1
|
Yu W, Wu Y, Li D. Oxidative cleavage of cellulose by fungi in the termite gut. Int J Biol Macromol 2025; 284:138222. [PMID: 39622373 DOI: 10.1016/j.ijbiomac.2024.138222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 11/19/2024] [Accepted: 11/29/2024] [Indexed: 12/16/2024]
Abstract
Lytic polysaccharide monooxygenases (LPMOs) of auxiliary activity family 9 (AA9) oxidatively degrade cellulose. Cellulose is degraded by cellulases via hydrolysis in the termite gut. However, it remains uncertain whether oxidative cleavage of cellulose occurs within the termite gut. In this study, we report for the first time experimental support for the oxidative cleavage of cellulose in the termite (Cryptotermes declivis) gut. We identified the varieties of fungi in the termite gut through extensive analysis of the isolated fungi and sequencing of the internal transcribed spacer region. Most of the fungi were Ascomycetes. Genome sequencing revealed the presence of an AA9 LPMO (TfAA9A) in one of the isolated species, Talaromyces funiculosus. The expression of TfAA9A in the termite gut was detected using reverse transcription-polymerase chain reaction, and its ability to oxidize cellulose was confirmed in vitro through heterologous gene expression in Pichia pastoris and cellulose degradation experiments with the purified enzyme. Further transcriptome and proteomics analyses showed mRNA and protein expression of fungal AA9 LPMOs in the termite gut. These experimental data support the oxidative cleavage of cellulose in the termite gut. This study offers a new direction for understanding the mechanism of cellulose degradation in termites.
Collapse
Affiliation(s)
- Weishuai Yu
- Department of Mycology, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Yueming Wu
- Department of Mycology, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Duochuan Li
- Department of Mycology, Shandong Agricultural University, Taian, Shandong 271018, China.
| |
Collapse
|
2
|
Truong NH, Le TTH, Nguyen HD, Nguyen HT, Dao TK, Tran TMN, Tran HL, Nguyen DT, Nguyen TQ, Phan THT, Do TH, Phan NH, Ngo TCN, Vu VV. Sequence and structure analyses of lytic polysaccharide monooxygenases mined from metagenomic DNA of humus samples around white-rot fungi in Cuc Phuong tropical forest, Vietnam. PeerJ 2024; 12:e17553. [PMID: 38938609 PMCID: PMC11210479 DOI: 10.7717/peerj.17553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 05/20/2024] [Indexed: 06/29/2024] Open
Abstract
Background White-rot fungi and bacteria communities are unique ecosystems with different types of symbiotic interactions occurring during wood decomposition, such as cooperation, mutualism, nutritional competition, and antagonism. The role of chitin-active lytic polysaccharide monooxygenases (LPMOs) in these symbiotic interactions is the subject of this study. Method In this study, bioinformatics tools were used to analyze the sequence and structure of putative LPMOs mined by hidden Markov model (HMM) profiles from the bacterial metagenomic DNA database of collected humus samples around white-rot fungi in Cuc Phuong primary forest, Vietnam. Two genes encoding putative LPMOs were expressed in E. coli and purified for enzyme activity assay. Result Thirty-one full-length proteins annotated as putative LPMOs according to HMM profiles were confirmed by amino acid sequence comparison. The comparison results showed that although the amino acid sequences of the proteins were very different, they shared nine conserved amino acids, including two histidine and one phenylalanine that characterize the H1-Hx-Yz motif of the active site of bacterial LPMOs. Structural analysis of these proteins revealed that they are multidomain proteins with different functions. Prediction of the catalytic domain 3-D structure of these putative LPMOs using Alphafold2 showed that their spatial structures were very similar in shape, although their protein sequences were very different. The results of testing the activity of proteins GL0247266 and GL0183513 show that they are chitin-active LPMOs. Prediction of the 3-D structures of these two LPMOs using Alphafold2 showed that GL0247266 had five functional domains, while GL0183513 had four functional domains, two of which that were similar to the GbpA_2 and GbpA_3 domains of protein GbpA of Vibrio cholerae bacteria. The GbpA_2 - GbpA_3 complex was also detected in 11 other proteins. Based on the structural characteristics of functional domains, it is possible to hypothesize the role of chitin-active GbpA-like LPMOs in the relationship between fungal and bacterial communities coexisting on decomposing trees in primary forests.
Collapse
Affiliation(s)
- Nam-Hai Truong
- Institute of Biotechnology (IBT), Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam
- Graduate University of Science and Technology (GUST), Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam
| | - Thi-Thu-Hong Le
- Institute of Biotechnology (IBT), Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam
- Graduate University of Science and Technology (GUST), Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam
| | - Hong-Duong Nguyen
- Institute of Biotechnology (IBT), Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam
| | | | - Trong-Khoa Dao
- Institute of Biotechnology (IBT), Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam
| | - Thi-Minh-Nguyet Tran
- The Key Laboratory of Enzyme and Protein Technology (KLEPT), VNU University of Science, Hanoi, Vietnam
| | - Huyen-Linh Tran
- Institute of Biotechnology (IBT), Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam
| | - Dinh-Trong Nguyen
- Institute of Biotechnology (IBT), Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam
| | - Thi-Quy Nguyen
- Institute of Biotechnology (IBT), Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam
| | - Thi-Hong-Thao Phan
- Institute of Biotechnology (IBT), Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam
| | - Thi-Huyen Do
- Institute of Biotechnology (IBT), Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam
- Graduate University of Science and Technology (GUST), Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam
| | - Ngoc-Han Phan
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh, Vietnam
| | - Thi-Cam-Nhung Ngo
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh, Vietnam
| | - Van-Van Vu
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh, Vietnam
| |
Collapse
|
3
|
Askarian F, Tsai CM, Cordara G, Zurich RH, Bjånes E, Golten O, Vinther Sørensen H, Kousha A, Meier A, Chikwati E, Bruun JA, Ludviksen JA, Choudhury B, Trieu D, Davis S, Edvardsen PKT, Mollnes TE, Liu GY, Krengel U, Conrad DJ, Vaaje-Kolstad G, Nizet V. Immunization with lytic polysaccharide monooxygenase CbpD induces protective immunity against Pseudomonas aeruginosa pneumonia. Proc Natl Acad Sci U S A 2023; 120:e2301538120. [PMID: 37459522 PMCID: PMC10372616 DOI: 10.1073/pnas.2301538120] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 05/30/2023] [Indexed: 07/20/2023] Open
Abstract
Pseudomonas aeruginosa (PA) CbpD belongs to the lytic polysaccharide monooxygenases (LPMOs), a family of enzymes that cleave chitin or related polysaccharides. Here, we demonstrate a virulence role of CbpD in PA pneumonia linked to impairment of host complement function and opsonophagocytic clearance. Following intratracheal challenge, a PA ΔCbpD mutant was more easily cleared and produced less mortality than the wild-type parent strain. The x-ray crystal structure of the CbpD LPMO domain was solved to subatomic resolution (0.75Å) and its two additional domains modeled by small-angle X-ray scattering and Alphafold2 machine-learning algorithms, allowing structure-based immune epitope mapping. Immunization of naive mice with recombinant CbpD generated high IgG antibody titers that promoted human neutrophil opsonophagocytic killing, neutralized enzymatic activity, and protected against lethal PA pneumonia and sepsis. IgG antibodies generated against full-length CbpD or its noncatalytic M2+CBM73 domains were opsonic and protective, even in previously PA-exposed mice, while antibodies targeting the AA10 domain were not. Preexisting antibodies in PA-colonized cystic fibrosis patients primarily target the CbpD AA10 catalytic domain. Further exploration of LPMO family proteins, present across many clinically important and antibiotic-resistant human pathogens, may yield novel and effective vaccine antigens.
