1
|
Hanson B, Wood MJA, Roberts TC. Molecular correction of Duchenne muscular dystrophy by splice modulation and gene editing. RNA Biol 2021; 18:1048-1062. [PMID: 33472516 DOI: 10.1080/15476286.2021.1874161] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a currently incurable X-linked neuromuscular disorder, characterized by progressive muscle wasting and premature death, typically as a consequence of cardiac failure. DMD-causing mutations in the dystrophin gene are highly diverse, meaning that the development of a universally-applicable therapy to treat all patients is very challenging. The leading therapeutic strategy for DMD is antisense oligonucleotide-mediated splice modulation, whereby one or more specific exons are excluded from the mature dystrophin mRNA in order to correct the translation reading frame. Indeed, three exon skipping oligonucleotides have received FDA approval for use in DMD patients. Second-generation exon skipping drugs (i.e. peptide-antisense oligonucleotide conjugates) exhibit enhanced potency, and also induce dystrophin restoration in the heart. Similarly, multiple additional antisense oligonucleotide drugs targeting various exons are in clinical development in order to treat a greater proportion of DMD patient mutations. Relatively recent advances in the field of genome engineering (specifically, the development of the CRISPR/Cas system) have provided multiple promising therapeutic approaches for the RNA-directed genetic correction of DMD, including exon excision, exon reframing via the introduction of insertion/deletion mutations, disruption of splice signals to promote exon skipping, and the templated correction of point mutations by seamless homology directed repair or base editing technology. Potential limitations to the clinical translation of the splice modulation and gene editing approaches are discussed, including drug delivery, the importance of uniform dystrophin expression in corrected myofibres, safety issues (e.g. renal toxicity, viral vector immunogenicity, and off-target gene editing), and the high cost of therapy.
Collapse
Affiliation(s)
- Britt Hanson
- Department of Paediatrics, University of Oxford, Oxford, UK.,Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Matthew J A Wood
- Department of Paediatrics, University of Oxford, Oxford, UK.,MDUK Oxford Neuromuscular Centre, Oxford, UK
| | - Thomas C Roberts
- Department of Paediatrics, University of Oxford, Oxford, UK.,MDUK Oxford Neuromuscular Centre, Oxford, UK
| |
Collapse
|
2
|
Buscara L, Gross DA, Daniele N. Of rAAV and Men: From Genetic Neuromuscular Disorder Efficacy and Toxicity Preclinical Studies to Clinical Trials and Back. J Pers Med 2020; 10:E258. [PMID: 33260623 PMCID: PMC7768510 DOI: 10.3390/jpm10040258] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 11/20/2020] [Accepted: 11/23/2020] [Indexed: 12/12/2022] Open
Abstract
Neuromuscular disorders are a large group of rare pathologies characterised by skeletal muscle atrophy and weakness, with the common involvement of respiratory and/or cardiac muscles. These diseases lead to life-long motor deficiencies and specific organ failures, and are, in their worst-case scenarios, life threatening. Amongst other causes, they can be genetically inherited through mutations in more than 500 different genes. In the last 20 years, specific pharmacological treatments have been approved for human usage. However, these "à-la-carte" therapies cover only a very small portion of the clinical needs and are often partially efficient in alleviating the symptoms of the disease, even less so in curing it. Recombinant adeno-associated virus vector-mediated gene transfer is a more general strategy that could be adapted for a large majority of these diseases and has proved very efficient in rescuing the symptoms in many neuropathological animal models. On this solid ground, several clinical trials are currently being conducted with the whole-body delivery of the therapeutic vectors. This review recapitulates the state-of-the-art tools for neuron and muscle-targeted gene therapy, and summarises the main findings of the spinal muscular atrophy (SMA), Duchenne muscular dystrophy (DMD) and X-linked myotubular myopathy (XLMTM) trials. Despite promising efficacy results, serious adverse events of various severities were observed in these trials. Possible leads for second-generation products are also discussed.
Collapse
Affiliation(s)
| | - David-Alexandre Gross
- Genethon, 91000 Evry, France; (L.B.); (D.-A.G.)
- Université Paris-Saclay, Univ Evry, Inserm, Genethon, Integrare Research Unit UMR_S951, 91000 Evry, France
| | | |
Collapse
|
3
|
Comparative effects of N-cadherin protein and peptide fragments on mesenchymal stem cell mechanotransduction and paracrine function. Biomaterials 2020; 239:119846. [DOI: 10.1016/j.biomaterials.2020.119846] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 02/04/2020] [Accepted: 02/04/2020] [Indexed: 12/16/2022]
|
4
|
Cui M, Wang Z, Chen K, Shah AM, Tan W, Duan L, Sanchez-Ortiz E, Li H, Xu L, Liu N, Bassel-Duby R, Olson EN. Dynamic Transcriptional Responses to Injury of Regenerative and Non-regenerative Cardiomyocytes Revealed by Single-Nucleus RNA Sequencing. Dev Cell 2020; 53:102-116.e8. [PMID: 32220304 DOI: 10.1016/j.devcel.2020.02.019] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 01/07/2020] [Accepted: 02/25/2020] [Indexed: 12/22/2022]
Abstract
The adult mammalian heart is incapable of regeneration following injury. In contrast, the neonatal mouse heart can efficiently regenerate during the first week of life. The molecular mechanisms that mediate the regenerative response and its blockade in later life are not understood. Here, by single-nucleus RNA sequencing, we map the dynamic transcriptional landscape of five distinct cardiomyocyte populations in healthy, injured, and regenerating mouse hearts. We identify immature cardiomyocytes that enter the cell cycle following injury and disappear as the heart loses the ability to regenerate. These proliferative neonatal cardiomyocytes display a unique transcriptional program dependent on nuclear transcription factor Y subunit alpha (NFYa) and nuclear factor erythroid 2-like 1 (NFE2L1) transcription factors, which exert proliferative and protective functions, respectively. Cardiac overexpression of these two factors conferred protection against ischemic injury in mature mouse hearts that were otherwise non-regenerative. These findings advance our understanding of the cellular basis of neonatal heart regeneration and reveal a transcriptional landscape for heart repair following injury.
Collapse
Affiliation(s)
- Miao Cui
- Department of Molecular Biology, The Hamon Center for Regenerative Science and Medicine and Sen. Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Zhaoning Wang
- Department of Molecular Biology, The Hamon Center for Regenerative Science and Medicine and Sen. Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Kenian Chen
- Quantitative Biomedical Research Center, Department of Population & Data Sciences and Department of Pediatrics, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Akansha M Shah
- Department of Molecular Biology, The Hamon Center for Regenerative Science and Medicine and Sen. Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Wei Tan
- Department of Molecular Biology, The Hamon Center for Regenerative Science and Medicine and Sen. Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Lauren Duan
- Department of Molecular Biology, The Hamon Center for Regenerative Science and Medicine and Sen. Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Efrain Sanchez-Ortiz
- Department of Molecular Biology, The Hamon Center for Regenerative Science and Medicine and Sen. Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Hui Li
- Department of Molecular Biology, The Hamon Center for Regenerative Science and Medicine and Sen. Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Lin Xu
- Quantitative Biomedical Research Center, Department of Population & Data Sciences and Department of Pediatrics, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Ning Liu
- Department of Molecular Biology, The Hamon Center for Regenerative Science and Medicine and Sen. Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Rhonda Bassel-Duby
- Department of Molecular Biology, The Hamon Center for Regenerative Science and Medicine and Sen. Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Eric N Olson
- Department of Molecular Biology, The Hamon Center for Regenerative Science and Medicine and Sen. Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA.
| |
Collapse
|
5
|
Öztürk-Kaloglu D, Hercher D, Heher P, Posa-Markaryan K, Sperger S, Zimmermann A, Wolbank S, Redl H, Hacobian A. A Noninvasive In Vitro Monitoring System Reporting Skeletal Muscle Differentiation. Tissue Eng Part C Methods 2017; 23:1-11. [PMID: 27901409 DOI: 10.1089/ten.tec.2016.0366] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Monitoring of cell differentiation is a crucial aspect of cell-based therapeutic strategies depending on tissue maturation. In this study, we have developed a noninvasive reporter system to trace murine skeletal muscle differentiation. Either a secreted bioluminescent reporter (Metridia luciferase) or a fluorescent reporter (green fluorescent protein [GFP]) was placed under the control of the truncated muscle creatine kinase (MCK) basal promoter enhanced by variable numbers of upstream MCK E-boxes. The engineered pE3MCK vector, coding a triple tandem of E-Boxes and the truncated MCK promoter, showed twentyfold higher levels of luciferase activation compared with a Cytomegalovirus (CMV) promoter. This newly developed reporter system allowed noninvasive monitoring of myogenic differentiation in a straining bioreactor. Additionally, binding sequences of endogenous microRNAs (miRNAs; seed sequences) that are known to be downregulated in myogenesis were ligated as complementary seed sequences into the reporter vector to reduce nonspecific signal background. The insertion of seed sequences improved the signal-to-noise ratio up to 25% compared with pE3MCK. Due to the highly specific, fast, and convenient expression analysis for cells undergoing myogenic differentiation, this reporter system provides a powerful tool for application in skeletal muscle tissue engineering.
Collapse
Affiliation(s)
- Deniz Öztürk-Kaloglu
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology , Vienna, Austria
| | - David Hercher
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology , Vienna, Austria
| | - Philipp Heher
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology , Vienna, Austria
| | - Katja Posa-Markaryan
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology , Vienna, Austria
| | - Simon Sperger
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology , Vienna, Austria
| | - Alice Zimmermann
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology , Vienna, Austria
| | - Susanne Wolbank
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology , Vienna, Austria
| | - Heinz Redl
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology , Vienna, Austria
| | - Ara Hacobian
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology , Vienna, Austria
| |
Collapse
|
6
|
Whiteman JP, Harlow HJ, Durner GM, Regehr EV, Rourke BC, Robles M, Amstrup SC, Ben-David M. Polar bears experience skeletal muscle atrophy in response to food deprivation and reduced activity in winter and summer. CONSERVATION PHYSIOLOGY 2017; 5:cox049. [PMID: 28835844 PMCID: PMC5550809 DOI: 10.1093/conphys/cox049] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 07/05/2017] [Accepted: 07/26/2017] [Indexed: 05/31/2023]
Abstract
When reducing activity and using stored energy during seasonal food shortages, animals risk degradation of skeletal muscles, although some species avoid or minimize the resulting atrophy while experiencing these conditions during hibernation. Polar bears may be food deprived and relatively inactive during winter (when pregnant females hibernate and hunting success declines for other demographic groups) as well as summer (when sea ice retreats from key foraging habitats). We investigated muscle atrophy in samples of biceps femoris collected from free-ranging polar bears in the Southern Beaufort Sea (SBS) throughout their annual cycle. Atrophy was most pronounced in April-May as a result of food deprivation during the previous winter, with muscles exhibiting reduced protein concentration, increased water content, and lower creatine kinase mRNA. These animals increased feeding and activity in spring (when seal prey becomes more available), initiating a period of muscle recovery. During the following ice melt of late summer, ~30% of SBS bears abandon retreating sea ice for land; in August, these 'shore' bears exhibited no muscle atrophy, indicating that they had fully recovered from winter food deprivation. These individuals subsequently scavenged whale carcasses deposited by humans and by October, had retained good muscle condition. In contrast, ~70% of SBS bears follow the ice north in late summer, into deep water with less prey. These 'ice' bears fast; by October, they exhibited muscle protein loss and rapid changes in myosin heavy-chain isoforms in response to reduced activity. These findings indicate that, unlike other bears during winter hibernation, polar bears without food in summer cannot mitigate atrophy. Consequently, prolonged summer fasting resulting from climate change-induced ice loss creates a risk of greater muscle atrophy and reduced abilities to travel and hunt.
