children's Hospital, Northwestern University's Feinberg School of Medicine and Robert H. Lurie Cancer Center, Chicago, IL 60611, USA
| | - Martin Hirst
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, BC V5Z 1L3, Canada; Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Marco A Marra
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, BC V5Z 1L3, Canada; Department of Medical Genetics, University of British Columbia, Vancouver, BC V6H 3N1, Canada.
| |
Collapse
|
32
|
Ogony J, Choi HJ, Lui A, Cristofanilli M, Lewis-Wambi J. Interferon-induced transmembrane protein 1 (IFITM1) overexpression enhances the aggressive phenotype of SUM149 inflammatory breast cancer cells in a signal transducer and activator of transcription 2 (STAT2)-dependent manner. Breast Cancer Res 2016; 18:25. [PMID: 26897526 PMCID: PMC4761146 DOI: 10.1186/s13058-016-0683-7] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 02/03/2016] [Indexed: 12/31/2022] Open
Abstract
Background Inflammatory breast cancer (IBC) is a very aggressive and lethal subtype of breast cancer that accounts for about 4 % of all breast cancers diagnosed in the United States. Despite the efforts of several investigators to identify the molecular factors driving the aggressive phenotype of IBC, a great deal is still unknown about the molecular underpinnings of the disease. In the present study, we investigated the role of interferon-induced transmembrane protein 1 (IFITM1), a well-known interferon-stimulated gene (ISG), in promoting the aggressiveness of SUM149 IBC cells. Methods Western blot and real-time polymerase chain reaction analyses were performed to assess the protein and messenger RNA (mRNA) levels of IFITM1 and other ISGs in three IBC cell lines: SUM149, MDA-IBC-3, and SUM190. IFITM1 expression and cellular localization were assessed by using immunofluorescence, while the tumorigenic potential was assessed by performing cell migration, invasion, and colony formation assays. Small interfering RNA and short hairpin RNA knockdowns, enzyme-linked immunosorbent assays, and luciferase assays were performed to determine the functional significance of IFITM1 and signal transducers and activators of transcription 1 and 2 (STAT1/2) in SUM149 cells. Results We found that IFITM1 was constitutively overexpressed at the mRNA and protein levels in triple-negative SUM149 IBC cells, but that it was not expressed in SUM190 and MDA-IBC-3 IBC cells, and that suppression of IFITM1 or blockade of the IFNα signaling pathway significantly reduced the aggressive phenotype of SUM149 cells. Additionally, we found that knockdown of STAT2 abolished IFITM1 expression and IFITM1 promoter activity in SUM149 cells and that loss of STAT2 significantly inhibited the ability of SUM149 cells to proliferate, migrate, invade, and form 2-D colonies. Notably, we found that STAT2-mediated activation of IFITM1 was particularly dependent on the chromatin remodeler brahma-related gene 1 (BRG1), which was significantly elevated in SUM149 cells compared with SUM190 and MDA-IBC-3 cells. Conclusions These findings indicate that overexpression of IFITM1 enhances the aggressive phenotype of triple-negative SUM149 IBC cells and that this effect is dependent on STAT2/BRG1 interaction. Further studies are necessary to explore the potential of IFITM1 as a novel therapeutic target and prognostic marker for some subtypes of IBCs. Electronic supplementary material The online version of this article (doi:10.1186/s13058-016-0683-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Joshua Ogony
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS, USA.
| | - Hye Joung Choi
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS, USA.
| | - Asona Lui
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS, USA. .,Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, USA.
| | | | - Joan Lewis-Wambi
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS, USA.
| |
Collapse
|
33
|
Ren G, Cui K, Zhang Z, Zhao K. Division of labor between IRF1 and IRF2 in regulating different stages of transcriptional activation in cellular antiviral activities. Cell Biosci 2015; 5:17. [PMID: 25960866 PMCID: PMC4424430 DOI: 10.1186/s13578-015-0007-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 03/27/2015] [Indexed: 12/21/2022] Open
Abstract
Background Cellular antiviral activities are critically controlled by transcriptional activation of interferon-inducible genes, involving interferon regulatory factors (IRFs). Previous data suggested that IRF1 is an activator and IRF2 is a repressor, which functionally antagonize each other in transcriptional regulation. However, it is not clear how these two factors function to regulate cellular antiviral activities. Results We show that IRF2 is critically required for the induction of the TLR3 and other interferon-inducible genes in a chromatin environment. While both IRF1 and IRF2 directly interact with the BAF chromatin remodeling complex, IRF2 is associated with the TLR3 promoter in the unstimulated state and IRF1 binding to the promoter is strongly induced by stimulation with interferon, suggesting that these two factors may function at different stages of gene induction in the recruitment of the BAF complex. IRF2 acts to maintain the basal level expression, an open chromatin structure, and active histone modification marks (H3K9, K14 acetylation and H3K4 tri-methylation) of the TLR3 promoter in the unstimulated state, while IRF1 serves to rapidly activate the promoter upon stimulation. Conclusions IRF1 and IRF2 of the IRF family of transcription factors play distinct roles in cellular response to viral infection. IRF2 binds to TLR3 and other IFN-inducible gene promoters and maintains an active chromatin structure in the unstimulated state, which is required for their induction, while IRF1 binding to these promoters activates their transcription upon viral infection. Thus, the division of labor between the IRF transcription factor family members plays a pivotal role in coordinating the transcriptional activation in the cellular antiviral response.
Collapse
Affiliation(s)
- Gang Ren
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100 PR China.,Systems Biology Center, Division of Intramural Research, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892 USA
| | - Kairong Cui
- Systems Biology Center, Division of Intramural Research, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892 USA
| | - Zhiying Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100 PR China
| | - Keji Zhao
- Systems Biology Center, Division of Intramural Research, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892 USA
| |
Collapse
|
34
|
Abou El Hassan M, Yu T, Song L, Bremner R. Polycomb Repressive Complex 2 Confers BRG1 Dependency on the CIITA Locus. THE JOURNAL OF IMMUNOLOGY 2015; 194:5007-13. [PMID: 25862816 DOI: 10.4049/jimmunol.1403247] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 03/12/2015] [Indexed: 01/11/2023]
Abstract
CIITA (or MHC2TA) coordinates constitutive and IFN-γ-induced expression of MHC class II genes. IFN-γ responsiveness of CIITA requires BRG1 (SMARCA4), the ATPase engine of the chromatin remodeling SWI/SNF complex (also called BAF). SWI/SNF is defective in many human cancers, providing a mechanism to explain IFN-γ resistance. BRG1 dependency is mediated through remote elements. Short CIITA reporters lacking these elements respond to IFN-γ, even in BRG1-deficient cells, suggesting that BRG1 counters a remote repressive influence. The nature of this distal repressor is unknown, but it would represent a valuable therapeutic target to reactivate IFN-γ responsiveness in cancer. In this article, we show that the polycomb repressive complex 2 (PRC2) components EZH2 and SUZ12, as well as the associated histone mark H3K27me3, are codetected at interenhancer regions across the CIITA locus. IFN-γ caused a BRG1-dependent reduction in H3K27me3, associated with nucleosome displacement. SUZ12 knockdown restored IFN-γ responsiveness in BRG1-null cells, and it mimicked the ability of BRG1 to induce active histone modifications (H3K27ac, H3K4me) at the -50-kb enhancer. Thus, PRC2 confers BRG1 dependency on the CIITA locus. Our data suggest that, in addition to its known roles in promoting stemness and proliferation, PRC2 may inhibit immune surveillance, and it could be targeted to reactivate CIITA expression in SWI/SNF deficient cancers.
