1
|
Hashimoto T, Saito S, Ohata M, Okuwaki M. The oncoprotein DEK controls growth-regulated gene expression by enhancing the DNA-binding activity of basic leucine zipper transcription factors. FEBS J 2025. [PMID: 40318137 DOI: 10.1111/febs.70124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 02/07/2025] [Accepted: 04/23/2025] [Indexed: 05/07/2025]
Abstract
Overexpression of the oncogenic protein DEK is associated with a poor prognosis in various cancers. However, the molecular mechanisms by which DEK promotes cancer development and malignant transformation remain unclear. Previous studies have shown that DEK interacts with transcription factors, such as AP-2a and C/EBPα, and enhances their transcriptional activity. We hypothesized that DEK promotes cancer cell phenotypes by regulating transcription factors. We analyzed the interaction between DEK and the transcription factors to evaluate this hypothesis. We found that DEK binds to the basic regions within the basic leucine zipper (bZIP)- and basic helix-loop-helix leucine zipper (bHLH-ZIP)- transcription factors. Interestingly, DEK enhanced the DNA-binding capacity of two bZIP transcription factors, C/EBPα and ATF3, in vitro without being a component of the transcription factor-DNA complex. We performed DEK knockdown in lung adenocarcinoma A549 cells and examined the global transcriptome changes to determine the biological significance of the interaction between DEK and transcription factors. We found that diverse genes regulating cell growth and amino acid metabolism, which may potentially be regulated by c-Jun, a subunit of the bZIP transcription factor AP1, and c-Myc, a bHLH-ZIP transcription factor, were decreased by DEK knockdown. Consistent with these transcriptome changes, the cell growth, colony formation, and cell migration abilities of A549 cells were decreased by DEK knockdown. These results suggest that DEK promotes cancer cell malignancy by regulating the functions of the bZIP and bHLH-ZIP transcription factors.
Collapse
Affiliation(s)
- Takuma Hashimoto
- Graduate School of Pharmaceutical Sciences, Kitasato University, Minato-ku, Japan
| | - Shoko Saito
- Graduate School of Pharmaceutical Sciences, Kitasato University, Minato-ku, Japan
- School of Pharmacy, Kitasato University, Minato-ku, Japan
| | - Mike Ohata
- School of Pharmacy, Kitasato University, Minato-ku, Japan
| | - Mitsuru Okuwaki
- Graduate School of Pharmaceutical Sciences, Kitasato University, Minato-ku, Japan
- School of Pharmacy, Kitasato University, Minato-ku, Japan
| |
Collapse
|
2
|
Dong K, Ye Z, Hu F, Shan C, Wen D, Cao J. An evolutionary dynamics analysis of the plant DEK gene family reveals the role of BnaA02g08940D in drought tolerance. Int J Biol Macromol 2025; 298:140053. [PMID: 39828179 DOI: 10.1016/j.ijbiomac.2025.140053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 01/13/2025] [Accepted: 01/17/2025] [Indexed: 01/22/2025]
Abstract
DEK is a chromatin protein that interacts with DNA to influence chromatin formation, thereby affecting plant growth, development, and stress response. This study investigates the molecular evolution of the DEK family in plants, with a particular focus on the Brassica species. A total of 127 DEK genes were identified in 34 plants and classified into seven groups based on the phylogenetic analysis. The distribution of motifs and gene structure is similar within each group, indicating a high degree of conservation. The results of the collinearity analysis indicated that the DEK protein has undergone a certain degree of evolutionary conservation. The expansion of the DEK family is primarily attributable to whole-genome duplication (WGD) or segmental duplication events. The DEK protein has undergone purification during its evolutionary history, and several positively selected sites have been identified. Moreover, the examination of cis-acting elements and expression patterns revealed that the BnDEKs play a significant role in plant growth and stress response. The protein-protein interaction network identified several noteworthy proteins that interact with DEK. These analyses enhance our comprehension of the DEK gene family and establish the foundation for additional validation of its function. Further research demonstrated that the overexpression of one DEK family member, BnaA02g08940D, enhanced the transgenic Arabidopsis tolerance to drought and osmosis. This indicates that the DEK family may respond when plants are subjected to drought stress, thereby strengthening the plant's resilience.
Collapse
Affiliation(s)
- Kui Dong
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Ziyi Ye
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Fei Hu
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Chaofan Shan
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Dongyu Wen
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Jun Cao
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, Jiangsu, China.
| |
Collapse
|
3
|
Kujirai T, Echigoya K, Kishi Y, Saeki M, Ito T, Kato J, Negishi L, Kimura H, Masumoto H, Takizawa Y, Gotoh Y, Kurumizaka H. Structural insights into how DEK nucleosome binding facilitates H3K27 trimethylation in chromatin. Nat Struct Mol Biol 2025:10.1038/s41594-025-01493-w. [PMID: 39984731 DOI: 10.1038/s41594-025-01493-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 01/22/2025] [Indexed: 02/23/2025]
Abstract
Structural diversity of the nucleosome affects chromatin conformations and regulates eukaryotic genome functions. Here we identify DEK, whose function is unknown, as a nucleosome-binding protein. In embryonic neural progenitor cells, DEK colocalizes with H3 K27 trimethylation (H3K27me3), the facultative heterochromatin mark. DEK stimulates the methyltransferase activity of Polycomb repressive complex 2 (PRC2), which is responsible for H3K27me3 deposition in vitro. Cryo-electron microscopy structures of the DEK-nucleosome complexes reveal that DEK binds the nucleosome by its tripartite DNA-binding mode on the dyad and linker DNAs and interacts with the nucleosomal acidic patch by its newly identified histone-binding region. The DEK-nucleosome interaction mediates linker DNA reorientation and induces chromatin compaction, which may facilitate PRC2 activation. These findings provide mechanistic insights into chromatin structure-mediated gene regulation by DEK.
Collapse
Affiliation(s)
- Tomoya Kujirai
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
- Laboratory for Transcription Structural Biology, RIKEN Center for Biosystems Dynamics Research, Yokohama, Japan
| | - Kenta Echigoya
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Yusuke Kishi
- Laboratory of Molecular Neurobiology, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Mai Saeki
- Laboratory of Molecular Neurobiology, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Tomoko Ito
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
| | - Junko Kato
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
| | - Lumi Negishi
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
| | - Hiroshi Kimura
- Cell Biology Center, Institute of Integrated Research, Institute of Science Tokyo, Yokohama, Japan
| | - Hiroshi Masumoto
- Biomedical Research Support Center, Nagasaki University School of Medicine, Nagasaki, Japan
| | - Yoshimasa Takizawa
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
| | - Yukiko Gotoh
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan.
| | - Hitoshi Kurumizaka
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan.
- Laboratory for Transcription Structural Biology, RIKEN Center for Biosystems Dynamics Research, Yokohama, Japan.
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
4
|
Sundaram R, Gandhi S, Jonak C, Vasudevan D. Characterization of the Arabidopsis thaliana chromatin remodeler DEK3 for its interaction with histones and DNA. Biochimie 2024; 227:248-261. [PMID: 39097158 DOI: 10.1016/j.biochi.2024.07.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/04/2024] [Accepted: 07/31/2024] [Indexed: 08/05/2024]
Abstract
Chromatin structure and dynamics regulate all DNA-templated processes, such as transcription, replication, and repair. Chromatin binding factors, chromatin architectural proteins, and nucleosome remodelers modulate chromatin structure and dynamics and, thereby, the various DNA-dependent processes. Arabidopsis thaliana DEK3, a member of the evolutionarily conserved DEK domain-containing chromatin architectural proteins, is an important factor for chromatin structure and function, involved in transcriptional programming to regulate flowering time and abiotic stress tolerance. AtDEK3 contains an uncharacterized N-terminal domain, a middle SAF domain (winged helix-like domain), and a C-terminal DEK domain, but their role in the interaction of AtDEK3 with histones and DNA remained poorly understood. Using biochemical and biophysical analyses, we provide a comprehensive in vitro characterization of the different AtDEK3 domains for their interaction with histone H3/H4 and DNA. AtDEK3 directly interacts with histone H3/H4 tetramers through its N-terminal domain and the C-terminal DEK domain in a 1:1 stoichiometry. Upon interaction with H3/H4, the unstructured N-terminal domain of AtDEK3 undergoes a conformational change and adopts an alpha-helical conformation. In addition, the in-solution envelope structures of the AtDEK3 domains and their complex with H3/H4 have been characterized. The SAF and DEK domains associate with double-stranded and four-way junction DNA. As DEK3 possesses a histone-interacting domain at the N- and the C-terminus and a DNA-binding domain in the middle and at the C-terminus, the protein might play a complex role as a chromatin remodeler.
Collapse
Affiliation(s)
- Rajivgandhi Sundaram
- Institute of Life Sciences, Bhubaneswar, 751023, India; Manipal Academy of Higher Education, Manipal, 576104, India
| | - Surajit Gandhi
- Institute of Life Sciences, Bhubaneswar, 751023, India; Regional Centre for Biotechnology, Faridabad, 121001, India
| | - Claudia Jonak
- AIT Austrian Institute of Technology, Center for Health and Bioresources, Bioresources Unit, Konrad-Lorenz-Strasse 24, 3430 Tulln, Austria
| | - Dileep Vasudevan
- Institute of Life Sciences, Bhubaneswar, 751023, India; Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, 695014, India.
| |
Collapse
|
5
|
Johnstone M, Leck A, Lange T, Wilcher K, Shephard MS, Paranjpe A, Schutte S, Wells S, Kappes F, Salomonis N, Privette Vinnedge LM. The chromatin remodeler DEK promotes proliferation of mammary epithelium and is associated with H3K27me3 epigenetic modifications. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.09.612116. [PMID: 39314335 PMCID: PMC11419013 DOI: 10.1101/2024.09.09.612116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
The DEK chromatin remodeling protein was previously shown to confer oncogenic phenotypes to human and mouse mammary epithelial cells using in vitro and knockout mouse models. However, its functional role in normal mammary gland epithelium remained unexplored. We developed two novel mouse models to study the role of Dek in normal mammary gland biology in vivo . Mammary gland-specific Dek over-expression in mice resulted in hyperproliferation of cells that visually resembled alveolar cells, and a transcriptional profile that indicated increased expression of cell cycle, mammary stem/progenitor, and lactation-associated genes. Conversely, Dek knockout mice exhibited an alveologenesis or lactation defect, resulting in dramatically reduced pup survival. Analysis of previously published single-cell RNA-sequencing of mouse mammary glands revealed that Dek is most highly expressed in mammary stem cells and alveolar progenitor cells, and to a lesser extent in basal epithelial cells, supporting the observed phenotypes. Mechanistically, we discovered that Dek is a modifier of Ezh2 methyltransferase activity, upregulating the levels of histone H3 trimethylation on lysine 27 (H3K27me3) to control gene transcription. Combined, this work indicates that Dek promotes proliferation of mammary epithelial cells via cell cycle deregulation. Furthermore, we report a novel function for Dek in alveologenesis and histone H3 K27 trimethylation.
Collapse
|
6
|
Rodriguez-Rodriguez P, Arroyo-Garcia LE, Tsagkogianni C, Li L, Wang W, Végvári Á, Salas-Allende I, Plautz Z, Cedazo-Minguez A, Sinha SC, Troyanskaya O, Flajolet M, Yao V, Roussarie JP. A cell autonomous regulator of neuronal excitability modulates tau in Alzheimer's disease vulnerable neurons. Brain 2024; 147:2384-2399. [PMID: 38462574 PMCID: PMC11224620 DOI: 10.1093/brain/awae051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/12/2024] [Accepted: 01/19/2024] [Indexed: 03/12/2024] Open
Abstract
Neurons from layer II of the entorhinal cortex (ECII) are the first to accumulate tau protein aggregates and degenerate during prodromal Alzheimer's disease. Gaining insight into the molecular mechanisms underlying this vulnerability will help reveal genes and pathways at play during incipient stages of the disease. Here, we use a data-driven functional genomics approach to model ECII neurons in silico and identify the proto-oncogene DEK as a regulator of tau pathology. We show that epigenetic changes caused by Dek silencing alter activity-induced transcription, with major effects on neuronal excitability. This is accompanied by the gradual accumulation of tau in the somatodendritic compartment of mouse ECII neurons in vivo, reactivity of surrounding microglia, and microglia-mediated neuron loss. These features are all characteristic of early Alzheimer's disease. The existence of a cell-autonomous mechanism linking Alzheimer's disease pathogenic mechanisms in the precise neuron type where the disease starts provides unique evidence that synaptic homeostasis dysregulation is of central importance in the onset of tau pathology in Alzheimer's disease.
Collapse
Affiliation(s)
| | | | - Christina Tsagkogianni
- Department of Neurobiology Care Sciences and Society, Karolinska Institutet, 17 164, Solna, Sweden
| | - Lechuan Li
- Department of Computer Science, Rice University, Houston, TX 77004, USA
| | - Wei Wang
- Bioinformatics Resource Center, The Rockefeller University, New York, NY 10065, USA
| | - Ákos Végvári
- Division of Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 17 164, Solna, Sweden
| | - Isabella Salas-Allende
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, NY 10065, USA
| | - Zakary Plautz
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, NY 10065, USA
| | - Angel Cedazo-Minguez
- Department of Neurobiology Care Sciences and Society, Karolinska Institutet, 17 164, Solna, Sweden
| | - Subhash C Sinha
- Helen and Robert Appel Alzheimer’s Disease Research Institute, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, USA
| | - Olga Troyanskaya
- Department of Computer Science, Princeton University, Princeton, NJ 08540, USA
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
- Center for Computational Biology, Flatiron Institute, Simons Foundation, New York, NY 10010, USA
| | - Marc Flajolet
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, NY 10065, USA
| | - Vicky Yao
- Division of Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 17 164, Solna, Sweden
| | - Jean-Pierre Roussarie
- Department of Anatomy & Neurobiology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA 02118, USA
| |
Collapse
|
7
|
Pierzynska-Mach A, Czada C, Vogel C, Gwosch E, Osswald X, Bartoschek D, Diaspro A, Kappes F, Ferrando-May E. DEK oncoprotein participates in heterochromatin replication via SUMO-dependent nuclear bodies. J Cell Sci 2023; 136:jcs261329. [PMID: 37997922 PMCID: PMC10753498 DOI: 10.1242/jcs.261329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 11/17/2023] [Indexed: 11/25/2023] Open
Abstract
The correct inheritance of chromatin structure is key for maintaining genome function and cell identity and preventing cellular transformation. DEK, a conserved non-histone chromatin protein, has recognized tumor-promoting properties, its overexpression being associated with poor prognosis in various cancer types. At the cellular level, DEK displays pleiotropic functions, influencing differentiation, apoptosis and stemness, but a characteristic oncogenic mechanism has remained elusive. Here, we report the identification of DEK bodies, focal assemblies of DEK that regularly occur at specific, yet unidentified, sites of heterochromatin replication exclusively in late S-phase. In these bodies, DEK localizes in direct proximity to active replisomes in agreement with a function in the early maturation of heterochromatin. A high-throughput siRNA screen, supported by mutational and biochemical analyses, identifies SUMO as one regulator of DEK body formation, linking DEK to the complex SUMO protein network that controls chromatin states and cell fate. This work combines and refines our previous data on DEK as a factor essential for heterochromatin integrity and facilitating replication under stress, and delineates an avenue of further study for unraveling the contribution of DEK to cancer development.
