1
|
Li Z, Dong H, Yin S, Bai M, Zhang Y, Ding Y, Sun S, Guo H. 3C protease-independent production of foot-and-mouth disease virus-like particles in Pichia pastoris. Appl Microbiol Biotechnol 2025; 109:144. [PMID: 40504260 PMCID: PMC12162760 DOI: 10.1007/s00253-025-13510-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 04/25/2025] [Accepted: 05/01/2025] [Indexed: 06/16/2025]
Abstract
The inactivated vaccines have played a pivotal role in the control and eradication of foot-and-mouth disease (FMD). However, certain safety concerns remain. Recently, virus-like particles (VLPs) have gradually become a research hotspot. As the eukaryotic expression system with the lowest production costs, the production of VLPs using Pichia pastoris has significant potential. During the natural infection process of FMD virus (FMDV), the polyprotein P1 is cleaved by 3C protease to form VP0, VP3, and VP1, which are subsequently assembled into VLPs. In this study, we adopted an alternative approach, co-expressing VP0, VP3, and VP1 without 3C protease for the production of FMDV VLPs in P. pastoris. The western blot (WB) assays showed variable protein expression on the same plasmid. VP0 was the highest, while VP3 and VP1 were similar. Furthermore, the order of proteins on the plasmid also mattered. The results indicated that His6 tags at VP0, VP3, and VP1 N-termini significantly affected VLPs assembly. The three-dimensional structure of FMDV revealed that the N-terminus of VP3 and VP1, which are situated in the external space of VLPs, can be fused with His6 tag. Inserting His6 tags into the G-H loop region of VP1 did not hinder assembly, thus providing a reference for the affinity purification of capsid and VLPs assembly. Here, FMDV VLPs were successfully produced independently of 3C protease, avoiding the uncontrollable cleavage efficiency and toxicity of 3C protease in host cells and demonstrating the potential of P. pastoris for FMDV VLPs production. KEY POINTS: • FMDV VLPs could be produced in P. pastoris by a 3 C protease-independent approach • Optimal expression of FMDV VLPs in P. pastoris is achieved at pH 7 with 72-h induction • His6 can be fused to the G-H region and C-terminus of VP1 and C-terminus of VP3 without affecting the VLPs assembly.
Collapse
Affiliation(s)
- Zhiyao Li
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
| | - Hu Dong
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
| | - Shuanghui Yin
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
| | - Manyuan Bai
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
| | - Yun Zhang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
| | - Yaozhong Ding
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
| | - Shiqi Sun
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
| | - Huichen Guo
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China.
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, 730046, China.
| |
Collapse
|
2
|
Li Z, Bai M, Yin S, Yang Y, Dong H, Teng Z, Sun S, Bao E, Guo H. Evaluation of the immune effect of foot-and-mouth disease virus-like particles derived from Pichia Pastoris on mice and pigs. Front Microbiol 2025; 16:1551395. [PMID: 40297291 PMCID: PMC12034696 DOI: 10.3389/fmicb.2025.1551395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Accepted: 03/27/2025] [Indexed: 04/30/2025] Open
Abstract
Foot-and-mouth disease (FMD) is an acute, highly contagious, infectious disease that affects cloven-hoofed animals and the healthy development of animal husbandry. Despite the pivotal role of the inactivated FMD vaccine in preventing and controlling the disease, the production and preparation of the inactivated vaccine still present certain safety concerns. Virus-like particles (VLPs), which have a shell structure similar to that of the viruses but lack the genetic material of viruses, have emerged as a prominent area of research on developing next-generation FMD vaccines. In this study, co-expression of P1 and 3C was implemented to obtain the capsid protein of FMD virus (FMDV), and VLPs of FMD were prepared using Pichia Pastoris. Given that the enzymatic activity of 3C is not ideal in acidic yeast cells, the HLH pattern structure was added to the N-terminal end of 3C, which can be anchored near the exit of the nascent peptide chain of ribosomes. Furthermore, the alcohol oxidase (AOX) promoter, which regulates the expression of 3C, was enhanced by mutation. Then, FMDV VLPs were successfully produced in yeast. Immunization of mice and pigs with VLPs resulted in high levels of specific and neutralizing antibodies and provided protection against FMDV in pigs. In conclusion, FMDV VLPs can be successfully produced in P. Pastoris. This offers a new way to develop FMDV VLP vaccines.
