1
|
Johnson GE, Fei C, Wingreen NS, Bassler BL. Analysis of gene expression within individual cells reveals spatiotemporal patterns underlying Vibrio cholerae biofilm development. PLoS Biol 2025; 23:e3003187. [PMID: 40378130 DOI: 10.1371/journal.pbio.3003187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Accepted: 04/30/2025] [Indexed: 05/18/2025] Open
Abstract
Bacteria commonly exist in multicellular, surface-attached communities called biofilms. Biofilms are central to ecology, medicine, and industry. The Vibrio cholerae pathogen forms biofilms from single founder cells that, via cell division, mature into three-dimensional structures with distinct, yet reproducible, regional architectures. To define mechanisms underlying biofilm developmental transitions, we establish a single-molecule fluorescence in situ hybridization (smFISH) approach that enables accurate quantitation of spatiotemporal gene-expression patterns in biofilms at cell-scale resolution. smFISH analyses of V. cholerae biofilm regulatory and structural genes demonstrate that, as biofilms mature, overall matrix gene expression decreases, and simultaneously, a pattern emerges in which matrix gene expression becomes largely confined to peripheral biofilm cells. Both quorum sensing and c-di-GMP-signaling are required to generate the proper temporal pattern of matrix gene expression. Quorum sensing signaling is uniform across the biofilm, and thus, c-di-GMP-signaling alone sets the regional matrix gene expression pattern. The smFISH strategy provides insight into mechanisms conferring particular fates to individual biofilm cells.
Collapse
Affiliation(s)
- Grace E Johnson
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
- The Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
| | - Chenyi Fei
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
| | - Ned S Wingreen
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
| | - Bonnie L Bassler
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
- The Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
| |
Collapse
|
2
|
Ye Q, Eves R, Vance TDR, Hansen T, Sage AP, Petkovic A, Bradley B, Escobedo C, Graham LA, Allingham JS, Davies PL. Aeromonas hydrophila RTX adhesin has three ligand-binding domains that give the bacterium the potential to adhere to and aggregate a wide variety of cell types. mBio 2025; 16:e0315824. [PMID: 40243363 PMCID: PMC12077191 DOI: 10.1128/mbio.03158-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 03/25/2025] [Indexed: 04/18/2025] Open
Abstract
Bacteria often make initial contact with their hosts through the ligand-binding domains of large adhesin proteins. Recent analyses of repeats-in-toxin (RTX) adhesins in Gram-negative bacteria suggest that ligand-binding domains can be identified by the way they emerge from "split" domains within the adhesin. Here, using this criterion and an AlphaFold3 model of a 5047-residue RTX adhesin from Aeromonas hydrophila, we identified three different ligand-binding domains in this fibrillar protein. The crystal structures of the two novel domains were solved to 1.4 and 1.95 Å resolution, respectively, and demonstrate excellent agreement with their modeled structures. The other domain was recognized as a carbohydrate-binding module based on its beta-strand topology and confirmed by its micromolar affinity for fucosylated glycans, including the Lewis B and Y antigens. This lectin-like module, which was recombinantly produced with its companion split domain and nearby extender domain, bound to a wide variety of cells including yeasts, diatoms, erythrocytes, and human endothelial cells. In each case, 50 mM free fucose prevented this binding and may offer some protection from infection. The carbohydrate-binding module with its neighboring domains also caused aggregation of yeast and erythrocytes, which was again blocked by the addition of free fucose. The second putative ligand-binding domain has a beta-roll structure supported by a parallel alpha-helix, and the third is a homolog of a von Willebrand Factor A domain. These two domains bind to a more limited range of cell types, and their ligands have yet to be identified.IMPORTANCECharacterizing the ligand-binding domains of fibrillar adhesins is important for understanding how bacteria can colonize host surfaces and how this colonization might be blocked. Here, we show that the opportunistic pathogen, Aeromonas hydrophila, uses a carbohydrate-binding module (CBM) to attach to several different cell types. The CBM is one of three ligand-binding domains at the distal tip of the adhesin. Identifying the glycans bound by the CBM as Lewis B and Y antigens has helped explain the range of cell types that the bacterium will bind and colonize, and it has suggested sugars that might interfere with these processes. Indeed, fucose, which is a constituent of the Lewis B and Y antigens, is effective at 50 mM concentrations in blocking the attachment of the CBM to host cells. This will lead to the design of more effective inhibitors against bacterial infections.
Collapse
Affiliation(s)
- Qilu Ye
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Robert Eves
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Tyler D. R. Vance
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Thomas Hansen
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Adam P. Sage
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Andrea Petkovic
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Brianna Bradley
- Department of Chemical Engineering, Queen's University, Kingston, Ontario, Canada
| | - Carlos Escobedo
- Department of Chemical Engineering, Queen's University, Kingston, Ontario, Canada
| | - Laurie A. Graham
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - John S. Allingham
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Peter L. Davies
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
3
|
Sun Y, Hao L, Liang J, Ye S, Su M. Salinity-induced virulence alteration of Aeromonas hydrophila isolated from Scatophagus argus: insights from transcriptomic profiling and phenotypic characterization. BMC Microbiol 2025; 25:266. [PMID: 40316893 PMCID: PMC12046933 DOI: 10.1186/s12866-025-03977-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 04/18/2025] [Indexed: 05/04/2025] Open
Abstract
BACKGROUND The emerging foodborne pathogen, Aeromonas hydrophila, co-infects humans and animals, especially fish, threatening aquacultural production and public health. Previously, we found that Scatophagus argus, a widely cultivated fish species with high economic value, exhibited enhanced growth but increased susceptibility to A. hydrophila infection under freshwater conditions compared to seawater conditions. However, the exact mechanisms involved remain unclear. RESULTS Our study demonstrated that the enhanced virulence of A. hydrophila 201416, isolated from S. argus, in response to increasing salinity was associated with altered quorum sensing-related gene expression and regulated behaviors. Results from virulence assays incorporating phenotypic characterization indicated that elevated salinity levels (from 0 to 35‰) significantly hindered Ah201416 infection of S. argus. This trend correlated with increased biofilm mass and swimming motility, yet was inversely related to bacterial growth. RNA-sequencing and quantitative reverse transcriptional PCR analysis confirmed significant upregulation of genes related to flagellar assembly (flgB, flgH, flgC, flgI, flhA, and fliA), bacterial secretion (HlyD and Ahh1), and quorum sensing (AhyR, LuxO, and LuxE) of Ah201416 in response to elevated salinity. These findings suggested that increased salinity not only enhanced the virulence of Ah201416 but also bolstered the resistance of S. argus, thereby mitigating its susceptibility. CONCLUSIONS This study provides deeper insights into the microbial risks associated with A. hydrophila in aquacultural production, which is critical to developing effective prevention and control strategies and ensuring a safe seafood supply. CLINICAL TRIAL NUMBER Not applicable.
Collapse
Affiliation(s)
- Yuan Sun
- Shenzhen Key Laboratory of Marine Bioresource & Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Lingyun Hao
- Shenzhen Key Laboratory of Marine Bioresource & Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
- Center for Plant Environmental Sensing, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Jianbing Liang
- Shenzhen Key Laboratory of Marine Bioresource & Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Shiyang Ye
- Shenzhen Key Laboratory of Marine Bioresource & Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Maoliang Su
- Shenzhen Key Laboratory of Marine Bioresource & Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China.
| |
Collapse
|
4
|
Wang Q, Liu R, Niu Y, Wang Y, Qin J, Huang Y, Qian J, Zheng X, Wang M, Huang D, Liu Y. Regulatory mechanisms of two-component systems in Vibrio cholerae: Enhancing pathogenicity and environmental adaptation. Microbiol Res 2025; 298:128198. [PMID: 40318575 DOI: 10.1016/j.micres.2025.128198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 04/25/2025] [Accepted: 04/27/2025] [Indexed: 05/07/2025]
Abstract
Cholera, which is caused by the bacterium Vibrio cholerae, is a highly dangerous disease characterized by severe symptoms such as watery diarrhea, dehydration, and even death. V. cholerae can both colonize the host intestine and survive in environmental reservoirs. Two-component systems (TCSs) are essential regulatory mechanisms that allow bacteria to adapt to changing environments. This review focuses on the regulatory mechanisms of TCS-mediated gene expression in V. cholerae. We first summarize the composition and classification of TCSs in V. cholerae N16961. We then discuss the roles of TCSs in facilitating adaptation to diverse environmental stimuli and increasing pathogenicity. Furthermore, we analyze the distribution of TCSs in pandemic and nonpandemic-V. cholerae strains, demonstrating their indispensable role in promoting virulence and facilitating the widespread dissemination of pandemic strains. Elucidation of these mechanisms is crucial for devising new strategies to combat cholera and prevent future outbreaks, ultimately contributing to improved public health outcomes.
Collapse
Affiliation(s)
- Qian Wang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, PR China
| | - Ruiying Liu
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, PR China
| | - Yuanyuan Niu
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, PR China
| | - Yuchen Wang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, PR China
| | - Jingling Qin
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, PR China
| | - Yu Huang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, PR China
| | - Jiamin Qian
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, PR China
| | - Xiaoyu Zheng
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, PR China
| | - Meng Wang
- Department of Clinical Laboratory, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin 300457, PR China.
| | - Di Huang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, PR China; National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Nankai University, Tianjin 300457, PR China.
| | - Yutao Liu
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, PR China.
| |
Collapse
|
5
|
Omori F, Tajima H, Asaoka S, Nishiyama SI, Sowa Y, Kawagishi I. Chemotaxis and Related Signaling Systems in Vibrio cholerae. Biomolecules 2025; 15:434. [PMID: 40149970 PMCID: PMC11940527 DOI: 10.3390/biom15030434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/25/2025] [Accepted: 03/06/2025] [Indexed: 03/29/2025] Open
Abstract
The motility and chemotaxis of Vibrio cholerae, the bacterial pathogen responsible for cholera, play crucial roles in both environmental survival and infection. Understanding their molecular mechanisms is therefore essential not only for fundamental biology but also for infection control and therapeutic development. The bacterium's sheathed, polar flagellum-its motility organelle-is powered by a sodium-driven motor. This motor's rotation is regulated by the chemotaxis (Che) signaling system, with a histidine kinase, CheA, and a response regulator, CheY, serving as the central processing unit. However, V. cholerae possesses two additional, parallel Che signaling systems whose physiological functions remain unclear. Furthermore, the bacterium harbors over 40 receptors/transducers that interact with CheA homologs, forming a complex regulatory network likely adapted to diverse environmental cues. Despite significant progress, many aspects of these systems remain to be elucidated. Here, we summarize the current understanding to facilitate future research.
Collapse
Affiliation(s)
- Fuga Omori
- Department of Frontier Bioscience, Hosei University, 3-7-2 Kajino-cho, Koganei City, Tokyo 184-8584, Japan; (F.O.); (H.T.); (S.A.); (Y.S.)
| | - Hirotaka Tajima
- Department of Frontier Bioscience, Hosei University, 3-7-2 Kajino-cho, Koganei City, Tokyo 184-8584, Japan; (F.O.); (H.T.); (S.A.); (Y.S.)
- Research Center for Micro-Nano Technology, Hosei University, 3-11-15 Midori-cho, Koganei City, Tokyo 184-0003, Japan
| | - Sotaro Asaoka
- Department of Frontier Bioscience, Hosei University, 3-7-2 Kajino-cho, Koganei City, Tokyo 184-8584, Japan; (F.O.); (H.T.); (S.A.); (Y.S.)
| | - So-ichiro Nishiyama
- Faculty of Applied Life Science, Niigata University of Pharmacy and Medical and Life Sciences, 265-1 Higashijima, Akiha-ku, Niigata City, Niigata 956-8603, Japan;
| | - Yoshiyuki Sowa
- Department of Frontier Bioscience, Hosei University, 3-7-2 Kajino-cho, Koganei City, Tokyo 184-8584, Japan; (F.O.); (H.T.); (S.A.); (Y.S.)
- Research Center for Micro-Nano Technology, Hosei University, 3-11-15 Midori-cho, Koganei City, Tokyo 184-0003, Japan
| | - Ikuro Kawagishi
- Department of Frontier Bioscience, Hosei University, 3-7-2 Kajino-cho, Koganei City, Tokyo 184-8584, Japan; (F.O.); (H.T.); (S.A.); (Y.S.)
- Research Center for Micro-Nano Technology, Hosei University, 3-11-15 Midori-cho, Koganei City, Tokyo 184-0003, Japan
| |
Collapse
|
6
|
Leitner DR, Zingl FG, Morano AA, Zhang H, Waldor MK. The Mla pathway promotes Vibrio cholerae re-expansion from stationary phase. mBio 2025; 16:e0343324. [PMID: 39714184 PMCID: PMC11796348 DOI: 10.1128/mbio.03433-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 11/25/2024] [Indexed: 12/24/2024] Open
Abstract
Bacteria have evolved diverse strategies to ensure survival under nutrient-limited conditions, where rapid energy generation is not achievable. Here, we performed a transposon insertion site sequencing loss-of-function screen to identify Vibrio cholerae genes that promote pathogen fitness in stationary phase. We discovered that the maintenance of lipid asymmetry (Mla) pathway, which is crucial for transferring phospholipids from the outer to the inner membrane, is critical for stationary phase fitness. Competition experiments with barcoded and fluorophore labeled wild-type (WT) and mlaE mutant V. cholerae revealed that the Mla pathway promotes re-expansion from 48 h stationary phase cultures. The mutant defect in transitioning out of stationary phase into active growth (culturability) was also observed in monocultures at 48 h. However, by 96 h the culturability of the WT and mutant strains were equivalent. By monitoring the abundances of genomically barcoded libraries of WT and ∆mlaE strains, we observed that a few barcodes dominated the mutant culture at 96 h, suggesting that the similarity of the population sizes at this time was caused by expansion of a subpopulation containing a mutation that suppressed the defect of ∆mlaE. Whole genome sequencing revealed that mlaE suppressors inactivated flagellar biosynthesis. Additional mechanistic studies support the idea that the Mla pathway is critical for maintaining the culturability of V. cholerae because it promotes energy homeostasis, likely due to its role in regulating outer membrane vesicle shedding. Together our findings provide insights into the cellular processes that control re-expansion from stationary phase and demonstrate a previously undiscovered role for the Mla pathway. IMPORTANCE Bacteria regularly encounter conditions with nutrient scarcity, where cell growth and division are minimal. Knowledge of the pathways that enable re-growth following nutrient restriction is limited. Here, using the cholera pathogen, we uncovered a role for the Mla pathway, a system that enables phospholipid re-cycling, in promoting Vibrio cholerae re-expansion from stationary phase cultures. Cells labeled with DNA barcodes or fluorophores were useful to demonstrate that though the abundances of wild-type and Mla mutant cells were similar in stationary phase cultures, they had marked differences in their capacities to regrow on plates. Of note, Mla mutant cells lose cell envelope components including high-energy phospholipids due to OMV shedding. Our findings suggest that the defects in cellular energy homeostasis that emerge in the absence of the Mla pathway underlie its importance in maintaining V. cholerae culturability.