Collapse
Affiliation(s)
- Fatemeh Askarian
- Division of Host-Microbe Systems & Therapeutics, Department of Pediatrics, University of California San Diego, La Jolla, CA92093
| | - Chih-Ming Tsai
- Division of Host-Microbe Systems & Therapeutics, Department of Pediatrics, University of California San Diego, La Jolla, CA92093
| | | | - Raymond H. Zurich
- Division of Host-Microbe Systems & Therapeutics, Department of Pediatrics, University of California San Diego, La Jolla, CA92093
| | - Elisabet Bjånes
- Division of Host-Microbe Systems & Therapeutics, Department of Pediatrics, University of California San Diego, La Jolla, CA92093
| | - Ole Golten
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, N-1432Ås, Norway
| | | | - Armin Kousha
- Division of Host-Microbe Systems & Therapeutics, Department of Pediatrics, University of California San Diego, La Jolla, CA92093
| | - Angela Meier
- Division of Critical Care, Department of Anesthesiology, University of California San Diego, La Jolla, CA92037
| | - Elvis Chikwati
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, N-1432Ås, Norway
| | - Jack-Ansgar Bruun
- Proteomics and Metabolomics Core Facility, Department of Medical Biology, The Arctic University of Norway, N-9037Tromsø, Norway
| | | | - Biswa Choudhury
- Glycobiology Research and Training Center, University of California San Diego, La Jolla, CA92093
| | - Desmond Trieu
- Division of Host-Microbe Systems & Therapeutics, Department of Pediatrics, University of California San Diego, La Jolla, CA92093
- School of Pharmacy, University of California San Francisco, San Francisco, CA94143
| | - Stanley Davis
- Division of Host-Microbe Systems & Therapeutics, Department of Pediatrics, University of California San Diego, La Jolla, CA92093
| | | | - Tom Eirik Mollnes
- Research Laboratory, Nordland Hospital, N-8005Bodø, Norway
- Department of Immunology, University of Oslo Hospital, N-0424Oslo, Norway
- Center of Molecular Inflammation Research, Norwegian University of Science and Technology, N-7491Trondheim, Norway
| | - George Y. Liu
- Division of Host-Microbe Systems & Therapeutics, Department of Pediatrics, University of California San Diego, La Jolla, CA92093
| | - Ute Krengel
- Department of Chemistry, University of Oslo, N-0315Oslo, Norway
| | - Douglas J. Conrad
- Division of Pulmonary, Critical Care and Sleep Medicine, University of California San Diego, La Jolla, CA92037
| | - Gustav Vaaje-Kolstad
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, N-1432Ås, Norway
| | - Victor Nizet
- Division of Host-Microbe Systems & Therapeutics, Department of Pediatrics, University of California San Diego, La Jolla, CA92093
- Glycobiology Research and Training Center, University of California San Diego, La Jolla, CA92093
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA92093
| |
Collapse
|
4
|
Martinez-D’Alto A, Yan X, Detomasi TC, Sayler RI, Thomas WC, Talbot NJ, Marletta MA. Characterization of a unique polysaccharide monooxygenase from the plant pathogen Magnaporthe oryzae. Proc Natl Acad Sci U S A 2023; 120:e2215426120. [PMID: 36791100 PMCID: PMC9974505 DOI: 10.1073/pnas.2215426120] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 01/12/2023] [Indexed: 02/16/2023] Open
Abstract
Blast disease in cereal plants is caused by the fungus Magnaporthe oryzae and accounts for a significant loss in food crops. At the outset of infection, expression of a putative polysaccharide monooxygenase (MoPMO9A) is increased. MoPMO9A contains a catalytic domain predicted to act on cellulose and a carbohydrate-binding domain that binds chitin. A sequence similarity network of the MoPMO9A family AA9 showed that 220 of the 223 sequences in the MoPMO9A-containing cluster of sequences have a conserved unannotated region with no assigned function. Expression and purification of the full length and two MoPMO9A truncations, one containing the catalytic domain and the domain of unknown function (DUF) and one with only the catalytic domain, were carried out. In contrast to other AA9 polysaccharide monooxygenases (PMOs), MoPMO9A is not active on cellulose but showed activity on cereal-derived mixed (1→3, 1→4)-β-D-glucans (MBG). Moreover, the DUF is required for activity. MoPMO9A exhibits activity consistent with C4 oxidation of the polysaccharide and can utilize either oxygen or hydrogen peroxide as a cosubstrate. It contains a predicted 3-dimensional fold characteristic of other PMOs. The DUF is predicted to form a coiled-coil with six absolutely conserved cysteines acting as a zipper between the two α-helices. MoPMO9A substrate specificity and domain architecture are different from previously characterized AA9 PMOs. The results, including a gene ontology analysis, support a role for MoPMO9A in MBG degradation during plant infection. Consistent with this analysis, deletion of MoPMO9A results in reduced pathogenicity.
Collapse
Affiliation(s)
| | - Xia Yan
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, NorwichNR4 7UH, UK
| | - Tyler C. Detomasi
- Department of Chemistry, University of California, Berkeley, CA94720
| | - Richard I. Sayler
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA94720
| | - William C. Thomas
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA94720
| | - Nicholas J. Talbot
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, NorwichNR4 7UH, UK
| | - Michael A. Marletta
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA94720
- Department of Chemistry, University of California, Berkeley, CA94720
- Department of Molecular and Cell Biology, University of California, Berkeley, CA94720
| |
Collapse
|
5
|
Hagemann MM, Hedegård ED. Molecular Mechanism of Substrate Oxidation in Lytic Polysaccharide Monooxygenases: Insight from Theoretical Investigations. Chemistry 2023; 29:e202202379. [PMID: 36207279 PMCID: PMC10107554 DOI: 10.1002/chem.202202379] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Indexed: 12/12/2022]
Abstract
Lytic polysaccharide monooxygenases (LPMOs) are copper enzymes that today comprise a large enzyme superfamily, grouped into the distinct members AA9-AA17 (with AA12 exempted). The LPMOs have the potential to facilitate the upcycling of biomass waste products by boosting the breakdown of cellulose and other recalcitrant polysaccharides. The cellulose biopolymer is the main component of biomass waste and thus comprises a large, unexploited resource. The LPMOs work through a catalytic, oxidative reaction whose mechanism is still controversial. For instance, the nature of the intermediate performing the oxidative reaction is an open question, and the same holds for the employed co-substrate. Here we review theoretical investigations addressing these questions. The applied theoretical methods are usually based on quantum mechanics (QM), often combined with molecular mechanics (QM/MM). We discuss advantages and disadvantages of the employed theoretical methods and comment on the interplay between theoretical and experimental results.
Collapse
Affiliation(s)
- Marlisa M. Hagemann
- Department of PhysicsChemistry and PharmacyUniversity of Southern DenmarkCampusvej 555230OdenseDenmark
| | - Erik D. Hedegård
- Department of PhysicsChemistry and PharmacyUniversity of Southern DenmarkCampusvej 555230OdenseDenmark
| |
Collapse
|
6
|
Zhang H, Zhou H, Zhao Y, Li T, Yin H. Comparative studies of two AA10 family lytic polysaccharide monooxygenases from Bacillus thuringiensis. PeerJ 2023; 11:e14670. [PMID: 36684673 PMCID: PMC9851047 DOI: 10.7717/peerj.14670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 12/09/2022] [Indexed: 01/19/2023] Open
Abstract
Bacillus thuringiensis, known to be one of the most important biocontrol microorganisms, contains three AA10 family lytic polysaccharide monooxygenases (LPMOs) in its genome. In previous reports, two of them, BtLPMO10A and BtLPMO10B, have been preliminarily characterized. However, some important biochemical features and substrate preference, as well as their potential applications in chitin degradation, still deserve further investigation. Results from present study showed that both BtLPMO10A and BtLPMO10B exhibit similar catalytic domains as well as highly conserved substrate-binding planes. However, unlike BtLPMO10A, which has comparable binding ability to both crystalline and amorphous form of chitins, BtLPMO10B exhibited much stronger binding ability to colloidal chitin, which mainly attribute to its carbohydrate-binding module-5 (CBM5). Interestingly, the relative high binding ability of BtLPMO10B to colloidal chitin does not lead to high catalytic activity of the enzyme. In contrast, the enzyme exhibited higher activity on β-chitin. Further experiments showed that the binding of BtLPMO10B to colloidal chitin was mainly non-productive, indicating a complicated role for CBM5 in LPMO activity. Furthermore, synergistic experiments demonstrated that both LPMOs boosted the activity of the chitinase, and the higher efficiency of BtLPMO10A can be overridden by BtLPMO10B.