Collapse
Affiliation(s)
- Zhiyao Li
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Manyuan Bai
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Shuanghui Yin
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Yan Yang
- Agriculture and Rural Bureau of Yugur Autonomous County of Sunan, Zhangye, China
| | - Hu Dong
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Zhidong Teng
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Shiqi Sun
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
| | - Endong Bao
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Huichen Guo
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
| |
Collapse
|
3
|
Sherry L, Grehan K, Bahar MW, Swanson JJ, Fox H, Matthews S, Carlyle S, Qin L, Porta C, Wilkinson S, Robb S, Clark N, Liddell J, Fry EE, Stuart DI, Macadam AJ, Rowlands DJ, Stonehouse NJ. Production of an immunogenic trivalent poliovirus virus-like particle vaccine candidate in yeast using controlled fermentation. NPJ Vaccines 2025; 10:64. [PMID: 40164627 PMCID: PMC11958812 DOI: 10.1038/s41541-025-01111-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 03/14/2025] [Indexed: 04/02/2025] Open
Abstract
The success of the poliovirus (PV) vaccines has enabled the near-eradication of wild PV, however, their continued use post-eradication poses concerns, due to the potential for virus escape during vaccine manufacture. Recombinant virus-like particles (VLPs) that lack the viral genome remove this risk. Here, we demonstrate the production of PV VLPs for all three serotypes by controlled fermentation using Pichia pastoris. We determined the cryo-EM structure of a new PV2 mutant, termed SC5a, in comparison to PV2-SC6b VLPs described previously and investigated the immunogenicity of PV2-SC5a VLPs. Finally, a trivalent immunogenicity trial using bioreactor-derived VLPs of all three serotypes in the presence of Alhydrogel adjuvant, showed that these VLPs outperform the current IPV vaccine in the standard vaccine potency assay, offering the potential for dose-sparing. Overall, these results provide further evidence that yeast-produced VLPs have the potential to be a next-generation polio vaccine in a post-eradication world.
Collapse
Affiliation(s)
- Lee Sherry
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK.
| | - Keith Grehan
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Mohammad W Bahar
- Division of Structural Biology, University of Oxford, The Henry Wellcome Building for Genomic Medicine, Headington, Oxford, OX3 7BN, UK
| | - Jessica J Swanson
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Helen Fox
- Division of Vaccines, Medicines & Healthcare products Regulatory Agency (MHRA), Herts, EN6 3QG, UK
| | - Sue Matthews
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Sarah Carlyle
- Division of Vaccines, Medicines & Healthcare products Regulatory Agency (MHRA), Herts, EN6 3QG, UK
| | - Ling Qin
- Division of Structural Biology, University of Oxford, The Henry Wellcome Building for Genomic Medicine, Headington, Oxford, OX3 7BN, UK
| | - Claudine Porta
- Division of Structural Biology, University of Oxford, The Henry Wellcome Building for Genomic Medicine, Headington, Oxford, OX3 7BN, UK
| | | | - Suzanne Robb
- CPI, 1 Union Square, Central Park, Darlington, DL1 1GL, UK
| | - Naomi Clark
- CPI, 1 Union Square, Central Park, Darlington, DL1 1GL, UK
| | - John Liddell
- CPI, 1 Union Square, Central Park, Darlington, DL1 1GL, UK
| | - Elizabeth E Fry
- Division of Structural Biology, University of Oxford, The Henry Wellcome Building for Genomic Medicine, Headington, Oxford, OX3 7BN, UK
| | - David I Stuart
- Division of Structural Biology, University of Oxford, The Henry Wellcome Building for Genomic Medicine, Headington, Oxford, OX3 7BN, UK
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, OX11 0DE, UK
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, OX3 7BN, UK
| | - Andrew J Macadam
- Division of Vaccines, Medicines & Healthcare products Regulatory Agency (MHRA), Herts, EN6 3QG, UK
| | - David J Rowlands
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK.
