1
|
Zhao ZC, Jiang MY, Huang JH, Lin C, Guo WL, Zhong ZH, Huang QQ, Liu SL, Deng HW, Zhou YC. Honokiol induces apoptosis-like death in Cryptocaryon irritans Tomont. Parasit Vectors 2023; 16:287. [PMID: 37587480 PMCID: PMC10428556 DOI: 10.1186/s13071-023-05910-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 07/31/2023] [Indexed: 08/18/2023] Open
Abstract
BACKGROUND Cryptocaryon irritans, a common parasite in tropical and subtropical marine teleost fish, has caused serious harm to the marine aquaculture industry. Honokiol was proven to induce C. irritans tomont cytoplasm shrinkage and death in our previous study, but the mechanism by which it works remains unknown. METHODS In this study, the changes of apoptotic morphology and apoptotic ratio were detected by microscopic observation and AnnexinV-FITC/PI staining. The effects of honokiol on intracellular calcium ([Ca2+]i) concentration, mitochondrial membrane potential (ΔΨm), reactive oxygen species (ROS), quantity of DNA fragmentations (QDF) and caspase activities were detected by Fluo-3 staining, JC-1 staining, DCFH-DA staining, Tunel method and caspase activity assay kit. The effects of honokiol on mRNA expression levels of 61 apoptosis-related genes in tomonts of C. irritans were detected by real-time PCR. RESULTS The results of the study on the effects of honokiol concentration on C. irritans tomont apoptosis-like death showed that the highest levels of prophase apoptosis-like death rate (PADR), [Ca2+]i concentration, ROS, the activities of caspase-3/9 and the lowest necrosis ratio (NER) were obtained at a concentration of 1 μg/ml, which was considered the most suitable for inducing C. irritans tomont apoptosis-like death. When C. irritans tomonts were treated with 1 μg/ml honokiol, the [Ca2+]i concentration began to increase significantly at 1 h. Following this, the ROS, QDF and activities of caspase-3/9 began to increase significantly, and the ΔΨm began to decrease significantly at 2 h; the highest PADR was obtained at 4 h. The mRNA expression of 14 genes was significantly upregulated during honokiol treatment. Of these genes, itpr2, capn1, mc, actg1, actb, parp2, traf2 and fos were enriched in the pathway related to apoptosis induced by endoplasmic reticulum (ER) stress. CONCLUSIONS This article shows that honokiol can induce C. irritans tomont apoptosis-like death. These results suggest that honokiol may disrupt [Ca2+]i homeostasis in ER and then induce C. irritans tomont apoptosis-like death by caspase cascade or mitochondrial pathway, which might represent a novel therapeutic intervention for C. irritans infection.
Collapse
Affiliation(s)
- Zi-Chen Zhao
- Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, College of Marine Science, Hainan University, Haikou, 570228, People's Republic of China
- School of Life Sciences, Hainan University, Haikou, 570228, People's Republic of China
| | - Man-Yi Jiang
- Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, College of Marine Science, Hainan University, Haikou, 570228, People's Republic of China
| | - Ji-Hui Huang
- Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, College of Marine Science, Hainan University, Haikou, 570228, People's Republic of China
- Technology Center of Haikou Customs District, Haikou, 570105, People's Republic of China
| | - Chuan Lin
- Aquaculture Department, Hainan Agriculture School, Haikou, 571101, People's Republic of China
| | - Wei-Liang Guo
- Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, College of Marine Science, Hainan University, Haikou, 570228, People's Republic of China.
| | - Zhi-Hong Zhong
- Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, College of Marine Science, Hainan University, Haikou, 570228, People's Republic of China
| | - Qing-Qin Huang
- Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, College of Marine Science, Hainan University, Haikou, 570228, People's Republic of China
| | - Shao-Long Liu
- Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, College of Marine Science, Hainan University, Haikou, 570228, People's Republic of China
| | - Heng-Wei Deng
- Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, College of Marine Science, Hainan University, Haikou, 570228, People's Republic of China
| | - Yong-Can Zhou
- Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, College of Marine Science, Hainan University, Haikou, 570228, People's Republic of China.
| |
Collapse
|
2
|
Glyakina AV, Galzitskaya OV. Structural and functional analysis of actin point mutations leading to nemaline myopathy to elucidate their role in actin function. Biophys Rev 2022; 14:1527-1538. [PMID: 36659996 PMCID: PMC9842827 DOI: 10.1007/s12551-022-01027-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/15/2022] [Indexed: 12/15/2022] Open
Abstract
In this work, we analyzed 78 mutations in the actin protein that cause the disease nemaline myopathy. We analyzed how these mutations are distributed in important regions of the actin molecule (folding nucleus, core of the filament, amyloidogenic regions, disordered regions, regions involved in interaction with other proteins). It was found that 54 mutations (43 residues) fall into the folding nucleus (Ф ≥ 0.5), 11 mutations (10 residues) into the filament core, 14 mutations into the amyloidogenic regions (11 residues), 14 mutations (9 residues) in the unstructured regions, and 24 mutations (22 residues) in regions involved in interaction with other proteins. It was also found that the occurrence of single mutations G44V, V45F, T68I, P72R, K338I and S350L leads to the appearance of new amyloidogenic regions that are not present in native actin. The largest number of mutations (54 out of 78) occurs in the folding nucleus; these mutations are important for folding and therefore can affect the protein folding rate. We have shown that almost all of the considered mutations are associated with the structural characteristics of the actin molecule, and some of the residues we have considered have several important characteristics.
Collapse
Affiliation(s)
- Anna V. Glyakina
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Russia ,Institute of Mathematical Problems of Biology RAS, Keldysh Institute of Applied Mathematics, Russian Academy of Sciences, Pushchino, Russia
| | - Oxana V. Galzitskaya
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Russia ,Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Russia
| |
Collapse
|
3
|
Glyakina AV, Galzitskaya OV. Bioinformatics Analysis of Actin Molecules: Why Quantity Does Not Translate Into Quality? Front Genet 2020; 11:617763. [PMID: 33362870 PMCID: PMC7758494 DOI: 10.3389/fgene.2020.617763] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 11/20/2020] [Indexed: 11/13/2022] Open
Abstract
It is time to review all the available data and find the distinctive characteristics of actin that make it such an important cell molecule. The presented double-stranded organization of filamentous actin cannot explain the strong polymorphism of actin fibrils. In this work, we performed bioinformatics analysis of a set of 296 amino acid actin sequences from representatives of different classes of the Chordate type. Based on the results of the analysis, the degree of conservatism of the primary structure of this protein in representatives of the Chordate type was determined. In addition, 155 structures of rabbit actin obtained using X-ray diffraction analysis and electron microscopy have been analyzed over the past 30 years. From pairwise alignments and the calculation of root-mean-square deviations (RMSDs) for these structures, it follows that they are very similar to each other without correlation with the structure resolution and the reconstruction method: the RMSDs for 11,781 pairs did not exceed 3 Å. It turned out that in rabbit actin most of the charged amino acid residues are located inside the protein, which is not typical for the protein structure. We found that two of six exon regions correspond to structural subdomains. To test the double-stranded organization of the actin structure, it is necessary to use new approaches and new techniques, taking into account our new data obtained from the structural analysis of actin.
Collapse
Affiliation(s)
- Anna V Glyakina
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Russia.,Institute of Mathematical Problems of Biology RAS, Keldysh Institute of Applied Mathematics, Russian Academy of Sciences, Pushchino, Russia
| | - Oxana V Galzitskaya
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Russia.,Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Russia
| |
Collapse
|
4
|
Zarrinkalam KH, Leavesley DI, Stanley JM, Atkins GJ, Faull RJ. Expression of Defensin Antimicrobial Peptides in the Peritoneal Cavity of Patients on Peritoneal Dialysis. Perit Dial Int 2020. [DOI: 10.1177/089686080102100512] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Objective To investigate the expression and regulation of defensins in the peritoneal cavity of peritoneal dialysis (PD) patients. Design The presence of defensins in the peritoneal cavity was assessed using reverse transcription polymerase chain reaction (RT-PCR). In vivo defensin expression was analyzed in human peritoneal membrane biopsies and in peritoneal cavity leukocytes isolated from spent dialysate. Defensin expression in vitro was assessed in cultured human peritoneal mesothelial cells (HPMC) and confirmed with PCR Southern blot and DNA sequencing. The effect of tumor necrosis factor alpha (TNFa) and epidermal growth factor (EGF) on b2 defensin expression in HPMC was analyzed by Northern blot analysis and RT-PCR respectively. Results Both a and b classes of defensins are expressed in the peritoneal cavity of PD patients. Messenger RNA for the a-defensin human neutrophil peptide 3 and for b-defensin-1 (hbD-1) were found in preparations containing predominantly peritoneal leukocytes, whereas b-defensin-2 (hbD-2) is expressed by HPMC. HPMC isolated from different individuals displayed variability in both basal hbD-2 expression and in response to stimulation by TNFa. Conversely, EGF consistently downregulated the level of hbD-2 message in HPMC. Conclusion a- and b-defensins are expressed in the peritoneal cavity, and hbD-2 is the main defensin present in the peritoneal membrane. Variable levels of expression of hbD-2 by mesothelial cells were seen, with evidence of regulation by cytokines and growth factors. This provides evidence for a previously unknown mechanism of innate immunity at that site.
Collapse
Affiliation(s)
- Krystyna H. Zarrinkalam
- Department of Renal Medicine, Department of Orthopaedic Surgery and Trauma, Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | - David I. Leavesley
- Department of Renal Medicine, Department of Orthopaedic Surgery and Trauma, Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | - Jodie M. Stanley
- Department of Renal Medicine, Department of Orthopaedic Surgery and Trauma, Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | - Gerald J. Atkins
- Department of Renal Medicine, Department of Orthopaedic Surgery and Trauma, Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | - Randall J. Faull
- Department of Renal Medicine, Department of Orthopaedic Surgery and Trauma, Royal Adelaide Hospital, Adelaide, South Australia, Australia
| |
Collapse
|
5
|
Kashina AS. Regulation of actin isoforms in cellular and developmental processes. Semin Cell Dev Biol 2020; 102:113-121. [PMID: 32001148 DOI: 10.1016/j.semcdb.2019.12.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 12/02/2019] [Accepted: 12/02/2019] [Indexed: 12/18/2022]
Abstract
Actin is one of the most abundant and essential intracellular proteins that mediates nearly every form of cellular movement and underlies such key processes as embryogenesis, tissue integrity, cell division and contractility of all types of muscle and non-muscle cells. In mammals, actin is represented by six isoforms, which are encoded by different genes but produce proteins that are 95-99 % identical to each other. The six actin genes have vastly different functions in vivo, and the small amino acid differences between the proteins they encode are rigorously maintained through evolution, but the underlying differences behind this distinction, as well as the importance of specific amino acid sequences for each actin isoform, are not well understood. This review summarizes different levels of actin isoform-specific regulation in cellular and developmental processes, starting with the nuclear actin's role in transcription, and covering the gene-level, mRNA-level, and protein-level regulation, with a special focus on mammalian actins in non-muscle cells.