Collapse
Affiliation(s)
- Huiyan Zhang
- Biotechnology Department, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Haichuan Zhou
- Biotechnology Department, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Yong Zhao
- Biotechnology Department, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Tang Li
- Biotechnology Department, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Heng Yin
- Biotechnology Department, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| |
Collapse
|
7
|
Ngo ST, Phan HN, Luu CX, Le CN, Ho GT, Ngo NTC, Le LQ, Mai BK, Phung HTT, Nguyen HD, Vu KB, Vu VV. Distal Hydrophobic Loop Modulates the Copper Active Site and Reaction of AA13 Polysaccharide Monooxygenases. J Phys Chem B 2022; 126:7567-7578. [PMID: 36137238 DOI: 10.1021/acs.jpcb.2c04215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Polysaccharide monooxygenases (PMOs) use a type-2 copper center to activate O2 for the selective hydroxylation of one of the two C-H bonds of glycosidic linkages. Our electron paramagnetic resonance (EPR) analysis and molecular dynamics (MD) simulations suggest the unprecedented dynamic roles of the loop containing the residue G89 (G89 loop) on the active site structure and reaction cycle of starch-active PMOs (AA13 PMOs). In the Cu(II) state, the G89 loop could switch between an "open" and "closed" conformation, which is associated with the binding and dissociation of an aqueous ligand in the distal site, respectively. The conformation of the G89 loop influences the positioning of the copper center on the preferred substrate of AA13 PMOs. The dissociation of the distal ligand results in the bending of the T-shaped core of the Cu(II) active site, which could help facilitate its reduction to the active Cu(I) state. In the Cu(I) state, the G89 loop is in the "closed" conformation with a confined copper center, which could allow for efficient O2 binding. In addition, the G89 loop remains in the "closed" conformation in the Cu(II)-superoxo intermediate, which could prevent off-pathway superoxide release via exchange with the distal aqueous ligand. Finally, at the end of the reaction cycle, aqueous ligand binding to the distal site could switch the G89 loop to the "open" conformation and facilitate product release.
Collapse
Affiliation(s)
- Son Tung Ngo
- Laboratory of Theoretical and Computational Biophysics, Advanced Institute of Materials Science, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam.,Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam
| | - Han N Phan
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh Street, District 4, Ho Chi Minh City 700000, Vietnam
| | - Cuong X Luu
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh Street, District 4, Ho Chi Minh City 700000, Vietnam
| | - Chinh N Le
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh Street, District 4, Ho Chi Minh City 700000, Vietnam
| | - Giap T Ho
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh Street, District 4, Ho Chi Minh City 700000, Vietnam
| | - Nhung T C Ngo
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh Street, District 4, Ho Chi Minh City 700000, Vietnam
| | - Loan Q Le
- Institute of Tropical Biology, Vietnam Academy of Science and Technology, 9/621 Hanoi Highway, Thu Duc District, Ho Chi Minh City 700000, Vietnam
| | - Binh Khanh Mai
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, Stockholm SE-106 91, Sweden
| | - Huong T T Phung
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh Street, District 4, Ho Chi Minh City 700000, Vietnam
| | - Hoang-Dung Nguyen
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh Street, District 4, Ho Chi Minh City 700000, Vietnam.,Institute of Tropical Biology, Vietnam Academy of Science and Technology, 9/621 Hanoi Highway, Thu Duc District, Ho Chi Minh City 700000, Vietnam
| | - Khanh B Vu
- Department of Chemical Engineering, School of Biotechnology, International University, Quarter 6, Linh Trung Ward, Thu Duc District, Ho Chi Minh City 700000, Vietnam.,Vietnam National University, Quarter 6, Linh Trung Ward, Thu Duc District, Ho Chi Minh City 700000, Vietnam
| | - Van V Vu
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh Street, District 4, Ho Chi Minh City 700000, Vietnam
| |
Collapse
|
8
|
Skåne A, Edvardsen PK, Cordara G, Loose JSM, Leitl KD, Krengel U, Sørum H, Askarian F, Vaaje-Kolstad G. Chitinolytic enzymes contribute to the pathogenicity of Aliivibrio salmonicida LFI1238 in the invasive phase of cold-water vibriosis. BMC Microbiol 2022; 22:194. [PMID: 35941540 PMCID: PMC9361615 DOI: 10.1186/s12866-022-02590-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 06/27/2022] [Indexed: 11/26/2022] Open
Abstract
Background Aliivibrio salmonicida is the causative agent of cold-water vibriosis in salmonids (Oncorhynchus mykiss and Salmo salar L.) and gadidae (Gadus morhua L.). Virulence-associated factors that are essential for the full spectrum of A. salmonicida pathogenicity are largely unknown. Chitin-active lytic polysaccharide monooxygenases (LPMOs) have been indicated to play roles in both chitin degradation and virulence in a variety of pathogenic bacteria but are largely unexplored in this context. Results In the present study we investigated the role of LPMOs in the pathogenicity of A. salmonicida LFI238 in Atlantic salmon (Salmo salar L.). In vivo challenge experiments using isogenic deletion mutants of the two LPMOs encoding genes AsLPMO10A and AsLPMO10B, showed that both LPMOs, and in particular AsLPMO10B, were important in the invasive phase of cold-water vibriosis. Crystallographic analysis of the AsLPMO10B AA10 LPMO domain (to 1.4 Å resolution) revealed high structural similarity to viral fusolin, an LPMO known to enhance the virulence of insecticidal agents. Finally, exposure to Atlantic salmon serum resulted in substantial proteome re-organization of the A. salmonicida LPMO deletion variants compared to the wild type strain, indicating the struggle of the bacterium to adapt to the host immune components in the absence of the LPMOs. Conclusion The present study consolidates the role of LPMOs in virulence and demonstrates that such enzymes may have more than one function.
Supplementary Information The online version contains supplementary material available at 10.1186/s12866-022-02590-2.
Collapse
Affiliation(s)
- Anna Skåne
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Per Kristian Edvardsen
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Gabriele Cordara
- Department of Chemistry, University of Oslo, Blindern, P.O. Box 1033, NO-0315, Oslo, Norway
| | - Jennifer Sarah Maria Loose
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Kira Daryl Leitl
- Department of Chemistry, University of Oslo, Blindern, P.O. Box 1033, NO-0315, Oslo, Norway
| | - Ute Krengel
- Department of Chemistry, University of Oslo, Blindern, P.O. Box 1033, NO-0315, Oslo, Norway
| | - Henning Sørum
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), Oslo, Norway
| | - Fatemeh Askarian
- Division of Host-Microbe Systems & Therapeutics, Department of Pediatrics, School of Medicine, UC San Diego, La Jolla, San Diego, CA, USA.
| | - Gustav Vaaje-Kolstad
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), Ås, Norway.
| |
Collapse
|
9
|
Dade CM, Douzi B, Cambillau C, Ball G, Voulhoux R, Forest KT. The crystal structure of CbpD clarifies substrate-specificity motifs in chitin-active lytic polysaccharide monooxygenases. Acta Crystallogr D Struct Biol 2022; 78:1064-1078. [PMID: 35916229 PMCID: PMC9344471 DOI: 10.1107/s2059798322007033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 07/08/2022] [Indexed: 11/23/2022] Open
Abstract
Pseudomonas aeruginosa secretes diverse proteins via its type 2 secretion system, including a 39 kDa chitin-binding protein, CbpD. CbpD has recently been shown to be a lytic polysaccharide monooxygenase active on chitin and to contribute substantially to virulence. To date, no structure of this virulence factor has been reported. Its first two domains are homologous to those found in the crystal structure of Vibrio cholerae GbpA, while the third domain is homologous to the NMR structure of the CBM73 domain of Cellvibrio japonicus CjLPMO10A. Here, the 3.0 Å resolution crystal structure of CbpD solved by molecular replacement is reported, which required ab initio models of each CbpD domain generated by the artificial intelligence deep-learning structure-prediction algorithm RoseTTAFold. The structure of CbpD confirms some previously reported substrate-specificity motifs among LPMOAA10s, while challenging the predictive power of others. Additionally, the structure of CbpD shows that post-translational modifications occur on the chitin-binding surface. Moreover, the structure raises interesting possibilities about how type 2 secretion-system substrates may interact with the secretion machinery and demonstrates the utility of new artificial intelligence protein structure-prediction algorithms in making challenging structural targets tractable.