Collapse
Affiliation(s)
- John P. Whiteman
- Program in Ecology, University of Wyoming, 1000 E. University Avenue, Laramie, WY 82071, USA
- Department of Zoology and Physiology, University of Wyoming, 1000 E. University Avenue, Laramie, WY 82071, USA
| | - Henry J. Harlow
- Department of Zoology and Physiology, University of Wyoming, 1000 E. University Avenue, Laramie, WY 82071, USA
| | - George M. Durner
- U.S. Geological Survey, Alaska Science Center, 4210 University Drive, Anchorage, AK 99508, USA
| | - Eric V. Regehr
- Marine Mammals Management, U.S. Fish and Wildlife Service, 1011 East Tudor Road, Anchorage, AK 99503, USA
- Current: Polar Science Center, Applied Physics Laboratory, University of Washington, 1013 NE 40th Street, Seattle, WA 98105, USA
| | - Bryan C. Rourke
- Department of Biological Sciences, California State University, 1250 Bellflower Blvd, Long Beach, CA 90840, USA
| | - Manuel Robles
- Department of Biological Sciences, California State University, 1250 Bellflower Blvd, Long Beach, CA 90840, USA
| | | | - Merav Ben-David
- Program in Ecology, University of Wyoming, 1000 E. University Avenue, Laramie, WY 82071, USA
- Department of Zoology and Physiology, University of Wyoming, 1000 E. University Avenue, Laramie, WY 82071, USA
| |
Collapse
|
7
|
Fukuda K, Miyata H, Kuwano A, Kuroda T, Tamura N, Kotoyori Y, Kasashima Y. Does the injection of platelet-rich plasma induce changes in the gene expression and morphology of intact Thoroughbred skeletal muscle? J Equine Sci 2017; 28:31-39. [PMID: 28721121 PMCID: PMC5506447 DOI: 10.1294/jes.28.31] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 02/27/2017] [Indexed: 01/19/2023] Open
Abstract
Platelet-rich plasma (PRP) therapy is promising for treating skeletal muscle injuries in human athletes by promoting muscle regeneration. It might also be useful for treating muscle injuries in equine athletes. In the present
study, muscle regeneration induced by injection of PRP into intact muscle of Thoroughbred was investigated. Autologous PRP and saline were injected twice into intact left and right gluteus medius muscles of seven clinically
healthy Thoroughbreds. Muscle samples were collected from the injection sites by needle biopsy at 2 and 7 days after PRP injection. Immunohistochemical staining to identify the types of myosin heavy chains (MHCs) and satellite
cells was performed to compare morphological changes among intact (pre-injection), saline-, and PRP-injected muscles. The expression of marker genes related to muscle regeneration (MHC-I, MHC-II, and embryonic MHC [MHC-e]),
satellite cell activity (CK, Pax7, MyoD, and myogenin), and proinflammatory and promyogenic cytokines (IL-6, IGF-1, and HGF) was analyzed and compared between saline- and PRP-injected muscles. There were no obvious morphological
differences among the three treatments. There were no significant differences in gene expression associated with satellite cell activity between saline and PRP injection at 7 days after injection. MHC genes showed significantly
higher expression levels with PRP than with saline, including MHC-e at 2 days and MHC-I at 7 days after injection. It is suggested that injection of PRP into intact skeletal muscle does not induce specific morphological changes,
but upregulate the expression of genes related to muscle regeneration.
Collapse
Affiliation(s)
- Kentaro Fukuda
- Clinical Veterinary Medicine Division, Equine Research Institute, Japan Racing Association, Tochigi 329-0412, Japan
| | - Hirofumi Miyata
- Department of Biological Chemistry, Faculty of Agriculture, Yamaguchi University, Yamaguchi 753-8515, Japan
| | | | - Taisuke Kuroda
- Clinical Veterinary Medicine Division, Equine Research Institute, Japan Racing Association, Tochigi 329-0412, Japan
| | - Norihisa Tamura
- Clinical Veterinary Medicine Division, Equine Research Institute, Japan Racing Association, Tochigi 329-0412, Japan
| | - Yasumitsu Kotoyori
- Clinical Veterinary Medicine Division, Equine Research Institute, Japan Racing Association, Tochigi 329-0412, Japan
| | - Yoshinori Kasashima
- Clinical Veterinary Medicine Division, Equine Research Institute, Japan Racing Association, Tochigi 329-0412, Japan
| |
Collapse
|
8
|
Bengtsson NE, Hall JK, Odom GL, Phelps MP, Andrus CR, Hawkins RD, Hauschka SD, Chamberlain JR, Chamberlain JS. Muscle-specific CRISPR/Cas9 dystrophin gene editing ameliorates pathophysiology in a mouse model for Duchenne muscular dystrophy. Nat Commun 2017; 8:14454. [PMID: 28195574 PMCID: PMC5316861 DOI: 10.1038/ncomms14454] [Citation(s) in RCA: 258] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Accepted: 12/30/2016] [Indexed: 12/23/2022] Open
Abstract
Gene replacement therapies utilizing adeno-associated viral (AAV) vectors hold great promise for treating Duchenne muscular dystrophy (DMD). A related approach uses AAV vectors to edit specific regions of the DMD gene using CRISPR/Cas9. Here we develop multiple approaches for editing the mutation in dystrophic mdx4cv mice using single and dual AAV vector delivery of a muscle-specific Cas9 cassette together with single-guide RNA cassettes and, in one approach, a dystrophin homology region to fully correct the mutation. Muscle-restricted Cas9 expression enables direct editing of the mutation, multi-exon deletion or complete gene correction via homologous recombination in myogenic cells. Treated muscles express dystrophin in up to 70% of the myogenic area and increased force generation following intramuscular delivery. Furthermore, systemic administration of the vectors results in widespread expression of dystrophin in both skeletal and cardiac muscles. Our results demonstrate that AAV-mediated muscle-specific gene editing has significant potential for therapy of neuromuscular disorders.
Collapse
Affiliation(s)
- Niclas E. Bengtsson
- Department of Neurology, University of Washington, Seattle, Washington 98195-7720, USA
- Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Washington, Seattle, Washington 98195-7720, USA
| | - John K. Hall
- Department of Neurology, University of Washington, Seattle, Washington 98195-7720, USA
- Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Washington, Seattle, Washington 98195-7720, USA
| | - Guy L. Odom
- Department of Neurology, University of Washington, Seattle, Washington 98195-7720, USA
- Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Washington, Seattle, Washington 98195-7720, USA
| | - Michael P. Phelps
- Department of Pathology, University of Washington, Seattle, Washington 98195-7720, USA
| | - Colin R. Andrus
- Department of Medicine, University of Washington, Seattle, Washington 98195-7720, USA
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195-7720, USA
| | - R. David Hawkins
- Department of Medicine, University of Washington, Seattle, Washington 98195-7720, USA
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195-7720, USA
| | - Stephen D. Hauschka
- Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Washington, Seattle, Washington 98195-7720, USA
- Department of Biochemistry, University of Washington, Seattle, Washington 98195-7720, USA
| | - Joel R. Chamberlain
- Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Washington, Seattle, Washington 98195-7720, USA
- Department of Medicine, University of Washington, Seattle, Washington 98195-7720, USA
| | - Jeffrey S. Chamberlain
- Department of Neurology, University of Washington, Seattle, Washington 98195-7720, USA
- Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Washington, Seattle, Washington 98195-7720, USA
- Department of Medicine, University of Washington, Seattle, Washington 98195-7720, USA
- Department of Biochemistry, University of Washington, Seattle, Washington 98195-7720, USA
| |
Collapse
|
9
|
Upregulation of triglyceride synthesis in skeletal muscle overexpressing DGAT1. Lipids Health Dis 2013; 12:63. [PMID: 23642106 PMCID: PMC3671243 DOI: 10.1186/1476-511x-12-63] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Accepted: 04/24/2013] [Indexed: 12/04/2022] Open
Abstract
The gene encoding diacylglycerol acyltransferase (DGAT1) is a functional and positional candidate gene for milk and intramuscular fat content. A bovine DGAT1 overexpression vector was constructed containing mouse MCK promoter and bovine DGAT1 cDNA. MCK-DGAT1 transgene in FVB mice was researched in present study. The transgene DGAT1 had a high level of expression in contrast to the endogenous DGAT1 in posterior tibial muscle of the transgenic mice, but a low expression level in the cardiac muscle. Compared with wild-type mice, triglyceride and DGAT1 content were approximately fourfold and 50% increased in posterior tibial muscle of the transgenic mice, respectively, while a little increase in cardiac muscle.
Collapse
|
10
|
Coupled Effects of Light and Nitrogen Source on the Urea Cycle and Nitrogen Metabolism over a Diel Cycle in the Marine Diatom Thalassiosira pseudonana. Protist 2012; 163:232-51. [DOI: 10.1016/j.protis.2011.07.008] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Accepted: 07/10/2011] [Indexed: 11/21/2022]
|
11
|
Tai PW, Fisher-Aylor KI, Himeda CL, Smith CL, Mackenzie AP, Helterline DL, Angello JC, Welikson RE, Wold BJ, Hauschka SD. Differentiation and fiber type-specific activity of a muscle creatine kinase intronic enhancer. Skelet Muscle 2011; 1:25. [PMID: 21797989 PMCID: PMC3157005 DOI: 10.1186/2044-5040-1-25] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Accepted: 07/07/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Hundreds of genes, including muscle creatine kinase (MCK), are differentially expressed in fast- and slow-twitch muscle fibers, but the fiber type-specific regulatory mechanisms are not well understood. RESULTS Modulatory region 1 (MR1) is a 1-kb regulatory region within MCK intron 1 that is highly active in terminally differentiating skeletal myocytes in vitro. A MCK small intronic enhancer (MCK-SIE) containing a paired E-box/myocyte enhancer factor 2 (MEF2) regulatory motif resides within MR1. The SIE's transcriptional activity equals that of the extensively characterized 206-bp MCK 5'-enhancer, but the MCK-SIE is flanked by regions that can repress its activity via the individual and combined effects of about 15 different but highly conserved 9- to 24-bp sequences. ChIP and ChIP-Seq analyses indicate that the SIE and the MCK 5'-enhancer are occupied by MyoD, myogenin and MEF2. Many other E-boxes located within or immediately adjacent to intron 1 are not occupied by MyoD or myogenin. Transgenic analysis of a 6.5-kb MCK genomic fragment containing the 5'-enhancer and proximal promoter plus the 3.2-kb intron 1, with and without MR1, indicates that MR1 is critical for MCK expression in slow- and intermediate-twitch muscle fibers (types I and IIa, respectively), but is not required for expression in fast-twitch muscle fibers (types IIb and IId). CONCLUSIONS In this study, we discovered that MR1 is critical for MCK expression in slow- and intermediate-twitch muscle fibers and that MR1's positive transcriptional activity depends on a paired E-box MEF2 site motif within a SIE. This is the first study to delineate the DNA controls for MCK expression in different skeletal muscle fiber types.
Collapse
Affiliation(s)
- Phillip Wl Tai
- Department of Biochemistry, 1705 NE Pacific St,, University of Washington, Seattle, WA 98195, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
An adeno-associated virus vector efficiently and specifically transduces mouse skeletal muscle. Mol Biotechnol 2011; 49:1-10. [PMID: 21197588 DOI: 10.1007/s12033-010-9369-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Expression of a therapeutic gene in the skeletal muscle is a practical strategy to compensate a patients' insufficient circulating factor. Its clinical application requires a muscle-targeting vector capable of inducing a continuous high-level transgene expression. We modified an adeno-associated virus serotype 2 (AAV2) vector expressing luciferase from the mouse muscle creatine kinase gene promoter-enhancer (Ckm). First, AAVS1 insulator was inserted into the vector genome for transcriptional enhancement. This increased transduction of mouse quadriceps muscle by 11-fold at 4 weeks after intramuscular injection. Second, two capsid modifications were combined (21F capsid): incorporation of a segment of AAV1 capsid to produce a hybrid capsid and substitution of a tyrosine with a phenylalanine. Use of 21F capsid increased muscle transduction further by 18-fold, resulting in 200-fold higher efficacy than that of the unmodified vector. Compared with a vector having human elongation factor 1α promoter which showed similar efficacy in the muscle, this vector having Ckm transduced non-muscle organs less efficiently after intravenous administration. The AAV2 vector composed of the modified genome and capsid provides a backbone to develop a clinical vector expressing a therapeutic gene in the muscle.