Collapse
Affiliation(s)
- Mohamed Abou El Hassan
- Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G1X5, Canada
| | - Tao Yu
- Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G1X5, Canada
| | - Lan Song
- Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G1X5, Canada
| | - Rod Bremner
- Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G1X5, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada; and Department of Ophthalmology and Vision Science, University of Toronto, Toronto, Ontario M5T 3A9, Canada
| |
Collapse
|
35
|
Bowman GD, Poirier MG. Post-translational modifications of histones that influence nucleosome dynamics. Chem Rev 2015; 115:2274-95. [PMID: 25424540 PMCID: PMC4375056 DOI: 10.1021/cr500350x] [Citation(s) in RCA: 353] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Indexed: 12/12/2022]
Affiliation(s)
- Gregory D. Bowman
- T.
C. Jenkins Department of Biophysics, Johns
Hopkins University, Baltimore, Maryland 21218, United States
| | - Michael G. Poirier
- Department of Physics, and Department of
Chemistry and Biochemistry, The Ohio State
University, Columbus, Ohio 43210, United
States
| |
Collapse
|
36
|
Mechelli R, Manzari C, Policano C, Annese A, Picardi E, Umeton R, Fornasiero A, D'Erchia AM, Buscarinu MC, Agliardi C, Annibali V, Serafini B, Rosicarelli B, Romano S, Angelini DF, Ricigliano VAG, Buttari F, Battistini L, Centonze D, Guerini FR, D'Alfonso S, Pesole G, Salvetti M, Ristori G. Epstein-Barr virus genetic variants are associated with multiple sclerosis. Neurology 2015; 84:1362-8. [PMID: 25740864 DOI: 10.1212/wnl.0000000000001420] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE We analyzed the Epstein-Barr nuclear antigen 2 (EBNA2) gene, which contains the most variable region of the viral genome, in persons with multiple sclerosis (MS) and control subjects to verify whether virus genetic variants are involved in disease development. METHODS A seminested PCR approach and Sanger sequencing were used to analyze EBNA2 in 53 patients and 38 matched healthy donors (HDs). High-throughput sequencing by Illumina MiSeq was also applied in a subgroup of donors (17 patients and 17 HDs). Patients underwent gadolinium-enhanced MRI and human leucocyte antigen typing. RESULTS MS risk significantly correlated with an excess of 1.2 allele (odds ratio [OR] = 5.13; 95% confidence interval [CI] 1.84-14.32; p = 0.016) and underrepresentation of 1.3B allele (OR = 0.23; 95% CI 0.08-0.51; p = 0.0006). We identified new genetic variants, mostly 1.2 allele- and MS-associated (especially amino acid variation at position 245; OR = 9.4; 95% CI 1.19-78.72; p = 0.0123). In all cases, the consensus sequence from deep sequencing confirmed Sanger sequencing (including the cosegregation of newly identified variants with known EBNA2 alleles) and showed that the extent of genotype intraindividual variability was higher than expected: rare EBNA2 variants were detected in all HDs and patients with MS (range 1-17 and 3-19, respectively). EBNA2 variants did not seem to correlate with human leucocyte antigen typing or clinical/MRI features. CONCLUSIONS Our study unveils a strong association between Epstein-Barr virus genomic variants and MS, reinforcing the idea that Epstein-Barr virus contributes to disease development.
Collapse
Affiliation(s)
- Rosella Mechelli
- From the Centre for Experimental Neurological Therapies (R.M., C.P., R.U., V.A.G.R., A.F., V.A., M.C.B., S.R., M.S., G.R.), S. Andrea Hospital-site, Department of Neuroscience, Mental Health and Sensory Organs, Faculty of Medicine and Psychology, Sapienza University, Rome; Don C. Gnocchi Foundation IRCCS (F.R.G., C.A.), S. Maria Nascente, Milan; Department of Health Sciences (S.D.), Interdisciplinary Research Center of Autoimmune Diseases, Eastern Piedmont University, Novara; Clinica Neurologica (F.B., D.C.), Dipartimento di Medicina dei Sistemi, University of Tor Vergata, Rome; Department of Cell Biology and Neuroscience (B.S., B.R.), Istituto Superiore di Sanità, Rome; Department of Bioscience, Biotechnology and Biopharmaceutics (C.M., A.A., A.M.D., E.P., G.P.) University of Bari "Aldo Moro"; Institute of Biomembranes and Bioenergetics (G.P.), CNR, Bari; and Neuroimmunology Unit (D.F.A., L.B.), Fondazione Santa Lucia (I.R.C.C.S.), Rome, Italy
| | - Caterina Manzari
- From the Centre for Experimental Neurological Therapies (R.M., C.P., R.U., V.A.G.R., A.F., V.A., M.C.B., S.R., M.S., G.R.), S. Andrea Hospital-site, Department of Neuroscience, Mental Health and Sensory Organs, Faculty of Medicine and Psychology, Sapienza University, Rome; Don C. Gnocchi Foundation IRCCS (F.R.G., C.A.), S. Maria Nascente, Milan; Department of Health Sciences (S.D.), Interdisciplinary Research Center of Autoimmune Diseases, Eastern Piedmont University, Novara; Clinica Neurologica (F.B., D.C.), Dipartimento di Medicina dei Sistemi, University of Tor Vergata, Rome; Department of Cell Biology and Neuroscience (B.S., B.R.), Istituto Superiore di Sanità, Rome; Department of Bioscience, Biotechnology and Biopharmaceutics (C.M., A.A., A.M.D., E.P., G.P.) University of Bari "Aldo Moro"; Institute of Biomembranes and Bioenergetics (G.P.), CNR, Bari; and Neuroimmunology Unit (D.F.A., L.B.), Fondazione Santa Lucia (I.R.C.C.S.), Rome, Italy
| | - Claudia Policano
- From the Centre for Experimental Neurological Therapies (R.M., C.P., R.U., V.A.G.R., A.F., V.A., M.C.B., S.R., M.S., G.R.), S. Andrea Hospital-site, Department of Neuroscience, Mental Health and Sensory Organs, Faculty of Medicine and Psychology, Sapienza University, Rome; Don C. Gnocchi Foundation IRCCS (F.R.G., C.A.), S. Maria Nascente, Milan; Department of Health Sciences (S.D.), Interdisciplinary Research Center of Autoimmune Diseases, Eastern Piedmont University, Novara; Clinica Neurologica (F.B., D.C.), Dipartimento di Medicina dei Sistemi, University of Tor Vergata, Rome; Department of Cell Biology and Neuroscience (B.S., B.R.), Istituto Superiore di Sanità, Rome; Department of Bioscience, Biotechnology and Biopharmaceutics (C.M., A.A., A.M.D., E.P., G.P.) University of Bari "Aldo Moro"; Institute of Biomembranes and Bioenergetics (G.P.), CNR, Bari; and Neuroimmunology Unit (D.F.A., L.B.), Fondazione Santa Lucia (I.R.C.C.S.), Rome, Italy
| | - Anita Annese
