1
|
Meinung CP, Boi L, Pandamooz S, Mazaud D, Ghézali G, Rouach N, Neumann ID. OXTR-mediated signaling in astrocytes contributes to anxiolysis. Mol Psychiatry 2025; 30:2620-2634. [PMID: 39702695 DOI: 10.1038/s41380-024-02870-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/13/2024] [Accepted: 12/06/2024] [Indexed: 12/21/2024]
Abstract
Astrocytes are an indispensable part of signal processing within the mammalian brain. Thus, the mode of action of a neuropeptide such as oxytocin (OXT) can only be fully understood considering this integral part of the CNS. Here, we show that OXT regulates astrocytic gene expression, intracellular signaling and specific proteins both in vitro and in vivo. This translates into rapid regulation of astroglial structural and functional properties including cytoskeletal plasticity, coverage of synapses and gap-junction coupling. At the molecular level, we identify the previously undescribed Sp1-Gem signaling cascade as the key driver for these cell type-specific OXT effects. Finally at the behavioral level, we found in vivo that OXT requires astrocytes to exert its well described anxiolytic properties within the hypothalamic paraventricular nucleus. Thus, our study points to OXT receptor-expressing astrocytes as a critical component of the brain OXT system.
Collapse
Affiliation(s)
- Carl-Philipp Meinung
- Department of Behavioral and Molecular Neurobiology, University of Regensburg, Regensburg, Germany
| | - Laura Boi
- Department of Behavioral and Molecular Neurobiology, University of Regensburg, Regensburg, Germany
| | - Sareh Pandamooz
- Department of Behavioral and Molecular Neurobiology, University of Regensburg, Regensburg, Germany
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - David Mazaud
- Center for Interdisciplinary Research in Biology, Collège de France, CNRS, INSERM, Université PSL, Labex Memolife, Paris, France
| | - Grégory Ghézali
- Center for Interdisciplinary Research in Biology, Collège de France, CNRS, INSERM, Université PSL, Labex Memolife, Paris, France
| | - Nathalie Rouach
- Center for Interdisciplinary Research in Biology, Collège de France, CNRS, INSERM, Université PSL, Labex Memolife, Paris, France
| | - Inga D Neumann
- Department of Behavioral and Molecular Neurobiology, University of Regensburg, Regensburg, Germany.
| |
Collapse
|
2
|
Kong CH, Dries E. Rad protein: An essential player in L-type Ca2+ channel localization and modulation in cardiomyocytes. J Gen Physiol 2024; 156:e202413629. [PMID: 39172109 PMCID: PMC11344166 DOI: 10.1085/jgp.202413629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024] Open
Abstract
Rad is an emerging key Cav1.2 modulator. In the present issue of JGP, Elmore, Ahern et al. examine how the Rad C-terminus affects its subcellular distribution and Cav1.2 regulation.
Collapse
Affiliation(s)
- Cherrie H.T. Kong
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - Eef Dries
- Laboratory of Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| |
Collapse
|
3
|
Elmore G, Ahern BM, McVay NM, Barker KW, Lohano SS, Ali N, Sebastian A, Andres DA, Satin J, Levitan BM. The C-terminus of Rad is required for membrane localization and L-type calcium channel regulation. J Gen Physiol 2024; 156:e202313518. [PMID: 38990175 PMCID: PMC11244639 DOI: 10.1085/jgp.202313518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 05/17/2024] [Accepted: 06/26/2024] [Indexed: 07/12/2024] Open
Abstract
L-type CaV1.2 current (ICa,L) links electrical excitation to contraction in cardiac myocytes. ICa,L is tightly regulated to control cardiac output. Rad is a Ras-related, monomeric protein that binds to L-type calcium channel β subunits (CaVβ) to promote inhibition of ICa,L. In addition to CaVβ interaction conferred by the Rad core motif, the highly conserved Rad C-terminus can direct membrane association in vitro and inhibition of ICa,L in immortalized cell lines. In this work, we test the hypothesis that in cardiomyocytes the polybasic C-terminus of Rad confers t-tubular localization, and that membrane targeting is required for Rad-dependent ICa,L regulation. We introduced a 3xFlag epitope to the N-terminus of the endogenous mouse Rrad gene to facilitate analysis of subcellular localization. Full-length 3xFlag-Rad (Flag-Rad) mice were compared with a second transgenic mouse model, in which the extended polybasic C-termini of 3xFlag-Rad was truncated at alanine 277 (Flag-RadΔCT). Ventricular cardiomyocytes were isolated for anti-Flag-Rad immunocytochemistry and ex vivo electrophysiology. Full-length Flag-Rad showed a repeating t-tubular pattern whereas Flag-RadΔCT failed to display membrane association. ICa,L in Flag-RadΔCT cardiomyocytes showed a hyperpolarized activation midpoint and an increase in maximal conductance. Additionally, current decay was faster in Flag-RadΔCT cells. Myocardial ICa,L in a Rad C-terminal deletion model phenocopies ICa,L modulated in response to β-AR stimulation. Mechanistically, the polybasic Rad C-terminus confers CaV1.2 regulation via membrane association. Interfering with Rad membrane association constitutes a specific target for boosting heart function as a treatment for heart failure with reduced ejection fraction.
Collapse
Affiliation(s)
- Garrett Elmore
- Department of Physiology, University of Kentucky, Lexington, KY, USA
| | - Brooke M. Ahern
- Department of Physiology, University of Kentucky, Lexington, KY, USA
| | - Nicholas M. McVay
- Department of Physiology, University of Kentucky, Lexington, KY, USA
| | - Kyle W. Barker
- Department of Physiology, University of Kentucky, Lexington, KY, USA
| | - Sarisha S. Lohano
- Department of Physiology, University of Kentucky, Lexington, KY, USA
| | - Nemat Ali
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, USA
| | - Andrea Sebastian
- Department of Physiology, University of Kentucky, Lexington, KY, USA
| | - Douglas A. Andres
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, USA
| | - Jonathan Satin
- Department of Physiology, University of Kentucky, Lexington, KY, USA
| | - Bryana M. Levitan
- Department of Physiology, University of Kentucky, Lexington, KY, USA
- Gill Heart and Vascular Institute, Lexington, KY, USA
| |
Collapse
|
4
|
Gan L, Deng Z, Wei Y, Li H, Zhao L. Decreased expression of GEM in osteoarthritis cartilage regulates chondrogenic differentiation via Wnt/β-catenin signaling. J Orthop Surg Res 2023; 18:751. [PMID: 37794464 PMCID: PMC10548561 DOI: 10.1186/s13018-023-04236-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 09/26/2023] [Indexed: 10/06/2023] Open
Abstract
BACKGROUND GEM (GTP-binding protein overexpressed in skeletal muscle) is one of the atypical small GTPase subfamily members recently identified as a regulator of cell differentiation. Abnormal chondrogenesis coupled with an imbalance in the turnover of cartilaginous matrix formation is highly relevant to the onset and progression of osteoarthritis (OA). However, how GEM regulates chondrogenic differentiation remains unexplored. METHODS Cartilage tissues were obtained from OA patients and graded according to the ORASI and ICRS grading systems. The expression alteration of GEM was detected in the Grade 4 cartilage compared to Grade 0 and verified in OA mimic culture systems. Next, to investigate the specific function of GEM during these processes, we generated a Gem knockdown (Gem-Kd) system by transfecting siRNA targeting Gem into ATDC5 cells. Acan, Col2a1, Sox9, and Wnt target genes of Gem-Kd ATDC5 cells were detected during induction. The transcriptomic sequencing analysis was performed to investigate the mechanism of GEM regulation. Wnt signaling pathways were verified by real-time PCR and immunoblot analysis. Finally, a rescue model generated by treating Gem-KD ATDC5 cells with a Wnt signaling agonist was established to validate the mechanism identified by RNA sequencing analysis. RESULTS A decreased expression of GEM in OA patients' cartilage tissues and OA mimic chondrocytes was observed. While during chondrogenesis differentiation and cartilage matrix formation, the expression of GEM was increased. Gem silencing suppressed chondrogenic differentiation and the expressions of Acan, Col2a1, and Sox9. RNA sequencing analysis revealed that Wnt signaling was downregulated in Gem-Kd cells. Decreased expression of Wnt signaling associated genes and the total β-CATENIN in the nucleus and cytoplasm were observed. The exogenous Wnt activation exhibited reversed effect on Gem loss-of-function cells. CONCLUSION These findings collectively validated that GEM functions as a novel regulator mediating chondrogenic differentiation and cartilage matrix formation through Wnt/β-catenin signaling.
Collapse
Affiliation(s)
- Lu Gan
- Department of Orthopaedic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Zhonghao Deng
- Department of Orthopaedic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Yiran Wei
- Department of Orthopaedic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | | | - Liang Zhao
- Department of Orthopaedic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China.
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, 510515, Guangdong, China.
| |
Collapse
|
5
|
Zhang DW, Zhang S, Wu J. Expression profile analysis to predict potential biomarkers for glaucoma: BMP1, DMD and GEM. PeerJ 2020; 8:e9462. [PMID: 32953253 PMCID: PMC7474882 DOI: 10.7717/peerj.9462] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Accepted: 06/10/2020] [Indexed: 12/16/2022] Open
Abstract
Purpose Glaucoma is the second commonest cause of blindness. We assessed the gene expression profile of astrocytes in the optic nerve head to identify possible prognostic biomarkers for glaucoma. Method A total of 20 patient and nine normal control subject samples were derived from the GSE9944 (six normal samples and 13 patient samples) and GSE2378 (three normal samples and seven patient samples) datasets, screened by microarray-tested optic nerve head tissues, were obtained from the Gene Expression Omnibus (GEO) database. We used a weighted gene coexpression network analysis (WGCNA) to identify coexpressed gene modules. We also performed a functional enrichment analysis and least absolute shrinkage and selection operator (LASSO) regression analysis. Genes expression was represented by boxplots, functional geneset enrichment analyses (GSEA) were used to profile the expression patterns of all the key genes. Then the key genes were validated by the external dataset. Results A total 8,606 genes and 19 human optic nerve head samples taken from glaucoma patients in the GSE9944 were compared with normal control samples to construct the co-expression gene modules. After selecting the most common clinical traits of glaucoma, their association with gene expression was established, which sorted two modules showing greatest correlations. One with the correlation coefficient is 0.56 (P = 0.01) and the other with the correlation coefficient is −0.56 (P = 0.01). Hub genes of these modules were identified using scatterplots of gene significance versus module membership. A functional enrichment analysis showed that the former module was mainly enriched in genes involved in cellular inflammation and injury, whereas the latter was mainly enriched in genes involved in tissue homeostasis and physiological processes. This suggests that genes in the green–yellow module may play critical roles in the onset and development of glaucoma. A LASSO regression analysis identified three hub genes: Recombinant Bone Morphogenetic Protein 1 gene (BMP1), Duchenne muscular dystrophy gene (DMD) and mitogens induced GTP-binding protein gene (GEM). The expression levels of the three genes in the glaucoma group were significantly lower than those in the normal group. GSEA further illuminated that BMP1, DMD and GEM participated in the occurrence and development of some important metabolic progresses. Using the GSE2378 dataset, we confirmed the high validity of the model, with an area under the receiver operator characteristic curve of 85%. Conclusion We identified several key genes, including BMP1, DMD and GEM, that may be involved in the pathogenesis of glaucoma. Our results may help to determine the prognosis of glaucoma and/or to design gene- or molecule-targeted drugs.