| | - Nicola J Stonehouse
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK.
| |
Collapse
|
4
|
Lu H, Xiao J, Song J, Song Y, Li H, Ren H, Li J, Cong R, Li H, Fang Y, Yan D, Zhu S, Sun Q, Liu Y, Zhang Y. The Immunogenicity of Coxsackievirus A6 (D3a Sub-Genotype) Virus-Like Particle and mRNA Vaccines. J Med Virol 2025; 97:e70201. [PMID: 39921385 DOI: 10.1002/jmv.70201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 01/19/2025] [Accepted: 01/23/2025] [Indexed: 02/10/2025]
Abstract
In recent years, coxsackievirus A6 (CVA6) has surpassed enterovirus A71 to become the main pathogen causing severe Hand, Foot, and Mouth disease (HFMD) in China with a substantial disease burden. However, there is currently no commercial CVA6 vaccine. The D3a genotype of CVA6 is the predominant genotype in China. In this study, virus-like particles (VLPs) and mRNA vaccines based on the CVA6 sub-genotype D3a were successfully developed. The immunogenicity and protective effects of the VLP of CVA6 combined with Al(OH)3 and CpG adjuvant indicated that VLP-induced neutralizing antibodies against three CVA6 sub-genotype (D2, D3a, and D3b) strains in Institute of Cancer Research (ICR) mice, and the combination of the two adjuvants enhanced cellular immunity. Passive immunization with serum from mice immunized with VLPs protected suckling mice against CVA6 lethal challenge in both antiserum transfer and maternal immunization experiments. The immunogenicity and protective effects of the mRNA vaccine of CVA6 indicate that it induces robust T-cell immunity. T-cell immunity was found to cross-protect against coxsackievirus A10 infection in mice. This is the first trial of a CVA6 mRNA vaccine worldwide and the first comparison of the immunogenicity and protective effects of VLP and mRNA vaccines based on D3a CVA6. The study provides a theoretical basis for the development of enteroviruses vaccines and the formulation of immunization strategies.
Collapse
MESH Headings
- Animals
- Antibodies, Neutralizing/blood
- Vaccines, Virus-Like Particle/immunology
- Vaccines, Virus-Like Particle/administration & dosage
- Vaccines, Virus-Like Particle/genetics
- Antibodies, Viral/blood
- Mice
- Female
- Enterovirus A, Human/immunology
- Enterovirus A, Human/genetics
- Mice, Inbred ICR
- mRNA Vaccines/immunology
- mRNA Vaccines/administration & dosage
- Immunogenicity, Vaccine
- Viral Vaccines/immunology
- Viral Vaccines/administration & dosage
- Viral Vaccines/genetics
- Adjuvants, Immunologic/administration & dosage
- Genotype
- Vaccines, Synthetic/immunology
- Vaccines, Synthetic/administration & dosage
- Vaccines, Synthetic/genetics
- China
- Hand, Foot and Mouth Disease/prevention & control
- Disease Models, Animal
- Adjuvants, Vaccine/administration & dosage
- Coxsackievirus Infections/prevention & control
- Coxsackievirus Infections/immunology
- T-Lymphocytes/immunology
- Immunity, Cellular
Collapse
Affiliation(s)
- Huanhuan Lu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, No.155, Changbai Road, Changping District, Beijing, China
- National Polio Laboratory, World Health Organization Polio Reference Laboratory for the Western Pacific Region, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, No.155, Changbai Road, Changping District, Beijing, China
- National Health Commission Key Laboratory of Laboratory Biosafety, National Institute for Viral Disease Prevention and Control, Chinese Center for Disease Control and Prevention, No.155, Changbai Road, Changping District, Beijing, China
| | - Jinbo Xiao
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, No.155, Changbai Road, Changping District, Beijing, China
- National Polio Laboratory, World Health Organization Polio Reference Laboratory for the Western Pacific Region, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, No.155, Changbai Road, Changping District, Beijing, China
- National Health Commission Key Laboratory of Laboratory Biosafety, National Institute for Viral Disease Prevention and Control, Chinese Center for Disease Control and Prevention, No.155, Changbai Road, Changping District, Beijing, China
| | - Jingdong Song
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, No.155, Changbai Road, Changping District, Beijing, China
| | - Yang Song
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, No.155, Changbai Road, Changping District, Beijing, China