Collapse
Affiliation(s)
- Deborah R. Leitner
- Division of Infectious Diseases, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Franz G. Zingl
- Division of Infectious Diseases, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Alexander A. Morano
- Division of Infectious Diseases, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Hailong Zhang
- Division of Infectious Diseases, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Matthew K. Waldor
- Division of Infectious Diseases, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
- Howard Hughes Medical Institute, Boston, Massachusetts, USA
| |
Collapse
|
7
|
Rosch K, Lei S, Zheng J, Dörr T. Differential endopeptidase requirements during adaptation to changing growth conditions in Vibrio cholerae. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.28.635349. [PMID: 39975135 PMCID: PMC11838298 DOI: 10.1101/2025.01.28.635349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
The bacterial cell wall is a covalently linked meshwork of peptidoglycan (PG) that establishes cell shape and prevents osmotic lysis. This structure must be flexible enough to accommodate transenvelope protein complexes, but strong enough to withstand high intracellular pressure. In order to elongate and divide, cells must remodel the cell wall through the concerted action of PG synthesis and degradation. Endopeptidases, a class of PG degrading enzymes, facilitate cell growth by hydrolyzing PG crosslinks. Vibrio cholerae encodes several functionally redundant endopeptidases, two of which are nearly identical: ShyA and ShyC. To investigate differential roles of these enzymes, we assessed growth and morphology of ShyA and ShyC mutants. We found that ShyA, but not ShyC, is required for normal adaptation to low osmolarity medium. Cells lacking ShyA exhibited longer lag phase and aberrant morphology during adaptation, and reduced survival in the presence of a beta-lactam antibiotic. Lastly, our experiments revealed that cells lacking ShyA's LysM domain exhibited more severe defects than cells lacking ShyA altogether, implicating the LysM domain in proper regulation of ShyA activity.
Collapse
Affiliation(s)
- Kelly Rosch
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, United States
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, United States
| | - Samantha Lei
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, United States
| | - Jennifer Zheng
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, United States
| | - Tobias Dörr
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, United States
- Department of Microbiology, Cornell University, Ithaca, United States
| |
Collapse
|
8
|
Johnson GE, Fei C, Wingreen NS, Bassler BL. Cell-scale gene-expression measurements in Vibrio cholerae biofilms reveal spatiotemporal patterns underlying development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.07.17.603784. [PMID: 39071398 PMCID: PMC11275835 DOI: 10.1101/2024.07.17.603784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Bacteria commonly exist in multicellular, surface-attached communities called biofilms. Biofilms are central to ecology, medicine, and industry. The Vibrio cholerae pathogen forms biofilms from single founder cells that, via cell division, mature into three-dimensional structures with distinct, yet reproducible, regional architectures. To define mechanisms underlying biofilm developmental transitions, we establish a single-molecule fluorescence in situ hybridization (smFISH) approach that enables accurate quantitation of spatiotemporal gene-expression patterns in biofilms at cell-scale resolution. smFISH analyses of V. cholerae biofilm regulatory and structural genes demonstrate that, as biofilms mature, overall matrix gene expression decreases, and simultaneously, a pattern emerges in which matrix gene expression becomes largely confined to peripheral biofilm cells. Both quorum sensing and c-di-GMP-signaling are required to generate the proper temporal pattern of matrix gene expression. Quorum sensing autoinducer levels are uniform across the biofilm, and thus, c-di-GMP-signaling alone sets the regional matrix gene expression pattern. The smFISH strategy provides insight into mechanisms conferring particular fates to individual biofilm cells.
Collapse
Affiliation(s)
- Grace E. Johnson
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
- The Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Chenyi Fei
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Ned S. Wingreen
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Bonnie L. Bassler
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
- The Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
- Lead Contact
| |
Collapse
|
9
|
Jia M, Li P, Yan Y, Liu X, Gao L, Zhu G, Chen Z. Antimicrobial susceptibility and genomic characterization of Vibrio cholerae non-O1/non-O139 isolated from clinical and environmental samples in Jiaxing City, China. FEMS Microbiol Lett 2025; 372:fnaf009. [PMID: 39824655 DOI: 10.1093/femsle/fnaf009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/29/2024] [Accepted: 01/16/2025] [Indexed: 01/20/2025] Open
Abstract
Non-O1/non-O139 (NOVC) strains inhabit aquatic environments and sporadically induce human illnesses. This study involved the virulence and antimicrobial genetic characterization of 176 NOVC strains, comprising 25 from clinical samples and 151 from environmental sources, collected between 2021 and 2023. The antimicrobial susceptibility of the examined NOVC population was predominantly high, exhibiting only poor susceptibility to colistin, with 89.2% resistance. The examination of virulence genes revealed that the majority of strains were positive for glucose metabolism (als gene) (169/176, 96.0%). Through multilocus sequence typing, the 176 NOVC strains were categorised into 121 sequence types, 79 of which were novel. NOVC strains demonstrate significant genetic variability and frequently engage in recombination. This work offers genetic characterization of the pathogenicity and antimicrobial resistance of a NOVC community. Our findings offer insights that may aid in the development of preventative and treatment methods for this pathogen.
Collapse
Affiliation(s)
- Miaomiao Jia
- Jiaxing Key Laboratory of Pathogenic Microbiology, Jiaxing Center for Disease Control and Prevention, Jiaxing 314050, China
| | - Ping Li
- Jiaxing Key Laboratory of Pathogenic Microbiology, Jiaxing Center for Disease Control and Prevention, Jiaxing 314050, China
| | - Yong Yan
- Jiaxing Key Laboratory of Pathogenic Microbiology, Jiaxing Center for Disease Control and Prevention, Jiaxing 314050, China
| | - Xuejuan Liu
- Jiaxing Key Laboratory of Pathogenic Microbiology, Jiaxing Center for Disease Control and Prevention, Jiaxing 314050, China
| | - Lei Gao
- Jiaxing Key Laboratory of Pathogenic Microbiology, Jiaxing Center for Disease Control and Prevention, Jiaxing 314050, China
| | - Guoying Zhu
- Jiaxing Key Laboratory of Pathogenic Microbiology, Jiaxing Center for Disease Control and Prevention, Jiaxing 314050, China
| | - Zhongwen Chen
- Jiaxing Key Laboratory of Pathogenic Microbiology, Jiaxing Center for Disease Control and Prevention, Jiaxing 314050, China
| |
Collapse
|
10
|
Mey AR, Midgett CR, Kull FJ, Payne SM. Vibrio cholerae CsrA controls ToxR levels by increasing the stability and translation of toxR mRNA. mBio 2024; 15:e0285324. [PMID: 39555915 PMCID: PMC11633198 DOI: 10.1128/mbio.02853-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 10/21/2024] [Indexed: 11/19/2024] Open
Abstract
Intestinal colonization and virulence factor production in response to environmental cues is mediated through several regulatory factors in Vibrio cholerae, including the highly conserved RNA-binding global regulatory protein CsrA. We have shown previously that CsrA increases synthesis of the virulence-associated transcription factor ToxR in response to specific amino acids (NRES) and is required for the virulence of V. cholerae in the infant mouse model of cholera. In this study, we mapped the 5' untranslated region (5' UTR) of toxR and showed that CsrA can bind directly to an RNA sequence encompassing the 5' UTR, indicating that the regulation of ToxR levels by CsrA is direct. Consistent with this observation, the 5' UTR of toxR contains multiple putative CsrA binding sequences (GGA motifs), and mutating these motifs disrupted the CsrA-mediated increase in ToxR. Optimal binding of CsrA to a defined RNA oligonucleotide required the bridging of two GGA motifs within a single RNA strand. To determine the mechanism of regulation by CsrA, we assayed toxR transcript levels, stability, and efficiency of translation. Both the amount of toxR mRNA in NRES and the stability of the toxR transcript were increased by CsrA. Using an in vitro translation assay, we further showed that synthesis of ToxR was greatly enhanced in the presence of purified CsrA, suggesting a direct role for CsrA in the translation of toxR mRNA. We propose a model in which CsrA binding to the 5' UTR of the toxR transcript promotes ribosomal access while precluding interactions with RNA-degrading enzymes.IMPORTANCEVibrio cholerae is uniquely adapted to marine environments as well as the human intestinal tract. Global regulators, such as CsrA, which help translate environmental cues into an appropriate cellular response, are critical for switching between these distinct environments. Understanding the pathways involved in relaying environmental signals is essential for understanding both the environmental persistence and the intestinal pathogenesis of this devastating human pathogen. In this study, we demonstrate that CsrA directly regulates the synthesis of ToxR, a key virulence factor of V. cholerae. Under conditions favoring high levels of active CsrA in the cell, such as in the presence of particular amino acids, CsrA increases ToxR protein levels by binding to the toxR transcript and enhancing both its stability and translation. By responding to nutrient availability, CsrA is perfectly poised to activate the virulence gene regulatory cascade at the preferred site of colonization in the human host, the nutrient-rich small intestinal mucosa.
Collapse
Affiliation(s)
- Alexandra R. Mey
- Department of Molecular Biosciences and LaMontagne Center for Infectious Diseases, The University of Texas at Austin, Austin, Texas, USA
| | | | - F. Jon Kull
- Department of Chemistry, Dartmouth College, Hanover, New Hampshire, USA
| | - Shelley M. Payne
- Department of Molecular Biosciences and LaMontagne Center for Infectious Diseases, The University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
11
|
Er S, Soh M, Low A, Seedorf H. Parasalinivibrio latis gen. nov., sp. nov., isolated from the distal gut of healthy farmed Asian Seabass (Lates calcarifer). Antonie Van Leeuwenhoek 2024; 118:25. [PMID: 39520647 DOI: 10.1007/s10482-024-02036-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
Asian Seabass (Lates calcarifer) is widely farmed as a sustainable source of protein for countries in the tropical Indo-West Pacific region. However, microbial species of the gut microbiome of healthy Asian Seabass remain largely uncharacterized and uncultured. Here, we analysed the microbial composition along the gastrointestinal tract of a farmed healthy Asian Seabass. We used different cultivation approaches to obtain isolates from the seabass intestinal tract and describe the isolation and characterization of a novel strain, TLL-SE01T. Analysis of the strain's 16S rRNA gene indicates that the strain belongs to the family Vibrionaceae with Photobacterium damselae as its closest relative, albeit sharing only 94.8% (aligned region 1553 bp) nucleotide identity. Comparative genomic analysis with all validly published Vibrionaceae species with available genomes revealed average nucleotide identity (ANI) and DNA-DNA hybridisation (DDH) values of around 70% and 24% respectively to strain TLL-SE01T, which are well below proposed thresholds for species delineation (ANI, 95-96%; DDH, 70%). The alignment fraction and ANI genus demarcation boundaries for all genera in the Vibrionaceae family were determined for which strain TLL-SE01T is well below the calculated values, indicating that it belongs to a novel genus. Single- and core-gene phylogenetic analysis places strain TLL-SE01T in a monophyletic clade, further supporting its designation to a novel genus. Phenotypic comparison between strain TLL-SE01T and its close relatives indicated additional differences, such as growth response at different salt concentrations and different metabolic capabilities. Based on genotypic, phylogenetic and phenotypic differences to other Vibrionaceae species, we propose a novel species in a new genus, Parasalinivibrio latis gen. nov. sp. nov. and strain TLL-SE01T (= BCRC 81435T = JCM 36283T) as the type strain.
Collapse
Affiliation(s)
- Shuan Er
- Temasek Life Sciences Laboratory, 1 Research Link, Singapore, 117604, Singapore
| | - Melissa Soh
- Temasek Life Sciences Laboratory, 1 Research Link, Singapore, 117604, Singapore
| | - Adrian Low
- Temasek Life Sciences Laboratory, 1 Research Link, Singapore, 117604, Singapore
- Department of Medicine, MD6-Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, 14 Medical Drive, Singapore, 117599, Singapore
| | - Henning Seedorf
- Temasek Life Sciences Laboratory, 1 Research Link, Singapore, 117604, Singapore.
- Department of Biological Sciences, National University of Singapore, Singapore, 117558, Singapore.
| |
Collapse
|
12
|
Leitner DR, Zingl FG, Morano AA, Zhang H, Waldor MK. The Mla pathway promotes Vibrio cholerae re-expansion from stationary phase. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.07.622497. [PMID: 39574722 PMCID: PMC11580980 DOI: 10.1101/2024.11.07.622497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/02/2024]
Abstract
Bacteria have evolved diverse strategies to ensure survival under nutrient-limited conditions, where rapid energy generation is not achievable. Here, we performed a transposon insertion site sequencing loss-of-function screen to identify Vibrio cholerae genes that promote the pathogen's fitness in stationary phase. We discovered that the Mla (maintenance of lipid asymmetry) pathway, which is crucial for transferring phospholipids from the outer to the inner membrane, is critical for stationary phase fitness. Competition experiments with barcoded and fluorophore labeled wild-type and mlaE mutant V. cholerae revealed that the Mla pathway promotes re-expansion from 48h stationary phase cultures. The mutant's defect in transitioning out of stationary phase into active growth (culturability) was also observed in monocultures at 48h. However, by 96h the culturability of the mutant and wild-type strains were equivalent. By monitoring the abundances of genomically barcoded libraries of wild-type and ∆mlaE strains, we observed that a few barcodes dominated the mutant culture at 96h, suggesting that the similarity of the population sizes at this time was caused by expansion of a subpopulation containing a mutation that suppressed the mlaE mutant's defect. Whole genome sequencing revealed that mlaE suppressors inactivated flagellar biosynthesis. Additional mechanistic studies support the idea that the Mla pathway is critical for the maintenance of V. cholerae's culturability as it promotes energy homeostasis, likely due to its role in regulating outer membrane vesicle shedding. Together our findings provide insights into the cellular processes that control re-expansion from stationary phase and demonstrate a previously undiscovered role for the Mla pathway.