Collapse
Affiliation(s)
- Anna S Kashina
- University of Pennsylvania, Philadelphia, PA, 19104, United States.
| |
Collapse
|
6
|
Rodriguez A, Kashina A. Posttranscriptional and Posttranslational Regulation of Actin. Anat Rec (Hoboken) 2018; 301:1991-1998. [PMID: 30312009 DOI: 10.1002/ar.23958] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 04/12/2018] [Accepted: 04/14/2018] [Indexed: 12/14/2022]
Abstract
Actin is one of the most abundant intracellular proteins, essential in every eukaryotic cell type. Actin plays key roles in tissue morphogenesis, cell adhesion, muscle contraction, and developmental reprogramming. Most actin studies have focused on its regulation at the protein level, either directly or through differential interactions with over a hundred intracellular binding partners. However, numerous studies emerging in recent years demonstrate specific types of nucleotide-level regulation that strongly affect non-muscle actins during cell migration and adhesion and are potentially applicable to other members of the actin family. This regulation involves zipcode-mediated actin mRNA targeting to the cell periphery, proposed to mediate local synthesis of actin at the cell leading edge, as well as the recently discovered N-terminal arginylation that specifically targets non-muscle β-actin via a nucleotide-dependent mechanism. Moreover, a study published this year suggests that actin's essential roles at the organismal level may be entirely nucleotide-dependent. This review summarizes the emerging data on actin's nucleotide-level regulation. Anat Rec, 301:1991-1998, 2018. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Alexis Rodriguez
- Department of Biological Sciences, Rutgers University, Newark, New Jersey
| | - Anna Kashina
- Department of Biomedical Sciences, University of Pennsylvania, School of Veterinary Medicine, Philadelphia, Pennsylvania
| |
Collapse
|
7
|
Vedula P, Kashina A. The makings of the 'actin code': regulation of actin's biological function at the amino acid and nucleotide level. J Cell Sci 2018; 131:131/9/jcs215509. [PMID: 29739859 DOI: 10.1242/jcs.215509] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The actin cytoskeleton plays key roles in every eukaryotic cell and is essential for cell adhesion, migration, mechanosensing, and contractility in muscle and non-muscle tissues. In higher vertebrates, from birds through to mammals, actin is represented by a family of six conserved genes. Although these genes have evolved independently for more than 100 million years, they encode proteins with ≥94% sequence identity, which are differentially expressed in different tissues, and tightly regulated throughout embryogenesis and adulthood. It has been previously suggested that the existence of such similar actin genes is a fail-safe mechanism to preserve the essential function of actin through redundancy. However, knockout studies in mice and other organisms demonstrate that the different actins have distinct biological roles. The mechanisms maintaining this distinction have been debated in the literature for decades. This Review summarizes data on the functional regulation of different actin isoforms, and the mechanisms that lead to their different biological roles in vivo We focus here on recent studies demonstrating that at least some actin functions are regulated beyond the amino acid level at the level of the actin nucleotide sequence.
Collapse
Affiliation(s)
- Pavan Vedula
- Department of Biomedical Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Anna Kashina
- Department of Biomedical Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
8
|
Skruber K, Read TA, Vitriol EA. Reconsidering an active role for G-actin in cytoskeletal regulation. J Cell Sci 2018; 131:131/1/jcs203760. [PMID: 29321224 DOI: 10.1242/jcs.203760] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Globular (G)-actin, the actin monomer, assembles into polarized filaments that form networks that can provide structural support, generate force and organize the cell. Many of these structures are highly dynamic and to maintain them, the cell relies on a large reserve of monomers. Classically, the G-actin pool has been thought of as homogenous. However, recent work has shown that actin monomers can exist in distinct groups that can be targeted to specific networks, where they drive and modify filament assembly in ways that can have profound effects on cellular behavior. This Review focuses on the potential factors that could create functionally distinct pools of actin monomers in the cell, including differences between the actin isoforms and the regulation of G-actin by monomer binding proteins, such as profilin and thymosin β4. Owing to difficulties in studying and visualizing G-actin, our knowledge over the precise role that specific actin monomer pools play in regulating cellular actin dynamics remains incomplete. Here, we discuss some of these unanswered questions and also provide a summary of the methodologies currently available for the imaging of G-actin.
Collapse
Affiliation(s)
- Kristen Skruber
- Department of Anatomy and Cell Biology, University of Florida, Gainesville, FL 32610, USA
| | - Tracy-Ann Read
- Department of Anatomy and Cell Biology, University of Florida, Gainesville, FL 32610, USA
| | - Eric A Vitriol
- Department of Anatomy and Cell Biology, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
9
|
Deng MY, Wang H, Ward GB, Beckham TR, McKenna TS. Comparison of Six RNA Extraction Methods for the Detection of Classical Swine Fever Virus by Real-Time and Conventional Reverse Transcription–PCR. J Vet Diagn Invest 2016; 17:574-8. [PMID: 16475517 DOI: 10.1177/104063870501700609] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Six RNA extraction methods, i.e., RNAqueous kit, Micro-to-midi total RNA purification system, NucleoSpin RNA II, GenElute mammalian total RNA kit, RNeasy mini kit, and TRIzol LS reagent, were evaluated on blood and 7 tissues from pig infected with classical swine fever virus (CSFV). Each of the 6 extraction methods yielded sufficient RNA for positive results in a real-time reverse transcription–PCR (RT-PCR) for CSFV, and all RNA, except the one extracted from blood by TRIzol LS reagent, yielded positive results in both a conventional RT-PCR for CSFV and a conventional RT-PCR for an endogenous gene encoding β-actin. The RNA extracted from blood by TRIzol LS reagent became positive in both conventional RT-PCR assays when it was diluted to 1:2, 1:4, or up to 1:64 in nuclease-free water. It is concluded that all 6 methods are more or less useful for the detection of CSFV by real-time and conventional RT-PCR in swine blood and tissues. However, some of the 6 reagents offer certain advantages not common to all 6 extraction procedures. For example, RNA extracted by the TRIzol LS reagent constantly had the highest yield; that by the RNAqueous kit had the highest A260/A280 ratio for almost all samples; and that by the NucleoSpin RNA II and the GenElute mammalian total RNA kit was most likely to be free of contaminations with genomic DNA.
Collapse
Affiliation(s)
- Ming Y Deng
- Foreign Animal Disease Diagnostic Laboratory, National Veterinary Service Laboratory, Veterinary Services, Animal and Plant Health Inspection Service, United States Department of Agriculture, Greenport, NY 11944, USA
| | | | | | | | | |
Collapse
|
10
|
Wang X, Lin G, Liu C, Feng C, Zhou H, Wang T, Li D, Wu G, Wang J. Temporal proteomic analysis reveals defects in small-intestinal development of porcine fetuses with intrauterine growth restriction. J Nutr Biochem 2014; 25:785-95. [DOI: 10.1016/j.jnutbio.2014.03.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 11/09/2013] [Accepted: 03/10/2014] [Indexed: 02/06/2023]
|
11
|
Wang L, Miao J, Li L, Wu D, Zhang Y, Peng Z, Zhang L, Yuan Z, Sun K. Identification of an FHL1 protein complex containing gamma-actin and non-muscle myosin IIB by analysis of protein-protein interactions. PLoS One 2013; 8:e79551. [PMID: 24265776 PMCID: PMC3827166 DOI: 10.1371/journal.pone.0079551] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 09/24/2013] [Indexed: 12/24/2022] Open
Abstract
FHL1 is multifunctional and serves as a modular protein binding interface to mediate protein-protein interactions. In skeletal muscle, FHL1 is involved in sarcomere assembly, differentiation, growth, and biomechanical stress. Muscle abnormalities may play a major role in congenital clubfoot (CCF) deformity during fetal development. Thus, identifying the interactions of FHL1 could provide important new insights into its functional role in both skeletal muscle development and CCF pathogenesis. Using proteins derived from rat L6GNR4 myoblastocytes, we detected FHL1 interacting proteins by immunoprecipitation. Samples were analyzed by liquid chromatography mass spectrometry (LC-MS). Dynamic gene expression of FHL1 was studied. Additionally, the expression of the possible interacting proteins gamma-actin and non-muscle myosin IIB, which were isolated from the lower limbs of E14, E15, E17, E18, E20 rat embryos or from adult skeletal muscle was analyzed. Potential interacting proteins isolated from E17 lower limbs were verified by immunoprecipitation, and co-localization in adult gastrocnemius muscle was visualized by fluorescence microscopy. FHL1 expression was associated with skeletal muscle differentiation. E17 was found to be the critical time-point for skeletal muscle differentiation in the lower limbs of rat embryos. We also identified gamma-actin and non-muscle myosin IIB as potential binding partners of FHL1, and both were expressed in adult skeletal muscle. We then demonstrated that FHL1 exists as part of a complex, which binds gamma-actin and non-muscle myosin IIB.
Collapse
Affiliation(s)
- Lili Wang
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, China
- * E-mail:
| | - Jianing Miao
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, China
| | - Lianyong Li
- Department of Pediatric Surgery, Shengjing Hospital, China Medical University, Shenyang, China
| | - Di Wu
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, China
| | - Yi Zhang
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, China
| | - Zhaohong Peng
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, China
| | - Lijun Zhang
- Department of Pediatric Surgery, Shengjing Hospital, China Medical University, Shenyang, China
| | - Zhengwei Yuan
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, China
| | - Kailai Sun
- Department of Medical Genetics, China Medical University, Shenyang, China
| |
Collapse
|
12
|
Xu Y, Liu W, Shen H, Yan J, Yang E, Wang H. Recombinant Mycobacterium bovis BCG expressing chimaeric protein of Ag85B and ESAT-6 enhances immunostimulatory activity of human macrophages. Microbes Infect 2010; 12:683-9. [PMID: 20417300 DOI: 10.1016/j.micinf.2010.04.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2009] [Revised: 02/26/2010] [Accepted: 04/07/2010] [Indexed: 10/19/2022]
Abstract
Recombinant BCG strain that secretes the chimaeric protein of Ag85B and ESAT-6 has been demonstrated to augment Th1 immune response in C57BL/6 mice. In this paper, we studied the immunostimulatory activity of the recombinant BCG strains in vitro and found out that rBCG-A(N)-E-A(C) activated THP-1 cells and induced higher expression levels of CD86, CD80, CD40 and HLA-DR, especially increased the ratio of CD86/CD80. Likewise, rBCG-A(N)-E-A(C) infection was able to stimulate an increase in TNF-alpha production of macrophages. Moreover, rBCG-A(N)-E-A(C) up-regulated the expression of EFHD2, ACTB and ACTG1 in the macrophages and improved the ability of antigen presentation and the CD8(+) T-cells immune response. Taken together, this rBCG-A(N)-E-A(C) strain enhanced the immunostimulatory activity of human macrophages and could be a potential vaccine against Mycobacterium tuberculosis.