- From the Centre for Experimental Neurological Therapies (R.M., C.P., R.U., V.A.G.R., A.F., V.A., M.C.B., S.R., M.S., G.R.), S. Andrea Hospital-site, Department of Neuroscience, Mental Health and Sensory Organs, Faculty of Medicine and Psychology, Sapienza University, Rome; Don C. Gnocchi Foundation IRCCS (F.R.G., C.A.), S. Maria Nascente, Milan; Department of Health Sciences (S.D.), Interdisciplinary Research Center of Autoimmune Diseases, Eastern Piedmont University, Novara; Clinica Neurologica (F.B., D.C.), Dipartimento di Medicina dei Sistemi, University of Tor Vergata, Rome; Department of Cell Biology and Neuroscience (B.S., B.R.), Istituto Superiore di Sanità, Rome; Department of Bioscience, Biotechnology and Biopharmaceutics (C.M., A.A., A.M.D., E.P., G.P.) University of Bari "Aldo Moro"; Institute of Biomembranes and Bioenergetics (G.P.), CNR, Bari; and Neuroimmunology Unit (D.F.A., L.B.), Fondazione Santa Lucia (I.R.C.C.S.), Rome, Italy
| | - Ernesto Picardi
- From the Centre for Experimental Neurological Therapies (R.M., C.P., R.U., V.A.G.R., A.F., V.A., M.C.B., S.R., M.S., G.R.), S. Andrea Hospital-site, Department of Neuroscience, Mental Health and Sensory Organs, Faculty of Medicine and Psychology, Sapienza University, Rome; Don C. Gnocchi Foundation IRCCS (F.R.G., C.A.), S. Maria Nascente, Milan; Department of Health Sciences (S.D.), Interdisciplinary Research Center of Autoimmune Diseases, Eastern Piedmont University, Novara; Clinica Neurologica (F.B., D.C.), Dipartimento di Medicina dei Sistemi, University of Tor Vergata, Rome; Department of Cell Biology and Neuroscience (B.S., B.R.), Istituto Superiore di Sanità, Rome; Department of Bioscience, Biotechnology and Biopharmaceutics (C.M., A.A., A.M.D., E.P., G.P.) University of Bari "Aldo Moro"; Institute of Biomembranes and Bioenergetics (G.P.), CNR, Bari; and Neuroimmunology Unit (D.F.A., L.B.), Fondazione Santa Lucia (I.R.C.C.S.), Rome, Italy
| | - Renato Umeton
- From the Centre for Experimental Neurological Therapies (R.M., C.P., R.U., V.A.G.R., A.F., V.A., M.C.B., S.R., M.S., G.R.), S. Andrea Hospital-site, Department of Neuroscience, Mental Health and Sensory Organs, Faculty of Medicine and Psychology, Sapienza University, Rome; Don C. Gnocchi Foundation IRCCS (F.R.G., C.A.), S. Maria Nascente, Milan; Department of Health Sciences (S.D.), Interdisciplinary Research Center of Autoimmune Diseases, Eastern Piedmont University, Novara; Clinica Neurologica (F.B., D.C.), Dipartimento di Medicina dei Sistemi, University of Tor Vergata, Rome; Department of Cell Biology and Neuroscience (B.S., B.R.), Istituto Superiore di Sanità, Rome; Department of Bioscience, Biotechnology and Biopharmaceutics (C.M., A.A., A.M.D., E.P., G.P.) University of Bari "Aldo Moro"; Institute of Biomembranes and Bioenergetics (G.P.), CNR, Bari; and Neuroimmunology Unit (D.F.A., L.B.), Fondazione Santa Lucia (I.R.C.C.S.), Rome, Italy
| | - Arianna Fornasiero
- From the Centre for Experimental Neurological Therapies (R.M., C.P., R.U., V.A.G.R., A.F., V.A., M.C.B., S.R., M.S., G.R.), S. Andrea Hospital-site, Department of Neuroscience, Mental Health and Sensory Organs, Faculty of Medicine and Psychology, Sapienza University, Rome; Don C. Gnocchi Foundation IRCCS (F.R.G., C.A.), S. Maria Nascente, Milan; Department of Health Sciences (S.D.), Interdisciplinary Research Center of Autoimmune Diseases, Eastern Piedmont University, Novara; Clinica Neurologica (F.B., D.C.), Dipartimento di Medicina dei Sistemi, University of Tor Vergata, Rome; Department of Cell Biology and Neuroscience (B.S., B.R.), Istituto Superiore di Sanità, Rome; Department of Bioscience, Biotechnology and Biopharmaceutics (C.M., A.A., A.M.D., E.P., G.P.) University of Bari "Aldo Moro"; Institute of Biomembranes and Bioenergetics (G.P.), CNR, Bari; and Neuroimmunology Unit (D.F.A., L.B.), Fondazione Santa Lucia (I.R.C.C.S.), Rome, Italy
| | - Anna Maria D'Erchia
- From the Centre for Experimental Neurological Therapies (R.M., C.P., R.U., V.A.G.R., A.F., V.A., M.C.B., S.R., M.S., G.R.), S. Andrea Hospital-site, Department of Neuroscience, Mental Health and Sensory Organs, Faculty of Medicine and Psychology, Sapienza University, Rome; Don C. Gnocchi Foundation IRCCS (F.R.G., C.A.), S. Maria Nascente, Milan; Department of Health Sciences (S.D.), Interdisciplinary Research Center of Autoimmune Diseases, Eastern Piedmont University, Novara; Clinica Neurologica (F.B., D.C.), Dipartimento di Medicina dei Sistemi, University of Tor Vergata, Rome; Department of Cell Biology and Neuroscience (B.S., B.R.), Istituto Superiore di Sanità, Rome; Department of Bioscience, Biotechnology and Biopharmaceutics (C.M., A.A., A.M.D., E.P., G.P.) University of Bari "Aldo Moro"; Institute of Biomembranes and Bioenergetics (G.P.), CNR, Bari; and Neuroimmunology Unit (D.F.A., L.B.), Fondazione Santa Lucia (I.R.C.C.S.), Rome, Italy
| | - Maria Chiara Buscarinu
- From the Centre for Experimental Neurological Therapies (R.M., C.P., R.U., V.A.G.R., A.F., V.A., M.C.B., S.R., M.S., G.R.), S. Andrea Hospital-site, Department of Neuroscience, Mental Health and Sensory Organs, Faculty of Medicine and Psychology, Sapienza University, Rome; Don C. Gnocchi Foundation IRCCS (F.R.G., C.A.), S. Maria Nascente, Milan; Department of Health Sciences (S.D.), Interdisciplinary Research Center of Autoimmune Diseases, Eastern Piedmont University, Novara; Clinica Neurologica (F.B., D.C.), Dipartimento di Medicina dei Sistemi, University of Tor Vergata, Rome; Department of Cell Biology and Neuroscience (B.S., B.R.), Istituto Superiore di Sanità, Rome; Department of Bioscience, Biotechnology and Biopharmaceutics (C.M., A.A., A.M.D., E.P., G.P.) University of Bari "Aldo Moro"; Institute of Biomembranes and Bioenergetics (G.P.), CNR, Bari; and Neuroimmunology Unit (D.F.A., L.B.), Fondazione Santa Lucia (I.R.C.C.S.), Rome, Italy
| | - Cristina Agliardi
- From the Centre for Experimental Neurological Therapies (R.M., C.P., R.U., V.A.G.R., A.F., V.A., M.C.B., S.R., M.S., G.R.), S. Andrea Hospital-site, Department of Neuroscience, Mental Health and Sensory Organs, Faculty of Medicine and Psychology, Sapienza University, Rome; Don C. Gnocchi Foundation IRCCS (F.R.G., C.A.), S. Maria Nascente, Milan; Department of Health Sciences (S.D.), Interdisciplinary Research Center of Autoimmune Diseases, Eastern Piedmont University, Novara; Clinica Neurologica (F.B., D.C.), Dipartimento di Medicina dei Sistemi, University of Tor Vergata, Rome; Department of Cell Biology and Neuroscience (B.S., B.R.), Istituto Superiore di Sanità, Rome; Department of Bioscience, Biotechnology and Biopharmaceutics (C.M., A.A., A.M.D., E.P., G.P.) University of Bari "Aldo Moro"; Institute of Biomembranes and Bioenergetics (G.P.), CNR, Bari; and Neuroimmunology Unit (D.F.A., L.B.), Fondazione Santa Lucia (I.R.C.C.S.), Rome, Italy