Collapse
Affiliation(s)
- Christopher M. Dade
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Badreddine Douzi
- Aix-Marseille University, CNRS, IMM, LCB, Marseille, France
- Aix-Marseille University, CNRS, AFMB, Marseille, France
| | | | - Genevieve Ball
- Aix-Marseille University, CNRS, IMM, LCB, Marseille, France
| | - Romé Voulhoux
- Aix-Marseille University, CNRS, IMM, LCB, Marseille, France
| | - Katrina T. Forest
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
10
|
Qu M, Guo X, Tian S, Yang Q, Kim M, Mun S, Noh MY, Kramer KJ, Muthukrishnan S, Arakane Y. AA15 lytic polysaccharide monooxygenase is required for efficient chitinous cuticle turnover during insect molting. Commun Biol 2022; 5:518. [PMID: 35641660 PMCID: PMC9156745 DOI: 10.1038/s42003-022-03469-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 05/10/2022] [Indexed: 11/09/2022] Open
Abstract
Microbial lytic polysaccharide monooxygenases (LPMOs) catalyze the oxidative cleavage of crystalline polysaccharides including chitin and cellulose. The discovery of a large assortment of LPMO-like proteins widely distributed in insect genomes suggests that they could be involved in assisting chitin degradation in the exoskeleton, tracheae and peritrophic matrix during development. However, the physiological functions of insect LPMO-like proteins are still undetermined. To investigate the functions of insect LPMO15 subgroup I-like proteins (LPMO15-1s), two evolutionarily distant species, Tribolium castaneum and Locusta migratoria, were chosen. Depletion by RNAi of T. castaneum TcLPMO15-1 caused molting arrest at all developmental stages, whereas depletion of the L. migratoria LmLPMO15-1, prevented only adult eclosion. In both species, LPMO15-1-deficient animals were unable to shed their exuviae and died. TEM analysis revealed failure of turnover of the chitinous cuticle, which is critical for completion of molting. Purified recombinant LPMO15-1-like protein from Ostrinia furnacalis (rOfLPMO15-1) exhibited oxidative cleavage activity and substrate preference for chitin. These results reveal the physiological importance of catalytically active LPMO15-1-like proteins from distant insect species and provide new insight into the enzymatic mechanism of cuticular chitin turnover during molting.
Collapse
Affiliation(s)
- Mingbo Qu
- School of Bioengineering, Dalian University of Technology, 116024, Dalian, China
| | - Xiaoxi Guo
- School of Bioengineering, Dalian University of Technology, 116024, Dalian, China
| | - Shuang Tian
- School of Bioengineering, Dalian University of Technology, 116024, Dalian, China
| | - Qing Yang
- School of Bioengineering, Dalian University of Technology, 116024, Dalian, China.
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, 100193, Beijing, China.
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, 518120, Shenzhen, China.
| | - Myeongjin Kim
- Department of Applied Biology, Chonnam National University, Gwangju, 61186, South Korea
| | - Seulgi Mun
- Department of Applied Biology, Chonnam National University, Gwangju, 61186, South Korea
| | - Mi Young Noh
- Department of Forest Resources, AgriBio Institute of Climate Change Management, Chonnam National University, Gwangju, 61186, South Korea
| | - Karl J Kramer
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, 66506, USA
| | - Subbaratnam Muthukrishnan
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, 66506, USA
| | - Yasuyuki Arakane
- Department of Applied Biology, Chonnam National University, Gwangju, 61186, South Korea.
| |
Collapse
|
11
|
Abstract
Peptidoglycan is a major constituent of the bacterial cell wall and an important determinant for providing protection to cells. In addition to peptidoglycan, many bacteria synthesize other glycans that become part of the cell wall. Streptomycetes grow apically, where they synthesize a glycan that is exposed at the outer surface, but how it gets there is unknown. Here, we show that deposition of the apical glycan at the cell surface of Streptomyces coelicolor depends on two key enzymes, the glucanase CslZ and the lytic polysaccharide monooxygenase LpmP. Activity of these enzymes allows localized remodeling and degradation of the peptidoglycan, and we propose that this facilitates passage of the glycan. The absence of both enzymes not only prevents morphological development but also sensitizes strains to lysozyme. Given that lytic polysaccharide monooxygenases are commonly found in microbes, this newly identified biological role in cell wall remodeling may be widespread.
Collapse
|
12
|
Wardman JF, Bains RK, Rahfeld P, Withers SG. Carbohydrate-active enzymes (CAZymes) in the gut microbiome. Nat Rev Microbiol 2022; 20:542-556. [PMID: 35347288 DOI: 10.1038/s41579-022-00712-1] [Citation(s) in RCA: 259] [Impact Index Per Article: 86.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/21/2022] [Indexed: 12/13/2022]
Abstract
The 1013-1014 microorganisms present in the human gut (collectively known as the human gut microbiota) dedicate substantial percentages of their genomes to the degradation and uptake of carbohydrates, indicating the importance of this class of molecules. Carbohydrates function not only as a carbon source for these bacteria but also as a means of attachment to the host, and a barrier to infection of the host. In this Review, we focus on the diversity of carbohydrate-active enzymes (CAZymes), how gut microorganisms use them for carbohydrate degradation, the different chemical mechanisms of these CAZymes and the roles that these microorganisms and their CAZymes have in human health and disease. We also highlight examples of how enzymes from this treasure trove have been used in manipulation of the microbiota for improved health and treatment of disease, in remodelling the glycans on biopharmaceuticals and in the potential production of universal O-type donor blood.
Collapse
Affiliation(s)
- Jacob F Wardman
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada.,Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | - Rajneesh K Bains
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Peter Rahfeld
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Stephen G Withers
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada. .,Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada. .,Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
13
|
Calderaro F, Bevers LE, van den Berg MA. Oxidative Power: Tools for Assessing LPMO Activity on Cellulose. Biomolecules 2021; 11:biom11081098. [PMID: 34439765 PMCID: PMC8391687 DOI: 10.3390/biom11081098] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/19/2021] [Accepted: 07/22/2021] [Indexed: 01/22/2023] Open
Abstract
Lytic polysaccharide monooxygenases (LPMOs) have sparked a lot of research regarding their fascinating mode-of-action. Particularly, their boosting effect on top of the well-known cellulolytic enzymes in lignocellulosic hydrolysis makes them industrially relevant targets. As more characteristics of LPMO and its key role have been elucidated, the need for fast and reliable methods to assess its activity have become clear. Several aspects such as its co-substrates, electron donors, inhibiting factors, and the inhomogeneity of lignocellulose had to be considered during experimental design and data interpretation, as they can impact and often hamper outcomes. This review provides an overview of the currently available methods to measure LPMO activity, including their potential and limitations, and it is illustrated with practical examples.
Collapse
Affiliation(s)
- Federica Calderaro
- DSM Biotechnology Center, 2613 AX Delft, The Netherlands; (L.E.B.); (M.A.v.d.B.)
- Molecular Enzymolog y Group, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
- Correspondence: ; Tel.: +31-6-36028569
| | - Loes E. Bevers
- DSM Biotechnology Center, 2613 AX Delft, The Netherlands; (L.E.B.); (M.A.v.d.B.)
| | | |
Collapse
|
14
|
Jensen S, Frank JA, Arntzen MØ, Duperron S, Vaaje-Kolstad G, Hovland M. Endozoicomonadaceae symbiont in gills of Acesta clam encodes genes for essential nutrients and polysaccharide degradation. FEMS Microbiol Ecol 2021; 97:6275716. [PMID: 33988698 PMCID: PMC8755941 DOI: 10.1093/femsec/fiab070] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 05/12/2021] [Indexed: 01/29/2023] Open
Abstract
Gammaproteobacteria from the family Endozoicomonadaceae have emerged as widespread associates of dense marine animal communities. Their abundance in coral reefs involves symbiotic relationships and possibly host nutrition. We explored functions encoded in the genome of an uncultured Endozoicomonadaceae 'Candidatus Acestibacter aggregatus' that lives inside gill cells of large Acesta excavata clams in deep-water coral reefs off mid-Norway. The dominance and deep branching lineage of this symbiont was confirmed using 16S rRNA gene sequencing and phylogenomic analysis from shotgun sequencing data. The 4.5 Mb genome binned in this study has a low GC content of 35% and is enriched in transposon and chaperone gene annotations indicating ongoing adaptation. Genes encoding functions potentially involved with the symbiosis include ankyrins, repeat in toxins, secretion and nutritional systems. Complete pathways were identified for the synthesis of eleven amino acids and six B-vitamins. A minimal chitinolytic machinery was indicated from a glycosyl hydrolase GH18 and a lytic polysaccharide monooxygenase LPMO10. Expression of the latter was confirmed using proteomics. Signal peptides for secretion were identified for six polysaccharide degrading enzymes, ten proteases and three lipases. Our results suggest a nutritional symbiosis fuelled by enzymatic products from extracellular degradation processes.