Collapse
Affiliation(s)
| | - Christina Czada
- Department of Biology, Bioimaging Center, University of Konstanz, Konstanz 78464, Germany
| | - Christopher Vogel
- Department of Biology, Bioimaging Center, University of Konstanz, Konstanz 78464, Germany
| | - Eva Gwosch
- Department of Biology, Bioimaging Center, University of Konstanz, Konstanz 78464, Germany
| | - Xenia Osswald
- Department of Biology, Bioimaging Center, University of Konstanz, Konstanz 78464, Germany
| | - Denis Bartoschek
- Department of Biology, Bioimaging Center, University of Konstanz, Konstanz 78464, Germany
| | - Alberto Diaspro
- Nanoscopy & NIC@IIT, Istituto Italiano di Tecnologia, Genoa 16152, Italy
- DIFILAB, Department of Physics, University of Genoa, Genoa 16146, Italy
| | - Ferdinand Kappes
- Duke Kunshan University, Division of Natural and Applied Sciences, Kunshan 215316, People's Republic of China
| | - Elisa Ferrando-May
- Department of Biology, Bioimaging Center, University of Konstanz, Konstanz 78464, Germany
- German Cancer Research Center, Heidelberg 69120, Germany
| |
Collapse
|
8
|
Pierzynska-Mach A, Diaspro A, Cella Zanacchi F. Super-resolution microscopy reveals the nanoscale cluster architecture of the DEK protein cancer biomarker. iScience 2023; 26:108277. [PMID: 38026229 PMCID: PMC10660485 DOI: 10.1016/j.isci.2023.108277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 09/02/2023] [Accepted: 10/17/2023] [Indexed: 12/01/2023] Open
Abstract
DEK protein, a key chromatin regulator, is strongly overexpressed in various forms of cancer. While conventional microscopy revealed DEK as uniformly distributed within the cell nucleus, advanced super-resolution techniques uncovered cluster-like structures. However, a comprehensive understanding of DEK's cellular distribution and its implications in cancer and cell growth remained elusive. To bridge this gap, we employed single-molecule localization microscopy (SMLM) to dissect DEK's nanoscale organization in both normal-like and aggressive breast cancer cell lines. Our investigation included characteristics such as localizations per cluster, cluster areas, and intra-cluster localization densities (ICLDs). We elucidated how cluster features align with different breast cell types and how chromatin decompaction influences DEK clusters in these contexts. Our results indicate that DEK's intra-cluster localization density and nano-organization remain preserved and not significantly influenced by protein overexpression or chromatin compaction changes. This study advances the understanding of DEK's role in cancer and underscores its stable nanoscale behavior.
Collapse
Affiliation(s)
| | - Alberto Diaspro
- Nanoscopy and NIC@IIT, Istituto Italiano di Tecnologia, 16152 Genoa, Italy
- Department of Physics (DIFILAB), Department of Physics, University of Genoa, 16146 Genoa, Italy
| | - Francesca Cella Zanacchi
- Nanoscopy and NIC@IIT, Istituto Italiano di Tecnologia, 16152 Genoa, Italy
- Physics Department E. Fermi, University of Pisa, 56127 Pisa, Italy
- Centro per l’Integrazione della Strumentazione dell’Università di Pisa (CISUP), University of Pisa, 56127 Pisa, Italy
| |
Collapse
|
9
|
Wilcher KE, Page ERH, Privette Vinnedge LM. The impact of the chromatin binding DEK protein in hematopoiesis and acute myeloid leukemia. Exp Hematol 2023; 123:18-27. [PMID: 37172756 PMCID: PMC10330528 DOI: 10.1016/j.exphem.2023.05.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 05/03/2023] [Accepted: 05/07/2023] [Indexed: 05/15/2023]
Abstract
Hematopoiesis is an exquisitely regulated process of cellular differentiation to create diverse cell types of the blood. Genetic mutations, or aberrant regulation of gene transcription, can interrupt normal hematopoiesis. This can have dire pathological consequences, including acute myeloid leukemia (AML), in which generation of the myeloid lineage of differentiated cells is interrupted. In this literature review, we discuss how the chromatin remodeling DEK protein can control hematopoietic stem cell quiescence, hematopoietic progenitor cell proliferation, and myelopoiesis. We further discuss the oncogenic consequences of the t(6;9) chromosomal translocation, which creates the DEK-NUP214 (aka: DEK-CAN) fusion gene, during the pathogenesis of AML. Combined, the literature indicates that DEK is crucial for maintaining homeostasis of hematopoietic stem and progenitor cells, including myeloid progenitors.
Collapse
Affiliation(s)
- Katherine E Wilcher
- Division of Oncology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH; Current: Wright State University Boonshoft School of Medicine, Fairborn, OH
| | - Evan R H Page
- Division of Oncology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Lisa M Privette Vinnedge
- Division of Oncology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH.
| |
Collapse
|
10
|
Özçelik E, Kalaycı A, Çelik B, Avcı A, Akyol H, Kılıç İB, Güzel T, Çetin M, Öztürk MT, Çalışkaner ZO, Tombaz M, Yoleri D, Konu Ö, Kandilci A. Doxorubicin induces prolonged DNA damage signal in cells overexpressing DEK isoform-2. PLoS One 2022; 17:e0275476. [PMID: 36190960 PMCID: PMC9529144 DOI: 10.1371/journal.pone.0275476] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 09/17/2022] [Indexed: 11/06/2022] Open
Abstract
DEK has a short isoform (DEK isoform-2; DEK2) that lacks amino acid residues between 49–82. The full-length DEK (DEK isoform-1; DEK1) is ubiquitously expressed and plays a role in different cellular processes but whether DEK2 is involved in these processes remains elusive. We stably overexpressed DEK2 in human bone marrow stromal cell line HS-27A, in which endogenous DEKs were intact or suppressed via short hairpin RNA (sh-RNA). We have found that contrary to ectopic DEK1, DEK2 locates in the nucleus and nucleolus, causes persistent γH2AX signal upon doxorubicin treatment, and couldn’t functionally compensate for the loss of DEK1. In addition, DEK2 overexpressing cells were more sensitive to doxorubicin than DEK1-cells. Expressions of DEK1 and DEK2 in cell lines and primary tumors exhibit tissue specificity. DEK1 is upregulated in cancers of the colon, liver, and lung compared to normal tissues while both DEK1 and DEK2 are downregulated in subsets of kidney, prostate, and thyroid carcinomas. Interestingly, only DEK2 was downregulated in a subset of breast tumors suggesting that DEK2 can be modulated differently than DEK1 in specific cancers. In summary, our findings show distinct expression patterns and subcellular location and suggest non-overlapping functions between the two DEK isoforms.
Collapse
Affiliation(s)
- Emrah Özçelik
- Department of Molecular Biology and Genetics, Gebze Technical University, Gebze, Kocaeli, Turkey
| | - Ahmet Kalaycı
- Department of Molecular Biology and Genetics, Gebze Technical University, Gebze, Kocaeli, Turkey
| | - Büşra Çelik
- Department of Molecular Biology and Genetics, Gebze Technical University, Gebze, Kocaeli, Turkey
| | - Açelya Avcı
- Department of Molecular Biology and Genetics, Gebze Technical University, Gebze, Kocaeli, Turkey
| | - Hasan Akyol
- Department of Molecular Biology and Genetics, Gebze Technical University, Gebze, Kocaeli, Turkey
| | - İrfan Baki Kılıç
- Department of Molecular Biology and Genetics, Gebze Technical University, Gebze, Kocaeli, Turkey
| | - Türkan Güzel
- Department of Molecular Biology and Genetics, Gebze Technical University, Gebze, Kocaeli, Turkey
| | - Metin Çetin
- Department of Molecular Biology and Genetics, Gebze Technical University, Gebze, Kocaeli, Turkey
| | - Merve Tuzlakoğlu Öztürk
- Department of Molecular Biology and Genetics, Gebze Technical University, Gebze, Kocaeli, Turkey
| | - Zihni Onur Çalışkaner
- Department of Molecular Biology and Genetics, Gebze Technical University, Gebze, Kocaeli, Turkey
| | - Melike Tombaz
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey
| | - Dilan Yoleri
- Department of Molecular Biology and Genetics, Gebze Technical University, Gebze, Kocaeli, Turkey
| | - Özlen Konu
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey
| | - Ayten Kandilci
- Department of Molecular Biology and Genetics, Gebze Technical University, Gebze, Kocaeli, Turkey
- * E-mail:
| |
Collapse
|
11
|
Chiriches C, Nicolaisen N, Wieske M, Elhaddad H, Mehmetbeyoglu E, Alvares C, Becher D, Hole P, Ottmann OG, Ruthardt M. Understanding a high-risk acute myeloid leukemia by analyzing the interactome of its major driver mutation. PLoS Genet 2022; 18:e1010463. [PMID: 36288392 PMCID: PMC9639852 DOI: 10.1371/journal.pgen.1010463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 11/07/2022] [Accepted: 10/04/2022] [Indexed: 11/09/2022] Open
Abstract
The WHO classifies t(6;9)-positive acute myeloid leukemia (AML) as a subgroup of high-risk AML because of its clinical and biological peculiarities, such as young age and therapy resistance. t(6;9) encodes the DEK/NUP214 fusion oncoprotein that targets only a small subpopulation of bone marrow progenitors for leukemic transformation. This distinguishes DEK/NUP214 from other fusion oncoproteins, such as PML/RARα, RUNX1/ETO, or MLL/AF9, which have a broad target population they block differentiation and increase stem cell capacity. A common theme among most leukemogenic fusion proteins is their aberrant localization compared to their wild-type counterparts. Although the actual consequences are widely unknown, it seems to contribute to leukemogenesis most likely by a sequester of interaction partners. Thus, we applied a global approach to studying the consequences of the aberrant localization of t(6;9)-DEK/NUP214 for its interactome. This study aimed to disclose the role of localization of DEK/NUP214 and the related sequester of proteins interacting with DEK/NUP214 for the determination of the biology of t(6;9)-AML. Here we show the complexity of the biological consequences of the expression of DEK/NUP214 by an in-depth bioinformatic analysis of the interactome of DEK/NUP214 and its biologically dead mutants. DEK/NUP214's interactome points to an essential role for aberrant RNA-regulation and aberrant regulation of apoptosis and leukocyte activation as a significant determinant of the phenotype of t(6;9)-AML. Taken together, we provide evidence that the interactome contributes to the aberrant biology of an oncoprotein, providing opportunities for developing novel targeted therapy approaches.
Collapse
Affiliation(s)
- Claudia Chiriches
- Division of Cancer and Genetics, Section of Hematology, School of Medicine, Cardiff University, Cardiff, United Kingdom
- Experimental Clinical Medical Center (ECMC) Cardiff, School of Medicine, Cardiff University, Cardiff, United Kingdom
- * E-mail: (CC); (MR)
| | - Nathalie Nicolaisen
- Department of Hematology, Medical Clinic II Goethe University Frankfurt, Germany
| | - Maria Wieske
- Department of Hematology, Medical Clinic II Goethe University Frankfurt, Germany
| | - Heba Elhaddad
- Division of Cancer and Genetics, Section of Hematology, School of Medicine, Cardiff University, Cardiff, United Kingdom
- Experimental Clinical Medical Center (ECMC) Cardiff, School of Medicine, Cardiff University, Cardiff, United Kingdom
- Faculty of Medicine, Department of Clinical Pathology, Mansoura University, Mansoura, Egypt
| | - Ecmel Mehmetbeyoglu
- Division of Cancer and Genetics, Section of Hematology, School of Medicine, Cardiff University, Cardiff, United Kingdom
- Experimental Clinical Medical Center (ECMC) Cardiff, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Caroline Alvares
- Division of Cancer and Genetics, Section of Hematology, School of Medicine, Cardiff University, Cardiff, United Kingdom
- Experimental Clinical Medical Center (ECMC) Cardiff, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Dörte Becher
- Institute of Microbiology, Microbial Proteomics, Ernst Moritz Arndt University, Greifswald, Germany
| | - Paul Hole
- Division of Cancer and Genetics, Section of Hematology, School of Medicine, Cardiff University, Cardiff, United Kingdom
- Experimental Clinical Medical Center (ECMC) Cardiff, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Oliver Gerhard Ottmann
- Division of Cancer and Genetics, Section of Hematology, School of Medicine, Cardiff University, Cardiff, United Kingdom
- Experimental Clinical Medical Center (ECMC) Cardiff, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Martin Ruthardt
- Division of Cancer and Genetics, Section of Hematology, School of Medicine, Cardiff University, Cardiff, United Kingdom
- Experimental Clinical Medical Center (ECMC) Cardiff, School of Medicine, Cardiff University, Cardiff, United Kingdom
- * E-mail: (CC); (MR)
| |
Collapse
|
12
|
Habiburrahman M, Wardoyo MP, Sutopo S, Rahadiani N. Potential of DEK proto-oncogene as a prognostic biomarker for colorectal cancer: An evidence-based review. Mol Clin Oncol 2022; 17:117. [PMID: 35747597 PMCID: PMC9204329 DOI: 10.3892/mco.2022.2550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 05/09/2022] [Indexed: 11/23/2022] Open
Abstract
Given its role in tumorigenesis and its correlation with various pathologic features of colorectal cancer (CRC), DEK is considered to have the potential to predict CRC prognosis. This review attempts to summarize current knowledge and evidence supporting the potential of DEK as a prognostic biomarker of CRC. We searched meta-analyses, systematic reviews, cohort studies, and cell line studies published in the last 10 years. A literature search was conducted in PubMed, Pubmed Central (PMC), Proquest, EBSCOHost, Scopus, and Cochrane Library using the keywords 'colorectal/colon/rectal cancer', 'DEK', 'biomarker', and 'prognosis'. Studies that were not published in English, without accessible full text, unrelated to clinical questions, or conducted with a design unsuitable for the eligibility criteria were excluded. Seven included studies reported the potential of DEK as a prognostic biomarker of CRC and its role in cancer cell proliferation, invasion, and metastasis. This role is achieved through the Wnt/β-catenin pathway, prevention of apoptosis through destabilization of p53, and bridging inflammation and tumorigenesis through the nuclear factor (NF)-κB pathway, causing chronic inflammation and activation of tumorigenic genes. DEK overexpression is also associated with CRC clinical and pathological features, such as tumor size, lymph node metastasis, serosal invasion, differentiation, tumor staging, and epithelial-mesenchymal transition. DEK overexpression was found to be associated with lower survival and recovery rates. Its prognostic value was comparable with other prognostic biomarkers of CRC, such as BRAF, topoisomerase-1, and CEA. A cohort study reported that DEK overexpression was associated with a better response to fluoropyrimidine-based chemotherapy, while a cell-line study indicated a correlation between DEK overexpression with a worse response to irinotecan-based chemotherapy. In conclusion, considering its correlation with CRC pathology, its association with worse CRC patient survival, and its possibility to forecast the therapeutic response of various chemotherapeutic regimens, DEK has the potential to be used as a CRC prognostic biomarker.
Collapse
Affiliation(s)
- Muhammad Habiburrahman
- Faculty of Medicine, Universitas Indonesia/Dr Cipto Mangunkusumo Hospital, Jakarta 10430, Indonesia
| | | | - Stefanus Sutopo
- Faculty of Medicine, Universitas Indonesia/Dr Cipto Mangunkusumo Hospital, Jakarta 10430, Indonesia
| | - Nur Rahadiani
- Department of Anatomical Pathology, Faculty of Medicine Universitas Indonesia/Dr Cipto Mangunkusumo Hospital, Jakarta 10430, Indonesia
| |
Collapse
|
13
|
Waidmann S, Petutschnig E, Rozhon W, Molnár G, Popova O, Mechtler K, Jonak C. GSK3-mediated phosphorylation of DEK3 regulates chromatin accessibility and stress tolerance in Arabidopsis. FEBS J 2021; 289:473-493. [PMID: 34492159 DOI: 10.1111/febs.16186] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/19/2021] [Accepted: 09/06/2021] [Indexed: 12/18/2022]
Abstract
Chromatin dynamics enable the precise control of transcriptional programmes. The balance between restricting and opening of regulatory sequences on the DNA needs to be adjusted to prevailing conditions and is fine-tuned by chromatin remodelling proteins. DEK is an evolutionarily conserved chromatin architectural protein regulating important chromatin-related processes. However, the molecular link between DEK-induced chromatin reconfigurations and upstream signalling events remains unknown. Here, we show that ASKβ/AtSK31 is a salt stress-activated glycogen synthase kinase 3 (GSK3) from Arabidopsis thaliana that phosphorylates DEK3. This specific phosphorylation alters nuclear DEK3 protein complex composition and affects nucleosome occupancy and chromatin accessibility that is translated into changes in gene expression, contributing to salt stress tolerance. These findings reveal that DEK3 phosphorylation is critical for chromatin function and cellular stress response and provide a mechanistic example of how GSK3-based signalling is directly linked to chromatin, facilitating a transcriptional response.