| | - Viviana Annibali
- From the Centre for Experimental Neurological Therapies (R.M., C.P., R.U., V.A.G.R., A.F., V.A., M.C.B., S.R., M.S., G.R.), S. Andrea Hospital-site, Department of Neuroscience, Mental Health and Sensory Organs, Faculty of Medicine and Psychology, Sapienza University, Rome; Don C. Gnocchi Foundation IRCCS (F.R.G., C.A.), S. Maria Nascente, Milan; Department of Health Sciences (S.D.), Interdisciplinary Research Center of Autoimmune Diseases, Eastern Piedmont University, Novara; Clinica Neurologica (F.B., D.C.), Dipartimento di Medicina dei Sistemi, University of Tor Vergata, Rome; Department of Cell Biology and Neuroscience (B.S., B.R.), Istituto Superiore di Sanità, Rome; Department of Bioscience, Biotechnology and Biopharmaceutics (C.M., A.A., A.M.D., E.P., G.P.) University of Bari "Aldo Moro"; Institute of Biomembranes and Bioenergetics (G.P.), CNR, Bari; and Neuroimmunology Unit (D.F.A., L.B.), Fondazione Santa Lucia (I.R.C.C.S.), Rome, Italy
| | - Barbara Serafini
- From the Centre for Experimental Neurological Therapies (R.M., C.P., R.U., V.A.G.R., A.F., V.A., M.C.B., S.R., M.S., G.R.), S. Andrea Hospital-site, Department of Neuroscience, Mental Health and Sensory Organs, Faculty of Medicine and Psychology, Sapienza University, Rome; Don C. Gnocchi Foundation IRCCS (F.R.G., C.A.), S. Maria Nascente, Milan; Department of Health Sciences (S.D.), Interdisciplinary Research Center of Autoimmune Diseases, Eastern Piedmont University, Novara; Clinica Neurologica (F.B., D.C.), Dipartimento di Medicina dei Sistemi, University of Tor Vergata, Rome; Department of Cell Biology and Neuroscience (B.S., B.R.), Istituto Superiore di Sanità, Rome; Department of Bioscience, Biotechnology and Biopharmaceutics (C.M., A.A., A.M.D., E.P., G.P.) University of Bari "Aldo Moro"; Institute of Biomembranes and Bioenergetics (G.P.), CNR, Bari; and Neuroimmunology Unit (D.F.A., L.B.), Fondazione Santa Lucia (I.R.C.C.S.), Rome, Italy
| | - Barbara Rosicarelli
- From the Centre for Experimental Neurological Therapies (R.M., C.P., R.U., V.A.G.R., A.F., V.A., M.C.B., S.R., M.S., G.R.), S. Andrea Hospital-site, Department of Neuroscience, Mental Health and Sensory Organs, Faculty of Medicine and Psychology, Sapienza University, Rome; Don C. Gnocchi Foundation IRCCS (F.R.G., C.A.), S. Maria Nascente, Milan; Department of Health Sciences (S.D.), Interdisciplinary Research Center of Autoimmune Diseases, Eastern Piedmont University, Novara; Clinica Neurologica (F.B., D.C.), Dipartimento di Medicina dei Sistemi, University of Tor Vergata, Rome; Department of Cell Biology and Neuroscience (B.S., B.R.), Istituto Superiore di Sanità, Rome; Department of Bioscience, Biotechnology and Biopharmaceutics (C.M., A.A., A.M.D., E.P., G.P.) University of Bari "Aldo Moro"; Institute of Biomembranes and Bioenergetics (G.P.), CNR, Bari; and Neuroimmunology Unit (D.F.A., L.B.), Fondazione Santa Lucia (I.R.C.C.S.), Rome, Italy
| | - Silvia Romano
- From the Centre for Experimental Neurological Therapies (R.M., C.P., R.U., V.A.G.R., A.F., V.A., M.C.B., S.R., M.S., G.R.), S. Andrea Hospital-site, Department of Neuroscience, Mental Health and Sensory Organs, Faculty of Medicine and Psychology, Sapienza University, Rome; Don C. Gnocchi Foundation IRCCS (F.R.G., C.A.), S. Maria Nascente, Milan; Department of Health Sciences (S.D.), Interdisciplinary Research Center of Autoimmune Diseases, Eastern Piedmont University, Novara; Clinica Neurologica (F.B., D.C.), Dipartimento di Medicina dei Sistemi, University of Tor Vergata, Rome; Department of Cell Biology and Neuroscience (B.S., B.R.), Istituto Superiore di Sanità, Rome; Department of Bioscience, Biotechnology and Biopharmaceutics (C.M., A.A., A.M.D., E.P., G.P.) University of Bari "Aldo Moro"; Institute of Biomembranes and Bioenergetics (G.P.), CNR, Bari; and Neuroimmunology Unit (D.F.A., L.B.), Fondazione Santa Lucia (I.R.C.C.S.), Rome, Italy
| | - Daniela F Angelini
- From the Centre for Experimental Neurological Therapies (R.M., C.P., R.U., V.A.G.R., A.F., V.A., M.C.B., S.R., M.S., G.R.), S. Andrea Hospital-site, Department of Neuroscience, Mental Health and Sensory Organs, Faculty of Medicine and Psychology, Sapienza University, Rome; Don C. Gnocchi Foundation IRCCS (F.R.G., C.A.), S. Maria Nascente, Milan; Department of Health Sciences (S.D.), Interdisciplinary Research Center of Autoimmune Diseases, Eastern Piedmont University, Novara; Clinica Neurologica (F.B., D.C.), Dipartimento di Medicina dei Sistemi, University of Tor Vergata, Rome; Department of Cell Biology and Neuroscience (B.S., B.R.), Istituto Superiore di Sanità, Rome; Department of Bioscience, Biotechnology and Biopharmaceutics (C.M., A.A., A.M.D., E.P., G.P.) University of Bari "Aldo Moro"; Institute of Biomembranes and Bioenergetics (G.P.), CNR, Bari; and Neuroimmunology Unit (D.F.A., L.B.), Fondazione Santa Lucia (I.R.C.C.S.), Rome, Italy
| | - Vito A G Ricigliano
- From the Centre for Experimental Neurological Therapies (R.M., C.P., R.U., V.A.G.R., A.F., V.A., M.C.B., S.R., M.S., G.R.), S. Andrea Hospital-site, Department of Neuroscience, Mental Health and Sensory Organs, Faculty of Medicine and Psychology, Sapienza University, Rome; Don C. Gnocchi Foundation IRCCS (F.R.G., C.A.), S. Maria Nascente, Milan; Department of Health Sciences (S.D.), Interdisciplinary Research Center of Autoimmune Diseases, Eastern Piedmont University, Novara; Clinica Neurologica (F.B., D.C.), Dipartimento di Medicina dei Sistemi, University of Tor Vergata, Rome; Department of Cell Biology and Neuroscience (B.S., B.R.), Istituto Superiore di Sanità, Rome; Department of Bioscience, Biotechnology and Biopharmaceutics (C.M., A.A., A.M.D., E.P., G.P.) University of Bari "Aldo Moro"; Institute of Biomembranes and Bioenergetics (G.P.), CNR, Bari; and Neuroimmunology Unit (D.F.A., L.B.), Fondazione Santa Lucia (I.R.C.C.S.), Rome, Italy
| | - Fabio Buttari