Collapse
Affiliation(s)
- Ying Xu
- State Key Laboratory of Genetic Engineering, School of Life Science, Fudan University, Shanghai, China
| | | | | | | | | | | |
Collapse
|
13
|
Tondeleir D, Vandamme D, Vandekerckhove J, Ampe C, Lambrechts A. Actin isoform expression patterns during mammalian development and in pathology: insights from mouse models. ACTA ACUST UNITED AC 2009; 66:798-815. [PMID: 19296487 DOI: 10.1002/cm.20350] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The dynamic actin cytoskeleton, consisting of six actin isoforms in mammals and a variety of actin binding proteins is essential for all developmental processes and for the viability of the adult organism. Actin isoform specific functions have been proposed for muscle contraction, cell migration, endo- and exocytosis and maintaining cell shape. However, these specific functions for each of the actin isoforms during development are not well understood. Based on transgenic mouse models, we will discuss the expression patterns of the six conventional actin isoforms in mammals during development and adult life. Ablation of actin genes usually leads to lethality and affects expression of other actin isoforms at the cell or tissue level. A good knowledge of their expression and functions will contribute to fully understand severe phenotypes or diseases caused by mutations in actin isoforms.
Collapse
Affiliation(s)
- Davina Tondeleir
- Department of Medical Protein Research, Flanders Interuniversity Institute for Biotechnology (VIB), Albert Baertsoenkaai 3, Ghent, Belgium
| | | | | | | | | |
Collapse
|
14
|
Schuppe-Koistinen I, Moldéus P, Bergman T, Cotgreave IA. Reversible S-thiolation of Human Endothelial Cell Actin Accompanies a Structural Reorganisation of the Cytoskeleton. ACTA ACUST UNITED AC 2009. [DOI: 10.3109/10623329509024672] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
15
|
Kim KY, Lee SY, Cho YS, Bang IC, Kim DS, Nam YK. Characterization and phylogeny of two β-cytoskeletal actins fromHemibarbus mylodon(Cyprinidae, Cypriniformes), a threatened fish species in Korea. ACTA ACUST UNITED AC 2009; 19:87-97. [PMID: 17852350 DOI: 10.1080/10425170701445691] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Complementary DNA and genomic sequences representing two different beta-actins were isolated from a threatened freshwater fish species Hemibarbus mylodon. The beta-actin 1 and 2 encoded an identical number of amino acids (375 aa), and shared 88.8 and 99.7% of identity at coding nucleotide and amino acid levels, respectively. Genomic open reading frame (ORF) sequences of both isoforms contained five translated exons interrupted by four introns with conserved GT/AG exon/intron boundary rule. Semi-quantitative RT-PCR showed that the two isoform mRNAs were ubiquitously detected in all tissues tested, but transcript levels were variable across tissues. Phylogenetic analysis showed that H. mylodon beta-actin 1 and 2 were clustered into two distinct major and minor branches of Cypriniformes, respectively. Comparisons of the 5'-upstream region and 3'-UTR of H. mylodon beta-actin 1 also showed a high degree of homology with those of the major teleost beta-actins and warmblooded vertebrate beta-cytoskeletal actins, suggesting their more recent common origin.
Collapse
Affiliation(s)
- Keun-Yong Kim
- Department of Aquaculture, Institute of Marine Living Modified Organisms, Pukyong National University, Busan 608-737, South Korea
| | | | | | | | | | | |
Collapse
|
16
|
Jaeger MA, Sonnemann KJ, Fitzsimons DP, Prins KW, Ervasti JM. Context-dependent functional substitution of alpha-skeletal actin by gamma-cytoplasmic actin. FASEB J 2009; 23:2205-14. [PMID: 19279140 DOI: 10.1096/fj.09-129783] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We generated transgenic mice that overexpressed gamma-(cyto) actin 2000-fold above wild-type levels in skeletal muscle. gamma-(cyto) actin comprised 40% of total actin in transgenic skeletal muscle, with a concomitant 40% decrease in alpha-actin. Surprisingly, transgenic muscle was histologically and ultrastructurally identical to wild-type muscle despite near-stoichiometric incorporation of gamma-(cyto) actin into sarcomeric thin filaments. Furthermore, several parameters of muscle physiological performance in the transgenic animals were not different from wild type. Given these surprising results, we tested whether overexpression of gamma-(cyto) actin could rescue the early postnatal lethality in alpha-(sk) actin-null mice (Acta1(-/-)). By quantitative Western blot analysis, we found total actin levels were decreased by 35% in Acta1(-/-) muscle. Although transgenic overexpression of gamma-(cyto) actin on the Acta1(-/-) background restored total actin levels to wild type, resulting in thin filaments composed of 60% gamma-(cyto) actin and a 40% mixture of cardiac and vascular actin, the life span of transgenic Acta1(-/-) mice was not extended. These results indicate that sarcomeric thin filaments can accommodate substantial incorporation of gamma-(cyto) actin without functional consequences, yet gamma-(cyto) actin cannot fully substitute for alpha-(sk) actin.
Collapse
Affiliation(s)
- Michele A Jaeger
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, 321 Church St. SE, Minneapolis, MN 55455, USA
| | | | | | | | | |
Collapse
|
17
|
Pääkkönen V, Vuoristo JT, Salo T, Tjäderhane L. Comparative gene expression profile analysis between native human odontoblasts and pulp tissue. Int Endod J 2007; 41:117-27. [PMID: 18005044 DOI: 10.1111/j.1365-2591.2007.01327.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AIM To undertake a large-scale analysis of the expression profiles of native human pulp tissue and odontoblasts, and search for genes expressed only in odontoblasts. METHODOLOGY Microarray was performed to pooled pulp and odontoblasts of native human third molars and to pooled +/- TGF-beta1 cultured pulps and odontoblasts (137 teeth). The repeatability of microarray analysis was estimated by comparing the experimental pulp samples with expression profiles of two pulp samples downloaded from the GEO database. The genes expressed only in the experimental pulp samples or in odontoblasts were divided into categories, and the expression of selected odontoblast-specific genes of extracellular matrix (ECM) organization and biogenesis category was confirmed with RT-PCR and Western blot. RESULTS A 85.3% repeatability was observed between pulp microarrays, demonstrating the high reliability of the technique. Overall 1595 probe sets were positive only in pulp and 904 only in odontoblasts. Sixteen expressed sequence tags (ESTs), which represent transcribed sequences encoding possibly unknown genes, were detected only in odontoblasts; two consistently expressed in all odontoblast samples. Matrilin 4 (MATN4) was the only ECM biogenesis and organization related gene detected in odontoblasts but not in pulp by microarray and RT-PCR. MATN4 protein expression only in odontoblasts was confirmed by Western blot. CONCLUSIONS Pulp tissue and odontoblast gene expression profiling provides basic data for further, more detailed protein analysis. In addition, MATN4 and the two ESTs could serve as an odontoblast differentiation marker, e.g. in odontoblast stem cell research.
Collapse
Affiliation(s)
- V Pääkkönen
- Institute of Dentistry, University of Oulu, Oulu, Finland
| | | | | | | |
Collapse
|
18
|
Wang P, Li JC. Trichosanthin-induced specific changes of cytoskeleton configuration were associated with the decreased expression level of actin and tubulin genes in apoptotic Hela cells. Life Sci 2007; 81:1130-40. [PMID: 17881009 DOI: 10.1016/j.lfs.2007.08.016] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2007] [Revised: 07/11/2007] [Accepted: 08/07/2007] [Indexed: 01/11/2023]
Abstract
Trichosanthin (TCS) possesses a broad spectrum of biological and pharmacological activities, including anti-cancer activities through apoptosis pathway. However, little is known about the effects of TCS on the cytoskeleton configuration and expression of actin and tubulin genes in Hela cell apoptosis. In the present study, apoptotic cytoskeleton structures were observed by confocal immunofluorescence microscopy, absolute amounts of actin and tubulin subunit mRNAs were determined by quantitative real-time PCR assays (QRT-PCR). Our results showed that the execution phase of cell apoptosis was a highly coordinated process of cellular reorganization, depolymerized microfilaments (MFs) accumulated in the coarsened cytoplasm and apoptotic bodies, followed by the formation of a ring microtubule (MT) structure beneath the plasma membrane. Importantly, apoptosis occurred by a suppression of actin and tubulin subunit gene expression. In particular, a rapid decrease in the amounts of gamma-actin mRNA preceded that of beta-actin; alpha- and beta-tubulin mRNAs were subsequently down-regulated in the later stage of Hela cell apoptosis. These results suggested that the execution of Hela cell apoptosis induced by TCS accompanied the specific changes of cytoskeleton configuration and, significantly, decreased the expression level of actin and tubulin subunit genes in different stages.