- National Polio Laboratory, World Health Organization Polio Reference Laboratory for the Western Pacific Region, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, No.155, Changbai Road, Changping District, Beijing, China
- National Health Commission Key Laboratory of Laboratory Biosafety, National Institute for Viral Disease Prevention and Control, Chinese Center for Disease Control and Prevention, No.155, Changbai Road, Changping District, Beijing, China
| | - Hai Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, No.155, Changbai Road, Changping District, Beijing, China
| | - Hu Ren
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, No.155, Changbai Road, Changping District, Beijing, China
| | - Jichen Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, No.155, Changbai Road, Changping District, Beijing, China
- National Polio Laboratory, World Health Organization Polio Reference Laboratory for the Western Pacific Region, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, No.155, Changbai Road, Changping District, Beijing, China
- National Health Commission Key Laboratory of Laboratory Biosafety, National Institute for Viral Disease Prevention and Control, Chinese Center for Disease Control and Prevention, No.155, Changbai Road, Changping District, Beijing, China
| | - Ruyi Cong
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, No.155, Changbai Road, Changping District, Beijing, China
- National Polio Laboratory, World Health Organization Polio Reference Laboratory for the Western Pacific Region, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, No.155, Changbai Road, Changping District, Beijing, China
- National Health Commission Key Laboratory of Laboratory Biosafety, National Institute for Viral Disease Prevention and Control, Chinese Center for Disease Control and Prevention, No.155, Changbai Road, Changping District, Beijing, China
| | - Hangwen Li
- Stemirna Therapeutics, Shanghai, China
- Shanghai East Hospital, Tongji University, Shanghai, China
| | - Yi Fang
- Stemirna Therapeutics, Shanghai, China
| | - Dongmei Yan
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, No.155, Changbai Road, Changping District, Beijing, China
- National Polio Laboratory, World Health Organization Polio Reference Laboratory for the Western Pacific Region, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, No.155, Changbai Road, Changping District, Beijing, China
- National Health Commission Key Laboratory of Laboratory Biosafety, National Institute for Viral Disease Prevention and Control, Chinese Center for Disease Control and Prevention, No.155, Changbai Road, Changping District, Beijing, China
| | - Shuangli Zhu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, No.155, Changbai Road, Changping District, Beijing, China
- National Polio Laboratory, World Health Organization Polio Reference Laboratory for the Western Pacific Region, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, No.155, Changbai Road, Changping District, Beijing, China
- National Health Commission Key Laboratory of Laboratory Biosafety, National Institute for Viral Disease Prevention and Control, Chinese Center for Disease Control and Prevention, No.155, Changbai Road, Changping District, Beijing, China
| | - Qiang Sun
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, No.155, Changbai Road, Changping District, Beijing, China
- National Polio Laboratory, World Health Organization Polio Reference Laboratory for the Western Pacific Region, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, No.155, Changbai Road, Changping District, Beijing, China
- National Health Commission Key Laboratory of Laboratory Biosafety, National Institute for Viral Disease Prevention and Control, Chinese Center for Disease Control and Prevention, No.155, Changbai Road, Changping District, Beijing, China
| | - Ying Liu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, No.155, Changbai Road, Changping District, Beijing, China
- National Polio Laboratory, World Health Organization Polio Reference Laboratory for the Western Pacific Region, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, No.155, Changbai Road, Changping District, Beijing, China
- National Health Commission Key Laboratory of Laboratory Biosafety, National Institute for Viral Disease Prevention and Control, Chinese Center for Disease Control and Prevention, No.155, Changbai Road, Changping District, Beijing, China