Collapse
Affiliation(s)
- Deborah R. Leitner
- Division of Infectious Diseases, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Franz G. Zingl
- Division of Infectious Diseases, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Alexander A. Morano
- Division of Infectious Diseases, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Hailong Zhang
- Division of Infectious Diseases, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Matthew K. Waldor
- Division of Infectious Diseases, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
- Howard Hughes Medical Institute, Boston, Massachusetts, USA
| |
Collapse
|
13
|
Liu Y, Wu J, Liu R, Li F, Xuan L, Wang Q, Li D, Chen X, Sun H, Li X, Jin C, Huang D, Li L, Tang G, Liu B. Vibrio cholerae virulence is blocked by chitosan oligosaccharide-mediated inhibition of ChsR activity. Nat Microbiol 2024; 9:2909-2922. [PMID: 39414933 DOI: 10.1038/s41564-024-01823-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 09/04/2024] [Indexed: 10/18/2024]
Abstract
Vibrio cholerae causes cholera, an important cause of death worldwide. A fuller understanding of how virulence is regulated offers the potential for developing virulence inhibitors, regarded as efficient therapeutic alternatives for cholera treatment. Here we show using competitive infections of wild-type and mutant bacteria that the regulator of chitosan utilization, ChsR, increases V. cholerae virulence in vivo. Mechanistically, RNA sequencing, chromatin immunoprecipitation with sequencing and molecular biology approaches revealed that ChsR directly upregulated the expression of the virulence regulator, TcpP, which promoted expression of the cholera toxin and the toxin co-regulated pilus, in response to low O2 levels in the small intestine. We also found that chitosan degradation products inhibit the ChsR-tcpP promoter interaction. Consistently, administration of chitosan oligosaccharide, particularly when delivered via sodium alginate microsphere carriers, reduced V. cholerae intestinal colonization and disease severity in mice by blocking the chsR-mediated pathway. These data reveal the potential of chitosan oligosaccharide as supplemental therapy for cholera treatment and prevention.
Collapse
Affiliation(s)
- Yutao Liu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, People's Republic of China
| | - Jialin Wu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Ruiying Liu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, People's Republic of China
| | - Fan Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, People's Republic of China
| | - Leyan Xuan
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Qian Wang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, People's Republic of China
| | - Dan Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, People's Republic of China
| | - XinTong Chen
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, People's Republic of China
| | - Hao Sun
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, People's Republic of China
| | - Xiaoya Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, People's Republic of China
| | - Chen Jin
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, People's Republic of China
| | - Di Huang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, People's Republic of China
| | - Linxing Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, People's Republic of China
| | - Guosheng Tang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, People's Republic of China.
| | - Bin Liu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, People's Republic of China.
- Key Laboratory of Molecular Microbiology and Technology, Nankai University, Ministry of Education, Tianjin, People's Republic of China.
- Nankai International Advanced Research Institute, Shenzhen, People's Republic of China.
| |
Collapse
|
14
|
Bodra N, Toh E, Nadeem A, Wai SN, Persson K. MakC and MakD are two proteins associated with a tripartite toxin of Vibrio cholerae. Front Microbiol 2024; 15:1457850. [PMID: 39421563 PMCID: PMC11484084 DOI: 10.3389/fmicb.2024.1457850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 09/11/2024] [Indexed: 10/19/2024] Open
Abstract
Pathogenic serotypes of Vibrio cholerae, transmitted through contaminated water and food, are responsible for outbreaks of cholera, an acute diarrheal disease. While the cholera toxin is the primary virulence factor, V. cholerae also expresses other virulence factors, such as the tripartite toxin MakABE that is secreted via the bacterial flagellum. These three proteins are co-expressed with two accessory proteins, MakC and MakD, whose functions remain unknown. Here, we present the crystal structures of MakC and MakD, revealing that they are similar in both sequence and structure but lack other close structural relatives. Our study further investigates the roles of MakC and MakD, focusing on their impact on the expression and secretion of the components of the MakABE tripartite toxin. Through deletion mutant analysis, we found that individual deletions of makC or makD do not significantly affect MakA expression or secretion. However, the deletion of both makC and makD impairs the expression of MakB, which is directly downstream, and decreases the expression of MakE, which is separated from makCD by two genes. Conversely, MakA, encoded by the makA gene located between makB and makE, is expressed normally but its secretion is impaired. Additionally, our findings indicate that MakC, in contrast to MakD, exhibits strong interactions with other proteins. Furthermore, both MakC and MakD were observed to be localized within the cytosol of the bacterial cell. This study provides new insights into the regulatory mechanisms affecting the Mak protein family in V. cholerae and highlights the complex interplay between gene proximity and protein expression.
Collapse
Affiliation(s)
- Nandita Bodra
- Department of Chemistry, Umeå University, Umeå, Sweden
- Umeå Center for Microbial Research (UCMR), Umeå University, Umeå, Sweden
| | - Eric Toh
- Umeå Center for Microbial Research (UCMR), Umeå University, Umeå, Sweden
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
| | - Aftab Nadeem
- Umeå Center for Microbial Research (UCMR), Umeå University, Umeå, Sweden
- Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Sun Nyunt Wai
- Umeå Center for Microbial Research (UCMR), Umeå University, Umeå, Sweden
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
| | - Karina Persson
- Department of Chemistry, Umeå University, Umeå, Sweden
- Umeå Center for Microbial Research (UCMR), Umeå University, Umeå, Sweden
| |
Collapse
|
15
|
Luo Y, Payne M, Kaur S, Octavia S, Lan R. Genomic evidence of two-staged transmission of the early seventh cholera pandemic. Nat Commun 2024; 15:8504. [PMID: 39353924 PMCID: PMC11445481 DOI: 10.1038/s41467-024-52800-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 09/19/2024] [Indexed: 10/03/2024] Open
Abstract
The seventh cholera pandemic started in 1961 in Indonesia and spread across the world in three waves in the decades that followed. Here, we utilised genomic evidence to detail the first wave of the seventh pandemic. Genomes of 22 seventh pandemic Vibrio cholerae isolates from 1961 to 1979 were completely sequenced. Together with 152 publicly available genomes from the same period, they fell into seven phylogenetic clusters (CL1-CL7). By multilevel genome typing (MGT), all were assigned to MGT2 ST1 (Wave 1) except three isolates in CL7 which were typed as MGT2 ST2 (Wave 2). The Wave 1 seventh pandemic expanded in two stages, with Stage 1 (CL1-CL5) spread across Asia and Stage 2 (CL6 and CL7) spread to the Middle East and Africa. Three non-synonymous mutations, one each, in three regulatory genes, csrD (global regulator), acfB (chemotaxis), and luxO (quorum sensing) may have critically contributed to its pandemicity. The three MGT2 ST2 isolates in CL7 were the progenitors of Wave 2 and evolved from within Wave 1 with acquisition of a novel IncA/C plasmid. Our findings provide new insight into the evolution and transmission of the early seventh pandemic, which may aid future cholera prevention and control.
Collapse
Affiliation(s)
- Yun Luo
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Michael Payne
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Sandeep Kaur
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Sophie Octavia
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Ruiting Lan
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia.
| |
Collapse
|
16
|
Mey AR, Midgett CR, Kull FJ, Payne SM. Vibrio cholerae CsrA controls ToxR levels by increasing the stability and translation of toxR mRNA. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.26.615275. [PMID: 39386630 PMCID: PMC11463376 DOI: 10.1101/2024.09.26.615275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Regulation of colonization and virulence factor production in response to environmental cues is mediated through several regulatory factors in Vibrio cholerae , including the highly conserved RNA-binding global regulatory protein CsrA. We have shown previously that CsrA increases synthesis of the virulence-associated transcription factor ToxR in response to specific amino acids (NRES) and is required for the virulence of V. cholerae in the infant mouse model of cholera. In this study, we mapped the 5' untranslated region (5' UTR) of toxR and showed that CsrA can bind directly to an RNA sequence encompassing the 5' UTR, indicating that the regulation of ToxR levels by CsrA is direct. Consistent with this observation, the 5' UTR of toxR contains multiple putative CsrA binding sequences (GGA motifs), and mutating these motifs disrupted the CsrA-mediated increase in ToxR. Optimal binding of CsrA to a defined RNA oligonucleotide required the bridging of two GGA motifs within a single RNA strand. To determine the mechanism of CsrA regulation, we assayed toxR transcript levels, stability, and efficiency of translation. Both the amount of toxR mRNA in NRES and the stability of the toxR transcript were increased by CsrA. Using an in vitro translation assay, we further showed that synthesis of ToxR was greatly enhanced in the presence of purified CsrA, suggesting a direct role for CsrA in the translation of toxR mRNA. We propose a model in which CsrA binding to the 5' UTR of the toxR transcript promotes ribosomal access while precluding interactions with RNA-degrading enzymes. IMPORTANCE Vibrio cholerae is uniquely adapted to life in marine environments as well as in the human intestinal tract. Global regulators such as CsrA, which help translate environmental cues into an appropriate cellular response, are critical for switching between these distinct environments. Understanding the pathways involved in relaying environmental signals is essential for understanding both the environmental persistence and the intestinal pathogenesis of this devastating human pathogen. In this study, we demonstrate that CsrA directly regulates synthesis of ToxR, a key virulence factor of V. cholerae . Under conditions favoring high levels of active CsrA in the cell, such as in the presence of particular amino acids, CsrA increases ToxR protein levels by binding to the toxR transcript and enhancing both its stability and translation. By responding to nutrient availability, CsrA is perfectly poised to activate the virulence gene regulatory cascade at the preferred site of colonization, the nutrient-rich small intestinal mucosa.
Collapse
|
17
|
Lorentzen ØM, Bleis C, Abel S. A comparative genomic and phenotypic study of Vibrio cholerae model strains using hybrid sequencing. MICROBIOLOGY (READING, ENGLAND) 2024; 170:001502. [PMID: 39311857 PMCID: PMC11420891 DOI: 10.1099/mic.0.001502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 09/09/2024] [Indexed: 09/26/2024]
Abstract
Next-generation sequencing methods have become essential for studying bacterial biology and pathogenesis, often depending on high-quality, closed genomes. In this study, we utilized a hybrid sequencing approach to assemble the genome of C6706, a widely used Vibrio cholerae model strain. We present a manually curated annotation of the genome, enhancing user accessibility by linking each coding sequence to its counterpart in N16961, the first sequenced V. cholerae isolate and a commonly used reference genome. Comparative genomic analysis between V. cholerae C6706 and N16961 uncovered multiple genetic differences in genes associated with key biological functions. To determine whether these genetic variations result in phenotypic differences, we compared several phenotypes relevant to V. cholerae pathogenicity like genetic stability, acid sensitivity, biofilm formation and motility. Notably, V. cholerae N16961 exhibited greater motility and reduced biofilm formation compared to V. cholerae C6706. These phenotypic differences appear to be mediated by variations in quorum sensing and cyclic di-GMP signalling pathways between the strains. This study provides valuable insights into the regulation of biofilm formation and motility in V. cholerae.
Collapse
Affiliation(s)
| | - Christina Bleis
- Department of Pharmacy, UiT The Arctic University of Norway, Tromsø, Norway
| | - Sören Abel
- Department of Pharmacy, UiT The Arctic University of Norway, Tromsø, Norway
- Division of Infection Control, Norwegian Institute of Public Health, Oslo, Norway
| |
Collapse
|
18
|
Kering K, Wang Y, Mbae C, Mugo M, Ongadi B, Odityo G, Muturi P, Yakubu H, Liu P, Durry S, Deshpande A, Gebreyes W, Moe C, Kariuki S. Pathways of exposure to Vibrio Cholerae in an urban informal settlement in Nairobi, Kenya. PLOS GLOBAL PUBLIC HEALTH 2024; 4:e0002880. [PMID: 39163285 PMCID: PMC11335117 DOI: 10.1371/journal.pgph.0002880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 07/31/2024] [Indexed: 08/22/2024]
Abstract
Cholera is a diarrhoeal disease caused by Vibrio cholerae (V. cholerae) bacterium, with strains belonging to serogroups 01 and 0139 causing a huge proportion of the disease. V. cholerae can contaminate drinking water sources and food through poor sanitation and hygiene. This study aimed to identify environmental routes of exposure to V. cholerae within Mukuru informal settlement in Nairobi. We collected nine types of environmental samples (drinking water, flood water, open drains, surface water, shaved ice, raw produce, street food, soil, and public latrine swabs) over 12 months. All samples were analysed for V. cholerae by culture and qPCR, then qPCR-positive samples were quantified using a V. cholerae DNA standard. Data about the frequency of contact with the environment was collected using behavioural surveys. Of the 803 samples collected, 28.5% were positive for V. cholerae by qPCR. However, none were positive for V. cholerae by culture. V. cholerae genes were detected in majority of the environmental water samples (79.3%), including open drains, flood water, and surface water, but were only detected in small proportions of other sample types. Vibrio-positive environmental water samples had higher mean V. cholerae concentrations [2490-3469 genome copies (gc) per millilitre (mL)] compared to drinking water samples (25.6 gc/mL). Combined with the behavioural data, exposure assessment showed that contact with surface water had the highest contribution to the total V. cholerae exposure among children while ingestion of municipal drinking water and street food and contact with surface water made substantial contributions to the total V. cholerae exposure for adults. Detection of V. cholerae in street food and drinking water indicates possible risk of exposure to toxigenic V. cholerae in this community. Exposure to V. cholerae through multiple pathways highlights the need to improve water and sanitation infrastructure, strengthen food hygiene practices, and roll out cholera vaccination.