- From the Centre for Experimental Neurological Therapies (R.M., C.P., R.U., V.A.G.R., A.F., V.A., M.C.B., S.R., M.S., G.R.), S. Andrea Hospital-site, Department of Neuroscience, Mental Health and Sensory Organs, Faculty of Medicine and Psychology, Sapienza University, Rome; Don C. Gnocchi Foundation IRCCS (F.R.G., C.A.), S. Maria Nascente, Milan; Department of Health Sciences (S.D.), Interdisciplinary Research Center of Autoimmune Diseases, Eastern Piedmont University, Novara; Clinica Neurologica (F.B., D.C.), Dipartimento di Medicina dei Sistemi, University of Tor Vergata, Rome; Department of Cell Biology and Neuroscience (B.S., B.R.), Istituto Superiore di Sanità, Rome; Department of Bioscience, Biotechnology and Biopharmaceutics (C.M., A.A., A.M.D., E.P., G.P.) University of Bari "Aldo Moro"; Institute of Biomembranes and Bioenergetics (G.P.), CNR, Bari; and Neuroimmunology Unit (D.F.A., L.B.), Fondazione Santa Lucia (I.R.C.C.S.), Rome, Italy
| | - Luca Battistini
- From the Centre for Experimental Neurological Therapies (R.M., C.P., R.U., V.A.G.R., A.F., V.A., M.C.B., S.R., M.S., G.R.), S. Andrea Hospital-site, Department of Neuroscience, Mental Health and Sensory Organs, Faculty of Medicine and Psychology, Sapienza University, Rome; Don C. Gnocchi Foundation IRCCS (F.R.G., C.A.), S. Maria Nascente, Milan; Department of Health Sciences (S.D.), Interdisciplinary Research Center of Autoimmune Diseases, Eastern Piedmont University, Novara; Clinica Neurologica (F.B., D.C.), Dipartimento di Medicina dei Sistemi, University of Tor Vergata, Rome; Department of Cell Biology and Neuroscience (B.S., B.R.), Istituto Superiore di Sanità, Rome; Department of Bioscience, Biotechnology and Biopharmaceutics (C.M., A.A., A.M.D., E.P., G.P.) University of Bari "Aldo Moro"; Institute of Biomembranes and Bioenergetics (G.P.), CNR, Bari; and Neuroimmunology Unit (D.F.A., L.B.), Fondazione Santa Lucia (I.R.C.C.S.), Rome, Italy
| | - Diego Centonze
- From the Centre for Experimental Neurological Therapies (R.M., C.P., R.U., V.A.G.R., A.F., V.A., M.C.B., S.R., M.S., G.R.), S. Andrea Hospital-site, Department of Neuroscience, Mental Health and Sensory Organs, Faculty of Medicine and Psychology, Sapienza University, Rome; Don C. Gnocchi Foundation IRCCS (F.R.G., C.A.), S. Maria Nascente, Milan; Department of Health Sciences (S.D.), Interdisciplinary Research Center of Autoimmune Diseases, Eastern Piedmont University, Novara; Clinica Neurologica (F.B., D.C.), Dipartimento di Medicina dei Sistemi, University of Tor Vergata, Rome; Department of Cell Biology and Neuroscience (B.S., B.R.), Istituto Superiore di Sanità, Rome; Department of Bioscience, Biotechnology and Biopharmaceutics (C.M., A.A., A.M.D., E.P., G.P.) University of Bari "Aldo Moro"; Institute of Biomembranes and Bioenergetics (G.P.), CNR, Bari; and Neuroimmunology Unit (D.F.A., L.B.), Fondazione Santa Lucia (I.R.C.C.S.), Rome, Italy
| | - Franca R Guerini
- From the Centre for Experimental Neurological Therapies (R.M., C.P., R.U., V.A.G.R., A.F., V.A., M.C.B., S.R., M.S., G.R.), S. Andrea Hospital-site, Department of Neuroscience, Mental Health and Sensory Organs, Faculty of Medicine and Psychology, Sapienza University, Rome; Don C. Gnocchi Foundation IRCCS (F.R.G., C.A.), S. Maria Nascente, Milan; Department of Health Sciences (S.D.), Interdisciplinary Research Center of Autoimmune Diseases, Eastern Piedmont University, Novara; Clinica Neurologica (F.B., D.C.), Dipartimento di Medicina dei Sistemi, University of Tor Vergata, Rome; Department of Cell Biology and Neuroscience (B.S., B.R.), Istituto Superiore di Sanità, Rome; Department of Bioscience, Biotechnology and Biopharmaceutics (C.M., A.A., A.M.D., E.P., G.P.) University of Bari "Aldo Moro"; Institute of Biomembranes and Bioenergetics (G.P.), CNR, Bari; and Neuroimmunology Unit (D.F.A., L.B.), Fondazione Santa Lucia (I.R.C.C.S.), Rome, Italy
| | - Sandra D'Alfonso
- From the Centre for Experimental Neurological Therapies (R.M., C.P., R.U., V.A.G.R., A.F., V.A., M.C.B., S.R., M.S., G.R.), S. Andrea Hospital-site, Department of Neuroscience, Mental Health and Sensory Organs, Faculty of Medicine and Psychology, Sapienza University, Rome; Don C. Gnocchi Foundation IRCCS (F.R.G., C.A.), S. Maria Nascente, Milan; Department of Health Sciences (S.D.), Interdisciplinary Research Center of Autoimmune Diseases, Eastern Piedmont University, Novara; Clinica Neurologica (F.B., D.C.), Dipartimento di Medicina dei Sistemi, University of Tor Vergata, Rome; Department of Cell Biology and Neuroscience (B.S., B.R.), Istituto Superiore di Sanità, Rome; Department of Bioscience, Biotechnology and Biopharmaceutics (C.M., A.A., A.M.D., E.P., G.P.) University of Bari "Aldo Moro"; Institute of Biomembranes and Bioenergetics (G.P.), CNR, Bari; and Neuroimmunology Unit (D.F.A., L.B.), Fondazione Santa Lucia (I.R.C.C.S.), Rome, Italy
| | - Graziano Pesole
- From the Centre for Experimental Neurological Therapies (R.M., C.P., R.U., V.A.G.R., A.F., V.A., M.C.B., S.R., M.S., G.R.), S. Andrea Hospital-site, Department of Neuroscience, Mental Health and Sensory Organs, Faculty of Medicine and Psychology, Sapienza University, Rome; Don C. Gnocchi Foundation IRCCS (F.R.G., C.A.), S. Maria Nascente, Milan; Department of Health Sciences (S.D.), Interdisciplinary Research Center of Autoimmune Diseases, Eastern Piedmont University, Novara; Clinica Neurologica (F.B., D.C.), Dipartimento di Medicina dei Sistemi, University of Tor Vergata, Rome; Department of Cell Biology and Neuroscience (B.S., B.R.), Istituto Superiore di Sanità, Rome; Department of Bioscience, Biotechnology and Biopharmaceutics (C.M., A.A., A.M.D., E.P., G.P.) University of Bari "Aldo Moro"; Institute of Biomembranes and Bioenergetics (G.P.), CNR, Bari; and Neuroimmunology Unit (D.F.A., L.B.), Fondazione Santa Lucia (I.R.C.C.S.), Rome, Italy
| | - Marco Salvetti
- From the Centre for Experimental Neurological Therapies (R.M., C.P., R.U., V.A.G.R., A.F., V.A., M.C.B., S.R., M.S., G.R.), S. Andrea Hospital-site, Department of Neuroscience, Mental Health and Sensory Organs, Faculty of Medicine and Psychology, Sapienza University, Rome; Don C. Gnocchi Foundation IRCCS (F.R.G., C.A.), S. Maria Nascente, Milan; Department of Health Sciences (S.D.), Interdisciplinary Research Center of Autoimmune Diseases, Eastern Piedmont University, Novara; Clinica Neurologica (F.B., D.C.), Dipartimento di Medicina dei Sistemi, University of Tor Vergata, Rome; Department of Cell Biology and Neuroscience (B.S., B.R.), Istituto Superiore di Sanità, Rome; Department of Bioscience, Biotechnology and Biopharmaceutics (C.M., A.A., A.M.D., E.P., G.P.) University of Bari "Aldo Moro"; Institute of Biomembranes and Bioenergetics (G.P.), CNR, Bari; and Neuroimmunology Unit (D.F.A., L.B.), Fondazione Santa Lucia (I.R.C.C.S.), Rome, Italy.