| | - Yong Zhang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, No.155, Changbai Road, Changping District, Beijing, China
- National Polio Laboratory, World Health Organization Polio Reference Laboratory for the Western Pacific Region, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, No.155, Changbai Road, Changping District, Beijing, China
- National Health Commission Key Laboratory of Laboratory Biosafety, National Institute for Viral Disease Prevention and Control, Chinese Center for Disease Control and Prevention, No.155, Changbai Road, Changping District, Beijing, China
| |
Collapse
|
5
|
Sherry L, Bahar MW, Porta C, Fox H, Grehan K, Nasta V, Duyvesteyn HME, De Colibus L, Marsian J, Murdoch I, Ponndorf D, Kim SR, Shah S, Carlyle S, Swanson JJ, Matthews S, Nicol C, Lomonossoff GP, Macadam AJ, Fry EE, Stuart DI, Stonehouse NJ, Rowlands DJ. Recombinant expression systems for production of stabilised virus-like particles as next-generation polio vaccines. Nat Commun 2025; 16:831. [PMID: 39827284 PMCID: PMC11742952 DOI: 10.1038/s41467-025-56118-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 01/08/2025] [Indexed: 01/22/2025] Open
Abstract
Polioviruses have caused crippling disease in humans for centuries, prior to the successful development of vaccines in the mid-1900's, which dramatically reduced disease prevalence. Continued use of these vaccines, however, threatens ultimate disease eradication and achievement of a polio-free world. Virus-like particles (VLPs) that lack a viral genome represent a safer potential vaccine, although they require particle stabilization. Using our previously established genetic techniques to stabilize the structural capsid proteins, we demonstrate production of poliovirus VLPs of all three serotypes, from four different recombinant expression systems. We compare the antigenicity, thermostability and immunogenicity of these stabilized VLPs against the current inactivated polio vaccine, demonstrating equivalent or superior immunogenicity in female Wistar rats. Structural analyses of these recombinant VLPs provide a rational understanding of the stabilizing mutations and the role of potential excipients. Collectively, we have established these poliovirus stabilized VLPs as viable next-generation vaccine candidates for the future.
Collapse
Affiliation(s)
- Lee Sherry
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Mohammad W Bahar
- Division of Structural Biology, University of Oxford, The Henry Wellcome Building for Genomic Medicine, Oxford, UK
| | - Claudine Porta
- Division of Structural Biology, University of Oxford, The Henry Wellcome Building for Genomic Medicine, Oxford, UK
- The Pirbright Institute, Surrey, UK
| | - Helen Fox
- Division of Vaccines, Medicines & Healthcare products Regulatory Agency (MHRA), Herts, UK
| | - Keith Grehan
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Veronica Nasta
- Division of Structural Biology, University of Oxford, The Henry Wellcome Building for Genomic Medicine, Oxford, UK
- Magnetic Resonance Center CERM, University of Florence, Sesto Fiorentino, Florence, Italy
| | - Helen M E Duyvesteyn
- Division of Structural Biology, University of Oxford, The Henry Wellcome Building for Genomic Medicine, Oxford, UK
| | - Luigi De Colibus
- Division of Structural Biology, University of Oxford, The Henry Wellcome Building for Genomic Medicine, Oxford, UK
| | | | - Inga Murdoch
- John Innes Centre, Norwich Research Park, Norwich, UK
| | | | | | - Sachin Shah
- John Innes Centre, Norwich Research Park, Norwich, UK
| | - Sarah Carlyle
- Division of Vaccines, Medicines & Healthcare products Regulatory Agency (MHRA), Herts, UK
| | - Jessica J Swanson
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Sue Matthews
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Clare Nicol
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | | | - Andrew J Macadam
- Division of Vaccines, Medicines & Healthcare products Regulatory Agency (MHRA), Herts, UK.
| | - Elizabeth E Fry
- Division of Structural Biology, University of Oxford, The Henry Wellcome Building for Genomic Medicine, Oxford, UK.
| | - David I Stuart
- Division of Structural Biology, University of Oxford, The Henry Wellcome Building for Genomic Medicine, Oxford, UK.
