1
|
Aarts MT, Wagner M, van der Wal T, van Boxtel AL, van Amerongen R. A molecular toolbox to study progesterone receptor signaling. J Mammary Gland Biol Neoplasia 2023; 28:24. [PMID: 38019315 PMCID: PMC10687192 DOI: 10.1007/s10911-023-09550-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 10/29/2023] [Indexed: 11/30/2023] Open
Abstract
Progesterone receptor (PR) signaling is required for mammary gland development and homeostasis. A major bottleneck in studying PR signaling is the lack of sensitive assays to measure and visualize PR pathway activity both quantitatively and spatially. Here, we develop new tools to study PR signaling in human breast epithelial cells. First, we generate optimized Progesterone Responsive Element (PRE)-luciferase constructs and demonstrate that these new reporters are a powerful tool to quantify PR signaling activity across a wide range of progesterone concentrations in two luminal breast cancer cell lines, MCF7 and T47D. We also describe a fluorescent lentiviral PRE-GFP reporter as a novel tool to visualize PR signaling at the single-cell level. Our reporter constructs are sensitive to physiological levels of progesterone. Second, we show that low background signaling, and high levels of PR expression are a prerequisite for robustly measuring PR signaling. Increasing PR expression by transient transfection, stable overexpression in MCF7 or clonal selection in T47D, drastically improves both the dynamic range of luciferase reporter assays, and the induction of endogenous PR target genes as measured by qRT-PCR. We find that the PR signaling response differs per cell line, target gene and hormone concentration used. Taken together, our tools allow a more rationally designed approach for measuring PR signaling in breast epithelial cells.
Collapse
Affiliation(s)
- Marleen T Aarts
- Developmental, Stem Cell and Cancer Biology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands
| | - Muriel Wagner
- Developmental, Stem Cell and Cancer Biology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands
| | - Tanne van der Wal
- Developmental, Stem Cell and Cancer Biology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands
| | - Antonius L van Boxtel
- Developmental, Stem Cell and Cancer Biology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands
| | - Renée van Amerongen
- Developmental, Stem Cell and Cancer Biology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands.
| |
Collapse
|
2
|
Ors A, Chitsazan AD, Doe AR, Mulqueen RM, Ak C, Wen Y, Haverlack S, Handu M, Naldiga S, Saldivar J, Mohammed H. Estrogen regulates divergent transcriptional and epigenetic cell states in breast cancer. Nucleic Acids Res 2022; 50:11492-11508. [PMID: 36318267 PMCID: PMC9723652 DOI: 10.1093/nar/gkac908] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 09/20/2022] [Accepted: 10/20/2022] [Indexed: 12/12/2022] Open
Abstract
Breast cancers are known to be driven by the transcription factor estrogen receptor and its ligand estrogen. While the receptor's cis-binding elements are known to vary between tumors, heterogeneity of hormone signaling at a single-cell level is unknown. In this study, we systematically tracked estrogen response across time at a single-cell level in multiple cell line and organoid models. To accurately model these changes, we developed a computational tool (TITAN) that quantifies signaling gradients in single-cell datasets. Using this approach, we found that gene expression response to estrogen is non-uniform, with distinct cell groups expressing divergent transcriptional networks. Pathway analysis suggested the two most distinct signatures are driven separately by ER and FOXM1. We observed that FOXM1 was indeed activated by phosphorylation upon estrogen stimulation and silencing of FOXM1 attenuated the relevant gene signature. Analysis of scRNA-seq data from patient samples confirmed the existence of these divergent cell groups, with the FOXM1 signature predominantly found in ER negative cells. Further, multi-omic single-cell experiments indicated that the different cell groups have distinct chromatin accessibility states. Our results provide a comprehensive insight into ER biology at the single-cell level and potential therapeutic strategies to mitigate resistance to therapy.
Collapse
Affiliation(s)
| | | | - Aaron Reid Doe
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon 97201, USA
| | - Ryan M Mulqueen
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon 97201, USA
| | - Cigdem Ak
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon 97201, USA
| | - Yahong Wen
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon 97201, USA
| | - Syber Haverlack
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon 97201, USA
| | - Mithila Handu
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon 97201, USA
| | - Spandana Naldiga
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon 97201, USA
| | - Joshua C Saldivar
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon 97201, USA,Division of Oncological Sciences, Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon 97201, USA
| | | |
Collapse
|
3
|
Waszczykowska K, Prażanowska K, Kałuzińska Ż, Kołat D, Płuciennik E. Discovering biomarkers for hormone-dependent tumors: in silico study on signaling pathways implicated in cell cycle and cytoskeleton regulation. Mol Genet Genomics 2022; 297:947-963. [PMID: 35532795 DOI: 10.1007/s00438-022-01900-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 04/16/2022] [Indexed: 02/07/2023]
Abstract
Malignancies dependent on hormone homeostasis include breast, ovary, cervical, prostate, testis and uterine tumors. Hormones are involved in signal transduction which orchestrate processes, such as apoptosis, proliferation, cell cycle or cytoskeleton organization. Currently, there is a need for novel biomarkers which would help to diagnose cancers efficiently. In this study, the genes implicated in signaling that is important in hormone-sensitive carcinogenesis were investigated regarding their prognostic significance. Data of seven cancer cohorts were collected from FireBrowse. 54 gene sets implicated in specific pathways were browsed through MSig database. Profiling was assessed via Monocle3, while gene ontology through PANTHER. For confirmation, correlation analysis was performed using WGCNA. Protein-protein networks were visualized via Cytoscape and impact of genes on survival, as well as cell cycle or cytoskeleton-related prognostic signatures, was tested. Several differences in expression profile were identified, some of them allowed to distinguish histology. Functional annotation revealed that various regulation of cell cycle, adhesion, migration, apoptosis and angiogenesis underlie these differences. Clinical traits, such as histological type or cancer staging, were found during evaluation of module-trait relationships. Of modules, the TopHubs (COL6A3, TNR, GTF2A1, NKX3-1) interacted directly with, e.g., PDGFB, ITGA10, SP1 or AKT3. Among TopHubs and interacting proteins, many showed an impact on hazard ratio and affected the cell cycle or cytoskeleton-related prognostic signatures, e.g., COL1A1 or PDGFB. In conclusion, this study laid the foundation for further hormone-sensitive carcinogenesis research through identification of genes which prove that crosstalk between cell cycle and cytoskeleton exists, opening avenues for future therapeutic strategies.
Collapse
Affiliation(s)
| | - Karolina Prażanowska
- Faculty of Biomedical Sciences, Medical University of Lodz, 90-752, Lodz, Poland
| | - Żaneta Kałuzińska
- Department of Molecular Carcinogenesis, Medical University of Lodz, 90-752, Lodz, Poland.
| | - Damian Kołat
- Department of Molecular Carcinogenesis, Medical University of Lodz, 90-752, Lodz, Poland
| | - Elżbieta Płuciennik
- Department of Molecular Carcinogenesis, Medical University of Lodz, 90-752, Lodz, Poland
| |
Collapse
|
4
|
Li K, Zong D, Sun J, Chen D, Ma M, Jia L. Rewiring of the Endocrine Network in Triple-Negative Breast Cancer. Front Oncol 2022; 12:830894. [PMID: 35847875 PMCID: PMC9280148 DOI: 10.3389/fonc.2022.830894] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 01/31/2022] [Indexed: 12/19/2022] Open
Abstract
The immunohistochemical definition of estrogen/progesterone receptors dictates endocrine feasibility in the treatment course of breast cancer. Characterized by the deficiency of estrogen receptor α, ERα-negative breast cancers are dissociated from any endocrine regimens in the routine clinical setting, triple-negative breast cancer in particular. However, the stereotype was challenged by triple-negative breast cancers’ retained sensitivity and vulnerability to endocrine agents. The interplay of hormone action and the carcinogenic signaling program previously underscored was gradually recognized along with the increasing investigation. In parallel, the overlooked endocrine-responsiveness in ERα-negative breast cancers attracted attention and supplied fresh insight into the therapeutic strategy in an ERα-independent manner. This review elaborates on the genomic and non-genomic steroid hormone actions and endocrine-related signals in triple-negative breast cancers attached to the hormone insensitivity label. We also shed light on the non-canonical mechanism detected in common hormone agents to showcase their pleiotropic effects.
Collapse
Affiliation(s)
- Kaixuan Li
- Department of Integrated Traditional Chinese and Western Medicine Oncology, China-Japan Friendship Hospital, Beijing, China
- Beijing University of Chinese medicine, Beijing, China
| | | | - Jianrong Sun
- School of Clinical Medicine. Beijing University of Chinese Medicine, Beijing, China
| | - Danxiang Chen
- Department of Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Minkai Ma
- Department of Integrated Traditional Chinese and Western Medicine Oncology, The Fourth Central Hospital, Baoding, China
| | - Liqun Jia
- Department of Integrated Traditional Chinese and Western Medicine Oncology, China-Japan Friendship Hospital, Beijing, China
- *Correspondence: Liqun Jia,
| |
Collapse
|
5
|
Thiebaut C, Vlaeminck-Guillem V, Trédan O, Poulard C, Le Romancer M. Non-genomic signaling of steroid receptors in cancer. Mol Cell Endocrinol 2021; 538:111453. [PMID: 34520815 DOI: 10.1016/j.mce.2021.111453] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 09/03/2021] [Accepted: 09/05/2021] [Indexed: 12/21/2022]
Abstract
Steroid receptors (SRs) are members of the nuclear receptor family, which are ligand-activated transcription factors. SRs regulate many physiological functions including development and reproduction, though they can also be involved in several pathologies, especially cancer. Highly controlled cellular responses to steroids involve transcriptional regulation (genomic activity) combined with direct activation of signaling cascades (non-genomic activity). Non-genomic signaling has been extensively studied in cancer, mainly in breast cancer for ER and PR, and prostate cancer for AR. Even though most of the studies have been conducted in cells, some of them have been confirmed in vivo, highlighting the relevance of this pathway in cancer. This review provides an overview of the current and emerging knowledge on non-genomic signaling with a focus on breast and prostate cancers and its clinical relevance. A thorough understanding of ER, PR, AR and GR non-genomic pathways may open new perspectives for the development of therapeutic strategies.
Collapse
Affiliation(s)
- Charlène Thiebaut
- Université de Lyon, F-69000, Lyon, France; Inserm U1052, Centre de Recherche en Cancérologie de Lyon, F-69000, Lyon, France; CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69000, Lyon, France
| | - Virginie Vlaeminck-Guillem
- Université de Lyon, F-69000, Lyon, France; Inserm U1052, Centre de Recherche en Cancérologie de Lyon, F-69000, Lyon, France; CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69000, Lyon, France; Service de Biochimie Biologie Moléculaire Sud, Centre Hospitalier Lyon Sud, Hospices Civils de Lyon, F-69495, Pierre-Bénite, France
| | - Olivier Trédan
- Université de Lyon, F-69000, Lyon, France; Inserm U1052, Centre de Recherche en Cancérologie de Lyon, F-69000, Lyon, France; CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69000, Lyon, France; Medical Oncology Department, Centre Léon Bérard, F-69000, Lyon, France
| | - Coralie Poulard
- Université de Lyon, F-69000, Lyon, France; Inserm U1052, Centre de Recherche en Cancérologie de Lyon, F-69000, Lyon, France; CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69000, Lyon, France
| | - Muriel Le Romancer
- Université de Lyon, F-69000, Lyon, France; Inserm U1052, Centre de Recherche en Cancérologie de Lyon, F-69000, Lyon, France; CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69000, Lyon, France.
| |
Collapse
|
6
|
Saha S, Dey S, Nath S. Steroid Hormone Receptors: Links With Cell Cycle Machinery and Breast Cancer Progression. Front Oncol 2021; 11:620214. [PMID: 33777765 PMCID: PMC7994514 DOI: 10.3389/fonc.2021.620214] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 02/02/2021] [Indexed: 12/12/2022] Open
Abstract
Progression of cells through cell cycle consists of a series of events orchestrated in a regulated fashion. Such processes are influenced by cell cycle regulated expression of various proteins where multiple families of transcription factors take integral parts. Among these, the steroid hormone receptors (SHRs) represent a connection between the external hormone milieu and genes that control cellular proliferation. Therefore, understanding the molecular connection between the transcriptional role of steroid hormone receptors and cell cycle deserves importance in dissecting cellular proliferation in normal as well as malignant conditions. Deregulation of cell cycle promotes malignancies of various origins, including breast cancer. Indeed, SHR members play crucial role in breast cancer progression as well as management. This review focuses on SHR-driven cell cycle regulation and moving forward, attempts to discuss the role of SHR-driven crosstalk between cell cycle anomalies and breast cancer.