Collapse
Affiliation(s)
- Dao Wei Zhang
- Eye Institute, Eye and ENT Hospital, College of Medicine, Fudan University, Shanghai, China
| | - Shenghai Zhang
- Eye Institute, Eye and ENT Hospital, College of Medicine, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Science and Technology Commission of Shanghai Municipality, Shanghai, China.,State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Shanghai, China.,Key Laboratory of Myopia, Ministry of Health, Shanghai, China
| | - Jihong Wu
- Eye Institute, Eye and ENT Hospital, College of Medicine, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Science and Technology Commission of Shanghai Municipality, Shanghai, China.,State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Shanghai, China.,Key Laboratory of Myopia, Ministry of Health, Shanghai, China
| |
Collapse
|
6
|
Bouhaddou M, Memon D, Meyer B, White KM, Rezelj VV, Correa Marrero M, Polacco BJ, Melnyk JE, Ulferts S, Kaake RM, Batra J, Richards AL, Stevenson E, Gordon DE, Rojc A, Obernier K, Fabius JM, Soucheray M, Miorin L, Moreno E, Koh C, Tran QD, Hardy A, Robinot R, Vallet T, Nilsson-Payant BE, Hernandez-Armenta C, Dunham A, Weigang S, Knerr J, Modak M, Quintero D, Zhou Y, Dugourd A, Valdeolivas A, Patil T, Li Q, Hüttenhain R, Cakir M, Muralidharan M, Kim M, Jang G, Tutuncuoglu B, Hiatt J, Guo JZ, Xu J, Bouhaddou S, Mathy CJP, Gaulton A, Manners EJ, Félix E, Shi Y, Goff M, Lim JK, McBride T, O'Neal MC, Cai Y, Chang JCJ, Broadhurst DJ, Klippsten S, De Wit E, Leach AR, Kortemme T, Shoichet B, Ott M, Saez-Rodriguez J, tenOever BR, Mullins RD, Fischer ER, Kochs G, Grosse R, García-Sastre A, Vignuzzi M, Johnson JR, Shokat KM, Swaney DL, Beltrao P, Krogan NJ. The Global Phosphorylation Landscape of SARS-CoV-2 Infection. Cell 2020; 182:685-712.e19. [PMID: 32645325 PMCID: PMC7321036 DOI: 10.1016/j.cell.2020.06.034] [Citation(s) in RCA: 772] [Impact Index Per Article: 154.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/09/2020] [Accepted: 06/23/2020] [Indexed: 02/07/2023]
Abstract
The causative agent of the coronavirus disease 2019 (COVID-19) pandemic, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has infected millions and killed hundreds of thousands of people worldwide, highlighting an urgent need to develop antiviral therapies. Here we present a quantitative mass spectrometry-based phosphoproteomics survey of SARS-CoV-2 infection in Vero E6 cells, revealing dramatic rewiring of phosphorylation on host and viral proteins. SARS-CoV-2 infection promoted casein kinase II (CK2) and p38 MAPK activation, production of diverse cytokines, and shutdown of mitotic kinases, resulting in cell cycle arrest. Infection also stimulated a marked induction of CK2-containing filopodial protrusions possessing budding viral particles. Eighty-seven drugs and compounds were identified by mapping global phosphorylation profiles to dysregulated kinases and pathways. We found pharmacologic inhibition of the p38, CK2, CDK, AXL, and PIKFYVE kinases to possess antiviral efficacy, representing potential COVID-19 therapies.
Collapse
Affiliation(s)
- Mehdi Bouhaddou
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Danish Memon
- European Molecular Biology Laboratory (EMBL), European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Bjoern Meyer
- Viral Populations and Pathogenesis Unit, CNRS UMR 3569, Institut Pasteur, 75724 Paris, Cedex 15, France
| | - Kris M White
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Veronica V Rezelj
- Viral Populations and Pathogenesis Unit, CNRS UMR 3569, Institut Pasteur, 75724 Paris, Cedex 15, France
| | - Miguel Correa Marrero
- European Molecular Biology Laboratory (EMBL), European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Benjamin J Polacco
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - James E Melnyk
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute
| | - Svenja Ulferts
- Institute for Clinical and Experimental Pharmacology and Toxicology, University of Freiburg, Freiburg 79104, Germany
| | - Robyn M Kaake
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Jyoti Batra
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Alicia L Richards
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Erica Stevenson
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - David E Gordon
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Ajda Rojc
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Kirsten Obernier
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Jacqueline M Fabius
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Margaret Soucheray
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Lisa Miorin
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Elena Moreno
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Cassandra Koh
- Viral Populations and Pathogenesis Unit, CNRS UMR 3569, Institut Pasteur, 75724 Paris, Cedex 15, France
| | - Quang Dinh Tran
- Viral Populations and Pathogenesis Unit, CNRS UMR 3569, Institut Pasteur, 75724 Paris, Cedex 15, France
| | - Alexandra Hardy
- Viral Populations and Pathogenesis Unit, CNRS UMR 3569, Institut Pasteur, 75724 Paris, Cedex 15, France
| | - Rémy Robinot
- Virus & Immunity Unit, Department of Virology, CNRS UMR 3569, Institut Pasteur, 75724 Paris, Cedex 15, France; Vaccine Research Institute, 94000 Creteil, France
| | - Thomas Vallet
- Viral Populations and Pathogenesis Unit, CNRS UMR 3569, Institut Pasteur, 75724 Paris, Cedex 15, France
| | | | - Claudia Hernandez-Armenta
- European Molecular Biology Laboratory (EMBL), European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Alistair Dunham
- European Molecular Biology Laboratory (EMBL), European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Sebastian Weigang
- Institute of Virology, Medical Center - University of Freiburg, Freiburg 79104, Germany
| | - Julian Knerr
- Institute for Clinical and Experimental Pharmacology and Toxicology, University of Freiburg, Freiburg 79104, Germany
| | - Maya Modak
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Diego Quintero
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Yuan Zhou
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Aurelien Dugourd
- Institute for Computational Biomedicine, Bioquant, Heidelberg University, Faculty of Medicine, and Heidelberg University Hospital, Heidelberg 69120, Germany
| | - Alberto Valdeolivas
- Institute for Computational Biomedicine, Bioquant, Heidelberg University, Faculty of Medicine, and Heidelberg University Hospital, Heidelberg 69120, Germany
| | - Trupti Patil
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Qiongyu Li
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Ruth Hüttenhain
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Merve Cakir
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Monita Muralidharan
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Minkyu Kim
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Gwendolyn Jang
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Beril Tutuncuoglu
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Joseph Hiatt
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Jeffrey Z Guo
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Jiewei Xu
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Sophia Bouhaddou
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA
| | - Christopher J P Mathy
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; Department of Bioengineering & Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Anna Gaulton
- European Molecular Biology Laboratory (EMBL), European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Emma J Manners
- European Molecular Biology Laboratory (EMBL), European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Eloy Félix
- European Molecular Biology Laboratory (EMBL), European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Ying Shi
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute
| | - Marisa Goff
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jean K Lim
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | | | | | | | | | | | | | - Emmie De Wit
- NIH/NIAID/Rocky Mountain Laboratories, Hamilton, MT 59840, USA
| | - Andrew R Leach
- European Molecular Biology Laboratory (EMBL), European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Tanja Kortemme
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; Department of Bioengineering & Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Brian Shoichet
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA
| | - Melanie Ott
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
| | - Julio Saez-Rodriguez
- Institute for Computational Biomedicine, Bioquant, Heidelberg University, Faculty of Medicine, and Heidelberg University Hospital, Heidelberg 69120, Germany
| | - Benjamin R tenOever
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - R Dyche Mullins
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute
| | | | - Georg Kochs
- Institute of Virology, Medical Center - University of Freiburg, Freiburg 79104, Germany; Faculty of Medicine, University of Freiburg, Freiburg 79008, Germany
| | - Robert Grosse
- Institute for Clinical and Experimental Pharmacology and Toxicology, University of Freiburg, Freiburg 79104, Germany; Faculty of Medicine, University of Freiburg, Freiburg 79008, Germany; Centre for Integrative Biological Signalling Studies (CIBSS), Freiburg 79104, Germany.
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA; The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| | - Marco Vignuzzi
- Viral Populations and Pathogenesis Unit, CNRS UMR 3569, Institut Pasteur, 75724 Paris, Cedex 15, France.
| | - Jeffery R Johnson
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Kevan M Shokat
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute.
| | - Danielle L Swaney
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA.
| | - Pedro Beltrao
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; European Molecular Biology Laboratory (EMBL), European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK.
| | - Nevan J Krogan
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
7
|
Morgenstern TJ, Park J, Fan QR, Colecraft HM. A potent voltage-gated calcium channel inhibitor engineered from a nanobody targeted to auxiliary Ca Vβ subunits. eLife 2019; 8:49253. [PMID: 31403402 PMCID: PMC6701945 DOI: 10.7554/elife.49253] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 08/10/2019] [Indexed: 12/15/2022] Open
Abstract
Inhibiting high-voltage-activated calcium channels (HVACCs; CaV1/CaV2) is therapeutic for myriad cardiovascular and neurological diseases. For particular applications, genetically-encoded HVACC blockers may enable channel inhibition with greater tissue-specificity and versatility than is achievable with small molecules. Here, we engineered a genetically-encoded HVACC inhibitor by first isolating an immunized llama nanobody (nb.F3) that binds auxiliary HVACC CaVβ subunits. Nb.F3 by itself is functionally inert, providing a convenient vehicle to target active moieties to CaVβ-associated channels. Nb.F3 fused to the catalytic HECT domain of Nedd4L (CaV-aβlator), an E3 ubiquitin ligase, ablated currents from diverse HVACCs reconstituted in HEK293 cells, and from endogenous CaV1/CaV2 channels in mammalian cardiomyocytes, dorsal root ganglion neurons, and pancreatic β cells. In cardiomyocytes, CaV-aβlator redistributed CaV1.2 channels from dyads to Rab-7-positive late endosomes. This work introduces CaV-aβlator as a potent genetically-encoded HVACC inhibitor, and describes a general approach that can be broadly adapted to generate versatile modulators for macro-molecular membrane protein complexes.
Collapse
Affiliation(s)
- Travis J Morgenstern
- Department of Pharmacology, Columbia University, Vagelos College of Physicians and Surgeons, New York, United States
| | - Jinseo Park
- Department of Pharmacology, Columbia University, Vagelos College of Physicians and Surgeons, New York, United States
| | - Qing R Fan
- Department of Pharmacology, Columbia University, Vagelos College of Physicians and Surgeons, New York, United States
| | - Henry M Colecraft
- Department of Pharmacology, Columbia University, Vagelos College of Physicians and Surgeons, New York, United States.,Department of Physiology and Cellular Biophysics, Columbia University, Vagelos College of Physicians and Surgeons, New York, United States
| |
Collapse
|
8
|
Xu Q, Wang Y, Zhu J, Zhao Y, Lin Y. Molecular characterization of GTP binding protein overexpressed in skeletal muscle (GEM) and its role in promoting adipogenesis in goat intramuscular preadipocytes. Anim Biotechnol 2018; 31:17-24. [PMID: 30570352 DOI: 10.1080/10495398.2018.1523796] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
GTP binding protein overexpressed in skeletal muscle (GEM) is an important gene with many functions, such as regulating the rearrangement of cytoskeleton and the activity of voltage-dependent calcium channel, and GEM was regarded as a candidate gene for obesity. However, little investigation has been carried out to explore whether GEM affected the intramuscular fat (IMF) deposition of goat. To explore the role of GEM gene in goat, this gene was cloned and its tissue and temporal expression profile were detected. Effect of GEM on adipogenesis was examined by losing function of GEM in vitro. Thereafter, several lipid metabolism-related genes were examined, including CCAAT/enhancing-binding protein α (C/EBPα), CCAAT/enhancing-binding protein β (C/EBPβ), lipoprotein lipase (LPL), preadipocyte factor 1 (Pref-1), peroxisome proliferator activated receptor γ (PPARγ) and sterol regulatory element binding protein 1 (SREBP1). We found that the goat GEM gene consisted of 936 bp, which encoded a protein of 311 amino acids. The expression of GEM was higher in spleen, lung and large intestine and it appeared sharp in the interim stage of differentiation. Furthermore, GEM knockdown blocked adipogenesis and the expression of C/EBPα, C/EBPβ, LPL, PPARγ and SREBP1. These results indicated that GEM might promote lipid accumulation and adipogenesis.
Collapse
Affiliation(s)
- Qing Xu
- School of Life Science and Technology, Southwest Minzu University, Chengdu, P.R. China.,Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu UniversityChengdu, Sichuan, P.R. China
| | - Yong Wang
- School of Life Science and Technology, Southwest Minzu University, Chengdu, P.R. China.,Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu UniversityChengdu, Sichuan, P.R. China.,Key Laboratory of Sichuan Province for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation, Chengdu, Sichuan, P.R. China
| | - Jiangjiang Zhu
- School of Life Science and Technology, Southwest Minzu University, Chengdu, P.R. China.,Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu UniversityChengdu, Sichuan, P.R. China.,Key Laboratory of Sichuan Province for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation, Chengdu, Sichuan, P.R. China
| | - Yanying Zhao
- School of Life Science and Technology, Southwest Minzu University, Chengdu, P.R. China.,Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu UniversityChengdu, Sichuan, P.R. China
| | - Yaqiu Lin
- School of Life Science and Technology, Southwest Minzu University, Chengdu, P.R. China.,Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu UniversityChengdu, Sichuan, P.R. China
| |
Collapse
|
9
|
Meza U, Beqollari D, Bannister RA. Molecular mechanisms and physiological relevance of RGK proteins in the heart. Acta Physiol (Oxf) 2018; 222:e13016. [PMID: 29237245 DOI: 10.1111/apha.13016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 12/05/2017] [Accepted: 12/06/2017] [Indexed: 12/19/2022]
Abstract
The primary route of Ca2+ entry into cardiac myocytes is via 1,4-dihydropyridine-sensitive, voltage-gated L-type Ca2+ channels. Ca2+ influx through these channels influences duration of action potential and engages excitation-contraction (EC) coupling in both the atria and the myocardium. Members of the RGK (Rad, Rem, Rem2 and Gem/Kir) family of small GTP-binding proteins are potent, endogenously expressed inhibitors of cardiac L-type channels. Although much work has focused on the molecular mechanisms by which RGK proteins inhibit the CaV 1.2 and CaV 1.3 L-type channel isoforms that expressed in the heart, their impact on greater cardiac function is only beginning to come into focus. In this review, we summarize recent findings regarding the influence of RGK proteins on normal cardiac physiology and the pathological consequences of aberrant RGK activity.