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, UK.
| | - Nicola J Stonehouse
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK.
| | - David J Rowlands
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK.
| |
Collapse
|
6
|
Aponte-Diaz D, Harris JM, Kang TE, Korboukh V, Sotoudegan MS, Gray JL, Yennawar NH, Moustafa IM, Macadam A, Cameron CE. Non-lytic spread of poliovirus requires the nonstructural protein 3CD. mBio 2025; 16:e0327624. [PMID: 39665531 PMCID: PMC11708018 DOI: 10.1128/mbio.03276-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 11/14/2024] [Indexed: 12/13/2024] Open
Abstract
Non-enveloped viruses like poliovirus (PV) have evolved the capacity to spread by non-lytic mechanisms. For PV, this mechanism exploits the host secretory autophagy pathway. Virions are selectively incorporated into autophagosomes, double-membrane vesicles that travel to the plasma membrane, fuse, and release single-membrane vesicles containing virions. Loading of cellular cargo into autophagosomes relies on direct or indirect interactions with microtubule-associated protein 1B-light chain 3 (LC3) that are mediated by motifs referred to as LC3-interaction regions (LIRs). We have identified a PV mutant with a severe defect in non-lytic spread. An F-to-Y substitution in a putative LIR of the nonstructural protein 3CD prevented virion incorporation into LC3-positive autophagosomes and virion trafficking to the plasma membrane for release. Using high-angle annular dark-field scanning transmission electron microscopy to monitor PV-induced autophagosome biogenesis, for the first time, we show that virus-induced autophagic signals yield normal autophagosomes, even in the absence of virions. The F-to-Y derivative of PV 3CD was unable to support normal autophagosome biogenesis. Together, these studies make a compelling case for the direct role of a viral nonstructural protein in the formation and loading of the vesicular carriers used for non-lytic spread that may depend on the proper structure, accessibility, and/or dynamics of its LIR. The studies of PV 3CD protein reported here will hopefully provoke a more deliberate look at the presence and function of LIR motifs in viral proteins of viruses known to use autophagy as the basis for non-lytic spread. IMPORTANCE Poliovirus (PV) and other enteroviruses hijack the cellular secretory autophagy pathway for non-lytic virus transmission. While much is known about the cellular factors required for non-lytic transmission, much less is known about viral factors contributing to transmission. We have discovered a PV nonstructural protein required for multiple steps of the pathway leading to vesicle-enclosed virions. This discovery should facilitate the identification of the specific steps of the cellular secretory autophagy pathway and corresponding factors commandeered by the virus and may uncover novel targets for antiviral therapy.