Collapse
Affiliation(s)
- Ping Wang
- Institute of Cell Biology, Zhejiang University, Hangzhou 310058, China.
| | | |
Collapse
|
19
|
Böhl M, Tietze S, Sokoll A, Madathil S, Pfennig F, Apostolakis J, Fahmy K, Gutzeit HO. Flavonoids affect actin functions in cytoplasm and nucleus. Biophys J 2007; 93:2767-80. [PMID: 17573428 PMCID: PMC1989700 DOI: 10.1529/biophysj.107.107813] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Based on the identification of actin as a target protein for the flavonol quercetin, the binding affinities of quercetin and structurally related flavonoids were determined by flavonoid-dependent quenching of tryptophan fluorescence from actin. Irrespective of differences in the hydroxyl pattern, similar Kd values in the 20 microM range were observed for six flavonoids encompassing members of the flavonol, isoflavone, flavanone, and flavane group. The potential biological relevance of the flavonoid/actin interaction in the cytoplasm and the nucleus was addressed using an actin polymerization and a transcription assay, respectively. In contrast to the similar binding affinities, the flavonoids exert distinct and partially opposing biological effects: although flavonols inhibit actin functions, the structurally related flavane epigallocatechin promotes actin activity in both test systems. Infrared spectroscopic evidence reveals flavonoid-specific conformational changes in actin which may mediate the different biological effects. Docking studies provide models of flavonoid binding to the known small molecule-binding sites in actin. Among these, the mostly hydrophobic tetramethylrhodamine-binding site is a prime candidate for flavonoid binding and rationalizes the high efficiency of quenching of the two closely located fluorescent tryptophans. The experimental and theoretical data consistently indicate the importance of hydrophobic, rather than H-bond-mediated, actin-flavonoid interactions. Depending on the rigidity of the flavonoid structures, different functionally relevant conformational changes are evoked through an induced fit.
Collapse
Affiliation(s)
- Markus Böhl
- Institute of Zoology, Technical University Dresden, D-01062 Dresden, Germany
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Huang KC, Yasruel Z, Guérin C, Holland PC, Nalbantoglu J. Interaction of the Coxsackie and adenovirus receptor (CAR) with the cytoskeleton: binding to actin. FEBS Lett 2007; 581:2702-8. [PMID: 17531226 DOI: 10.1016/j.febslet.2007.05.019] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2007] [Revised: 04/28/2007] [Accepted: 05/09/2007] [Indexed: 11/17/2022]
Abstract
The Coxsackie and adenovirus receptor (CAR) is a cell adhesion molecule that is highly expressed in the developing brain. CAR is enriched in growth cone particles (GCP) after subcellular fractionation. In GCP, we identified actin as an interaction partner of the cytoplasmic domain of CAR. In vivo, actin and CAR co-immunoprecipitate and co-localize. In vitro, the binding is direct, with a K(d) of approximately 2.6 microM, and leads to actin bundling. We previously demonstrated that CAR interacts with microtubules. These data suggest a role for CAR in processes requiring dynamic reorganization of the cytoskeleton such as neurite outgrowth and cell migration.
Collapse
Affiliation(s)
- Kuo-Cheng Huang
- Department of Neurology and Neurosurgery, McGill University, Montreal, Que, Canada
| | | | | | | | | |
Collapse
|
21
|
Sonnemann KJ, Fitzsimons DP, Patel JR, Liu Y, Schneider MF, Moss RL, Ervasti JM. Cytoplasmic gamma-actin is not required for skeletal muscle development but its absence leads to a progressive myopathy. Dev Cell 2006; 11:387-97. [PMID: 16950128 DOI: 10.1016/j.devcel.2006.07.001] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2006] [Revised: 06/21/2006] [Accepted: 07/06/2006] [Indexed: 10/24/2022]
Abstract
Nonmuscle gamma(cyto)-actin is expressed at very low levels in skeletal muscle but uniquely localizes to costameres, the cytoskeletal networks that couple peripheral myofibrils to the sarcolemma. We generated and analyzed skeletal muscle-specific gamma(cyto)-actin knockout (Actg1-msKO) mice. Although muscle development proceeded normally, Actg1-msKO mice presented with overt muscle weakness accompanied by a progressive pattern of muscle fiber necrosis/regeneration. Functional deficits in whole-body tension and isometric twitch force were observed, consistent with defects in the connectivity between muscle fibers and/or myofibrils or at the myotendinous junctions. Surprisingly, gamma(cyto)-actin-deficient muscle did not demonstrate the fibrosis, inflammation, and membrane damage typical of several muscular dystrophies but rather presented with a novel progressive myopathy. Together, our data demonstrate an important role for minimally abundant but strategically localized gamma(cyto)-actin in adult skeletal muscle and describe a new mouse model to study the in vivo relevance of subcellular actin isoform sorting.
Collapse
Affiliation(s)
- Kevin J Sonnemann
- Program in Cellular and Molecular Biology, University of Wisconsin-Madison, 53706, USA
| | | | | | | | | | | | | |
Collapse
|
22
|
Furness DN, Katori Y, Mahendrasingam S, Hackney CM. Differential distribution of beta- and gamma-actin in guinea-pig cochlear sensory and supporting cells. Hear Res 2006; 207:22-34. [PMID: 16024192 DOI: 10.1016/j.heares.2005.05.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2005] [Accepted: 05/12/2005] [Indexed: 11/15/2022]
Abstract
Sensory and supporting cells of the mammalian organ of Corti have cytoskeletons containing beta- and gamma-actin isoforms which have been described as having differing intracellular distributions in chick cochlear hair cells. Here, we have used post-embedding immunogold labelling for beta- and gamma-actin to investigate semiquantitatively how they are distributed in the guinea-pig cochlea and to compare different frequency locations. Amounts of beta-actin decrease and gamma-actin increase in the order, outer pillar cells, inner pillar cells, Deiters' cells and hair cells. There is also more beta-actin and less gamma-actin in outer pillar cells in higher than lower frequency regions. In hair cells, beta-actin is present in the cuticular plate but is more concentrated in the stereocilia, especially in the rootlets and towards the periphery of their shafts; labelling densities for gamma-actin differ less between these locations and it is the predominant isoform of the hair-cell lateral wall. Alignments of immunogold particles suggest beta-actin and gamma-actin form homomeric filaments. These data confirm differential distribution of these actin isoforms in the mammalian cochlea and reveal systematic differences between sensory and supporting cells. Increased expression of beta-actin in outer pillar cells towards the cochlear base may contribute to the greater stiffness of this region.
Collapse
Affiliation(s)
- D N Furness
- MacKay Institute of Communication and Neuroscience, School of Life Sciences, Keele University, Staffordshire ST5 5BG, United Kingdom.
| | | | | | | |
Collapse
|
23
|
Muramatsu Y, Lejukole HY, Taniguchi Y, Konfortov BA, Yamada T, Yasue H, Sasaki Y. Chromosomal assignments of expressed sequence tags for ACTG1, AHSG, COL1A1, GNAS1, and RPLP1 expressed abundantly in the bovine foetus. Anim Genet 2002; 33:230-1. [PMID: 12030931 DOI: 10.1046/j.1365-2052.2002.t01-1-00876.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Y Muramatsu
- Department of Food Science, Shizuoka Eiwa College, Ikeda, Shizuoka 422-8005, Japan
| | | | | | | | | | | | | |
Collapse
|
24
|
Lloyd C, Gunning P. beta- and gamma-actin genes differ in their mechanisms of down-regulation during myogenesis. J Cell Biochem 2002; 84:335-42. [PMID: 11787062 DOI: 10.1002/jcb.10014] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
During the differentiation of myoblasts to form myotubes, the expression patterns of the different actin isoforms change. The cytoplasmic actins, beta and gamma, are down-regulated and the muscle specific isoforms are up-regulated. The region responsible for the down-regulation of the beta-actin gene has been located in the 3'end of the gene. Since the beta- and gamma-actin genes arose from a gene duplication (Erba et al. [1988] J. Cell. Biol. 8:1775-1789), it is possible that the region responsible for down-regulation of the gamma-actin gene may also be in the 3'end of the gene. We have tested this by transfection of human gamma-actin gene constructs into myogenic C2 cells. To our surprise, we found that the region responsible for down-regulation of the gamma-actin gene during differentiation is not in the 3' end of the gene in contrast to that for beta-actin. Rather, we found that intron III is required for appropriate down-regulation of gamma-actin during myogenesis. Intron III containing transcripts from the gamma-actin gene were also found to accumulate during myogenesis. We, therefore, propose that excision of intron III from the primary transcript is inhibited during myogenesis resulting in degradation of the RNA. Removal of intron III from the gene allows it to escape this regulatory mechanism.
Collapse
Affiliation(s)
- Catriona Lloyd
- Cell Biology Unit, Children's Medical Research Institute, Locked Bag 23, Wentworthville, New South Wales, Australia
| | | |
Collapse
|
25
|
Reynolds PN, Scicchitano R, Holmes MD. Pre-protachykinin-A mRNA is increased in the airway epithelium of smokers with chronic bronchitis. Respirology 2001; 6:187-97. [PMID: 11555376 DOI: 10.1046/j.1440-1843.2001.00333.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE Tachykinins are neuropeptides present in sensory nerves in the lung. Aside from their role as neurotransmitters, these peptides exert pro-inflammatory and protective effects in the airways. Although tachykinins may be released from sensory nerves, there is increasing evidence that they are also produced by non-neuronal cells. The net effect of tachykinins will likely result from relative changes in the levels of tachykinins, tachykinin receptors and tachykinin degrading enzymes. We investigated whether tachykinins might be produced locally in human airway epithelium in vivo, and whether mRNA levels for either tachykinins, their receptors, or for the tachykinin degrading enzyme neutral endopeptidase (NEP) were altered in subjects with chronic bronchitis compared to normals. METHODOLOGY We used reverse transcription polymerase chain reaction analysis of brush biopsy samples to detect mRNAs of interest. We then developed a semi-quantitative approach to compare subject groups. RESULTS We detected a signal for preprotachykinin A (PPT-A) mRNA as well as for tachykinin receptors and NEP in patients with airways disease and normal subjects. We found a relative 10-fold increase in PPT-A mRNA in smokers with chronic bronchitis, along with similar increases in mRNA for the inflammatory markers intercellular adhesion molecule-1 and interleukin-8. In contrast, NEP and NK1 tachykinin receptor mRNA levels were not different between the groups. CONCLUSION These findings imply that up-regulation of tachykinin production by cells present in the airway epithelium contributes to the pathophysiology of chronic bronchitis.