Collapse
Affiliation(s)
- Sascha Waidmann
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Austria
| | - Elena Petutschnig
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Austria
| | - Wilfried Rozhon
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Austria
| | - Gergely Molnár
- AIT Austrian Institute of Technology, Center for Health & Bioresources, Tulln, Austria
| | - Olga Popova
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Austria
| | - Karl Mechtler
- Research Institute of Molecular Pathology, Vienna BioCenter, Austria
| | - Claudia Jonak
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Austria.,AIT Austrian Institute of Technology, Center for Health & Bioresources, Tulln, Austria
| |
Collapse
|
14
|
Yang MQ, Bai LL, Wang Z, Lei L, Zheng YW, Li ZH, Huang WJ, Liu CC, Xu HT. DEK is highly expressed in breast cancer and is associated with malignant phenotype and progression. Oncol Lett 2021; 21:440. [PMID: 33868478 PMCID: PMC8045159 DOI: 10.3892/ol.2021.12701] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 03/10/2021] [Indexed: 01/21/2023] Open
Abstract
DEK proto-oncogene (DEK) has been demonstrated as an oncogene and is associated with the development of many types of tumor; however, the expression and role of DEK in breast cancer remain unknown. The present study aimed to determine the role of DEK in the progression of breast cancer. The expression of DEK in 110 breast cancer tissues and 50 adjacent normal breast tissues was examined using immunohistochemistry. Furthermore, DEK expression was upregulated by DEK transfection or downregulated by DEK shRNA interference in MCF7 cells. Proliferative and invasive abilities were examined in MCF7 cells using MTT assay, colony-formation assay and transwell invasion assays. The results demonstrated that DEK expression level was significantly increased in breast cancer tissues compared with normal breast tissues. Furthermore, high DEK expression was associated with high histological grade, lymph node metastasis, advanced Tumor-Node-Metastasis stage and high Ki-67 index; however, DEK expression was not associated with the expression level of estrogen receptor, progesterone receptor, and human epidermal growth factor receptor 2. High DEK expression indicated poor prognosis in patients with breast cancer. DEK overexpression upregulated the protein expression of β-catenin and Wnt and increased the proliferative and invasive abilities of breast cancer cells. DEK downregulation had the opposite effect. Taken together, the results from the present study demonstrated that high expression of DEK was common in patients with breast cancer and was associated with progression of the disease and poor prognosis, and that DEK overexpression promoted the proliferative and invasive abilities of breast cancer cells.
Collapse
Affiliation(s)
- Mai-Qing Yang
- Department of Pathology, The First Hospital and College of Basic Medical Sciences of China Medical University, Shenyang, Liaoning 110001, P.R. China
- Department of Pathology, Changyi People's Hospital, Changyi, Shandong 261300, P.R. China
| | - Lin-Lin Bai
- Department of Pathology, Shenyang 242 Hospital, Shenyang, Liaoning 110034, P.R. China
| | - Zhao Wang
- Department of Pathology, The First Hospital and College of Basic Medical Sciences of China Medical University, Shenyang, Liaoning 110001, P.R. China
- Department of Pathology, General Hospital of Heilongjiang Land Reclamation Bureau, Harbin, Heilongjiang 150088, P.R. China
| | - Lei Lei
- Department of Pathology, The First Hospital and College of Basic Medical Sciences of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Yi-Wen Zheng
- Department of Pathology, The First Hospital and College of Basic Medical Sciences of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Zhi-Han Li
- Department of Pathology, The First Hospital and College of Basic Medical Sciences of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Wen-Jing Huang
- Department of Pathology, The First Hospital and College of Basic Medical Sciences of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Chen-Chen Liu
- Department of Pathology, The First Hospital and College of Basic Medical Sciences of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Hong-Tao Xu
- Department of Pathology, The First Hospital and College of Basic Medical Sciences of China Medical University, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
15
|
Chen Z, Huo D, Li L, Liu Z, Li Z, Xu S, Huang Y, Wu W, Zhou C, Liu Y, Kuang M, Wu F, Li H, Qian P, Song G, Wu X, Chen J, Hou Y. Nuclear DEK preserves hematopoietic stem cells potential via NCoR1/HDAC3-Akt1/2-mTOR axis. J Exp Med 2021; 218:e20201974. [PMID: 33755722 PMCID: PMC7992411 DOI: 10.1084/jem.20201974] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 01/16/2021] [Accepted: 02/18/2021] [Indexed: 12/14/2022] Open
Abstract
The oncogene DEK is found fused with the NUP214 gene creating oncoprotein DEK-NUP214 that induces acute myeloid leukemia (AML) in patients, and secreted DEK protein functions as a hematopoietic cytokine to regulate hematopoiesis; however, the intrinsic role of nuclear DEK in hematopoietic stem cells (HSCs) remains largely unknown. Here, we show that HSCs lacking DEK display defects in long-term self-renew capacity, eventually resulting in impaired hematopoiesis. DEK deficiency reduces quiescence and accelerates mitochondrial metabolism in HSCs, in part, dependent upon activating mTOR signaling. At the molecular level, DEK recruits the corepressor NCoR1 to repress acetylation of histone 3 at lysine 27 (H3K27ac) and restricts the chromatin accessibility of HSCs, governing the expression of quiescence-associated genes (e.g., Akt1/2, Ccnb2, and p21). Inhibition of mTOR activity largely restores the maintenance and potential of Dek-cKO HSCs. These findings highlight the crucial role of nuclear DEK in preserving HSC potential, uncovering a new link between chromatin remodelers and HSC homeostasis, and have clinical implications.
Collapse
Affiliation(s)
- Zhe Chen
- Department of Hematology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Dawei Huo
- Department of Cell Biology, Tianjin Medical University, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Tianjin, China
| | - Lei Li
- Department of Hematology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Zhilong Liu
- Department of Hematology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Zhigang Li
- Department of Hematology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Shuangnian Xu
- Department of Hematology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yongxiu Huang
- Department of Hematology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Weiru Wu
- Department of Hematology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Chengfang Zhou
- Department of Hematology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yuanyuan Liu
- Department of Hematology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Mei Kuang
- Department of Hematology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Feng Wu
- Department of Hematology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Hui Li
- Department of Hematology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Pengxu Qian
- Center of Stem Cell and Regenerative Medicine, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Guanbin Song
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Xudong Wu
- Department of Cell Biology, Tianjin Medical University, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Tianjin, China
| | - Jieping Chen
- Department of Hematology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yu Hou
- Department of Hematology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| |
Collapse
|
16
|
Guo H, Prell M, Königs H, Xu N, Waldmann T, Hermans-Sachweh B, Ferrando-May E, Lüscher B, Kappes F. Bacterial Growth Inhibition Screen (BGIS) identifies a loss-of-function mutant of the DEK oncogene, indicating DNA modulating activities of DEK in chromatin. FEBS Lett 2021; 595:1438-1453. [PMID: 33686684 DOI: 10.1002/1873-3468.14070] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 02/26/2021] [Indexed: 02/06/2023]
Abstract
The DEK oncoprotein regulates cellular chromatin function via a number of protein-protein interactions. However, the biological relevance of its unique pseudo-SAP/SAP-box domain, which transmits DNA modulating activities in vitro, remains largely speculative. As hypothesis-driven mutations failed to yield DNA-binding null (DBN) mutants, we combined random mutagenesis with the Bacterial Growth Inhibition Screen (BGIS) to overcome this bottleneck. Re-expression of a DEK-DBN mutant in newly established human DEK knockout cells failed to reduce the increase in nuclear size as compared to wild type, indicating roles for DEK-DNA interactions in cellular chromatin organization. Our results extend the functional roles of DEK in metazoan chromatin and highlight the predictive ability of recombinant protein toxicity in E. coli for unbiased studies of eukaryotic DNA modulating protein domains.
Collapse
Affiliation(s)
- Haihong Guo
- Institute for Biochemistry and Molecular Biology, Medical School, RWTH Aachen University, Germany
| | - Malte Prell
- Institute for Biochemistry and Molecular Biology, Medical School, RWTH Aachen University, Germany
| | - Hiltrud Königs
- Institute of Pathology, Medical School, RWTH Aachen University, Germany
| | - Nengwei Xu
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Dushu Lake Higher Education Town, Suzhou Industrial Park, China
| | - Tanja Waldmann
- Doerenkamp-Zbinden Chair for In Vitro Toxicology and Biomedicine, University of Konstanz, Germany
| | | | - Elisa Ferrando-May
- Bioimaging Center, Department of Biology, University of Konstanz, Germany
| | - Bernhard Lüscher
- Institute for Biochemistry and Molecular Biology, Medical School, RWTH Aachen University, Germany
| | - Ferdinand Kappes
- Institute for Biochemistry and Molecular Biology, Medical School, RWTH Aachen University, Germany
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Dushu Lake Higher Education Town, Suzhou Industrial Park, China
| |
Collapse
|
17
|
Guo H, Xu N, Prell M, Königs H, Hermanns-Sachweh B, Lüscher B, Kappes F. Bacterial Growth Inhibition Screen (BGIS): harnessing recombinant protein toxicity for rapid and unbiased interrogation of protein function. FEBS Lett 2021; 595:1422-1437. [PMID: 33704777 DOI: 10.1002/1873-3468.14072] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 02/28/2021] [Accepted: 03/02/2021] [Indexed: 12/13/2022]
Abstract
In two proof-of-concept studies, we established and validated the Bacterial Growth Inhibition Screen (BGIS), which explores recombinant protein toxicity in Escherichia coli as a largely overlooked and alternative means for basic characterization of functional eukaryotic protein domains. By applying BGIS, we identified an unrecognized RNA-interacting domain in the DEK oncoprotein (this study) and successfully combined BGIS with random mutagenesis as a screening tool for loss-of-function mutants of the DNA modulating domain of DEK [1]. Collectively, our findings shed new light on the phenomenon of recombinant protein toxicity in E. coli. Given the easy and rapid implementation and wide applicability, BGIS will extend the repertoire of basic methods for the identification, analysis and unbiased manipulation of proteins.
Collapse
Affiliation(s)
- Haihong Guo
- Institute for Biochemistry and Molecular Biology, Medical School, RWTH Aachen University, Germany
| | - Nengwei Xu
- Department of Biological Sciences, Suzhou Dushu Lake Science and Education Innovation District, Suzhou Industrial Park, Xi'an Jiaotong-Liverpool University, Suzhou, China
| | - Malte Prell
- Institute for Biochemistry and Molecular Biology, Medical School, RWTH Aachen University, Germany
| | - Hiltrud Königs
- Institute of Pathology, Medical School, RWTH Aachen University, Germany
| | | | - Bernhard Lüscher
- Institute for Biochemistry and Molecular Biology, Medical School, RWTH Aachen University, Germany
| | - Ferdinand Kappes
- Institute for Biochemistry and Molecular Biology, Medical School, RWTH Aachen University, Germany
- Department of Biological Sciences, Suzhou Dushu Lake Science and Education Innovation District, Suzhou Industrial Park, Xi'an Jiaotong-Liverpool University, Suzhou, China
| |
Collapse
|
18
|
Zhang H, Yan M, Deng R, Song F, Jiang M. The silencing of DEK reduced disease resistance against Botrytis cinerea and Pseudomonas syringae pv. tomato DC3000 based on virus-induced gene silencing analysis in tomato. Gene 2020; 727:144245. [PMID: 31715302 DOI: 10.1016/j.gene.2019.144245] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 10/29/2019] [Accepted: 10/29/2019] [Indexed: 10/25/2022]
Abstract
DEK involves in the modulation of cell proliferation, differentiation, apoptosis, migration and cell senescence. However, direct genetic evidence proving the functions of DEK in disease resistance against pathogens is still deficient. In the present study, four DEKs were identified in tomato genome and their roles in disease resistance in tomato were analyzed. The expression levels of DEKs were differently induced by Botrytis cinerea, Pseudomonas syringae pv. tomato (Pst) DC3000 and defense-related signaling molecules (such as jasmonic acid, aethylene precursor and salicylic acid). The DEKs' silencing by virus induced gene silencing led to decreased resistance against B. cinerea or Pst DC3000. The underlying mechanisms may be through the upregulation of the accumulation of reactive oxygen species (ROS) and the changed expression levels of defense-related genes by pathogen inoculation. These results indicate that DEKs involve in disease resistance against different pathogens and thus broaden the knowledge of DEK genes' function in tomato.
Collapse
Affiliation(s)
- Huijuan Zhang
- Collegue of Life Science, Taizhou University, Taizhou, China
| | - Mengjiao Yan
- Collegue of Life Science, Taizhou University, Taizhou, China
| | - Rong Deng
- Collegue of Life Science, Taizhou University, Taizhou, China
| | - Fengming Song
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Ming Jiang
- Collegue of Life Science, Taizhou University, Taizhou, China.
| |
Collapse
|
19
|
Ganz M, Vogel C, Czada C, Jörke V, Gwosch EC, Kleiner R, Pierzynska-Mach A, Zanacchi FC, Diaspro A, Kappes F, Bürkle A, Ferrando-May E. The oncoprotein DEK affects the outcome of PARP1/2 inhibition during mild replication stress. PLoS One 2019; 14:e0213130. [PMID: 31408463 PMCID: PMC6692024 DOI: 10.1371/journal.pone.0213130] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 07/03/2019] [Indexed: 01/07/2023] Open
Abstract
DNA replication stress is a major source of genomic instability and is closely linked to tumor formation and progression. Poly(ADP-ribose)polymerases1/2 (PARP1/2) enzymes are activated in response to replication stress resulting in poly(ADP-ribose) (PAR) synthesis. PARylation plays an important role in the remodelling and repair of impaired replication forks, providing a rationale for targeting highly replicative cancer cells with PARP1/2 inhibitors. The human oncoprotein DEK is a unique, non-histone chromatin architectural protein whose deregulated expression is associated with the development of a wide variety of human cancers. Recently, we showed that DEK is a high-affinity target of PARylation and that it promotes the progression of impaired replication forks. Here, we investigated a potential functional link between PAR and DEK in the context of replication stress. Under conditions of mild replication stress induced either by topoisomerase1 inhibition with camptothecin or nucleotide depletion by hydroxyurea, we found that the effect of acute PARP1/2 inhibition on replication fork progression is dependent on DEK expression. Reducing DEK protein levels also overcomes the restart impairment of stalled forks provoked by blocking PARylation. Non-covalent DEK-PAR interaction via the central PAR-binding domain of DEK is crucial for counteracting PARP1/2 inhibition as shown for the formation of RPA positive foci in hydroxyurea treated cells. Finally, we show by iPOND and super resolved microscopy that DEK is not directly associated with the replisome since it binds to DNA at the stage of chromatin formation. Our report sheds new light on the still enigmatic molecular functions of DEK and suggests that DEK expression levels may influence the sensitivity of cancer cells to PARP1/2 inhibitors.