Collapse
Affiliation(s)
- Sigmund Jensen
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, PO Box 5003, 1432 Ås, Norway
| | - Jeremy A Frank
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, PO Box 5003, 1432 Ås, Norway
| | - Magnus Ø Arntzen
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, PO Box 5003, 1432 Ås, Norway
| | - Sébastien Duperron
- UMR 7245 Muséum National d'Histoire Naturelle/CNRS Molécules de Communication et Adaptation des Micro-organismes and Institut Universitaire de France, CP39, 12 rue Buffon, F-75231 Paris Cedex 05, France
| | - Gustav Vaaje-Kolstad
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, PO Box 5003, 1432 Ås, Norway
| | - Martin Hovland
- Department of Biology, University of Bergen, PO Box 7803, 5020 Bergen, Norway.,Centre for Geobiology, University of Bergen, PO Box 7803, 5020 Bergen, Norway
| |
Collapse
|
15
|
Schröder GC, O’Dell WB, Swartz PD, Meilleur F. Preliminary results of neutron and X-ray diffraction data collection on a lytic polysaccharide monooxygenase under reduced and acidic conditions. Acta Crystallogr F Struct Biol Commun 2021; 77:128-133. [PMID: 33830078 PMCID: PMC8034432 DOI: 10.1107/s2053230x21002399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 03/02/2021] [Indexed: 11/10/2022] Open
Abstract
Lytic polysaccharide monooxygenases (LPMOs) are copper-center enzymes that are involved in the oxidative cleavage of the glycosidic bond in crystalline cellulose and other polysaccharides. The LPMO reaction is initiated by the addition of a reductant and oxygen to ultimately form an unknown activated copper-oxygen species that is responsible for polysaccharide-substrate H-atom abstraction. Given the sensitivity of metalloproteins to radiation damage, neutron protein crystallography provides a nondestructive technique for structural characterization while also informing on the positions of H atoms. Neutron cryo-crystallography permits the trapping of catalytic intermediates, thereby providing insight into the protonation states and chemical nature of otherwise short-lived species in the reaction mechanism. To characterize the reaction-mechanism intermediates of LPMO9D from Neurospora crassa, a cryo-neutron diffraction data set was collected from an ascorbate-reduced crystal. A second neutron diffraction data set was collected at room temperature from an LPMO9D crystal exposed to low-pH conditions to probe the protonation states of ionizable groups involved in catalysis under acidic conditions.
Collapse
Affiliation(s)
- Gabriela C. Schröder
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC 27695, USA
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - William B. O’Dell
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC 27695, USA
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Paul D. Swartz
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC 27695, USA
| | - Flora Meilleur
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC 27695, USA
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| |
Collapse
|
16
|
Askarian F, Uchiyama S, Masson H, Sørensen HV, Golten O, Bunæs AC, Mekasha S, Røhr ÅK, Kommedal E, Ludviksen JA, Arntzen MØ, Schmidt B, Zurich RH, van Sorge NM, Eijsink VGH, Krengel U, Mollnes TE, Lewis NE, Nizet V, Vaaje-Kolstad G. The lytic polysaccharide monooxygenase CbpD promotes Pseudomonas aeruginosa virulence in systemic infection. Nat Commun 2021; 12:1230. [PMID: 33623002 PMCID: PMC7902821 DOI: 10.1038/s41467-021-21473-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 01/29/2021] [Indexed: 12/20/2022] Open
Abstract
The recently discovered lytic polysaccharide monooxygenases (LPMOs), which cleave polysaccharides by oxidation, have been associated with bacterial virulence, but supporting functional data is scarce. Here we show that CbpD, the LPMO of Pseudomonas aeruginosa, is a chitin-oxidizing virulence factor that promotes survival of the bacterium in human blood. The catalytic activity of CbpD was promoted by azurin and pyocyanin, two redox-active virulence factors also secreted by P. aeruginosa. Homology modeling, molecular dynamics simulations, and small angle X-ray scattering indicated that CbpD is a monomeric tri-modular enzyme with flexible linkers. Deletion of cbpD rendered P. aeruginosa unable to establish a lethal systemic infection, associated with enhanced bacterial clearance in vivo. CbpD-dependent survival of the wild-type bacterium was not attributable to dampening of pro-inflammatory responses by CbpD ex vivo or in vivo. Rather, we found that CbpD attenuates the terminal complement cascade in human serum. Studies with an active site mutant of CbpD indicated that catalytic activity is crucial for virulence function. Finally, profiling of the bacterial and splenic proteomes showed that the lack of this single enzyme resulted in substantial re-organization of the bacterial and host proteomes. LPMOs similar to CbpD occur in other pathogens and may have similar immune evasive functions.
Collapse
Affiliation(s)
- Fatemeh Askarian
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), Ås, Norway.
| | - Satoshi Uchiyama
- Division of Host-Microbe Systems & Therapeutics, Department of Pediatrics, UC San Diego, La Jolla, CA, USA
| | - Helen Masson
- Department of Pediatrics, University of California, San Diego, School of Medicine, La Jolla, CA, USA
| | | | - Ole Golten
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Anne Cathrine Bunæs
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Sophanit Mekasha
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Åsmund Kjendseth Røhr
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Eirik Kommedal
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | | | - Magnus Ø Arntzen
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Benjamin Schmidt
- Division of Host-Microbe Systems & Therapeutics, Department of Pediatrics, UC San Diego, La Jolla, CA, USA
| | - Raymond H Zurich
- Division of Host-Microbe Systems & Therapeutics, Department of Pediatrics, UC San Diego, La Jolla, CA, USA
| | - Nina M van Sorge
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Netherlands Reference Laboratory for Bacterial Meningitis, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Vincent G H Eijsink
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Ute Krengel
- Department of Chemistry, University of Oslo, Oslo, Norway
| | - Tom Eirik Mollnes
- Research Laboratory, Nordland Hospital, Bodø, Norway
- K.G. Jebsen TREC, Faculty of Health Sciences, UiT- The Arctic University of Norway, Tromsø, Norway
- Department of Immunology, Oslo University Hospital, and K.G. Jebsen IRC, University of Oslo, Oslo, Norway
- Center of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim, Norway
| | - Nathan E Lewis
- Division of Host-Microbe Systems & Therapeutics, Department of Pediatrics, UC San Diego, La Jolla, CA, USA
- Department of Pediatrics, University of California, San Diego, School of Medicine, La Jolla, CA, USA
- Novo Nordisk Foundation Center for Biosustainability at UC San Diego, University of California, San Diego, School of Medicine, La Jolla, CA, USA
| | - Victor Nizet
- Division of Host-Microbe Systems & Therapeutics, Department of Pediatrics, UC San Diego, La Jolla, CA, USA.
- Skaggs School of Pharmacy and Pharmaceutical Sciences, UC San Diego, La Jolla, CA, USA.
| | - Gustav Vaaje-Kolstad
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), Ås, Norway.
| |
Collapse
|
17
|
Jagadeeswaran G, Veale L, Mort AJ. Do Lytic Polysaccharide Monooxygenases Aid in Plant Pathogenesis and Herbivory? TRENDS IN PLANT SCIENCE 2021; 26:142-155. [PMID: 33097402 DOI: 10.1016/j.tplants.2020.09.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 09/07/2020] [Accepted: 09/25/2020] [Indexed: 06/11/2023]
Abstract
Lytic polysaccharide monooxygenases (LPMOs), copper-dependent enzymes mainly found in fungi, bacteria, and viruses, are responsible for enabling plant infection and degradation processes. Since their discovery 10 years ago, significant progress has been made in understanding the major role these enzymes play in biomass conversion. The recent discovery of additional LPMO families in fungi and oomycetes (AA16) as well as insects (AA15) strongly suggests that LPMOs might also be involved in biological processes such as overcoming plant defenses. In this review, we aim to give a comprehensive overview of the potential role of different LPMO families from the perspective of plant defense and their multiple implications in devising new strategies for achieving crop protection from plant pathogens and insect pests.
Collapse
Affiliation(s)
- Guru Jagadeeswaran
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Lawrie Veale
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Andrew J Mort
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK, 74078, USA.
| |
Collapse
|
18
|
Bissaro B, Kommedal E, Røhr ÅK, Eijsink VGH. Controlled depolymerization of cellulose by light-driven lytic polysaccharide oxygenases. Nat Commun 2020; 11:890. [PMID: 32060276 PMCID: PMC7021734 DOI: 10.1038/s41467-020-14744-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 01/28/2020] [Indexed: 11/09/2022] Open
Abstract
Lytic polysaccharide (mono)oxygenases (LPMOs) perform oxidative cleavage of polysaccharides, and are key enzymes in biomass processing and the global carbon cycle. It has been shown that LPMO reactions may be driven by light, using photosynthetic pigments or photocatalysts, but the mechanism behind this highly attractive catalytic route remains unknown. Here, prompted by the discovery that LPMOs catalyze a peroxygenase reaction more efficiently than a monooxygenase reaction, we revisit these light-driven systems, using an LPMO from Streptomyces coelicolor (ScAA10C) as model cellulolytic enzyme. By using coupled enzymatic assays, we show that H2O2 is produced and necessary for efficient light-driven activity of ScAA10C. Importantly, this activity is achieved without addition of reducing agents and proportional to the light intensity. Overall, the results highlight the importance of controlling fluxes of reactive oxygen species in LPMO reactions and demonstrate the feasibility of light-driven, tunable enzymatic peroxygenation to degrade recalcitrant polysaccharides.