Collapse
Affiliation(s)
- P N Reynolds
- Department of Thoracic Medicine, Royal Adelaide Hospital, Adelaide, South Australia, Australia.
| | | | | |
Collapse
|
26
|
Gunning PW, Ferguson V, Brennan KJ, Hardeman EC. Alpha-skeletal actin induces a subset of muscle genes independently of muscle differentiation and withdrawal from the cell cycle. J Cell Sci 2001; 114:513-24. [PMID: 11171321 DOI: 10.1242/jcs.114.3.513] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Muscle differentiation is characterized by the induction of genes encoding contractile structural proteins and the repression of nonmuscle isoforms from these gene families. We have examined the importance of this regulated order of gene expression by expressing the two sarcomeric muscle actins characteristic of the differentiated state, i.e. alpha-skeletal and alpha-cardiac actin, in C2 mouse myoblasts. Precocious accumulation of transcripts and proteins for a group of differentiation-specific genes was elicited by alpha-skeletal actin only: four muscle tropomyosins, two muscle actins, desmin and MyoD. The nonmuscle isoforms of tropomyosin and actin characteristic of the undifferentiated state continued to be expressed, and no myosin heavy or light chain or troponin transcripts characteristic of muscle differentiation were induced. Stable transfectants displayed a substantial reduction in cell surface area and in the levels of nonmuscle tropomyosins and beta-actin, consistent with a relationship between the composition of the actin cytoskeleton and cell surface area. The transfectants displayed normal cell cycle progression. We propose that alpha-skeletal actin can activate a regulatory pathway linking a subset of muscle genes that operates independently of normal differentiation and withdrawal from the cell cycle.
Collapse
Affiliation(s)
- P W Gunning
- Cell Biology Unit and Muscle Development Unit, Children's Medical Research Institute, Locked Bag 23, Wentworthville, NSW, 2145, Australia
| | | | | | | |
Collapse
|
27
|
Identification of genes specifically expressed in the accumulated visceral adipose tissue of OLETF rats. J Lipid Res 2000. [DOI: 10.1016/s0022-2275(20)31994-5] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
28
|
Dobrowolski JM, Niesman IR, Sibley LD. Actin in the parasite Toxoplasma gondii is encoded by a single copy gene, ACT1 and exists primarily in a globular form. CELL MOTILITY AND THE CYTOSKELETON 2000; 37:253-62. [PMID: 9227855 DOI: 10.1002/(sici)1097-0169(1997)37:3<253::aid-cm7>3.0.co;2-7] [Citation(s) in RCA: 148] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Actin is a highly conserved microfilament protein that plays an important role in the invasion of host cells by the protozoan parasite Toxoplasma gondii. We have characterized the ACT1 gene and localized the conventional isoform of actin that it encodes within T. gondii. The predicted amino acid sequence of ACT1 was most similar to two other parasite actins, Plasmodium falciparum Pfact-1 (93.1% identical) and Cryptosporidium parvum actin (88.1%): among vertebrate actins, ACT1 was most closely related to the mammalian beta and gamma (83%) actin isoforms. Actin-specific antibodies and fluorescently labeled DNAse I were used to localize actin in T. gondii tachyzoites by immunofluorescence and immunoelectron microscopy. Actin was detected beneath the parasite cell membrane and in clusters scattered within the cytosol of T. gondii tachyzoites. Actin filaments were not detected in detergent-solubilized parasites separated by high speed centrifugation, indicating that actin exists primarily in a globular form in T. gondii.
Collapse
Affiliation(s)
- J M Dobrowolski
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | |
Collapse
|
29
|
Tubb BE, Bardien-Kruger S, Kashork CD, Shaffer LG, Ramagli LS, Xu J, Siciliano MJ, Bryan J. Characterization of human retinal fascin gene (FSCN2) at 17q25: close physical linkage of fascin and cytoplasmic actin genes. Genomics 2000; 65:146-56. [PMID: 10783262 DOI: 10.1006/geno.2000.6156] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Retinal fascin is a newly identified photoreceptor-specific paralog of the actin-bundling protein fascin. Fascins crosslink f-actin into highly ordered bundles within dynamic cell extensions such as neuronal growth cone filopodia. We have isolated cDNA and genomic clones of human retinal fascin and characterized the structure of the human retinal fascin gene (FSCN2). The cDNA predicts a protein of 492 amino acids and molecular mass 55,057 that shows 94% identity to bovine retinal fascin and 56% identity to human fascin. Promoter analysis reveals a consensus retinoic acid response element and several potential binding sites for transcription factors Crx and Nrl, which correlates with the retina-specific expression of FSCN2 mRNA. Fluorescence in situ hybridization analysis and genomic clone sequencing indicate that the FSCN2 gene lies within 200 kb of the actin gene ACTG1 at 17q25. Database searches revealed that the human fascin gene FSCN1 and actin gene ACTB at 7p22 also coexist within a 200-kb genomic clone. The close physical linkage of these fascin/actin gene pairs suggests that they derive from a common gene duplication event and allows comparison of fascin and actin phylogenetic analyses. Finally, a possible link to the retinitis pigmentosa 17 allele (RP17) at distal 17q was excluded by demonstration of multiple independent segregation events in two RP17 kindreds. Informative FSCN2 polymorphisms were identified and will serve as useful markers in future linkage studies. The likely function of retinal fascin, in light of known fascin roles in other cell types, is to assemble actin microfilaments in support of photoreceptor disk morphogenesis.
Collapse
Affiliation(s)
- B E Tubb
- Department of Cell Biology, Baylor College of Medicine, Houston, Texas, 77030, USA.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Miyamoto S, Safer B. Immunosuppressants FK506 and rapamycin have different effects on the biosynthesis of cytoplasmic actin during the early period of T cell activation. Biochem J 1999; 344 Pt 3:803-12. [PMID: 10585867 PMCID: PMC1220702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
FK506 and rapamycin are immunosuppressants that interfere with T cell activation. FK506 inhibits early events of T cell activation such as the induction of cytokine transcription, whereas rapamycin inhibits later interleukin 2 signalling events. However, both reagents either directly or indirectly reduce protein synthesis. Therefore a kinetic study was conducted in human primary T lymphocytes examining increased synthesis of proteins stimulated by either ionomycin+phorbol myristate acetate (PMA) or PMA alone. Three patterns of protein expression were observed. Synthesis of one group of proteins had enhanced synthesis with FK506, but reduced synthesis with rapamycin. A second group had reduced synthesis with rapamycin and either no change or a slight reduction with FK506 and a third group had reduction with both FK506 and rapamycin. One major protein of the first group, p42, had a rapid increase in synthesis that decreased by 8 h. Its synthesis was strongly enhanced by FK506, but reduced by rapamycin after ionomycin+PMA stimulation. In contrast, this protein was strongly induced by PMA alone in these cells and not affected by FK506 treatment, but still reduced by rapamycin. p42 was identified as cytoplasmic actin. mRNA levels of both gamma- and beta-actin were found to be enhanced with FK506 treatment suggesting that regulation of actin was at a transcriptional or post-transcriptional level. Results with actinomycin D indicated that FK506 is regulating actin biosynthesis at the post-transcriptional level. Rapamycin, however, appeared to be operating at the level of translation.
Collapse
Affiliation(s)
- S Miyamoto
- Molecular Hematology Branch, Section on Protein and RNA Biosynthesis, National Heart, Lung and Blood Institute, Bldg. 10, Room 7D18, Bethesda, MD 20892-21654, USA.
| | | |
Collapse
|
31
|
Itoh H, Komatsuda A, Wakui H, Miura AB, Tashima Y. Mammalian HSP60 is a major target for an immunosuppressant mizoribine. J Biol Chem 1999; 274:35147-51. [PMID: 10574997 DOI: 10.1074/jbc.274.49.35147] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
It has been reported that immunosuppressant cyclosporin A or FK506 binds to immunophilins in the cell and that these immunophilins make a complex with molecular chaperones HSP70 or HSP90. Although mizoribine has been used clinically as an immunosuppressant, immunophilins of the agent have not yet been fully understood. We investigated their specific binding proteins using mizoribine affinity column chromatography and porcine kidney cytosols. By increasing mizoribine in the eluant from the column, two major proteins (with molecular masses of 60 and 43 kDa) were detected by SDS-polyacrylamide gel electrophoresis. Based on the amino acid sequence analysis of these proteins, 60- and 43-kDa mizoribine-binding proteins were identified with HSP60 and cytosolic actin, respectively. A considerable amount of actin was also eluted from the affinity column by nucleotides, but a very low quantity of HSP60 was eluted under the same conditions. On the other hand, HSP60 was eluted as a major protein in the eluant that was eluted preferentially, with nucleotide followed by mizoribine. Actin was also detected in the eluant, but the quantity of the protein was very low. These results indicated that HSP60 has high affinity to mizoribine, and the interaction was also observed on surface plasmon resonance analysis. Although HSP60 or GroE facilitated refolding of citrate synthase in vitro, mizoribine interfered with the chaperone activity of HSP60. On different types of mizoribine affinity columns, HSP60 or actin recognized the NH(2) group of mizoribine, and this group may be a functional group of the agent.
Collapse
Affiliation(s)
- H Itoh
- Department of Biochemistry, Akita University School of Medicine, 1-1-1 Hondo, Akita City 010-8543, Japan.
| | | | | | | | | |
Collapse
|
32
|
Moraes CT, Kenyon L, Hao H. Mechanisms of human mitochondrial DNA maintenance: the determining role of primary sequence and length over function. Mol Biol Cell 1999; 10:3345-56. [PMID: 10512871 PMCID: PMC25601 DOI: 10.1091/mbc.10.10.3345] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Although the regulation of mitochondrial DNA (mtDNA) copy number is performed by nuclear-coded factors, very little is known about the mechanisms controlling this process. We attempted to introduce nonhuman ape mtDNA into human cells harboring either no mtDNA or mutated mtDNAs (partial deletion and tRNA gene point mutation). Unexpectedly, only cells containing no mtDNA could be repopulated with nonhuman ape mtDNA. Cells containing a defective human mtDNA did not incorporate or maintain ape mtDNA and therefore died under selection for oxidative phosphorylation function. On the other hand, foreign human mtDNA was readily incorporated and maintained in these cells. The suicidal preference for self-mtDNA showed that functional parameters associated with oxidative phosphorylation are less relevant to mtDNA maintenance and copy number control than recognition of mtDNA self-determinants. Non-self-mtDNA could not be maintained into cells with mtDNA even if no selection for oxidative phosphorylation was applied. The repopulation kinetics of several mtDNA forms after severe depletion by ethidium bromide treatment showed that replication and maintenance of mtDNA in human cells are highly dependent on molecular features, because partially deleted mtDNA molecules repopulated cells significantly faster than full-length mtDNA. Taken together, our results suggest that mtDNA copy number may be controlled by competition for limiting levels of trans-acting factors that recognize primarily mtDNA molecular features. In agreement with this hypothesis, marked variations in mtDNA levels did not affect the transcription of nuclear-coded factors involved in mtDNA replication.