Collapse
Affiliation(s)
- Suryendu Saha
- Department of Basic and Translational Research, Saroj Gupta Cancer Centre and Research Institute, Kolkata, India
| | - Samya Dey
- Department of Basic and Translational Research, Saroj Gupta Cancer Centre and Research Institute, Kolkata, India
| | - Somsubhra Nath
- Department of Basic and Translational Research, Saroj Gupta Cancer Centre and Research Institute, Kolkata, India
| |
Collapse
|
7
|
Boonyaratanakornkit V, Hamilton N, Márquez-Garbán DC, Pateetin P, McGowan EM, Pietras RJ. Extranuclear signaling by sex steroid receptors and clinical implications in breast cancer. Mol Cell Endocrinol 2018; 466:51-72. [PMID: 29146555 PMCID: PMC5878997 DOI: 10.1016/j.mce.2017.11.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 11/10/2017] [Accepted: 11/13/2017] [Indexed: 12/13/2022]
Abstract
Estrogen and progesterone play essential roles in the development and progression of breast cancer. Over 70% of breast cancers express estrogen receptors (ER) and progesterone receptors (PR), emphasizing the need for better understanding of ER and PR signaling. ER and PR are traditionally viewed as transcription factors that directly bind DNA to regulate gene networks. In addition to nuclear signaling, ER and PR mediate hormone-induced, rapid extranuclear signaling at the cell membrane or in the cytoplasm which triggers downstream signaling to regulate rapid or extended cellular responses. Specialized membrane and cytoplasmic proteins may also initiate hormone-induced extranuclear signaling. Rapid extranuclear signaling converges with its nuclear counterpart to amplify ER/PR transcription and specify gene regulatory networks. This review summarizes current understanding and updates on ER and PR extranuclear signaling. Further investigation of ER/PR extranuclear signaling may lead to development of novel targeted therapeutics for breast cancer management.
Collapse
Affiliation(s)
- Viroj Boonyaratanakornkit
- Department of Clinical Chemistry Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand; Age-related Inflammation and Degeneration Research Unit, Chulalongkorn University, Bangkok 10330, Thailand; Graduate Program in Clinical Biochemistry and Molecular Medicine, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand.
| | - Nalo Hamilton
- UCLA Jonsson Comprehensive Cancer Center, Department of Medicine, Division of Hematology-Oncology, UCLA David Geffen School of Medicine, Los Angeles, CA 90095, USA
| | - Diana C Márquez-Garbán
- UCLA Jonsson Comprehensive Cancer Center, Department of Medicine, Division of Hematology-Oncology, UCLA David Geffen School of Medicine, Los Angeles, CA 90095, USA
| | - Prangwan Pateetin
- Graduate Program in Clinical Biochemistry and Molecular Medicine, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Eileen M McGowan
- Chronic Disease Solutions Team, School of Life Sciences, University of Technology Sydney, Ultimo, 2007, Sydney, Australia
| | - Richard J Pietras
- UCLA Jonsson Comprehensive Cancer Center, Department of Medicine, Division of Hematology-Oncology, UCLA David Geffen School of Medicine, Los Angeles, CA 90095, USA
| |
Collapse
|
8
|
Zheng Y, Murphy LC. Regulation of steroid hormone receptors and coregulators during the cell cycle highlights potential novel function in addition to roles as transcription factors. NUCLEAR RECEPTOR SIGNALING 2016; 14:e001. [PMID: 26778927 PMCID: PMC4714463 DOI: 10.1621/nrs.14001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 10/01/2015] [Indexed: 01/15/2023]
Abstract
Cell cycle progression is tightly controlled by several kinase families including Cyclin-Dependent Kinases, Polo-Like Kinases, and Aurora Kinases. A large amount of data show that steroid hormone receptors and various components of the cell cycle, including cell cycle regulated kinases, interact, and this often results in altered transcriptional activity of the receptor. Furthermore, steroid hormones, through their receptors, can also regulate the transcriptional expression of genes that are required for cell cycle regulation. However, emerging data suggest that steroid hormone receptors may have roles in cell cycle progression independent of their transcriptional activity. The following is a review of how steroid receptors and their coregulators can regulate or be regulated by the cell cycle machinery, with a particular focus on roles independent of transcription in G2/M.
Collapse
Affiliation(s)
- Yingfeng Zheng
- Department of Biochemistry and Medical Genetics (YZ, LCM), University of Manitoba; Manitoba Institute of Cell Biology (YZ, LCM), CancerCare Manitoba, Winnipeg, Manitoba, Canada
| | - Leigh C Murphy
- Department of Biochemistry and Medical Genetics (YZ, LCM), University of Manitoba; Manitoba Institute of Cell Biology (YZ, LCM), CancerCare Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
9
|
Grimm SL, Ward RD, Obr AE, Franco HL, Fernandez-Valdivia R, Kim JS, Roberts JM, Jeong JW, DeMayo FJ, Lydon JP, Edwards DP, Weigel NL. A role for site-specific phosphorylation of mouse progesterone receptor at serine 191 in vivo. Mol Endocrinol 2015; 28:2025-37. [PMID: 25333515 DOI: 10.1210/me.2014-1206] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Progesterone receptors (PRs) are phosphorylated on multiple sites, and a variety of roles for phosphorylation have been suggested by cell-based studies. Previous studies using PR-null mice have shown that PR plays an important role in female fertility, regulation of uterine growth, the uterine decidualization response, and proliferation as well as ductal side-branching and alveologenesis in the mammary gland. To study the role of PR phosphorylation in vivo, a mouse was engineered with homozygous replacement of PR with a PR serine-to-alanine mutation at amino acid 191. No overt phenotypes were observed in the mammary glands or uteri of PR S191A treated with progesterone (P4). In contrast, although PR S191A mice were fertile, litters were 19% smaller than wild type and the estrous cycle was lengthened slightly. Moreover, P4-dependent gene regulation in primary mammary epithelial cells (MECs) was altered in a gene-selective manner. MECs derived from wild type and PR S191A mice were grown in a three-dimensional culture. Both formed acinar structures that were morphologically similar, and proliferation was stimulated equally by P4. However, P4 induction of receptor activator of nuclear factor-κB ligand and calcitonin was selectively reduced in S191A cultures. These differences were confirmed in freshly isolated MECs. Chromatin immunoprecipitation analysis showed that the binding of S191A PR to some of the receptor activator of nuclear factor-κB ligand enhancers and a calcitonin enhancer was substantially reduced. Thus, the elimination of a single phosphorylation site is sufficient to modulate PR activity in vivo. PR contains many phosphorylation sites, and the coordinate regulation of multiple sites is a potential mechanism for selective modulation of PR function.
Collapse
Affiliation(s)
- Sandra L Grimm
- Departments of Molecular and Cellular Biology (S.L.G., R.D.W., A.E.O., H.L.F., R.F.-V., J.-S.K., J.M.R., J.-W.J., F.J.D., J.P.L., D.P.E., N.L.W.) and Pathology and Immunology (D.P.E.), Baylor College of Medicine, Houston, Texas 77030
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Moore NL, Edwards DP, Weigel NL. Cyclin A2 and its associated kinase activity are required for optimal induction of progesterone receptor target genes in breast cancer cells. J Steroid Biochem Mol Biol 2014; 144 Pt B:471-82. [PMID: 25220500 PMCID: PMC4201666 DOI: 10.1016/j.jsbmb.2014.09.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 08/09/2014] [Accepted: 09/05/2014] [Indexed: 12/30/2022]
Abstract
A role for the cell cycle protein cyclin A2 in regulating progesterone receptor (PR) activity is emerging. This study investigates the role of cyclin A2 in regulating endogenous PR activity in T47D breast cancer cells by depleting cyclin A2 expression and measuring PR target genes using q-RT-PCR. Targets examined included genes induced by the PR-B isoform more strongly than PR-A (SGK1, FKBP5), a gene induced predominantly by PR-A (HEF1), genes induced via PR tethering to other transcription factors (p21, p27), a gene induced in part via extra-nuclear PR signaling mechanisms (cyclin D1) and PR-repressed genes (DST, IL1R1). Progestin induction of target genes was reduced following cyclin A2 depletion. However, cyclin A2 depletion did not diminish progestin target gene repression. Furthermore, inhibition of the associated Cdk2 kinase activity of cyclin A2 also reduced progestin induction of target genes, while Cdk2 enhanced the interaction between PR and cyclin A2. These results demonstrate that cyclin A2 and its associated kinase activity are important for progestin-induced activation of endogenous PR target genes in breast cancer cells.
Collapse
Affiliation(s)
- Nicole L Moore
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Dean P Edwards
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA; Department of Pathology, Baylor College of Medicine, Houston, TX, USA
| | - Nancy L Weigel
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA; Scott Department of Urology, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
11
|
Kadiyala V, Smith CL. Minireview: The versatile roles of lysine deacetylases in steroid receptor signaling. Mol Endocrinol 2014; 28:607-21. [PMID: 24645680 DOI: 10.1210/me.2014-1002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Lysine deacetylases have been known to regulate nuclear receptor function for many years. In the unliganded state, nuclear receptors that form heterodimers with retinoid X receptors, such as the retinoic acid and thyroid hormone receptors, associate with deacetylases to repress target genes. In the case of steroid receptors, binding of an antagonist ligand was initially reported to induce association of deacetylases to prevent activation of target genes. Since then, deacetylases have been shown to have diverse functions in steroid receptor signaling, from regulating interactions with molecular chaperones to facilitating their ability to activate transcription. The purpose of this review is to summarize recent studies on the role of deacetylases in steroid receptor signaling, which show deacetylases to be highly versatile regulators of steroid receptor function.