Collapse
Affiliation(s)
- Bastien Bissaro
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), 1432 Ås, Oslo, Norway.,INRAE, Aix Marseille University, UMR1163 Biodiversité et Biotechnologie Fongiques, 13009, Marseille, France
| | - Eirik Kommedal
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), 1432 Ås, Oslo, Norway
| | - Åsmund K Røhr
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), 1432 Ås, Oslo, Norway
| | - Vincent G H Eijsink
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), 1432 Ås, Oslo, Norway.
| |
Collapse
|
19
|
Munzone A, El Kerdi B, Fanuel M, Rogniaux H, Ropartz D, Réglier M, Royant A, Simaan AJ, Decroos C. Characterization of a bacterial copper‐dependent lytic polysaccharide monooxygenase with an unusual second coordination sphere. FEBS J 2020; 287:3298-3314. [DOI: 10.1111/febs.15203] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 12/05/2019] [Accepted: 01/03/2020] [Indexed: 12/19/2022]
Affiliation(s)
- Alessia Munzone
- Aix Marseille Univ CNRS Centrale Marseille iSm2 Marseille France
| | - Bilal El Kerdi
- Aix Marseille Univ CNRS Centrale Marseille iSm2 Marseille France
| | - Mathieu Fanuel
- INRA UR1268 Biopolymers Interactions Assemblies Nantes France
| | - Hélène Rogniaux
- INRA UR1268 Biopolymers Interactions Assemblies Nantes France
| | - David Ropartz
- INRA UR1268 Biopolymers Interactions Assemblies Nantes France
| | - Marius Réglier
- Aix Marseille Univ CNRS Centrale Marseille iSm2 Marseille France
| | - Antoine Royant
- Univ. Grenoble Alpes CNRS CEA Institut de Biologie Structurale (IBS) Grenoble France
- European Synchrotron Radiation Facility Grenoble France
| | - A. Jalila Simaan
- Aix Marseille Univ CNRS Centrale Marseille iSm2 Marseille France
| | | |
Collapse
|
20
|
Abstract
Lytic polysaccharide monooxygenases (LPMOs) are a recently discovered class of monocopper enzymes broadly distributed across the tree of life. Recent reports indicate that LPMOs can use H2O2 as an oxidant and thus carry out a novel type of peroxygenase reaction involving unprecedented copper chemistry. Here, we present a combined computational and experimental analysis of the H2O2-mediated reaction mechanism. In silico studies, based on a model of the enzyme in complex with a crystalline substrate, suggest that a network of hydrogen bonds, involving both the enzyme and the substrate, brings H2O2 into a strained reactive conformation and guides a derived hydroxyl radical toward formation of a copper-oxyl intermediate. The initial cleavage of H2O2 and subsequent hydrogen atom abstraction from chitin by the copper-oxyl intermediate are the main energy barriers. Stopped-flow fluorimetry experiments demonstrated that the priming reduction of LPMO-Cu(II) to LPMO-Cu(I) is a fast process compared to the reoxidation reactions. Using conditions resulting in single oxidative events, we found that reoxidation of LPMO-Cu(I) is 2,000-fold faster with H2O2 than with O2, the latter being several orders of magnitude slower than rates reported for other monooxygenases. The presence of substrate accelerated reoxidation by H2O2, whereas reoxidation by O2 became slower, supporting the peroxygenase paradigm. These insights into the peroxygenase nature of LPMOs will aid in the development and application of enzymatic and synthetic copper catalysts and contribute to a further understanding of the roles of LPMOs in nature, varying from biomass conversion to chitinolytic pathogenesis-defense mechanisms.
Collapse
|
21
|
Srivastava PA, Hegg EL, Fox BG, Yennamalli RM. PreDSLpmo: A neural network-based prediction tool for functional annotation of lytic polysaccharide monooxygenases. J Biotechnol 2020; 308:148-155. [DOI: 10.1016/j.jbiotec.2019.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 11/25/2019] [Accepted: 12/08/2019] [Indexed: 11/30/2022]
|
22
|
Larsbrink J, McKee LS. Bacteroidetes bacteria in the soil: Glycan acquisition, enzyme secretion, and gliding motility. ADVANCES IN APPLIED MICROBIOLOGY 2020; 110:63-98. [PMID: 32386606 DOI: 10.1016/bs.aambs.2019.11.001] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The secretion of extracellular enzymes by soil microbes is rate-limiting in the recycling of biomass. Fungi and bacteria compete and collaborate for nutrients in the soil, with wide ranging ecological impacts. Within soil microbiota, the Bacteroidetes tend to be a dominant phylum, just like in human and animal intestines. The Bacteroidetes thrive because of their ability to secrete diverse arrays of carbohydrate-active enzymes (CAZymes) that target the highly varied glycans in the soil. Bacteroidetes use an energy-saving system of genomic organization, whereby most of their CAZymes are grouped into Polysaccharide Utilization Loci (PULs). These loci enable high level production of specific CAZymes only when their substrate glycans are abundant in the local environment. This gives the Bacteroidetes a clear advantage over other species in the competitive soil environment, further enhanced by the phylum-specific Type IX Secretion System (T9SS). The T9SS is highly effective at secreting CAZymes and/or tethering them to the cell surface, and is tightly coupled to the ability to rapidly glide over solid surfaces, a connection that promotes an active hunt for nutrition. Although the soil Bacteroidetes are less well studied than human gut symbionts, research is uncovering important biochemical and physiological phenomena. In this review, we summarize the state of the art on research into the CAZymes secreted by soil Bacteroidetes in the contexts of microbial soil ecology and the discovery of novel CAZymes for use in industrial biotechnology. We hope that this review will stimulate further investigations into the somewhat neglected enzymology of non-gut Bacteroidetes.
Collapse
Affiliation(s)
- Johan Larsbrink
- Wallenberg Wood Science Center, Gothenburg and Stockholm, Sweden; Division of Industrial Biotechnology, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Lauren Sara McKee
- Wallenberg Wood Science Center, Gothenburg and Stockholm, Sweden; Division of Glycoscience, Department of Chemistry, KTH Royal Institute of Technology, AlbaNova University Centre, Stockholm, Sweden.
| |
Collapse
|
23
|
Forsberg Z, Sørlie M, Petrović D, Courtade G, Aachmann FL, Vaaje-Kolstad G, Bissaro B, Røhr ÅK, Eijsink VGH. Polysaccharide degradation by lytic polysaccharide monooxygenases. Curr Opin Struct Biol 2019; 59:54-64. [DOI: 10.1016/j.sbi.2019.02.015] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 02/22/2019] [Accepted: 02/28/2019] [Indexed: 12/22/2022]
|
24
|
López-Mondéjar R, Algora C, Baldrian P. Lignocellulolytic systems of soil bacteria: A vast and diverse toolbox for biotechnological conversion processes. Biotechnol Adv 2019; 37:107374. [DOI: 10.1016/j.biotechadv.2019.03.013] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 03/06/2019] [Accepted: 03/21/2019] [Indexed: 12/12/2022]
|
25
|
Jensen MS, Klinkenberg G, Bissaro B, Chylenski P, Vaaje-Kolstad G, Kvitvang HF, Nærdal GK, Sletta H, Forsberg Z, Eijsink VGH. Engineering chitinolytic activity into a cellulose-active lytic polysaccharide monooxygenase provides insights into substrate specificity. J Biol Chem 2019; 294:19349-19364. [PMID: 31656228 DOI: 10.1074/jbc.ra119.010056] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 10/24/2019] [Indexed: 12/30/2022] Open
Abstract
Lytic polysaccharide monooxygenases (LPMOs) catalyze oxidative cleavage of recalcitrant polysaccharides such as cellulose and chitin and play an important role in the enzymatic degradation of biomass. Although it is clear that these monocopper enzymes have extended substrate-binding surfaces for interacting with their fibrous substrates, the structural determinants of LPMO substrate specificity remain largely unknown. To gain additional insight into substrate specificity in LPMOs, here we generated a mutant library of a cellulose-active family AA10 LPMO from Streptomyces coelicolor A3(2) (ScLPMO10C, also known as CelS2) having multiple substitutions at five positions on the substrate-binding surface that we identified by sequence comparisons. Screening of this library using a newly-developed MS-based high-throughput assay helped identify multiple enzyme variants that contained four substitutions and exhibited significant chitinolytic activity and a concomitant decrease in cellulolytic activity. The chitin-active variants became more rapidly inactivated during catalysis than a natural chitin-active AA10 LPMO, an observation likely indicative of suboptimal substrate binding leading to autocatalytic oxidative damage of these variants. These results reveal several structural determinants of LPMO substrate specificity and underpin the notion that productive substrate binding by these enzymes is complex, depending on a multitude of amino acids located on the substrate-binding surface.