Collapse
Affiliation(s)
- Kelvin Kering
- Centre for Microbiology Research, Kenya Medical Research Institute, Nairobi, Kenya
| | - Yuke Wang
- Center for Global Safe Water, Sanitation, and Hygiene, Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, United States of America
| | - Cecilia Mbae
- Centre for Microbiology Research, Kenya Medical Research Institute, Nairobi, Kenya
| | - Michael Mugo
- Centre for Microbiology Research, Kenya Medical Research Institute, Nairobi, Kenya
| | - Beatrice Ongadi
- Centre for Microbiology Research, Kenya Medical Research Institute, Nairobi, Kenya
| | - Georgina Odityo
- Centre for Microbiology Research, Kenya Medical Research Institute, Nairobi, Kenya
| | - Peter Muturi
- Centre for Microbiology Research, Kenya Medical Research Institute, Nairobi, Kenya
| | - Habib Yakubu
- Center for Global Safe Water, Sanitation, and Hygiene, Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, United States of America
| | - Pengbo Liu
- Center for Global Safe Water, Sanitation, and Hygiene, Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, United States of America
| | - Sarah Durry
- Center for Global Safe Water, Sanitation, and Hygiene, Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, United States of America
| | - Aniruddha Deshpande
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia, United States of America
| | - Wondwossen Gebreyes
- Global One Health initiative (GOHi), The Ohio State University, Columbus, Ohio, United States of America
- Veterinary Preventive Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - Christine Moe
- Center for Global Safe Water, Sanitation, and Hygiene, Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, United States of America
| | - Samuel Kariuki
- Centre for Microbiology Research, Kenya Medical Research Institute, Nairobi, Kenya
| |
Collapse
|
19
|
Price CTD, Hanford HE, Al-Quadan T, Santic M, Shin CJ, Da'as MSJ, Abu Kwaik Y. Amoebae as training grounds for microbial pathogens. mBio 2024; 15:e0082724. [PMID: 38975782 PMCID: PMC11323580 DOI: 10.1128/mbio.00827-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024] Open
Abstract
Grazing of amoebae on microorganisms represents one of the oldest predator-prey dynamic relationships in nature. It represents a genetic "melting pot" for an ancient and continuous multi-directional inter- and intra-kingdom horizontal gene transfer between amoebae and its preys, intracellular microbial residents, endosymbionts, and giant viruses, which has shaped the evolution, selection, and adaptation of microbes that evade degradation by predatory amoeba. Unicellular phagocytic amoebae are thought to be the ancient ancestors of macrophages with highly conserved eukaryotic processes. Selection and evolution of microbes within amoeba through their evolution to target highly conserved eukaryotic processes have facilitated the expansion of their host range to mammals, causing various infectious diseases. Legionella and environmental Chlamydia harbor an immense number of eukaryotic-like proteins that are involved in ubiquitin-related processes or are tandem repeats-containing proteins involved in protein-protein and protein-chromatin interactions. Some of these eukaryotic-like proteins exhibit novel domain architecture and novel enzymatic functions absent in mammalian cells, such as ubiquitin ligases, likely acquired from amoebae. Mammalian cells and amoebae may respond similarly to microbial factors that target highly conserved eukaryotic processes, but mammalian cells may undergo an accidental response to amoeba-adapted microbial factors. We discuss specific examples of microbes that have evolved to evade amoeba predation, including the bacterial pathogens- Legionella, Chlamydia, Coxiella, Rickettssia, Francisella, Mycobacteria, Salmonella, Bartonella, Rhodococcus, Pseudomonas, Vibrio, Helicobacter, Campylobacter, and Aliarcobacter. We also discuss the fungi Cryptococcus, and Asperigillus, as well as amoebae mimiviruses/giant viruses. We propose that amoeba-microbe interactions will continue to be a major "training ground" for the evolution, selection, adaptation, and emergence of microbial pathogens equipped with unique pathogenic tools to infect mammalian hosts. However, our progress will continue to be highly dependent on additional genomic, biochemical, and cellular data of unicellular eukaryotes.
Collapse
Affiliation(s)
- Christopher T. D. Price
- Department of Microbiology and Immunology, University of Louisville, Louisville, Kentucky, USA
| | - Hannah E. Hanford
- Department of Microbiology and Immunology, University of Louisville, Louisville, Kentucky, USA
| | - Tasneem Al-Quadan
- Department of Microbiology and Immunology, University of Louisville, Louisville, Kentucky, USA
| | | | - Cheon J. Shin
- Department of Microbiology and Immunology, University of Louisville, Louisville, Kentucky, USA
| | - Manal S. J. Da'as
- Department of Microbiology and Immunology, University of Louisville, Louisville, Kentucky, USA
| | - Yousef Abu Kwaik
- Department of Microbiology and Immunology, University of Louisville, Louisville, Kentucky, USA
- Center for Predictive Medicine, College of Medicine, University of Louisville, Louisville, Kentucky, USA
| |
Collapse
|
20
|
Koutsoumanis K, Allende A, Alvarez‐Ordóñez A, Bolton D, Bover‐Cid S, Chemaly M, De Cesare A, Herman L, Hilbert F, Lindqvist R, Nauta M, Nonno R, Peixe L, Ru G, Simmons M, Skandamis P, Baker‐Austin C, Hervio‐Heath D, Martinez‐Urtaza J, Caro ES, Strauch E, Thébault A, Guerra B, Messens W, Simon AC, Barcia‐Cruz R, Suffredini E. Public health aspects of Vibrio spp. related to the consumption of seafood in the EU. EFSA J 2024; 22:e8896. [PMID: 39045511 PMCID: PMC11263920 DOI: 10.2903/j.efsa.2024.8896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024] Open
Abstract
Vibrio parahaemolyticus, Vibrio vulnificus and non-O1/non-O139 Vibrio cholerae are the Vibrio spp. of highest relevance for public health in the EU through seafood consumption. Infection with V. parahaemolyticus is associated with the haemolysins thermostable direct haemolysin (TDH) and TDH-related haemolysin (TRH) and mainly leads to acute gastroenteritis. V. vulnificus infections can lead to sepsis and death in susceptible individuals. V. cholerae non-O1/non-O139 can cause mild gastroenteritis or lead to severe infections, including sepsis, in susceptible individuals. The pooled prevalence estimate in seafood is 19.6% (95% CI 13.7-27.4), 6.1% (95% CI 3.0-11.8) and 4.1% (95% CI 2.4-6.9) for V. parahaemolyticus, V. vulnificus and non-choleragenic V. cholerae, respectively. Approximately one out of five V. parahaemolyticus-positive samples contain pathogenic strains. A large spectrum of antimicrobial resistances, some of which are intrinsic, has been found in vibrios isolated from seafood or food-borne infections in Europe. Genes conferring resistance to medically important antimicrobials and associated with mobile genetic elements are increasingly detected in vibrios. Temperature and salinity are the most relevant drivers for Vibrio abundance in the aquatic environment. It is anticipated that the occurrence and levels of the relevant Vibrio spp. in seafood will increase in response to coastal warming and extreme weather events, especially in low-salinity/brackish waters. While some measures, like high-pressure processing, irradiation or depuration reduce the levels of Vibrio spp. in seafood, maintaining the cold chain is important to prevent their growth. Available risk assessments addressed V. parahaemolyticus in various types of seafood and V. vulnificus in raw oysters and octopus. A quantitative microbiological risk assessment relevant in an EU context would be V. parahaemolyticus in bivalve molluscs (oysters), evaluating the effect of mitigations, especially in a climate change scenario. Knowledge gaps related to Vibrio spp. in seafood and aquatic environments are identified and future research needs are prioritised.
Collapse
|
21
|
Lorentzen ØM, Haukefer ASB, Johnsen PJ, Frøhlich C. The Biofilm Lifestyle Shapes the Evolution of β-Lactamases. Genome Biol Evol 2024; 16:evae030. [PMID: 38366392 PMCID: PMC10917518 DOI: 10.1093/gbe/evae030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 02/02/2024] [Accepted: 02/08/2024] [Indexed: 02/18/2024] Open
Abstract
The evolutionary relationship between the biofilm lifestyle and antibiotic resistance enzymes remains a subject of limited understanding. Here, we investigate how β-lactamases affect biofilm formation in Vibrio cholerae and how selection for a biofilm lifestyle impacts the evolution of these enzymes. Genetically diverse β-lactamases expressed in V. cholerae displayed a strong inhibitory effect on biofilm production. To understand how natural evolution affects this antagonistic pleiotropy, we randomly mutagenized a β-lactamase and selected for elevated biofilm formation. Our results revealed that biofilm evolution selects for β-lactamase variants able to hydrolyze β-lactams without inhibiting biofilms. Mutational analysis of evolved variants demonstrated that restoration of biofilm development was achieved either independently of enzymatic function or by actively leveraging enzymatic activity. Taken together, the biofilm lifestyle can impose a profound selective pressure on antimicrobial resistance enzymes. Shedding light on such evolutionary interplays is of importance to understand the factors driving antimicrobial resistance.
Collapse
Affiliation(s)
- Øyvind M Lorentzen
- Department of Pharmacy, UiT The Arctic University of Norway, Tromsø, Norway
| | | | - Pål J Johnsen
- Department of Pharmacy, UiT The Arctic University of Norway, Tromsø, Norway
| | | |
Collapse
|
22
|
Sherik M, Eves R, Guo S, Lloyd CJ, Klose KE, Davies PL. Sugar-binding and split domain combinations in repeats-in-toxin adhesins from Vibrio cholerae and Aeromonas veronii mediate cell-surface recognition and hemolytic activities. mBio 2024; 15:e0229123. [PMID: 38171003 PMCID: PMC10865825 DOI: 10.1128/mbio.02291-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 12/04/2023] [Indexed: 01/05/2024] Open
Abstract
Many pathogenic Gram-negative bacteria use repeats-in-toxin adhesins for colonization and biofilm formation. In the cholera agent Vibrio cholerae, flagellar-regulated hemagglutinin A (FrhA) enables these functions. Using bioinformatic analysis, a sugar-binding domain was identified in FrhA adjacent to a domain of unknown function. AlphaFold2 indicated the boundaries of both domains to be slightly shorter than previously predicted and assisted in the recognition of the unknown domain as a split immunoglobulin-like fold that can assist in projecting the sugar-binding domain toward its target. The AlphaFold2-predicted structure is in excellent agreement with the molecular envelope obtained from small-angle X-ray scattering analysis of a recombinant construct spanning the sugar-binding and unknown domains. This two-domain construct was probed by glycan micro-array screening and showed binding to mammalian fucosylated glycans, some of which are characteristic erythrocyte markers and intestinal cell epitopes. Isothermal titration calorimetry further showed the construct-bound l-fucose with a Kd of 21 µM. Strikingly, this recombinant protein construct bound and lysed erythrocytes in a concentration-dependent manner, and its hemolytic activity was blocked by the addition of l-fucose. A protein ortholog construct from Aeromonas veronii was also produced and showed a similar glycan-binding pattern, binding affinity, erythrocyte-binding, and hemolytic activities. As demonstrated here with Hep-2 cells, fucose-based inhibitors of this sugar-binding domain can potentially be developed to block colonization by V. cholerae and other pathogenic bacteria that share this adhesin domain.IMPORTANCEThe bacterium, Vibrio cholerae, which causes cholera, uses an adhesion protein to stick to human cells and begin the infection process. One part of this adhesin protein binds to a particular sugar, fucose, on the surface of the target cells. This binding can lead to colonization and killing of the cells by the bacteria. Adding l-fucose to the bacteria before they bind to the human cells can prevent attachment and has promise as a preventative drug to protect against cholera.
Collapse
Affiliation(s)
- Mustafa Sherik
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, Ontario, Canada
| | - Robert Eves
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, Ontario, Canada
| | - Shuaiqi Guo
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, Ontario, Canada
| | - Cameron J. Lloyd
- South Texas Center for Emerging Infectious Diseases and Department of Molecular Microbiology and Immunology, University of Texas San Antonio, San Antonio, Texas, USA
| | - Karl E. Klose
- South Texas Center for Emerging Infectious Diseases and Department of Molecular Microbiology and Immunology, University of Texas San Antonio, San Antonio, Texas, USA
| | - Peter L. Davies
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, Ontario, Canada
| |
Collapse
|
23
|
Ayyappan MV, Kishore P, Panda SK, Kumar A, Uchoi D, Nadella RK, Priyadarshi H, Obaiah MC, George D, Hamza M, Ramannathan SK, Ravishankar CN. Emergence of multidrug resistant, ctx negative seventh pandemic Vibrio cholerae O1 El Tor sequence type (ST) 69 in coastal water of Kerala, India. Sci Rep 2024; 14:2031. [PMID: 38263228 PMCID: PMC10805778 DOI: 10.1038/s41598-023-50536-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 12/21/2023] [Indexed: 01/25/2024] Open
Abstract
Seventh pandemic Vibrio choleare O1 El Tor strain is responsible for the on-going pandemic outbreak of cholera globally. This strain evolved from non-pathogenic V. cholerae by acquiring seventh pandemic gene (VC 2346), pandemic Islands (VSP1 and VSP2), pathogenicity islands (VP1 and VP2) and CTX prophage region. The cholera toxin production is mainly attributed to the presence of ctx gene in these strains. However, several variants of this strain emerged as hybrid strains or atypical strains. The present study aimed to assess the aquatic environment of Cochin, India, over a period of 5 years for the emergence of multidrug resistant V. cholerae and its similarity with seventh pandemic strain. The continuous surveillance and monitoring resulted in the isolation of ctx negative, O1 positive V. cholerae isolate (VC6) from coastal water, Cochin, Kerala. The isolate possessed the biotype specific O1 El Tor tcpA gene and lacked other biotype specific ctx, zot, ace and rst genes. Whole genome analysis revealed the isolate belongs to pandemic sequence type (ST) 69 with the possession of pandemic VC2346 gene, pathogenic island VPI1, VPI2, and pandemic island VSP1 and VSP2. The isolate possessed several insertion sequences and the SXT/R391 family related Integrative Conjugative Elements (ICEs). In addition to this, the isolate genome carried virulence genes such as VgrG, mshA, ompT, toxR, ompU, rtxA, als, VasX, makA, and hlyA and antimicrobial resistance genes such as gyrA, dfrA1, strB, parE, sul2, parC, strA, VC1786ICE9-floR, and catB9. Moreover, the phylogenetic analysis suggests that the isolate genome is more closely related to seventh pandemic V. cholerae O1 N16961 strain. This study reports the first incidence of environmental ctx negative seventh pandemic V. choleare O1 El Tor isolate, globally and its presence in the aquatic system likely to induce toxicity in terms of public health point of view. The presence of this isolate in the aquatic environment warns the strict implementation of the epidemiological surveillance on the occurrence of emerging strains and the execution of flagship program for the judicious use of antibiotics in the aquatic ecosystem.
Collapse
Affiliation(s)
| | - Pankaj Kishore
- ICAR-Central Institute of Fisheries Technology, Kochi, India.
| | | | - Anuj Kumar
- ICAR-Indian Institute of Wheat and Barley Research, Karnal, Haryana, India
| | - Devananda Uchoi
- ICAR-Central Institute of Fisheries Technology, Kochi, India
| | | | | | | | - Dybin George
- Kerala University of Fisheries and Ocean Studies, Kochi, India
| | - Muneeb Hamza
- Cochin University of Science and Technology, Kochi, India
| | | | - C N Ravishankar
- ICAR-Central Institute of Fisheries Education, Mumbai, India
| |
Collapse
|
24
|
Ascari A, Frölich S, Zang M, Tran ENH, Wilson DW, Morona R, Eijkelkamp BA. Shigella flexneri remodeling and consumption of host lipids during infection. J Bacteriol 2023; 205:e0032023. [PMID: 37991380 PMCID: PMC10729657 DOI: 10.1128/jb.00320-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/10/2023] [Indexed: 11/23/2023] Open
Abstract
IMPORTANCE Bacterial pathogens have vastly distinct sites that they inhabit during infection. This requires adaptation due to changes in nutrient availability and antimicrobial stress. The bacterial surface is a primary barrier, and here, we show that the bacterial pathogen Shigella flexneri increases its surface decorations when it transitions to an intracellular lifestyle. We also observed changes in bacterial and host cell fatty acid homeostasis. Specifically, intracellular S. flexneri increased the expression of their fatty acid degradation pathway, while the host cell lipid pool was significantly depleted. Importantly, bacterial proliferation could be inhibited by fatty acid supplementation of host cells, thereby providing novel insights into the possible link between human malnutrition and susceptibility to S. flexneri.