Collapse
Affiliation(s)
- Vineela Kadiyala
- Department of Pharmacology and Toxicology, College of Pharmacy (V.K., C.L.S.), Department of Chemistry and Biochemistry, College of Science (V.K.), University of Arizona, Tucson Arizona 85721
| | | |
Collapse
|
12
|
Dressing GE, Knutson TP, Schiewer MJ, Daniel AR, Hagan CR, Diep CH, Knudsen KE, Lange CA. Progesterone receptor-cyclin D1 complexes induce cell cycle-dependent transcriptional programs in breast cancer cells. Mol Endocrinol 2014; 28:442-57. [PMID: 24606123 DOI: 10.1210/me.2013-1196] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The progesterone receptor (PR) and its coactivators are direct targets of activated cyclin-dependent kinases (CDKs) in response to peptide growth factors, progesterone, and deregulation of cell cycle inhibitors. Herein, using the T47D breast cancer model, we probed mechanisms of cell cycle-dependent PR action. In the absence of exogenous progestin, the PR is specifically phosphorylated during the G2/M phase. Accordingly, numerous PR target genes are cell cycle regulated, including HSPB8, a heat-shock protein whose high expression is associated with tamoxifen resistance. Progestin-induced HSPB8 expression required cyclin D1 and was insensitive to antiestrogens but blocked by antiprogestins or inhibition of specificity factor 1 (SP1). HSPB8 expression increased with or without ligand when cells were G2/M synchronized or contained high levels of cyclin D1. Knockdown of PRs abrogated ligand-independent HSPB8 expression in synchronized cells. Notably, PRs and cyclin D1 copurified in whole-cell lysates of transiently transfected COS-1 cells and in PR-positive T47D breast cancer cells expressing endogenous cyclin D1. PRs, cyclin D1, and SP1 were recruited to the HSPB8 promoter in progestin-treated T47D breast cancer cells. Mutation of PR Ser345 to Ala (S345A) or inhibition of CDK2 activity using roscovitine disrupted PR/cyclin D1 interactions with DNA and blocked HSPB8 mRNA expression. Interaction of phosphorylated PRs with SP1 and cyclin D1 provides a mechanism for targeting transcriptionally active PRs to selected gene promoters relevant to breast cancer progression. Understanding the functional linkage between PRs and cell cycle regulatory proteins will provide keys to targeting novel PR/cyclin D1 cross talk in both hormone-responsive disease and HSPB8-high refractory disease with high HSPB8 expression.
Collapse
Affiliation(s)
- Gwen E Dressing
- Departments of Medicine and Pharmacology (G.E.D., T.P.K., A.R.D., C.R.H., C.H.D., C.A.L.), Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455; and Departments of Cancer Biology, Urology, and Radiation Oncology (M.J.S., K.E.K.), Kimmel Cancer Center Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Ayala G, Morello M, Frolov A, You S, Li R, Rosati F, Bartolucci G, Danza G, Adam RM, Thompson TC, Lisanti MP, Freeman MR, Vizio DD. Loss of caveolin-1 in prostate cancer stroma correlates with reduced relapse-free survival and is functionally relevant to tumour progression. J Pathol 2013; 231:77-87. [PMID: 23729330 DOI: 10.1002/path.4217] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Revised: 05/24/2013] [Accepted: 05/27/2013] [Indexed: 12/14/2022]
Abstract
Levels of caveolin-1 (Cav-1) in tumour epithelial cells increase during prostate cancer progression. Conversely, Cav-1 expression in the stroma can decline in advanced and metastatic prostate cancer. In a large cohort of 724 prostate cancers, we observed significantly decreased levels of stromal Cav-1 in concordance with increased Gleason score (p = 0.012). Importantly, reduced expression of Cav-1 in the stroma correlated with reduced relapse-free survival (p = 0.009), suggesting a role for stromal Cav-1 in inhibiting advanced disease. Silencing of Cav-1 by shRNA in WPMY-1 prostate fibroblasts resulted in up-regulation of Akt phosphorylation, and significantly altered expression of genes involved in angiogenesis, invasion, and metastasis, including a > 2.5-fold increase in TGF-β1 and γ-synuclein (SNCG) gene expression. Moreover, silencing of Cav-1 induced migration of prostate cancer cells when stromal cells were used as attractants. Pharmacological inhibition of Akt caused down-regulation of TGF-β1 and SNCG, suggesting that loss of Cav-1 in the stroma can influence Akt-mediated signalling in the tumour microenvironment. Cav-1-depleted stromal cells exhibited increased levels of intracellular cholesterol, a precursor for androgen biosynthesis, steroidogenic enzymes, and testosterone. These findings suggest that loss of Cav-1 in the tumour microenvironment contributes to the metastatic behaviour of tumour cells by a mechanism that involves up-regulation of TGF-β1 and SNCG through Akt activation. They also suggest that intracrine production of androgens, a process relevant to castration resistance, may occur in the stroma.
Collapse
Affiliation(s)
- Gustavo Ayala
- Department of Pathology, Baylor College of Medicine, Houston, TX, USA
| | - Matteo Morello
- Cancer Biology Program, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.,The Urological Diseases Research Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Anna Frolov
- Department of Pathology, Baylor College of Medicine, Houston, TX, USA
| | - Sungyong You
- Cancer Biology Program, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Rile Li
- Department of Pathology, Baylor College of Medicine, Houston, TX, USA
| | - Fabiana Rosati
- Endocrine Unit, Department of Clinical Physiopathology, University of Florence, Florence, Italy
| | - Gianluca Bartolucci
- Department of Pharmaceutical Sciences, University of Florence, Sesto Fiorentino, Italy
| | - Giovanna Danza
- Endocrine Unit, Department of Clinical Physiopathology, University of Florence, Florence, Italy
| | - Rosalyn M Adam
- The Urological Diseases Research Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Timothy C Thompson
- Department of Genitourinary Medical Oncology, Unit 18-3, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Michael P Lisanti
- Breast Oncology and Institute of Cancer Sciences, Paterson Institute of Cancer Research, The University of Manchester, Manchester, UK
| | - Michael R Freeman
- Cancer Biology Program, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.,The Urological Diseases Research Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.,Departments of Surgery and Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Dolores Di Vizio
- Cancer Biology Program, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.,The Urological Diseases Research Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
14
|
Treviño LS, Bingman WE, Edwards DP, Weigel NL. The requirement for p42/p44 MAPK activity in progesterone receptor-mediated gene regulation is target gene-specific. Steroids 2013; 78:542-7. [PMID: 23380370 PMCID: PMC3640704 DOI: 10.1016/j.steroids.2012.12.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Revised: 12/20/2012] [Accepted: 12/28/2012] [Indexed: 12/13/2022]
Abstract
Recent studies have suggested that progestins play a role in the etiology of breast cancer; however, the mechanisms by which progestins promote tumor formation/progression have not been defined. Progestin action, in target tissues such as the breast, is mediated by the progesterone receptor (PR). PR signaling is complex and PR regulates transcription of target genes through a variety of mechanisms. Many cell signaling pathways are activated inappropriately in breast cancer cells and these pathways can regulate PR activity. For example, the p42/p44 MAPK pathway can regulate PR function by altering phosphorylation of PR, as well as its coregulators. We found that inhibition of the p42/p44 MAPK signaling pathway with a MEK inhibitor (U0126) impairs PR-mediated gene induction, but not gene repression. In addition, the effects of U0126 on PR-mediated gene transcription are much greater with long-term versus short-term inhibition and are gene-specific. Finally, treatment with U0126 delays phosphorylation of Ser294, but does not block phosphorylation completely, suggesting that p42/p44 MAPK kinase is not the dominant kinase responsible for phosphorylating this site. Collectively, these studies suggest that in addition to the p42/p44 MAPK pathway, other signaling pathways are also important for PR transcriptional activity in breast cancer cells. The integration of PR transcriptional effects and cell signaling pathways has implications for the initiation or progression of breast cancer. Understanding how these pathways interact may aid in the development of prevention and/or treatment strategies for the disease.
Collapse
Affiliation(s)
- Lindsey S. Treviño
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - William E. Bingman
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Dean P. Edwards
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
- Department of Pathology and Immunology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - NL Weigel
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
- Corresponding Author: Department of Molecular and Cellular Biology, Baylor College of Medicine, M515, One Baylor Plaza, Houston, TX 77030, USA. Telephone: 713-798-6234;
| |
Collapse
|
15
|
Weinstain R, Kanter J, Friedman B, Ellies LG, Baker ME, Tsien RY. Fluorescent ligand for human progesterone receptor imaging in live cells. Bioconjug Chem 2013; 24:766-71. [PMID: 23600997 PMCID: PMC3658552 DOI: 10.1021/bc3006418] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
We employed molecular modeling to design and then synthesize fluorescent ligands for the human progesterone receptor. Boron dipyrromethene (BODIPY) or tetramethylrhodamine were conjugated to the progesterone receptor antagonist RU486 (Mifepristone) through an extended hydrophilic linker. The fluorescent ligands demonstrated comparable bioactivity to the parent antagonist in live cells and triggered nuclear translocation of the receptor in a specific manner. The BODIPY labeled ligand was applied to investigate the dependency of progesterone receptor nuclear translocation on partner proteins and to show that functional heat shock protein 90 but not immunophilin FKBP52 activity is essential. A tissue distribution study indicated that the fluorescent ligand preferentially accumulates in tissues that express high levels of the receptor in vivo. The design and properties of the BODIPY-labeled RU486 make it a potential candidate for in vivo imaging of PR by positron emission tomography through incorporation of (18)F into the BODIPY core.
Collapse
Affiliation(s)
- Roy Weinstain
- Department of Pharmacology 0647, University of California, San Diego, La Jolla, CA 92093, USA
| | | | | | | | | | | |
Collapse
|
16
|
Khan JA, Bellance C, Guiochon-Mantel A, Lombès M, Loosfelt H. Differential regulation of breast cancer-associated genes by progesterone receptor isoforms PRA and PRB in a new bi-inducible breast cancer cell line. PLoS One 2012; 7:e45993. [PMID: 23029355 PMCID: PMC3454371 DOI: 10.1371/journal.pone.0045993] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Accepted: 08/23/2012] [Indexed: 12/28/2022] Open
Abstract
Progesterone receptor isoforms (PRA and PRB) are expressed at equal levels in normal mammary cells. However, alteration in PRA/PRB expression is often observed in aggressive breast cancer suggesting differential contribution of PR isoforms in carcinogenesis. The mechanisms underlying such processes remain to be established mainly due to paucity of appropriate cellular models. To investigate the role of PR isoforms and the impact of imbalanced PRA/PRB ratio in transcriptional regulation, we have generated an original human breast cancer cell line conditionally expressing PRA and/or PRB in dose-dependence of non-steroid inducers. We first focused on PR-dependent transcriptional regulation of the paracrine growth factor gene amphiregulin (AREG) playing important role in cancer. Interestingly, unliganded PRA increases AREG expression, independently of estrogen receptor, yet inhibitable by antiprogestins. We show that functional outcome of epidermal growth factor (EGF) on such regulation is highly dependent on PRA/PRB ratio. Using this valuable model, genome-wide transcriptomic studies allowed us to determine the differential effects of PRA and PRB as a function of hormonal status. We identified a large number of novel PR-regulated genes notably implicated in breast cancer and metastasis and demonstrated that imbalanced PRA/PRB ratio strongly impact their expression predicting poor outcome in breast cancer. In sum, our unique cell-based system strongly suggests that PRA/PRB ratio is a critical determinant of PR target gene selectivity and responses to hormonal/growth factor stimuli. These findings provide molecular support for the aggressive phenotype of breast cancers with impaired expression of PRA or PRB.