Collapse
Affiliation(s)
- Marianne Slang Jensen
- Faculty of Chemistry, Biotechnology and Food Science, NMBU-Norwegian University of Life Sciences, NO-1432 Ås, Norway
| | - Geir Klinkenberg
- SINTEF Industry, Department of Biotechnology and Nanomedicine, NO-7465 Trondheim, Norway
| | - Bastien Bissaro
- Faculty of Chemistry, Biotechnology and Food Science, NMBU-Norwegian University of Life Sciences, NO-1432 Ås, Norway
| | - Piotr Chylenski
- Faculty of Chemistry, Biotechnology and Food Science, NMBU-Norwegian University of Life Sciences, NO-1432 Ås, Norway
| | - Gustav Vaaje-Kolstad
- Faculty of Chemistry, Biotechnology and Food Science, NMBU-Norwegian University of Life Sciences, NO-1432 Ås, Norway
| | - Hans Fredrik Kvitvang
- SINTEF Industry, Department of Biotechnology and Nanomedicine, NO-7465 Trondheim, Norway
| | - Guro Kruge Nærdal
- SINTEF Industry, Department of Biotechnology and Nanomedicine, NO-7465 Trondheim, Norway
| | - Håvard Sletta
- SINTEF Industry, Department of Biotechnology and Nanomedicine, NO-7465 Trondheim, Norway
| | - Zarah Forsberg
- Faculty of Chemistry, Biotechnology and Food Science, NMBU-Norwegian University of Life Sciences, NO-1432 Ås, Norway
| | - Vincent G H Eijsink
- Faculty of Chemistry, Biotechnology and Food Science, NMBU-Norwegian University of Life Sciences, NO-1432 Ås, Norway
| |
Collapse
|
26
|
Hangasky JA, Detomasi TC, Marletta MA. Glycosidic Bond Hydroxylation by Polysaccharide Monooxygenases. TRENDS IN CHEMISTRY 2019. [DOI: 10.1016/j.trechm.2019.01.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
27
|
Chylenski P, Bissaro B, Sørlie M, Røhr ÅK, Várnai A, Horn SJ, Eijsink VG. Lytic Polysaccharide Monooxygenases in Enzymatic Processing of Lignocellulosic Biomass. ACS Catal 2019. [DOI: 10.1021/acscatal.9b00246] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Piotr Chylenski
- Faculty of Chemistry, Biotechnology, and Food Science, Norwegian University of Life Sciences (NMBU), P.O. Box 5003, N-1432 Ås, Norway
| | - Bastien Bissaro
- Faculty of Chemistry, Biotechnology, and Food Science, Norwegian University of Life Sciences (NMBU), P.O. Box 5003, N-1432 Ås, Norway
| | - Morten Sørlie
- Faculty of Chemistry, Biotechnology, and Food Science, Norwegian University of Life Sciences (NMBU), P.O. Box 5003, N-1432 Ås, Norway
| | - Åsmund K. Røhr
- Faculty of Chemistry, Biotechnology, and Food Science, Norwegian University of Life Sciences (NMBU), P.O. Box 5003, N-1432 Ås, Norway
| | - Anikó Várnai
- Faculty of Chemistry, Biotechnology, and Food Science, Norwegian University of Life Sciences (NMBU), P.O. Box 5003, N-1432 Ås, Norway
| | - Svein J. Horn
- Faculty of Chemistry, Biotechnology, and Food Science, Norwegian University of Life Sciences (NMBU), P.O. Box 5003, N-1432 Ås, Norway
| | - Vincent G.H. Eijsink
- Faculty of Chemistry, Biotechnology, and Food Science, Norwegian University of Life Sciences (NMBU), P.O. Box 5003, N-1432 Ås, Norway
| |
Collapse
|
28
|
Recent insights into lytic polysaccharide monooxygenases (LPMOs). Biochem Soc Trans 2018; 46:1431-1447. [DOI: 10.1042/bst20170549] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 08/14/2018] [Accepted: 08/28/2018] [Indexed: 12/24/2022]
Abstract
Lytic polysaccharide monooxygenases (LPMOs) are copper enzymes discovered within the last 10 years. By degrading recalcitrant substrates oxidatively, these enzymes are major contributors to the recycling of carbon in nature and are being used in the biorefinery industry. Recently, two new families of LPMOs have been defined and structurally characterized, AA14 and AA15, sharing many of previously found structural features. However, unlike most LPMOs to date, AA14 degrades xylan in the context of complex substrates, while AA15 is particularly interesting because they expand the presence of LPMOs from the predominantly microbial to the animal kingdom. The first two neutron crystallography structures have been determined, which, together with high-resolution room temperature X-ray structures, have putatively identified oxygen species at or near the active site of LPMOs. Many recent computational and experimental studies have also investigated the mechanism of action and substrate-binding mode of LPMOs. Perhaps, the most significant recent advance is the increasing structural and biochemical evidence, suggesting that LPMOs follow different mechanistic pathways with different substrates, co-substrates and reductants, by behaving as monooxygenases or peroxygenases with molecular oxygen or hydrogen peroxide as a co-substrate, respectively.
Collapse
|
29
|
Lacombe-Harvey MÈ, Brzezinski R, Beaulieu C. Chitinolytic functions in actinobacteria: ecology, enzymes, and evolution. Appl Microbiol Biotechnol 2018; 102:7219-7230. [PMID: 29931600 PMCID: PMC6097792 DOI: 10.1007/s00253-018-9149-4] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 05/25/2018] [Accepted: 05/28/2018] [Indexed: 12/20/2022]
Abstract
Actinobacteria, a large group of Gram-positive bacteria, secrete a wide range of extracellular enzymes involved in the degradation of organic compounds and biopolymers including the ubiquitous aminopolysaccharides chitin and chitosan. While chitinolytic enzymes are distributed in all kingdoms of life, actinobacteria are recognized as particularly good decomposers of chitinous material and several members of this taxon carry impressive sets of genes dedicated to chitin and chitosan degradation. Degradation of these polymers in actinobacteria is dependent on endo- and exo-acting hydrolases as well as lytic polysaccharide monooxygenases. Actinobacterial chitinases and chitosanases belong to nine major families of glycosyl hydrolases that share no sequence similarity. In this paper, the distribution of chitinolytic actinobacteria within different ecosystems is examined and their chitinolytic machinery is described and compared to those of other chitinolytic organisms.
Collapse
Affiliation(s)
| | - Ryszard Brzezinski
- Département de biologie, Université de Sherbrooke, Sherbrooke, QC, J1K 2R1, Canada
| | - Carole Beaulieu
- Département de biologie, Université de Sherbrooke, Sherbrooke, QC, J1K 2R1, Canada.
| |
Collapse
|
30
|
|
31
|
Mutahir Z, Mekasha S, Loose JSM, Abbas F, Vaaje-Kolstad G, Eijsink VGH, Forsberg Z. Characterization and synergistic action of a tetra-modular lytic polysaccharide monooxygenase from Bacillus cereus. FEBS Lett 2018; 592:2562-2571. [PMID: 29993123 DOI: 10.1002/1873-3468.13189] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 06/29/2018] [Accepted: 07/04/2018] [Indexed: 12/19/2022]
Abstract
Lytic polysaccharide monooxygenases (LPMOs) contribute to enzymatic conversion of recalcitrant polysaccharides such as chitin and cellulose and may also play a role in bacterial infections. Some LPMOs are multimodular, the implications of which remain only partly understood. We have studied the properties of a tetra-modular LPMO from the food poisoning bacterium Bacillus cereus (named BcLPMO10A). We show that BcLPMO10A, comprising an LPMO domain, two fibronectin-type III (FnIII)-like domains, and a carbohydrate-binding module (CBM5), is a powerful chitin-active LPMO. While the role of the FnIII domains remains unclear, we show that enzyme functionality strongly depends on the CBM5, which, by promoting substrate binding, protects the enzyme from inactivation. BcLPMO10A enhances the activity of chitinases during the degradation of α-chitin.