Collapse
|
13
|
Aziz A, Miyake T, Engleka KA, Epstein JA, McDermott JC. Menin expression modulates mesenchymal cell commitment to the myogenic and osteogenic lineages. Dev Biol 2009; 332:116-30. [PMID: 19464283 DOI: 10.1016/j.ydbio.2009.05.555] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2008] [Revised: 05/09/2009] [Accepted: 05/15/2009] [Indexed: 10/20/2022]
Abstract
Menin plays an established role in the differentiation of mesenchymal cells to the osteogenic lineage. Conversely, whether Menin influences the commitment of mesenschymal cells to the myogenic lineage, despite expression in the developing somite was previously unclear. We observed that Menin is down-regulated in C2C12 and C3H10T1/2 mesenchymal cells when muscle differentiation is induced. Moreover, maintenance of Menin expression by constitutive ectopic expression inhibited muscle cell differentiation. Reduction of Menin expression by siRNA technology results in precocious muscle differentiation and concomitantly attenuates BMP-2 induced osteogenesis. Reduced Menin expression antagonizes BMP-2 and TGF-beta1 mediated inhibition of myogenesis. Furthermore, Menin was found to directly interact with and potentiate the transactivation properties of Smad3 in response to TGF-beta1. Finally in concert with these observations, tissue-specific inactivation of Men1 in Pax3-expressing somite precursor cells leads to a patterning defect of rib formation and increased muscle mass in the intercostal region. These data invoke a pivotal role for Menin in the competence of mesenchymal cells to respond to TGF-beta1 and BMP-2 signals. Thus, by modulating cytokine responsiveness Menin functions to alter the balance of multipotent mesenchymal cell commitment to the osteogenic or myogenic lineages.
Collapse
Affiliation(s)
- Arif Aziz
- Department of Biology, 327 Farquharson, LSB, York University, Toronto, M3J 1P3 Ontario, Canada
| | | | | | | | | |
Collapse
|
14
|
Abstract
Adeno-associated viral (AAV) vectors have been broadly used for gene transfer in vivo for various applications. However, AAV precludes the use of most of the original large-sized tissue-specific promoters for expression of transgenes. Efforts are made to develop highly compact, active and yet tissue-specific promoters for use in AAV vectors. In this study, we further abbreviated the muscle creatine kinase (MCK) promoter by ligating a double or triple tandem of MCK enhancer (206-bp) to its 87-bp basal promoter, generating the dMCK (509-bp) and tMCK (720-bp) promoters. The dMCK promoter is shorter but stronger than some previously developed MCK-based promoters such as the enh358MCK (584-bp) and CK6 (589-bp) in vitro in C2C12 myotubes and in vivo in skeletal muscles. The tMCK promoter is the strongest that we tested here, more active than the promiscuous cytomegalovirus (CMV) promoter. Furthermore, both the dMCK and tMCK promoters are essentially inactive in nonmuscle cell lines as well as in the mouse liver (>200-fold weaker than the CMV promoter). The dMCK promoter was further tested in a few lines of transgenic mice. Expression of LacZ or minidystrophin gene was detected in skeletal muscles throughout the body, but was weak in the diaphragm, and undetectable in the heart and other tissues. Similar to other miniature MCK promoters, the dMCK promoter also shows preference for fast-twitch myofibers. As a result, we further examined a short, synthetic muscle promoter C5-12 (312-bp). It is active in both skeletal and cardiac muscles but lacks apparent preference on myofiber types. Combination of a MCK enhancer to promoter C5-12 has increased its strength in muscle by two- to threefold. The above-mentioned compact muscle-specific promoters are well suited for AAV vectors in muscle-directed gene therapy studies.
Collapse
|
15
|
A role for Insulin-like growth factor 2 in specification of the fast skeletal muscle fibre. BMC DEVELOPMENTAL BIOLOGY 2007; 7:65. [PMID: 17559643 PMCID: PMC1906852 DOI: 10.1186/1471-213x-7-65] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2006] [Accepted: 06/08/2007] [Indexed: 01/11/2023]
Abstract
Background Fibre type specification is a poorly understood process beginning in embryogenesis in which skeletal muscle myotubes switch myosin-type to establish fast, slow and mixed fibre muscle groups with distinct function. Growth factors are required to establish slow fibres; it is unknown how fast twitch fibres are specified. Igf-2 is an embryonically expressed growth factor with established in vitro roles in skeletal muscle. Its localisation and role in embryonic muscle differentiation had not been established. Results Between E11.5 and E15.5 fast Myosin (FMyHC) localises to secondary myotubes evenly distributed throughout the embryonic musculature and gradually increasing in number so that by E15.5 around half contain FMyHC. The Igf-2 pattern closely correlates with FMyHC from E13.5 and peaks at E15.5 when over 90% of FMyHC+ myotubes also contain Igf-2. Igf-2 lags FMyHC and it is absent from muscle myotubes until E13.5. Igf-2 strongly down-regulates by E17.5. A striking feature of the FMyHC pattern is its increased heterogeneity and attenuation in many fibres from E15.5 to day one after birth (P1). Transgenic mice (MIG) which express Igf-2 in all of their myotubes, have increased FMyHC staining, a higher proportion of FMyHC+ myotubes and loose their FMyHC staining heterogeneity. In Igf-2 deficient mice (MatDi) FMyHC+ myotubes are reduced to 60% of WT by E15.5. In vitro, MIG induces a 50% excess of FMyHC+ and a 30% reduction of SMHyC+ myotubes in C2 cells which can be reversed by Igf-2-targeted ShRNA resulting in 50% reduction of FMyHC. Total number of myotubes was not affected. Conclusion In WT embryos the appearance of Igf-2 in embryonic myotubes lags FMyHC, but by E15.5 around 45% of secondary myotubes contain both proteins. Forced expression of Igf-2 into all myotubes causes an excess, and absence of Igf-2 suppresses, the FMyHC+ myotube component in both embryonic muscle and differentiated myoblasts. Igf-2 is thus required, not for initiating secondary myotube differentiation, but for establishing the correct proportion of FMyHC+ myotubes during fibre type specification (E15.5 - P1). Since specific loss of FMyHC fibres is associated with many skeletal muscle pathologies these data have important medical implications.
Collapse
|
16
|
Fornaro M, Burch PM, Yang W, Zhang L, Hamilton CE, Kim JH, Neel BG, Bennett AM. SHP-2 activates signaling of the nuclear factor of activated T cells to promote skeletal muscle growth. ACTA ACUST UNITED AC 2006; 175:87-97. [PMID: 17015617 PMCID: PMC2064501 DOI: 10.1083/jcb.200602029] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The formation of multinucleated myofibers is essential for the growth of skeletal muscle. The nuclear factor of activated T cells (NFAT) promotes skeletal muscle growth. How NFAT responds to changes in extracellular cues to regulate skeletal muscle growth remains to be fully defined. In this study, we demonstrate that mice containing a skeletal muscle-specific deletion of the tyrosine phosphatase SHP-2 (muscle creatine kinase [MCK]-SHP-2 null) exhibited a reduction in both myofiber size and type I slow myofiber number. We found that interleukin-4, an NFAT-regulated cytokine known to stimulate myofiber growth, was reduced in its expression in skeletal muscles of MCK-SHP-2-null mice. When SHP-2 was deleted during the differentiation of primary myoblasts, NFAT transcriptional activity and myotube multinucleation were impaired. Finally, SHP-2 coupled myotube multinucleation to an integrin-dependent pathway and activated NFAT by stimulating c-Src. Thus, SHP-2 transduces extracellular matrix stimuli to intracellular signaling pathways to promote skeletal muscle growth.
Collapse
Affiliation(s)
- Mara Fornaro
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Gaedigk R, Law DJ, Fitzgerald-Gustafson KM, McNulty SG, Nsumu NN, Modrcin AC, Rinaldi RJ, Pinson D, Fowler SC, Bilgen M, Burns J, Hauschka SD, White RA. Improvement in survival and muscle function in an mdx/utrn−/− double mutant mouse using a human retinal dystrophin transgene. Neuromuscul Disord 2006; 16:192-203. [PMID: 16487708 DOI: 10.1016/j.nmd.2005.12.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2005] [Accepted: 12/21/2005] [Indexed: 10/25/2022]
Abstract
Duchenne muscular dystrophy is a progressive muscle disease characterized by increasing muscle weakness and death by the third decade. mdx mice exhibit the underlying muscle disease but appear physically normal with ordinary lifespans, possibly due to compensatory expression of utrophin. In contrast, double mutant mice (mdx/utrn(-/-)), deficient for both dystrophin and utrophin die by approximately 3 months and suffer from severe muscle weakness, growth retardation, and severe spinal curvature. The capacity of human retinal dystrophin (Dp260) to compensate for the missing 427 kDa muscle dystrophin was tested in mdx/utrn(-/-) mice. Functional outcomes were assessed by histology, EMG, MRI, mobility, weight and longevity. MCK-driven transgenic expression of Dp260 in mdx/utrn(-/-) mice converts their disease course from a severe, lethal muscular dystrophy to a viable, mild myopathic phenotype. This finding is relevant to the design of exon-skipping therapeutic strategies since Dp260 lacks dystrophin exons 1-29.
Collapse
Affiliation(s)
- Roger Gaedigk
- Department of Medical Research, Children's Mercy Hospitals & Clinics, Pediatric Research Building 4th Floor, 2401 Gillham, Kansas City, MO 64108, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Li S, Kimura E, Fall BM, Reyes M, Angello JC, Welikson R, Hauschka SD, Chamberlain JS. Stable transduction of myogenic cells with lentiviral vectors expressing a minidystrophin. Gene Ther 2005; 12:1099-108. [PMID: 15759015 DOI: 10.1038/sj.gt.3302505] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Gene therapy for Duchenne muscular dystrophy (DMD) will require sustained expression of therapeutic dystrophins in striated muscles. Lentiviral vectors have a relatively large transgene carrying capacity and can integrate into nondividing cells. We therefore explored the use of lentiviral vectors for transferring genes into mouse skeletal muscle cells. These vectors successfully transferred a minidystrophin expression cassette into mdx muscles, and minidystrophin expression persisted and prevented subsequent muscle fiber degeneration for at least 6 months. However, only low to moderate levels of skeletal muscle transduction could be obtained by intramuscular injection of the highest currently available lentiviral doses. Using cultured cells, the lentiviral vectors effectively transduced proliferating and terminally differentiated muscle cells, indicating that cell cycling is not essential for transduction of myogenic cells. We further showed that lentiviral vectors efficiently transduced both primary myoblasts and multipotent adult progenitor cells (MAPCs) in vitro, and the cells persistently expressed transgenes without any obvious toxicity. When mdx primary myoblasts were genetically modified with minidystrophin vectors and transplanted into mdx skeletal muscles, significant numbers of dystrophin-expressing myofibers formed. Finally, we showed that a short, highly active CK6 regulatory cassette directed muscle-specific activity in the context of the lentiviral vectors. The ability of lentiviral vectors to transduce myogenic progenitors using a minidystrophin cassette regulated by a muscle-specific promoter suggests that this system could be useful for ex vivo gene therapy of muscular dystrophy.