Collapse
Affiliation(s)
- Junaid A. Khan
- Institut National de la Santé et de la Recherche Médicale (INSERM) Unité 693, Steroid Receptors: Endocrine and Metabolic Pathophysiology, Le Kremlin-Bicêtre, France
- Université Paris-Sud, Faculté de Médecine Paris-Sud, Unité Mixte de Recherche UMR S693, Le Kremlin-Bicêtre, France
- Department of Physiology and Pharmacology, University of Agriculture, Faisalabad, Faisalabad, Pakistan
| | - Catherine Bellance
- Institut National de la Santé et de la Recherche Médicale (INSERM) Unité 693, Steroid Receptors: Endocrine and Metabolic Pathophysiology, Le Kremlin-Bicêtre, France
- Université Paris-Sud, Faculté de Médecine Paris-Sud, Unité Mixte de Recherche UMR S693, Le Kremlin-Bicêtre, France
| | - Anne Guiochon-Mantel
- Institut National de la Santé et de la Recherche Médicale (INSERM) Unité 693, Steroid Receptors: Endocrine and Metabolic Pathophysiology, Le Kremlin-Bicêtre, France
- Université Paris-Sud, Faculté de Médecine Paris-Sud, Unité Mixte de Recherche UMR S693, Le Kremlin-Bicêtre, France
- Assistance Publique-Hôpitaux de Paris, Hôpital Bicêtre, Service de Génétique moléculaire, Pharmacogénétique et Hormonologie, Le Kremlin-Bicêtre, France
| | - Marc Lombès
- Institut National de la Santé et de la Recherche Médicale (INSERM) Unité 693, Steroid Receptors: Endocrine and Metabolic Pathophysiology, Le Kremlin-Bicêtre, France
- Université Paris-Sud, Faculté de Médecine Paris-Sud, Unité Mixte de Recherche UMR S693, Le Kremlin-Bicêtre, France
- Assistance Publique-Hôpitaux de Paris, Hôpital Bicêtre, Service d’Endocrinologie et Maladies de la Reproduction, Le Kremlin-Bicêtre, France
| | - Hugues Loosfelt
- Institut National de la Santé et de la Recherche Médicale (INSERM) Unité 693, Steroid Receptors: Endocrine and Metabolic Pathophysiology, Le Kremlin-Bicêtre, France
- Université Paris-Sud, Faculté de Médecine Paris-Sud, Unité Mixte de Recherche UMR S693, Le Kremlin-Bicêtre, France
- * E-mail:
| |
Collapse
|
17
|
Hill KK, Roemer SC, Churchill ME, Edwards DP. Structural and functional analysis of domains of the progesterone receptor. Mol Cell Endocrinol 2012; 348:418-29. [PMID: 21803119 PMCID: PMC4437577 DOI: 10.1016/j.mce.2011.07.017] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2011] [Revised: 06/29/2011] [Accepted: 07/07/2011] [Indexed: 11/18/2022]
Abstract
Steroid hormone receptors are multi-domain proteins composed of conserved well-structured regions, such as ligand (LBD) and DNA binding domains (DBD), plus other naturally unstructured regions including the amino-terminal domain (NTD) and the hinge region between the LBD and DBD. The hinge is more than just a flexible region between the DBD and LBD and is capable of binding co-regulatory proteins and the minor groove of DNA flanking hormone response elements. Because the hinge can directly participate in DNA binding it has also been termed the carboxyl terminal extension (CTE) of the DNA binding domain. The CTE and NTD are dynamic regions of the receptor that can adopt multiple conformations depending on the environment of interacting proteins and DNA. Both regions have important regulatory roles for multiple receptor functions that are related to the ability of the CTE and NTD to form multiple active conformations. This review focuses on studies of the CTE and NTD of progesterone receptor (PR), as well as related work with other steroid/nuclear receptors.
Collapse
Affiliation(s)
- Krista K. Hill
- Department of Immunology, National Jewish Medical and Research Center, Denver, CO 80206, USA
| | - Sarah C. Roemer
- Department of Pharmacology, School of Medicine, University of Colorado Denver, Aurora, CO 80045, USA
| | - Mair E.A. Churchill
- Department of Pharmacology, School of Medicine, University of Colorado Denver, Aurora, CO 80045, USA
| | - Dean P. Edwards
- Departments of Molecular & Cellular Biology and Pathology & Immunology, Baylor College of Medicine, Houston, Texas 77030, USA
| |
Collapse
|
18
|
Khan JA, Amazit L, Bellance C, Guiochon-Mantel A, Lombès M, Loosfelt H. p38 and p42/44 MAPKs differentially regulate progesterone receptor A and B isoform stabilization. Mol Endocrinol 2011; 25:1710-24. [PMID: 21816898 DOI: 10.1210/me.2011-1042] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Progesterone receptor (PR) isoforms (PRA and PRB) are implicated in the progression of breast cancers frequently associated with imbalanced PRA/PRB expression ratio. Antiprogestins represent potential antitumorigenic agents for such hormone-dependent cancers. To investigate the mechanism(s) controlling PR isoforms degradation/stability in the context of agonist and antagonist ligands, we used endometrial and mammary cancer cells stably expressing PRA and/or PRB. We found that the antiprogestin RU486 inhibited the agonist-induced turnover of PR isoforms through active mechanism(s) involving distinct MAPK-dependent phosphorylations. p42/44 MAPK activity inhibited proteasome-mediated degradation of RU486-bound PRB but not PRA in both cell lines. Ligand-induced PRB turnover required neosynthesis of a mandatory down-regulating partner whose interaction/function is negatively controlled by p42/44 MAPK. Such regulation strongly influenced expression of various endogenous PRB target genes in a selective manner, supporting functional relevance of the mechanism. Interestingly, in contrast to PRB, PRA stability was specifically increased by MAPK kinase kinase 1-induced p38 MAPK activation. Selective inhibition of p42/p44 or p38 activity resulted in opposite variations of the PRA/PRB expression ratio. Moreover, MAPK-dependent PR isoforms stability was independent of PR serine-294 phosphorylation previously proposed as a major sensor of PR down-regulation. In sum, we demonstrate that MAPK-mediated cell signaling differentially controls PRA/PRB expression ratio at posttranslational level through ligand-sensitive processes. Imbalance in PRA/PRB ratio frequently associated with carcinogenesis might be a direct consequence of disorders in MAPK signaling that might switch cellular responses to hormonal stimuli and contribute towards pathogenesis.
Collapse
Affiliation(s)
- Junaid A Khan
- Institut National de la Santé et de la Recherche Médicale Unité 693, Université Paris-Sud, Faculté de Médecine Paris-Sud, Le Kremlin-Bicêtre, France
| | | | | | | | | | | |
Collapse
|
19
|
Duplessis TT, Williams CC, Hill SM, Rowan BG. Phosphorylation of Estrogen Receptor α at serine 118 directs recruitment of promoter complexes and gene-specific transcription. Endocrinology 2011; 152:2517-26. [PMID: 21505052 PMCID: PMC3100622 DOI: 10.1210/en.2010-1281] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Phosphorylation of estrogen receptor α (ERα) is important for receptor function, although the role of specific ERα phosphorylation sites in ERα-mediated transcription remains to be fully evaluated. Transcriptional activation by ERα involves dynamic, coordinate interactions with coregulators at promoter enhancer elements to effect gene expression. To determine whether ERα phosphorylation affects recruitment of unique protein complexes at gene-specific promoters, changes in ERα Ser118 phosphorylation were assessed for effects on receptor and coregulator recruitment and transcription of ERα-regulated genes. Chromatin immunoprecipitation assays to measure promoter association found a 17β-estradiol (E2)-dependent recruitment of ERα at 150 min to ERα-regulated promoters, whereas ERα phosphorylated at Ser118 was dissociated from promoters after E2 treatment. Mutation of Ser118 to alanine (S118A) altered unliganded and ligand-induced association of ERα and p160 coregulators with ERα target promoters when compared with wild-type (WT)-ERα transfection. S118A and WT-ERα exhibited a similar level of recruitment to the estrogen response element-driven pS2 promoter and induced pS2 mRNA after E2 treatment. Although WT-ERα was recruited to c-myc and cyclin D1 promoters after E2 treatment and induced mRNA expression, S118A exhibited reduced interaction with c-myc and cyclin D1 promoters, and E2 did not induce c-myc and cyclin D1 mRNA. In addition, S118A resulted in increased recruitment of steroid receptor coactivator-1, glucocorticoid receptor interacting protein-1, and activated in breast cancer-1 to pS2, c-myc, and cyclin D1 irrespective of the presence of E2. Together, these data indicate that site specific phosphorylation of ERα directs gene-specific recruitment of ERα and transcriptional coregulators to ERα target gene promoters.
Collapse
Affiliation(s)
- Tamika T Duplessis
- Tulane University School of Medicine, Department of Structural and Cellular Biology, 1430 Tulane Avenue SL-49, New Orleans, Louisiana 70112.
| | | | | | | |
Collapse
|
20
|
Moore NL, Weigel NL. Regulation of progesterone receptor activity by cyclin dependent kinases 1 and 2 occurs in part by phosphorylation of the SRC-1 carboxyl-terminus. Int J Biochem Cell Biol 2011; 43:1157-67. [PMID: 21550420 DOI: 10.1016/j.biocel.2011.04.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Revised: 04/12/2011] [Accepted: 04/14/2011] [Indexed: 12/15/2022]
Abstract
We described previously a novel role for cyclin A2/Cdk2 as a progesterone receptor (PR) coactivator. In reporter gene assays, cyclin A2 overexpression enhanced PR activity while inhibition of Cdk2 activity using the chemical inhibitor roscovitine or Cdk2 siRNA strongly inhibited PR activity. We demonstrate here that both Cdk1 and Cdk2 contribute to maximal induction of endogenous progestin responsive genes in T47D breast cancer cells. Our earlier studies suggested that the mechanism by which cyclin A2/Cdk2 enhances PR activity is via phosphorylation of steroid receptor coactivator-1 (SRC-1), which increases PR-SRC-1 interactions. To assess the importance of SRC-1 phosphorylation in the regulation of PR activity, SRC-1 was phosphorylated by cyclin A2/Cdk2 in vitro and seventeen phosphorylation sites were identified using biochemical techniques. We show that one of these sites, T1426 (adjacent to the C-terminal LXXLL nuclear receptor interaction motif), is an in vivo target of Cdks in mammalian cells and an in vitro target of Cdk1 and Cdk2. Phosphorylation of T1426 also contributes to SRC-1 coactivation potential, as mutation of the threonine target site to alanine results in reduced stimulation of PR activity by SRC-1. Together, these results suggest a role for Cdk1 and Cdk2 in the regulation of endogenous PR activity in part through phosphorylation of SRC-1.
Collapse
Affiliation(s)
- Nicole L Moore
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | | |
Collapse
|
21
|
Hasan TN, B LG, Masoodi TA, Shafi G, Alshatwi AA, Sivashanmugham P. Affinity of estrogens for human progesterone receptor A and B monomers and risk of breast cancer: a comparative molecular modeling study. Adv Appl Bioinform Chem 2011; 4:29-36. [PMID: 21918635 PMCID: PMC3169952 DOI: 10.2147/aabc.s17371] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background The human progesterone receptor (hPR) belongs to the steroid receptor family. It may be found as monomers (A and B) and or as a dimer (AB). hPR is regarded as the prognostic biomarker for breast cancer. In a cellular dimer system, AB is the dominant species in most cases. However, when a cell coexpresses all three isoforms of hPR, the complexity of the action of this receptor increases. For example, hPR A suppresses the activity of hPR B, and the ratio of hPR A to hPR B may determine the physiology of a breast tumor. Also, persistent exposure of hPRs to nonendogenous ligands is a common risk factor for breast cancer. Hence we aimed to study progesterone and some nonendogenous ligand interactions with hPRs and their molecular docking. Methods and results A pool of steroid derivatives, namely, progesterone, cholesterol, testosterone, testolectone, estradiol, estrone, norethindrone, exemestane, and norgestrel, was used for this in silico study. Dockings were performed on AutoDock 4.2. We found that estrogens, including estradiol and estrone, had a higher affinity for hPR A and B monomers in comparison with the dimer, hPR AB, and that of the endogenous progesterone ligand. hPR A had a higher affinity to all the docked ligands than hPR B. Conclusion This study suggests that the exposure of estrogens to hPR A as well as hPR B, and more particularly to hPR A alone, is a risk factor for breast cancer.