| | - Giovanni Ristori
- From the Centre for Experimental Neurological Therapies (R.M., C.P., R.U., V.A.G.R., A.F., V.A., M.C.B., S.R., M.S., G.R.), S. Andrea Hospital-site, Department of Neuroscience, Mental Health and Sensory Organs, Faculty of Medicine and Psychology, Sapienza University, Rome; Don C. Gnocchi Foundation IRCCS (F.R.G., C.A.), S. Maria Nascente, Milan; Department of Health Sciences (S.D.), Interdisciplinary Research Center of Autoimmune Diseases, Eastern Piedmont University, Novara; Clinica Neurologica (F.B., D.C.), Dipartimento di Medicina dei Sistemi, University of Tor Vergata, Rome; Department of Cell Biology and Neuroscience (B.S., B.R.), Istituto Superiore di Sanità, Rome; Department of Bioscience, Biotechnology and Biopharmaceutics (C.M., A.A., A.M.D., E.P., G.P.) University of Bari "Aldo Moro"; Institute of Biomembranes and Bioenergetics (G.P.), CNR, Bari; and Neuroimmunology Unit (D.F.A., L.B.), Fondazione Santa Lucia (I.R.C.C.S.), Rome, Italy
| |
Collapse
|
37
|
Choi HJ, Lui A, Ogony J, Jan R, Sims PJ, Lewis-Wambi J. Targeting interferon response genes sensitizes aromatase inhibitor resistant breast cancer cells to estrogen-induced cell death. Breast Cancer Res 2015; 17:6. [PMID: 25588716 PMCID: PMC4336497 DOI: 10.1186/s13058-014-0506-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Accepted: 12/15/2014] [Indexed: 01/21/2023] Open
Abstract
Introduction Estrogen deprivation using aromatase inhibitors (AIs) is currently the standard of care for postmenopausal women with hormone receptor-positive breast cancer. Unfortunately, the majority of patients treated with AIs eventually develop resistance, inevitably resulting in patient relapse and, ultimately, death. The mechanism by which resistance occurs is still not completely known, however, recent studies suggest that impaired/defective interferon signaling might play a role. In the present study, we assessed the functional role of IFITM1 and PLSCR1; two well-known interferon response genes in AI resistance. Methods Real-time PCR and Western blot analyses were used to assess mRNA and protein levels of IFITM1, PLSCR1, STAT1, STAT2, and IRF-7 in AI-resistant MCF-7:5C breast cancer cells and AI-sensitive MCF-7 and T47D cells. Immunohistochemistry (IHC) staining was performed on tissue microarrays consisting of normal breast tissues, primary breast tumors, and AI-resistant recurrence tumors. Enzyme-linked immunosorbent assay was used to quantitate intracellular IFNα level. Neutralizing antibody was used to block type 1 interferon receptor IFNAR1 signaling. Small interference RNA (siRNA) was used to knockdown IFITM1, PLSCR1, STAT1, STAT2, IRF-7, and IFNα expression. Results We found that IFITM1 and PLSCR1 were constitutively overexpressed in AI-resistant MCF-7:5C breast cancer cells and AI-resistant tumors and that siRNA knockdown of IFITM1 significantly inhibited the ability of the resistant cells to proliferate, migrate, and invade. Interestingly, suppression of IFITM1 significantly enhanced estradiol-induced cell death in AI-resistant MCF-7:5C cells and markedly increased expression of p21, Bax, and Noxa in these cells. Significantly elevated level of IFNα was detected in AI-resistant MCF-7:5C cells compared to parental MCF-7 cells and suppression of IFNα dramatically reduced IFITM1, PLSCR1, p-STAT1, and p-STAT2 expression in the resistant cells. Lastly, neutralizing antibody against IFNAR1/2 and knockdown of STAT1/STAT2 completely suppressed IFITM1, PLSCR1, p-STAT1, and p-STAT2 expression in the resistant cells, thus confirming the involvement of the canonical IFNα signaling pathway in driving the overexpression of IFITM1 and other interferon-stimulated genes (ISGs) in the resistant cells. Conclusion Overall, these results demonstrate that constitutive overexpression of ISGs enhances the progression of AI-resistant breast cancer and that suppression of IFITM1 and other ISGs sensitizes AI-resistant cells to estrogen-induced cell death. Electronic supplementary material The online version of this article (doi:10.1186/s13058-014-0506-7) contains supplementary material, which is available to authorized users.
Collapse
|
38
|
Wongabel rhabdovirus accessory protein U3 targets the SWI/SNF chromatin remodeling complex. J Virol 2014; 89:1377-88. [PMID: 25392228 DOI: 10.1128/jvi.02010-14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
UNLABELLED Wongabel virus (WONV) is an arthropod-borne rhabdovirus that infects birds. It is one of the growing array of rhabdoviruses with complex genomes that encode multiple accessory proteins of unknown function. In addition to the five canonical rhabdovirus structural protein genes (N, P, M, G, and L), the 13.2-kb negative-sense single-stranded RNA (ssRNA) WONV genome contains five uncharacterized accessory genes, one overlapping the N gene (Nx or U4), three located between the P and M genes (U1 to U3), and a fifth one overlapping the G gene (Gx or U5). Here we show that WONV U3 is expressed during infection in insect and mammalian cells and is required for efficient viral replication. A yeast two-hybrid screen against a mosquito cell cDNA library identified that WONV U3 interacts with the 83-amino-acid (aa) C-terminal domain of SNF5, a component of the SWI/SNF chromatin remodeling complex. The interaction was confirmed by affinity chromatography, and nuclear colocalization was established by confocal microscopy. Gene expression studies showed that SNF5 transcripts are upregulated during infection of mosquito cells with WONV, as well as West Nile virus (Flaviviridae) and bovine ephemeral fever virus (Rhabdoviridae), and that SNF5 knockdown results in increased WONV replication. WONV U3 also inhibits SNF5-regulated expression of the cytokine gene CSF1. The data suggest that WONV U3 targets the SWI/SNF complex to block the host response to infection. IMPORTANCE The rhabdoviruses comprise a large family of RNA viruses infecting plants, vertebrates, and invertebrates. In addition to the major structural proteins (N, P, M, G, and L), many rhabdoviruses encode a diverse array of accessory proteins of largely unknown function. Understanding the role of these proteins may reveal much about host-pathogen interactions in infected cells. Here we examine accessory protein U3 of Wongabel virus, an arthropod-borne rhabdovirus that infects birds. We show that U3 enters the nucleus and interacts with SNF5, a component of the chromatin remodeling complex that is upregulated in response to infection and restricts viral replication. We also show that U3 inhibits SNF5-regulated expression of the cytokine colony-stimulating factor 1 (CSF1), suggesting that it targets the chromatin remodeling complex to block the host response to infection. This study appears to provide the first evidence of a virus targeting SNF5 to inhibit host gene expression.