Collapse
Affiliation(s)
- Magdalena Ganz
- Department of Biology, Bioimaging Center, University of Konstanz, Konstanz, Germany
| | - Christopher Vogel
- Department of Biology, Bioimaging Center, University of Konstanz, Konstanz, Germany
| | - Christina Czada
- Department of Biology, Bioimaging Center, University of Konstanz, Konstanz, Germany
| | - Vera Jörke
- Department of Biology, Bioimaging Center, University of Konstanz, Konstanz, Germany
| | - Eva Christina Gwosch
- Department of Biology, Bioimaging Center, University of Konstanz, Konstanz, Germany
| | - Rebecca Kleiner
- Department of Biology, Bioimaging Center, University of Konstanz, Konstanz, Germany
| | - Agnieszka Pierzynska-Mach
- Nanoscopy and NIC@IIT, Istituto Italiano di Tecnologia, Genoa, Italy
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
| | - Francesca Cella Zanacchi
- Nanoscopy and NIC@IIT, Istituto Italiano di Tecnologia, Genoa, Italy
- Biophysics Institute (IBF), National Research Council (CNR), Genoa, Italy
| | - Alberto Diaspro
- Nanoscopy and NIC@IIT, Istituto Italiano di Tecnologia, Genoa, Italy
- DIFILAB, Department of Physics, University of Genoa, Genoa, Italy
| | - Ferdinand Kappes
- Xi’an Jiaotong-Liverpool University, Dushu Lake Higher Education Town, Suzhou, China
| | - Alexander Bürkle
- Department of Biology, Molecular Toxicology Group, University of Konstanz, Konstanz, Germany
| | - Elisa Ferrando-May
- Department of Biology, Bioimaging Center, University of Konstanz, Konstanz, Germany
| |
Collapse
|
20
|
DEK terminates diapause by activation of quiescent cells in the crustacean Artemia. Biochem J 2019; 476:1753-1769. [PMID: 31189566 DOI: 10.1042/bcj20190169] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 06/11/2019] [Accepted: 06/12/2019] [Indexed: 12/24/2022]
Abstract
To cope with harsh environments, the Artemia shrimp produces gastrula embryos in diapause, a state of obligate dormancy, having cellular quiescence and suppressed metabolism. The mechanism behind these cellular events remains largely unknown. Here, we study the regulation of cell quiescence using diapause embryos of Artemia We found that Artemia DEK (Ar-DEK), a nuclear factor protein, was down-regulated in the quiescent cells of diapause embryos and enriched in the activated cells of post-diapause embryos. Knockdown of Ar-DEK induced the production of diapause embryos whereas the control Artemia released free-swimming nuaplii. Our results indicate that Ar-DEK correlated with the termination of cellular quiescence via the increase in euchromatin and decrease in heterochromatin. The phenomena of quiescence have many implications beyond shrimp ecology. In cancer cells, for example, knockdown of DEK also induced a short period of cellular quiescence and increased resistance to environmental stress in MCF-7 and MKN45 cancer cell lines. Analysis of RNA sequences in Artemia and in MCF-7 revealed that the Wnt and AURKA signaling pathways were all down-regulated and the p53 signaling pathway was up-regulated upon inhibition of DEK expression. Our results provide insight into the functions of Ar-DEK in the activation of cellular quiescence during diapause formation in Artemia.
Collapse
|
21
|
Capitano ML, Mor-Vaknin N, Saha AK, Cooper S, Legendre M, Guo H, Contreras-Galindo R, Kappes F, Sartor MA, Lee CT, Huang X, Markovitz DM, Broxmeyer HE. Secreted nuclear protein DEK regulates hematopoiesis through CXCR2 signaling. J Clin Invest 2019; 129:2555-2570. [PMID: 31107242 PMCID: PMC6546479 DOI: 10.1172/jci127460] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 03/19/2019] [Indexed: 12/13/2022] Open
Abstract
The nuclear protein DEK is an endogenous DNA-binding chromatin factor regulating hematopoiesis. DEK is one of only 2 known secreted nuclear chromatin factors, but whether and how extracellular DEK regulates hematopoiesis is not known. We demonstrated that extracellular DEK greatly enhanced ex vivo expansion of cytokine-stimulated human and mouse hematopoietic stem cells (HSCs) and regulated HSC and hematopoietic progenitor cell (HPC) numbers in vivo and in vitro as determined both phenotypically (by flow cytometry) and functionally (through transplantation and colony formation assays). Recombinant DEK increased long-term HSC numbers and decreased HPC numbers through a mechanism mediated by the CXC chemokine receptor CXCR2 and heparan sulfate proteoglycans (HSPGs) (as determined utilizing Cxcr2-/- mice, blocking CXCR2 antibodies, and 3 different HSPG inhibitors) that was associated with enhanced phosphorylation of ERK1/2, AKT, and p38 MAPK. To determine whether extracellular DEK required nuclear function to regulate hematopoiesis, we utilized 2 mutant forms of DEK: one that lacked its nuclear translocation signal and one that lacked DNA-binding ability. Both altered HSC and HPC numbers in vivo or in vitro, suggesting the nuclear function of DEK is not required. Thus, DEK acts as a hematopoietic cytokine, with the potential for clinical applicability.
Collapse
Affiliation(s)
- Maegan L. Capitano
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Nirit Mor-Vaknin
- Department of Internal Medicine, Division of Infectious Disease, University of Michigan, Ann Arbor, Michigan, USA
| | - Anjan K. Saha
- Department of Internal Medicine, Division of Infectious Disease, University of Michigan, Ann Arbor, Michigan, USA
| | - Scott Cooper
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Maureen Legendre
- Department of Internal Medicine, Division of Infectious Disease, University of Michigan, Ann Arbor, Michigan, USA
| | - Haihong Guo
- Institute of Biochemistry and Molecular Biology, Medical School, RWTH Aachen University, Aachen, Germany
| | - Rafael Contreras-Galindo
- Department of Internal Medicine, Division of Infectious Disease, University of Michigan, Ann Arbor, Michigan, USA
| | - Ferdinand Kappes
- Institute of Biochemistry and Molecular Biology, Medical School, RWTH Aachen University, Aachen, Germany
- Department of Biological Sciences, Xi’an Jiaotong-Liverpool University, Suzhou, China
| | - Maureen A. Sartor
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, USA
- Department of Biostatistics, University of Michigan, Ann Arbor, Michigan, USA
| | - Christopher T. Lee
- Department of Biostatistics, University of Michigan, Ann Arbor, Michigan, USA
| | - Xinxin Huang
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - David M. Markovitz
- Department of Internal Medicine, Division of Infectious Disease, University of Michigan, Ann Arbor, Michigan, USA
| | - Hal E. Broxmeyer
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
22
|
Mendes A, Fahrenkrog B. NUP214 in Leukemia: It's More than Transport. Cells 2019; 8:cells8010076. [PMID: 30669574 PMCID: PMC6356203 DOI: 10.3390/cells8010076] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 01/10/2019] [Accepted: 01/17/2019] [Indexed: 12/15/2022] Open
Abstract
NUP214 is a component of the nuclear pore complex (NPC) with a key role in protein and mRNA nuclear export. Chromosomal translocations involving the NUP214 locus are recurrent in acute leukemia and frequently fuse the C-terminal region of NUP214 with SET and DEK, two chromatin remodeling proteins with roles in transcription regulation. SET-NUP214 and DEK-NUP214 fusion proteins disrupt protein nuclear export by inhibition of the nuclear export receptor CRM1, which results in the aberrant accumulation of CRM1 protein cargoes in the nucleus. SET-NUP214 is primarily associated with acute lymphoblastic leukemia (ALL), whereas DEK-NUP214 exclusively results in acute myeloid leukemia (AML), indicating different leukemogenic driver mechanisms. Secondary mutations in leukemic blasts may contribute to the different leukemia outcomes. Additional layers of complexity arise from the respective functions of SET and DEK in transcription regulation and chromatin remodeling, which may drive malignant hematopoietic transformation more towards ALL or AML. Another, less frequent fusion protein involving the C terminus of NUP214 results in the sequestosome-1 (SQSTM1)-NUP214 chimera, which was detected in ALL. SQSTM1 is a ubiquitin-binding protein required for proper autophagy induction, linking the NUP214 fusion protein to yet another cellular mechanism. The scope of this review is to summarize the general features of NUP214-related leukemia and discuss how distinct chromosomal translocation partners can influence the cellular effects of NUP214 fusion proteins in leukemia.
Collapse
Affiliation(s)
- Adélia Mendes
- Institute of Biology and Molecular Medicine, Université Libre de Bruxelles, 6041 Charleroi, Belgium.
| | - Birthe Fahrenkrog
- Institute of Biology and Molecular Medicine, Université Libre de Bruxelles, 6041 Charleroi, Belgium.
| |
Collapse
|
23
|
Overexpression of Trypanosoma cruzi High Mobility Group B protein (TcHMGB) alters the nuclear structure, impairs cytokinesis and reduces the parasite infectivity. Sci Rep 2019; 9:192. [PMID: 30655631 PMCID: PMC6336821 DOI: 10.1038/s41598-018-36718-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Accepted: 11/21/2018] [Indexed: 12/28/2022] Open
Abstract
Kinetoplastid parasites, included Trypanosoma cruzi, the causal agent of Chagas disease, present a unique genome organization and gene expression. Although they control gene expression mainly post-transcriptionally, chromatin accessibility plays a fundamental role in transcription initiation control. We have previously shown that High Mobility Group B protein from Trypanosoma cruzi (TcHMGB) can bind DNA in vitro. Here, we show that TcHMGB also acts as an architectural protein in vivo, since the overexpression of this protein induces changes in the nuclear structure, mainly the reduction of the nucleolus and a decrease in the heterochromatin:euchromatin ratio. Epimastigote replication rate was markedly reduced presumably due to a delayed cell cycle progression with accumulation of parasites in G2/M phase and impaired cytokinesis. Some functions involved in pathogenesis were also altered in TcHMGB-overexpressing parasites, like the decreased efficiency of trypomastigotes to infect cells in vitro, the reduction of intracellular amastigotes replication and the number of released trypomastigotes. Taken together, our results suggest that the TcHMGB protein is a pleiotropic player that controls cell phenotype and it is involved in key cellular processes.
Collapse
|
24
|
de Albuquerque Oliveira AC, Kappes F, Martins DBG, de Lima Filho JL. The unique DEK oncoprotein in women's health: A potential novel biomarker. Biomed Pharmacother 2018; 106:142-148. [PMID: 29957464 DOI: 10.1016/j.biopha.2018.06.082] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 06/13/2018] [Accepted: 06/14/2018] [Indexed: 12/20/2022] Open
Abstract
Breast and cervical cancer are the first and fourth cancer types with the highest prevalence in women, respectively. The developmental profiles of cancer in women can vary by genetic markers and cellular events. In turn, age and lifestyle influence in the cellular response and also on the cancer progression and relapse. The human DEK protein, a histone chaperone, belongs to a specific subclass of chromatin topology modulators, being involved in the regulation of DNA-dependent processes. These epigenetic mechanisms have dynamic and reversible nature, have been proposed as targets for different treatment approaches, especially in tumor therapy. The expression patterns of DEK vary between healthy and cancer cells. High expression of DEK is associated with poor prognosis in many cancer types, suggesting that DEK takes part in oncogenic activities via different molecular pathways, including inhibition of senescence and apoptosis. The focus of this review was to highlight the role of the DEK protein in these two female cancers.
Collapse
Affiliation(s)
- Ana Cecília de Albuquerque Oliveira
- Molecular Prospecting and Bioinformatics Group - Laboratory of Immunopathology Keizo Asami (LIKA) - Federal University of Pernambuco (UFPE), Av. Prof. Moraes Rego, 1235 - Cidade Universitária, Recife, PE, Postal Code 50670-901, Brazil
| | - Ferdinand Kappes
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University No 111, Ren Ai Road, Dushu Lake Higher Education Town, Suzhou Industrial Park (SIP), Suzhou, 215123, PR China
| | - Danyelly Bruneska Gondim Martins
- Molecular Prospecting and Bioinformatics Group - Laboratory of Immunopathology Keizo Asami (LIKA) - Federal University of Pernambuco (UFPE), Av. Prof. Moraes Rego, 1235 - Cidade Universitária, Recife, PE, Postal Code 50670-901, Brazil; Department of Biochemistry - Federal University of Pernambuco (UFPE), Av. Prof. Moraes Rego, 1235 - Cidade Universitária, Recife, PE, Postal Code 50670-901, Brazil.
| | - José Luiz de Lima Filho
- Molecular Prospecting and Bioinformatics Group - Laboratory of Immunopathology Keizo Asami (LIKA) - Federal University of Pernambuco (UFPE), Av. Prof. Moraes Rego, 1235 - Cidade Universitária, Recife, PE, Postal Code 50670-901, Brazil; Department of Biochemistry - Federal University of Pernambuco (UFPE), Av. Prof. Moraes Rego, 1235 - Cidade Universitária, Recife, PE, Postal Code 50670-901, Brazil
| |
Collapse
|
25
|
Cifdaloz M, Osterloh L, Graña O, Riveiro-Falkenbach E, Ximénez-Embún P, Muñoz J, Tejedo C, Calvo TG, Karras P, Olmeda D, Miñana B, Gómez-López G, Cañon E, Eyras E, Guo H, Kappes F, Ortiz-Romero PL, Rodríguez-Peralto JL, Megías D, Valcárcel J, Soengas MS. Systems analysis identifies melanoma-enriched pro-oncogenic networks controlled by the RNA binding protein CELF1. Nat Commun 2017; 8:2249. [PMID: 29269732 PMCID: PMC5740069 DOI: 10.1038/s41467-017-02353-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 11/23/2017] [Indexed: 12/19/2022] Open
Abstract
Melanomas are well-known for their altered mRNA expression profiles. Yet, the specific contribution of mRNA binding proteins (mRBPs) to melanoma development remains unclear. Here we identify a cluster of melanoma-enriched genes under the control of CUGBP Elav-like family member 1 (CELF1). CELF1 was discovered with a distinct prognostic value in melanoma after mining the genomic landscape of the 692 known mRBPs across different cancer types. Genome-wide transcriptomic, proteomic, and RNA-immunoprecipitation studies, together with loss-of-function analyses in cell lines, and histopathological evaluation in clinical biopsies, revealed an intricate repertoire of CELF1-RNA interactors with minimal overlap with other malignancies. This systems approach uncovered the oncogene DEK as an unexpected target and downstream effector of CELF1. Importantly, CELF1 and DEK were found to represent early-induced melanoma genes and adverse indicators of overall patient survival. These results underscore novel roles of CELF1 in melanoma, illustrating tumor type-restricted functions of RBPs in cancer.
Collapse
Affiliation(s)
- Metehan Cifdaloz
- Melanoma Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Center (CNIO), 28029, Madrid, Spain
| | - Lisa Osterloh
- Melanoma Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Center (CNIO), 28029, Madrid, Spain
| | | | - Erica Riveiro-Falkenbach
- Instituto de Investigación i+12, Hospital 12 de Octubre Medical School, Universidad Complutense, 28041, Madrid, Spain
| | | | | | - Cristina Tejedo
- Melanoma Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Center (CNIO), 28029, Madrid, Spain
| | - Tonantzin G Calvo
- Melanoma Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Center (CNIO), 28029, Madrid, Spain
| | - Panagiotis Karras
- Melanoma Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Center (CNIO), 28029, Madrid, Spain
| | - David Olmeda
- Melanoma Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Center (CNIO), 28029, Madrid, Spain
| | - Belén Miñana
- Centre de Regulació Genòmica (CRG), The Barcelona Institute of Science and Technology, Barcelona, 08003, Spain
| | | | - Estela Cañon
- Melanoma Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Center (CNIO), 28029, Madrid, Spain
| | - Eduardo Eyras
- Department of Experimental and Health Sciences, Universidad Pompeu Fabra, Barcelona, 08002, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, 08010, Spain
| | - Haihong Guo
- Institute of Biochemistry and Molecular Biology; Medical School, RWTH Aachen University, Aachen, 52074, Germany
| | - Ferdinand Kappes
- Institute of Biochemistry and Molecular Biology; Medical School, RWTH Aachen University, Aachen, 52074, Germany
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, No. 111, Ren Ai Road, Dushu Lake Higher Education Town, Suzhou Industrial Park (SIP), Suzhou, 215123, China
| | - Pablo L Ortiz-Romero
- Instituto de Investigación i+12, Hospital 12 de Octubre Medical School, Universidad Complutense, 28041, Madrid, Spain
| | - Jose L Rodríguez-Peralto
- Instituto de Investigación i+12, Hospital 12 de Octubre Medical School, Universidad Complutense, 28041, Madrid, Spain
| | - Diego Megías
- Confocal Microscopy Unit, (CNIO), Madrid, 28029, Spain
| | - Juan Valcárcel
- Centre de Regulació Genòmica (CRG), The Barcelona Institute of Science and Technology, Barcelona, 08003, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, 08010, Spain
| | - María S Soengas
- Melanoma Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Center (CNIO), 28029, Madrid, Spain.
| |
Collapse
|
26
|
Abstract
PURPOSE OF REVIEW Hematopoietic stem/progenitor cell fate decision during hematopoiesis is regulated by intracellular and extracellular signals such as transcription factors, growth factors, and cell-to-cell interactions. In this review, we explore the function of DEK, a nuclear phosphoprotein, on gene regulation. We also examine how DEK is secreted and internalized by cells, and discuss how both endogenous and extracellular DEK regulates hematopoiesis. Finally, we explore what currently is known about the regulation of DEK during inflammation. RECENT FINDINGS DEK negatively regulates the proliferation of early myeloid progenitor cells but has a positive effect on the differentiation of mature myeloid cells. Inflammation regulates intracellular DEK concentrations with inflammatory stimuli enhancing DEK expression. Inflammation-induced nuclear factor-kappa B activation is regulated by DEK, resulting in changes in the production of other inflammatory molecules such as IL-8. Inflammatory stimuli in turn regulates DEK secretion by cells of hematopoietic origin. However, how inflammation-induced expression and secretion of DEK regulates hematopoiesis remains unknown. SUMMARY Understanding how DEK regulates hematopoiesis under both homeostatic and inflammatory conditions may lead to a better understanding of the biology of HSCs and HPCs. Furthering our knowledge of the regulation of hematopoiesis will ultimately lead to new therapeutics that may increase the efficacy of hematopoietic stem cell transplantation.