Collapse
Affiliation(s)
- Tarique N Hasan
- Department of Biotechnology, Bharathiar University, Coimbator, TN, India
| | | | | | | | | | | |
Collapse
|
22
|
Washington MN, Kim JS, Weigel NL. 1α,25-dihydroxyvitamin D3 inhibits C4-2 prostate cancer cell growth via a retinoblastoma protein (Rb)-independent G1 arrest. Prostate 2011; 71:98-110. [PMID: 20632309 PMCID: PMC2966519 DOI: 10.1002/pros.21226] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
BACKGROUND The active metabolite of vitamin D, 1α,25-dihydroxyvitamin D(3) (1,25D) reduces the growth of several prostate cancer cell lines, most commonly by inducing a cell-cycle arrest in G(1). This is mediated, in part, through down-regulation of c-Myc, a positive regulator of the transcription factor, E2F. There is evidence that prostate cancer cells lacking functional retinoblastoma protein (Rb), a negative regulator of E2F activity, are poorly responsive to 1,25D treatment. Since up to 60% of prostate cancers demonstrate a loss of heterozygosity for Rb, we sought to determine whether Rb is required for the growth inhibitory effects of 1,25D. METHODS Using siRNA, Rb was reduced in C4-2 prostate cancer cells, and the response of cells to 1,25D treatment or depletion of c-myc measured by [(3)H]-thymidine incorporation and flow cytometry. The effects of 1,25D treatment on E2F levels and activity, and E2F target gene expression were also measured. RESULTS 1,25D treatment and c-Myc depletion both cause a G(1) arrest inhibiting C4-2 cell proliferation independently of Rb. 1,25D reduces c-Myc expression and causes a decrease in E2F and E2F target genes. Bcl-2, an E2F target and positive regulator of C4-2 cell growth, also is down-regulated by 1,25D independently of Rb. CONCLUSIONS Redundant growth inhibitory pathways compensate for the loss of Rb, and tumors lacking functional Rb may be responsive to 1,25D.
Collapse
Affiliation(s)
- Michele N Washington
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030 USA
| | | | | |
Collapse
|
23
|
Dalvai M, Bystricky K. Cell cycle and anti-estrogen effects synergize to regulate cell proliferation and ER target gene expression. PLoS One 2010; 5:e11011. [PMID: 20543978 PMCID: PMC2882356 DOI: 10.1371/journal.pone.0011011] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2010] [Accepted: 05/06/2010] [Indexed: 12/03/2022] Open
Abstract
Antiestrogens are designed to antagonize hormone induced proliferation and ERalpha target gene expression in mammary tumor cells. Commonly used drugs such as OH-Tamoxifen and ICI 182780 (Fulvestrant) block cell cycle progression in G0/G1. Inversely, the effect of cell cycle stage on ER regulated gene expression has not been tested directly. We show that in ERalpha-positive breast cancer cells (MCF-7) the estrogen receptor gene and downstream target genes are cell cycle regulated with expression levels varying as much as three-fold between phases of the cell cycle. Steroid free culture conditions commonly used to assess the effect of hormones or antiestrogens on gene expression also block MCF-7 cells in G1-phase when several ERalpha target genes are overexpressed. Thus, cell cycle effects have to be taken into account when analyzing the impact of hormonal treatments on gene transcription. We found that antiestrogens repress transcription of several ERalpha target genes specifically in S phase. This observation corroborates the more rapid and strong impact of antiestrogen treatments on cell proliferation in thymidine, hydroxyurea or aphidicolin arrested cells and correlates with an increase of apoptosis compared to similar treatments in lovastatin or nocodazol treated cells. Hence, cell cycle effects synergize with the action of antiestrogens. An interesting therapeutic perspective could be to enhance the action of anti-estrogens by associating hormone-therapy with specific cell cycle drugs.
Collapse
Affiliation(s)
- Mathieu Dalvai
- Université de Toulouse, UPS, Laboratoire de Biologie Moléculaire Eucaryote, Toulouse, France
- CNRS, Laboratoire de Biologie Moléculaire Eucaryote, Toulouse, France
| | - Kerstin Bystricky
- Université de Toulouse, UPS, Laboratoire de Biologie Moléculaire Eucaryote, Toulouse, France
- CNRS, Laboratoire de Biologie Moléculaire Eucaryote, Toulouse, France
| |
Collapse
|
24
|
Narayanan R, Yepuru M, Szafran AT, Szwarc M, Bohl CE, Young NL, Miller DD, Mancini MA, Dalton JT. Discovery and mechanistic characterization of a novel selective nuclear androgen receptor exporter for the treatment of prostate cancer. Cancer Res 2010; 70:842-51. [PMID: 20068182 DOI: 10.1158/0008-5472.can-09-3206] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Despite the success of medical strategies to reduce androgen levels in the treatment of prostate cancer, this disease invariably relapses to a castrate-resistant state that is generally fatal. Although it had been thought that androgen-insensitive cancers no longer relied on the androgen receptor (AR) for growth and survival, it is now clear that this is not the case. Because relapses are known to occur by many mechanisms that keep the AR functionally active, strategies to block AR accumulation in the nucleus may be therapeutically useful. Here, we report the discovery of a selective nuclear androgen receptor exporter (SNARE) that functions to exclude AR from the nucleus. SNARE-1 binds wild-type and mutant ARs and efficiently inhibits their transactivation activity and ability to induce PSA gene expression. SNARE-1 inhibits the androgen-sensitive growth of LNCaP cells and tumor xenografts. Quantitative subcellular localization studies suggest that SNARE-1 inhibits nuclear translocation of AR, but also facilitates export of nuclear AR that has been translocated by an agonist. Mechanistic studies indicate that SNARE-1 rapidly phosphorylates p38 mitogen-activated protein kinase (MAPK) and Ser(650) of the AR. Additionally, SNARE-1 was found to promote ubiquitination of AR in LNCaP cells. Lastly, SNARE-1 functions as a tissue-selective AR inhibitor, as it fails to phosphorylate p38 MAPK in U2OS bone cells that are stably transfected with AR. In summary, SNARE-1 inhibits AR function by a mechanism that is distinct from clinically available antiandrogens, such that it might inform novel methods to block AR function in androgen-independent prostate cancer.
Collapse
Affiliation(s)
- Ramesh Narayanan
- Preclinical Research and Development, GTx, Inc., Memphis, Tennessee 38163, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Wardell SE, Narayanan R, Weigel NL, Edwards DP. Partial agonist activity of the progesterone receptor antagonist RU486 mediated by an amino-terminal domain coactivator and phosphorylation of serine400. Mol Endocrinol 2009; 24:335-45. [PMID: 20008003 DOI: 10.1210/me.2008-0081] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Jun dimerization protein-2 (JDP-2) is a progesterone receptor (PR) coregulatory protein that acts by inducing structure and transcriptional activity in the disordered amino-terminal domain (NTD) of PR. JDP-2 can also potentiate the partial agonist activity of the PR antagonist RU486 by mechanisms that have not been defined. Functional mutagenesis experiments revealed that a subregion of the NTD (amino acids 323-427) was required for the partial agonist activity of RU486 induced by PR interaction with JDP-2. However, this subregion was not required for JDP-2 enhancement of the activity of progestin agonists. Mutation of phosphorylation sites within this region of the NTD showed that phosphorylation of serine 400 was required for the partial agonist activity of RU486 stimulated by JDP-2, but was not required for activity of hormone agonist, either in the presence or absence of JDP-2. Cyclin-dependent kinase 2 (Cdk2)/cyclin A is a novel PR coregulator that binds the NTD and acts by phosphorylating steroid receptor coactivator-1 and modulating steroid receptor coactivator-1 interaction with PR. Cdk2/cyclin A also potentiated the partial agonist activity of RU486; however, phosphorylation of serine 400 was not required, indicating that JDP-2 and Cdk2/cyclin A act by distinct mechanisms. We conclude that PR bound to RU486 and associated with JDP-2 adopts an active conformation in a subregion of the NTD requiring phosphorylation of serine 400 that is distinct from that promoted by progestin agonists. These data underscore the structural flexibility of the NTD of PR, and the ability of steroid ligands together with interacting proteins to affect the conformation and activity of the NTD.
Collapse
Affiliation(s)
- Suzanne E Wardell
- Baylor College of Medicine, Department of Molecular and Cellular Biology, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|
26
|
Spindler KD, Hönl C, Tremmel C, Braun S, Ruff H, Spindler-Barth M. Ecdysteroid hormone action. Cell Mol Life Sci 2009; 66:3837-50. [PMID: 19669094 PMCID: PMC11115491 DOI: 10.1007/s00018-009-0112-5] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2009] [Revised: 07/16/2009] [Accepted: 07/16/2009] [Indexed: 01/05/2023]
Abstract
Several reviews devoted to various aspects of ecdysone research have been published during the last few years. Therefore, this article concentrates mainly on the considerable progress in ecdysone research observed recently, and will cover the results obtained during the last 2 years. The main emphasis is put on the molecular mode of ecdysteroid receptor-mediated hormone action. Two examples of interaction with other hormonal signalling pathways are described, namely crosstalk with juvenile hormone and insulin. Some selected, recently investigated examples of the multitude of hormonal responses are described. Finally, ecological aspects and some practical applications are discussed.
Collapse
Affiliation(s)
- Klaus-Dieter Spindler
- Institute of General Zoology and Endocrinology, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany.
| | | | | | | | | | | |
Collapse
|
27
|
Betanska K, Czogalla S, Spindler-Barth M, Spindler KD. Influence of cell cycle on ecdysteroid receptor in CHO-K1 cells. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2009; 72:142-153. [PMID: 19711357 DOI: 10.1002/arch.20306] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
CHO-K1 cells are routinely used for characterization of ecdysone receptor (EcR) function, because these vertebrate cells are devoid of endogenous ecdysone receptor protein. Moreover, the endogenous expression of RXR, the vertebrate orthologue of Ultraspiracle (Usp), the most important heterodimerization partner, is neglectable. In contrast to insect cells, there is also no influence of moulting hormone on CHO-K1 cells on cell proliferation either in the absence or presence of transiently expressed EcR. In contrast to Usp, which is exclusively found in nuclei, EcR is heterogeneously distributed between cytoplasm and nuclei in non-synchronized cells. Synchronization of CHO-K1 cells by nocodazole revealed that the cell cycle influences receptor concentration with lowest amounts in late S-phase and G2/M phase and intracellular distribution of the receptor protein showing a minimum of receptors present in nuclei during S-phase. EcR, but not Usp reduces cyclin D1 expression and cyclin D1 concentration is impaired by cyclin D1. Coimmunoprecipitation studies reveal physical interaction of EcR and cyclin D1.