Collapse
Affiliation(s)
- S Li
- Department of Neurology, University of Washington School of Medicine, Seattle, WA 98195-7720, USA
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Burkin DJ, Wallace GQ, Milner DJ, Chaney EJ, Mulligan JA, Kaufman SJ. Transgenic expression of {alpha}7{beta}1 integrin maintains muscle integrity, increases regenerative capacity, promotes hypertrophy, and reduces cardiomyopathy in dystrophic mice. THE AMERICAN JOURNAL OF PATHOLOGY 2005; 166:253-63. [PMID: 15632017 PMCID: PMC1602287 DOI: 10.1016/s0002-9440(10)62249-3] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
We previously reported that enhanced expression of the alpha7beta1 integrin ameliorates the development of muscular dystrophy and extends longevity in alpha7BX2-mdx/utr(-/-) transgenic mice (Burkin DJ, Wallace GQ, Nicol KJ, Kaufman DJ, Kaufman SJ: Enhanced expression of the alpha7beta1 integrin reduces muscular dystrophy and restores viability in dystrophic mice. We now report on the mechanism by which these mice were rescued by the integrin. As a result of increased integrin in alpha7BX2-mdx/utr(-/-) mice the structural integrity of the myotendinous and neuromuscular junctions are maintained. A twofold increase in satellite cells in alpha7BX2-mdx/utr(-/-) skeletal muscle was detected by immunofluorescence using the satellite cell marker c-met. These cells enhanced the regenerative capacity of muscle in the transgenic animals as determined by fusion of BrdUrd-labeled cells into muscle fibers. Increased integrin also leads to hypertrophy. Finally, transgenic expression of alpha7BX2 integrin chain in skeletal muscle secondarily reduces the development of cardiomyopathy, the ultimate cause of death in these animals. We believe this multiplicity of responses to increased alpha7beta1 integrin collectively inhibits the development of muscle disease and increases longevity in these mice.
Collapse
Affiliation(s)
- Dean J Burkin
- Department of Cell and Structural Biology, University of Illinois, B107 Chemical and Life Sciences Laboratory, 601 South Goodwin Ave., Urbana, IL 61801, USA
| | | | | | | | | | | |
Collapse
|
20
|
Yuasa T, Kakuhata R, Kishi K, Obata T, Shinohara Y, Bando Y, Izumi K, Kajiura F, Matsumoto M, Ebina Y. Platelet-derived growth factor stimulates glucose transport in skeletal muscles of transgenic mice specifically expressing platelet-derived growth factor receptor in the muscle, but it does not affect blood glucose levels. Diabetes 2004; 53:2776-86. [PMID: 15504957 DOI: 10.2337/diabetes.53.11.2776] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Insulin stimulates the disposal of blood glucose into skeletal muscle and adipose tissues by the translocation of GLUT4 from intracellular pools to the plasma membrane, and consequently the concentration of blood glucose levels decreases rapidly in vivo. Phosphatidylinositol (PI) 3-kinase and Akt play a pivotal role in the stimulation of glucose transport by insulin, but detailed mechanisms are unknown. We and others reported that not only insulin but also platelet-derived growth factor (PDGF) and epidermal growth factor facilitate glucose uptake through GLUT4 translocation by activation of PI 3-kinase and Akt in cultured cells. However, opposite results were also reported. We generated transgenic mice that specifically express the PDGF receptor in skeletal muscle. In these mice, PDGF stimulated glucose transport into skeletal muscle in vitro and in vivo. Thus, PDGF apparently shares with insulin some of the signaling molecules needed for the stimulation of glucose transport. The degree of glucose uptake in vivo reached approximately 60% of that by insulin injection in skeletal muscle, but blood glucose levels were not decreased by PDGF in these mice. Therefore, PDGF-induced disposal of blood glucose into skeletal muscle is insufficient for rapid decrease of blood glucose levels.
Collapse
Affiliation(s)
- Tomoyuki Yuasa
- Division of Molecular Genetics, Institute for Enzyme Research, the University of Tokushima, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Jiang Z, Schiedner G, van Rooijen N, Liu CC, Kochanek S, Clemens PR. Sustained Muscle Expression of Dystrophin from a High-Capacity Adenoviral Vector with Systemic Gene Transfer of T Cell Costimulatory Blockade. Mol Ther 2004; 10:688-96. [PMID: 15451453 DOI: 10.1016/j.ymthe.2004.07.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2004] [Accepted: 07/19/2004] [Indexed: 10/26/2022] Open
Abstract
Adenoviral vector (Ad)-mediated gene delivery of normal, full-length dystrophin to skeletal muscle provides a promising strategy for the treatment of Duchenne muscular dystrophy (DMD). However, cellular and humoral immune responses induced by vector gene transfer limit the application of this approach. Blockade of the costimulatory interaction between naïve T cells and antigen-presenting cells has proven to be a successful means to diminish immunity induced by gene transfer. In this study we explore the potential of supplementing dystrophin gene delivery to dystrophin-deficient Dmd mouse skeletal muscle with systemic gene delivery of CTLA4Ig and CD40Ig molecules to effect costimulatory blockade. We found that systemic administration of a high-capacity Ad (HC-Ad) vector carrying murine CTLA4Ig (AdmCTLA4Ig) either alone or codelivered with an HC-Ad vector carrying murine CD40Ig (AdmCD40Ig) provided sustained expression of recombinant full-length murine dystrophin from an HC-Ad vector carrying the dystrophin cDNA (AdmDys). The level of AdmDys vector genomes remained stable in animals cotreated with systemic delivery of vectors carrying molecules to block costimulation. In addition, muscle CD4(+) and CD8(+) T cell infiltrates and Th1 cytokine production by splenocytes were reduced. The production of neutralizing antibody against Ad vector was significantly inhibited in mice receiving systemic codelivery of both AdmCTLA4Ig and AdmCD40Ig, but not in the mice treated with AdmCTLA4Ig alone. The results suggested that coblockade of both CD28/B7 and CD40L/CD40 costimulatory pathways is required for effective inhibition of the Ad vector-induced humoral immune response in Dmd mice, whereas blockade of CD28/B7 alone by murine CTLA4Ig would be sufficient for prolonged dystrophin expression in treated muscle.
Collapse
Affiliation(s)
- Zhilong Jiang
- Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | | | | | | | | | | |
Collapse
|
22
|
Cao B, Bruder J, Kovesdi I, Huard J. Muscle stem cells can act as antigen-presenting cells: implication for gene therapy. Gene Ther 2004; 11:1321-30. [PMID: 15175641 DOI: 10.1038/sj.gt.3302293] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Research has shown that the use of a muscle-specific promoter can reduce immune response and improve gene transfer to muscle fibers. We investigated the efficiency of direct and ex vivo gene transfer to the skeletal muscles of 6- to 8-week-old mdx mice by using two adenoviral vectors: adenovirus (AD) encoding the luciferase gene under the cytomegalovirus (CMV) promoter (ADCMV) and AD encoding the same gene under the muscle creatine kinase (MCK) promoter (ADMCK). Direct intramuscular injection of ADMCK triggered a lower immune response that enabled more efficient delivery and more persistent expression of the transgene than did ADCMV injection. Similarly, ex vivo gene transfer using ADCMV-transduced muscle-derived stem cells (MDSCs) induced a stronger immune response and led to shorter transgene expression than did ex vivo gene transfer using ADMCK-transduced MDSCs. This immune response was due to the release of the antigen after MDSC death or to the ADCMV-transduced MDSCs acting as antigen-presenting cells (APCs) by expressing the transgene and rapidly initiating an immune response against subsequent viral inoculation. The use of a muscle-specific promoter that restricts transgene expression to differentiated muscle cells could prevent MDSCs from becoming APCs, and thereby could improve the efficiency of ex vivo gene transfer to skeletal muscle.
Collapse
Affiliation(s)
- B Cao
- Growth and Development Laboratory, Children's Hospital of Pittsburgh and Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | | | | | | |
Collapse
|
23
|
Jiang Z, Schiedner G, Gilchrist SC, Kochanek S, Clemens PR. CTLA4Ig delivered by high-capacity adenoviral vector induces stable expression of dystrophin in mdx mouse muscle. Gene Ther 2004; 11:1453-61. [PMID: 15269713 DOI: 10.1038/sj.gt.3302315] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Adenoviral (Ad) vector-mediated gene delivery of normal, full-length dystrophin to skeletal muscle provides a promising strategy for the treatment of Duchenne muscular dystrophy (DMD), an X-linked recessive, dystrophin-deficient muscle disease. Studies in animal models suggest that successful DMD gene therapy by Ad vector-mediated gene transfer would be precluded by cellular and humoral immune responses induced by vector capsid and transgene proteins. To address the immunity induced by Ad vector-mediated dystrophin gene delivery to dystrophic muscle, we developed high-capacity adenoviral (HC-Ad) vectors expressing mouse dystrophin driven by the muscle creatine kinase promoter (AdmDys) and mCTLA4Ig (AdmCTLA4Ig) individually, or together from one vector (AdmCTLA4Ig/mDys). We found stable expression of dystrophin protein in the tibialis anterior muscles of mdx mice, coinjected with AdmCTLA4Ig and AdmDys, or injected alone with AdmCTLA4Ig/mDys, whereas the expression of dystrophin protein in the control group coinjected with AdmDys and an empty vector decreased by at least 50% between 2 and 8 weeks after administration. Additionally, we observed reductions in Ad vector-induced Th1 and Th2 cytokines, Ad vector-specific cytotoxic T lymphocyte activation and neutralizing anti-Ad antibodies in both experimental groups that received a mCTLA4Ig-expressing vector as compared to the control group. This study demonstrates that the coexpression of mCTLA4Ig and dystrophin in skeletal muscle provided by HC-Ad vector-mediated gene transfer can provide stable expression of dystrophin in immunocompetent, adult mdx mouse muscle and applies a potentially powerful strategy to overcome adaptive immunity induced by Ad vector-mediated dystrophin gene delivery toward the ultimate goal of treatment for DMD.
Collapse
Affiliation(s)
- Z Jiang
- Department of Neurology, School of Medicine, University of Pittsburgh, PA 15213, USA
| | | | | | | | | |
Collapse
|
24
|
Abstract
Cellular cardiomyoplasty using skeletal myoblasts may be beneficial for infarct repair. One drawback to skeletal muscle cells is their lack of gap junction expression after differentiation, thus preventing electrical coupling to host cardiomyocytes. We sought to overexpress the gap junction protein connexin43 (Cx43) in differentiated skeletal myotubes, using retroviral, adenoviral, and plasmid-mediated gene transfer. All strategies resulted in overexpression of Cx43 in cultured myotubes, but expression of Cx43 from constitutive viral promoters caused significant death upon differentiation. Dye transfer studies showed that surviving myotubes contained functional gap junctions, however. Retrovirally transfected myoblasts did not express Cx43 after grafting into the heart, possibly due to promoter silencing. Adenovirally transfected myoblasts expressed abundant Cx43 after forming myotubes in cardiac grafts, but grafts showed signs of injury at 1 week and had died by 2 weeks. Interestingly, transfection of already differentiated myotubes with adenoviral Cx43 was nontoxic, implying a window of vulnerability during differentiation. To test this hypothesis, Cx43 was expressed from the muscle creatine kinase (MCK) promoter, which is active only after myocyte differentiation. The MCK promoter resulted in high levels of Cx43 expression in differentiated myotubes but did not cause cell death during differentiation. MCK-Cx43-transfected myoblasts formed viable cardiac grafts and, in some cases, Cx43-expressing myotubes were in close apposition to host cardiomyocytes, possibly allowing electrical coupling. Thus, high levels of Cx43 during skeletal muscle differentiation cause cell death. When, however, expression of Cx43 is delayed until after differentiation, using the MCK promoter, myotubes are viable and express gap junction proteins after grafting in the heart. This strategy may permit electrical coupling of skeletal and cardiac muscle for cardiac repair.