Collapse
Affiliation(s)
- Alice Ascari
- Department of Molecular and Biomedical Science, School of Biological Sciences, Research Centre for Infectious Diseases, University of Adelaide, Adelaide, Australia
- Molecular Sciences and Technology, College of Science and Engineering, Flinders University, Adelaide, Australia
| | - Sonja Frölich
- Department of Molecular and Biomedical Science, School of Biological Sciences, Research Centre for Infectious Diseases, University of Adelaide, Adelaide, Australia
- Institute for Photonics and Advanced Sensing (IPAS), University of Adelaide, Adelaide, Australia
| | - Maoge Zang
- Molecular Sciences and Technology, College of Science and Engineering, Flinders University, Adelaide, Australia
| | - Elizabeth N. H. Tran
- Department of Molecular and Biomedical Science, School of Biological Sciences, Research Centre for Infectious Diseases, University of Adelaide, Adelaide, Australia
| | - Danny W. Wilson
- Department of Molecular and Biomedical Science, School of Biological Sciences, Research Centre for Infectious Diseases, University of Adelaide, Adelaide, Australia
- Institute for Photonics and Advanced Sensing (IPAS), University of Adelaide, Adelaide, Australia
| | - Renato Morona
- Department of Molecular and Biomedical Science, School of Biological Sciences, Research Centre for Infectious Diseases, University of Adelaide, Adelaide, Australia
| | - Bart A. Eijkelkamp
- Molecular Sciences and Technology, College of Science and Engineering, Flinders University, Adelaide, Australia
| |
Collapse
|
25
|
Ibangha IAI, Digwo DC, Ozochi CA, Enebe MC, Ateba CN, Chigor VN. A meta-analysis on the distribution of pathogenic Vibrio species in water sources and wastewater in Africa. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 881:163332. [PMID: 37028683 DOI: 10.1016/j.scitotenv.2023.163332] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 03/31/2023] [Accepted: 04/02/2023] [Indexed: 06/01/2023]
Abstract
Vibrio species are waterborne ubiquitous organisms capable of causing diseases in humans and animals and the occurrence of infections caused by pathogenic Vibrio species among humans have increased globally. This reemergence is attributed to environmental impacts such as global warming and pollution. Africa is most vulnerable to waterborne infections caused by these pathogens because of lack of good water stewardship and management. This study was carried out to provide an in-depth inquiry into the occurrence of pathogenic Vibrio species in water sources and wastewater across Africa. In this regard, a systematic review and meta-analysis was conducted by searching five databases: PubMed, ScienceDirect, Google Scholar, Springer Search and African Journals Online (AJOL). The search yielded 70 articles on pathogenic Vibrio species presence in African aquatic environments that fit our inclusion criteria. Based on the random effects model, the pooled prevalence of pathogenic Vibrio species in various water sources in Africa was 37.6 % (95 % CI: 27.7-48.0). Eighteen countries were represented by the systematically assessed studies and their nationwide prevalence in descending order was: Nigeria (79.82 %), Egypt (47.5 %), Tanzania (45.8 %), Morocco (44.8), South Africa (40.6 %), Uganda (32.1 %), Cameroon (24.5 %), Burkina Faso (18.9 %) and Ghana (5.9 %). Furthermore, 8 pathogenic Vibrio species were identified across water bodies in Africa with the highest detection for V. cholerae (59.5 %), followed by V. parahaemolyticus (10.4 %), V.alginolyticus (9.8 %), V. vulnificus (8.5 %), V. fluvialis (6.6 %), V. mimicus (4.6 %), V. harveyi (0.5 %) and V. metschnikovii (0.1 %). Evidently, pathogenic Vibrio species occurrence in these water sources especially freshwater corroborates the continuous outbreaks observed in Africa. Therefore, there is an urgent need for proactive measures and continuous monitoring of water sources used for various purposes across Africa and proper treatment of wastewater before discharge into water bodies.
Collapse
Affiliation(s)
- Ini-Abasi I Ibangha
- Water and Public Health Research Group (WPHRG), Department of Microbiology, Faculty of Biological Sciences, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Daniel C Digwo
- Water and Public Health Research Group (WPHRG), Department of Microbiology, Faculty of Biological Sciences, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Chizoba A Ozochi
- Water and Public Health Research Group (WPHRG), Department of Microbiology, Faculty of Biological Sciences, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Matthew C Enebe
- Water and Public Health Research Group (WPHRG), Department of Microbiology, Faculty of Biological Sciences, University of Nigeria, Nsukka, Enugu State, Nigeria; Food Security and Safety Niche Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho 2735, South Africa
| | - Collins N Ateba
- Water and Public Health Research Group (WPHRG), Department of Microbiology, Faculty of Biological Sciences, University of Nigeria, Nsukka, Enugu State, Nigeria; Food Security and Safety Niche Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho 2735, South Africa
| | - Vincent N Chigor
- Water and Public Health Research Group (WPHRG), Department of Microbiology, Faculty of Biological Sciences, University of Nigeria, Nsukka, Enugu State, Nigeria.
| |
Collapse
|
26
|
Stress Responses in Pathogenic Vibrios and Their Role in Host and Environmental Survival. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1404:213-232. [PMID: 36792878 DOI: 10.1007/978-3-031-22997-8_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Vibrio is a genus of bacteria commonly found in estuarine, marine, and freshwater environments. Vibrio species have evolved to occupy diverse niches in the aquatic ecosystem, with some having complex lifestyles. About a dozen of the described Vibrio species have been reported to cause human disease, while many other species cause disease in other organisms. Vibrio cholerae causes epidemic cholera, a severe dehydrating diarrheal disease associated with the consumption of contaminated food or water. The human pathogenic non-cholera Vibrio species, Vibrio parahaemolyticus and Vibrio vulnificus, cause gastroenteritis, septicemia, and other extra-intestinal infections. Infections caused by V. parahaemolyticus and V. vulnificus are normally acquired through exposure to sea water or through consumption of raw or undercooked contaminated seafood. The human pathogenic Vibrios are exposed to numerous different stress-inducing agents and conditions in the aquatic environment and when colonizing a human host. Therefore, they have evolved a variety of mechanisms to survive in the presence of these stressors. Here we discuss what is known about important stress responses in pathogenic Vibrio species and their role in bacterial survival.
Collapse
|
27
|
Calkins AL, Demey LM, Rosenthal BM, DiRita VJ, Biteen JS. Achieving Single-Molecule Tracking of Subcellular Regulation in Bacteria during Real-Time Environmental Perturbations. Anal Chem 2023; 95:774-783. [PMID: 36576807 DOI: 10.1021/acs.analchem.2c02899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Bacteria rely on protein systems for regulation in response to external environmental signals. Single-molecule fluorescence imaging and tracking has elucidated the complex mechanism of these protein systems in a variety of bacteria. We recently investigated Vibrio cholerae, the Gram-negative bacterium responsible for the human cholera disease, and its regulation of the production of toxins and virulence factors through the membrane-localized transcription factors TcpP and ToxR. These experiments determined that TcpP and ToxR work cooperatively under steady-state conditions, but measurements of how these dynamical interactions change over the course of environmental perturbations were precluded by the traditional preparation of bacterial cells confined on agarose pads. Here, we address this gap in technology and access single-molecule dynamics during real-time changes by implementing two alternative sample preparations: microfluidic devices and chitosan-coated coverslips. We report the first demonstration of single-molecule tracking within live bacterial cells in a microfluidic device. Additionally, using the chitosan-coated coverslips, we show that real-time environmental changes impact TcpP-PAmCherry dynamics, activating a virulence condition in the bacteria about 45 min after dropping to pH 6 and about 20 min after inducing ToxR expression. These new technology advances open our ability for new experiments studying a variety of bacteria with single-molecule imaging and tracking during real-time environmental perturbations.
Collapse
Affiliation(s)
- Anna L Calkins
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48104, United States
| | - Lucas M Demey
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Brooke M Rosenthal
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48104, United States
| | - Victor J DiRita
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Julie S Biteen
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48104, United States
| |
Collapse
|
28
|
Wu J, Liu Y, Li W, Li F, Liu R, Sun H, Qin J, Feng X, Huang D, Liu B. MlrA, a MerR family regulator in Vibrio cholerae, senses the anaerobic signal in the small intestine of the host to promote bacterial intestinal colonization. Gut Microbes 2022; 14:2143216. [PMID: 36369865 PMCID: PMC9662190 DOI: 10.1080/19490976.2022.2143216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Vibrio cholerae (V. cholerae), one of the most important bacterial pathogens in history, is a gram-negative motile bacterium that causes fatal pandemic disease in humans via oral ingestion of contaminated water or food. This process involves the coordinated actions of numerous regulatory factors. The MerR family regulators, which are widespread in prokaryotes, have been reported to be associated with pathogenicity. However, the role of the MerR family regulators in V. cholerae virulence remains unknown. Our study systematically investigated the influence of MerR family regulators on intestinal colonization of V. cholerae within the host. Among the five MerR family regulators, MlrA was found to significantly promote the colonization capacity of V. cholerae in infant mice. Furthermore, we revealed that MlrA increases bacterial intestinal colonization by directly enhancing the expression of tcpA, which encodes one of the most important virulence factors in V. cholerae, by binding to its promoter region. In addition, we revealed that during infection, mlrA is activated by anaerobic signals in the small intestine of the host through Fnr. In summary, our findings reveal a MlrA-mediated virulence regulation pathway that enables V. cholerae to sense environmental signals at the infection site to precisely activate virulence gene expression, thus providing useful insights into the pathogenic mechanisms of V. cholerae.
Collapse
Affiliation(s)
- Jialin Wu
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China,Key Laboratory of Molecular Microbiology and Technology, Nankai University, Ministry of Education, Tianjin, China
| | - Yutao Liu
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China,Key Laboratory of Molecular Microbiology and Technology, Nankai University, Ministry of Education, Tianjin, China,Nankai International Advanced Research Institute, Nankai University Shenzhen, China
| | - Wendi Li
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China,Key Laboratory of Molecular Microbiology and Technology, Nankai University, Ministry of Education, Tianjin, China
| | - Fan Li
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China,Key Laboratory of Molecular Microbiology and Technology, Nankai University, Ministry of Education, Tianjin, China
| | - Ruiying Liu
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China,Key Laboratory of Molecular Microbiology and Technology, Nankai University, Ministry of Education, Tianjin, China
| | - Hao Sun
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China,Key Laboratory of Molecular Microbiology and Technology, Nankai University, Ministry of Education, Tianjin, China
| | - Jingliang Qin
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China,Key Laboratory of Molecular Microbiology and Technology, Nankai University, Ministry of Education, Tianjin, China
| | - Xiaohui Feng
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China,Key Laboratory of Molecular Microbiology and Technology, Nankai University, Ministry of Education, Tianjin, China
| | - Di Huang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China,Key Laboratory of Molecular Microbiology and Technology, Nankai University, Ministry of Education, Tianjin, China,Nankai International Advanced Research Institute, Nankai University Shenzhen, China,Di Huang TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, China
| | - Bin Liu
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China,Key Laboratory of Molecular Microbiology and Technology, Nankai University, Ministry of Education, Tianjin, China,Nankai International Advanced Research Institute, Nankai University Shenzhen, China,CONTACT Bin Liu TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, China
| |
Collapse
|
29
|
Sequence Polymorphisms in Vibrio cholerae HapR Affect Biofilm Formation under Aerobic and Anaerobic Conditions. Appl Environ Microbiol 2022; 88:e0104422. [PMID: 35969071 PMCID: PMC9469714 DOI: 10.1128/aem.01044-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We investigated the influence of hapR sequence mutations on the biofilm formation of Vibrio cholerae. In this study, hapR sequences from 85 V. cholerae strains belonging to both pandemic and nonpandemic serogroup were investigated through phylogenetic and sequence analyses. Biofilm formation assays under aerobic and anaerobic conditions were also performed. Sequence variations include single point mutations and insertions/deletions (indels) leading to either truncated or frameshifted HapR. Population structure analysis revealed two major hapR haplogroups, hapR1 and hapR2. Phylogenetic reconstruction displayed a hypothetical ancestral hapR sequence located within the hapR1 haplogroup. Higher numbers of single nucleotide polymorphisms and genetic diversity indices were observed in hapR1, while indels occurred dominantly in hapR2. Aerobic conditions supported more robust biofilms compared to anaerobic conditions. Strains with frameshifted HapR produced the largest amount of biofilm under both oxygen conditions. Quantitative real-time PCR assay confirmed that strains with truncated and frameshifted HapR resulted in a nonfunctional regulator as exhibited by the significantly low hapA gene expression. The present study shows that HapR mutations had a strong influence on biofilm formation and that sequence polymorphisms leading to the disruption of DNA-binding sites or dimerization of the HapR will result in more-robust V. cholerae biofilms. IMPORTANCE Our study revealed an ancestral hapR sequence from a phylogenetic reconstruction that displayed the evolutionary lineage of the nonpandemic to the pandemic strains. Here, we established hapR1 and hapR2 as major hapR haplogroups. The association of the O1 and O139 serogroups with the hapR2 haplogroup demonstrated the distinction of hapR2 in causing cholera infection. Moreover, mutations in this regulator that could lead to the disruption of transcription factor-binding sites or dimerization of the HapR can significantly affect the biofilm formation of V. cholerae. These observations on the relationship of the hapR polymorphism and V. cholerae biofilm formation will provide additional considerations for future biofilm studies and insights into the epidemiology of the pathogen that could ultimately help in the surveillance and mitigation of future cholera disease outbreaks.