Collapse
Affiliation(s)
- Zeeshan Mutahir
- Institute of Biochemistry and Biotechnology, University of the Punjab, Lahore, Pakistan
| | - Sophanit Mekasha
- Faculty of Chemistry, Biotechnology, and Food Science, The Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Jennifer S M Loose
- Faculty of Chemistry, Biotechnology, and Food Science, The Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Faiza Abbas
- Institute of Biochemistry and Biotechnology, University of the Punjab, Lahore, Pakistan
| | - Gustav Vaaje-Kolstad
- Faculty of Chemistry, Biotechnology, and Food Science, The Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Vincent G H Eijsink
- Faculty of Chemistry, Biotechnology, and Food Science, The Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Zarah Forsberg
- Faculty of Chemistry, Biotechnology, and Food Science, The Norwegian University of Life Sciences (NMBU), Ås, Norway
| |
Collapse
|
32
|
Hangasky JA, Iavarone AT, Marletta MA. Reactivity of O 2 versus H 2O 2 with polysaccharide monooxygenases. Proc Natl Acad Sci U S A 2018; 115:4915-4920. [PMID: 29686097 PMCID: PMC5949000 DOI: 10.1073/pnas.1801153115] [Citation(s) in RCA: 138] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Enzymatic conversion of polysaccharides into lower-molecular-weight, soluble oligosaccharides is dependent on the action of hydrolytic and oxidative enzymes. Polysaccharide monooxygenases (PMOs) use an oxidative mechanism to break the glycosidic bond of polymeric carbohydrates, thereby disrupting the crystalline packing and creating new chain ends for hydrolases to depolymerize and degrade recalcitrant polysaccharides. PMOs contain a mononuclear Cu(II) center that is directly involved in C-H bond hydroxylation. Molecular oxygen was the accepted cosubstrate utilized by this family of enzymes until a recent report indicated reactivity was dependent on H2O2 Reported here is a detailed analysis of PMO reactivity with H2O2 and O2, in conjunction with high-resolution MS measurements. The cosubstrate utilized by the enzyme is dependent on the assay conditions. PMOs will directly reduce O2 in the coupled hydroxylation of substrate (monooxygenase activity) and will also utilize H2O2 (peroxygenase activity) produced from the uncoupled reduction of O2 Both cosubstrates require Cu reduction to Cu(I), but the reaction with H2O2 leads to nonspecific oxidation of the polysaccharide that is consistent with the generation of a hydroxyl radical-based mechanism in Fenton-like chemistry, while the O2 reaction leads to regioselective substrate oxidation using an enzyme-bound Cu/O2 reactive intermediate. Moreover, H2O2 does not influence the ability of secretome from Neurospora crassa to degrade Avicel, providing evidence that molecular oxygen is a physiologically relevant cosubstrate for PMOs.
Collapse
Affiliation(s)
- John A Hangasky
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA 94720
| | - Anthony T Iavarone
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA 94720
- Department of Chemistry, University of California, Berkeley, CA 94720
| | - Michael A Marletta
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA 94720;
- Department of Chemistry, University of California, Berkeley, CA 94720
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
| |
Collapse
|
33
|
Hangasky JA, Marletta MA. A Random-Sequential Kinetic Mechanism for Polysaccharide Monooxygenases. Biochemistry 2018; 57:3191-3199. [PMID: 29683313 DOI: 10.1021/acs.biochem.8b00129] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Polysaccharide monooxygenases (PMOs) are mononuclear copper enzymes that catalyze the hydroxylation of polysaccharides leading to the scission of the glycosidic bond. The mechanism, in which PMOs utilize molecular oxygen to oxidize the polysaccharide substrate, still remains largely unknown. Here, steady-state kinetics assays were used to probe the mechanism of oxygen-dependent cellohexaose oxidation catalyzed by MtPMO9E. Kinetic analysis indicated that both kcat/ KM(O2) and kcat/ KM(Glc6) were dependent on the concentration of the second substrate. Inhibition studies using carbon monoxide were also carried out. In addition, KD values for Glc6 were determined for the Cu(I) and Cu(II) forms of the enzyme. Taken together, PMOs follow a random-sequential kinetic mechanism to form a ternary ES-O2 complex. The optimal pH for MtPMO9E turnover was determined to be between pH 6.00 and pH 7.00. Furthermore, the kinetic parameters kcat, kcat/ KM(O2), and kcat/ KM(Glc6) demonstrate a decrease in PMO activity at a low pH and provide equivalent kinetic p Ka's of 5.10. This points to the protonation of a general base required for turnover. These results provide a basis for the initial chemical steps in the mechanism of PMOs.
Collapse
Affiliation(s)
- John A Hangasky
- California Institute for Quantitative Biosciences (QB3) , University of California , Berkeley , California 94720 , United States
| | - Michael A Marletta
- California Institute for Quantitative Biosciences (QB3) , University of California , Berkeley , California 94720 , United States.,Department of Chemistry , University of California , Berkeley , California 94720 , United States.,Department of Molecular and Cell Biology , University of California , Berkeley , California 94720 , United States
| |
Collapse
|
34
|
Bissaro B, Isaksen I, Vaaje-Kolstad G, Eijsink VGH, Røhr ÅK. How a Lytic Polysaccharide Monooxygenase Binds Crystalline Chitin. Biochemistry 2018; 57:1893-1906. [PMID: 29498832 DOI: 10.1021/acs.biochem.8b00138] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Lytic polysaccharide monooxygenases (LPMOs) are major players in biomass conversion, both in Nature and in the biorefining industry. How the monocopper LPMO active site is positioned relative to the crystalline substrate surface to catalyze powerful, but potentially self-destructive, oxidative chemistry is one of the major questions in the field. We have adopted a multidisciplinary approach, combining biochemical, spectroscopic, and molecular modeling methods to study chitin binding by the well-studied LPMO from Serratia marcescens SmAA10A (or CBP21). The orientation of the enzyme on a single-chain substrate was determined by analyzing enzyme cutting patterns. Building on this analysis, molecular dynamics (MD) simulations were performed to study interactions between the LPMO and three different surface topologies of crystalline chitin. The resulting atomistic models showed that most enzyme-substrate interactions involve the polysaccharide chain that is to be cleaved. The models also revealed a constrained active site geometry as well as a tunnel connecting the bulk solvent to the copper site, through which only small molecules such as H2O, O2, and H2O2 can diffuse. Furthermore, MD simulations, quantum mechanics/molecular mechanics calculations, and electron paramagnetic resonance spectroscopy demonstrate that rearrangement of Cu-coordinating water molecules is necessary when binding the substrate and also provide a rationale for the experimentally observed C1 oxidative regiospecificity of SmAA10A. This study provides a first, experimentally supported, atomistic view of the interactions between an LPMO and crystalline chitin. The confinement of the catalytic center is likely crucially important for controlling the oxidative chemistry performed by LPMOs and will help guide future mechanistic studies.
Collapse
Affiliation(s)
- Bastien Bissaro
- Faculty of Chemistry, Biotechnology, and Food Science , Norwegian University of Life Sciences , Chr. M. Falsensvei 1 , N-1432 Aas , Norway
| | - Ingvild Isaksen
- Faculty of Chemistry, Biotechnology, and Food Science , Norwegian University of Life Sciences , Chr. M. Falsensvei 1 , N-1432 Aas , Norway
| | - Gustav Vaaje-Kolstad
- Faculty of Chemistry, Biotechnology, and Food Science , Norwegian University of Life Sciences , Chr. M. Falsensvei 1 , N-1432 Aas , Norway
| | - Vincent G H Eijsink
- Faculty of Chemistry, Biotechnology, and Food Science , Norwegian University of Life Sciences , Chr. M. Falsensvei 1 , N-1432 Aas , Norway
| | - Åsmund K Røhr
- Faculty of Chemistry, Biotechnology, and Food Science , Norwegian University of Life Sciences , Chr. M. Falsensvei 1 , N-1432 Aas , Norway
| |
Collapse
|