Collapse
Affiliation(s)
- U. Meza
- Departamento de Fisiología y Biofísica; Facultad de Medicina; Universidad Autónoma de San Luis Potosí; San Luis Potosí México
| | - D. Beqollari
- Department of Medicine-Cardiology Division; University of Colorado School of Medicine; Aurora CO USA
| | - R. A. Bannister
- Department of Medicine-Cardiology Division; University of Colorado School of Medicine; Aurora CO USA
| |
Collapse
|
10
|
Withers CN, Brown DM, Byiringiro I, Allen MR, Condon KW, Satin J, Andres DA. Rad GTPase is essential for the regulation of bone density and bone marrow adipose tissue in mice. Bone 2017; 103:270-280. [PMID: 28732776 PMCID: PMC6886723 DOI: 10.1016/j.bone.2017.07.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 07/12/2017] [Accepted: 07/16/2017] [Indexed: 01/03/2023]
Abstract
The small GTP-binding protein Rad (RRAD, Ras associated with diabetes) is the founding member of the RGK (Rad, Rem, Rem2, and Gem/Kir) family that regulates cardiac voltage-gated Ca2+ channel function. However, its cellular and physiological functions outside of the heart remain to be elucidated. Here we report that Rad GTPase function is required for normal bone homeostasis in mice, as Rad deletion results in significantly lower bone mass and higher bone marrow adipose tissue (BMAT) levels. Dynamic histomorphometry in vivo and primary calvarial osteoblast assays in vitro demonstrate that bone formation and osteoblast mineralization rates are depressed, while in vitro osteoclast differentiation is increased, in the absence of Rad. Microarray analysis revealed that canonical osteogenic gene expression (Runx2, osterix, etc.) is not altered in Rad-/- calvarial osteoblasts; instead robust up-regulation of matrix Gla protein (MGP, +11-fold), an inhibitor of extracellular matrix mineralization and a protein secreted during adipocyte differentiation, was observed. Strikingly, Rad deficiency also resulted in significantly higher marrow adipose tissue levels in vivo and promoted spontaneous in vitro adipogenesis of primary calvarial osteoblasts. Adipogenic differentiation of wildtype calvarial osteoblasts resulted in the loss of endogenous Rad protein, further supporting a role for Rad in the control of BMAT levels. These findings reveal a novel in vivo function for Rad and establish a role for Rad signaling in the complex physiological control of skeletal homeostasis and bone marrow adiposity.
Collapse
Affiliation(s)
- Catherine N Withers
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, BBSRB, 741 S Limestone Street, Lexington, KY 40536-0509, USA.
| | - Drew M Brown
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN 46202-5120, USA.
| | - Innocent Byiringiro
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN 46202-5120, USA.
| | - Matthew R Allen
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN 46202-5120, USA.
| | - Keith W Condon
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN 46202-5120, USA.
| | - Jonathan Satin
- Department of Physiology, University of Kentucky College of Medicine, 800 Rose Street, Lexington, KY 40536-0298, USA.
| | - Douglas A Andres
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, BBSRB, 741 S Limestone Street, Lexington, KY 40536-0509, USA.
| |
Collapse
|
11
|
Chang DD, Colecraft HM. Rad and Rem are non-canonical G-proteins with respect to the regulatory role of guanine nucleotide binding in Ca(V)1.2 channel regulation. J Physiol 2016; 593:5075-90. [PMID: 26426338 DOI: 10.1113/jp270889] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 09/27/2015] [Indexed: 12/15/2022] Open
Abstract
Rad and Rem are Ras-like G-proteins linked to diverse cardiovascular functions and pathophysiology. Understanding how Rad and Rem are regulated is important for deepened insights into their pathophysiological roles. As in other Ras-like G-proteins, Rad and Rem contain a conserved guanine-nucleotide binding domain (G-domain). Canonically, G-domains are key control modules, functioning as nucleotide-regulated switches of G-protein activity. Whether Rad and Rem G-domains conform to this canonical paradigm is ambiguous. Here, we used multiple functional measurements in HEK293 cells and cardiomyocytes (Ca(V)1.2 currents, Ca(2+) transients, Ca(V)β binding) as biosensors to probe the role of the G-domain in regulation of Rad and Rem function. We utilized Rad(S105N) and Rem(T94N), which are the cognate mutants to Ras(S17N), a dominant-negative variant of Ras that displays decreased nucleotide binding affinity. In HEK293 cells, over-expression of either Rad(S105N) or Rem(T94N) strongly inhibited reconstituted Ca(V)1.2 currents to the same extent as their wild-type (wt) counterparts, contrasting with reports that Rad(S105N) is functionally inert in HEK293 cells. Adenovirus-mediated expression of either wt Rad or Rad(S105N) in cardiomyocytes dramatically blocked L-type calcium current (I(Ca,L)) and inhibited Ca(2+)-induced Ca(2+) release, contradicting reports that Rad(S105N) acts as a dominant negative in heart. By contrast, Rem(T94N) was significantly less effective than wt Rem at inhibiting I(Ca,L) and Ca(2+) transients in cardiomyocytes. FRET analyses in cardiomyocytes revealed that both Rad(S105N) and Rem(T94N) had moderately reduced binding affinity for Ca(V)βs relative to their wt counterparts. The results indicate Rad and Rem are non-canonical G-proteins with respect to the regulatory role of their G-domain in Ca(V)1.2 regulation.
Collapse
Affiliation(s)
- Donald D Chang
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY, 10032, USA
| | - Henry M Colecraft
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY, 10032, USA
| |
Collapse
|
12
|
Functional assessment of three Rem residues identified as critical for interactions with Ca(2+) channel β subunits. Pflugers Arch 2015; 467:2299-306. [PMID: 25771954 DOI: 10.1007/s00424-015-1700-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 03/04/2015] [Indexed: 12/18/2022]
Abstract
Members of the Rem, Rem2, Rad, Gem/Kir (RGK) family of small GTP-binding proteins inhibit high-voltage-activated (HVA) Ca(2+) channels through interactions with both the principal α1 and the auxiliary β subunits of the channel complex. Three highly conserved residues of Rem (R200, L227, and H229) have been shown in vitro to be critical for interactions with β subunits. However, the functional significance of these residues is not known. To investigate the contributions of R200, L227, and H229 to β subunit-mediated RGK protein-dependent inhibition of HVA channels, we introduced alanine substitutions into all three positions of Venus fluorescent protein-tagged Rem (V-Rem AAA) and made three other V-Rem constructs with an alanine introduced at only one position (V-Rem R200A, V-Rem L227A, and V-Rem H229A). Confocal imaging and immunoblotting demonstrated that each Venus-Rem mutant construct had comparable expression levels to Venus-wild-type Rem when heterologously expressed in tsA201 cells. In electrophysiological experiments, V-Rem AAA failed to inhibit N-type Ca(2+) currents in tsA201 cells coexpressing CaV2.2 α1B, β3, and α2δ-1 channel subunits. The V-Rem L227A single mutant also failed to reduce N-type currents conducted by coexpressed CaV2.2 channels, a finding consistent with the previous observation that a leucine at position 227 is critical for Rem-β interactions. Rem-dependent inhibition of CaV2.2 channels was impaired to a much lesser extent by the R200A substitution. In contrast to the earlier work demonstrating that Rem H229A was unable to interact with β3 subunits in vitro, V-Rem H229A produced nearly complete inhibition of CaV2.2-mediated currents.
Collapse
|
13
|
Buraei Z, Lumen E, Kaur S, Yang J. RGK regulation of voltage-gated calcium channels. SCIENCE CHINA-LIFE SCIENCES 2015; 58:28-38. [PMID: 25576452 PMCID: PMC9074095 DOI: 10.1007/s11427-014-4788-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 09/02/2014] [Indexed: 01/01/2023]
Abstract
Voltage-gated calcium channels (VGCCs) play critical roles in cardiac and skeletal muscle contractions, hormone and neurotransmitter release, as well as slower processes such as cell proliferation, differentiation, migration and death. Mutations in VGCCs lead to numerous cardiac, muscle and neurological disease, and their physiological function is tightly regulated by kinases, phosphatases, G-proteins, calmodulin and many other proteins. Fifteen years ago, RGK proteins were discovered as the most potent endogenous regulators of VGCCs. They are a family of monomeric GTPases (Rad, Rem, Rem2, and Gem/Kir), in the superfamily of Ras GTPases, and they have two known functions: regulation of cytoskeletal dynamics including dendritic arborization and inhibition of VGCCs. Here we review the mechanisms and molecular determinants of RGK-mediated VGCC inhibition, the physiological impact of this inhibition, and recent evidence linking the two known RGK functions.
Collapse
Affiliation(s)
- Zafir Buraei
- Department of Biology, Pace University, New York, NY, 10038, USA,
| | | | | | | |
Collapse
|
14
|
Huang X, Cong X, Yang D, Ji L, Liu Y, Cui X, Cai J, He S, Zhu C, Ni R, Zhang Y. Identification of Gem as a new candidate prognostic marker in hepatocellular carcinoma. Pathol Res Pract 2014; 210:719-25. [PMID: 25155751 DOI: 10.1016/j.prp.2014.07.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Revised: 03/11/2014] [Accepted: 07/01/2014] [Indexed: 11/17/2022]
Abstract
GTP binding protein overexpressed in skeletal muscle (Gem) is a Ras-related protein whose expression is induced in several cell types upon activation by extracellular stimuli. To investigate the potential roles of Gem in hepatocellular carcinoma (HCC), expression of Gem was examined in human HCC samples. Western blot analysis showed that compared with primary human hepatocytes and adjacent noncancerous tissue, significant down-regulation of Gem was found in HCC cells and tumor tissues. In addition, immunohistochemical analysis of Gem expression was investigated in 108 specimens of HCC tissues. Clinicopathological data were collected to analyze the association with Gem expression. Expression of Gem was significantly negatively correlated with histological grade (P=0.001), tumor size (P=0.020), and vascular invasion (P=0.005), and Gem was also negatively correlated with proliferation marker Ki-67 (P<0.01). More importantly, the Kaplan-Meier survival curves analysis revealed that low expression of Gem was associated with poor prognosis in HCC patients. Univariate analysis showed that Gem expression was associated with poor prognosis (P=0.006). Multivariate analysis indicated that Gem expression was an independent prognostic marker for HCC (P=0.007). Finally, serum starvation and release experiments showed that Gem expression was negatively related with cell proliferation. In the conclusion, our results suggested that down regulation of Gem expression was involved in the pathogenesis of hepatocellular carcinoma, and it might be a favorable independent prognostic parameter for HCC.
Collapse
Affiliation(s)
- Xiaodong Huang
- Department of Pathology, Nantong University Cancer Hospital, Nantong, Jiangsu 226001, PR China; Department of Digestion, Affiliated Hospital of Nantong University, Medical College of Nantong University, Nantong, Jiangsu 226001, PR China
| | - Xia Cong
- Department of Digestion, Affiliated Hospital of Nantong University, Medical College of Nantong University, Nantong, Jiangsu 226001, PR China
| | - Dunpeng Yang
- Department of Cardiothoracic Surgery, Affiliated Hospital of Nantong University, Medical College of Nantong University, Nantong, Jiangsu 226001, PR China
| | - Lili Ji
- Department of Pathology, Medical College of Nantong University, Nantong, Jiangsu 226001, PR China
| | - Yanhua Liu
- Department of Digestion, Affiliated Hospital of Nantong University, Medical College of Nantong University, Nantong, Jiangsu 226001, PR China
| | - Xiaopeng Cui
- Department of Digestion, Affiliated Hospital of Nantong University, Medical College of Nantong University, Nantong, Jiangsu 226001, PR China
| | - Jing Cai
- Department of Pathology, Nantong University Cancer Hospital, Nantong, Jiangsu 226001, PR China
| | - Song He
- Department of Pathology, Nantong University Cancer Hospital, Nantong, Jiangsu 226001, PR China
| | - Changyun Zhu
- Department of Digestion, Affiliated Hospital of Nantong University, Medical College of Nantong University, Nantong, Jiangsu 226001, PR China
| | - Runzhou Ni
- Department of Digestion, Affiliated Hospital of Nantong University, Medical College of Nantong University, Nantong, Jiangsu 226001, PR China.
| | - Yixin Zhang
- Department of Pathology, Nantong University Cancer Hospital, Nantong, Jiangsu 226001, PR China.
| |
Collapse
|
15
|
Puhl HL, Lu VB, Won YJ, Sasson Y, Hirsch JA, Ono F, Ikeda SR. Ancient origins of RGK protein function: modulation of voltage-gated calcium channels preceded the protostome and deuterostome split. PLoS One 2014; 9:e100694. [PMID: 24992013 PMCID: PMC4081519 DOI: 10.1371/journal.pone.0100694] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 05/23/2014] [Indexed: 11/21/2022] Open
Abstract
RGK proteins, Gem, Rad, Rem1, and Rem2, are members of the Ras superfamily of small GTP-binding proteins that interact with Ca2+ channel β subunits to modify voltage-gated Ca2+ channel function. In addition, RGK proteins affect several cellular processes such as cytoskeletal rearrangement, neuronal dendritic complexity, and synapse formation. To probe the phylogenetic origins of RGK protein–Ca2+ channel interactions, we identified potential RGK-like protein homologs in genomes for genetically diverse organisms from both the deuterostome and protostome animal superphyla. RGK-like protein homologs cloned from Danio rerio (zebrafish) and Drosophila melanogaster (fruit flies) expressed in mammalian sympathetic neurons decreased Ca2+ current density as reported for expression of mammalian RGK proteins. Sequence alignments from evolutionarily diverse organisms spanning the protostome/deuterostome divide revealed conservation of residues within the RGK G-domain involved in RGK protein – Cavβ subunit interaction. In addition, the C-terminal eleven residues were highly conserved and constituted a signature sequence unique to RGK proteins but of unknown function. Taken together, these data suggest that RGK proteins, and the ability to modify Ca2+ channel function, arose from an ancestor predating the protostomes split from deuterostomes approximately 550 million years ago.