Collapse
Affiliation(s)
- Hans Reinecke
- Department of Pathology, University of Washington, Seattle, 98195, USA.
| | | | | | | |
Collapse
|
25
|
Lim W, Neff ES, Furlow JD. The mouse muscle creatine kinase promoter faithfully drives reporter gene expression in transgenicXenopus laevis. Physiol Genomics 2004; 18:79-86. [PMID: 15010518 DOI: 10.1152/physiolgenomics.00148.2003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Developing Xenopus laevis experience two periods of muscle differentiation, once during embryogenesis and again at metamorphosis. During metamorphosis, thyroid hormone induces both muscle growth in the limbs and muscle death in the tail. In mammals, the muscle creatine kinase (MCK) gene is activated during the differentiation from myoblasts to myocytes and has served as both a marker for muscle development and to drive transgene expression in transgenic mice. Transcriptional control elements are generally highly conserved throughout evolution, potentially allowing mouse promoter use in transgenic X. laevis. This paper compares endogenous X. laevis MCK gene expression and the mouse MCK (mMCK) promoter driving a green fluorescent protein reporter in transgenic X. laevis. The mMCK promoter demonstrated strong skeletal muscle-specific transgene expression in both the juvenile tadpole and adult frog. Therefore, our results clearly demonstrate the functional conservation of regulatory sequences in vertebrate muscle gene promoters and illustrate the utility of using X. laevis transgenesis for detailed comparative study of mammalian promoter activity in vivo.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Animals, Genetically Modified
- Creatine Kinase/genetics
- Creatine Kinase, MM Form
- Evolution, Molecular
- Gene Expression Regulation
- Gene Expression Regulation, Developmental
- Genes, Reporter
- Green Fluorescent Proteins
- Heart/growth & development
- Isoenzymes/genetics
- Larva
- Luminescent Proteins/biosynthesis
- Luminescent Proteins/genetics
- Mesencephalon/growth & development
- Mesencephalon/metabolism
- Metamorphosis, Biological/genetics
- Mice/genetics
- Molecular Sequence Data
- Muscle, Skeletal/growth & development
- Muscle, Skeletal/metabolism
- Myocardium/metabolism
- Nerve Tissue Proteins/biosynthesis
- Nerve Tissue Proteins/genetics
- Organ Specificity
- Phylogeny
- Promoter Regions, Genetic/genetics
- Recombinant Fusion Proteins/biosynthesis
- Recombinant Fusion Proteins/genetics
- Sequence Alignment
- Sequence Homology, Amino Acid
- Species Specificity
- Xenopus laevis/embryology
- Xenopus laevis/genetics
- Xenopus laevis/growth & development
Collapse
Affiliation(s)
- Wayland Lim
- Section of Neurobiology, Physiology, and Behavior, Division of Biological Sciences, University of California, Davis, California 95616-8519, USA
| | | | | |
Collapse
|
26
|
Nguyen QGV, Buskin JN, Himeda CL, Shield MA, Hauschka SD. Differences in the function of three conserved E-boxes of the muscle creatine kinase gene in cultured myocytes and in transgenic mouse skeletal and cardiac muscle. J Biol Chem 2003; 278:46494-505. [PMID: 12968024 DOI: 10.1074/jbc.m308194200] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The 1256-base pair enhancer-promoter of the mouse muscle creatine kinase gene includes three CAnnTG E-boxes that are conserved among mammals and have flanking and middle sequences conforming to consensus muscle regulatory factor binding sites. This study seeks to determine whether these E-boxes are critical for muscle creatine kinase expression in physiologically distinct muscles. Mutations of the "right" and "left" E-boxes in the enhancer decreased expression in cultured skeletal myocytes approximately 10- and 2-fold, respectively, whereas a "promoter" E-box mutation had little effect. In neonatal myocardiocytes, the left E-box mutation decreased expression approximately 3-fold, whereas right or promoter E-box mutations had no effect. Very different effects were seen in transgenic mice, where the promoter E-box mutation decreased expression in quadriceps, extensor digitorum longus, and soleus approximately 10-fold, and approximately 100-fold in distal tongue, diaphragm, and ventricle. The right E-box mutation, tested in the presence of the other two mutations, caused a significant decrease in distal tongue, but not in quadriceps, extensor digitorum longus, soleus, or ventricle. Mutation of the left E-box actually raised expression in soleus, suggesting a possible repressor role for this control element. The discrepancies between mutation effects in differentiating skeletal muscle cultures, neonatal myocardiocytes, and adult mice suggested that the E-boxes might play different roles during muscle development and adult steady-state function. However, transgenic analysis of embryonic and early postnatal mice indicated no positive role for these three E-boxes in early development, implying that differences in E-box function between adult muscle and cultured cells are the result of physiological signals.
Collapse
Affiliation(s)
- Quynh-Giao V Nguyen
- Department of Biochemistry, University of Washington, Seattle, WA 98195-7350, USA
| | | | | | | | | |
Collapse
|
27
|
Couplan E, Gelly C, Goubern M, Fleury C, Quesson B, Silberberg M, Thiaudiere E, Mateo P, Lonchampt M, Levens N, De Montrion C, Ortmann S, Klaus S, Gonzalez-Barroso MDM, Cassard-Doulcier AM, Ricquier D, Bigard AX, Diolez P, Bouillaud F. High level of uncoupling protein 1 expression in muscle of transgenic mice selectively affects muscles at rest and decreases their IIb fiber content. J Biol Chem 2002; 277:43079-88. [PMID: 12221093 DOI: 10.1074/jbc.m206726200] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The mitochondrial uncoupling protein of brown adipose tissue (UCP1) was expressed in skeletal muscle and heart of transgenic mice at levels comparable with the amount found in brown adipose tissue mitochondria. These transgenic mice have a lower body weight, and when related to body weight, food intake and energy expenditure are increased. A specific reduction of muscle mass was observed but varied according to the contractile activity of muscles. Heart and soleus muscle are unaffected, indicating that muscles undergoing regular contractions, and therefore with a continuous mitochondrial ATP production, are protected. In contrast, the gastrocnemius and plantaris muscles showed a severely reduced mass and a fast to slow shift in fiber types promoting mainly IIa and IIx fibers at the expense of fastest and glycolytic type IIb fibers. These observations are interpreted as a consequence of the strong potential dependence of the UCP1 protonophoric activity, which ensures a negligible proton leak at the membrane potential observed when mitochondrial ATP production is intense. Therefore UCP1 is not deleterious for an intense mitochondrial ATP production and this explains the tolerance of the heart to a high expression level of UCP1. In muscles at rest, where ATP production is low, the rise in membrane potential enhances UCP1 activity. The proton return through UCP1 mimics the effect of a sustained ATP production, permanently lowering mitochondrial membrane potential. This very likely constitutes the origin of the signal leading to the transition in fiber types at rest.
Collapse
Affiliation(s)
- Elodie Couplan
- Ceremod CNRS UPR9078, 9 rue Jules Hetzel, 92190 Meudon, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
Transfer of therapeutic genes into muscle tissue has promise for the treatment of a variety of muscular dystrophies. Various vectors have been used to deliver genes to skeletal muscle but their application has faced several major limitations including: (1) the lack of transgene persistence caused by the immune rejection of transduced myofibers and/or vector toxicity, and (2) the maturation dependence of viral transduction. While the immunorejection and/or cytotoxic problems are being overcome with the development of new vectors, maturation-dependent viral transduction is still a major hurdle in gene transfer to skeletal muscle. Poor adenoviral transduction in mature myofibers has been attributed to: (1) the extracellular matrix of mature myofibers may form a physical barrier and prevent the passage of large viral particles; (2) viral receptors are down-regulated with muscle maturation; and (3) loss of myoblasts with muscle maturation, which serve as intermediaries in the viral transduction. In this review, we will focus on recent developments in overcoming those hurdles of gene therapy in skeletal muscle, especially to adenovirus (Ad), including: (1) new mutant vectors lacking all viral genes to decrease immunogenicity, and hence, improve persistence of transgene expression in muscle in vivo; (2) using tissue specific promoters to evade immunorejection; (3) permeabilization of the extracellular matrix; (4) modifying the viral receptors in mature myofibers; and (5) myoblast or muscle stem cell mediated ex vivo gene transfer.
Collapse
Affiliation(s)
- Baohong Cao
- Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | | | | |
Collapse
|
29
|
Bojak A, Hammer D, Wolf H, Wagner R. Muscle specific versus ubiquitous expression of Gag based HIV-1 DNA vaccines: a comparative analysis. Vaccine 2002; 20:1975-9. [PMID: 11983257 DOI: 10.1016/s0264-410x(02)00081-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Most studies on DNA-based immunization have used viral promoters to drive antigen expression. In this study, we analyzed the properties of the commonly used CMV promoter, the tissue specific murine muscle creatine kinase (MCK) promoter as well as a hybrid MCK/CMV promoter regarding promoter activity and tissue specificity in vitro. Furthermore, the efficiency of inducing HIV-1 Gag specific immune responses in vivo following intramuscular immunization of naked DNA containing a codon optimized synthetic gene was compared. Although antibody titers and cellular immune responses using the MCK construct were slightly reduced as compared to conventional CMV based vector modules, the utilization of nonviral promoters may add significantly to the safety of future DNA vaccines.
Collapse
MESH Headings
- AIDS Vaccines/genetics
- AIDS Vaccines/immunology
- Animals
- Antibody Specificity
- Creatine Kinase/genetics
- Creatine Kinase, MM Form
- Cytomegalovirus/genetics
- Enhancer Elements, Genetic
- Female
- Gene Products, gag/genetics
- Gene Products, gag/immunology
- Genes, Reporter
- Genes, Synthetic
- Genes, gag
- HIV Antibodies/biosynthesis
- HIV Antibodies/immunology
- HIV Core Protein p24/genetics
- HIV Core Protein p24/immunology
- HIV-1/genetics
- HIV-1/immunology
- Humans
- Isoenzymes/genetics
- Luciferases/biosynthesis
- Luciferases/genetics
- Lung Neoplasms/pathology
- Mice
- Mice, Inbred BALB C
- Muscle, Skeletal/metabolism
- Organ Specificity
- Promoter Regions, Genetic
- Protein Precursors/genetics
- Protein Precursors/immunology
- Transcription, Genetic
- Tumor Cells, Cultured
- Vaccines, DNA/genetics
- Vaccines, DNA/immunology
- Vaccines, Synthetic/genetics
- Vaccines, Synthetic/immunology
Collapse
Affiliation(s)
- Alexandra Bojak
- Institute of Medical Microbiology, University of Regensburg, Franz-Josef-Strauss Allee 11, 93053 Regensburg, Germany
| | | | | | | |
Collapse
|
30
|
Moll J, Barzaghi P, Lin S, Bezakova G, Lochmüller H, Engvall E, Müller U, Ruegg MA. An agrin minigene rescues dystrophic symptoms in a mouse model for congenital muscular dystrophy. Nature 2001; 413:302-7. [PMID: 11565031 DOI: 10.1038/35095054] [Citation(s) in RCA: 176] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Congenital muscular dystrophy is a heterogeneous and severe, progressive muscle-wasting disease that frequently leads to death in early childhood. Most cases of congenital muscular dystrophy are caused by mutations in LAMA2, the gene encoding the alpha2 chain of the main laminin isoforms expressed by muscle fibres. Muscle fibre deterioration in this disease is thought to be caused by the failure to form the primary laminin scaffold, which is necessary for basement membrane structure, and the missing interaction between muscle basement membrane and the dystrophin-glycoprotein complex (DGC) or the integrins. With the aim to restore muscle function in a mouse model for this disease, we have designed a minigene of agrin, a protein known for its role in the formation of the neuromuscular junction. Here we show that this mini-agrin-which binds to basement membrane and to alpha-dystroglycan, a member of the DGC-amends muscle pathology by a mechanism that includes agrin-mediated stabilization of alpha-dystroglycan and the laminin alpha5 chain. Our data provides in vivo evidence that a non-homologous protein in combination with rational protein design can be used to devise therapeutic tools that may restore muscle function in human muscular dystrophies.