Collapse
Affiliation(s)
- Katarzyna Betanska
- Institute of General Zoology and Endocrinology, University of Ulm, Ulm, Germany
| | | | | | | |
Collapse
|
28
|
Sriraman V, Sinha M, Richards JS. Progesterone receptor-induced gene expression in primary mouse granulosa cell cultures. Biol Reprod 2009; 82:402-12. [PMID: 19726735 DOI: 10.1095/biolreprod.109.077610] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
The progesterone receptor (PGR) is induced by luteinizing hormone (LH) in granulosa cells of preovulatory follicles, and the PGR-A isoform is essential for ovulation based on the phenotypes of Pgr isoform-specific knockout mice. Although several genes regulated by PGR-A in vivo have been identified, whether these genes are primary targets of PGR-A or if their expression also depends on other signaling molecules that are induced by the LH surge has not been resolved. Therefore, to identify genes that are either induced or repressed by PGR in the absence of LH-mediated signaling cascades, we infected primary cultures of mouse granulosa cells with either PGR-A or PGR-B adenoviral vectors without or with R-5020 as a PGR ligand. Total RNA was extracted from infected cells at 16 h and analyzed by Affymetrix Mouse 430 2.0 microarrays. PGR-A in the presence or absence of ligand significantly induced approximately 50 genes 2-fold or more (local pooled error test at P <or= 0.01). Fewer and different genes were induced by PGR-B in the absence of ligand. Edn1, Apoa1, and Cited1 were primarily regulated by PGR-A as verified by additional RT-PCR analyses, suppression by the PGR antagonist RU486, and the lack of induction by protein kinase A, protein kinase C, or epidermal growth factor (EGF)-like factors pathways. PGR regulation of these genes was confirmed further by gene expression analyses in hormonally primed Pgr mutant mouse ovaries. Because Edn1, Apoa1, and Cited1 are known to regulate angiogenesis, PGR may affect the neovascularization of follicles that is initiated with ovulation.
Collapse
|
29
|
Dressing GE, Lange CA. Integrated actions of progesterone receptor and cell cycle machinery regulate breast cancer cell proliferation. Steroids 2009; 74:573-6. [PMID: 19118566 PMCID: PMC4871707 DOI: 10.1016/j.steroids.2008.12.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2008] [Accepted: 12/02/2008] [Indexed: 12/11/2022]
Abstract
Multiple laboratories have investigated progesterone receptor (PR) involvement in breast cancer cell cycle progression. There is now a growing body of evidence demonstrating complex interactions between PR and cell cycle regulatory proteins. Here we review the current literature linking PR to cell cycle control and discuss gaps in the current knowledge. A more complete understanding of the relationships between PR and cell cycle regulatory molecules may reveal additional avenues for prevention and treatment of steroid receptor positive breast cancers.
Collapse
Affiliation(s)
| | - Carol A. Lange
- Corresponding Author: Carol A. Lange, Ph.D., University of Minnesota, Masonic Cancer Center, MMC 806, 420 Delaware St., Minneapolis, MN 55455, (phone): 612-626-0621, (fax): 612-626-4915,
| |
Collapse
|
30
|
Dressing GE, Hagan CR, Knutson TP, Daniel AR, Lange CA. Progesterone receptors act as sensors for mitogenic protein kinases in breast cancer models. Endocr Relat Cancer 2009; 16:351-61. [PMID: 19357196 PMCID: PMC3931451 DOI: 10.1677/erc-08-0281] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Progesterone receptors (PR), members of the nuclear receptor superfamily, function as ligand-activated transcription factors and initiators of c-Src kinase and mitogen-activated protein kinase signaling. Bidirectional cross-talk between PR and mitogenic protein kinases results in changes in PR post-translational modification, leading to alterations in PR transcriptional activity and promoter selectivity. PR-induced rapid activation of cytoplasmic protein kinases insures precise regulatory input to downstream cellular processes that are dependent upon nuclear PR, such as cell-cycle progression, and pro-survival signaling. Here, we review interactions between PR and mitogenic protein kinases and discuss the consequences of specific post-translational modifications on PR action in breast cancer cell-line models.
Collapse
Affiliation(s)
- Gwen E Dressing
- Department of Medicine (Division of Hematology, Oncology, and Transplantation) and Pharmacology, Masonic Cancer Center, University of Minnesota, MMC 806, Minneapolis, Minnesota 55455, USA
| | | | | | | | | |
Collapse
|
31
|
Wang G, Sadar MD. Amino-terminus domain of the androgen receptor as a molecular target to prevent the hormonal progression of prostate cancer. J Cell Biochem 2009; 98:36-53. [PMID: 16440300 DOI: 10.1002/jcb.20802] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Prostate cancer has a propensity to metastasize to the bone. Currently the only effective systemic treatment for these patients is androgen ablation therapy. However, the tumor will invariably progress to an androgen-independent stage and the patient will succumb to his disease within approximately 2 years. The earliest indication of hormonal progression is the rising titer of serum prostate specific antigen. Current evidence implicates the androgen receptor (AR) as a key factor in maintaining the growth of prostate cancer cells in an androgen-depleted state. Under normal conditions, binding of ligand activates the receptor, allowing it to effectively bind to its respective DNA element. However, AR is also transformed in the absence of androgen (ligand-independent activation) in prostate cells via multiple protein kinase pathways and the interleukin-6 (IL-6) pathway that converge upon the N-terminal domain of the AR. This domain is the main region for phosphorylation and is also critical for normal coregulator recruitment. Here we discuss evidence supporting the role of the AR, IL-6 and other protein kinase pathways in the hormonal progression of prostate cancer to androgen independence and the mechanisms involved in activation of the AR by these pathways. Receptor-targeted therapy, especially potential drugs targeting the N-terminal domain, may effectively prevent or delay the hormonal progression of AR-dependent prostate cancer.
Collapse
Affiliation(s)
- Gang Wang
- Genome Sciences Centre, BC Cancer Agency, Vancouver, British Columbia, V5Z1L3, Canada
| | | |
Collapse
|
32
|
Rohan JNP, Weigel NL. 1Alpha,25-dihydroxyvitamin D3 reduces c-Myc expression, inhibiting proliferation and causing G1 accumulation in C4-2 prostate cancer cells. Endocrinology 2009; 150:2046-54. [PMID: 19164469 PMCID: PMC2671895 DOI: 10.1210/en.2008-1395] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
There is an inverse correlation between exposure to sunlight (the major source of vitamin D) and the risk for prostate cancer, the most common noncutaneous cancer and second most common cause of death from cancer in American men. The active metabolite of vitamin D, 1alpha,25-dihydroxyvitamin D(3) [1,25(OH)(2)D(3)] acting through the vitamin D receptor decreases prostate cancer cell growth and invasiveness. The precise mechanisms by which 1,25(OH)(2)D(3) inhibits growth in prostate cancer have not been fully elucidated. Treatment with 1,25(OH)(2)D(3) causes an accumulation in the G(0)/G(1) phase of the cell cycle in several prostate cancer cell lines. One potential target known to regulate the G(0)/G(1) to S phase transition is c-Myc, a transcription factor whose overexpression is associated with a number of cancers including prostate cancer. We find that 1,25(OH)(2)D(3) reduces c-Myc expression in multiple prostate epithelial cell lines, including C4-2 cells, an androgen-independent prostate cancer cell line. Reducing c-Myc expression to the levels observed after 1,25(OH)(2)D(3) treatment resulted in a comparable decrease in proliferation and G(1) accumulation demonstrating that down-regulation of c-Myc is a major component in the growth-inhibitory actions of 1,25(OH)2D(3). Treatment with 1,25(OH)(2)D(3) resulted in a 50% decrease in c-Myc mRNA but a much more extensive reduction in c-Myc protein. Treatment with 1,25(OH)(2)D(3) decreased c-Myc stability by increasing the proportion of c-Myc phosphorylated on T58, a glycogen synthase kinase-3beta site that serves as a signal for ubiquitin-mediated proteolysis. Thus, 1,25(OH)(2)D(3) reduces both c-Myc mRNA levels and c-Myc protein stability to inhibit growth of prostate cancer cells.
Collapse
Affiliation(s)
- JoyAnn N Phillips Rohan
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | |
Collapse
|
33
|
Mori T, Murata M, Yoshino T, Nakasono S, Saito F, Takeyama H, Matsunaga T. A stable human progesterone receptor expressing HeLa reporter cell line as a tool in chemical evaluation at the different cell-cycle phases. Toxicol Lett 2009; 186:123-9. [DOI: 10.1016/j.toxlet.2009.01.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2008] [Revised: 01/08/2009] [Accepted: 01/08/2009] [Indexed: 10/21/2022]
|
34
|
Abstract
Progesterone is an ovarian steroid hormone that is essential for normal breast development during puberty and in preparation for lactation and breastfeeding. The actions of progesterone are primarily mediated by its high-affinity receptors, which include the classical progesterone receptor (PR)-A and -B isoforms, located in diverse tissues, including the brain, where progesterone controls reproductive behavior, and the breast and reproductive organs. Progestins are frequently prescribed for contraception or during postmenopausal hormone replacement therapy, in which progestins are combined with estrogen as a means to block estrogen-induced endometrial growth. The role of estrogen as a potent breast mitogen is undisputed, and inhibitors of the estrogen receptor and estrogen-producing enzymes (aromatases) are effective first-line cancer therapies. However, PR action in breast cancer is grossly understudied and remains controversial. Herein, we review existing evidence and discuss the challenges to defining a role for progesterone in breast cancer.
Collapse
Affiliation(s)
- Carol A Lange
- University of Minnesota, Cancer Center, Department of Medicine (Hematology, Oncology & Transplantation), 420 Delaware Street SE, MMC 806, MN 55455, USA.
| | | |
Collapse
|
35
|
The presence and role of progesterone receptor in the ovaries of postmenopausal women who have not applied hormone replacement therapy. Folia Histochem Cytobiol 2009; 46:277-82. [PMID: 19056530 DOI: 10.2478/v10042-008-0038-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
At present, not much is known about progesterone receptor (PR) expression and localization in postmenopausal women ovaries. In the ovaries of reproductive age women, PR is localized in internal theca and granulosa cells, corpus luteum, ovary surface epithelium (OSE) and in stroma. PR expression depends on the serum concentration of progesterone, estrogen, gonadotropin and androgen. The goal of the conducted studies was to examine PR localization and expression in the ovaries of postmenopausal women who have not applied hormone replacement therapy so far. Also, the correlation was examined between PR expression and localization in the ovaries, steroid and gonadotropin hormone serum concentrations, and influence of the time from the last menstruation. The material came from 50 postmenopausal women who had their ovaries removed due to non-neoplastic diseases. The women were divided into 3 groups (A, B, C) depending on the time from the last menstruation. The follitropin (FSH), luteotropin (LH), estradiol (E2), testosterone (T), androstendione (A) and dehydroepiandrosterone sulphate (DHEAS) concentrations in blood plasma were measured. Monoclonal mouse anti-human PR antibody was used for immunohistochemical detection (examination involved 50 postmenopausal ovaries). Between particular groups, E2 serum concentrations did not differ, but FSH, LH, T, A, DHEAS serum concentrations were significantly different. Immunohistochemical nuclear localization of PR in postmenopausal women ovaries was observed. PR expression was similar in all three groups (A, B, C). PR expression was observed in OSE nuclei and invaginations cysts deriving from the isolation of invaginated epithelium and metaplastic columnar epithelium and in stroma. In the ovaries of postmenopausal women who have not applied hormone replacement therapy so far, PR was detected in all three groups. Its expression did not depend on the time from menopause and was similar in all examined groups. FSH, LH, T, A, DHEAS serum concentrations did not influence PR expression.