Collapse
Affiliation(s)
- Henry L. Puhl
- Laboratory of Molecular Physiology, Section on Transmitter Signaling, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland, United States of America
| | - Van B. Lu
- Laboratory of Molecular Physiology, Section on Transmitter Signaling, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland, United States of America
| | - Yu-Jin Won
- Laboratory of Molecular Physiology, Section on Transmitter Signaling, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland, United States of America
| | - Yehezkel Sasson
- Department of Biochemistry & Molecular Biology, Faculty of Life Sciences, Institute for Structural Biology, Tel Aviv University, Ramat Aviv, Israel
| | - Joel A. Hirsch
- Department of Biochemistry & Molecular Biology, Faculty of Life Sciences, Institute for Structural Biology, Tel Aviv University, Ramat Aviv, Israel
| | - Fumihito Ono
- Laboratory of Molecular Physiology, Section on Model Synaptic Systems, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland, United States of America
| | - Stephen R. Ikeda
- Laboratory of Molecular Physiology, Section on Transmitter Signaling, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland, United States of America
- * E-mail:
| |
Collapse
|
16
|
Ghiretti AE, Paradis S. Molecular mechanisms of activity-dependent changes in dendritic morphology: role of RGK proteins. Trends Neurosci 2014; 37:399-407. [PMID: 24910262 PMCID: PMC4113564 DOI: 10.1016/j.tins.2014.05.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 05/09/2014] [Accepted: 05/13/2014] [Indexed: 01/10/2023]
Abstract
The nervous system has the amazing capacity to transform sensory experience from the environment into changes in neuronal activity that, in turn, cause long-lasting alterations in neuronal morphology. Recent findings indicate that, surprisingly, sensory experience concurrently activates molecular signaling pathways that both promote and inhibit dendritic complexity. Historically, a number of positive regulators of activity-dependent dendritic complexity have been described, whereas the list of identified negative regulators of this process is much shorter. In recent years, there has been an emerging appreciation of the importance of the Rad/Rem/Rem2/Gem/Kir (RGK) GTPases as mediators of activity-dependent structural plasticity. In the following review, we discuss the traditional view of RGK proteins, as well as our evolving understanding of the role of these proteins in instructing structural plasticity.
Collapse
Affiliation(s)
- Amy E Ghiretti
- Department of Biology, National Center for Behavioral Genomics, and Volen Center for Complex Systems, Brandeis University, Waltham, MA 02454, USA
| | - Suzanne Paradis
- Department of Biology, National Center for Behavioral Genomics, and Volen Center for Complex Systems, Brandeis University, Waltham, MA 02454, USA.
| |
Collapse
|
17
|
Abstract
Small GTPases are key signal transducers from extracellular stimuli to the nucleus that regulate a variety of cellular responses, including changes in gene expression and cell adhesion and migration. Accumulating data have demonstrated that abnormal activation of these small GTPases plays a critical role in the atherosclerosis characterized by vascular abnormalities, especially endothelial dysfunction and inflammation. Here, we discuss the linkage between small GTPases, inflammation, and atherogenesis. First, small GTPases affect gene expression of inflammatory cytokines through proinflammatory signaling pathways, such as nuclear factor-κB, vascular cell adhesion molecule-1, intercellular adhesion molecule-1, interlukin-8, and monocyte chemoattractant protein-1. Then, these molecules regulate the vascular inflammation through cell adhesion and migration. In turn, small GTPases are also regulated by extracellular stimuli, such as L-selectin, thrombin, oxidized phospholipids, and interleukins. Thus, these inflammatory cytokines generate a vicious cycle for small GTPases and inflammatory responses in the atherogenesis.
Collapse
|
18
|
Scamps F, Sangari S, Bowerman M, Rousset M, Bellis M, Cens T, Charnet P. Nerve injury induces a Gem-GTPase-dependent downregulation of P/Q-type Ca2+ channels contributing to neurite plasticity in dorsal root ganglion neurons. Pflugers Arch 2014; 467:351-66. [PMID: 24809506 DOI: 10.1007/s00424-014-1520-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 04/08/2014] [Accepted: 04/11/2014] [Indexed: 01/27/2023]
Abstract
Small RGK GTPases, Rad, Gem, Rem1, and Rem2, are potent inhibitors of high-voltage-activated (HVA) Ca(2+) channels expressed in heterologous expression systems. However, the role of this regulation has never been clearly demonstrated in the nervous system. Using transcriptional analysis, we show that peripheral nerve injury specifically upregulates Gem in mice dorsal root ganglia. Following nerve injury, protein expression was increased in ganglia and peripheral nerve, mostly under its phosphorylated form. This was confirmed in situ and in vitro in dorsal root ganglia sensory neurons. Knockdown of endogenous Gem, using specific small-interfering RNA (siRNA), increased the HVA Ca(2+) current only in the large-somatic-sized neurons. Combining pharmacological analysis of the HVA Ca(2+) currents together with Gem siRNA-transfection of larger sensory neurons, we demonstrate that only the P/Q-type Ca(2+) channels were enhanced. In vitro analysis of Gem affinity to various CaVβx-CaV2.x complexes and immunocytochemical studies of Gem and CaVβ expression in sensory neurons suggest that the specific inhibition of the P/Q channels relies on both the regionalized upregulation of Gem and the higher sensitivity of the endogenous CaV2.1-CaVβ4 pair in a subset of sensory neurons including the proprioceptors. Finally, pharmacological inhibition of P/Q-type Ca(2+) current reduces neurite branching of regenerating axotomized neurons. Taken together, the present results indicate that a Gem-dependent P/Q-type Ca(2+) current inhibition may contribute to general homeostatic mechanisms following a peripheral nerve injury.
Collapse
Affiliation(s)
- Frédérique Scamps
- Inserm U1051, Institut des Neurosciences, 80 rue Augustin Fliche, 34091, Montpellier, France,
| | | | | | | | | | | | | |
Collapse
|
19
|
Chevalier SA, Turpin J, Cachat A, Afonso PV, Gessain A, Brady JN, Pise-Masison CA, Mahieux R. Gem-induced cytoskeleton remodeling increases cellular migration of HTLV-1-infected cells, formation of infected-to-target T-cell conjugates and viral transmission. PLoS Pathog 2014; 10:e1003917. [PMID: 24586148 PMCID: PMC3937318 DOI: 10.1371/journal.ppat.1003917] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Accepted: 12/20/2013] [Indexed: 01/15/2023] Open
Abstract
Efficient HTLV-1 viral transmission occurs through cell-to-cell contacts. The Tax viral transcriptional activator protein facilitates this process. Using a comparative transcriptomic analysis, we recently identified a series of genes up-regulated in HTLV-1 Tax expressing T-lymphocytes. We focused our attention towards genes that are important for cytoskeleton dynamic and thus may possibly modulate cell-to-cell contacts. We first demonstrate that Gem, a member of the small GTP-binding proteins within the Ras superfamily, is expressed both at the RNA and protein levels in Tax-expressing cells and in HTLV-1-infected cell lines. Using a series of ChIP assays, we show that Tax recruits CREB and CREB Binding Protein (CBP) onto a c-AMP Responsive Element (CRE) present in the gem promoter. This CRE sequence is required to drive Tax-activated gem transcription. Since Gem is involved in cytoskeleton remodeling, we investigated its role in infected cells motility. We show that Gem co-localizes with F-actin and is involved both in T-cell spontaneous cell migration as well as chemotaxis in the presence of SDF-1/CXCL12. Importantly, gem knock-down in HTLV-1-infected cells decreases cell migration and conjugate formation. Finally, we demonstrate that Gem plays an important role in cell-to-cell viral transmission. HTLV-1 was the first human oncoretrovirus to be discovered. Five to ten million people are infected, and 1–6% will develop either Adult T-cell Leukemia, or Tropical Spastic Paraparesis/HTLV-1 Associated Myelopathy (TSP/HAM). HTLV-1 infects primarily T-cells, but dendritic cells were also found to carry proviruses. Contrary to HIV-1, cell-free HTLV-1 viral particles are poorly infectious. Thus, efficient viral transmission relies on formation of virological synapses or formation and transfer of viral biofilm-like structures. The Tax viral transactivator plays a key role in both modes of transmission. Using transcriptomic analyses, we recently identified cellular genes that are deregulated following Tax expression in T-cells. We focused our attention on genes that are important for cell architecture and are thus likely to modulate cell-to-cell contacts and motility. We found that Gem was highly upregulated both at the RNA and protein levels in Tax-expressing cells and HTLV-1-infected cell lines. We further show that Tax binds cellular co-activators and transcription factor and activates transcription from the gem promoter. We demonstrated that Gem is involved in cellular migration of HTLV-1-infected cells. Importantly, gem knockdown decreases the rate of HTLV-1-infected cell migration and cell-to-cell conjugate formation. We also show that Gem plays an important role in HTLV-1 transmission through cell-to-cell contacts, the most efficient mode of viral infection.
Collapse
Affiliation(s)
- Sébastien A. Chevalier
- Equipe Oncogenèse Rétrovirale, Equipe labellisée “Ligue Nationale Contre le Cancer”, International Center for Research in Infectiology, INSERM U1111 - CNRS UMR5308, Ecole Normale Supérieure de Lyon, Université Lyon 1, Lyon, France
| | - Jocelyn Turpin
- Equipe Oncogenèse Rétrovirale, Equipe labellisée “Ligue Nationale Contre le Cancer”, International Center for Research in Infectiology, INSERM U1111 - CNRS UMR5308, Ecole Normale Supérieure de Lyon, Université Lyon 1, Lyon, France
| | - Anne Cachat
- Equipe Oncogenèse Rétrovirale, Equipe labellisée “Ligue Nationale Contre le Cancer”, International Center for Research in Infectiology, INSERM U1111 - CNRS UMR5308, Ecole Normale Supérieure de Lyon, Université Lyon 1, Lyon, France
| | - Philippe V. Afonso
- Epidémiologie et Physiopathologie des Virus Oncogènes, CNRS UMR 3569, Pasteur Institute, Paris, France
| | - Antoine Gessain
- Epidémiologie et Physiopathologie des Virus Oncogènes, CNRS UMR 3569, Pasteur Institute, Paris, France
| | - John N. Brady
- Virus Tumor Biology Section, Laboratory of Cellular Oncology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Cynthia A. Pise-Masison
- Animal Models and Retroviral Vaccine Section, Vaccine Branch, CCR, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Renaud Mahieux
- Equipe Oncogenèse Rétrovirale, Equipe labellisée “Ligue Nationale Contre le Cancer”, International Center for Research in Infectiology, INSERM U1111 - CNRS UMR5308, Ecole Normale Supérieure de Lyon, Université Lyon 1, Lyon, France
- * E-mail:
| |
Collapse
|
20
|
Meza U, Beqollari D, Romberg CF, Papadopoulos S, Bannister RA. Potent inhibition of L-type Ca2+ currents by a Rad variant associated with congestive heart failure. Biochem Biophys Res Commun 2013; 439:270-4. [PMID: 23973784 DOI: 10.1016/j.bbrc.2013.08.044] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2013] [Accepted: 08/13/2013] [Indexed: 10/26/2022]
Abstract
Ca(2+) influx via L-type voltage-gated Ca(2+) channels supports the plateau phase of ventricular action potentials and is the trigger for excitation-contraction (EC) coupling in the myocardium. Rad, a member of the RGK (Rem, Rem2, Rad, Gem/Kir) family of monomeric G proteins, regulates ventricular action potential duration and EC coupling gain through its ability to inhibit cardiac L-type channel activity. In this study, we have investigated the potential dysfunction of a naturally occurring Rad variant (Q66P) that has been associated with congestive heart failure in humans. Specifically, we have tested whether Rad Q66P limits, or even eliminates, the inhibitory actions of Rad on CaV1.2 and CaV1.3, the two L-type channel isoforms known to be expressed in the heart. We have found that mouse Rad Q65P (the murine equivalent of human Rad Q66P) inhibits L-type currents conducted by CaV1.2 or CaV1.3 channels as potently as wild-type Rad (>95% inhibition of both channels). In addition, Rad Q65P attenuates the gating movement of both channels as effectively as wild-type Rad, indicating that the Q65P substitution does not differentially impair any of the three described modes of L-type channel inhibition by RGK proteins. Thus, we conclude that if Rad Q66P contributes to cardiomyopathy, it does so via a mechanism that is not related to its ability to inhibit L-type channel-dependent processes per se. However, our results do not rule out the possibility that decreased expression, mistargeting or altered regulation of Rad Q66P may reduce the RGK protein's efficacy in vivo.