Collapse
|
39
|
Smale ST, Natoli G. Transcriptional control of inflammatory responses. Cold Spring Harb Perspect Biol 2014; 6:a016261. [PMID: 25213094 DOI: 10.1101/cshperspect.a016261] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The inflammatory response requires the activation of a complex transcriptional program that is both cell-type- and stimulus-specific and involves the dynamic regulation of hundreds of genes. In the context of an inflamed tissue, extensive changes in gene expression occur in both parenchymal cells and infiltrating cells of the immune system. Recently, basic transcriptional mechanisms that control inflammation have been clarified at a genome scale, particularly in macrophages and conventional dendritic cells. The regulatory logic of distinct groups of inflammatory genes can be explained to some extent by identifiable sequence-encoded features of their chromatin organization, which impact on transcription factor (TF) accessibility and impose different requirements for gene activation. Moreover, it has become apparent that the interplay between TFs activated by inflammatory stimuli and master regulators exerts a crucial role in controlling cell-type-specific transcriptional outputs.
Collapse
Affiliation(s)
- Stephen T Smale
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, California 90095
| | - Gioacchino Natoli
- Department of Experimental Oncology, European Institute of Oncology (IEO), I-20139 Milan, Italy
| |
Collapse
|
40
|
Abstract
Type I interferons (IFNs) activate intracellular antimicrobial programmes and influence the development of innate and adaptive immune responses. Canonical type I IFN signalling activates the Janus kinase (JAK)-signal transducer and activator of transcription (STAT) pathway, leading to transcription of IFN-stimulated genes (ISGs). Host, pathogen and environmental factors regulate the responses of cells to this signalling pathway and thus calibrate host defences while limiting tissue damage and preventing autoimmunity. Here, we summarize the signalling and epigenetic mechanisms that regulate type I IFN-induced STAT activation and ISG transcription and translation. These regulatory mechanisms determine the biological outcomes of type I IFN responses and whether pathogens are cleared effectively or chronic infection or autoimmune disease ensues.
Collapse
Affiliation(s)
- Lionel B Ivashkiv
- 1] Arthritis and Tissue Degeneration Program and the David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, New York 10021, USA. [2] Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, New York 10065, USA. [3] Department of Medicine, Weill Cornell Medical College, New York, New York 10065,USA
| | - Laura T Donlin
- Arthritis and Tissue Degeneration Program and the David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, New York 10021, USA
| |
Collapse
|
41
|
The human RVB complex is required for efficient transcription of type I interferon-stimulated genes. Mol Cell Biol 2013; 33:3817-25. [PMID: 23878400 DOI: 10.1128/mcb.01562-12] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Type I interferons (IFNs) stimulate transcription through a latent heterotrimeric transcription factor composed of tyrosine-phosphorylated STAT1 and STAT2 and the DNA binding partner IRF9, with STAT2 contributing a critical transactivation domain. Human RVB1 and RVB2, which are highly conserved AAA(+) ATP binding proteins contained in chromatin-remodeling complexes such as Ino80, SNF2-related CBP activator protein (SRCAP), and Tip60/NuA4, interacted with the transactivation domain of STAT2 in the nuclei of IFN-stimulated cells. RNA interference (RNAi) experiments demonstrated that RVB proteins were required for robust activation of IFN-α-stimulated genes (ISGs). The requirement for RVB proteins was specific to IFN-α/STAT2 signaling; transcription of tumor necrosis factor alpha (TNF-α)- and IFN-γ-driven genes was not affected by RVB1 depletion. Using RNAi-based depletion, we assessed the involvement of catalytic subunits of the RVB-containing Tip60, BRD8, Ino80, SRCAP, and URI complexes. No component other than RVB1/2 was uniquely required for ISG induction, suggesting that RVB1/2 functions as part of an as yet unidentified complex. Chromatin immunoprecipitation assays indicated that RVB1/2 was required for recruitment of RNA polymerase II (Pol II) to ISG promoters but was dispensable for STAT2 recruitment to chromatin. We hypothesize that an RVB1/2 chromatin-remodeling complex is required for efficient Pol II recruitment and initiation at ISG promoters and is recruited through interaction with the STAT2 transactivation domain.
Collapse
|
42
|
Latent enhancers activated by stimulation in differentiated cells. Cell 2013; 152:157-71. [PMID: 23332752 DOI: 10.1016/j.cell.2012.12.018] [Citation(s) in RCA: 617] [Impact Index Per Article: 51.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Revised: 10/12/2012] [Accepted: 12/13/2012] [Indexed: 01/27/2023]
Abstract
According to current models, once the cell has reached terminal differentiation, the enhancer repertoire is completely established and maintained by cooperatively acting lineage-specific transcription factors (TFs). TFs activated by extracellular stimuli operate within this predetermined repertoire, landing close to where master regulators are constitutively bound. Here, we describe latent enhancers, defined as regions of the genome that in terminally differentiated cells are unbound by TFs and lack the histone marks characteristic of enhancers but acquire these features in response to stimulation. Macrophage stimulation caused sequential binding of stimulus-activated and lineage-determining TFs to these regions, enabling deposition of enhancer marks. Once unveiled, many of these enhancers did not return to a latent state when stimulation ceased; instead, they persisted and mediated a faster and stronger response upon restimulation. We suggest that stimulus-specific expansion of the cis-regulatory repertoire provides an epigenomic memory of the exposure to environmental agents.
Collapse
|
43
|
Plotkin SR, Blakeley JO, Evans DG, Hanemann CO, Hulsebos TJM, Hunter-Schaedle K, Kalpana GV, Korf B, Messiaen L, Papi L, Ratner N, Sherman LS, Smith MJ, Stemmer-Rachamimov AO, Vitte J, Giovannini M. Update from the 2011 International Schwannomatosis Workshop: From genetics to diagnostic criteria. Am J Med Genet A 2013; 161A:405-16. [PMID: 23401320 DOI: 10.1002/ajmg.a.35760] [Citation(s) in RCA: 140] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Accepted: 10/13/2012] [Indexed: 11/06/2022]
Abstract
Schwannomatosis is the third major form of neurofibromatosis and is characterized by the development of multiple schwannomas in the absence of bilateral vestibular schwannomas. The 2011 Schwannomatosis Update was organized by the Children's Tumor Foundation (www.ctf.org) and held in Los Angeles, CA, from June 5-8, 2011. This article summarizes the highlights presented at the Conference and represents the "state-of-the-field" in 2011. Genetic studies indicate that constitutional mutations in the SMARCB1 tumor suppressor gene occur in 40-50% of familial cases and in 8-10% of sporadic cases of schwannomatosis. Tumorigenesis is thought to occur through a four-hit, three-step model, beginning with a germline mutation in SMARCB1 (hit 1), followed by loss of a portion of chromosome 22 that contains the second SMARCB1 allele and one NF2 allele (hits 2 and 3), followed by mutation of the remaining wild-type NF2 allele (hit 4). Insights from research on HIV and pediatric rhabdoid tumors have shed light on potential molecular pathways that are dysregulated in schwannomatosis-related schwannomas. Mouse models of schwannomatosis have been developed and promise to further expand our understanding of tumorigenesis and the tumor microenvironment. Clinical reports have described the occurrence of intracranial meningiomas in schwannomatosis patients and in families with germline SMARCB1 mutations. The authors propose updated diagnostic criteria to incorporate new clinical and genetic findings since 2005. In the next 5 years, the authors expect that advances in basic research in the pathogenesis of schwannomatosis will lead toward clinical investigations of potential drug therapies.