Collapse
|
36
|
Szafran AT, Szwarc M, Marcelli M, Mancini MA. Androgen receptor functional analyses by high throughput imaging: determination of ligand, cell cycle, and mutation-specific effects. PLoS One 2008; 3:e3605. [PMID: 18978937 PMCID: PMC2572143 DOI: 10.1371/journal.pone.0003605] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2008] [Accepted: 09/23/2008] [Indexed: 11/19/2022] Open
Abstract
Background Understanding how androgen receptor (AR) function is modulated by exposure to steroids, growth factors or small molecules can have important mechanistic implications for AR-related disease therapies (e.g., prostate cancer, androgen insensitivity syndrome, AIS), and in the analysis of environmental endocrine disruptors. Methodology/Principal Findings We report the development of a high throughput (HT) image-based assay that quantifies AR subcellular and subnuclear distribution, and transcriptional reporter gene activity on a cell-by-cell basis. Furthermore, simultaneous analysis of DNA content allowed determination of cell cycle position and permitted the analysis of cell cycle dependent changes in AR function in unsynchronized cell populations. Assay quality for EC50 coefficients of variation were 5–24%, with Z' values reaching 0.91. This was achieved by the selective analysis of cells expressing physiological levels of AR, important because minor over-expression resulted in elevated nuclear speckling and decreased transcriptional reporter gene activity. A small screen of AR-binding ligands, including known agonists, antagonists, and endocrine disruptors, demonstrated that nuclear translocation and nuclear “speckling” were linked with transcriptional output, and specific ligands were noted to differentially affect measurements for wild type versus mutant AR, suggesting differing mechanisms of action. HT imaging of patient-derived AIS mutations demonstrated a proof-of-principle personalized medicine approach to rapidly identify ligands capable of restoring multiple AR functions. Conclusions/Significance HT imaging-based multiplex screening will provide a rapid, systems-level analysis of compounds/RNAi that may differentially affect wild type AR or clinically relevant AR mutations.
Collapse
Affiliation(s)
- Adam T. Szafran
- Departments of Molecular and Cellular Biology and Medicine, Baylor College of Medicine, Houston, Texas, United States of America
| | - Maria Szwarc
- Departments of Molecular and Cellular Biology and Medicine, Baylor College of Medicine, Houston, Texas, United States of America
| | - Marco Marcelli
- Departments of Molecular and Cellular Biology and Medicine, Baylor College of Medicine, Houston, Texas, United States of America
- The Michael E. DeBakey VA Medical Center, Baylor College of Medicine, Houston, Texas, United States of America
| | - Michael A. Mancini
- Departments of Molecular and Cellular Biology and Medicine, Baylor College of Medicine, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
37
|
Agoulnik IU, Bingman WE, Nakka M, Li W, Wang Q, Liu XS, Brown M, Weigel NL. Target gene-specific regulation of androgen receptor activity by p42/p44 mitogen-activated protein kinase. Mol Endocrinol 2008; 22:2420-32. [PMID: 18787043 PMCID: PMC2582542 DOI: 10.1210/me.2007-0481] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2007] [Accepted: 09/04/2008] [Indexed: 11/19/2022] Open
Abstract
Evidence that the androgen receptor (AR) is not only important in androgen-dependent prostate cancer, but also continues to play a role in tumors that become resistant to androgen deprivation therapies, highlights the need to find alternate means to block AR activity. AR, a hormone-activated transcription factor, and its coactivators are phosphoproteins. Thus, we sought to determine whether inhibition of specific cell signaling pathways would reduce AR function. We found that short-term inhibition of p42/p44 MAPK activity either by a MAPK kinase inhibitor, U0126, or by depletion of kinase with small interfering RNA caused target gene-specific reductions in AR activity. AR enhances histone H3 acetylation of target genes that are sensitive to U0126 including prostate-specific antigen and TMPRSS2, but does not increase histone H3 acetylation of the U0126-resistant PMEPA1 gene. Thus, although AR induces transcription of many target genes, the molecular changes induced by AR at the chromatin level are target gene specific. Long-term treatment (24-48 h) with U0126 causes a G1 cell cycle arrest and reduces AR expression both through a decrease in AR mRNA and a reduction in AR protein stability. Thus, treatments that reduce p42/p44 MAPK activity in prostate cancer have the potential to reduce AR activity through a reduction in expression levels as well as by target gene-selective inhibition of AR function.
Collapse
MESH Headings
- Acetylation
- Base Sequence
- Binding Sites/genetics
- Butadienes/pharmacology
- Cell Line, Tumor
- Enhancer Elements, Genetic
- Histones/chemistry
- Histones/metabolism
- Humans
- MAP Kinase Signaling System
- Male
- Mitogen-Activated Protein Kinase 1/adverse effects
- Mitogen-Activated Protein Kinase 1/genetics
- Mitogen-Activated Protein Kinase 1/metabolism
- Mitogen-Activated Protein Kinase 3/antagonists & inhibitors
- Mitogen-Activated Protein Kinase 3/genetics
- Mitogen-Activated Protein Kinase 3/metabolism
- Nitriles/pharmacology
- Promoter Regions, Genetic
- Prostatic Neoplasms/genetics
- Prostatic Neoplasms/metabolism
- Protein Kinase Inhibitors/pharmacology
- Protein Stability
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Neoplasm/genetics
- RNA, Neoplasm/metabolism
- RNA, Small Interfering/genetics
- Receptors, Androgen/genetics
- Receptors, Androgen/metabolism
Collapse
Affiliation(s)
- Irina U Agoulnik
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
Progesterone is an ovarian steroid hormone that is essential for normal breast development during puberty and in preparation for lactation. The actions of progesterone are primarily mediated by its high affinity receptors, including the classical progesterone receptor (PR) -A and -B isoforms, located in diverse tissues such as the brain where progesterone controls reproductive behavior, and the breast and reproductive organs. Progestins are frequently prescribed as contraceptives or to alleviate menopausal symptoms, wherein progestin is combined with estrogen as a means to block estrogen-induced endometrial growth. Estrogen is undisputed as a potent breast mitogen, and inhibitors of the estrogen receptor (ER) and estrogen producing enzymes (aromatases) are effective first-line cancer therapies. However, PR action in breast cancer remains controversial. Herein, we review existing evidence from in vitro and in vivo models, and discuss the challenges to defining a role for progesterone in breast cancer.
Collapse
Affiliation(s)
- Carol A Lange
- University of Minnesota Cancer Center, Department of Medicine, 420 Delaware Street SE, MMC 806, Minneapolis, MN 55455, United States.
| |
Collapse
|
39
|
Lin W, Wu J, Dong H, Bouck D, Zeng FY, Chen T. Cyclin-dependent kinase 2 negatively regulates human pregnane X receptor-mediated CYP3A4 gene expression in HepG2 liver carcinoma cells. J Biol Chem 2008; 283:30650-7. [PMID: 18784074 DOI: 10.1074/jbc.m806132200] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The human pregnane X receptor (hPXR) regulates the expression of critical drug metabolism enzymes. One of such enzymes, cytochrome P450 3A4 (CYP3A4), plays critical roles in drug metabolism in hepatocytes that are either quiescent or passing through the cell cycle. It has been well established that the expression of P450, such as CYP3A4, is markedly reduced during liver development or regeneration. Numerous studies have implicated cellular signaling pathways in modulating the functions of nuclear receptors, including hPXR. Here we report that inhibition of cyclin-dependent kinases (Cdks) by kenpaullone and roscovitine (two small molecule inhibitors of Cdks that we identified in a screen for compounds that activate hPXR) leads to activation of hPXR-mediated CYP3A4 gene expression in HepG2 human liver carcinoma cells. Consistent with this finding, activation of Cdk2 attenuates the activation of CYP3A4 gene expression. In vitro kinase assays revealed that Cdk2 directly phosphorylates hPXR. A phosphomimetic mutation of a putative Cdk phosphorylation site, Ser(350), significantly impairs the function of hPXR, whereas a phosphorylation-deficient mutation confers resistance to Cdk2. Using HepG2 that has been stably transfected with hPXR and the CYP3A4-luciferase reporter, enriched in different phases of the cell cycle, we found that hPXR-mediated CYP3A4 expression is greatly reduced in the S phase. Our results indicate for the first time that Cdk2 negatively regulates the activity of hPXR, and suggest an important role for Cdk2 in regulating hPXR activity and CYP3A4 expression in hepatocytes passing through the cell cycle, such as those in fetal or regenerating adult liver.
Collapse
Affiliation(s)
- Wenwei Lin
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | | | | | | | | | | |
Collapse
|
40
|
Switching of chromatin-remodelling complexes for oestrogen receptor-alpha. EMBO Rep 2008; 9:563-8. [PMID: 18451880 DOI: 10.1038/embor.2008.55] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2007] [Revised: 03/06/2008] [Accepted: 03/11/2008] [Indexed: 11/08/2022] Open
Abstract
The female sex steroid hormone oestrogen stimulates both cell proliferation and cell differentiation in target tissues. These biological actions are mediated primarily through nuclear oestrogen receptors (ERs). The ligand-dependent transactivation of ERs requires several nuclear co-regulator complexes; however, the cell-cycle-dependent associations of these complexes are poorly understood. By using a synchronization system, we found that the transactivation function of ERalpha at G2/M was lowered. Biochemical approaches showed that ERalpha associated with two discrete classes of ATP-dependent chromatin-remodelling complex in a cell-cycle-dependent manner. The components of the NuRD-type complex were identified as G2/M-phase-specific ERalpha co-repressors. Thus, our results indicate that the transactivation function of ERalpha is cell-cycle dependent and is coupled with a cell-cycle-dependent association of chromatin-remodelling complexes.
Collapse
|
41
|
Kariagina A, Aupperlee MD, Haslam SZ. Progesterone receptor isoform functions in normal breast development and breast cancer. Crit Rev Eukaryot Gene Expr 2008; 18:11-33. [PMID: 18197783 DOI: 10.1615/critreveukargeneexpr.v18.i1.20] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Progesterone acting through two isoforms of the progesterone receptor (PR), PRA and PRB, regulates proliferation and differentiation in the normal mammary gland in mouse, rat, and human. Progesterone and PR have also been implicated in the etiology and pathogenesis of human breast cancer. The focus of this review is recent advances in understanding the role of the PR isoform-specific functions in the normal breast and in breast cancer. Also discussed is information obtained from rodent studies and their relevance to our understanding of the role of progestins in breast cancer etiology.
Collapse
Affiliation(s)
- Anastasia Kariagina
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA
| | | | | |
Collapse
|
42
|
Abstract
Recent discoveries suggest that several protein kinases are rapidly activated in response to ligand binding to cytoplasmic steroid hormone receptors (SRs), including progesterone receptors (PRs). Thus, PRs act as ligand-activated transcription factor "sensors" for growth factor-initiated signaling pathways in hormonally regulated tissues, such as the breast. Induction of rapid signaling upon progestin binding to PR-B provides a means to ensure that receptors and co-regulators are appropriately phosphorylated as part of optimal transcription complexes. Alternatively, PR-B activated kinase cascades provide additional avenues for progestin-regulated gene expression independent of PR nuclear action. Herein, an overview of progesterone/PR and signaling cross-talk in breast cancer models is provided. Kinases are emerging as key mediators of PR action. Cross-talk between SR and membrane-initiated signaling events suggests a mechanism for coordinate regulation of gene subsets by mitogenic stimuli in hormonally responsive normal tissues, and is suspected to contribute to cancer biology.