Collapse
|
30
|
Protozoal food vacuoles enhance transformation in Vibrio cholerae through SOS-regulated DNA integration. THE ISME JOURNAL 2022; 16:1993-2001. [PMID: 35577916 PMCID: PMC9296650 DOI: 10.1038/s41396-022-01249-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 04/20/2022] [Accepted: 04/29/2022] [Indexed: 11/08/2022]
Abstract
Vibrio cholerae, the bacterial pathogen responsible for the diarrheal disease cholera, resides in the aquatic environment between outbreaks. For bacteria, genetic variation by lateral gene transfer (LGT) is important for survival and adaptation. In the aquatic environment, V. cholerae is predominantly found in biofilms associated with chitinous organisms or with chitin "rain". Chitin induces competency in V. cholerae, which can lead to LGT. In the environment, V. cholerae is also subjected to predation pressure by protist. Here we investigated whether protozoal predation affected LGT using the integron as a model. Integrons facilitate the integration of mobile DNA (gene cassettes) into the bacterial chromosome. We report that protozoal predation enhances transformation of a gene cassette by as much as 405-fold. We show that oxidative radicals produced in the protozoal phagosome induces the universal SOS response, which in turn upregulates the integron-integrase, the recombinase that facilitates cassette integration. Additionally, we show that during predation, V. cholerae requires the type VI secretion system to acquire the gene cassette from Escherichia coli. These results show that protozoal predation enhances LGT thus producing genetic variants that may have increased capacity to survive grazing. Additionally, the conditions in the food vacuole may make it a "hot spot" for LGT by accumulating diverse bacteria and inducing the SOS response helping drive genetic diversification and evolution.
Collapse
|
31
|
Liu T, Kang L, Xu J, Wang J, Gao S, Li Y, Li J, Yuan Y, Yuan B, Wang J, Zhao B, Xin W. PVBase: A MALDI-TOF MS Database for Fast Identification and Characterization of Potentially Pathogenic Vibrio Species From Multiple Regions of China. Front Microbiol 2022; 13:872825. [PMID: 35656002 PMCID: PMC9152771 DOI: 10.3389/fmicb.2022.872825] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 03/16/2022] [Indexed: 11/13/2022] Open
Abstract
The potentially pathogenic species of the genus Vibrio pose a threat to both humans and animals, creating medical burdens and economic losses to the mariculture industry. Improvements in surveillance and diagnosis are needed to successfully manage vibriosis outbreaks. Matrix assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) can provide rapid diagnosis and has been widely used in the identification of Vibrio spp. The main weakness of this technology is the limited number of strains and species of Vibrio in the existing commercial database. Here, we develop a new in-house database named PVBase containing 790 main spectra projections (MSP) of ten Vibrio species that come from various regions of China and include abundant clinical and environmental strains. PVBase was validated through a blind test of 65 Vibrio strains. The identification accuracy and scoring of Vibrio strains was greatly improved through the addition of PVBase. Identification accuracy increased from 73.4 to 100%. The number of strains with identification scores above 2.2 increased from 53.1% to 96.9% and 53.1% of strains had an identification score above 2.59. Moreover, perfect discrimination was obtained when using all of the MSPs created for the Vibrio species, even for very closely related species such as V. cholerae, V. albensis, and V. mimicus or V. alginolyticus, V. parahaemolyticus, and V. harveyi. In addition, we used phyloproteomic analysis to study whether there are differences in protein fingerprints of different regions or pathogenic strains. We found that MSP characteristics of Vibrio species were not related to their region or source. With the construction of PVBase, the identification efficiency of potentially pathogenic Vibrio species has been greatly improved, which is an important advance for epidemic prevention and control, and aquaculture disease detection.
Collapse
Affiliation(s)
- Tingting Liu
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China.,State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences (AMMS), Beijing, China
| | - Lin Kang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences (AMMS), Beijing, China
| | - Jinglin Xu
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China.,State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences (AMMS), Beijing, China
| | - Jing Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences (AMMS), Beijing, China
| | - Shan Gao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences (AMMS), Beijing, China
| | - Yanwei Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences (AMMS), Beijing, China
| | - Jiaxin Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences (AMMS), Beijing, China
| | - Yuan Yuan
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences (AMMS), Beijing, China
| | - Bing Yuan
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences (AMMS), Beijing, China
| | - Jinglin Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences (AMMS), Beijing, China
| | - Baohua Zhao
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Wenwen Xin
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences (AMMS), Beijing, China
| |
Collapse
|
32
|
Heat shock in Cronobacter sakazakii induces direct protection and cross-protection against simulated gastric fluid stress. Food Microbiol 2022; 103:103948. [DOI: 10.1016/j.fm.2021.103948] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 11/10/2021] [Accepted: 11/13/2021] [Indexed: 11/21/2022]
|
33
|
Hsieh ML, Kiel N, Jenkins L, Ng WL, Knipling L, Waters C, Hinton D. The Vibrio cholerae master regulator for the activation of biofilm biogenesis genes, VpsR, senses both cyclic di-GMP and phosphate. Nucleic Acids Res 2022; 50:4484-4499. [PMID: 35438787 PMCID: PMC9071405 DOI: 10.1093/nar/gkac253] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 03/11/2022] [Accepted: 03/30/2022] [Indexed: 01/07/2023] Open
Abstract
Vibrio cholerae biofilm formation/maintenance is controlled by myriad factors; chief among these are the regulator VpsR and cyclic di-guanosine monophosphate (c-di-GMP). VpsR has strong sequence similarity to enhancer binding proteins (EBPs) that activate RNA polymerase containing sigma factor σ54. However, we have previously shown that transcription from promoters within the biofilm biogenesis/maintenance pathways uses VpsR, c-di-GMP and RNA polymerase containing the primary sigma factor (σ70). Previous work suggested that phosphorylation of VpsR at a highly conserved aspartate, which is phosphorylated in other EBPs, might also contribute to activation. Using the biofilm biogenesis promoter PvpsL, we show that in the presence of c-di-GMP, either wild type or the phospho-mimic VpsR D59E activates PvpsL transcription, while the phospho-defective D59A variant does not. Furthermore, when c-di-GMP levels are low, acetyl phosphate (Ac∼P) is required for significant VpsR activity in vivo and in vitro. Although these findings argue that VpsR phosphorylation is needed for activation, we show that VpsR is not phosphorylated or acetylated by Ac∼P and either sodium phosphate or potassium phosphate, which are not phosphate donors, fully substitutes for Ac∼P. We conclude that VpsR is an unusual regulator that senses phosphate directly, rather than through phosphorylation, to aid in the decision to form/maintain biofilm.
Collapse
Affiliation(s)
- Meng-Lun Hsieh
- Gene Expression and Regulation Section, Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA,Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48823, USA
| | - Niklas Kiel
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA
| | - Lisa M Miller Jenkins
- Collaborative Protein Technology Resource, Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Wai-Leung Ng
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Leslie Knipling
- Gene Expression and Regulation Section, Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Christopher M Waters
- Correspondence may also be addressed to Christopher M. Waters. Tel: +1 517 884 5360; Fax: +1 517 355 6463;
| | - Deborah M Hinton
- To whom correspondence should be addressed. Tel: +1 301 496 9885; Fax: +1 301 402 0053;
| |
Collapse
|
34
|
Bridges AA, Prentice JA, Fei C, Wingreen NS, Bassler BL. Quantitative input-output dynamics of a c-di-GMP signal transduction cascade in Vibrio cholerae. PLoS Biol 2022; 20:e3001585. [PMID: 35302986 PMCID: PMC8967002 DOI: 10.1371/journal.pbio.3001585] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 03/30/2022] [Accepted: 02/25/2022] [Indexed: 12/13/2022] Open
Abstract
Bacterial biofilms are multicellular communities that collectively overcome environmental threats and clinical treatments. To regulate the biofilm lifecycle, bacteria commonly transduce sensory information via the second messenger molecule cyclic diguanylate (c-di-GMP). Using experimental and modeling approaches, we quantitatively capture c-di-GMP signal transmission via the bifunctional polyamine receptor NspS-MbaA, from ligand binding to output, in the pathogen Vibrio cholerae. Upon binding of norspermidine or spermidine, NspS-MbaA synthesizes or degrades c-di-GMP, respectively, which, in turn, drives alterations specifically to biofilm gene expression. A long-standing question is how output specificity is achieved via c-di-GMP, a diffusible molecule that regulates dozens of effectors. We show that NspS-MbaA signals locally to specific effectors, sensitizing V. cholerae to polyamines. However, local signaling is not required for specificity, as changes to global cytoplasmic c-di-GMP levels can selectively regulate biofilm genes. This work establishes the input-output dynamics underlying c-di-GMP signaling, which could be useful for developing bacterial manipulation strategies.
Collapse
Affiliation(s)
- Andrew A. Bridges
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Jojo A. Prentice
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Chenyi Fei
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
| | - Ned S. Wingreen
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
- * E-mail: (NSW); (BLB)
| | - Bonnie L. Bassler
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
- The Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
- * E-mail: (NSW); (BLB)
| |
Collapse
|
35
|
Sharma A, Alajangi HK, Pisignano G, Sood V, Singh G, Barnwal RP. RNA thermometers and other regulatory elements: Diversity and importance in bacterial pathogenesis. WILEY INTERDISCIPLINARY REVIEWS. RNA 2022; 13:e1711. [PMID: 35037405 DOI: 10.1002/wrna.1711] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 11/09/2021] [Accepted: 12/16/2021] [Indexed: 01/11/2023]
Abstract
Survival of microorganisms depends to a large extent on environmental conditions and the occupied host. By adopting specific strategies, microorganisms can thrive in the surrounding environment and, at the same time, preserve their viability. Evading the host defenses requires several mechanisms compatible with the host survival which include the production of RNA thermometers to regulate the expression of genes responsible for heat or cold shock as well as of those involved in virulence. Microorganisms have developed a variety of molecules in response to the environmental changes in temperature and even more specifically to the host they invade. Among all, RNA-based regulatory mechanisms are the most common ones, highlighting the importance of such molecules in gene expression control and novel drug development by suitable structure-based alterations. This article is categorized under: RNA Structure and Dynamics > RNA Structure, Dynamics and Chemistry RNA in Disease and Development > RNA in Disease RNA Structure and Dynamics > Influence of RNA Structure in Biological Systems.
Collapse
Affiliation(s)
- Akanksha Sharma
- Department of Biophysics, Panjab University, Chandigarh, India.,University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Hema Kumari Alajangi
- Department of Biophysics, Panjab University, Chandigarh, India.,University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | | | - Vikas Sood
- Department of Biochemistry, Jamia Hamdard, New Delhi, India
| | - Gurpal Singh
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | | |
Collapse
|
36
|
McCaughey C, Trebino M, Yildiz FH, Sanchez LM. Utilizing imaging mass spectrometry to analyze microbial biofilm chemical responses to exogenous compounds. Methods Enzymol 2022; 665:281-304. [PMID: 35379438 PMCID: PMC9022628 DOI: 10.1016/bs.mie.2021.11.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI-IMS) is an appealing label-free method for imaging biological samples which focuses on the spatial distribution of chemical signals. This approach has been used to study the chemical ecology of microbes and can be applied to study the chemical responses of microbes to treatment with exogenous compounds. Specific conjugated cholic acids such as taurocholic acid (TCA), have been shown to inhibit biofilm formation in the enteric pathogen Vibrio cholerae and MALDI-IMS can be used to directly observe the chemical responses of V. cholerae biofilm colonies to treatment with TCA. A major challenge of MALDI-IMS is optimizing the sample preparation and drying for a particular growth condition and microbial strain. Here we demonstrate how V. cholerae is cultured and prepared for MALDI-IMS analysis and highlight critical steps to ensure proper sample adherence to a MALDI target plate and maintain spatial distributions when applying this technique to any microbial strain. We additionally show how to use both manual interrogation and statistical analyses of MALDI-IMS data to establish the adequacy of the sample preparation protocol. This protocol can serve as a guideline for the development of sample preparation techniques and the acquisition of high quality MALDI-IMS data.
Collapse
Affiliation(s)
- Catherine McCaughey
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, 1156 High St, Santa Cruz, CA 95064
| | - Michael Trebino
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, 1156 High St, Santa Cruz, CA 95064
| | - Fitnat H. Yildiz
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, 1156 High St, Santa Cruz, CA 95064
| | - Laura M Sanchez
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, 1156 High St, Santa Cruz, CA 95064,Corresponding author, , phone: 831-459-4676
| |
Collapse
|
37
|
Chen D, Liang Z, Ren S, Alali W, Chen L. Rapid and Visualized Detection of Virulence-Related Genes of Vibrio cholerae in Water and Aquatic Products by Loop-Mediated Isothermal Amplification. J Food Prot 2022; 85:44-53. [PMID: 34436566 DOI: 10.4315/jfp-21-182] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 08/20/2021] [Indexed: 11/11/2022]
Abstract
ABSTRACT Vibrio cholerae can cause pandemic cholera in humans. The bacterium resides in aquatic environments worldwide. Continuous testing of V. cholerae contamination in water and aquatic products is imperative for food safety control and human health. In this study, a rapid and visualized method was developed for the first time based on loop-mediated isothermal amplification (LAMP) for detection of the important virulence-related genes ace, zot, cri, and nanH for toxins and the infectious process of V. cholerae. Three pairs of molecular probes targeting each of these genes were designed and synthesized. The one-step LAMP reaction was conducted at 65°C for 40 min. Positive results were inspected by the production of a light green color under visible light or green fluorescence under UV light (302 nm). Limit of detection of the LAMP method ranged from 1.85 to 2.06 pg per reaction of genomic DNA or 2.50 × 100 to 4.00 × 102 CFU per reaction for target genes of cell culture of V. cholerae, which was more sensitive than standard PCR. Inclusivity and exclusivity of the LAMP method were 100% for all target genes. The method showed similar high efficiency to a certain extent in rapid testing of spiked or collected specimens of water and aquatic products. Target genes were detected by absence from all water samples from various sources. However, high occurrences of the nanH gene were observed in intestinal samples derived from four species of fish and one species of shellfish, indicating a risk of potentially toxic V. cholerae in commonly consumed aquatic products. The results in this study provide a potential tool for rapid and visualized detection of V. cholerae in water and aquatic products. HIGHLIGHTS
Collapse
Affiliation(s)
- Dailing Chen
- Key Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs of the People's Republic of China, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, People's Republic of China
| | - Zhili Liang
- Key Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs of the People's Republic of China, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, People's Republic of China
| | - Shunlin Ren
- Department of Internal Medicine, Virginia Commonwealth University/McGuire VA Medical Centre, Richmond, Virginia 23249, USA
| | - Walid Alali
- Department of Epidemiology and Biostatistics, Faculty of Public Health, Kuwait University, Kuwait City, Kuwait
| | - Lanming Chen
- Key Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs of the People's Republic of China, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, People's Republic of China
| |
Collapse
|
38
|
H-NOX proteins in the virulence of pathogenic bacteria. Biosci Rep 2021; 42:230559. [PMID: 34939646 PMCID: PMC8738867 DOI: 10.1042/bsr20212014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/17/2021] [Accepted: 12/21/2021] [Indexed: 12/05/2022] Open
Abstract
Nitric oxide (NO) is a toxic gas encountered by bacteria as a product of their own metabolism or as a result of a host immune response. Non-toxic concentrations of NO have been shown to initiate changes in bacterial behaviors such as the transition between planktonic and biofilm-associated lifestyles. The heme nitric oxide/oxygen binding proteins (H-NOX) are a widespread family of bacterial heme-based NO sensors that regulate biofilm formation in response to NO. The presence of H-NOX in several human pathogens combined with the importance of planktonic–biofilm transitions to virulence suggests that H-NOX sensing may be an important virulence factor in these organisms. Here we review the recent data on H-NOX NO signaling pathways with an emphasis on H-NOX homologs from pathogens and commensal organisms. The current state of the field is somewhat ambiguous regarding the role of H-NOX in pathogenesis. However, it is clear that H-NOX regulates biofilm in response to environmental factors and may promote persistence in the environments that serve as reservoirs for these pathogens. Finally, the evidence that large subgroups of H-NOX proteins may sense environmental signals besides NO is discussed within the context of a phylogenetic analysis of this large and diverse family.