Collapse
Affiliation(s)
- Maegan L Capitano
- Indiana University School of Medicine, Department of Microbiology and Immunology, Indianapolis, Indiana, USA
| | | |
Collapse
|
27
|
Smith EA, Gole B, Willis NA, Soria R, Starnes LM, Krumpelbeck EF, Jegga AG, Ali AM, Guo H, Meetei AR, Andreassen PR, Kappes F, Vinnedge LMP, Daniel JA, Scully R, Wiesmüller L, Wells SI. DEK is required for homologous recombination repair of DNA breaks. Sci Rep 2017; 7:44662. [PMID: 28317934 PMCID: PMC5357905 DOI: 10.1038/srep44662] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 02/13/2017] [Indexed: 12/16/2022] Open
Abstract
DEK is a highly conserved chromatin-bound protein whose upregulation across cancer types correlates with genotoxic therapy resistance. Loss of DEK induces genome instability and sensitizes cells to DNA double strand breaks (DSBs), suggesting defects in DNA repair. While these DEK-deficiency phenotypes were thought to arise from a moderate attenuation of non-homologous end joining (NHEJ) repair, the role of DEK in DNA repair remains incompletely understood. We present new evidence demonstrating the observed decrease in NHEJ is insufficient to impact immunoglobulin class switching in DEK knockout mice. Furthermore, DEK knockout cells were sensitive to apoptosis with NHEJ inhibition. Thus, we hypothesized DEK plays additional roles in homologous recombination (HR). Using episomal and integrated reporters, we demonstrate that HR repair of conventional DSBs is severely compromised in DEK-deficient cells. To define responsible mechanisms, we tested the role of DEK in the HR repair cascade. DEK-deficient cells were impaired for γH2AX phosphorylation and attenuated for RAD51 filament formation. Additionally, DEK formed a complex with RAD51, but not BRCA1, suggesting a potential role regarding RAD51 filament formation, stability, or function. These findings define DEK as an important and multifunctional mediator of HR, and establish a synthetic lethal relationship between DEK loss and NHEJ inhibition.
Collapse
Affiliation(s)
- Eric A. Smith
- Division of Oncology; Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Boris Gole
- Department of Obstetrics and Gynecology; Ulm University, Ulm, 89075, Germany
| | - Nicholas A. Willis
- Department of Medicine, Division of Hematology-Oncology and Cancer Research Institute, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, 02215, USA
| | - Rebeca Soria
- Chromatin Structure and Function Group, The Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, 2200, Denmark
| | - Linda M. Starnes
- Chromatin Structure and Function Group, The Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, 2200, Denmark
| | - Eric F. Krumpelbeck
- Division of Oncology; Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Anil G. Jegga
- Division of Oncology; Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Abdullah M. Ali
- Division of Experimental Hematology and Cancer Biology; Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Haihong Guo
- Institute of Biochemistry and Molecular Biology; Medical School, RWTH Aachen University, Aachen, 52074, Germany
| | - Amom R. Meetei
- Division of Experimental Hematology and Cancer Biology; Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Paul R. Andreassen
- Division of Experimental Hematology and Cancer Biology; Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Ferdinand Kappes
- Institute of Biochemistry and Molecular Biology; Medical School, RWTH Aachen University, Aachen, 52074, Germany
| | | | - Jeremy A. Daniel
- Chromatin Structure and Function Group, The Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, 2200, Denmark
| | - Ralph Scully
- Department of Medicine, Division of Hematology-Oncology and Cancer Research Institute, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, 02215, USA
| | - Lisa Wiesmüller
- Department of Obstetrics and Gynecology; Ulm University, Ulm, 89075, Germany
| | - Susanne I. Wells
- Division of Oncology; Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, 45229, USA
| |
Collapse
|
28
|
Zhang Y, Liu J, Wang S, Luo X, Li Y, Lv Z, Zhu J, Lin J, Ding L, Ye Q. The DEK oncogene activates VEGF expression and promotes tumor angiogenesis and growth in HIF-1α-dependent and -independent manners. Oncotarget 2016; 7:23740-56. [PMID: 26988756 PMCID: PMC5029660 DOI: 10.18632/oncotarget.8060] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 02/29/2016] [Indexed: 11/25/2022] Open
Abstract
The DEK oncogene is overexpressed in various cancers and overexpression of DEK correlates with poor clinical outcome. Vascular endothelial growth factor (VEGF) is the most important regulator of tumor angiogenesis, a process essential for tumor growth and metastasis. However, whether DEK enhances tumor angiogenesis remains unclear. Here, we show that DEK is a key regulator of VEGF expression and tumor angiogenesis. Using chromatin immunoprecipitation assay, we found that DEK promoted VEGF transcription in breast cancer cells (MCF7, ZR75-1 and MDA-MB-231) by directly binding to putative DEK-responsive element (DRE) of the VEGF promoter and indirectly binding to hypoxia response element (HRE) upstream of the DRE through its interaction with the transcription factor hypoxia-inducible factor 1α (HIF-1α), a master regulator of tumor angiogenesis and growth. DEK is responsible for recruitment of HIF-1α and the histone acetyltransferase p300 to the VEGF promoter. DEK-enhanced VEGF increases vascular endothelial cell proliferation, migration and tube formation as well as angiogenesis in the chick chorioallantoic membrane. DEK promotes tumor angiogenesis and growth in nude mice in HIF-1α-dependent and -independent manners. Immunohistochemical staining showed that DEK expression positively correlates with the expression of VEGF and microvessel number in 58 breast cancer patients. Our data establish DEK as a sequence-specific binding transcription factor, a novel coactivator for HIF-1α in regulation of VEGF transcription and a novel promoter of angiogenesis.
Collapse
MESH Headings
- Animals
- Apoptosis
- Biomarkers, Tumor
- Breast Neoplasms/blood supply
- Breast Neoplasms/genetics
- Breast Neoplasms/metabolism
- Breast Neoplasms/pathology
- Cell Proliferation
- Chick Embryo
- Chorioallantoic Membrane/metabolism
- Chromosomal Proteins, Non-Histone/genetics
- Chromosomal Proteins, Non-Histone/metabolism
- Female
- Gene Expression Regulation, Neoplastic
- Humans
- Hypoxia-Inducible Factor 1, alpha Subunit/genetics
- Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
- Mice
- Mice, Nude
- Neovascularization, Pathologic/metabolism
- Neovascularization, Pathologic/pathology
- Oncogene Proteins/genetics
- Oncogene Proteins/metabolism
- Poly-ADP-Ribose Binding Proteins/genetics
- Poly-ADP-Ribose Binding Proteins/metabolism
- Response Elements
- Signal Transduction
- Tumor Cells, Cultured
- Vascular Endothelial Growth Factor A/genetics
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Yanan Zhang
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Collaborative Innovation Center for Cancer Medicine, Beijing, People's Republic of China
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Liaoning, People's Republic of China
| | - Jie Liu
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Collaborative Innovation Center for Cancer Medicine, Beijing, People's Republic of China
| | - Shibin Wang
- First Affiliated Hospital, Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Xiaoli Luo
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Collaborative Innovation Center for Cancer Medicine, Beijing, People's Republic of China
| | - Yang Li
- First Affiliated Hospital, Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Zhaohui Lv
- Department of Endocrinology, Chinese PLA General Hospital, Chinese PLA Medical School, Beijing, People's Republic of China
| | - Jie Zhu
- Department of Endocrinology, Chinese PLA General Hospital, Chinese PLA Medical School, Beijing, People's Republic of China
| | - Jing Lin
- First Affiliated Hospital, Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Lihua Ding
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Collaborative Innovation Center for Cancer Medicine, Beijing, People's Republic of China
| | - Qinong Ye
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Collaborative Innovation Center for Cancer Medicine, Beijing, People's Republic of China
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Liaoning, People's Republic of China
| |
Collapse
|
29
|
Fernandes C, Gow NA, Gonçalves T. The importance of subclasses of chitin synthase enzymes with myosin-like domains for the fitness of fungi. FUNGAL BIOL REV 2016. [DOI: 10.1016/j.fbr.2016.03.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
30
|
Liu X, Qi D, Qi J, Mao Z, Li X, Zhang J, Li J, Gao W. Significance of DEK overexpression for the prognostic evaluation of non-small cell lung carcinoma. Oncol Rep 2016; 35:155-62. [PMID: 26530274 DOI: 10.3892/or.2015.4365] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2015] [Accepted: 09/03/2015] [Indexed: 11/06/2022] Open
Abstract
In the present study, we explored the role of DEK expression for the prognostic evaluation of non-small cell lung carcinoma (NSCLC). DEK protein and mRNA expression levels were detected in NSCLC cells and fresh tissue samples of NSCLC paired with adjacent non-tumor tissues, respectively. NSCLC cases (n=196) meeting strict follow-up criteria were selected for immunohistochemical staining of DEK protein. Correlations between DEK expression and clinicopathological features of the NSCLC cases were evaluated using Chi-square tests. Survival rates were calculated using the Kaplan-Meier method, and the relationship between prognostic factors and patient overall survival was analyzed using Cox proportional hazard analysis. Based on the results, the levels of DEK protein and mRNA were significantly upregulated in 6 fresh tissue samples of NSCLC. Immunohistochemical analysis showed that the DEK expression rate was significantly higher in the NSCLC samples compared with either the adjacent non-tumor tissues or normal lung tissues. DEK expression was correlated with poor differentiation and late pathological stage of NSCLC. DEK expression was also correlated with low disease-free survival and overall survival rates. In the early-stage group, disease-free and overall survival rates of patients with DEK expression were significantly lower than those of patients without DEK expression. Further analysis using a Cox proportional hazard regression model revealed that DEK expression emerged as a significant independent hazard factor for the overall survival rate of patients with NSCLC. Consequently, DEK plays an important role in the progression of NSCLC. DEK may potentially be used as an independent biomarker for the prognostic evaluation of NSCLC.
Collapse
Affiliation(s)
- Xin Liu
- Institute of Molecular Medicine, Medical College of Eastern Liaoning University, Dandong, Liaoning 118000, P.R. China
| | - Dongdong Qi
- Department of Oncology, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning 116000, P.R. China
| | - Jujie Qi
- Traditional Chinese Medical Hospital of Anqiu City, Anqiu, Shandong 262100, P.R. China
| | - Zeshu Mao
- Department of Oncology, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning 116000, P.R. China
| | - Xiangdan Li
- Department of Pediatrics, Yanbian University Hospital, Yanji, Jilin 133002, P.R. China
| | - Jinhui Zhang
- Institute of Molecular Medicine, Medical College of Eastern Liaoning University, Dandong, Liaoning 118000, P.R. China
| | - Jinzi Li
- Department of Pediatrics, Yanbian University Hospital, Yanji, Jilin 133002, P.R. China
| | - Wenbin Gao
- Department of Oncology, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning 116000, P.R. China
| |
Collapse
|
31
|
Li M, Jiang C, Wang Q, Zhao Z, Jin Q, Xu JR, Liu H. Evolution and Functional Insights of Different Ancestral Orthologous Clades of Chitin Synthase Genes in the Fungal Tree of Life. FRONTIERS IN PLANT SCIENCE 2016; 7:37. [PMID: 26870058 PMCID: PMC4734345 DOI: 10.3389/fpls.2016.00037] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 01/11/2016] [Indexed: 05/13/2023]
Abstract
Chitin synthases (CHSs) are key enzymes in the biosynthesis of chitin, an important structural component of fungal cell walls that can trigger innate immune responses in host plants and animals. Members of CHS gene family perform various functions in fungal cellular processes. Previous studies focused primarily on classifying diverse CHSs into different classes, regardless of their functional diversification, or on characterizing their functions in individual fungal species. A complete and systematic comparative analysis of CHS genes based on their orthologous relationships will be valuable for elucidating the evolution and functions of different CHS genes in fungi. Here, we identified and compared members of the CHS gene family across the fungal tree of life, including 18 divergent fungal lineages. Phylogenetic analysis revealed that the fungal CHS gene family is comprised of at least 10 ancestral orthologous clades, which have undergone multiple independent duplications and losses in different fungal lineages during evolution. Interestingly, one of these CHS clades (class III) was expanded in plant or animal pathogenic fungi belonging to different fungal lineages. Two clades (classes VIb and VIc) identified for the first time in this study occurred mainly in plant pathogenic fungi from Sordariomycetes and Dothideomycetes. Moreover, members of classes III and VIb were specifically up-regulated during plant infection, suggesting important roles in pathogenesis. In addition, CHS-associated networks conserved among plant pathogenic fungi are involved in various biological processes, including sexual reproduction and plant infection. We also identified specificity-determining sites, many of which are located at or adjacent to important structural and functional sites that are potentially responsible for functional divergence of different CHS classes. Overall, our results provide new insights into the evolution and function of members of CHS gene family in the fungal kingdom. Specificity-determining sites identified here may be attractive targets for further structural and experimental studies.
Collapse
Affiliation(s)
- Mu Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F UniversityYangling, China
| | - Cong Jiang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F UniversityYangling, China
| | - Qinhu Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F UniversityYangling, China
| | - Zhongtao Zhao
- South China Botanical Garden, Chinese Academy of SciencesGuangzhou, China
| | - Qiaojun Jin
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F UniversityYangling, China
| | - Jin-Rong Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F UniversityYangling, China
- Department of Botany and Plant Pathology, Purdue UniversityWest Lafayette, IN, USA
| | - Huiquan Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F UniversityYangling, China
- *Correspondence: Huiquan Liu
| |
Collapse
|
32
|
Lohmann F, Dangeti M, Soni S, Chen X, Planutis A, Baron MH, Choi K, Bieker JJ. The DEK Oncoprotein Is a Critical Component of the EKLF/KLF1 Enhancer in Erythroid Cells. Mol Cell Biol 2015; 35:3726-38. [PMID: 26303528 PMCID: PMC4589598 DOI: 10.1128/mcb.00382-15] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2015] [Revised: 05/06/2015] [Accepted: 08/17/2015] [Indexed: 02/07/2023] Open
Abstract
Understanding how transcriptional regulators are themselves controlled is important in attaining a complete picture of the intracellular effects that follow signaling cascades during early development and cell-restricted differentiation. We have addressed this issue by focusing on the regulation of EKLF/KLF1, a zinc finger transcription factor that plays a necessary role in the global regulation of erythroid gene expression. Using biochemical affinity purification, we have identified the DEK oncoprotein as a critical factor that interacts with an essential upstream enhancer element of the EKLF promoter and exerts a positive effect on EKLF levels. This element also binds a core set of erythroid transcription factors, suggesting that DEK is part of a tissue-restricted enhanceosome that contains BMP4-dependent and -independent components. Together with local enrichment of properly coded histones and an open chromatin domain, optimal transcriptional activation of the EKLF locus can be established.