Collapse
Affiliation(s)
- U Meza
- Department of Medicine-Cardiology Division, University of Colorado Denver-Anschutz Medical Campus, 12700 East 19th Avenue, P15-8006, B-139, Aurora, CO 80045, USA; Departamento de Fisiología y Biofísica, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, Venustiano Carranza #2405, San Luis Potosí, SLP 78210, México.
| | | | | | | | | |
Collapse
|
21
|
CaMKII-dependent phosphorylation of the GTPase Rem2 is required to restrict dendritic complexity. J Neurosci 2013; 33:6504-15. [PMID: 23575848 DOI: 10.1523/jneurosci.3861-12.2013] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The morphogenesis of the dendritic arbor is a critical aspect of neuronal development, ensuring that proper neural networks are formed. However, the molecular mechanisms that underlie this dendritic remodeling remain obscure. We previously established the activity-regulated GTPase Rem2 as a negative regulator of dendritic complexity. In this study, we identify a signaling pathway whereby Rem2 regulates dendritic arborization through interactions with Ca(2+)/calmodulin-dependent kinases (CaMKs) in rat hippocampal neurons. Specifically, we demonstrate that Rem2 functions downstream of CaMKII but upstream of CaMKIV in a pathway that restricts dendritic complexity. Furthermore, we show that Rem2 is a novel substrate of CaMKII and that phosphorylation of Rem2 by CaMKII regulates Rem2 function and subcellular localization. Overall, our results describe a unique signal transduction network through which Rem2 and CaMKs function to restrict dendritic complexity.
Collapse
|
22
|
Wen H, Cao J, Yu X, Sun B, Ding T, Li M, Li D, Wu H, Long L, Xu G, Zhang F. Spatiotemporal patterns of Gem expression after rat spinal cord injury. Brain Res 2013; 1516:11-9. [PMID: 23602967 DOI: 10.1016/j.brainres.2013.04.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Revised: 03/30/2013] [Accepted: 04/09/2013] [Indexed: 01/23/2023]
Abstract
Gem is an atypical protein of the Ras superfamily that plays a role in regulating voltage-gated Ca(2+) channels and cytoskeletal reorganization. To elucidate the certain expression and biological function in central nervous system (CNS), we performed an acute spinal cord contusion injury model in adult rats. Western blot analysis showed a marked up-regulation of Gem after spinal cord injury (SCI). Immunohistochemistry revealed wide distribution of Gem in spinal cord, including neurons and glial cells. Double immunofluorescent staining for proliferating cell nuclear antigen (PCNA) and phenotype-specific markers indicated increases of Gem expression in proliferating microglia and astrocytes. Our data suggest that Gem may be implicated in the proliferation of microglia and astrocytes after SCI.
Collapse
Affiliation(s)
- Hai Wen
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Increased expression of Gem after rat sciatic nerve injury. J Mol Histol 2012; 44:27-36. [PMID: 23076376 DOI: 10.1007/s10735-012-9459-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2012] [Accepted: 10/07/2012] [Indexed: 11/27/2022]
Abstract
Gem belongs to the Rad/Gem/Kir subfamily of Ras-related GTPases, whose expression is induced in several cell types upon activation by extracellular stimuli. Two functions of Gem have been demonstrated, including regulation of voltage-gated calcium channel activity and inhibition of Rho kinase-mediated cytoskeletal reorganization, such as stress fiber formation and neurite retraction. Because of the essential relationship between actin reorganization and peripheral nerve regeneration, we investigated the spatiotemporal expression of Gem in a rat sciatic nerve crush (SNC) model. After never injury, we observed that Gem had a significant up-regulation from 1 day, peaked at day 5 and then gradually decreased to the normal level. At its peak expression, Gem expressed mainly in Schwann cells (SCs) and macrophages of the distal sciatic nerve segment, but had few colocalization in axons. In addition, the peak expression of Gem was in parallel with PCNA, and numerous SCs expressing Gem were PCNA positive. Thus, all of our findings suggested that Gem may be involved in the pathophysiology of sciatic nerve after SNC.
Collapse
|
24
|
Yang T, Colecraft HM. Regulation of voltage-dependent calcium channels by RGK proteins. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1828:1644-54. [PMID: 23063948 DOI: 10.1016/j.bbamem.2012.10.005] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Revised: 10/04/2012] [Accepted: 10/05/2012] [Indexed: 12/28/2022]
Abstract
RGK proteins belong to the Ras superfamily of monomeric G-proteins, and currently include four members - Rad, Rem, Rem2, and Gem/Kir. RGK proteins are broadly expressed, and are the most potent known intracellular inhibitors of high-voltage-activated Ca²⁺ (Ca(V)1 and Ca(V)2) channels. Here, we review and discuss the evidence in the literature regarding the functional mechanisms, structural determinants, physiological role, and potential practical applications of RGK-mediated inhibition of Ca(V)1/Ca(V)2 channels. This article is part of a Special Issue entitled: Calcium channels.
Collapse
Affiliation(s)
- Tingting Yang
- Department of Physiology and Cellular Biophysics, Columbia University, College of Physicians and Surgeons, 1150 St. Nicholas Avenue, New York, NY 10032, USA
| | | |
Collapse
|
25
|
Andrieu G, Quaranta M, Leprince C, Hatzoglou A. The GTPase Gem and its partner Kif9 are required for chromosome alignment, spindle length control, and mitotic progression. FASEB J 2012; 26:5025-34. [PMID: 22964304 DOI: 10.1096/fj.12-209460] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Within the Ras superfamily, Gem is a small GTP-binding protein that plays a role in regulating Ca(2+) channels and cytoskeletal remodeling in interphase cells. Here, we report for the first time that Gem is a spindle-associated protein and is required for proper mitotic progression. Functionally, loss of Gem leads to misaligned chromosomes and prometaphase delay. On the basis of different experimental approaches, we demonstrate that loss of Gem by RNA interference induces spindle elongation, while its enforced expression results in spindle shortening. The spindle length phenotype is generated through deregulation of spindle dynamics on Gem depletion and requires the expression of its downstream effector, the kinesin Kif9. Loss of Kif9 induces spindle abnormalities similar to those observed when Gem expression is repressed by siRNA. We further identify Kif9 as a new regulator of spindle dynamics. Kif9 depletion increases the steady-state levels of spindle α-tubulin by increasing the rate of microtubule polymerization. Overall, this study demonstrates a novel mechanism by which Gem contributes to the mitotic progression by maintaining correct spindle length through the kinesin Kif9.
Collapse
Affiliation(s)
- Guillaume Andrieu
- Laboratoire de Biologie Cellulaire et Moléculaire du Contrôle de la Prolifération, Centre National de la Recherche Scientifique–Unité Mixte de Recherche (CNRS-UMR) 5088, Toulouse, France
| | | | | | | |
Collapse
|
26
|
Activity-dependent subcellular cotrafficking of the small GTPase Rem2 and Ca2+/CaM-dependent protein kinase IIα. PLoS One 2012; 7:e41185. [PMID: 22815963 PMCID: PMC3399833 DOI: 10.1371/journal.pone.0041185] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Accepted: 06/18/2012] [Indexed: 11/19/2022] Open
Abstract
Background Rem2 is a small monomeric GTP-binding protein of the RGK family, whose known functions are modulation of calcium channel currents and alterations of cytoskeletal architecture. Rem2 is the only RGK protein found predominantly in the brain, where it has been linked to synaptic development. We wished to determine the effect of neuronal activity on the subcellular distribution of Rem2 and its interacting partners. Results We show that Rem2 undergoes activity-and N-Methyl-D-Aspartate Receptor (NMDAR)-dependent translocation in rat hippocampal neurons. This redistribution of Rem2, from a diffuse pattern to one that is highly punctate, is dependent on Ca2+ influx, on binding to calmodulin (CaM), and also involves an auto-inhibitory domain within the Rem2 distal C-terminus region. We found that Rem2 can bind to Ca2+/CaM-dependent protein kinase IIα (CaMKII) a in Ca2+/CaM-dependent manner. Furthermore, our data reveal a spatial and temporal correlation between NMDAR-dependent clustering of Rem2 and CaMKII in neurons, indicating co-assembly and co-trafficking in neurons. Finally, we show that inhibiting CaMKII aggregation in neurons and HEK cells reduces Rem2 clustering, and that Rem2 affects the baseline distribution of CaMKII in HEK cells. Conclusions Our data suggest a novel function for Rem2 in co-trafficking with CaMKII, and thus potentially expose a role in neuronal plasticity.
Collapse
|
27
|
Gunton JE, Sisavanh M, Stokes RA, Satin J, Satin LS, Zhang M, Liu SM, Cai W, Cheng K, Cooney GJ, Laybutt DR, So T, Molero JC, Grey ST, Andres DA, Rolph MS, Mackay CR. Mice deficient in GEM GTPase show abnormal glucose homeostasis due to defects in beta-cell calcium handling. PLoS One 2012; 7:e39462. [PMID: 22761801 PMCID: PMC3386271 DOI: 10.1371/journal.pone.0039462] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Accepted: 05/21/2012] [Indexed: 11/29/2022] Open
Abstract
Aims and Hypothesis Glucose-stimulated insulin secretion from beta-cells is a tightly regulated process that requires calcium flux to trigger exocytosis of insulin-containing vesicles. Regulation of calcium handling in beta-cells remains incompletely understood. Gem, a member of the RGK (Rad/Gem/Kir) family regulates calcium channel handling in other cell types, and Gem over-expression inhibits insulin release in insulin-secreting Min6 cells. The aim of this study was to explore the role of Gem in insulin secretion. We hypothesised that Gem may regulate insulin secretion and thus affect glucose tolerance in vivo. Methods Gem-deficient mice were generated and their metabolic phenotype characterised by in vivo testing of glucose tolerance, insulin tolerance and insulin secretion. Calcium flux was measured in isolated islets. Results Gem-deficient mice were glucose intolerant and had impaired glucose stimulated insulin secretion. Furthermore, the islets of Gem-deficient mice exhibited decreased free calcium responses to glucose and the calcium oscillations seen upon glucose stimulation were smaller in amplitude and had a reduced frequency. Conclusions These results suggest that Gem plays an important role in normal beta-cell function by regulation of calcium signalling.
Collapse
Affiliation(s)
- Jenny E Gunton
- Diabetes and Transcription Factors Group, Garvan Institute of Medical Research, Sydney, Australia.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Fan M, Zhang WK, Buraei Z, Yang J. Molecular determinants of Gem protein inhibition of P/Q-type Ca2+ channels. J Biol Chem 2012; 287:22749-58. [PMID: 22589533 DOI: 10.1074/jbc.m111.291872] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The RGK family of monomeric GTP-binding proteins potently inhibits high voltage-activated Ca(2+) channels. The molecular mechanisms of this inhibition are largely unclear. In Xenopus oocytes, Gem suppresses the activity of P/Q-type Ca(2+) channels on the plasma membrane. This is presumed to occur through direct interactions of one or more Gem inhibitory sites and the pore-forming Ca(v)2.1 subunit in a manner dependent on the Ca(2+) channel subunit β (Ca(v)β). In this study we investigated the molecular determinants in Gem that are critical for this inhibition. Like other RGK proteins, Gem contains a conserved Ras-like core and extended N and C termini. A 12-amino acid fragment in the C terminus was found to be crucial for and sufficient to produce Ca(v)β-dependent inhibition, suggesting that this region forms an inhibitory site. A three-amino acid motif in the core was also found to be critical, possibly forming another inhibitory site. Mutating either site individually did not hamper Gem inhibition, but mutating both sites together completely abolished Gem inhibition without affecting Gem protein expression level or disrupting Gem interaction with Ca(v)2.1 or Ca(v)β. Mutating Gem residues that are crucial for interactions with previously demonstrated RGK modulators such as calmodulin, 14-3-3, and phosphatidylinositol lipids did not significantly affect Gem inhibition. These results suggest that Gem contains two candidate inhibitory sites, each capable of producing full inhibition of P/Q-type Ca(2+) channels.