Collapse
Affiliation(s)
- J Moll
- Department of Pharmacology/Neurobiology, Biozentrum, University of Basel, Klingelbergstrasse 70, CH-4056 Basel, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Burkin DJ, Wallace GQ, Nicol KJ, Kaufman DJ, Kaufman SJ. Enhanced expression of the alpha 7 beta 1 integrin reduces muscular dystrophy and restores viability in dystrophic mice. J Cell Biol 2001; 152:1207-18. [PMID: 11257121 PMCID: PMC2199213 DOI: 10.1083/jcb.152.6.1207] [Citation(s) in RCA: 220] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Muscle fibers attach to laminin in the basal lamina using two distinct mechanisms: the dystrophin glycoprotein complex and the alpha 7 beta 1 integrin. Defects in these linkage systems result in Duchenne muscular dystrophy (DMD), alpha 2 laminin congenital muscular dystrophy, sarcoglycan-related muscular dystrophy, and alpha 7 integrin congenital muscular dystrophy. Therefore, the molecular continuity between the extracellular matrix and cell cytoskeleton is essential for the structural and functional integrity of skeletal muscle. To test whether the alpha 7 beta 1 integrin can compensate for the absence of dystrophin, we expressed the rat alpha 7 chain in mdx/utr(-/-) mice that lack both dystrophin and utrophin. These mice develop a severe muscular dystrophy highly akin to that in DMD, and they also die prematurely. Using the muscle creatine kinase promoter, expression of the alpha 7BX2 integrin chain was increased 2.0-2.3-fold in mdx/utr(-/-) mice. Concomitant with the increase in the alpha 7 chain, its heterodimeric partner, beta 1D, was also increased in the transgenic animals. Transgenic expression of the alpha 7BX2 chain in the mdx/utr(-/-) mice extended their longevity by threefold, reduced kyphosis and the development of muscle disease, and maintained mobility and the structure of the neuromuscular junction. Thus, bolstering alpha 7 beta 1 integrin-mediated association of muscle cells with the extracellular matrix alleviates many of the symptoms of disease observed in mdx/utr(-/-) mice and compensates for the absence of the dystrophin- and utrophin-mediated linkage systems. This suggests that enhanced expression of the alpha 7 beta 1 integrin may provide a novel approach to treat DMD and other muscle diseases that arise due to defects in the dystrophin glycoprotein complex. A video that contrasts kyphosis, gait, joint contractures, and mobility in mdx/utr(-/-) and alpha 7BX2-mdx/utr(-/-) mice can be accessed at http://www.jcb.org/cgi/content/full/152/6/1207.
Collapse
MESH Headings
- Animals
- Blotting, Western
- Body Weight
- Contracture/physiopathology
- Creatine Kinase/genetics
- Creatine Kinase, MM Form
- Cytoskeletal Proteins/genetics
- Cytoskeletal Proteins/metabolism
- Dystrophin/genetics
- Dystrophin/metabolism
- Female
- Hindlimb
- Humans
- Integrins/genetics
- Integrins/metabolism
- Isoenzymes/genetics
- Joints
- Kyphosis
- Magnetic Resonance Imaging
- Male
- Membrane Proteins/genetics
- Membrane Proteins/metabolism
- Mice
- Mice, Inbred mdx
- Mice, Transgenic
- Microscopy, Fluorescence
- Muscle, Skeletal/pathology
- Muscle, Skeletal/physiopathology
- Muscular Dystrophy, Animal/genetics
- Muscular Dystrophy, Animal/pathology
- Muscular Dystrophy, Animal/physiopathology
- Muscular Dystrophy, Duchenne/genetics
- Muscular Dystrophy, Duchenne/pathology
- Muscular Dystrophy, Duchenne/physiopathology
- Neuromuscular Junction/ultrastructure
- Promoter Regions, Genetic
- Rats
- Receptors, Cholinergic/metabolism
- Receptors, Cholinergic/ultrastructure
- Survival Rate
- Transgenes
- Utrophin
Collapse
Affiliation(s)
- Dean J. Burkin
- Department of Cell and Structural Biology, University of Illinois, Urbana, Illinois 61801
| | - Gregory Q. Wallace
- Department of Cell and Structural Biology, University of Illinois, Urbana, Illinois 61801
| | - Kimberly J. Nicol
- Department of Cell and Structural Biology, University of Illinois, Urbana, Illinois 61801
| | | | - Stephen J. Kaufman
- Department of Cell and Structural Biology, University of Illinois, Urbana, Illinois 61801
| |
Collapse
|
32
|
Pineda AO, Ellington WR. Organization of the gene for an invertebrate mitochondrial creatine kinase: comparisons with genes of higher forms and correlation of exon boundaries with functional domains. Gene 2001; 265:115-21. [PMID: 11255014 DOI: 10.1016/s0378-1119(01)00352-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Two major gene duplication events are thought to have taken place in the evolution of creatine kinases (CK) in the vertebrates - (1) the formation of distinct mitochondrial (MiCK) and cytoplasmic forms from the primordial gene and (2) subsequent formation of the sarcomeric (sar-) and ubiquitous (ubi-) isoforms of octameric MiCK and muscle (M) and brain (B) isoforms of dimeric, cytoplasmic CK. The genes of these two CK clades reflect a distant divergence as sar- and ubiMiCK genes consistently have nine protein-coding exons while M- and B-CK genes have seven protein-coding exons; these genes share only one common exon. CKs are also widely distributed in the invertebrates and it has recently been shown that MiCKs evolved well before the divergence of the major metazoan groups. In the present communication, we report the structure and topology of the gene for MiCK from the protostome marine worm Chaetopterus variopedatus. The protein-coding region of the gene for this primitive MiCK spans over 10 kb and consists of eight exons, the last five (E4-E8) have identical boundaries to the corresponding exons of sar- and ubiMiCK genes. Exon-3 of the C. variopedatus MiCK gene consists of the corresponding E3 and E4 of the vertebrate MiCKs with no intervening intron. E1 is longer and E2 is shorter in the polychaete MiCK gene than the counterpart sarcomeric and ubiquitous genes. The insertion of the intron in C. variopedatus E3 creating the two exons as well as the rearrangement of the intron between E1 and E2 must have occurred prior to or coincident with the duplication event creating the two vertebrate mitochondrial isoforms. Sarcomeric and ubiMiCKs display substantial differences from their invertebrate MiCK counterparts in properties relating to octamer stability and membrane binding. The evolutionary changes in gene topology may be a component of this functional progression.
Collapse
Affiliation(s)
- A O Pineda
- Department of Biological Science and Institute of Molecular Biophysics, Florida State University, 32306-4370, Tallahassee, FL, USA
| | | |
Collapse
|
33
|
Zhang G, Budker V, Williams P, Subbotin V, Wolff JA. Efficient expression of naked dna delivered intraarterially to limb muscles of nonhuman primates. Hum Gene Ther 2001; 12:427-38. [PMID: 11242534 DOI: 10.1089/10430340150504046] [Citation(s) in RCA: 127] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We have previously shown that the intraarterial delivery of naked plasmid DNA (pDNA) into the femoral artery of rats leads to high levels of foreign gene expression throughout the muscles of the hindlimb. The present study shows that the procedure can also enable high levels of foreign gene expression throughout the limb skeletal muscles in rhesus monkeys. The average luciferase expression in the target muscle was 991.5 +/- 187 ng/g for the arm and 1692 +/- 768 ng/g for the leg; compared with 780 ng/g in rat hindlimb. Large numbers of beta-galactosidase-positive myofibers were found in both leg and arm muscles, ranging from less than 1% to more than 30% in various muscles, with an average of 6.9%. The nonhuman primates tolerated the procedure without significant adverse effects in skeletal muscles, arteries, or other organs. Other studies in immunosuppressed rats indicated that stable expression is possible. These results suggest that the procedure is likely to enable efficient and stable gene expression in human muscle without substantial toxicity.
Collapse
Affiliation(s)
- G Zhang
- Department of Pediatrics and Medical Genetics, Waisman Center, Medical School, University of Wisconsin-Madison, 53705, USA
| | | | | | | | | |
Collapse
|
34
|
Briguet A, Ruegg MA. The Ets transcription factor GABP is required for postsynaptic differentiation in vivo. J Neurosci 2000; 20:5989-96. [PMID: 10934247 PMCID: PMC6772583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023] Open
Abstract
At chemical synapses, neurotransmitter receptors are concentrated in the postsynaptic membrane. During the development of the neuromuscular junction, motor neurons induce aggregation of acetylcholine receptors (AChRs) underneath the nerve terminal by the redistribution of existing AChRs and preferential transcription of the AChR subunit genes in subsynaptic myonuclei. Neural agrin, when expressed in nonsynaptic regions of muscle fibers in vivo, activates both mechanisms resulting in the assembly of a fully functional postsynaptic apparatus. Several lines of evidence indicate that synaptic transcription of AChR genes is primarily dependent on a promoter element called N-box. The Ets-related transcription factor growth-associated binding protein (GABP) binds to this motif and has thus been suggested to regulate synaptic gene expression. Here, we assessed the role of GABP in synaptic gene expression and in the formation of postsynaptic specializations in vivo by perturbing its function during postsynaptic differentiation induced by neural agrin. We find that neural agrin-mediated activation of the AChR epsilon subunit promoter is abolished by the inhibition of GABP function. Importantly, the number of AChR aggregates formed in response to neural agrin was strongly reduced. Moreover, aggregates of acetylcholine esterase and utrophin, two additional components of the postsynaptic apparatus, were also reduced. Together, these results are the first direct in vivo evidence that GABP regulates synapse-specific gene expression at the neuromuscular junction and that GABP is required for the formation of a functional postsynaptic apparatus.
Collapse
Affiliation(s)
- A Briguet
- Department of Pharmacology/Neurobiology, Biozentrum, University of Basel, CH-4056 Basel, Switzerland
| | | |
Collapse
|
35
|
Burkin DJ, Kim JE, Gu M, Kaufman SJ. Laminin and alpha7beta1 integrin regulate agrin-induced clustering of acetylcholine receptors. J Cell Sci 2000; 113 ( Pt 16):2877-86. [PMID: 10910772 DOI: 10.1242/jcs.113.16.2877] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The clustering of acetylcholine receptors (AChRs) in the post-synaptic membrane of skeletal muscle is an early developmental event in the formation of the neuromuscular junction. Several studies show that laminin, as well as neural agrin, can induce AChR clustering in C2C12 myofibers. We recently showed that specific isoforms of the alpha7beta1 integrin (a receptor normally found at neuromuscular junctions) colocalize and physically interact with AChR clusters in a laminin-dependent fashion. In contrast, induction with agrin alone fails to promote localization of the integrin with AChR clusters. Together both agrin and laminin enhance the interaction of the integrin with AChRs and their aggregation into clusters. To further understand this mechanism we investigated cluster formation and the association of the alpha7beta1 integrin and AChR over time following induction with laminin and/or agrin. Our results show that the alpha7beta1 integrin associates with AChRs early during the formation of the post-synaptic membrane and that laminin modulates this recruitment. Laminin induces a rapid stable association of the integrin and AChRs and this association is independent of clustering. In addition to laminin-1, merosin (laminin-2/4) is present both before and after formation of neuromuscular junctions and also promotes AChR clustering and colocalization with the integrin as well as synergism with agrin. Using site directed mutagenesis we demonstrate that a tyrosine residue in the cytoplasmic domain of both (α)7A and (α)7B chains regulates the localization of the integrin with AChR clusters. We also provide evidence that laminin, through its association with the alpha7beta1 integrin, reduces by 20-fold the concentration of agrin required to promote AChR clustering and accelerates the formation of clusters. Thus laminin, agrin and the alpha7beta1 integrin act in a concerted manner early in the development of the post-synaptic membrane, with laminin priming newly formed myofibers to rapidly and vigorously respond to low concentrations of neural agrin produced by innervating motor neurons.