Collapse
Affiliation(s)
- C T Moraes
- Department of Neurology, University of Miami, School of Medicine, Miami, Florida 33136, USA.
| | | | | |
Collapse
|
33
|
Menzel DB, Hamadeh HK, Lee E, Meacher DM, Said V, Rasmussen RE, Greene H, Roth RN. Arsenic binding proteins from human lymphoblastoid cells. Toxicol Lett 1999; 105:89-101. [PMID: 10221271 DOI: 10.1016/s0378-4274(98)00380-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Arsenic is a ubiquitous contaminant of drinking water and food. The mechanisms of the toxic action of inorganic arsenic are unknown. We report the isolation of proteins having a high affinity for arsenic in the +3 oxidation state that are induced by arsenite (AsIII) in human lymphoblastoid cells. The arsenic-binding proteins were isolated using a p-aminophenylarsine oxide affinity column. At least four proteins of 50, 42, 38.5 and 19.5 kDa were isolated by elution with 10 or 100 mM 2-mercaptoethanol. Two proteins were tentatively identified as tubulin and actin on the basis of their molecular weights and previously reported affinity for the arsenic column. The identities of the remaining proteins are unknown. Heme oxygenase 1 was induced by AsIII but did not bind to the arsenic affinity column. We conclude that AsIII induces multiple proteins that have variable affinities for arsenic in the +3 state as judged by the concentration of 2-mercaptoethanol required for their elution. The arsenic binding motif of these proteins may involve three thiol groups arranged 3-6 A apart by the tertiary structure of the protein as suggested by others. These proteins may serve as high affinity binding sites for AsIII and may be involved in the biological action of AsIII.
Collapse
Affiliation(s)
- D B Menzel
- Department of Community and Environmental Medicine, University of California, Irvine 92697-1825, USA.
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Qin H, Gunning P. The 3'-end of the human beta-actin gene enhances activity of the beta-actin expression vector system: construction of improved vectors. JOURNAL OF BIOCHEMICAL AND BIOPHYSICAL METHODS 1997; 36:63-72. [PMID: 9507373 DOI: 10.1016/s0165-022x(97)00045-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The human beta-actin promoter has been widely used to drive expression of genes of interest in mammalian cell lines and transgenic mice. The original form of the human beta-actin expression vector contains upstream sequences, 5'UTR (untranslated region) and intron 1 from the beta-actin gene linked to a three restriction site polylinker and SV40 (Simian Virus 40) 3'UTR. We have modified this vector now to contain the highly conserved beta-actin 3'UTR plus flanking region which replaces the SV40 sequences. An additional modification has removed the mRNA peripheral localization sequences present in the beta-actin 3'UTR. The new vectors also contain an improved polylinker. The activity of these two new vectors has been compared with that of the original vector and that of a vector using the popular cytomegalovirus (CMV) promoter. Mouse C2 myoblasts were transfected with each vector driving expression of enhanced green fluorescent protein (EGFP) and analyzed for EGFP mRNA levels. We find that both new vectors drive twice the level of mRNA accumulation of the original vector and over 30-times that of the CMV promoter. This suggests that these new vectors will provide a substantial elevation in levels of expression by virtue of inclusion of the beta-actin 3'UTR plus flanking region.
Collapse
Affiliation(s)
- H Qin
- Cell Biology Unit, Children's Medical Research Institute, Westmead, NSW, Australia
| | | |
Collapse
|
35
|
Reynisdottir S, Dauzats M, Thörne A, Langin D. Comparison of hormone-sensitive lipase activity in visceral and subcutaneous human adipose tissue. J Clin Endocrinol Metab 1997; 82:4162-6. [PMID: 9398732 DOI: 10.1210/jcem.82.12.4427] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The possible role of hormone-sensitive lipase (HSL) in determining regional differences in lipolysis activation in humans was studied in vitro. Small adipose tissue biopsies were obtained from the abdominal sc and omental regions during surgery in 21 subjects spanning a wide range of body mass index (22-50 kg/m2). In lipolysis experiments, isolated fat cells were incubated with lipolytic agents acting at different levels in the lipolytic cascade. The activity and messenger ribonucleic acid expression of HSL were determined. The maximum lipolytic capacity was higher in sc than in omental fat cells as were HSL activity and messenger ribonucleic acid expression. The maximum lipolysis rate was significantly correlated to HSL activity. This is in accordance with the role of HSL as the rate-limiting step of lipolysis. However, adipocytes were 24% larger in the sc than in the omental region, and the lipolysis rate was significantly correlated to fat cell size regardless of either the region of origin or gender. This indicates that the regulation of HSL activity in healthy subjects, which appears to occur at a transcriptional level, is to a large extent dependent on fat cell size.
Collapse
Affiliation(s)
- S Reynisdottir
- Department of Medicine, Huddinge Hospital, Karolinska Institute, Sweden
| | | | | | | |
Collapse
|
36
|
Fiedler K, Kellner R, Simons K. Mapping the protein composition of trans-Golgi network (TGN)-derived carrier vesicles from polarized MDCK cells. Electrophoresis 1997; 18:2613-9. [PMID: 9527491 DOI: 10.1002/elps.1150181417] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
In polarized MDCK cells, proteins and lipids are sorted in the trans-Golgi network /TGN) and packaged into different vesicular carriers that are delivered to the apical or basolateral cell surface. To gain insight into the sorting and trafficking machinery, we have previously isolated TGN-derived carrier vesicles from perforated MDCK cells. The composition of immuno-isolated apical and basolateral carriers was mapped by two-dimensional (2-D) gel electrophoresis. Here we describe the identification of several components of the vesicle fraction by using three different methods. 2-D gel comigration was performed with carrier vesicles isolated from metabolically labeled MDCK cells and human epidermal keratinocyte lysates. This allowed us to assign eleven known components by a comparison with the comprehensive keratinocyte 2-D gel database. These comprised two members of the 14-3-3 family of proteins that have been implicated in vesicular trafficking. Five proteins were purified from preparative 2-D gels and identified by peptide microsequencing, including the beta1 and beta2 subunit of trimeric G proteins and an annexin II variant. A member of the SNARE family of proteins was identified by immunoblotting. The combination of 2-D gel electrophoresis and 2-D gel databases allows the rapid assessment of the purity of subcellular fractions and to characterize components involved in vesicular transport.
Collapse
Affiliation(s)
- K Fiedler
- Cellular Biochemistry and Biophysics Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA.
| | | | | |
Collapse
|
37
|
Hoffmann-Sommergruber K, Vanek-Krebitz M, Radauer C, Wen J, Ferreira F, Scheiner O, Breiteneder H. Genomic characterization of members of the Bet v 1 family: genes coding for allergens and pathogenesis-related proteins share intron positions. Gene 1997; 197:91-100. [PMID: 9332353 DOI: 10.1016/s0378-1119(97)00246-1] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Bet v 1, the major birch pollen allergen, is a member of a multigene family; a number of isoforms and homologous proteins from closely related species (alder, hazel and hornbeam) has been isolated and their cDNAs cloned and characterized. Genomic clones coding for Bet v 1 and homologues from apple and hazel were isolated and sequenced. Some of these clones contained intervening sequences. The exon-intron formation is highly conserved throughout this family of pathogenesis-related proteins in dicot plants and is also found in Aopr1 (Asparagus officinalis), a monocol species. Phylogenetic analysis suggested a possible common origin of the intron position in these homologous proteins at codon 62 in various families of flowering plants, including Fagaceae, Rosaceae and Apiaceae. This conserved 'proto-splice site' may point to a structure/function relationship. A conserved sequence motif (P-loop) was also found in all members of this protein family. Moreover, there is a certain degree of sequence similarity among the proteins derived from various species throughout the dicots and the only monocot examined. This fact is reflected by cross-reactivity from monoclonal and polyclonal antibodies raised against Bet v 1.
Collapse
|
38
|
Weiner JA, Chun J. Png-1, a nervous system-specific zinc finger gene, identifies regions containing postmitotic neurons during mammalian embryonic development. J Comp Neurol 1997; 381:130-42. [PMID: 9130664 DOI: 10.1002/(sici)1096-9861(19970505)381:2<130::aid-cne2>3.0.co;2-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
To identify genes associated with early postmitotic cortical neurons, gene fragments were examined for expression in postmitotic, but not proliferative, zones of the embryonic murine cortex. Through this approach, a novel member of the zinc finger gene family, containing 6 C2HC fingers, was isolated and named postmitotic neural gene-1, or png-1. Embryonic png-1 expression was: 1) nervous system-specific; 2) restricted to zones containing postmitotic neurons; and 3) detected in all developing neural structures examined. In the cortex, png-1 expression was first observed on embryonic day 11, correlating temporally and spatially with the known generation of the first cortical neurons. Gradients of png-1 expression throughout the embryonic central nervous system further correlated temporally and spatially with known gradients of neuron production. With development, expression remained restricted to postmitotic zones, including those containing newly-postmitotic neurons. Png-1 was also detected within two days of neural retinoic acid induction in P19 cells, and expression increased with further neuronal differentiation. These data implicate png-1 as one of the earliest molecular markers for postmitotic neuronal regions and suggest a function as a panneural transcription factor associated with neuronal differentiation.
Collapse
Affiliation(s)
- J A Weiner
- Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla 92093-0636, USA
| | | |
Collapse
|
39
|
el-Rady J, Shearer G. Cloning and analysis of an actin-encoding cDNA from the dimorphic pathogenic fungus Histoplasma capsulatum. JOURNAL OF MEDICAL AND VETERINARY MYCOLOGY : BI-MONTHLY PUBLICATION OF THE INTERNATIONAL SOCIETY FOR HUMAN AND ANIMAL MYCOLOGY 1997; 35:159-66. [PMID: 9229331 DOI: 10.1080/02681219780001091] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We have cloned an actin-encoding cDNA from the dimorphic fungus Histoplasma capsulatum, an important pathogen of humans. The predicted amino acid sequence as well as the general codon pattern of Histoplasma actin revealed the highest degree of similarity to the actin of the filamentous ascomycete Aspergillus nidulans. Southern blot analysis determined that actin was encoded by a single copy in the Histoplasma genome. Northern blot analysis showed a single 1700 nt transcript in yeast and mould cells as well as in cells undergoing the temperature induced mould-to-yeast conversion. Actin mRNA levels normalized to 18 S rRNA were found to be equivalent in all the stages examined, except for a sharp four-fold transient decrease 4 h into the mould-to-yeast conversion. These data suggest that actin mRNA would not be a suitable internal marker for expression studies during Histoplasma mould-to-yeast morphogenesis.