Collapse
Affiliation(s)
- Mingming Fan
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | | | | | | |
Collapse
|
29
|
Ward Y, Lake R, Yin JJ, Heger CD, Raffeld M, Goldsmith PK, Merino M, Kelly K. LPA receptor heterodimerizes with CD97 to amplify LPA-initiated RHO-dependent signaling and invasion in prostate cancer cells. Cancer Res 2011; 71:7301-11. [PMID: 21978933 DOI: 10.1158/0008-5472.can-11-2381] [Citation(s) in RCA: 137] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
CD97, an adhesion-linked G-protein-coupled receptor (GPCR), is induced in multiple epithelial cancer lineages. We address here the signaling properties and the functional significance of CD97 expression in prostate cancer. Our findings show that CD97 signals through Gα12/13 to increase RHO-GTP levels. CD97 functioned to mediate invasion in prostate cancer cells, at least in part, by associating with lysophosphatidic acid receptor 1 (LPAR1), leading to enhanced LPA-dependent RHO and extracellular signal-regulated kinase activation. Consistent with its role in invasion, depletion of CD97 in PC3 cells resulted in decreased bone metastasis without affecting subcutaneous tumor growth. Furthermore, CD97 heterodimerized and functionally synergized with LPAR1, a GPCR implicated in cancer progression. We also found that CD97 and LPAR expression were significantly correlated in clinical prostate cancer specimens. Taken together, these findings support the investigation of CD97 as a potential therapeutic cancer target.
Collapse
Affiliation(s)
- Yvona Ward
- Cell and Cancer Biology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Sluchanko NN, Gusev NB. 14-3-3 proteins and regulation of cytoskeleton. BIOCHEMISTRY (MOSCOW) 2011; 75:1528-46. [PMID: 21417993 DOI: 10.1134/s0006297910130031] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The proteins of the 14-3-3 family are universal adapters participating in multiple processes running in the cell. We describe the structure, isoform composition, and distribution of 14-3-3 proteins in different tissues. Different elements of 14-3-3 structure important for dimer formation and recognition of protein targets are analyzed in detail. Special attention is paid to analysis of posttranslational modifications playing important roles in regulation of 14-3-3 function. The data of the literature concerning participation of 14-3-3 in regulation of intercellular contacts and different elements of cytoskeleton formed by microfilaments are analyzed. We also describe participation of 14-3-3 in regulation of small G-proteins and protein kinases important for proper functioning of cytoskeleton. The data on the interaction of 14-3-3 with different components of microtubules are presented, and the probable role of 14-3-3 in developing of certain neurodegenerative diseases is discussed. The data of the literature concerning the role of 14-3-3 in formation and normal functioning of intermediate filaments are also reviewed. It is concluded that due to its adapter properties 14-3-3 plays an important role in cytoskeleton regulation. The cytoskeletal proteins that are abundant in the cell might compete with the other protein targets of 14-3-3 and therefore can indirectly regulate many intracellular processes that are dependent on 14-3-3.
Collapse
Affiliation(s)
- N N Sluchanko
- Department of Biochemistry, Faculty of Biology, Lomonosov Moscow State University, Russia
| | | |
Collapse
|
31
|
Govek EE, Hatten ME, Van Aelst L. The role of Rho GTPase proteins in CNS neuronal migration. Dev Neurobiol 2011; 71:528-53. [PMID: 21557504 DOI: 10.1002/dneu.20850] [Citation(s) in RCA: 134] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The architectonics of the mammalian brain arise from a remarkable range of directed cell migrations, which orchestrate the emergence of cortical neuronal layers and pattern brain circuitry. At different stages of cortical histogenesis, specific modes of cell motility are essential to the stepwise formation of cortical architecture. These movements range from interkinetic nuclear movements in the ventricular zone, to migrations of early-born, postmitotic polymorphic cells into the preplate, to the radial migration of precursors of cortical output neurons across the thickening cortical wall, and the vast, tangential migrations of interneurons from the basal forebrain into the emerging cortical layers. In all cases, actomyosin motors act in concert with cell adhesion receptor systems to provide the force and traction needed for forward movement. As key regulators of actin and microtubule cytoskeletons, cell polarity, and adhesion, the Rho GTPases play critical roles in CNS neuronal migration. This review will focus on the different types of migration in the developing neocortex and cerebellar cortex, and the role of the Rho GTPases, their regulators and effectors in these CNS migrations, with particular emphasis on their involvement in radial migration.
Collapse
Affiliation(s)
- Eve-Ellen Govek
- Laboratory of Developmental Neurobiology, The Rockefeller University, NY 10065, USA
| | | | | |
Collapse
|
32
|
Abstract
Calcium regulates a wide spectrum of physiological processes such as heartbeat, muscle contraction, neuronal communication, hormone release, cell division, and gene transcription. Major entryways for Ca(2+) in excitable cells are high-voltage activated (HVA) Ca(2+) channels. These are plasma membrane proteins composed of several subunits, including α(1), α(2)δ, β, and γ. Although the principal α(1) subunit (Ca(v)α(1)) contains the channel pore, gating machinery and most drug binding sites, the cytosolic auxiliary β subunit (Ca(v)β) plays an essential role in regulating the surface expression and gating properties of HVA Ca(2+) channels. Ca(v)β is also crucial for the modulation of HVA Ca(2+) channels by G proteins, kinases, and the Ras-related RGK GTPases. New proteins have emerged in recent years that modulate HVA Ca(2+) channels by binding to Ca(v)β. There are also indications that Ca(v)β may carry out Ca(2+) channel-independent functions, including directly regulating gene transcription. All four subtypes of Ca(v)β, encoded by different genes, have a modular organization, consisting of three variable regions, a conserved guanylate kinase (GK) domain, and a conserved Src-homology 3 (SH3) domain, placing them into the membrane-associated guanylate kinase (MAGUK) protein family. Crystal structures of Ca(v)βs reveal how they interact with Ca(v)α(1), open new research avenues, and prompt new inquiries. In this article, we review the structure and various biological functions of Ca(v)β, with both a historical perspective as well as an emphasis on recent advances.
Collapse
Affiliation(s)
- Zafir Buraei
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | | |
Collapse
|
33
|
Yang T, Xu X, Kernan T, Wu V, Colecraft HM. Rem, a member of the RGK GTPases, inhibits recombinant CaV1.2 channels using multiple mechanisms that require distinct conformations of the GTPase. J Physiol 2010; 588:1665-81. [PMID: 20308247 DOI: 10.1113/jphysiol.2010.187203] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Rad/Rem/Gem/Kir (RGK) GTPases potently inhibit Ca(V)1 and Ca(V)2 (Ca(V)1-2) channels, a paradigm of ion channel regulation by monomeric G-proteins with significant physiological ramifications and potential biotechnology applications. The mechanism(s) underlying how RGK proteins inhibit I(Ca) is unknown, and it is unclear how key structural and regulatory properties of these GTPases (such as the role of GTP binding to the nucleotide binding domain (NBD), and the C-terminus which contains a membrane-targeting motif) feature in this effect. Here, we show that Rem inhibits Ca(V)1.2 channels by three independent mechanisms that rely on distinct configurations of the GTPase: (1) a reduction in surface density of channels is accomplished by enhancing dynamin-dependent endocytosis, (2) a diminution of channel open probability (P(o)) that occurs without impacting on voltage sensor movement, and (3) an immobilization of Ca(V) channel voltage sensors. The presence of both the Rem NBD and C-terminus (whether membrane-targeted or not) in one molecule is sufficient to reconstitute all three mechanisms. However, membrane localization of the NBD by a generic membrane-targeting module reconstitutes only the decreased P(o) function (mechanism 2). A point mutation that prevents GTP binding to the NBD selectively eliminates the capacity to immobilize voltage sensors (mechanism 3). The results reveal an uncommon multiplicity in the mechanisms Rem uses to inhibit I(Ca), predict new physiological dimensions of the RGK GTPase-Ca(V) channel crosstalk, and suggest original approaches for developing novel Ca(V) channel blockers.
Collapse
Affiliation(s)
- Tingting Yang
- Department of Physiology and Cellular Biophysics, Columbia University, College of Physicians and Surgeons, New York, NY 10032, USA
| | | | | | | | | |
Collapse
|
34
|
Hong Z, Zhang QY, Liu J, Wang ZQ, Zhang Y, Xiao Q, Lu J, Zhou HY, Chen SD. Phosphoproteome study reveals Hsp27 as a novel signaling molecule involved in GDNF-induced neurite outgrowth. J Proteome Res 2009; 8:2768-87. [PMID: 19290620 DOI: 10.1021/pr801052v] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Glial-cell-line-derived neurotrophic factor (GDNF) is a most potent survival factor for dopaminergic neurons. In addition, GDNF was also found to promote neurite outgrowth in dopaminergic neurons. However, despite the potential clinical and physiological importance of GDNF, its mechanism of action is unclear. Therefore, we employed a state-of-the-art proteomic technique, DIGE (Difference in two-dimensional gel electrophoresis), to quantitatively compare profiles of phosphoproteins of PC12-GFRalpha1-RET cells (that stably overexpress GDNF receptor alpha1 and RET) 0.5 and 10 h after GDNF challenge with control. A total of 92 differentially expressed proteins were successfully identified by mass spectrometry. Among them, the relative levels of phosphorylated Hsp27 increased significantly both in 0.5 and 10 h GDNF-treated PC12-GFRalpha1-RET cells. Confocal microscopy and Western blot results showed that the phosphorylation of Hsp27 after GDNF treatment was accompanied by its nuclear translocation. After the mRNA of Hsp27 was interfered, neurite outgrowth of PC12-GFRalpha1-RET cells induced by GDNF was significantly blocked. Furthermore, the percentage of neurite outgrowth induced by GDNF was also reduced by the expression of dominant-negative mutants of Hsp27, in which specific serine phosphorylation residues (Ser15, Ser78 and Ser82) were substituted with alanine. Our data also revealed that p38 MAPK and ERK are the upstream regulators of Hsp27 phosphorylation. Hence, in addition to the numerous novel proteins that are potentially important in GDNF mediated differentiation of dopaminergic cells revealed by our study, our data has indicated that Hsp27 is a novel signaling molecule involved in GDNF-induced neurite outgrowth of dopaminergic neurons.
Collapse
Affiliation(s)
- Zhen Hong
- Department of Neurology & Institute of Neurology, Ruijin Hospital affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Leyris JP, Gondeau C, Charnet A, Delattre C, Rousset M, Cens T, Charnet P. RGK GTPase-dependent CaV2.1 Ca2+ channel inhibition is independent of CaVbeta-subunit-induced current potentiation. FASEB J 2009; 23:2627-38. [PMID: 19332647 DOI: 10.1096/fj.08-122135] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
RGK (Rad-Gem-Rem) GTPases have been described as potent negative regulators of the Ca(2+) influx via high-threshold voltage-activated Ca(2+) channels. Recent work, mostly performed on Ca(V)1.2 Ca(2+) channels, has highlighted the crucial role played by the channel auxiliary Ca(V)beta subunits and identified several GTPase and beta-subunit protein domains involved in this regulation. We now extend these conclusions by producing the first complete characterization of the effects of Gem, Rem, and Rem2 on the neuronal Ca(V)2.1 Ca(2+) channels expressed with Ca(V)beta(1) or Ca(V)beta(2) subunits. Current inhibition is limited to a decrease in amplitude with no modification in the voltage dependence or kinetics of the current. We demonstrate that this inhibition can occur for Ca(V)beta constructs with impaired capacity to induce current potentiation, but that it is lost for Ca(V)beta constructs deleted for their beta-interaction domain. The RGK C-terminal last approximately 80 amino acids are sufficient to allow potent current inhibition and in vivo beta-subunit/Gem interaction. Interestingly, although Gem and Gem carboxy-terminus induce a completely different pattern of beta-subunit cellular localization, they both potently inhibit Ca(V)2.1 channels. These data therefore set the status of neuronal Ca(V)2.1 Ca(2+) channel inhibition by RGK GTPases, emphasizing the role of short amino acid sequences of both proteins in beta-subunit binding and channel inhibition and revealing a new mechanism for channel inhibition.
Collapse
Affiliation(s)
- J-P Leyris
- CRBM, CNRS UMR 5237, Université de Montpellier 1, 34293 Montpellier cedex, France
| | | | | | | | | | | | | |
Collapse
|
36
|
Phosphorylation of RhoB by CK1 impedes actin stress fiber organization and epidermal growth factor receptor stabilization. Exp Cell Res 2008; 314:2811-21. [PMID: 18590726 DOI: 10.1016/j.yexcr.2008.06.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2008] [Revised: 06/10/2008] [Accepted: 06/11/2008] [Indexed: 11/21/2022]
Abstract
RhoB is a small GTPase implicated in cytoskeletal organization, EGF receptor trafficking and cell transformation. It is an immediate-early gene, regulated at many levels of its biosynthetic pathway. Herein we show that the serine/threonine protein kinase CK1 phosphorylates RhoB in vitro but not RhoA or RhoC. With the use of specific CK1 inhibitors, IC261 and D4476, we show that the kinase phosphorylates also RhoB in HeLa cells. Mass spectrometry analysis demonstrates that RhoB is monophosphorylated by CK1, in its C-terminal end, on serine 185. The substitution of Ser185 by Ala dramatically inhibited the phosphorylation of RhoB in cultured cells. Lastly we show that the inhibition of CK1 activates RhoB and promotes RhoB dependent actin fiber formation and EGF-R level. Our data provide the first demonstration of RhoB phosphorylation and indicate that this post-translational maturation would be a novel critical mechanism to control the RhoB functions.