Collapse
|
39
|
Zhang Y, Deng Y, Feng J, Hu J, Chen H, Guo Z, Gao R, Su Y. ToxR modulates biofilm formation in fish pathogen Vibrio harveyi. Lett Appl Microbiol 2021; 74:288-299. [PMID: 34822732 DOI: 10.1111/lam.13606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/06/2021] [Accepted: 10/19/2021] [Indexed: 11/29/2022]
Abstract
Vibrio harveyi is a common aquaculture pathogen causing diseases in a variety of aquatic animals. toxR, a conserved virulence-associated gene in vibrios, is identified in V. harveyi 345, a pathogenic strain isolated from diseased fish. In this study, to gain insight into function of ToxR in V. harveyi, an in-frame deletion of the toxR gene was constructed to reveal the role of ToxR in the physiology and virulence of V. harveyi. The statistical analysis showed no significant differences in the growth ability, motility, extracellular protease secretion, antibiotic susceptibility, virulence by intraperitoneal injection and the ability of V. harveyi to colonize the spleen and liver tissues of the pearl gentian grouper between the wild-type (WT) and the toxR mutant. However, the deletion of toxR increased the biofilm formation. The structure of the V. harveyi biofilm was further analysed by using scanning electron microscopy (SEM) and confocal laser scanning microscopy, and the results showed that deletion of toxR increased the number and density of V. harveyi biofilm. Since biofilm production is flagella, exopolysaccharide (EPS) and lipopolysaccharide dependent, 16 of V. harveyi biofilm-related genes were selected for further analysis. Based on quantitative real-time reverse transcription-PCR, the expression levels of these genes, including genes flrB, motY and mshA, flaE, flrA and gmhD, were significantly up-regulated in the ΔtoxR+ strain as compared with the WT+ and C-ΔtoxR strains during the early and mid-exponential, while epsG, flaA, flaE, flgD, flgE, flrB, flrC, lpxB, motY, mshA and scrG genes were inhibited because of deletion of the toxR gene in the stationary growth phase. Our results indicate that ToxR plays an important role in controlling the biofilm in V. harveyi.
Collapse
Affiliation(s)
- Y Zhang
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China.,College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Y Deng
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - J Feng
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - J Hu
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China.,College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - H Chen
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China.,College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Z Guo
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - R Gao
- Zhaoqing Dahuanong Biology Medicine Co. Ltd, Guangdong, Zhaoqing, PR China
| | - Y Su
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China.,Innovative Institute of Animal Healthy Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| |
Collapse
|
40
|
Abstract
Most bacteria are protected from environmental offenses by a cell wall consisting of strong yet elastic peptidoglycan. The cell wall is essential for preserving bacterial morphology and viability, and thus the enzymes involved in the production and turnover of peptidoglycan have become preferred targets for many of our most successful antibiotics. In the past decades, Vibrio cholerae, the gram-negative pathogen causing the diarrheal disease cholera, has become a major model for understanding cell wall genetics, biochemistry, and physiology. More than 100 articles have shed light on novel cell wall genetic determinants, regulatory links, and adaptive mechanisms. Here we provide the first comprehensive review of V. cholerae's cell wall biology and genetics. Special emphasis is placed on the similarities and differences with Escherichia coli, the paradigm for understanding cell wall metabolism and chemical structure in gram-negative bacteria.
Collapse
Affiliation(s)
- Laura Alvarez
- Department of Molecular Biology and Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå SE-90187, Sweden;
| | - Sara B Hernandez
- Department of Molecular Biology and Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå SE-90187, Sweden;
| | - Felipe Cava
- Department of Molecular Biology and Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå SE-90187, Sweden;
| |
Collapse
|
41
|
Structural and DNA-binding properties of the cytoplasmic domain of Vibrio cholerae transcription factor ToxR. J Biol Chem 2021; 297:101167. [PMID: 34487759 PMCID: PMC8517210 DOI: 10.1016/j.jbc.2021.101167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 08/26/2021] [Accepted: 09/02/2021] [Indexed: 11/21/2022] Open
Abstract
ToxR represents an essential transcription factor of Vibrio cholerae, which is involved in the regulation of multiple, mainly virulence associated genes. Its versatile functionality as activator, repressor or coactivator suggests a complex regulatory mechanism, whose clarification is essential for a better understanding of the virulence expression system of V. cholerae. Here, we provide structural information elucidating the organization and binding behavior of the cytoplasmic DNA-binding domain of ToxR (cToxR), containing a winged helix–turn–helix (wHTH) motif. Our analysis reveals unexpected structural features of this domain expanding our knowledge of a poorly defined subfamily of wHTH proteins. cToxR forms an extraordinary long α-loop and furthermore has an additional C-terminal beta strand, contacting the N-terminus and thus leading to a compact fold. The identification of the exact interactions between ToxR and DNA contributes to a deeper understanding of this regulatory process. Our findings not only show general binding of the soluble cytoplasmic domain of ToxR to DNA, but also indicate a higher affinity for the toxT motif. These results support the current theory of ToxR being a “DNA-catcher” to enable binding of the transcription factor TcpP and thus activation of virulence-associated toxT transcription. Although, TcpP and ToxR interaction is assumed to be crucial in the activation of the toxT genes, we could not detect an interaction event of their isolated cytoplasmic domains. We therefore conclude that other factors are needed to establish this protein–protein interaction, e.g., membrane attachment, the presence of their full-length proteins and/or other intermediary proteins that may facilitate binding.
Collapse
|
42
|
Contributions of Escherichia coli and Its Motility to the Formation of Dual-Species Biofilms with Vibrio cholerae. Appl Environ Microbiol 2021; 87:e0093821. [PMID: 34260307 DOI: 10.1128/aem.00938-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Biofilm formation is important in both the environmental and intestinal phases of the Vibrio cholerae life cycle. Nevertheless, most studies of V. cholerae biofilm formation focus on monospecies cultures, whereas nearly all biofilm communities found in nature consist of a variety of microorganisms. Multispecies biofilms formed between V. cholerae and other bacteria in the environment and the interactions that exist between these species are still poorly understood. In this study, the influence of Escherichia coli on the biofilm formation of V. cholerae was studied in the context of both in vitro coculture and in vivo coinfection. To understand the underlying synergistic mechanisms between these two species and to investigate the role of E. coli in V. cholerae biofilm formation, different pathotypes of E. coli and corresponding deletion mutants lacking genes that influence flagellar motility, curli fibers, or type I pili were cocultured with V. cholerae. Our findings demonstrate that the presence of commensal E. coli increases biofilm formation at the air-liquid interface in vitro and the generation of biofilm-like multicellular clumps in mouse feces. Examination of laboratory E. coli flagellar-motility ΔfliC and ΔmotA mutants in dual-species biofilm formation suggests that flagellar motility plays an important role in the synergistic interaction and coaggregation formation between V. cholerae and E. coli. This study facilitates a better understanding of how V. cholerae resides in harsh environments and colonizes the intestine. IMPORTANCE Biofilms play an important role in the V. cholerae life cycle. Until now, only monospecies biofilm formation of V. cholerae has been well studied. However, in nature, bacteria live in complex microbial communities, where biofilm is mostly composed of multiple microbial species that interact to cooperate with or compete against each other. Uncovering how V. cholerae forms multispecies biofilms is critical for furthering our understanding of how V. cholerae survives in the environment and transitions to infecting the human host. In this work, the dual-species biofilm containing V. cholerae and Escherichia coli was investigated. We demonstrate that the presence of commensal E. coli increased overall biofilm formation. Furthermore, we demonstrate that the motility of E. coli flagella is important for V. cholerae and E. coli to form coaggregation clumps in a dual-species biofilm. These results shed light on a new mechanism for understanding the survival and pathogenesis of V. cholerae.
Collapse
|
43
|
Brumfield KD, Usmani M, Chen KM, Gangwar M, Jutla AS, Huq A, Colwell RR. Environmental parameters associated with incidence and transmission of pathogenic Vibrio spp. Environ Microbiol 2021; 23:7314-7340. [PMID: 34390611 DOI: 10.1111/1462-2920.15716] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 07/27/2021] [Accepted: 08/10/2021] [Indexed: 12/17/2022]
Abstract
Vibrio spp. thrive in warm water and moderate salinity, and they are associated with aquatic invertebrates, notably crustaceans and zooplankton. At least 12 Vibrio spp. are known to cause infection in humans, and Vibrio cholerae is well documented as the etiological agent of pandemic cholera. Pathogenic non-cholera Vibrio spp., e.g., Vibrio parahaemolyticus and Vibrio vulnificus, cause gastroenteritis, septicemia, and other extra-intestinal infections. Incidence of vibriosis is rising globally, with evidence that anthropogenic factors, primarily emissions of carbon dioxide associated with atmospheric warming and more frequent and intense heatwaves, significantly influence environmental parameters, e.g., temperature, salinity, and nutrients, all of which can enhance growth of Vibrio spp. in aquatic ecosystems. It is not possible to eliminate Vibrio spp., as they are autochthonous to the aquatic environment and many play a critical role in carbon and nitrogen cycling. Risk prediction models provide an early warning that is essential for safeguarding public health. This is especially important for regions of the world vulnerable to infrastructure instability, including lack of 'water, sanitation, and hygiene' (WASH), and a less resilient infrastructure that is vulnerable to natural calamity, e.g., hurricanes, floods, and earthquakes, and/or social disruption and civil unrest, arising from war, coups, political crisis, and economic recession. Incorporating environmental, social, and behavioural parameters into such models allows improved prediction, particularly of cholera epidemics. We have reported that damage to WASH infrastructure, coupled with elevated air temperatures and followed by above average rainfall, promotes exposure of a population to contaminated water and increases the risk of an outbreak of cholera. Interestingly, global predictive risk models successful for cholera have the potential, with modification, to predict diseases caused by other clinically relevant Vibrio spp. In the research reported here, the focus was on environmental parameters associated with incidence and distribution of clinically relevant Vibrio spp. and their role in disease transmission. In addition, molecular methods designed for detection and enumeration proved useful for predictive modelling and are described, namely in the context of prediction of environmental conditions favourable to Vibrio spp., hence human health risk.
Collapse
Affiliation(s)
- Kyle D Brumfield
- Maryland Pathogen Research Institute, University of Maryland, College Park, MD, USA.,University of Maryland Institute for Advanced Computer Studies, University of Maryland, College Park, MD, USA
| | - Moiz Usmani
- Geohealth and Hydrology Laboratory, Department of Environmental Engineering Sciences, University of Florida, Gainesville, FL, USA
| | - Kristine M Chen
- Geohealth and Hydrology Laboratory, Department of Environmental Engineering Sciences, University of Florida, Gainesville, FL, USA
| | - Mayank Gangwar
- Geohealth and Hydrology Laboratory, Department of Environmental Engineering Sciences, University of Florida, Gainesville, FL, USA
| | - Antarpreet S Jutla
- Geohealth and Hydrology Laboratory, Department of Environmental Engineering Sciences, University of Florida, Gainesville, FL, USA
| | - Anwar Huq
- Maryland Pathogen Research Institute, University of Maryland, College Park, MD, USA
| | - Rita R Colwell
- Maryland Pathogen Research Institute, University of Maryland, College Park, MD, USA.,University of Maryland Institute for Advanced Computer Studies, University of Maryland, College Park, MD, USA
| |
Collapse
|
44
|
Usmani M, Brumfield KD, Jamal Y, Huq A, Colwell RR, Jutla A. A Review of the Environmental Trigger and Transmission Components for Prediction of Cholera. Trop Med Infect Dis 2021; 6:tropicalmed6030147. [PMID: 34449728 PMCID: PMC8396309 DOI: 10.3390/tropicalmed6030147] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/29/2021] [Accepted: 07/31/2021] [Indexed: 11/16/2022] Open
Abstract
Climate variables influence the occurrence, growth, and distribution of Vibrio cholerae in the aquatic environment. Together with socio-economic factors, these variables affect the incidence and intensity of cholera outbreaks. The current pandemic of cholera began in the 1960s, and millions of cholera cases are reported each year globally. Hence, cholera remains a significant health challenge, notably where human vulnerability intersects with changes in hydrological and environmental processes. Cholera outbreaks may be epidemic or endemic, the mode of which is governed by trigger and transmission components that control the outbreak and spread of the disease, respectively. Traditional cholera risk assessment models, namely compartmental susceptible-exposed-infected-recovered (SEIR) type models, have been used to determine the predictive spread of cholera through the fecal–oral route in human populations. However, these models often fail to capture modes of infection via indirect routes, such as pathogen movement in the environment and heterogeneities relevant to disease transmission. Conversely, other models that rely solely on variability of selected environmental factors (i.e., examine only triggers) have accomplished real-time outbreak prediction but fail to capture the transmission of cholera within impacted populations. Since the mode of cholera outbreaks can transition from epidemic to endemic, a comprehensive transmission model is needed to achieve timely and reliable prediction with respect to quantitative environmental risk. Here, we discuss progression of the trigger module associated with both epidemic and endemic cholera, in the context of the autochthonous aquatic nature of the causative agent of cholera, V. cholerae, as well as disease prediction.
Collapse
Affiliation(s)
- Moiz Usmani
- Geohealth and Hydrology Laboratory, Department of Environmental Engineering Sciences, University of Florida, Gainesville, FL 32603, USA; (M.U.); (Y.J.); (A.J.)
| | - Kyle D. Brumfield
- Maryland Pathogen Research Institute, University of Maryland, College Park, MD 20742, USA; (K.D.B.); (A.H.)