Collapse
Affiliation(s)
- J el-Rady
- University of Southern Mississippi, Department of Biological Sciences, Hattiesburg 39406-5018, USA
| | | |
Collapse
|
40
|
Mounier N, Perriard JC, Gabbiani G, Chaponnier C. Transfected muscle and non-muscle actins are differentially sorted by cultured smooth muscle and non-muscle cells. J Cell Sci 1997; 110 ( Pt 7):839-46. [PMID: 9133671 DOI: 10.1242/jcs.110.7.839] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
We have analyzed by immunolabeling the fate of exogenous epitope-tagged actin isoforms introduced into cultured smooth muscle and non-muscle (i.e. endothelial and epithelial) cells by transfecting the corresponding cDNAs in transient expression assays. Exogenous muscle actins did not produce obvious shape changes in transfected cells. In smooth muscle cells, transfected striated and smooth muscle actins were preferentially recruited into stress fibers. In non-muscle cells, exogenous striated muscle actins were rarely incorporated into stress fibers but remained scattered within the cytoplasm and frequently appeared organized in long crystal-like inclusions. Transfected smooth muscle actins were incorporated into stress fibers of epithelial cells but not of endothelial cells. Exogenous non-muscle actins induced alterations of cell architecture and shape. All cell types transfected by non-muscle actin cDNAs showed an irregular shape and a poorly developed network of stress fibers. beta- and gamma-cytoplasmic actins transfected into muscle and non-muscle cells were dispersed throughout the cytoplasm, often accumulated at the cell periphery and rarely incorporated into stress fibers. These results show that isoactins are differently sorted: not only muscle and non-muscle actins are differentially distributed within the cell but also, according to the cell type, striated and smooth muscle actins can be discriminated for. Our observations support the assumption of isoactin functional diversity.
Collapse
Affiliation(s)
- N Mounier
- Centre de Génétique Moléculaire et Cellulaire, Université Lyon 1, Villeurbanne, France
| | | | | | | |
Collapse
|
41
|
Höfer D, Ness W, Drenckhahn D. Sorting of actin isoforms in chicken auditory hair cells. J Cell Sci 1997; 110 ( Pt 6):765-70. [PMID: 9099950 DOI: 10.1242/jcs.110.6.765] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Most nonmuscle cells of higher vertebrates contain two different actin isoforms, beta- and gamma-cytoplasmic actin. The beta-isoform is with few exceptions the predominant isoform in nonmuscle cells and tissues. Perturbation of the beta:gamma ratio has been shown to affect the organization of bundled actin filaments indicating that the beta- and gamma-genes encode functionally distinct cytoarchitectural information. In the present study we localized by immunostaining beta- and gamma-actin in chicken auditory hair cells. These highly specialized cells serve as model system for studying certain developmental and structural aspects of a complex actin filament system with high architectural precision. We show that gamma-actin is the predominant actin isoform in auditory hair cells with an apparent beta:gamma ratio of approximately 1:2. gamma-Actin is not sorted and occurs in all three actin assemblies of the hair border, i.e. the cores of sensory hairs (stereocilia), the subjacent gel-like actin filament meshwork (cuticular plate) and the zonula adherens ring. In contrast to gamma-actin, the beta-isoform is specifically sorted to the actin filament core bundle of stereocilia that is extensively crosslinked by fimbrin. In view of recent studies showing that L-plastin, the leukocyte homolog of fimbrin, has a higher binding affinity for beta-actin than for gamma-actin, a mechanism is proposed for how hair cells might restrict formation of actin filament bundles to a single cellular site (i.e. the stereocilia). The limited level of expression of beta-actin in hair cells may help to prevent ectopic bundle formation in other cellular compartments.
Collapse
Affiliation(s)
- D Höfer
- Institute of Anatomy, University of Würzburg, Germany
| | | | | |
Collapse
|
42
|
Hovland R, Hesketh JE, Pryme IF. The compartmentalization of protein synthesis: importance of cytoskeleton and role in mRNA targeting. Int J Biochem Cell Biol 1996; 28:1089-105. [PMID: 8930133 DOI: 10.1016/1357-2725(96)00059-3] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Following the synthesis of mRNA molecules in eukaryotic cells, the transcripts are processed in the nucleus and subsequently transported through the nuclear membrane into the cytoplasm before being sequestered into polysomes where the information contained in the RNA molecule is translated into an amino acid sequence. Recent evidence suggests that an association of mRNAs with the cytoskeleton might be important in targeting mechanisms and, furthermore, in the transport of mRNA from the nucleus to its correct location in the cytoplasm. Until recently, polysomes have been considered to exist in two classes, namely free or membrane-bound. There is now compelling evidence, however, that ribosomes, in addition to being associated with endoplasmic reticulum membranes, also are associated with components of the cytoskeleton. Thus, a large number of morphological and biochemical studies have shown that mRNA, polysomes and translational factors are associated with cytoskeletal structures. Although the actual nature and significance of the interaction between components of the translational apparatus and the cytoskeleton is not yet understood in detail, it would seem evident that such interactions are important in both the spatial organization and control of protein synthesis. Recent work has shown that a subcellular fraction, enriched in cytoskeletal components, contains polysomes and these (cytoskeletal-bound) polysomes have been shown to contain specific mRNA species. Thus, a population of cytoskeletal-bound polysomes may provide a specialized mechanism for the sorting, targeting and topographical segregation of mRNAs. In this review, current knowledge of the subcellular compartmentalization of mRNAs is discussed.
Collapse
Affiliation(s)
- R Hovland
- Department of Biochemistry and Molecular Biology, University of Bergen, Norway
| | | | | |
Collapse
|
43
|
Kant AM, Advani SH, Zingde SM. Actin mRNA is not lowered in chronic myeloid leukemic granulocytes. Leuk Res 1996; 20:739-41. [PMID: 8947583 DOI: 10.1016/0145-2126(96)00006-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Chronic myeloid leukemic (CML) granulocytes exhibit defects in several functions, some of which have been associated with changes in the expression of cell surface molecules, actin reorganization and lowered levels of total cellular actin. In this study, we show by northern blotting that the steady-state level of mRNA for actin is not decreased in the CML granulocyte. Our data suggest that the lowered levels of actin protein in the leukemic granulocyte may be due to altered control at the translational/post-translational step, rather than at the level of transcription/post-transcription, implicated in the regulation of expression of the surface molecules, Fc gamma RII, Fc gamma RIII and alkaline phosphatase.
Collapse
Affiliation(s)
- A M Kant
- Cancer Research Institute, Parel, Bombay, India
| | | | | |
Collapse
|
44
|
Diaw L, Lefebvre d'Hellencourt C, Cornillet I, Vuillier F, Guenounou M, Dighiero G. Expression and production of cytokines by heterohybrids and their parental B cells in CLL. Leuk Lymphoma 1996; 21:281-91. [PMID: 8726409 DOI: 10.3109/10428199209067609] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Three hybrids derived from CD5+ B cell chronic lymphocytic leukemia (B-CLL) and their parental B cells were studied for phenotypic evolution, immunoglobulin (Ig), tumor necrosis factor-alpha (TNF-alpha) and interleukin-6 (IL-6) secretion. When phenotypic evolution was examined, hybrids showed the loss of classical B cell markers, indicating that they follow the same pattern of phenotypic differentiation as normal B cells. Hybrids displayed spontaneous high Ig secretion, which did not appear to be modified through stimulation by phorbol 12-myristate 13-acetate (PMA), recombinant interferon-gamma (rIFN-gamma) and Staphylococcus aureus Cowan I (SAC). Parental cells secreted minimal amounts of Ig spontaneously or through IFN-gamma and SAC stimulation, whereas PMA succeeded in increasing this secretion. An opposite pattern was observed when TNF-alpha and IL-6 secretion an expression at the mRNA level were assessed in hybrids and parental cells. TNF-alpha and IL-6 were spontaneously secreted by parental cells and this secretion was increased after PMA and SAC stimulation, both cytokine secretion and expression at the mRNA level were negative in hybrid cells. The absence of expression of these cytokines could be explained either by chromosomal loss or by down regulation. These results indicate that when parental CLL cells are induced to differentiate in the heterohybrid model, they acquire high spontaneous secretion of Ig, lose the classical B cell phenotypic markers and down regulate the expression of the cytokines studied.
Collapse
MESH Headings
- B-Lymphocytes/metabolism
- Blotting, Southern
- Chromosome Deletion
- Down-Regulation
- Gene Expression Regulation, Leukemic
- Humans
- Hybrid Cells
- Immunoglobulin M/physiology
- Interleukin-6/biosynthesis
- Interleukin-6/genetics
- Interleukin-6/metabolism
- Karyotyping
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Phenotype
- RNA, Messenger/metabolism
- Tumor Cells, Cultured
- Tumor Necrosis Factor-alpha/biosynthesis
- Tumor Necrosis Factor-alpha/genetics
- Tumor Necrosis Factor-alpha/metabolism
Collapse
Affiliation(s)
- L Diaw
- Unite d'Immunohematologie, Institut Pasteur, Paris, France
| | | | | | | | | | | |
Collapse
|
45
|
Hao H, Moraes CT. Functional and molecular mitochondrial abnormalities associated with a C --> T transition at position 3256 of the human mitochondrial genome. The effects of a pathogenic mitochondrial tRNA point mutation in organelle translation and RNA processing. J Biol Chem 1996; 271:2347-52. [PMID: 8567699 DOI: 10.1074/jbc.271.4.2347] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
We have previously identified a mitochondrial DNA polymorphism (a C --> T transition at position 3256, within the mitochondrial tRNALeu(UUR) gene in a patient with a multisystem disorder. Although there were several indicators suggesting a pathogenetic role for this mtDNA polymorphism, its heteroplasmic nature made functional and molecular studies difficult to interpret. We have now fused enucleated fibroblasts from the patient with a mtDNA-less cell line to generate transmitochondrial cybrids harboring different proportions of mutated and wild-type mtDNA. Individual clones harboring essentially 100% wild-type or > 99% mutated mtDNAs were characterized and studied for respiratory capacity, respiratory chain enzymes activity, mitochondrial protein synthesis, and RNA steady-state levels and processing. Our results showed that cell lines containing exclusively mutated mtDNAs respire poorly, overproduce lactic acid, and have significantly impaired activity of respiratory complexes I and IV. Molecular studies showed that mutant clones have a decrease in steady-state levels of mitochondrial tRNALeu(UUR), and a partial impairment of mitochondrial protein synthesis and steady-state levels, suggesting that these molecular abnormalities are involved in the pathogenetic mechanism of the mtDNA 3256 mutation.