Collapse
Affiliation(s)
- Carol A Lange
- University of Minnesota Cancer Center, Department of Medicine, Division of Hematology, Oncology, and Transplant, 420 Delaware Street SE, Minneapolis, MN 55455, USA.
| |
Collapse
|
43
|
Lange CA, Sartorius CA, Abdel-Hafiz H, Spillman MA, Horwitz KB, Jacobsen BM. Progesterone receptor action: translating studies in breast cancer models to clinical insights. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008. [PMID: 18637487 DOI: 10.1007/978-0-387-78818-0_7] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Progesterone receptors (PR) are useful prognostic indicators of breast cancers likely to respond to anti-estrogen receptor (ER) therapies. However, the role of progesterone, therapeutic progestins, or unliganded or liganded PRin breast cancer development or progression remains controversial. PR are ligand-activated transcription factors that act in concert with intracellular signaling pathways as "sensors" of multiple growth factor inputs to hormonally regulated tissues, such as the breast. The recently defined induction of rapid signaling events upon progestin-binding to PR-B provides a means to ensure that receptors and coregulators are appropriately phosphorylated as part of optimal transcription complexes. PR-activated kinase cascades may provide additional avenues for progestin-regulated gene expression independent of PR nuclear action. Herein, we present an overview ofprogesterone/PR and signaling cross-talk in breast cancer models and discuss the potential significance ofprogestin/PR action in breast cancer biology using examples from both in vitro and in vivo models, as well as limited clinical data. Kinases are emerging as key mediators of PR action. Cross-talk between PR and membrane-initiated signaling events suggests a mechanism for coordinated regulation ofgene subsets by mitogenic stimuli in hormonally responsive normal tissues. Dysregulation of this cross-talk mechanism may contribute to breast cancer biology; further studies are needed to address the potential for targeting PR in addition to ER and selected protein kinases as part of more effective breast cancer therapies.
Collapse
Affiliation(s)
- Carol A Lange
- Department of Medicine, Division of Hematology, Oncology and Transplant, University of Minnesota Cancer Center, Minneapolis, Minnesota 55455, USA.
| | | | | | | | | | | |
Collapse
|
44
|
Weigel NL, Moore NL. Steroid receptor phosphorylation: a key modulator of multiple receptor functions. Mol Endocrinol 2007; 21:2311-9. [PMID: 17536004 DOI: 10.1210/me.2007-0101] [Citation(s) in RCA: 132] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Steroid receptors are hormone-activated transcription factors, the expression and activities of which are also highly dependent upon posttranslational modifications including phosphorylation. The remarkable number of phosphorylation sites in these receptors and the wide variety of kinases participating in their phosphorylation facilitate integration between cell-signaling pathways and steroid receptor action. Sites have been identified in all of the functional domains although the sites are predominantly in the amino-terminal portions of the receptors. Regulation of function is receptor specific, site specific, and often dependent upon activation of a specific cell-signaling pathway. This complexity explains, in part, the early difficulties in identifying roles for phosphorylation in receptor function. With increased availability of phosphorylation site-specific antibodies and better means to measure receptor activities, numerous roles for site-specific phosphorylation have been identified including sensitivity of response to hormone, DNA binding, expression, stability, subcellular localization, and protein-protein interactions that determine the level of regulation of specific target genes. This review summarizes current knowledge regarding receptor phosphorylation and regulation of function. As functional assays become more sophisticated, it is likely that additional roles for phosphorylation in receptor function will be identified.
Collapse
Affiliation(s)
- Nancy L Weigel
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA.
| | | |
Collapse
|
45
|
Lee KY, Jeong JW, Wang J, Ma L, Martin JF, Tsai SY, Lydon JP, DeMayo FJ. Bmp2 is critical for the murine uterine decidual response. Mol Cell Biol 2007; 27:5468-78. [PMID: 17515606 PMCID: PMC1952078 DOI: 10.1128/mcb.00342-07] [Citation(s) in RCA: 284] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The process of implantation, necessary for all viviparous birth, consists of tightly regulated events, including apposition of the blastocyst, attachment to the uterine lumen, and differentiation of the uterine stroma. In rodents and primates the uterine stroma undergoes a process called decidualization. Decidualization, the process by which the uterine endometrial stroma proliferates and differentiates into large epithelioid decidual cells, is critical to the establishment of fetal-maternal communication and the progression of implantation. The role of bone morphogenetic protein 2 (Bmp2) in regulating the transformation of the uterine stroma during embryo implantation in the mouse was investigated by the conditional ablation of Bmp2 in the uterus using the (PR-cre) mouse. Bmp2 gene ablation was confirmed by real-time PCR analysis in the PR-cre; Bmp2fl/fl (termed Bmp2d/d) uterus. While littermate controls average 0.9 litter of 6.2+/-0.7 pups per month, Bmp2d/d females are completely infertile. Analysis of the infertility indicates that whereas embryo attachment is normal in the Bmp2d/d as in control mice, the uterine stroma is incapable of undergoing the decidual reaction to support further embryonic development. Recombinant human BMP2 can partially rescue the decidual response, suggesting that the observed phenotypes are not due to a developmental consequence of Bmp2 ablation. Microarray analysis demonstrates that ablation of Bmp2 leads to specific gene changes, including disruption of the Wnt signaling pathway, Progesterone receptor (PR) signaling, and the induction of prostaglandin synthase 2 (Ptgs2). Taken together, these data demonstrate that Bmp2 is a critical regulator of gene expression and function in the murine uterus.
Collapse
Affiliation(s)
- Kevin Y Lee
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Weigel NL, Moore NL. Kinases and protein phosphorylation as regulators of steroid hormone action. NUCLEAR RECEPTOR SIGNALING 2007; 5:e005. [PMID: 17525795 PMCID: PMC1876600 DOI: 10.1621/nrs.05005] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2007] [Accepted: 04/27/2007] [Indexed: 11/20/2022]
Abstract
Although the primary signal for the activation of steroid hormone receptors is binding of hormone, there is increasing evidence that the activities of cell signaling pathways and the phosphorylation status of these transcription factors and their coregulators determine the overall response to the hormone. In some cases, enhanced cell signaling is sufficient to cause activation of receptors in medium depleted of steroids. Steroid receptors are targets for multiple kinases. Many of the phosphorylation sites contain Ser/Thr-Pro motifs implicating proline-directed kinases such as the cyclin-dependent kinases and the mitogen-activated kinases (MAPK) in receptor phosphorylation. Although some sites are constitutively phosphorylated, others are phosphorylated in response to hormone. Still others are only phosphorylated in response to specific cell signaling pathways. Phosphorylation of specific sites has been implicated not only in overall transcriptional activity, but also in nuclear localization, protein stability, and DNA binding. The studies of the roles of phosphorylation in coregulator function are more limited, but it is now well established that many of them are highly phosphorylated and that phosphorylation regulates their function. There is good evidence that some of the phosphorylation sites in the receptors and coregulators are targets of multiple signaling pathways. Individual sites have been associated both with functions that enhance the activity of the receptor, as well as with functions that inhibit activity. Thus, the specific combinations of phosphorylations of the steroid receptor combined with the expression levels and phosphorylation status of coregulators will determine the genes regulated and the biological response.
Collapse
Affiliation(s)
- Nancy L Weigel
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA.
| | | |
Collapse
|
47
|
Abstract
Small lipophilic molecules such as steroidal hormones, retinoids, and free fatty acids control many of the reproductive, developmental, and metabolic processes in eukaryotes. The mediators of these effects are nuclear receptor proteins, ligand-activated transcription factors capable of regulating the expression of complex gene networks. This review addresses the structure and structural properties of nuclear receptors, focusing on the well-studied ligand-binding and DNA-binding domains as well as our still-emerging understanding of the largely unstructured N-terminal regions. To emphasize the allosteric interdependence among these subunits, a more detailed inspection of the structural properties of the human progesterone receptor is presented. Finally, this work is placed in the context of developing a quantitative and mechanistic understanding of nuclear receptor function.
Collapse
Affiliation(s)
- David L Bain
- Department of Pharmaceutical Sciences, University of Colorado Health Sciences Center, Denver, Colorado 80262, USA.
| | | | | | | |
Collapse
|
48
|
Lange CA, Gioeli D, Hammes SR, Marker PC. Integration of Rapid Signaling Events with Steroid Hormone Receptor Action in Breast and Prostate Cancer. Annu Rev Physiol 2007; 69:171-99. [PMID: 17037979 DOI: 10.1146/annurev.physiol.69.031905.160319] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Steroid hormone receptors (SRs) are ligand-activated transcription factors and sensors for growth factor-initiated signaling pathways in hormonally regulated tissues, such as the breast or prostate. Recent discoveries suggest that several protein kinases are rapidly activated in response to steroid hormone binding to cytoplasmic SRs. Induction of rapid signaling upon SR ligand binding ensures that receptors and coregulators are appropriately phosphorylated as part of optimal transcription complexes. Alternatively, SR-activated kinase cascades provide additional avenues for SR-regulated gene expression independent of SR nuclear action. We provide an overview of SR and signaling cross talk in breast and prostate cancers, using the human progesterone receptor (PR) and androgen receptor (AR) as models. Kinases are emerging as key mediators of SR action. Cross talk between SR and membrane-initiated signaling events suggests a mechanism for coordinate regulation of gene subsets by mitogenic stimuli in hormonally responsive normal tissues; such cross talk is suspected to contribute to cancer biology.
Collapse
Affiliation(s)
- Carol A Lange
- Department of Medicine (Division of Hematology, Oncology, and Transplant), USA.
| | | | | | | |
Collapse
|
49
|
Moore NL, Narayanan R, Weigel NL. Cyclin dependent kinase 2 and the regulation of human progesterone receptor activity. Steroids 2007; 72:202-9. [PMID: 17207508 PMCID: PMC1950255 DOI: 10.1016/j.steroids.2006.11.025] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2006] [Revised: 11/29/2006] [Accepted: 11/30/2006] [Indexed: 11/16/2022]
Abstract
The function of the S phase kinase cyclin A/Cdk2 in maintaining and regulating cell cycle kinetics is well established. However an alternative role in the regulation of progesterone receptor (PR) signaling is emerging. PR and its coactivators are phosphoproteins. Cyclin A/Cdk2 phosphorylates several of the PR phosphorylation sites in vitro and there is evidence that it participates in PR phosphorylation in vivo. Cyclin A/Cdk2 also functions as a PR coactivator. Overexpression increases PR transcriptional activity independent of PR phosphorylation. In the presence of hormone, cyclin A/Cdk2 is recruited to PR bound to DNA of target genes. Inhibition of Cdk activity prevents recruitment of the p160 coactivator steroid receptor coactivator-1 (SRC-1), suggesting that Cdk2 phosphorylates SRC-1. Consistent with this finding, phosphatase treatment of SRC-1 reduces its ability to interact with PR in vitro. Moreover, PR transcriptional activity is highest in S phase where cyclin A is expressed. In G1, PR activity is reduced and the capacity to recruit SRC-1 to a progestin responsive promoter is diminished. Future studies will focus on the importance of cyclin A/Cdk2 phosphorylation of other components of the PR transcription complex, such as the p160 coactivator SRC-1, and the specific role of Cdk2 target sites in the regulation of PR activity.
Collapse
Affiliation(s)
| | | | - Nancy L. Weigel
- * Corresponding author. Tel: (+1) 713 798 6234. Fax: (+1) 713 790 1275
| |
Collapse
|
50
|
Abstract
Steroid receptors (SR), which are ligand activated transcription factors, and their coactivators are phosphoproteins whose activities are regulated by cell signaling pathways. Many of the identified phosphorylation sites in these proteins contain Ser/Thr-Pro motifs suggesting that they are substrates for cyclin dependent kinases and/or for mitogen activated protein kinases. An analysis of the roles of cyclins and their kinases in regulating receptor action has revealed that there are both stimulatory and inhibitory actions of cyclins, that some of the actions are independent of the partner kinases and that these activities are receptor specific. Consistent with this finding, the limited analyses of receptor activity as a function of cell cycle reveal distinct patterns of activation. SR often regulate cell proliferation. Thus, the cross-talk between cyclins and their kinases and the SR provides a means for integrating the actions of the SR with the cell cycle status of cells.
Collapse
Affiliation(s)
- N L Weigel
- Department of Molecular and Cellular Biology, 1 Baylor Plaza, Baylor College of Medicine, Houston, TX 77030, United States.
| | | |
Collapse
|