Collapse
|
37
|
Pochynyuk O, Stockand JD, Staruschenko A. Ion channel regulation by Ras, Rho, and Rab small GTPases. Exp Biol Med (Maywood) 2008; 232:1258-65. [PMID: 17959838 DOI: 10.3181/0703-mr-76] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Regulation of ion channels by heterotrimeric guanosine triphosphatases (GTPases), activated by heptathelical membrane receptors, has been the focus of several recent reviews. In comparison, regulation of ion channels by small monomeric G proteins, activated by cytoplasmic guanine nucleotide exchange factors, has been less well reviewed. Small G proteins, molecular switches that control the activity of cellular and membrane proteins, regulate a wide variety of cell functions. Many upstream regulators and downstream effectors of small G proteins now have been isolated. Their modes of activation and action are understood. Recently, ion channels were recognized as physiologically important effectors of small GTPases. Recent advances in understanding how small G proteins regulate the intracellular trafficking and activity of ion channels are discussed here. We aim to provide critical insight into physiological control of ion channel function and the biological consequences of regulation of these important proteins by small, monomeric G proteins.
Collapse
Affiliation(s)
- Oleh Pochynyuk
- Department of Physiology, University of Texas Health Science Center, San Antonio, Texas 78229-3900, USA
| | | | | |
Collapse
|
38
|
Correll RN, Pang C, Niedowicz DM, Finlin BS, Andres DA. The RGK family of GTP-binding proteins: regulators of voltage-dependent calcium channels and cytoskeleton remodeling. Cell Signal 2008; 20:292-300. [PMID: 18042346 PMCID: PMC2254326 DOI: 10.1016/j.cellsig.2007.10.028] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2007] [Accepted: 10/30/2007] [Indexed: 02/05/2023]
Abstract
RGK proteins constitute a novel subfamily of small Ras-related proteins that function as potent inhibitors of voltage-dependent (VDCC) Ca(2+) channels and regulators of actin cytoskeletal dynamics. Within the larger Ras superfamily, RGK proteins have distinct regulatory and structural characteristics, including nonconservative amino acid substitutions within regions known to participate in nucleotide binding and hydrolysis and a C-terminal extension that contains conserved regulatory sites which control both subcellular localization and function. RGK GTPases interact with the VDCC beta-subunit (Ca(V)beta) and inhibit Rho/Rho kinase signaling to regulate VDCC activity and the cytoskeleton respectively. Binding of both calmodulin and 14-3-3 to RGK proteins, and regulation by phosphorylation controls cellular trafficking and the downstream signaling of RGK proteins, suggesting that a complex interplay between interacting protein factors and trafficking contribute to their regulation.
Collapse
Affiliation(s)
- Robert N Correll
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, KY 40536, United States
| | | | | | | | | |
Collapse
|
39
|
Correll RN, Botzet GJ, Satin J, Andres DA, Finlin BS. Analysis of the Rem2 - voltage dependant calcium channel beta subunit interaction and Rem2 interaction with phosphorylated phosphatidylinositide lipids. Cell Signal 2008; 20:400-8. [PMID: 18068949 PMCID: PMC2276613 DOI: 10.1016/j.cellsig.2007.10.029] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2007] [Accepted: 10/30/2007] [Indexed: 11/15/2022]
Abstract
Voltage dependant calcium channels (VDCC) play a critical role in coupling electrical excitability to important physiological events such as secretion by neuronal and endocrine cells. Rem2, a GTPase restricted to neuroendocrine cell types, regulates VDCC activity by a mechanism that involves interaction with the VDCC beta subunit (Ca(V)beta). Mapping studies reveal that Rem2 binds to the guanylate kinase domain (GK) of the Ca(V)beta subunit that also contains the high affinity binding site for the pore forming and voltage sensing VDCC alpha subunit (Ca(V)alpha) interaction domain (AID). Moreover, fine mapping indicates that Rem2 binds to the GK domain in a region distinct from the AID interaction site, and competitive inhibition studies reveal that Rem2 does not disrupt Ca(V)alpha - Ca(V)beta binding. Instead, the Ca(V)beta subunit appears to serve a scaffolding function, simultaneously binding both Rem2 and AID. Previous studies have found that in addition to Ca(V)beta binding, Rem2 must be localized to the plasma membrane to inhibit VDCC function. Plasma membrane localization requires the C-terminus of Rem2 and binding studies indicate that this domain directs phosphorylated phosphatidylinositide (PIP) lipids association. Plasma membrane localization may provide a unique point of regulation since the ability of Rem2 to bind PIP lipids is inhibited by the phosphoserine dependant binding of 14-3-3 proteins. Thus, in addition to Ca(V)beta binding, VDCC blockade by Rem2 is likely to be controlled by both the localized concentration of membrane PIP lipids and direct 14-3-3 binding to the Rem2 C-terminus.
Collapse
Affiliation(s)
- Robert N Correll
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, 741 S. Limestone, BBSRB, Lexington, KY 40536-0298, U.S.A
| | | | | | | | | |
Collapse
|
40
|
Rem inhibits skeletal muscle EC coupling by reducing the number of functional L-type Ca2+ channels. Biophys J 2008; 94:2631-8. [PMID: 18192376 DOI: 10.1529/biophysj.107.116467] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
In skeletal muscle, the L-type voltage-gated Ca(2+) channel (1,4-dihydropyridine receptor) serves as the voltage sensor for excitation-contraction (EC) coupling. In this study, we examined the effects of Rem, a member of the RGK (Rem, Rem2, Rad, Gem/Kir) family of Ras-related monomeric GTP-binding proteins, on the function of the skeletal muscle L-type Ca(2+) channel. EC coupling was found to be weakened in myotubes expressing Rem tagged with enhanced yellow fluorescent protein (YFP-Rem), as assayed by electrically evoked contractions and myoplasmic Ca(2+) transients. This impaired EC coupling was not a consequence of altered function of the type 1 ryanodine receptor, or of reduced Ca(2+) stores, since the application of 4-chloro-m-cresol, a direct type 1 ryanodine receptor activator, elicited myoplasmic Ca(2+) release in YFP-Rem-expressing myotubes that was not distinguishable from that in control myotubes. However, YFP-Rem reduced the magnitude of L-type Ca(2+) current by approximately 75% and produced a concomitant reduction in membrane-bound charge movements. Thus, our results indicate that Rem negatively regulates skeletal muscle EC coupling by reducing the number of functional L-type Ca(2+) channels in the plasma membrane.
Collapse
|
41
|
Correll RN, Pang C, Niedowicz DM, Satin J, Andres DA. Calmodulin binding is dispensable for Rem-mediated Ca2+ channel inhibition. Mol Cell Biochem 2007; 310:103-10. [DOI: 10.1007/s11010-007-9670-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2007] [Accepted: 11/22/2007] [Indexed: 10/25/2022]
|
42
|
Correll RN, Pang C, Finlin BS, Dailey AM, Satin J, Andres DA. Plasma membrane targeting is essential for Rem-mediated Ca2+ channel inhibition. J Biol Chem 2007; 282:28431-28440. [PMID: 17686775 PMCID: PMC3063359 DOI: 10.1074/jbc.m706176200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The small GTPase Rem is a potent negative regulator of high voltage-activated Ca(2+) channels and a known interacting partner for Ca(2+) channel accessory beta subunits. The mechanism for Rem-mediated channel inhibition remains controversial, although it has been proposed that Ca(V)beta association is required. Previous work has shown that a C-terminal truncation of Rem (Rem-(1-265)) displays reduced in vivo binding to membrane-localized beta 2a and lacks channel regulatory function. In this paper, we describe a role for the Rem C terminus in plasma membrane localization through association with phosphatidylinositol lipids. Moreover, Rem-(1-265) can associate with beta 2a in vitro and beta 1b in vivo, suggesting that the C terminus does not directly participate in Ca(V)beta association. Despite demonstrated beta 1b binding, Rem-(1-265) was not capable of regulating a Ca(V)1.2-beta 1b channel complex, indicating that beta subunit binding is not sufficient for channel regulation. However, fusion of the CAAX domain from K-Ras4B or H-Ras to the Rem-(1-265) C terminus restored membrane localization and Ca(2+) channel regulation, suggesting that beta binding and membrane localization are independent events required for channel inhibition.
Collapse
Affiliation(s)
| | - Chunyan Pang
- Departments of Molecular and Cellular Biochemistry
| | | | | | - Jonathan Satin
- Departments of Physiology, University of Kentucky College of Medicine, Lexington, Kentucky 40536-0509
| | | |
Collapse
|
43
|
Jarvis SE, Zamponi GW. Trafficking and regulation of neuronal voltage-gated calcium channels. Curr Opin Cell Biol 2007; 19:474-82. [PMID: 17624753 DOI: 10.1016/j.ceb.2007.04.020] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2007] [Accepted: 04/18/2007] [Indexed: 12/17/2022]
Abstract
The importance of voltage-gated calcium channels is underscored by the multitude of intracellular processes that depend on calcium, notably gene regulation and neurotransmission. Given their pivotal roles in calcium (and hence, cellular) homeostasis, voltage-gated calcium channels have been the subject of intense research, much of which has focused on channel regulation. While ongoing research continues to delineate the myriad of interactions that govern calcium channel regulation, an increasing amount of work has focused on the trafficking of voltage-gated calcium channels. This includes the mechanisms by which calcium channels are targeted to the plasma membrane, and, more specifically, to their appropriate loci within a given cell. In addition, we are beginning to gain some insights into the mechanisms by which calcium channels can be removed from the plasma membrane for recycling and/or degradation. Here we highlight recent advances in our understanding of these fundamentally important mechanisms.
Collapse
Affiliation(s)
- Scott E Jarvis
- Hotchkiss Brain Institute, Department of Physiology and Biophysics, University of Calgary, 3330 Hospital Dr. NW, Calgary T2N 4N1, Canada
| | | |
Collapse
|
44
|
Mahalakshmi RN, Ng MY, Guo K, Qi Z, Hunziker W, Béguin P. Nuclear localization of endogenous RGK proteins and modulation of cell shape remodeling by regulated nuclear transport. Traffic 2007; 8:1164-78. [PMID: 17605760 DOI: 10.1111/j.1600-0854.2007.00599.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The members of the RGK small GTP-binding protein family, Kir/Gem, Rad, Rem and Rem2, are multifunctional proteins that regulate voltage-gated calcium channel activity and cell shape remodeling. Calmodulin (CaM) or CaM 14-3-3 are regulators of RGK functions and their association defines the subcellular localization of RGK proteins. Abolition of CaM association results in the accumulation of RGK proteins in the nucleus, whereas 14-3-3 binding maintains them in the cytoplasm. Kir/Gem possesses nuclear localization signals (NLS) that mediate nuclear accumulation through an importin alpha5-dependent pathway (see Mahalakshmi RN, Nagashima K, Ng MY, Inagaki N, Hunziker W, Béguin P. Nuclear transport of Kir/Gem requires specific signals and importin alpha5 and is regulated by Calmodulin and predicted service phosphorylations. Traffic 2007; doi: 10.1111/j.1600-0854.2007.00598.x). Because the extent of nuclear localization depends on the RGK protein and the cell type, the mechanism and regulation of nuclear transport may differ. Here, we extend our analysis to the other RGK members and show that Rem also binds importin alpha5, whereas Rad associates with importins alpha3, alpha5 and beta through three conserved NLS. Predicted phosphorylation of a serine residue within the bipartite NLS affects, as observed for Kir/Gem, nuclear accumulation of Rem, but not that of Rad or Rem2. We also identify an additional regulatory phosphorylation for all RGK proteins that prevents binding of 14-3-3 and thereby interferes with their cytosolic relocalization by 14-3-3. Functionally, nuclear localization of RGK proteins contributes to the suppression of RGK-mediated cell shape remodeling. Importantly, we show that endogenous RGK proteins are localized predominantly in the nucleus of individual cells of the brain cortex 'in situ' as well as in primary hippocampal cells, indicating that transport between the nucleus and their site of action in the cytoplasm (i.e., cytoskeleton, endoplasmic reticulum or plasma membrane) is of physiological relevance for the regulation of RGK protein function.