- University of Maryland Institute for Advanced Computer Studies, University of Maryland, College Park, MD 20742, USA
| | - Yusuf Jamal
- Geohealth and Hydrology Laboratory, Department of Environmental Engineering Sciences, University of Florida, Gainesville, FL 32603, USA; (M.U.); (Y.J.); (A.J.)
| | - Anwar Huq
- Maryland Pathogen Research Institute, University of Maryland, College Park, MD 20742, USA; (K.D.B.); (A.H.)
| | - Rita R. Colwell
- Maryland Pathogen Research Institute, University of Maryland, College Park, MD 20742, USA; (K.D.B.); (A.H.)
- University of Maryland Institute for Advanced Computer Studies, University of Maryland, College Park, MD 20742, USA
- Correspondence:
| | - Antarpreet Jutla
- Geohealth and Hydrology Laboratory, Department of Environmental Engineering Sciences, University of Florida, Gainesville, FL 32603, USA; (M.U.); (Y.J.); (A.J.)
| |
Collapse
|
45
|
Liu Y, Liu B, Xu T, Wang Q, Li W, Wu J, Zheng X, Liu B, Liu R, Liu X, Guo X, Feng L, Wang L. A fructose/H + symporter controlled by a LacI-type regulator promotes survival of pandemic Vibrio cholerae in seawater. Nat Commun 2021; 12:4649. [PMID: 34330925 PMCID: PMC8324912 DOI: 10.1038/s41467-021-24971-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 07/13/2021] [Indexed: 02/07/2023] Open
Abstract
The bacterium Vibrio cholerae can colonize the human intestine and cause cholera, but spends much of its life cycle in seawater. The pathogen must adapt to substantial environmental changes when moving between seawater and the human intestine, including different availability of carbon sources such as fructose. Here, we use in vitro experiments as well as mouse intestinal colonization assays to study the mechanisms used by pandemic V. cholerae to adapt to these environmental changes. We show that a LacI-type regulator (FruI) and a fructose/H+ symporter (FruT) are important for fructose uptake at low fructose concentrations, as those found in seawater. FruT is downregulated by FruI, which is upregulated when O2 concentrations are low (as in the intestine) by ArcAB, a two-component system known to respond to changes in oxygen levels. As a result, the bacteria predominantly use FruT for fructose uptake under seawater conditions (low fructose, high O2), and use a known fructose phosphotransferase system (PTS, Fpr) for fructose uptake under conditions found in the intestine. PTS activity leads to reduced levels of intracellular cAMP, which in turn upregulate virulence genes. Our results indicate that the FruT/FruI system may be important for survival of pandemic V. cholerae in seawater.
Collapse
Affiliation(s)
- Yutao Liu
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, P. R. China
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, P. R. China
- Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin, P.R. China
| | - Bin Liu
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, P. R. China
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, P. R. China
- Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin, P.R. China
| | - Tingting Xu
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, P. R. China
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, P. R. China
- Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin, P.R. China
- Shenzhen Institute of Respiratory Diseases, Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, Shenzhen, P. R. China
| | - Qian Wang
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, P. R. China
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, P. R. China
- Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin, P.R. China
| | - Wendi Li
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, P. R. China
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, P. R. China
- Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin, P.R. China
| | - Jialin Wu
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, P. R. China
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, P. R. China
- Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin, P.R. China
| | - Xiaoyu Zheng
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, P. R. China
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, P. R. China
- Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin, P.R. China
| | - Bin Liu
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, P. R. China
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, P. R. China
- Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin, P.R. China
| | - Ruiying Liu
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, P. R. China
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, P. R. China
- Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin, P.R. China
| | - Xingmei Liu
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, P. R. China
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, P. R. China
- Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin, P.R. China
| | - Xi Guo
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, P. R. China
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, P. R. China
- Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin, P.R. China
| | - Lu Feng
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, P. R. China.
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, P. R. China.
- Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin, P.R. China.
| | - Lei Wang
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, P. R. China.
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, P. R. China.
- Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin, P.R. China.
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, P. R. China.
| |
Collapse
|
46
|
Thwe PM, Schilling M, Reynoso D, Ren P. Unexpected Cholera Bacteremia in a 91 Year Old Caucasian Male Patient. Lab Med 2021; 51:e71-e74. [PMID: 32533695 DOI: 10.1093/labmed/lmaa028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Cholera is an illness caused by Vibrio cholerae; its main symptom is acute watery diarrhea. Some infections are asymptomatic or result in patients presenting with mild diarrhea, but complications, such as bacteremia, can be fatal. Being endemic in Africa, Southeast Asia, and Haiti, V. cholerae infection cases in the United States are primarily considered travel-related. Herein, we report a case of a 91 year old Caucasian man, a Texas Gulf Coast resident, who developed bacteremia due to V. cholerae despite having no international travel history. Culture workup by mass spectrometry, automated biochemical system, and 16S ribosomal RNA (rRNA) gene sequencing confirmed V. cholerae. This case conveys an important reminder to clinicians and laboratory professionals regarding potentially serious cholera illnesses due to the domestic prevalence of V. cholerae in the coastal regions of the United States.
Collapse
Affiliation(s)
| | - Matthew Schilling
- Departments of Internal Medicine-Infectious Diseases, University of Texas Medical Branch, Galveston, Texas
| | - David Reynoso
- Departments of Internal Medicine-Infectious Diseases, University of Texas Medical Branch, Galveston, Texas
| | - Ping Ren
- Departments of Pathology, Galveston, Texas
| |
Collapse
|
47
|
Zingl FG, Thapa HB, Scharf M, Kohl P, Müller AM, Schild S. Outer Membrane Vesicles of Vibrio cholerae Protect and Deliver Active Cholera Toxin to Host Cells via Porin-Dependent Uptake. mBio 2021; 12:e0053421. [PMID: 34076466 PMCID: PMC8262896 DOI: 10.1128/mbio.00534-21] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 04/12/2021] [Indexed: 11/20/2022] Open
Abstract
Outer membrane vesicles (OMVs) are an emerging research field due to their multifactorial composition and involvement in interspecies and intraspecies communication. Recent studies indicate that vesicle release by Gram-negative bacterial pathogens is increased during in vivo colonization, as exemplified by the facultative human pathogen Vibrio cholerae upon oral ingestion by the host. In this study, we investigate the fate of OMVs produced by the Gram-negative facultative pathogen V. cholerae. We show that vesicles produced by the clinically relevant El Tor biotype are readily taken up by human intestinal cell lines. We identify outer membrane porins of V. cholerae, i.e., OmpU and OmpT, as the required surface effectors on OMVs for cellular uptake, and we pinpoint the uptake mechanism as caveolin-mediated endocytosis. Furthermore, we show that OMVs derived from V. cholerae grown under virulence-inducing conditions act as potent vehicles for delivery of bioactive cholera toxin to intestinal epithelial cells. In contrast to free cholera toxin secreted via the type II secretion system, OMV-associated cholera toxin is protected from degradation by intestinal proteases. Taken together, these data show that OMV-associated cholera toxin can sustain longer periods in the intestinal tract and preserve toxin effects, as indicated by a prolonged increase of cAMP levels in the intestinal tissue. IMPORTANCE Cholera is still a massive global health burden because it causes large outbreaks with millions of infections and thousands of deaths every year. Several studies have contributed to the knowledge of this pathogen, although key parts are still missing. We aim to broaden our understanding of Vibrio cholerae infections, virulence, and toxicity by drawing attention to the involvement of OMVs in these core processes. Upon host entry, V. cholerae increases secretion of OMVs, which can carry the main virulence factor, cholera toxin, to distant host intestinal cells. We show that specific outer membrane porins on the vesicle surface mediate endocytosis of the vesicles into intestinal cells. With protection by the vesicles, cholera toxin activity endures even in the presence of intestinal proteases. It is tempting to hypothesize that the extended half-life of vesicle-associated cholera toxin allows it to target host cells distant from the primary colonization sites.
Collapse
Affiliation(s)
- Franz G. Zingl
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Himadri B. Thapa
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Martina Scharf
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Paul Kohl
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Anna M. Müller
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Stefan Schild
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
- Field of Excellence Biohealth, University of Graz, Graz, Austria
| |
Collapse
|
48
|
Fennell TG, Blackwell GA, Thomson NR, Dorman MJ. gbpA and chiA genes are not uniformly distributed amongst diverse Vibrio cholerae. Microb Genom 2021; 7:000594. [PMID: 34100695 PMCID: PMC8461464 DOI: 10.1099/mgen.0.000594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 04/26/2021] [Indexed: 11/18/2022] Open
Abstract
Members of the bacterial genus Vibrio utilize chitin both as a metabolic substrate and a signal to activate natural competence. Vibrio cholerae is a bacterial enteric pathogen, sub-lineages of which can cause pandemic cholera. However, the chitin metabolic pathway in V. cholerae has been dissected using only a limited number of laboratory strains of this species. Here, we survey the complement of key chitin metabolism genes amongst 195 diverse V. cholerae. We show that the gene encoding GbpA, known to be an important colonization and virulence factor in pandemic isolates, is not ubiquitous amongst V. cholerae. We also identify a putatively novel chitinase, and present experimental evidence in support of its functionality. Our data indicate that the chitin metabolic pathway within V. cholerae is more complex than previously thought, and emphasize the importance of considering genes and functions in the context of a species in its entirety, rather than simply relying on traditional reference strains.
Collapse
Affiliation(s)
- Thea G. Fennell
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
- Churchill College, Storey’s Way, Cambridge, CB3 0DS, UK
- Present address: Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge, UK
| | - Grace A. Blackwell
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
- EMBL-EBI, Wellcome Genome Campus, Hinxton, CB10 1SD, UK
| | - Nicholas R. Thomson
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
- London School of Hygiene and Tropical Medicine, Keppel St., Bloomsbury, London, WC1E 7HT, UK
| | - Matthew J. Dorman
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
- Churchill College, Storey’s Way, Cambridge, CB3 0DS, UK
| |
Collapse
|
49
|
Bridges AA, Bassler BL. Inverse regulation of Vibrio cholerae biofilm dispersal by polyamine signals. eLife 2021; 10:e65487. [PMID: 33856344 PMCID: PMC8079147 DOI: 10.7554/elife.65487] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 04/13/2021] [Indexed: 12/12/2022] Open
Abstract
The global pathogen Vibrio cholerae undergoes cycles of biofilm formation and dispersal in the environment and the human host. Little is understood about biofilm dispersal. Here, we show that MbaA, a periplasmic polyamine sensor, and PotD1, a polyamine importer, regulate V. cholerae biofilm dispersal. Spermidine, a commonly produced polyamine, drives V. cholerae dispersal, whereas norspermidine, an uncommon polyamine produced by vibrios, inhibits dispersal. Spermidine and norspermidine differ by one methylene group. Both polyamines control dispersal via MbaA detection in the periplasm and subsequent signal relay. Our results suggest that dispersal fails in the absence of PotD1 because endogenously produced norspermidine is not reimported, periplasmic norspermidine accumulates, and it stimulates MbaA signaling. These results suggest that V. cholerae uses MbaA to monitor environmental polyamines, blends of which potentially provide information about numbers of 'self' and 'other'. This information is used to dictate whether or not to disperse from biofilms.
Collapse
Affiliation(s)
- Andrew A Bridges
- Department of Molecular Biology, Princeton UniversityPrincetonUnited States
- The Howard Hughes Medical InstituteChevy ChaseUnited States
| | - Bonnie L Bassler
- Department of Molecular Biology, Princeton UniversityPrincetonUnited States
- The Howard Hughes Medical InstituteChevy ChaseUnited States
| |
Collapse
|
50
|
Chen D, He J, Li J, Zou Q, Si J, Guo Y, Yu J, Li C, Wang F, Chan T, Shi H. Microbiome and Metabolome Analyses Reveal Novel Interplay Between the Skin Microbiota and Plasma Metabolites in Psoriasis. Front Microbiol 2021; 12:643449. [PMID: 33796091 PMCID: PMC8007969 DOI: 10.3389/fmicb.2021.643449] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 02/22/2021] [Indexed: 12/26/2022] Open
Abstract
Psoriasis is a chronic inflammatory skin disease that affects millions of people worldwide. There is still no effective approach for the clinical treatment of psoriasis. This is largely due to the lack of understanding of the pathological mechanism. Here, we comprehensively characterized the skin microbiome and plasma metabolome alterations of psoriasis patients. We observed that some pathogenic bacteria, including Vibrio, were significantly increased in psoriasis patients. The metabolomics results showed alterations in some metabolic pathways, especially pathways for lipid metabolism. In addition, microbiome-specific metabolites, including bile acids and kynurenine, were significantly changed. Correlation analysis revealed the interplay between the skin microbiota and plasma metabolites, especially between Vibrio and several lipids. Our results provide new evidence for the interplay between the skin microbiome and plasma metabolites, which is dramatically disrupted in psoriasis patients. This study also revealed the mechanism underlying the pathogenesis of psoriasis.
Collapse
Affiliation(s)
- Dongmei Chen
- Innovation Team for Skin Disease Diagnosis and Treatment Technology & Drug Discovery and Development, The General Hospital of Ningxia Medical University, Yinchuan, China.,Institute of Human Stem Cell Research, The General Hospital of Ningxia Medical University, Yinchuan, China
| | - Jingquan He
- Biotree Metabolomics Research Center, Biotree, Shanghai, China
| | - Jinping Li
- Department of Oncology Surgery, Ningxia Medical University, Yinchuan, China
| | - Qian Zou
- Clinical Medical School, Ningxia Medical University, Yinchuan, China
| | - Jiawei Si
- Clinical Medical School, Ningxia Medical University, Yinchuan, China
| | - Yatao Guo
- Clinical Medical School, Ningxia Medical University, Yinchuan, China
| | - Jiayu Yu
- Clinical Medical School, Ningxia Medical University, Yinchuan, China
| | - Cheng Li
- Clinical Medical School, Ningxia Medical University, Yinchuan, China
| | - Fang Wang
- Clinical Medical School, Ningxia Medical University, Yinchuan, China
| | - Tianlong Chan
- Biotree Metabolomics Research Center, Biotree, Shanghai, China
| | - Huijuan Shi
- Innovation Team for Skin Disease Diagnosis and Treatment Technology & Drug Discovery and Development, The General Hospital of Ningxia Medical University, Yinchuan, China.,Department of Dermatovenereology, The General Hospital of Ningxia Medical University, Yinchuan, China
| |
Collapse
|