Collapse
Affiliation(s)
- Scott R Plotkin
- Department of Neurology and Cancer Center, Massachusetts General Hospital, Boston, Massachusetts 02114, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Icardi L, De Bosscher K, Tavernier J. The HAT/HDAC interplay: multilevel control of STAT signaling. Cytokine Growth Factor Rev 2012; 23:283-91. [PMID: 22989617 DOI: 10.1016/j.cytogfr.2012.08.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Accepted: 08/20/2012] [Indexed: 12/13/2022]
Abstract
Besides the transcription-promoting role of histone acetyltransferases (HATs) and the transcription-delimiting function of histone deacetylases (HDACs) through histone acetylation and deacetylation respectively, HATs and HDACs also regulate the activity of several non-histone proteins. This includes signal transducers and activators of transcription (STATs), key proteins in cytokine signaling. Unlike Tyr phosphorylation/dephosphorylation, which mainly acts as an on/off switch of STAT activity, the control exerted by HATs and HDACs appears multifaceted and far more complex than initially imagined. Our review focuses on the latest trends and novel hypotheses to explain differential context-dependent STAT regulation by complex posttranslational modification patterns. We chart the knowledge on how STATs interact with HATs and HDACs, and additionally bring a transcriptional regulatory and gene-set specific role for HDACs in the picture. Indeed, a growing amount of evidence demonstrates, paradoxically, that not only HAT but also HDAC activity can be required for STAT-dependent transcription, in a STAT subtype- and cell type-dependent manner. Referring to recent reports, we review and discuss the various molecular mechanisms that have recently been proposed to account for this peculiar regulation, in an attempt to shed more light on the difficult yet important question on how STAT specificity is being generated.
Collapse
Affiliation(s)
- Laura Icardi
- Department of Medical Protein Research, VIB, Ghent, Belgium
| | | | | |
Collapse
|
45
|
Euskirchen G, Auerbach RK, Snyder M. SWI/SNF chromatin-remodeling factors: multiscale analyses and diverse functions. J Biol Chem 2012; 287:30897-905. [PMID: 22952240 PMCID: PMC3438922 DOI: 10.1074/jbc.r111.309302] [Citation(s) in RCA: 136] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Chromatin-remodeling enzymes play essential roles in many biological processes, including gene expression, DNA replication and repair, and cell division. Although one such complex, SWI/SNF, has been extensively studied, new discoveries are still being made. Here, we review SWI/SNF biochemistry; highlight recent genomic and proteomic advances; and address the role of SWI/SNF in human diseases, including cancer and viral infections. These studies have greatly increased our understanding of complex nuclear processes.
Collapse
Affiliation(s)
- Ghia Euskirchen
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94305-5120, USA
| | | | | |
Collapse
|
46
|
A novel human polycomb binding site acts as a functional polycomb response element in Drosophila. PLoS One 2012; 7:e36365. [PMID: 22570707 PMCID: PMC3343078 DOI: 10.1371/journal.pone.0036365] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Accepted: 04/05/2012] [Indexed: 12/24/2022] Open
Abstract
Polycomb group (PcG) proteins are key chromatin regulators implicated in multiple processes including embryonic development, tissue homeostasis, genomic imprinting, X-chromosome inactivation, and germ cell differentiation. The PcG proteins recognize target genomic loci through cis DNA sequences known as Polycomb Response Elements (PREs), which are well characterized in Drosophila. However, mammalian PREs have been elusive until two groups reported putative mammalian PREs recently. Consistent with the existence of mammalian PREs, here we report the identification and characterization of a potential PRE from human T cells. The putative human PRE has enriched binding of PcG proteins, and such binding is dependent on a key PcG component SUZ12. We demonstrate that the putative human PRE carries both genetic and molecular features of Drosophila PRE in transgenic flies, implying that not only the trans PcG proteins but also certain features of the cis PREs are conserved between mammals and Drosophila.
Collapse
|
47
|
Zhao H, Wang J, Han Y, Huang Z, Ying J, Bi X, Zhao J, Fang Y, Zhou H, Zhou J, Li Z, Zhang Y, Yang X, Yan T, Wang L, Torbenson MS, Cai J. ARID2: a new tumor suppressor gene in hepatocellular carcinoma. Oncotarget 2012; 2:886-91. [PMID: 22095441 PMCID: PMC3259997 DOI: 10.18632/oncotarget.355] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignancies worldwide, however, genetic-environmental interactions and mechanisms associated with the development of HCC remains largely unclear. Our recent work described novel inactivating mutations of ARID2 (AT-rich interactive domain 2) in four major subtypes of HCC through exomic sequencing of ten HCV-associated HCCs and subsequent evaluation of the tumors from additional affected individuals. Here, we summarize the current knowledge about the relevance of ARID2 in HCC and the implication in future patient care.
Collapse
Affiliation(s)
- Hong Zhao
- Department of abdominal surgical oncology, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, PR China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Prinjha R, Witherington J, Lee K. Place your BETs: the therapeutic potential of bromodomains. Trends Pharmacol Sci 2012; 33:146-53. [DOI: 10.1016/j.tips.2011.12.002] [Citation(s) in RCA: 165] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2011] [Revised: 12/19/2011] [Accepted: 12/20/2011] [Indexed: 11/27/2022]
|
49
|
Smale ST. Transcriptional regulation in the innate immune system. Curr Opin Immunol 2012; 24:51-7. [PMID: 22230561 DOI: 10.1016/j.coi.2011.12.008] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Accepted: 12/21/2011] [Indexed: 12/11/2022]
Abstract
In cells of the innate immune system, the transcriptional response to a microbial stimulus is tailored to both the stimulus and cell type, suggesting the existence of highly sophisticated regulatory mechanisms. Early studies suggested that specificity is dictated by sets of differentially induced transcription factors that synergistically activate target genes containing their binding sites. However, recent studies have revealed additional interrelated regulatory layers, which are the topic of this article. In particular, individual transcription factors may require different post-translational modifications and coregulatory interactions to regulate different target genes. Furthermore, competence for induction is programmed at an early stage of development by factors involved in lineage commitment, and the architecture and chromatin structure of each promoter play critical roles in transcriptional specificity.
Collapse
Affiliation(s)
- Stephen T Smale
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA 90095, USA.
| |
Collapse
|
50
|
Mooslehner KA, Davies JD, Hughes IA. A cell model for conditional profiling of androgen-receptor-interacting proteins. Int J Endocrinol 2012; 2012:381824. [PMID: 22518120 PMCID: PMC3299338 DOI: 10.1155/2012/381824] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Revised: 11/02/2011] [Accepted: 11/07/2011] [Indexed: 11/17/2022] Open
Abstract
Partial androgen insensitivity syndrome (PAIS) is associated with impaired male genital development and can be transmitted through mutations in the androgen receptor (AR). The aim of this study is to develop a cell model suitable for studying the impact AR mutations might have on AR interacting proteins. For this purpose, male genital development relevant mouse cell lines were genetically modified to express a tagged version of wild-type AR, allowing copurification of multiprotein complexes under native conditions followed by mass spectrometry. We report 57 known wild-type AR-interacting proteins identified in cells grown under proliferating and 65 under nonproliferating conditions. Of those, 47 were common to both samples suggesting different AR protein complex components in proliferating and proliferation-inhibited cells from the mouse proximal caput epididymus. These preliminary results now allow future studies to focus on replacing wild-type AR with mutant AR to uncover differences in protein interactions caused by AR mutations involved in PAIS.
Collapse
Affiliation(s)
- K. A. Mooslehner
- Department of Paediatrics, Addenbrooke's Hospital, University of Cambridge, Level 8, Box 116, Hills Road, Cambridge CB2 0QQ, UK
- *K. A. Mooslehner:
| | - J. D. Davies
- Department of Paediatrics, Addenbrooke's Hospital, University of Cambridge, Level 8, Box 116, Hills Road, Cambridge CB2 0QQ, UK
| | - I. A. Hughes
- Department of Paediatrics, Addenbrooke's Hospital, University of Cambridge, Level 8, Box 116, Hills Road, Cambridge CB2 0QQ, UK
| |
Collapse
|