Collapse
Affiliation(s)
- D J Burkin
- Department of Cell and Structural Biology, University of Illinois, Urbana, IL 61801, USA
| | | | | | | |
Collapse
|
36
|
Hauser MA, Robinson A, Hartigan-O'Connor D, Williams-Gregory DA, Buskin JN, Apone S, Kirk CJ, Hardy S, Hauschka SD, Chamberlain JS. Analysis of muscle creatine kinase regulatory elements in recombinant adenoviral vectors. Mol Ther 2000; 2:16-25. [PMID: 10899824 DOI: 10.1006/mthe.2000.0089] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Adenoviral gene transfer holds promise for gene therapy, but effective transduction of a large and distributed tissue such as muscle will almost certainly require systemic delivery. In this context, the use of muscle-specific regulatory elements such as the muscle creatine kinase (MCK) promoter and enhancer will avoid potentially harmful ectopic expression of transgenes. We describe here the development and testing of adenoviral vectors containing small, striated muscle-specific, highly active MCK expression cassettes. One of these regulatory elements (CK6) is less than 600 bp in length and is 12% as active as the CMV promoter/enhancer in muscle. A recombinant adenoviral vector containing this regulatory element retains very high muscle specificity, expressing 600-fold higher levels of transgene in muscle than in liver. Muscle-specific regulatory elements may also increase persistence of transduced muscle cells. Adenoviral transduction of dendritic cells has been shown to stimulate cytotoxic T-lymphocyte (CTL) responses directed against transgene epitopes. We show that human dendritic cells infected in vitro with MCK-containing adenoviruses do not express significant levels of transgene. Furthermore, while adenoviral vectors containing nonspecific promoters are normally cleared from muscle tissue within 1 month, we show that MCK-containing vectors express significant levels of transgene 4 months after intramuscular injection.
Collapse
Affiliation(s)
- M A Hauser
- Department of Human Genetics and Center for Gene Therapy, University ofMichigan, Ann Arbor, MI 48109, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Zhu X, Hadhazy M, Wehling M, Tidball JG, McNally EM. Dominant negative myostatin produces hypertrophy without hyperplasia in muscle. FEBS Lett 2000; 474:71-5. [PMID: 10828454 DOI: 10.1016/s0014-5793(00)01570-2] [Citation(s) in RCA: 173] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Myostatin, a TGF-beta family member, is a negative regulator of muscle growth. Here, we generated transgenic mice that expressed myostatin mutated at its cleavage site under the control of a muscle specific promoter creating a dominant negative myostatin. These mice exhibited a significant (20-35%) increase in muscle mass that resulted from myofiber hypertrophy and not from myofiber hyperplasia. We also evaluated the role of myostatin in muscle degenerative states, such as muscular dystrophy, and found significant downregulation of myostatin. Thus, further inhibition of myostatin may permit increased muscle growth in muscle degenerative disorders.
Collapse
Affiliation(s)
- X Zhu
- Department of Medicine, Section of Cardiology, University of Chicago, IL 60637, USA
| | | | | | | | | |
Collapse
|
38
|
Gebhard JR, Zhu J, Cao X, Minnick J, Araneo BA. DNA immunization utilizing a herpes simplex virus type 2 myogenic DNA vaccine protects mice from mortality and prevents genital herpes. Vaccine 2000; 18:1837-46. [PMID: 10699332 DOI: 10.1016/s0264-410x(99)00418-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A gene transfer vector for DNA immunization was developed in which the promoter was derived from the murine muscle creatine kinase (MCK) gene; a gene expressed only in differentiated skeletal muscle. In vitro, we observed high-level, but unrestricted, gene expression from the cytomegalovirus (CMV) promoter unlike expression from the MCK promoter which was weak but restricted to myofibers. A myogenic DNA vaccine (MDV) that encoded the glycoprotein D gene from herpes simplex virus type-2 (HSV-2) was used to DNA immunize mice. MDV immunization resulted in virus specific immunity that protected HSV-2 infected mice from mortality and prevented the development of genital herpes. Therefore, we conclude that high-level gene expression or the use of a strong transcription unit was not a prerequisite for an efficacious DNA vaccine and the use of a nonviral tissue specific promoter could suffice.
Collapse
Affiliation(s)
- J R Gebhard
- DNA Vaccines and Gene Transfer, Pharmadigm Inc, 2401 Foothill Drive, Salt Lake City, UT 84109, USA.
| | | | | | | | | |
Collapse
|
39
|
Cordier L, Hack AA, Scott MO, Barton-Davis ER, Gao G, Wilson JM, McNally EM, Sweeney HL. Rescue of skeletal muscles of gamma-sarcoglycan-deficient mice with adeno-associated virus-mediated gene transfer. Mol Ther 2000; 1:119-29. [PMID: 10933922 DOI: 10.1006/mthe.1999.0019] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In humans, a subset of cases of Limb-girdle muscular dystrophy (LGMD) arise from mutations in the genes encoding one of the sarcoglycan (alpha, beta, gamma, or delta) subunits of the dystrophin-glycoprotein complex. While adeno-associated virus (AAV) is a potential gene therapy vector for these dystrophies, it is unclear if AAV can be used if a diseased muscle is undergoing rapid degeneration and necrosis. The skeletal muscles of mice lacking gamma-sarcoglycan (gsg-/- mice) differ from the animal models that have been evaluated to date in that the severity of the skeletal muscle pathology is much greater and more representative of that of humans with muscular dystrophy. Following direct muscle injection of a recombinant AAV [in which human gamma-sarcoglycan expression is driven by a truncated muscle creatine kinase (MCK) promoter/enhancer], we observed significant numbers of muscle fibers expressing gamma-sarcoglycan and an overall improvement of the histologic pattern of dystrophy. However, these results could be achieved only if injections into the muscle were prior to the development of significant fibrosis in the muscle. The results presented in this report show promise for AAV gene therapy for LGMD, but underscore the need for intervention early in the time course of the disease process.
Collapse
MESH Headings
- Age Factors
- Animals
- Animals, Newborn
- Blotting, Western
- Cell Line
- Creatine Kinase/genetics
- Cytoskeletal Proteins/deficiency
- Cytoskeletal Proteins/genetics
- Cytoskeletal Proteins/metabolism
- DNA, Complementary/metabolism
- Dependovirus/genetics
- Enhancer Elements, Genetic
- Exons
- Fibroblasts/metabolism
- Fluorescent Antibody Technique
- Gene Transfer Techniques
- Genetic Vectors
- Humans
- Introns
- Membrane Glycoproteins/deficiency
- Membrane Glycoproteins/genetics
- Membrane Glycoproteins/metabolism
- Mice
- Mice, Mutant Strains
- Muscle, Skeletal/enzymology
- Muscle, Skeletal/metabolism
- Muscular Dystrophies/genetics
- Muscular Dystrophies/therapy
- Phenotype
- Promoter Regions, Genetic
- Recombination, Genetic
- Sarcoglycans
- Time Factors
- Transduction, Genetic
Collapse
Affiliation(s)
- L Cordier
- Department of Physiology, University of Pennsylvania School of Medicine, Philadelphia 19104-6085, USA
| | | | | | | | | | | | | | | |
Collapse
|
40
|
van Maanen MH, Fournier PA, Palmer TN, Abraham LJ. Characterization of the human glycogenin-1 gene: identification of a muscle-specific regulatory domain. Gene X 1999; 234:217-26. [PMID: 10395894 DOI: 10.1016/s0378-1119(99)00211-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
Abstract
The de-novo synthesis of glycogen is now known to involve a novel class of self-glucosylating protein primers. In mammalian skeletal muscle, glycogenin-1 is the protein responsible for this initiation step. Northern blot analysis revealed that glycogenin-1 gene transcription is differentially regulated in the C2C12 mouse muscle cell line. To define the regulatory elements that control expression of the glycogenin-1 gene, we have cloned and characterized the genomic structure of the human glycogenin-1 gene and its promoter region. This gene consists of seven exons and six introns, and spans over 13kb. Transcription of human glycogenin-1 is initiated at two major sites, 80 and 86bp upstream from the initiation of translation codon. Nucleotide sequence analysis of 2.1kb of the 5'-flanking region revealed the proximal promoter contains both a TATA box and two putative Sp1 binding sites located in a CpG island. There are numerous binding sites for developmental and cell-type-specific transcription factors, including AP-1, AP-2, GATA, and several potential Oct 1 binding domains. There are also nine consensus E-boxes that bind the basic helix-loop-helix family of muscle-specific transcription factors. The transcriptional activity of the glycogenin-1 gene was investigated by transient transfection of the 5'-flanking region in HepG2 cells and C2C12 myoblasts and myotubes. These results permitted the definition of a minimal 232bp promoter fragment that is responsible for basal level transcription in a cell-type-independent manner. Furthermore, we have identified a regulatory region located between -2076 and -1736 of the 5'-flanking region of the human glycogenin-1 gene that allows myotube-specific expression in C2C12 cells.
Collapse
Affiliation(s)
- M H van Maanen
- Department of Biochemistry, University of Western Australia, Nedlands, Western Australia, 6907, Australia
| | | | | | | |
Collapse
|
41
|
Burkin DJ, Gu M, Hodges BL, Campanelli JT, Kaufman SJ. A functional role for specific spliced variants of the alpha7beta1 integrin in acetylcholine receptor clustering. J Cell Biol 1998; 143:1067-75. [PMID: 9817762 PMCID: PMC2132957 DOI: 10.1083/jcb.143.4.1067] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The clustering of acetylcholine receptors (AChR) on skeletal muscle fibers is an early event in the formation of neuromuscular junctions. Recent studies show that laminin as well as agrin can induce AChR clustering. Since the alpha7beta1 integrin is a major laminin receptor in skeletal muscle, we determined if this integrin participates in laminin and/or agrin-induced AChR clustering. The alternative cytoplasmic domain variants, alpha7A and alpha7B, and the extracellular spliced forms, alpha7X1 and alpha7X2, were studied for their ability to engage in AChR clustering. Immunofluorescence microscopy of C2C12 myofibers shows that the alpha7beta1 integrin colocalizes with laminin-induced AChR clusters and to a much lesser extent with agrin-induced AChR clusters. However, together laminin and agrin promote a synergistic response and all AChR colocalize with the integrin. Laminin also induces the physical association of the integrin and AChR. High concentrations of anti-alpha7 antibodies inhibit colocalization of the integrin with AChR clusters as well as the enhanced response promoted by both laminin and agrin. Engaging the integrin with low concentrations of anti-alpha7 antibody initiates cluster formation in the absence of agrin or laminin. Whereas both the alpha7A and alpha7B cytoplasmic domain variants cluster with AChR, only those isoforms containing the alpha7X2 extracellular domain were active. These results demonstrate that the alpha7beta1 integrin has a physiologic role in laminin-induced AChR clustering, that alternative splicing is integral to this function of the alpha7 chain, and that laminin, agrin, and the alpha7beta1 integrin interact in a common or convergent pathway in the formation of neuromuscular junctions.
Collapse
Affiliation(s)
- D J Burkin
- Department of Cell and Structural Biology, University of Illinois, Urbana, Illinois 61801, USA
| | | | | | | | | |
Collapse
|
42
|
Qin W, Khuchua Z, Cheng J, Boero J, Payne RM, Strauss AW. Molecular characterization of the creatine kinases and some historical perspectives. Mol Cell Biochem 1998; 184:153-67. [PMID: 9746319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Over the last 15 years, molecular characterization of the creatine kinase (CK) gene family has paralleled the molecular revolution of understanding gene structure, function, and regulation. In this review, we present a summary of advances in molecular analysis of the CK gene family with a few vignettes of historical interest. We describe how the muscle CK gene provided an essential model system to examine myogenic regulatory mechanisms, leading to the discovery of the binding site for the MyoD family of basic helix-loop-helix transcription factors essential in skeletal myogenesis and the characterization of the MEF2 family of factors with an A/T rich consensus binding site essential in skeletal myogenesis and cardiogenesis. Cloning and characterization of the four mRNAs and nuclear genes encoding the cytosolic CKs, muscle and brain CKs, and the mitochondrial (Mt) CKs, sarcomeric MtCK and ubiquitous MtCK, has allowed intriguing study of tissue-specific and cell-specific expression of the different CKs and analysis of structural, functional, regulatory, and evolutionary relationships among both the four CK proteins and genes. Current and future studies focus on understanding both cellular energetics facilitated by the CK enzymes, especially energy channelling from the site of production, the mitochondrial matrix and inner membrane, to various cytosolic foci of utilization, and regulation of MtCK gene expression at the cell and tissue-specific level as models of regulation of energy producing genes.