Collapse
Affiliation(s)
- Ramasubbu N Mahalakshmi
- Epithelial Cell Biology Laboratory, Institute of Molecular and Cell Biology, 61 Biopolis Drive, Singapore 138673, Singapore
| | | | | | | | | | | |
Collapse
|
45
|
Mahalakshmi RN, Nagashima K, Ng MY, Inagaki N, Hunziker W, Béguin P. Nuclear Transport of Kir/Gem Requires Specific Signals and Importin α5 and Is Regulated by Calmodulin and Predicted Serine Phosphorylations. Traffic 2007; 8:1150-63. [PMID: 17605761 DOI: 10.1111/j.1600-0854.2007.00598.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Kir/Gem, together with Rad, Rem and Rem2, is a member of the RGK small GTP-binding protein family. These multifunctional proteins regulate voltage-gated calcium channel (VGCC) activity and cell-shape remodeling. Calmodulin and 14-3-3 binding modulate the functions of RGK proteins. Intriguingly, abolishing the binding of calmodulin or calmodulin and 14-3-3 results in nuclear accumulation of RGK proteins. Under certain conditions, the Ca(v)beta3-subunit of VGCCs can be translocated into the nucleus along with the RGK proteins, resulting in channel inactivation. The mechanism by which nuclear localization of RGK proteins is accomplished and regulated, however, is unknown. Here, we identify specific nuclear localization signals (NLS) in Kir/Gem that are both required and sufficient for nuclear transport. Importin alpha5 binds to Kir/Gem, and its depletion using RNA interference impairs nuclear translocation of this RGK protein. Calmodulin and predicted phosphorylations on serine residues within or in the vicinity of a C-terminal bipartite NLS regulate nuclear translocation by interfering with the association between importinalpha5 and Kir/Gem. These predicted phosphorylations, however, do not affect Kir/Gem-mediated calcium channel downregulation but rather, as shown in the accompanying paper (Mahalakshmi RN, Ng MY, Guo K, Qi Z, Hunziker W, Béguin P. Nuclear localization of endogenous RGK proteins and modulation of cell shape remodeling by regulated nuclear transport. Traffic 2007; doi:10.1111/j.1600-0854.2007.00599.x), interfere with cell-shape remodeling.
Collapse
Affiliation(s)
- Ramasubbu N Mahalakshmi
- Epithelial Cell Biology Laboratory, Institute of Molecular and Cell Biology, 61 Biopolis Drive, Singapore 138673, Singapore
| | | | | | | | | | | |
Collapse
|
46
|
Béguin P, Ng YJA, Krause C, Mahalakshmi RN, Ng MY, Hunziker W. RGK small GTP-binding proteins interact with the nucleotide kinase domain of Ca2+-channel beta-subunits via an uncommon effector binding domain. J Biol Chem 2007; 282:11509-20. [PMID: 17303572 DOI: 10.1074/jbc.m606423200] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
RGK proteins (Kir/Gem, Rad, Rem, and Rem2) form a small subfamily of the Ras superfamily. Despite a conserved GTP binding core domain, several differences suggest that structure, mechanism of action, and functional regulation differ from Ras. RGK proteins down-regulate voltage-gated calcium channel activity by binding in a GTP-dependent fashion to the Cavbeta subunits. Mutational analysis combined with homology modeling reveal a novel effector binding mechanism distinct from that of other Ras GTPases. In this model the Switch 1 region acts as an allosteric activator that facilitates electrostatic interactions between Arg-196 in Kir/Gem and Asp-194, -270, and -272 in the nucleotide-kinase (NK) domain of Cavbeta3 and wedging Val-223 and His-225 of Kir/Gem into a hydrophobic pocket in the NK domain. Kir/Gem interacts with a surface on the NK domain that is distinct from the groove where the voltage-gated calcium channel Cavalpha1 subunit binds. A complex composed of the RGK protein and the Cavbeta3 and Cav1.2 subunits could be revealed in vivo using coimmunoprecipitation experiments. Intriguingly, docking of the RGK protein to the NK domain of the Cavbeta subunit is reminiscent of the binding of GMP to guanylate kinase.
Collapse
Affiliation(s)
- Pascal Béguin
- Epithelial Cell Biology Laboratory, Institute of Molecular and Cell Biology, 61 Biopolis Drive, Singapore 138673, Republic of Singapore
| | | | | | | | | | | |
Collapse
|
47
|
Hatzoglou A, Ader I, Splingard A, Flanders J, Saade E, Leroy I, Traver S, Aresta S, de Gunzburg J. Gem associates with Ezrin and acts via the Rho-GAP protein Gmip to down-regulate the Rho pathway. Mol Biol Cell 2007; 18:1242-52. [PMID: 17267693 PMCID: PMC1839077 DOI: 10.1091/mbc.e06-06-0510] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Gem is a protein of the Ras superfamily that plays a role in regulating voltage-gated Ca2+ channels and cytoskeletal reorganization. We now report that GTP-bound Gem interacts with the membrane-cytoskeleton linker protein Ezrin in its active state, and that Gem binds to active Ezrin in cells. The coexpression of Gem and Ezrin induces cell elongation accompanied by the disappearance of actin stress fibers and collapse of most focal adhesions. The same morphological effect is elicited when cells expressing Gem alone are stimulated with serum and requires the expression of ERM proteins. We show that endogenous Gem down-regulates the level of active RhoA and actin stress fibers. The effects of Gem downstream of Rho, i.e., ERM phosphorylation as well as disappearance of actin stress fibers and most focal adhesions, require the Rho-GAP partner of Gem, Gmip, a protein that is enriched in membranes under conditions in which Gem induced cell elongation. Our results suggest that Gem binds active Ezrin at the plasma membrane-cytoskeleton interface and acts via the Rho-GAP protein Gmip to down-regulate the processes dependent on the Rho pathway.
Collapse
Affiliation(s)
| | - Isabelle Ader
- *Institut Curie–Centre de Recherche and
- Inserm U528, Paris F-75248, France
| | - Anne Splingard
- *Institut Curie–Centre de Recherche and
- Inserm U528, Paris F-75248, France
| | - James Flanders
- *Institut Curie–Centre de Recherche and
- Inserm U528, Paris F-75248, France
| | - Evelyne Saade
- *Institut Curie–Centre de Recherche and
- Inserm U528, Paris F-75248, France
| | - Ingrid Leroy
- *Institut Curie–Centre de Recherche and
- Inserm U528, Paris F-75248, France
| | - Sabine Traver
- *Institut Curie–Centre de Recherche and
- Inserm U528, Paris F-75248, France
| | - Sandra Aresta
- *Institut Curie–Centre de Recherche and
- Inserm U528, Paris F-75248, France
| | - Jean de Gunzburg
- *Institut Curie–Centre de Recherche and
- Inserm U528, Paris F-75248, France
| |
Collapse
|
48
|
Abstract
Although inhibition of voltage-gated calcium channels by RGK GTPases (RGKs) represents an important mode of regulation to control Ca2+ influx in excitable cells, their exact mechanism of inhibition remains controversial. This has prevented an understanding of how RGK regulation can be significant in a physiological context. Here we show that RGKs—Gem, Rem, and Rem2—decreased CaV1.2 Ca2+ current amplitude in a dose-dependent manner. Moreover, Rem2, but not Rem or Gem, produced dose-dependent alterations on gating kinetics, uncovering a new mode by which certain RGKs can precisely modulate Ca2+ currents and affect Ca2+ influx during action potentials. To explore how RGKs influence gating kinetics, we separated the roles mediated by the Ca2+ channel accessory β subunit's interaction with its high affinity binding site in the pore-forming α1C subunit (AID) from its other putative contact sites by utilizing an α1C•β3 concatemer in which the AID was mutated to prevent β subunit interaction. This mutant concatemer generated currents with all the hallmarks of β subunit modulation, demonstrating that AID-β–independent interactions are sufficient for β subunit modulation. Using this construct we found that although inhibition of current amplitude was still partially sensitive to RGKs, Rem2 no longer altered gating kinetics, implicating different determinants for this specific mode of Rem2-mediated regulation. Together, these results offer new insights into the molecular mechanism of RGK-mediated Ca2+ channel current modulation.
Collapse
Affiliation(s)
- Lillian Seu
- Department of Pharmacology, Division of Cardiology, College of Physicians and Surgeons of Columbia University, New York, NY 10032, USA
| | | |
Collapse
|
49
|
Opatowsky Y, Sasson Y, Shaked I, Ward Y, Chomsky-Hecht O, Litvak Y, Selinger Z, Kelly K, Hirsch JA. Structure-function studies of the G-domain from human gem, a novel small G-protein. FEBS Lett 2006; 580:5959-64. [PMID: 17052716 PMCID: PMC1934412 DOI: 10.1016/j.febslet.2006.09.067] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2006] [Revised: 09/14/2006] [Accepted: 09/28/2006] [Indexed: 10/24/2022]
Abstract
Gem, a member of the Rad,Gem/Kir subfamily of small G-proteins, has unique sequence features. We report here the crystallographic structure determination of the Gem G-domain in complex with nucleotide to 2.4 A resolution. Although the basic Ras protein fold is maintained, the Gem switch regions emphatically differ from the Ras paradigm. Our ensuing biochemical characterization indicates that Gem G-domain markedly prefers GDP over GTP. Two known functions of Gem are distinctly affected by spatially separated clusters of mutations.
Collapse
Affiliation(s)
- Yarden Opatowsky
- Department of Biochemistry, Faculty of Life Sciences, Daniella Rich Institute for Structural Biology, Tel Aviv University, Ramat Aviv 69978, Israel
| | - Yehezkel Sasson
- Department of Biochemistry, Faculty of Life Sciences, Daniella Rich Institute for Structural Biology, Tel Aviv University, Ramat Aviv 69978, Israel
| | - Isabella Shaked
- Department of Biochemistry, Faculty of Life Sciences, Daniella Rich Institute for Structural Biology, Tel Aviv University, Ramat Aviv 69978, Israel
| | - Yvona Ward
- Cell and Cancer Biology Branch, Center for Cancer Research, NCI, NIH, Bethesda, MD, USA
| | - Orna Chomsky-Hecht
- Department of Biochemistry, Faculty of Life Sciences, Daniella Rich Institute for Structural Biology, Tel Aviv University, Ramat Aviv 69978, Israel
| | - Yael Litvak
- Department of Biological Chemistry, Institute of Life Sciences, The Hebrew University, Jerusalem, Israel
| | - Zvi Selinger
- Department of Biological Chemistry, Institute of Life Sciences, The Hebrew University, Jerusalem, Israel
| | - Kathleen Kelly
- Cell and Cancer Biology Branch, Center for Cancer Research, NCI, NIH, Bethesda, MD, USA
| | - Joel A. Hirsch
- Department of Biochemistry, Faculty of Life Sciences, Daniella Rich Institute for Structural Biology, Tel Aviv University, Ramat Aviv 69978, Israel
- *Corresponding author. Fax: +972 3 6407931., E-mail address: (J.A. Hirsch)
| |
Collapse
|
50
|
Finlin BS, Correll RN, Pang C, Crump SM, Satin J, Andres DA. Analysis of the complex between Ca2+ channel beta-subunit and the Rem GTPase. J Biol Chem 2006; 281:23557-66. [PMID: 16790445 DOI: 10.1074/jbc.m604867200] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Voltage-gated calcium channels are multiprotein complexes that regulate calcium influx and are important contributors to cardiac excitability and contractility. The auxiliary beta-subunit (CaV beta) binds a conserved domain (the alpha-interaction domain (AID)) of the pore-forming CaV alpha1 subunit to modulate channel gating properties and promote cell surface trafficking. Recently, members of the RGK family of small GTPases (Rem, Rem2, Rad, Gem/Kir) have been identified as novel contributors to the regulation of L-type calcium channel activity. Here, we describe the Rem-association domain within CaV beta2a. The Rem interaction module is located in a approximately 130-residue region within the highly conserved guanylate kinase domain that also directs AID binding. Importantly, CaV beta mutants were identified that lost the ability to bind AID but retained their association with Rem, indicating that the AID and Rem association sites of CaV beta2a are structurally distinct. In vitro binding studies indicate that the affinity of Rem for CaV beta2a interaction is lower than that of AID for CaV beta2a. Furthermore, in vitro binding studies indicate that Rem association does not inhibit the interaction of CaV beta2a with AID. Instead, CaV beta can simultaneously associate with both Rem and CaV alpha1-AID. Previous studies had suggested that RGK proteins may regulate Ca2+ channel activity by blocking the association of CaV beta subunits with CaV alpha1 to inhibit plasma membrane trafficking. However, surface biotinylation studies in HIT-T15 cells indicate that Rem can acutely modulate channel function without decreasing the density of L-type channels at the plasma membrane. Together these data suggest that Rem-dependent Ca2+ channel modulation involves formation of a Rem x CaV beta x AID regulatory complex without the need to disrupt CaV alpha1 x CaV beta association or alter CaV alpha1 expression at the plasma membrane.
Collapse
Affiliation(s)
- Brian S Finlin
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, Kentucky 40536-0509, USA
| | | | | | | | | | | |
Collapse
|