Collapse
Affiliation(s)
- Felix Lohmann
- Department of Developmental and Regenerative Biology, Mount Sinai School of Medicine, New York, New York, USA
| | - Mohan Dangeti
- Department of Developmental and Regenerative Biology, Mount Sinai School of Medicine, New York, New York, USA
| | - Shefali Soni
- Department of Developmental and Regenerative Biology, Mount Sinai School of Medicine, New York, New York, USA
| | - Xiaoyong Chen
- Department of Developmental and Regenerative Biology, Mount Sinai School of Medicine, New York, New York, USA
| | - Antanas Planutis
- Department of Developmental and Regenerative Biology, Mount Sinai School of Medicine, New York, New York, USA
| | - Margaret H Baron
- Department of Developmental and Regenerative Biology, Mount Sinai School of Medicine, New York, New York, USA Black Family Stem Cell Institute, Mount Sinai School of Medicine, New York, New York, USA Tisch Cancer Institute, Mount Sinai School of Medicine, New York, New York, USA Department of Medicine, Mount Sinai School of Medicine, New York, New York, USA
| | - Kyunghee Choi
- Department of Pathology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - James J Bieker
- Department of Developmental and Regenerative Biology, Mount Sinai School of Medicine, New York, New York, USA Black Family Stem Cell Institute, Mount Sinai School of Medicine, New York, New York, USA Tisch Cancer Institute, Mount Sinai School of Medicine, New York, New York, USA
| |
Collapse
|
33
|
Dissecting the Potential Interplay of DEK Functions in Inflammation and Cancer. JOURNAL OF ONCOLOGY 2015; 2015:106517. [PMID: 26425120 PMCID: PMC4575739 DOI: 10.1155/2015/106517] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Accepted: 03/05/2015] [Indexed: 12/12/2022]
Abstract
There is a long-standing correlation between inflammation, inflammatory cell signaling pathways, and tumor formation. Understanding the mechanisms behind inflammation-driven tumorigenesis is of great research and clinical importance. Although not entirely understood, these mechanisms include a complex interaction between the immune system and the damaged epithelium that is mediated by an array of molecular signals of inflammation—including reactive oxygen species (ROS), cytokines, and NFκB signaling—that are also oncogenic. Here, we discuss the association of the unique DEK protein with these processes. Specifically, we address the role of DEK in chronic inflammation via viral infections and autoimmune diseases, the overexpression and oncogenic activity of DEK in cancers, and DEK-mediated regulation of NFκB signaling. Combined, evidence suggests that DEK may play a complex, multidimensional role in chronic inflammation and subsequent tumorigenesis.
Collapse
|
34
|
Sandén C, Gullberg U. The DEK oncoprotein and its emerging roles in gene regulation. Leukemia 2015; 29:1632-6. [PMID: 25765544 DOI: 10.1038/leu.2015.72] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 01/08/2015] [Accepted: 03/03/2015] [Indexed: 02/06/2023]
Abstract
The DEK oncogene is highly expressed in cells from most human tissues and overexpressed in a large and growing number of cancers. It also fuses with the NUP214 gene to form the DEK-NUP214 fusion gene in a subset of acute myeloid leukemia. Originally characterized as a member of this translocation, DEK has since been implicated in epigenetic and transcriptional regulation, but its role in these processes is still elusive and intriguingly complex. Similarly multifaceted is its contribution to cellular transformation, affecting multiple cellular processes such as self-renewal, proliferation, differentiation, senescence and apoptosis. Recently, the roles of the DEK and DEK-NUP214 proteins have been elucidated by global analysis of DNA binding and gene expression, as well as multiple functional studies. This review outlines recent advances in the understanding of the basic functions of the DEK protein and its role in leukemogenesis.
Collapse
Affiliation(s)
- C Sandén
- Department of Hematology, Lund University, Lund, Sweden
| | - U Gullberg
- Department of Hematology, Lund University, Lund, Sweden
| |
Collapse
|
35
|
Matrka MC, Hennigan RF, Kappes F, DeLay ML, Lambert PF, Aronow BJ, Wells SI. DEK over-expression promotes mitotic defects and micronucleus formation. Cell Cycle 2015; 14:3939-53. [PMID: 25945971 PMCID: PMC4825741 DOI: 10.1080/15384101.2015.1044177] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 04/18/2015] [Indexed: 10/23/2022] Open
Abstract
The DEK gene encodes a nuclear protein that binds chromatin and is involved in various fundamental nuclear processes including transcription, RNA splicing, DNA replication and DNA repair. Several cancer types characteristically over-express DEK at the earliest stages of transformation. In order to explore relevant mechanisms whereby DEK supports oncogenicity, we utilized cancer databases to identify gene transcripts whose expression patterns are tightly correlated with that of DEK. We identified an enrichment of genes involved in mitosis and thus investigated the regulation and possible function of DEK in cell division. Immunofluorescence analyses revealed that DEK dissociates from DNA in early prophase and re-associates with DNA during telophase in human keratinocytes. Mitotic cell populations displayed a sharp reduction in DEK protein levels compared to the corresponding interphase population, suggesting DEK may be degraded or otherwise removed from the cell prior to mitosis. Interestingly, DEK overexpression stimulated its own aberrant association with chromatin throughout mitosis. Furthermore, DEK co-localized with anaphase bridges, chromosome fragments, and micronuclei, suggesting a specific association with mitotically defective chromosomes. We found that DEK over-expression in both non-transformed and transformed cells is sufficient to stimulate micronucleus formation. These data support a model wherein normal chromosomal clearance of DEK is required for maintenance of high fidelity cell division and chromosomal integrity. Therefore, the overexpression of DEK and its incomplete removal from mitotic chromosomes promotes genomic instability through the generation of genetically abnormal daughter cells. Consequently, DEK over-expression may be involved in the initial steps of developing oncogenic mutations in cells leading to cancer initiation.
Collapse
Affiliation(s)
- Marie C Matrka
- Cancer and Blood Diseases Institute; Cincinnati Children's Hospital Medical Center and University of Cincinnati; Cincinnati, OH USA
| | - Robert F Hennigan
- Cancer and Blood Diseases Institute; Cincinnati Children's Hospital Medical Center and University of Cincinnati; Cincinnati, OH USA
| | - Ferdinand Kappes
- Department of Biological Sciences; Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu Province, China
- Institute of Biochemistry and Molecular Biology; Medical School; RWTH Aachen University; Aachen, Germany
| | - Monica L DeLay
- Division of Rheumatology; Cincinnati Children's Hospital Medical Center; Cincinnati, OH USA
| | - Paul F Lambert
- McArdle Laboratory for Cancer Research; University of Wisconsin-Madison School of Medicine and Public Health; Madison, WI USA
| | - Bruce J Aronow
- Biomedical Informatics; Cincinnati Children's Hospital Medical Center; Cincinnati, OH USA
| | - Susanne I Wells
- Cancer and Blood Diseases Institute; Cincinnati Children's Hospital Medical Center and University of Cincinnati; Cincinnati, OH USA
| |
Collapse
|
36
|
Logan GE, Mor-Vaknin N, Braunschweig T, Jost E, Schmidt PV, Markovitz DM, Mills KI, Kappes F, Percy MJ. DEK oncogene expression during normal hematopoiesis and in Acute Myeloid Leukemia (AML). Blood Cells Mol Dis 2015; 54:123-31. [PMID: 25128083 DOI: 10.1016/j.bcmd.2014.07.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 07/15/2014] [Indexed: 12/24/2022]
Abstract
DEK is important in regulating cellular processes including proliferation, differentiation and maintenance of stem cell phenotype. The translocation t(6;9) in Acute Myeloid Leukemia (AML), which fuses DEK with NUP214, confers a poor prognosis and a higher risk of relapse. The over-expression of DEK in AML has been reported, but different studies have shown diminished levels in pediatric and promyelocytic leukemias. This study has characterized DEK expression, in silico, using a large multi-center cohort of leukemic and normal control cases. Overall, DEK was under-expressed in AML compared to normal bone marrow (NBM). Studying specific subtypes of AML confirmed either no significant change or a significant reduction in DEK expression compared to NBM. Importantly, the similarity of DEK expression between AML and NBM was confirmed using immunohistochemistry analysis of tissue mircorarrays. In addition, stratification of AML patients based on median DEK expression levels indicated that DEK showed no effect on the overall survival of patients. DEK expression during normal hematopoiesis did reveal a relationship with specific cell types implicating a distinct function during myeloid differentiation. Whilst DEK may play a potential role in hematopoiesis, it remains to be established whether it is important for leukemagenesis, except when involved in the t(6;9) translocation.
Collapse
MESH Headings
- Animals
- Chromosomal Proteins, Non-Histone/biosynthesis
- Chromosomal Proteins, Non-Histone/genetics
- Chromosomes, Human, Pair 6/genetics
- Chromosomes, Human, Pair 9/genetics
- Cohort Studies
- DNA-Binding Proteins/biosynthesis
- DNA-Binding Proteins/genetics
- Databases, Genetic
- Disease-Free Survival
- Gene Expression Regulation, Leukemic
- Hematopoiesis
- Humans
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Multicenter Studies as Topic
- Oncogene Proteins/biosynthesis
- Oncogene Proteins/genetics
- Poly-ADP-Ribose Binding Proteins
- Survival Rate
- Translocation, Genetic
Collapse
Affiliation(s)
- Gemma E Logan
- Centre for Cancer Research and Cell Biology (CCRCB), Queen's University Belfast, Belfast, United Kingdom.
| | - Nirit Mor-Vaknin
- Division of Infectious Diseases, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, MI, USA.
| | - Till Braunschweig
- Institute of Pathology, Medical School, RWTH Aachen University, Aachen, Germany.
| | - Edgar Jost
- Clinic for Oncology, Hematology and Stem Cell Transplantation, Medical School, RWTH Aachen University, Aachen, Germany.
| | - Pia Verena Schmidt
- Clinic for Oncology, Hematology and Stem Cell Transplantation, Medical School, RWTH Aachen University, Aachen, Germany.
| | - David M Markovitz
- Division of Infectious Diseases, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, MI, USA.
| | - Ken I Mills
- Centre for Cancer Research and Cell Biology (CCRCB), Queen's University Belfast, Belfast, United Kingdom.
| | - Ferdinand Kappes
- Institute of Biochemistry and Molecular Biology, Medical School, RWTH Aachen University, Aachen, Germany.
| | - Melanie J Percy
- Centre for Cancer Research and Cell Biology (CCRCB), Queen's University Belfast, Belfast, United Kingdom; Haematology Department, Belfast City Hospital, Belfast Health and Social Care Trust, Belfast, United Kingdom.
| |
Collapse
|
37
|
Waidmann S, Kusenda B, Mayerhofer J, Mechtler K, Jonak C. A DEK domain-containing protein modulates chromatin structure and function in Arabidopsis. THE PLANT CELL 2014; 26:4328-44. [PMID: 25387881 PMCID: PMC4277211 DOI: 10.1105/tpc.114.129254] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 10/01/2014] [Accepted: 10/22/2014] [Indexed: 05/19/2023]
Abstract
Chromatin is a major determinant in the regulation of virtually all DNA-dependent processes. Chromatin architectural proteins interact with nucleosomes to modulate chromatin accessibility and higher-order chromatin structure. The evolutionarily conserved DEK domain-containing protein is implicated in important chromatin-related processes in animals, but little is known about its DNA targets and protein interaction partners. In plants, the role of DEK has remained elusive. In this work, we identified DEK3 as a chromatin-associated protein in Arabidopsis thaliana. DEK3 specifically binds histones H3 and H4. Purification of other proteins associated with nuclear DEK3 also established DNA topoisomerase 1α and proteins of the cohesion complex as in vivo interaction partners. Genome-wide mapping of DEK3 binding sites by chromatin immunoprecipitation followed by deep sequencing revealed enrichment of DEK3 at protein-coding genes throughout the genome. Using DEK3 knockout and overexpressor lines, we show that DEK3 affects nucleosome occupancy and chromatin accessibility and modulates the expression of DEK3 target genes. Furthermore, functional levels of DEK3 are crucial for stress tolerance. Overall, data indicate that DEK3 contributes to modulation of Arabidopsis chromatin structure and function.
Collapse
Affiliation(s)
- Sascha Waidmann
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, Vienna Biocenter, 1030 Vienna, Austria
| | - Branislav Kusenda
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, Vienna Biocenter, 1030 Vienna, Austria
| | - Juliane Mayerhofer
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, Vienna Biocenter, 1030 Vienna, Austria
| | - Karl Mechtler
- Research Institute of Molecular Pathology, Vienna Biocenter, 1030 Vienna, Austria
| | - Claudia Jonak
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, Vienna Biocenter, 1030 Vienna, Austria
| |
Collapse
|
38
|
Chen J, Li C, Zhu Y, Sun L, Sun H, Liu Y, Zhang Z, Wang C. Integrating GO and KEGG terms to characterize and predict acute myeloid leukemia-related genes. ACTA ACUST UNITED AC 2014; 20:336-42. [PMID: 25343280 DOI: 10.1179/1607845414y.0000000209] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND/OBJECTIVE Acute myeloid leukemia (AML) is a progressive and malignant cancer of myelogenous blood cells, which disturbs the production of normal blood cells. Although several risk and genetic factors (AML-related genes) have been investigated, the concrete mechanism underlying the development of AML remains unclear. In view of this, it is crucial to develop an effective computational method for meaningfully characterizing AML genes and accurately predicting novel AML genes. METHODS In this study, we integrated gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway annotations as features to characterize AML genes. We also provided an optimal set of features for predicting AML-related genes by using the minimum redundancy maximum relevance (mRMR) algorithm and dagging metaclassifier. RESULTS We obtained 26 optimal GO terms that characterized AML genes well. Finally, we predicted 464 novel genes to provide clinical researchers with additional candidates and useful insights for further analysis of AML. DISCUSSION An in-depth feature analysis indicated that the results are quite consistent with previous knowledge. We developed a systematic method to identify the possible underlying mechanism of AML by analyzing the related genes. Our method has the ability to identify the types of features that are optimal to meaningfully interpret AML and accurately predict more AML genes for further clinical researches.
Collapse
|
39
|
Broxmeyer HE, Mor-Vaknin N, Kappes F, Legendre M, Saha AK, Ou X, O'Leary H, Capitano M, Cooper S, Markovitz DM. Concise review: role of DEK in stem/progenitor cell biology. Stem Cells 2013; 31:1447-53. [PMID: 23733396 PMCID: PMC3814160 DOI: 10.1002/stem.1443] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 05/06/2013] [Accepted: 05/08/2013] [Indexed: 12/19/2022]
Abstract
Understanding the factors that regulate hematopoiesis opens up the possibility of modifying these factors and their actions for clinical benefit. DEK, a non-histone nuclear phosphoprotein initially identified as a putative proto-oncogene, has recently been linked to regulate hematopoiesis. DEK has myelosuppressive activity in vitro on proliferation of human and mouse hematopoietic progenitor cells and enhancing activity on engraftment of long-term marrow repopulating mouse stem cells, has been linked in coordinate regulation with the transcription factor C/EBPα, for differentiation of myeloid cells, and apparently targets a long-term repopulating hematopoietic stem cell for leukemic transformation. This review covers the uniqueness of DEK, what is known about how it now functions as a nuclear protein and also as a secreted molecule that can act in paracrine fashion, and how it may be regulated in part by dipeptidylpeptidase 4, an enzyme known to truncate and modify a number of proteins involved in activities on hematopoietic cells. Examples are provided of possible future areas of investigation needed to better understand how DEK may be regulated and function as a regulator of hematopoiesis, information possibly translatable to other normal and diseased immature cell systems.