Collapse
Affiliation(s)
- W Qin
- Department of Pediatrics, Washington University School of Medicine and St. Louis Children's Hospital, MO 63110, USA
| | | | | | | | | | | |
Collapse
|
43
|
Rolland AP, Mumper RJ. Plasmid delivery to muscle: Recent advances in polymer delivery systems. Adv Drug Deliv Rev 1998; 30:151-172. [PMID: 10837608 DOI: 10.1016/s0169-409x(97)00113-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Preclinical studies involving intramuscular injection of plasmid into animals have revealed at least four significant variables that effect levels of gene expression (i.e., >fivefold effect over controls), including the formulation, injection technique, species and pretreatment of the muscle with myotoxic agents to induce muscle damage. The uptake of plasmid formulated in saline has been shown to be a saturable process, most likely via a receptor-mediated event involving the T tubules and caveolae. Pharmacokinetic studies have demonstrated that the bioavailability of injected plasmid to muscle cells is very low, due to rapid and extensive plasmid degradation by extracellular nucleases. We have developed protective, interactive, non-condensing (PINC) delivery systems designed to complex plasmids and to (i) protect plasmids from rapid nuclease degradation, (ii) disperse and retain intact plasmid in the muscle and (iii) facilitate the uptake of plasmid by muscle cells. PINC systems result in up to at least a one log increase in both the extent and levels of gene expression over plasmid formulated in saline. We have combined the PINC delivery systems with two different muscle-specific expression plasmids. After direct intramuscular injection of these gene medicines, we have shown both local myotrophic and neurotrophic effects of expressed human insulin-like growth factor (hIGF-I) and the secretion of biologically active human growth hormone (hGH) into the systemic circulation.
Collapse
Affiliation(s)
- AP Rolland
- GeneMedicine, Inc., 8301 New Trails Drive, The Woodlands, TX 77381-4248, USA
| | | |
Collapse
|
44
|
Froman BE, Tait RC, Gorin FA. Role of E and CArG boxes in developmental regulation of muscle glycogen phosphorylase promoter during myogenesis. DNA Cell Biol 1998; 17:105-15. [PMID: 9502427 DOI: 10.1089/dna.1998.17.105] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Muscle glycogen phosphorylase (MGP) transcript and protein levels increase during skeletal muscle development in tandem with the products of other muscle genes responsible for glucose and glycogen metabolism. Previous studies demonstrated that a 269 bp region 5' to exon 1 of MGP is sufficient for developmental regulation in the C2C12 myogenic cell line (Froman et al., 1994). This genomic region (-209 to +60) contains four consensus E box motifs, a CArG-like sequence, and a GC-rich domain. Native MGP transcripts were not detected in pluripotent CH310T1/2 fibroblasts, but low levels of MGP mRNA were measured in CH310T1/2 cells that were stably transfected with MyoD. Three of the E box motifs in the MGP proximal promoter interacted with C2C12 nuclear proteins. However, cotransfection of the MGP promoter with myogenic regulatory factors, including MyoD and myogenin, produced less than 2-fold activation compared with 20-fold activation of the desmin promoter. Mutational analyses of the MGP promoter demonstrated that increased expression in C2C12 myotubes did not require any of the E box motifs or the CArG-like element. A small region (-76 to -68) upstream of GC-rich domain (-64 to -51) significantly reduced promoter activities in both myoblasts and myotubes. The functional studies suggest that MGP is developmentally regulated during myogenesis by alternative pathways that utilize unidentified regulatory elements or ancillary factors.
Collapse
Affiliation(s)
- B E Froman
- Department of Neurology/Center for the Neurosciences, University of California Davis, 95616-8647, USA
| | | | | |
Collapse
|
45
|
Abstract
MRF4 is a muscle-specific transcription factor that is expressed both in embryonic somites and later in fetal and adult muscle fibers. Cis-regulatory elements of the MRF4 gene responsible for its complex expression pattern have not yet been identified, although previous studies of the rat MRF4 gene have demonstrated the presence of enhancer activity located several kilobases 5' to the transcription start site. Using cell transfection assays in vitro, we have now localized one of the regulatory regions of MRF4 to a 590-base-pair sequence between 4 and 5 kilobases upstream from the start site. This sequence region functioned as an enhancer in combination either with the MRF4 promoter or with the viral thymidine kinase (tk) promoter. Deletion analysis of MRF4 indicated the existence of another regulatory region, closer to the promoter, which functioned as an enhancer in combination with the MRF4 promoter but not with the tk promoter.
Collapse
Affiliation(s)
- C M Kerkvliet
- Biomedical Program and Department of Biological Sciences, University of Alaska Anchorage, 99508, USA
| | | |
Collapse
|
46
|
Hoang CD, Zhang J, Payne RM, Apple FS. Post-infarction left ventricular remodeling induces changes in creatine kinase mRNA and protein subunit levels in porcine myocardium. THE AMERICAN JOURNAL OF PATHOLOGY 1997; 151:257-64. [PMID: 9212750 PMCID: PMC1857922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Energy metabolism is altered in post-infarction remodeled pig myocardium. To understand the basis of this abnormality, we examined the pattern of creatine kinase (CK) gene expression and the relative content of CK protein subunits in pig hearts with proximal left circumflex coronary artery ligation. At 2 months after infarct, both Northern and Western blot analyses were performed on left ventricular myocardium remote from the infarct zone in ligation animals (n = 8). Results were compared with data from the left ventricular myocardium from similar sized normal (control) pigs (n = 7). Steady-state levels of mitochondrial CK mRNA decreased 46% in left ventricular remodeled (LVR) heart samples (93.40 +/- 18.60 arbitrary units) compared with controls (172.85 +/- 37.20 arbitrary units), whereas CK-M subunit mRNA levels remained unchanged between the control and LVR groups (319.50 +/- 35.25 and 352.50 +/- 62.18 arbitrary units, respectively). The mean control group CK-M protein subunits (2.04 +/- 0.31 arbitrary units) decreased 53% (P < 0.05) compared with the LVR group (0.95 +/- 0.25 arbitrary units). Similarly, the mean control group (n = 4) mitochondrial CK protein subunits (1.12 +/- 0.04 arbitrary units) decreased 30% (P < 0.05) compared with the LVR group (n = 4; 0.79 +/- 0.06 arbitrary units). Mean CK-B protein subunits in LVR pig hearts (0.84 +/- 0.23 arbitrary units) increased 77% compared with control (0.48 +/- 0.05 arbitrary units). The total CK activity did not change significantly between control hearts at 164 +/- 11 IU/mg and LVR at 212 +/- 32 IU/mg. We suggest that these alterations of the CK system represent the bioenergetic phenotype of LVR myocardium at the molecular level. The CK system response may ultimately prove inadequate in meeting the abnormal energy requirements of remodeled heart and, therefore, may contribute to the transition toward failure.
Collapse
Affiliation(s)
- C D Hoang
- Department of Laboratory Medicine, Hennepin County Medical Center, Minneapolis, Minnesota 55415, USA
| | | | | | | |
Collapse
|
47
|
Stewart CE, James PL, Fant ME, Rotwein P. Overexpression of insulin-like growth factor-II induces accelerated myoblast differentiation. J Cell Physiol 1996; 169:23-32. [PMID: 8841419 DOI: 10.1002/(sici)1097-4652(199610)169:1<23::aid-jcp3>3.0.co;2-g] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Previous studies have shown that exogenous insulin-like growth factors (IGFs) can stimulate the terminal differentiation of skeletal myoblasts in culture and have established a correlation between the rate and the extent of IGF-II secretion by muscle cell lines and the rate of biochemical and morphological differentiation. To investigate the hypothesis that autocrine secretion of IGF-II plays a critical role in stimulating spontaneous myogenic differentiation in vitro, we have established C2 muscle cell lines that stably express a mouse IGF-II cDNA under control of the strong, constitutively active Moloney sarcoma virus promoter, enabling us to study directly the effects of IGF-II overproduction. Similar to observations with other muscle cell lines, IGF-II overexpressing myoblasts proliferated normally in growth medium containing 20% fetal serum, but they underwent enhanced differentiation compared with controls when incubated in low-serum differentiation medium. Accelerated differentiation of IGF-II overexpressing C2 cells was preceded by the rapid induction of myogenin mRNA and protein expression (within 1 h, compared with 24-48 h in controls) and was accompanied by an enhanced proportion of the retinoblastoma protein in an underphosphrylated and potentially active form, by a marked increase in activity of the muscle-specific enzyme, creatine phosphokinase, by extensive myotube formation by 48 h, and by elevated secretion of IGF binding protein-5 when compared with controls. These results confirm a role for IGF-II as an autocrine/paracrine differentiation factor for skeletal myoblasts, and they define a model cell system that will be useful in determining the biochemical mechanisms of IGF action in cellular differentiation.
Collapse
Affiliation(s)
- C E Stewart
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | |
Collapse
|
48
|
Walke W, Xiao G, Goldman D. Identification and characterization of a 47 base pair activity-dependent enhancer of the rat nicotinic acetylcholine receptor delta-subunit promoter. J Neurosci 1996; 16:3641-51. [PMID: 8642408 PMCID: PMC6578826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Nicotinic acetylcholine receptor (nAChR) genes are regulated by muscle electrical activity. E-box sequences found in their promoters are necessary for this regulation. However, many muscle genes contain E-boxes, yet are not regulated by muscle depolarization. This suggests that other elements are necessary, perhaps working in conjunction with E-boxes, to confer depolarization-dependent control onto promoter activity. We have used direct DNA injection into muscle as an in vivo assay to identify and characterize these additional elements. Mutagenesis and expression assays identified multiple elements within the first 81 base pairs (bp) of the nAChR delta-subunit promoter that contribute to its regulation by muscle electrical activity. Within this 81 bp sequence, two regions of DNA were identified that were capable of conferring activity-dependent regulation onto a heterologous promoter. The stronger of these two putative enhancers was characterized further. It is a 47 bp sequence that contains an E-box along with sequences similar to the SV40 core enhancer and an SP1 site. Site-directed mutagenesis identified residues within each of these sequences that were necessary for enhancer activity. Furthermore, methylation interference DNA footprinting assays showed increased nuclear protein binding to sequences within both these enhancers after muscle denervation, and this pattern of binding was very similar to that observed with nuclear protein isolated from myotube extracts. These latter results suggest that similar mechanisms may mediate increased nAChR expression during muscle development and after muscle denervation.
Collapse
Affiliation(s)
- W Walke
- Department of Biological Chemistry, University of Michigan, Ann Arbor 48109, USA
| | | | | |
Collapse
|
49
|
|
50
|
Cox GA, Sunada Y, Campbell KP, Chamberlain JS. Dp71 can restore the dystrophin-associated glycoprotein complex in muscle but fails to prevent dystrophy. Nat Genet 1994; 8:333-9. [PMID: 7894482 DOI: 10.1038/ng1294-333] [Citation(s) in RCA: 128] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Two lines of transgenic mdx mice have been generated that express a 71 kD non-muscle isoform of dystrophin (Dp71) in skeletal muscle. This isoform contains the cysteine-rich and C-terminal domains of dystrophin, but lacks the N-terminal actin-binding and central spectrin-like repeat domains. Dp71 was associated with the sarcolemma membrane, where it restored normal expression and localization of all members of the dystrophin-associated glycoprotein complex. However, the skeletal muscle pathology of the transgenic mdx mice remained severe. These results indicate that the dystrophin C terminus cannot function independently to prevent dystrophic symptoms and confirms predictions based on patient data that both the N and C-terminal domains are required for normal dystrophin function.
Collapse
Affiliation(s)
- G A Cox
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor 48109-0618
| | | | | | | |
Collapse
|