Collapse
Affiliation(s)
- H Hao
- Department of Neurology, University of Miami, Florida 33136, USA
| | | |
Collapse
|
46
|
Takahashi H, Takano H, Yokoyama A, Hara Y, Kawano S, Toh-e A, Kuroiwa T. Isolation, characterization and chromosomal mapping of an actin gene from the primitive red alga Cyanidioschyzon merolae. Curr Genet 1995; 28:484-90. [PMID: 8575024 DOI: 10.1007/bf00310820] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Based on the results of cytological studies, it has been assumed that Cyanidioschyzon merolae does not contain actin genes. However, Southern hybridization of C. merolae cell-nuclear DNA with a yeast actin-gene probe has been suggested the presence of an actin gene in the C. merolae genome. In the present study, an actin gene was isolated from a C. merolae genomic library using a yeast actin-gene probe. The C. merolae actin gene has no intron. The predicted actin is composed of 377 amino acids and has an estimated molecular mass of 42 003 Da. Southern hybridization indicated that the C. merolae genome contains only one actin gene. This gene is transcribed at a size of 2.4 kb. When Southern hybridization was performed with C. merolae chromosomes separated by pulsed-field gel electrophoresis, a band appeared on unseparated chromosomes XI and XII. A phylogenetic tree based on known eucaryote actin-gene sequences revealed that C. merolae diverged after the division of Protozoa, but before the division of Fungi, Animalia and Chlorophyta.
Collapse
Affiliation(s)
- H Takahashi
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
47
|
Brady G, Billia F, Knox J, Hoang T, Kirsch IR, Voura EB, Hawley RG, Cumming R, Buchwald M, Siminovitch K, Miyamoto N, Boehmelt G, Iscove NN. Analysis of gene expression in a complex differentiation hierarchy by global amplification of cDNA from single cells. Curr Biol 1995; 5:909-922. [PMID: 7583149 DOI: 10.1016/s0960-9822(95)00181-3] [Citation(s) in RCA: 137] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
BACKGROUND Many differentiating tissues contain progenitor cells that differ in their commitment states but cannot be readily distinguished or segregated. Molecular analysis is therefore restricted to mixed populations or cell lines which may also be heterogeneous, and the critical differences in gene expression that might determine divergent development are obscured. In this study, we combined global amplification of mRNA transcripts in single cells with identification of the developmental potential of processed cells on the basis of the fates of their sibling cells from clonal starts. RESULTS We analyzed clones of from four to eight hemopoietic precursor cells which had a variety of differentiative potentials; sibling cells generally each formed clones of identical composition in secondary culture. Globally amplified cDNA was prepared from individual precursors whose developmental potential was identified by tracking sibling fates. Further cDNA samples were prepared from terminally maturing, homogeneous hemopoietic cell populations. Together, the samples represented 16 positions in the hemopoietic developmental hierarchy. Expression patterns in the sample set were determined for 29 genes known to be involved in hemopoietic cell growth, differentiation or function. The cDNAs from a bipotent erythroid/megakaryocyte precursor and a bipotent neutrophil/macrophage precursor were subtractively hybridized, yielding numerous differentially expressed cDNA clones. Hybridization of such clones to the entire precursor sample set identified transcripts with consistent patterns of differential expression in the precursor hierarchy. CONCLUSIONS Tracking of sibling fates reliably identifies the differentiative potential of a single cell taken for PCR analysis, and demonstrates the existence of a variety of distinct and stable states of differentiative commitment. Global amplification of cDNA from single precursor cells, identified by sibling fates, yields a true representation of lineage- and stage-specific gene expression, as confirmed by hybridization to a broad panel of probes. The results provide the first expression mapping of these genes that distinguishes between progenitors in different commitment states, generate new insights and predictions relevant to mechanism, and introduce a powerful set of tools for unravelling the genetic basis of lineage divergence.
Collapse
Affiliation(s)
- Gerard Brady
- The Ontario Cancer Institute and Department of Medical Biophysics, University of Toronto,500 Sherbourne Street, Toronto M4X 1K9, Canada
| | - Filio Billia
- The Ontario Cancer Institute and Department of Medical Biophysics, University of Toronto,500 Sherbourne Street, Toronto M4X 1K9, Canada
| | - Jennifer Knox
- The Ontario Cancer Institute and Department of Medical Biophysics, University of Toronto,500 Sherbourne Street, Toronto M4X 1K9, Canada
| | - Trang Hoang
- Clinical Research Institute of Montreal, Department of Pharmacology, University of Montreal, Montreal H2W 1R7, Canada
| | - Ilan R Kirsch
- National Cancer Institute, Navy Medical Oncology Branch, Bethesda, Maryland 20892, USA
| | - Evelyn B Voura
- Sunnybrook Health Science Centre, Department of Medical Biophysics, University of Toronto, 2075 Bayview Avenue, Toronto M4N 3M5, Canada
| | - Robert G Hawley
- Sunnybrook Health Science Centre, Department of Medical Biophysics, University of Toronto, 2075 Bayview Avenue, Toronto M4N 3M5, Canada
| | - Rob Cumming
- Department of Molecular and Medical Genetics, University of Toronto, Research Insitute, Hospital for Sick Children, 555 University Avenue, Toronto M5G 1X8, Canada
| | - Manuel Buchwald
- Department of Molecular and Medical Genetics, University of Toronto, Research Insitute, Hospital for Sick Children, 555 University Avenue, Toronto M5G 1X8, Canada
| | - Kathy Siminovitch
- Department of Medicine, Samuel Lunenfeld Research Institute, University of Toronto, 600 University Avenue, Toronto M5G 1X5, Canada
| | - Neil Miyamoto
- The Ontario Cancer Institute and Department of Medical Biophysics, University of Toronto,500 Sherbourne Street, Toronto M4X 1K9, Canada
| | - Guido Boehmelt
- The Ontario Cancer Institute and Department of Medical Biophysics, University of Toronto,500 Sherbourne Street, Toronto M4X 1K9, Canada
| | - Norman N Iscove
- The Ontario Cancer Institute and Department of Medical Biophysics, University of Toronto,500 Sherbourne Street, Toronto M4X 1K9, Canada
| |
Collapse
|
48
|
Davey HW, Wildeman AG. Molecular analysis of bovine actin gene and pseudogene sequences: expression of nonmuscle and striated muscle isoforms in adult tissues. DNA Cell Biol 1995; 14:555-63. [PMID: 7598810 DOI: 10.1089/dna.1995.14.555] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Most studies on the tissue distribution of actin isoform transcripts have been done in small mammals such as rat and mouse. We have begun a characterization of the actin gene family in a large mammal, the bovine. The alpha skeletal gene was isolated, and an isoform-specific probe to the 3' untranslated region of the transcript identified. This probe, in combination with isoform specific probes for alpha cardiac, beta nonmuscle, and gamma nonmuscle actins, was used to examine expression of nonmuscle and striated muscle actin gene transcription in different tissues. In contrast to other species so far examined, striated muscle isoforms were more strictly tissue specific, with virtually no alpha cardiac isoform transcripts detected in skeletal muscle and almost no alpha skeletal transcripts in cardiac tissue. The distribution of the beta and gamma nonmuscle actins was also unique in bovine compared to other species. A partial beta-actin pseudogene, and the chromosomal DNA flanking one end of it, were also cloned and sequenced. This chromosomal site was found to be homologous to a viral integration site previously identified in simian virus 40 (SV40)-transformed rat cells, suggesting that this region of the chromosome may be a preferred target for insertion events.
Collapse
Affiliation(s)
- H W Davey
- Department of Molecular Biology and Genetics, University of Guelph, Ontario, Canada
| | | |
Collapse
|
49
|
Ueyama H, Inazawa J, Nishino H, Han-Xiang D, Ochiai Y, Ohkubo I. Chromosomal mapping of the human smooth muscle actin gene (enteric type, ACTA3) to 2p13.1 and molecular nature of the hindIII polymorphism. Genomics 1995; 25:720-3. [PMID: 7759108 DOI: 10.1016/0888-7543(95)80016-f] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The human gene for smooth muscle actin (enteric type, ACTA3) has been isolated, and three overlapping clones, lambda HACTSG-17, -2, and -112, were used as probes for fluorescence in situ hybridization of human chromosomes. The gene was localized to chromosome 2p13.1. To clarify the molecular nature of the HindIII RFLP present in the first intron of the gene, the 1105-bp EcoRI-BamHI fragment contained in lambda HACTSG-17 was sequenced. PCR with primers designed from the determined sequence yielded either the 463- or the 439-bp product or both, using human DNA as template. The 463-bp product was cleavable with HindIII, but the 439-bp product was not. Comparison of their nucleotide sequences revealed that they differ in the presence/absence of a 24-bp sequence harboring a HindIII restriction site. Therefore, analysis of PCR products by size has been shown to be sufficient to detect the RFLP. The allelic frequency on 156 chromosomes was determined by PCR to be 45 (439 bp, corresponding to the formerly designated A1 allele):55 (463 bp, A2 allele) in the Japanese population.
Collapse
Affiliation(s)
- H Ueyama
- Department of Medical Biochemistry, Shiga University of Medical Science, Otsu, Japan
| | | | | | | | | | | |
Collapse
|
50
|
Abstract
The debate continues on the issue of whether nuclear introns were present in eukaryotic protein-coding genes from the beginning (introns-early) or invaded them later in evolution (introns-late). Recent studies concerning the location of introns with respect to gene and protein structure have been interpreted as providing strong support for both positions, but the weight of argument is clearly moving in favour of the latter. Consistent with this, there is now good evidence that introns can function as transposable elements, and that nuclear introns derived from self-splicing group II introns, which then evolved in partnership with the spliceosome. This was only made possible by the separation of transcription and translation. If introns did colonize eukaryotic genes after their divergence from prokaryotes, the original question as to the evolutionary forces that have seen these sequences flourish in the higher organisms, and their significance in eukaryotic biology, is again thrown open. I suggest that introns, once established in eukaryotic genomes, might have explored new genetic space and acquired functions which provided a positive pressure for their expansion. I further suggest that there are now two types of information produced by eukaryotic genes--mRNA and iRNA--and that this was a critical step in the development of multicellular organisms.
Collapse
Affiliation(s)
- J S Mattick
- Centre for Molecular and Cellular Biology, University of Queensland, Brisbane, Australia
| |
Collapse
|