Collapse
Affiliation(s)
- Hal E Broxmeyer
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Mor-Vaknin N, Legendre M, Yu Y, Serezani CHC, Garg SK, Jatzek A, Swanson MD, Gonzalez-Hernandez MJ, Teitz-Tennenbaum S, Punturieri A, Engleberg NC, Banerjee R, Peters-Golden M, Kao JY, Markovitz DM. Murine colitis is mediated by vimentin. Sci Rep 2013; 3:1045. [PMID: 23304436 PMCID: PMC3540396 DOI: 10.1038/srep01045] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Accepted: 12/10/2012] [Indexed: 12/21/2022] Open
Abstract
Vimentin, an abundant intermediate filament protein, presumably has an important role in stabilizing intracellular architecture, but its function is otherwise poorly understood. In a vimentin knockout (Vim KO) mouse model, we note that Vim KO mice challenged with intraperitoneal Escherichia coli control bacterial infection better than do wild-type (WT) mice. In vitro, Vim KO phagocytes show significantly increased capacity to mediate bacterial killing by abundant production of reactive oxygen species (ROS) and nitric oxides, likely due to interactions with the p47phox active subunit of NADPH oxidase. In acute colitis induced by dextran sodium sulfate (DSS), Vim KO mice develop significantly less gut inflammation than do WT mice. Further, Vim KO mice have markedly decreased bacterial extravasation in the setting of DSS-induced acute colitis, consistent with decreased intestinal disease. Our results suggest that vimentin impedes bacterial killing and production of ROS, thereby contributing to the pathogenesis of acute colitis.
Collapse
Affiliation(s)
- Nirit Mor-Vaknin
- Department of Internal Medicine, Division of Infectious Diseases, University of Michigan, Ann Arbor, MI 48109-5640, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Privette Vinnedge LM, Kappes F, Nassar N, Wells SI. Stacking the DEK: from chromatin topology to cancer stem cells. Cell Cycle 2013; 12:51-66. [PMID: 23255114 PMCID: PMC3570517 DOI: 10.4161/cc.23121] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Stem cells are essential for development and tissue maintenance and display molecular markers and functions distinct from those of differentiated cell types in a given tissue. Malignant cells that exhibit stem cell-like activities have been detected in many types of cancers and have been implicated in cancer recurrence and drug resistance. Normal stem cells and cancer stem cells have striking commonalities, including shared cell surface markers and signal transduction pathways responsible for regulating quiescence vs. proliferation, self-renewal, pluripotency and differentiation. As the search continues for markers that distinguish between stem cells, progenitor cells and cancer stem cells, growing evidence suggests that a unique chromatin-associated protein called DEK may confer stem cell-like qualities. Here, we briefly describe current knowledge regarding stem and progenitor cells. We then focus on new findings that implicate DEK as a regulator of stem and progenitor cell qualities, potentially through its unusual functions in the regulation of local or global chromatin organization.
Collapse
Affiliation(s)
- Lisa M Privette Vinnedge
- Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
| | | | | | | |
Collapse
|
42
|
Wang DM, Liu L, Fan L, Zou ZJ, Zhang LN, Yang S, Li JY, Xu W. Expression level of DEK in chronic lymphocytic leukemia is regulated by fludarabine and Nutlin-3 depending on p53 status. Cancer Biol Ther 2012; 13:1522-8. [PMID: 23052131 PMCID: PMC3542244 DOI: 10.4161/cbt.22252] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Human oncogene DEK has been shown to be upregulated in a number of neoplasms. The purpose of this study was to investigate DEK expression level in chronic lymphocytic leukemia (CLL), analyze the correlation between DEK expression and CLL prognostic markers, and characterize the role of DEK in the response to either chemotherapeutic drugs or nongenotoxic activators of the p53 pathway. DEK mRNA was evaluated by real-time quantitative reverse transcriptase-polymerase chain reaction (qPCR), and primary CLL samples were treated in vitro with either fludarabine or Nutlin-3 to explore the interaction of p53 status and DEK mRNA expression. The median expression levels of DEK mRNA were 6.792 × 10 (-2) (1.438 × 10 (-2) -3.201 × 10 (-1) ) in 65 patients with CLL. A marked increase of DEK mRNA expression was observed in the CLL patients with unmutated immunoglobulin heavy chain variable (IGHV) gene (p = 0.025), CD38-positive (p = 0.047), del(17p13) (p = 0.006). Both fludarabine and Nutlin-3 significantly downregulated DEK in the primary CLL cells which were with normal function of p53, or without deletion or mutation of p53 (p = 0.042, p = 0.038; p = 0.021, p = 0.017; p = 0.037, p = 0.017). However, the downregulation of DEK was not observed in the primary CLL cells which were with dysfunction of p53, or with deletion or mutation of p53 (p = 0.834, p = 0.477; p = 0.111, p = 0.378; p = 0.263, p = 0.378). These data show that DEK might be applied for the assessment of prognosis in patients with CLL, and fludarabine and Nutlin-3 regulate DEK expression depended on p53 status.
Collapse
Affiliation(s)
| | | | - Lei Fan
- Department of Hematology; The First Affiliated Hospital of Nanjing Medical University; Jiangsu Province Hospital; Nanjing, PR China
| | - Zhi-Jian Zou
- Department of Hematology; The First Affiliated Hospital of Nanjing Medical University; Jiangsu Province Hospital; Nanjing, PR China
| | - Li-Na Zhang
- Department of Hematology; The First Affiliated Hospital of Nanjing Medical University; Jiangsu Province Hospital; Nanjing, PR China
| | - Shu Yang
- Department of Hematology; The First Affiliated Hospital of Nanjing Medical University; Jiangsu Province Hospital; Nanjing, PR China
| | - Jian-Yong Li
- Department of Hematology; The First Affiliated Hospital of Nanjing Medical University; Jiangsu Province Hospital; Nanjing, PR China
| | - Wei Xu
- Department of Hematology; The First Affiliated Hospital of Nanjing Medical University; Jiangsu Province Hospital; Nanjing, PR China
| |
Collapse
|
43
|
Bonhomme L, Valot B, Tardieu F, Zivy M. Phosphoproteome dynamics upon changes in plant water status reveal early events associated with rapid growth adjustment in maize leaves. Mol Cell Proteomics 2012; 11:957-72. [PMID: 22787273 PMCID: PMC3494150 DOI: 10.1074/mcp.m111.015867] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Revised: 06/14/2012] [Indexed: 01/17/2023] Open
Abstract
Plant growth adjustment during water deficit is a crucial adaptive response. The rapid fine-tuned control achieved at the post-translational level is believed to be of considerable importance for regulating early changes in plant growth reprogramming. Aiming at a better understanding of early responses to contrasting plant water statuses, we carried out a survey of the protein phosphorylation events in the growing zone of maize leaves upon a range of water regimes. In this study, the impact of mild and severe water deficits were evaluated in comparison with constant optimal watering and with recovery periods lasting 5, 10, 20, 30, 45, and 60 min. Using four biological replicates per treatment and a robust quantitative phosphoproteomic methodology based on stable-isotope labeling, we identified 3664 unique phosphorylation sites on 2496 proteins. The abundance of nearly 1250 phosphorylated peptides was reproducibly quantified and profiled with high confidence among treatments. A total of 138 phosphopeptides displayed highly significant changes according to water regimes and enabled to identify specific patterns of response to changing plant water statuses. Further quantification of protein amounts emphasized that most phosphorylation changes did not reflect protein abundance variation. During water deficit and recovery, extensive changes in phosphorylation status occurred in critical regulators directly or indirectly involved in plant growth and development. These included proteins influencing epigenetic control, gene expression, cell cycle-dependent processes and phytohormone-mediated responses. Some of the changes depended on stress intensity whereas others depended on rehydration duration, including rapid recoveries that occurred as early as 5 or 10 mins after rewatering. By combining a physiological approach and a quantitative phosphoproteomic analysis, this work provides new insights into the in vivo early phosphorylation events triggered by rapid changes in plant water status, and their possible involvement in plant growth-related processes.
Collapse
Affiliation(s)
- Ludovic Bonhomme
- From the ‡INRA/University Paris-Sud/CNRS/AgroParisTech, UMR 0320/UMR 8120 Génétique Végétale, Gif-sur-Yvette, 91190, France
| | - Benoît Valot
- §INRA, Plateforme d'Analyse Protéomique de Paris Sud Ouest, PAPPSO, Gif-sur-Yvette, 91190, France
| | - François Tardieu
- ¶INRA, Laboratoire d'Ecophysiologiedes Plantes sous Stress Environnementaux, LEPSE, Montpellier, 34060, France
| | - Michel Zivy
- From the ‡INRA/University Paris-Sud/CNRS/AgroParisTech, UMR 0320/UMR 8120 Génétique Végétale, Gif-sur-Yvette, 91190, France
| |
Collapse
|
44
|
Kavanaugh GM, Wise-Draper TM, Morreale RJ, Morrison MA, Gole B, Schwemberger S, Tichy ED, Lu L, Babcock GF, Wells JM, Drissi R, Bissler JJ, Stambrook PJ, Andreassen PR, Wiesmüller L, Wells SI. The human DEK oncogene regulates DNA damage response signaling and repair. Nucleic Acids Res 2011; 39:7465-76. [PMID: 21653549 PMCID: PMC3177200 DOI: 10.1093/nar/gkr454] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Accepted: 05/16/2011] [Indexed: 12/04/2022] Open
Abstract
The human DEK gene is frequently overexpressed and sometimes amplified in human cancer. Consistent with oncogenic functions, Dek knockout mice are partially resistant to chemically induced papilloma formation. Additionally, DEK knockdown in vitro sensitizes cancer cells to DNA damaging agents and induces cell death via p53-dependent and -independent mechanisms. Here we report that DEK is important for DNA double-strand break repair. DEK depletion in human cancer cell lines and xenografts was sufficient to induce a DNA damage response as assessed by detection of γH2AX and FANCD2. Phosphorylation of H2AX was accompanied by contrasting activation and suppression, respectively, of the ATM and DNA-PK pathways. Similar DNA damage responses were observed in primary Dek knockout mouse embryonic fibroblasts (MEFs), along with increased levels of DNA damage and exaggerated induction of senescence in response to genotoxic stress. Importantly, Dek knockout MEFs exhibited distinct defects in non-homologous end joining (NHEJ) when compared to their wild-type counterparts. Taken together, the data demonstrate new molecular links between DEK and DNA damage response signaling pathways, and suggest that DEK contributes to DNA repair.
Collapse
Affiliation(s)
- Gina M. Kavanaugh
- Division of Hematology/Oncology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA Division of Gynecological Oncology, Department of Gynecology and Obstetrics, Ulm University, D-89075 Ulm, Germany, Research, Shriners Hospitals for Children, Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Division of Nephrology and Hypertension, Cincinnati Children's Hospital Medical Center, Department of Surgery, University of Cincinnati College of Medicine, Division of Molecular and Developmental Biology, Cincinnati Children's Hospital Medical Center, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Trisha M. Wise-Draper
- Division of Hematology/Oncology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA Division of Gynecological Oncology, Department of Gynecology and Obstetrics, Ulm University, D-89075 Ulm, Germany, Research, Shriners Hospitals for Children, Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Division of Nephrology and Hypertension, Cincinnati Children's Hospital Medical Center, Department of Surgery, University of Cincinnati College of Medicine, Division of Molecular and Developmental Biology, Cincinnati Children's Hospital Medical Center, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Richard J. Morreale
- Division of Hematology/Oncology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA Division of Gynecological Oncology, Department of Gynecology and Obstetrics, Ulm University, D-89075 Ulm, Germany, Research, Shriners Hospitals for Children, Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Division of Nephrology and Hypertension, Cincinnati Children's Hospital Medical Center, Department of Surgery, University of Cincinnati College of Medicine, Division of Molecular and Developmental Biology, Cincinnati Children's Hospital Medical Center, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Monique A. Morrison
- Division of Hematology/Oncology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA Division of Gynecological Oncology, Department of Gynecology and Obstetrics, Ulm University, D-89075 Ulm, Germany, Research, Shriners Hospitals for Children, Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Division of Nephrology and Hypertension, Cincinnati Children's Hospital Medical Center, Department of Surgery, University of Cincinnati College of Medicine, Division of Molecular and Developmental Biology, Cincinnati Children's Hospital Medical Center, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Boris Gole
- Division of Hematology/Oncology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA Division of Gynecological Oncology, Department of Gynecology and Obstetrics, Ulm University, D-89075 Ulm, Germany, Research, Shriners Hospitals for Children, Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Division of Nephrology and Hypertension, Cincinnati Children's Hospital Medical Center, Department of Surgery, University of Cincinnati College of Medicine, Division of Molecular and Developmental Biology, Cincinnati Children's Hospital Medical Center, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Sandy Schwemberger
- Division of Hematology/Oncology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA Division of Gynecological Oncology, Department of Gynecology and Obstetrics, Ulm University, D-89075 Ulm, Germany, Research, Shriners Hospitals for Children, Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Division of Nephrology and Hypertension, Cincinnati Children's Hospital Medical Center, Department of Surgery, University of Cincinnati College of Medicine, Division of Molecular and Developmental Biology, Cincinnati Children's Hospital Medical Center, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Elisia D. Tichy
- Division of Hematology/Oncology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA Division of Gynecological Oncology, Department of Gynecology and Obstetrics, Ulm University, D-89075 Ulm, Germany, Research, Shriners Hospitals for Children, Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Division of Nephrology and Hypertension, Cincinnati Children's Hospital Medical Center, Department of Surgery, University of Cincinnati College of Medicine, Division of Molecular and Developmental Biology, Cincinnati Children's Hospital Medical Center, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Lu Lu
- Division of Hematology/Oncology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA Division of Gynecological Oncology, Department of Gynecology and Obstetrics, Ulm University, D-89075 Ulm, Germany, Research, Shriners Hospitals for Children, Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Division of Nephrology and Hypertension, Cincinnati Children's Hospital Medical Center, Department of Surgery, University of Cincinnati College of Medicine, Division of Molecular and Developmental Biology, Cincinnati Children's Hospital Medical Center, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - George F. Babcock
- Division of Hematology/Oncology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA Division of Gynecological Oncology, Department of Gynecology and Obstetrics, Ulm University, D-89075 Ulm, Germany, Research, Shriners Hospitals for Children, Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Division of Nephrology and Hypertension, Cincinnati Children's Hospital Medical Center, Department of Surgery, University of Cincinnati College of Medicine, Division of Molecular and Developmental Biology, Cincinnati Children's Hospital Medical Center, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - James M. Wells
- Division of Hematology/Oncology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA Division of Gynecological Oncology, Department of Gynecology and Obstetrics, Ulm University, D-89075 Ulm, Germany, Research, Shriners Hospitals for Children, Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Division of Nephrology and Hypertension, Cincinnati Children's Hospital Medical Center, Department of Surgery, University of Cincinnati College of Medicine, Division of Molecular and Developmental Biology, Cincinnati Children's Hospital Medical Center, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Rachid Drissi
- Division of Hematology/Oncology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA Division of Gynecological Oncology, Department of Gynecology and Obstetrics, Ulm University, D-89075 Ulm, Germany, Research, Shriners Hospitals for Children, Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Division of Nephrology and Hypertension, Cincinnati Children's Hospital Medical Center, Department of Surgery, University of Cincinnati College of Medicine, Division of Molecular and Developmental Biology, Cincinnati Children's Hospital Medical Center, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - John J. Bissler
- Division of Hematology/Oncology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA Division of Gynecological Oncology, Department of Gynecology and Obstetrics, Ulm University, D-89075 Ulm, Germany, Research, Shriners Hospitals for Children, Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Division of Nephrology and Hypertension, Cincinnati Children's Hospital Medical Center, Department of Surgery, University of Cincinnati College of Medicine, Division of Molecular and Developmental Biology, Cincinnati Children's Hospital Medical Center, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Peter J. Stambrook
- Division of Hematology/Oncology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA Division of Gynecological Oncology, Department of Gynecology and Obstetrics, Ulm University, D-89075 Ulm, Germany, Research, Shriners Hospitals for Children, Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Division of Nephrology and Hypertension, Cincinnati Children's Hospital Medical Center, Department of Surgery, University of Cincinnati College of Medicine, Division of Molecular and Developmental Biology, Cincinnati Children's Hospital Medical Center, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Paul R. Andreassen
- Division of Hematology/Oncology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA Division of Gynecological Oncology, Department of Gynecology and Obstetrics, Ulm University, D-89075 Ulm, Germany, Research, Shriners Hospitals for Children, Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Division of Nephrology and Hypertension, Cincinnati Children's Hospital Medical Center, Department of Surgery, University of Cincinnati College of Medicine, Division of Molecular and Developmental Biology, Cincinnati Children's Hospital Medical Center, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Lisa Wiesmüller
- Division of Hematology/Oncology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA Division of Gynecological Oncology, Department of Gynecology and Obstetrics, Ulm University, D-89075 Ulm, Germany, Research, Shriners Hospitals for Children, Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Division of Nephrology and Hypertension, Cincinnati Children's Hospital Medical Center, Department of Surgery, University of Cincinnati College of Medicine, Division of Molecular and Developmental Biology, Cincinnati Children's Hospital Medical Center, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Susanne I. Wells
- Division of Hematology/Oncology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA Division of Gynecological Oncology, Department of Gynecology and Obstetrics, Ulm University, D-89075 Ulm, Germany, Research, Shriners Hospitals for Children, Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Division of Nephrology and Hypertension, Cincinnati Children's Hospital Medical Center, Department of Surgery, University of Cincinnati College of Medicine, Division of Molecular and Developmental Biology, Cincinnati Children's Hospital Medical Center, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| |
Collapse
|
45
|
Brázda V, Laister RC, Jagelská EB, Arrowsmith C. Cruciform structures are a common DNA feature important for regulating biological processes. BMC Mol Biol 2011; 12:33. [PMID: 21816114 PMCID: PMC3176155 DOI: 10.1186/1471-2199-12-33] [Citation(s) in RCA: 178] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Accepted: 08/05/2011] [Indexed: 04/10/2023] Open
Abstract
DNA cruciforms play an important role in the regulation of natural processes involving DNA. These structures are formed by inverted repeats, and their stability is enhanced by DNA supercoiling. Cruciform structures are fundamentally important for a wide range of biological processes, including replication, regulation of gene expression, nucleosome structure and recombination. They also have been implicated in the evolution and development of diseases including cancer, Werner's syndrome and others. Cruciform structures are targets for many architectural and regulatory proteins, such as histones H1 and H5, topoisomerase IIβ, HMG proteins, HU, p53, the proto-oncogene protein DEK and others. A number of DNA-binding proteins, such as the HMGB-box family members, Rad54, BRCA1 protein, as well as PARP-1 polymerase, possess weak sequence specific DNA binding yet bind preferentially to cruciform structures. Some of these proteins are, in fact, capable of inducing the formation of cruciform structures upon DNA binding. In this article, we review the protein families that are involved in interacting with and regulating cruciform structures, including (a) the junction-resolving enzymes, (b) DNA repair proteins and transcription factors, (c) proteins involved in replication and (d) chromatin-associated proteins. The prevalence of cruciform structures and their roles in protein interactions, epigenetic regulation and the maintenance of cell homeostasis are also discussed.
Collapse
Affiliation(s)
- Václav Brázda
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v,v,i,, Královopolská 135, Brno, 612 65, Czech Republic.
| | | | | | | |
Collapse
|
46
|
Kappes F, Khodadoust MS, Yu L, Kim DSL, Fullen DR, Markovitz DM, Ma L. DEK expression in melanocytic lesions. Hum Pathol 2011; 42:932-8. [PMID: 21316078 PMCID: PMC3162348 DOI: 10.1016/j.humpath.2010.10.022] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Revised: 10/14/2010] [Accepted: 10/20/2010] [Indexed: 12/14/2022]
Abstract
The diagnosis of malignant melanoma presents a clinical challenge and relies principally on histopathological evaluation. Previous studies have indicated that increased expression of the DEK oncogene, a chromatin-bound factor, could contribute to the development of melanoma and may be a frequent event in melanoma progression. Here, we investigated DEK expression by immunohistochemistry in a total of 147 melanocytic lesions, including ordinary nevi, dysplastic nevi, Spitz nevi, melanoma in situ, primary invasive melanomas, and metastatic melanomas. Most benign nevi (ordinary, dysplastic, and Spitz nevi) were negative or exhibited weak staining for DEK, with only 4 of 49 cases showing strong staining. Similar to benign nevi, melanoma in situ also demonstrated low levels of DEK expression. In contrast, the expression of DEK in primary invasive melanomas was significantly higher than benign nevi (P < .0001). Moreover, DEK expression was significantly increased in deep melanomas (Breslow depth >1 mm) and metastatic melanomas as compared with superficial melanomas (Breslow depth ≤1 mm) (P < .05). Our findings indicate that DEK overexpression may be a frequent event in invasive melanomas, and further augmentation of DEK expression may be associated with the acquisition of ominous features such as deep dermal invasion and metastasis. These data suggest a role of DEK in melanoma progression.
Collapse
Affiliation(s)
- Ferdinand Kappes
- Department of Internal Medicine, Division of Infectious Diseases, University of Michigan Medical Center, Ann Arbor, MI, USA
| | - Michael S Khodadoust
- Program in Immunology, University of Michigan Medical Center, Ann Arbor, MI, USA
| | - Limin Yu
- Department of Pathology, University of Michigan Medical Center, Ann Arbor, MI, USA
| | - David SL Kim
- Department of Pathology, University of Michigan Medical Center, Ann Arbor, MI, USA
| | - Douglas R Fullen
- Department of Pathology, University of Michigan Medical Center, Ann Arbor, MI, USA
- Department of Dermatology, University of Michigan Medical Center, Ann Arbor, MI, USA
| | - David M Markovitz
- Department of Internal Medicine, Division of Infectious Diseases, University of Michigan Medical Center, Ann Arbor, MI, USA
- Program in Immunology, University of Michigan Medical Center, Ann Arbor, MI, USA
- Program in Cellular & Molecular Biology, University of Michigan Medical Center, Ann Arbor, MI, USA
| | - Linglei Ma
- Department of Pathology, University of Michigan Medical Center, Ann Arbor, MI, USA
- Department of Dermatology, University of Michigan Medical Center, Ann Arbor, MI, USA
| |
Collapse
|
47
|
Kappes F, Waldmann T, Mathew V, Yu J, Zhang L, Khodadoust MS, Chinnaiyan AM, Luger K, Erhardt S, Schneider R, Markovitz DM. The DEK oncoprotein is a Su(var) that is essential to heterochromatin integrity. Genes Dev 2011; 25:673-8. [PMID: 21460035 PMCID: PMC3070930 DOI: 10.1101/gad.2036411] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2010] [Accepted: 02/09/2011] [Indexed: 12/18/2022]
Abstract
Heterochromatin integrity is crucial for genome stability and regulation of gene expression, but the factors involved in mammalian heterochromatin biology are only incompletely understood. Here we identify the oncoprotein DEK, an abundant nuclear protein with a previously enigmatic in vivo function, as a Suppressor of Variegation [Su(var)] that is crucial to global heterochromatin integrity. We show that DEK interacts directly with Heterochromatin Protein 1 α (HP1α) and markedly enhances its binding to trimethylated H3K9 (H3K9me3), which is key for maintaining heterochromatic regions. Loss of Dek in Drosophila leads to a Su(var) phenotype and global reduction in heterochromatin. Thus, these findings show that DEK is a key factor in maintaining the balance between heterochromatin and euchromatin in vivo.
Collapse
Affiliation(s)
- Ferdinand Kappes
- Department of Internal Medicine, Division of Infectious Diseases, University of Michigan Medical Center, Ann Arbor, Michigan 48109, USA
| | - Tanja Waldmann
- Max-Planck-Institute for Immunobiology, 79108 Freiburg, Germany
| | - Veena Mathew
- CellNetworks-Cluster of Excellence, ZMBH-DKFZ-Alliance, ZMBH, Heidelberg University, Heidelberg 69120, Germany
| | - Jindan Yu
- Department of Pathology, Michigan Center for Translational Pathology, University of Michigan Medical Center, Ann Arbor, Michigan 48109, USA
| | - Ling Zhang
- Department of Biochemistry and Molecular Biology, Howard Hughes Medical Institute, Colorado State University, Fort Collins, Colorado 80523, USA
| | - Michael S. Khodadoust
- Department of Internal Medicine, Division of Infectious Diseases, University of Michigan Medical Center, Ann Arbor, Michigan 48109, USA
- Program in Immunology, University of Michigan Medical Center, Ann Arbor, Michigan 48109, USA
| | - Arul M. Chinnaiyan
- Department of Pathology, Michigan Center for Translational Pathology, University of Michigan Medical Center, Ann Arbor, Michigan 48109, USA
| | - Karolin Luger
- Department of Biochemistry and Molecular Biology, Howard Hughes Medical Institute, Colorado State University, Fort Collins, Colorado 80523, USA
| | - Sylvia Erhardt
- CellNetworks-Cluster of Excellence, ZMBH-DKFZ-Alliance, ZMBH, Heidelberg University, Heidelberg 69120, Germany
| | | | - David M. Markovitz
- Department of Internal Medicine, Division of Infectious Diseases, University of Michigan Medical Center, Ann Arbor, Michigan 48109, USA
- Program in Immunology, University of Michigan Medical Center, Ann Arbor, Michigan 48109, USA
- Cellular and Molecular Biology Program, University of Michigan Medical Center, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
48
|
Mor-Vaknin N, Kappes F, Dick AE, Legendre M, Damoc C, Teitz-Tennenbaum S, Kwok R, Ferrando-May E, Adams BS, Markovitz DM. DEK in the synovium of patients with juvenile idiopathic arthritis: characterization of DEK antibodies and posttranslational modification of the DEK autoantigen. ARTHRITIS AND RHEUMATISM 2011; 63:556-67. [PMID: 21280010 PMCID: PMC3117121 DOI: 10.1002/art.30138] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
OBJECTIVE DEK is a nuclear phosphoprotein and autoantigen in a subset of children with juvenile idiopathic arthritis (JIA). Autoantibodies to DEK are also found in a broad spectrum of disorders associated with abnormal immune activation. We previously demonstrated that DEK is secreted by macrophages, is released by apoptotic T cells, and attracts leukocytes. Since DEK has been identified in the synovial fluid (SF) of patients with JIA, this study was undertaken to investigate how DEK protein and/or autoantibodies may contribute to the pathogenesis of JIA. METHODS DEK autoantibodies, immune complexes (ICs), and synovial macrophages were purified from the SF of patients with JIA. DEK autoantibodies and ICs were purified by affinity-column chromatography and analyzed by 2-dimensional gel electrophoresis, immunoblotting, and enzyme-linked immunosorbent assay. DEK in supernatants and exosomes was purified by serial centrifugation and immunoprecipitation with magnetic beads, and posttranslational modifications of DEK were identified by nano-liquid chromatography tandem mass spectrometry (nano-LC-MS/MS). RESULTS DEK autoantibodies and protein were found in the SF of patients with JIA. Secretion of DEK by synovial macrophages was observed both in a free form and via exosomes. DEK autoantibodies (IgG2) may activate the complement cascade, primarily recognize the C-terminal portion of DEK protein, and exhibit higher affinity for acetylated DEK. Consistent with these observations, DEK underwent acetylation on an unprecedented number of lysine residues, as demonstrated by nano-LC-MS/MS. CONCLUSION These results indicate that DEK can contribute directly to joint inflammation in JIA by generating ICs through high-affinity interaction between DEK and DEK autoantibodies, a process enhanced by acetylation of DEK in the inflamed joint.
Collapse
|
49
|
Oancea C, Rüster B, Henschler R, Puccetti E, Ruthardt M. The t(6;9) associated DEK/CAN fusion protein targets a population of long-term repopulating hematopoietic stem cells for leukemogenic transformation. Leukemia 2010; 24:1910-9. [PMID: 20827285 DOI: 10.1038/leu.2010.180] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The t(6;9)-positive acute myeloid leukemia (AML) is classified as a separate clinical entity because of its early onset and poor prognosis. The hallmark of t(6;9) AML is the expression of the DEK/CAN fusion protein. The leukemogenic potential of DEK/CAN has been called into question, because it was shown to be unable to block the differentiation of hematopoietic progenitors. We found that DEK/CAN initiated leukemia from a small subpopulation within the hematopoietic stem cell (HSC) population expressing a surface marker pattern of long-term (LT) HSC. The propagation of established DEK/CAN-positive leukemia was not restricted to the LT-HSC population, but occurred even from more mature and heterogeneous cell populations. This finding indicates that in DEK/CAN-induced leukemia, there is a difference between 'leukemia-initiating cells' (L-ICs) and 'leukemia-maintaining cells' (L-MCs). In contrast to the L-IC cells represented by a very rare subpopulation of LT-HSC, the L-MC seem to be represented by a larger and phenotypically heterogeneous cell population.
Collapse
Affiliation(s)
- C Oancea
- Department of Hematology, Goethe University, Frankfurt, Germany
| | | | | | | | | |
Collapse
|
50
|
Fahrer J, Popp O, Malanga M, Beneke S, Markovitz DM, Ferrando-May E, Bürkle A, Kappes F. High-affinity interaction of poly(ADP-ribose) and the human DEK oncoprotein depends upon chain length. Biochemistry 2010; 49:7119-30. [PMID: 20669926 PMCID: PMC2929705 DOI: 10.1021/bi1004365] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Poly(ADP-ribose) polymerase-1 (PARP-1) is a molecular DNA damage sensor that catalyzes the synthesis of the complex biopolymer poly(ADP-ribose) (PAR) under consumption of NAD(+). PAR engages in fundamental cellular processes such as DNA metabolism and transcription and interacts noncovalently with specific binding proteins involved in DNA repair and regulation of chromatin structure. A factor implicated in DNA repair and chromatin organization is the DEK oncoprotein, an abundant and conserved constituent of metazoan chromatin, and the only member of its protein class. We have recently demonstrated that DEK, under stress conditions, is covalently modified with PAR by PARP-1, leading to a partial release of DEK into the cytoplasm. Additionally, we have also observed a noncovalent interaction between DEK and PAR, which we detail here. Using sequence alignment, we identify three functional PAR-binding sites in the DEK primary sequence and confirm their functionality in PAR binding studies. Furthermore, we show that the noncovalent binding to DEK is dependent on PAR chain length as revealed by an overlay blot technique and a PAR electrophoretic mobility shift assay. Intriguingly, DEK promotes the formation of a defined complex with a 54mer PAR (K(D) = 6 x 10(-8) M), whereas no specific interaction is detected with a short PAR chain (18mer). In stark contrast to covalent poly(ADP-ribosyl)ation of DEK, the noncovalent interaction does not affect the overall ability of DEK to bind to DNA. Instead the noncovalent interaction interferes with subsequent DNA-dependent multimerization activities of DEK, as seen in South-Western, electrophoretic mobility shift, topology, and aggregation assays. In particular, noncovalent attachment of PAR to DEK promotes the formation of DEK-DEK complexes by competing with DNA binding. This was seen by the reduced affinity of PAR-bound DEK for DNA templates in solution. Taken together, our findings deepen the molecular understanding of the DEK-PAR interplay and support the existence of a cellular "PAR code" represented by PAR chain length.
Collapse
Affiliation(s)
- Jörg Fahrer
- Institute of Pharmacology and Toxicology, University of Ulm Medical Center, Ulm, Germany
- Molecular Toxicology Group, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Oliver Popp
- Molecular Toxicology Group, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Maria Malanga
- Department of Structural and Functional Biology, University Federico II of Naples, Naples, Italy
| | - Sascha Beneke
- Molecular Toxicology Group, Department of Biology, University of Konstanz, Konstanz, Germany
| | - David M. Markovitz
- Department of Internal Medicine, Division of Infectious Diseases, University of Michigan Medical Center, Ann Arbor, Michigan, USA
- Cellular & Molecular Biology Program, University of Michigan Medical Center, Ann Arbor, Michigan, USA
- Program in Immunology, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | - Elisa Ferrando-May
- Bioimaging Center, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Alexander Bürkle
- Molecular Toxicology Group, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Ferdinand Kappes
- Department of Internal Medicine, Division of Infectious Diseases, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| |
Collapse
|