Collapse
Affiliation(s)
- David Aponte-Diaz
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Jayden M. Harris
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Tongjia Ella Kang
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Victoria Korboukh
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Mohamad S. Sotoudegan
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Jennifer L. Gray
- Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Neela H. Yennawar
- The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Ibrahim M. Moustafa
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Andrew Macadam
- Division of Vaccines, Medicines and Healthcare Products Regulatory Agency, Potters Bar, Herts., United Kingdom
| | - Craig E. Cameron
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
7
|
Aponte-Diaz D, Harris JM, Kang TE, Korboukh V, Sotoudegan MS, Gray JL, Yennawar NH, Moustafa IM, Macadam A, Cameron CE. Non-lytic spread of poliovirus requires the nonstructural protein 3CD. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.18.619132. [PMID: 39464037 PMCID: PMC11507938 DOI: 10.1101/2024.10.18.619132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Non-enveloped viruses like poliovirus (PV) have evolved the capacity to spread by non-lytic mechanisms. For PV, this mechanism exploits the host secretory autophagy pathway. Virions are selectively incorporated into autophagosomes, double-membrane vesicles that travel to the plasma membrane, fuse, and release single-membrane vesicles containing virions. Loading of cellular cargo into autophagosomes relies on direct or indirect interactions with microtubule-associated protein 1B-light chain 3 (LC3) that are mediated by motifs referred to as LC3-interaction regions (LIRs). We have identified a PV mutant with a severe defect in non-lytic spread. An F-to-Y substitution in a putative LIR of the nonstructural protein 3CD prevented virion incorporation into LC3-positive autophagosomes and virion trafficking to the plasma membrane for release. Using high-angle annular dark-field scanning transmission electron microscopy to monitor PV-induced autophagosome biogenesis, for the first time, we show that virus-induced autophagic signals yield normal autophagosomes, even in the absence of virions. The F-to-Y derivative of PV 3CD was unable to support normal autophagosome biogenesis. Together, these studies make a compelling case for a direct role of a viral nonstructural protein in the formation and loading of the vesicular carriers used for non-lytic spread that may depend on the proper structure, accessibility, and/or dynamics of its LIR. The studies of PV 3CD protein reported here will hopefully provoke a more deliberate look at the presence and function of LIR motifs in viral proteins of viruses known to use autophagy as the basis for non-lytic spread.
Collapse
Affiliation(s)
- David Aponte-Diaz
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jayden M Harris
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Tongjia Ella Kang
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Victoria Korboukh
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
- Present address: Strategic Alliances and Program Management, C4 Therapeutics, Inc., Watertown, MA 02472, USA
| | - Mohamad S Sotoudegan
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jennifer L Gray
- Materials Research Institute, The Pennsylvania State University, University Park, PA 16802, USA
| | - Neela H Yennawar
- The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Ibrahim M Moustafa
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Andrew Macadam
- Division of Vaccines, Medicines and Healthcare Products Regulatory Agency, Herts. EN6 3QG, UK
| | - Craig E Cameron
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
8
|
Ren M, Abdullah SW, Pei C, Guo H, Sun S. Use of virus-like particles and nanoparticle-based vaccines for combating picornavirus infections. Vet Res 2024; 55:128. [PMID: 39350170 PMCID: PMC11443892 DOI: 10.1186/s13567-024-01383-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 08/15/2024] [Indexed: 10/04/2024] Open
Abstract
Picornaviridae are non-enveloped ssRNA viruses that cause diseases such as poliomyelitis, hand-foot-and-mouth disease (HFMD), hepatitis A, encephalitis, myocarditis, and foot-and-mouth disease (FMD). Virus-like particles (VLPs) vaccines mainly comprise particles formed through the self-assembly of viral capsid proteins (for enveloped viruses, envelope proteins are also an option). They do not contain the viral genome. On the other hand, the nanoparticles vaccine (NPs) is mainly composed of self-assembling biological proteins or nanomaterials, with viral antigens displayed on the surface. The presentation of viral antigens on these particles in a repetitive array can elicit a strong immune response in animals. VLPs and NPs can be powerful platforms for multivalent antigen presentation. This review summarises the development of virus-like particle vaccines (VLPs) and nanoparticle vaccines (NPs) against picornaviruses. By detailing the progress made in the fight against various picornaviruses such as poliovirus (PV), foot-and-mouth disease virus (FMDV), enterovirus (EV), Senecavirus A (SVA), and encephalomyocarditis virus (EMCV), we in turn highlight the significant strides made in vaccine technology. These advancements include diverse construction methods, expression systems, elicited immune responses, and the use of various adjuvants. We see promising prospects for the continued development and optimisation of VLPs and NPs vaccines. Future research should focus on enhancing these vaccines' immunogenicity, stability, and delivery methods. Moreover, expanding our understanding of the interplay between these vaccines and the immune system will be crucial. We hope these insights will inspire and guide fellow researchers in the ongoing quest to combat picornavirus infections more effectively.
Collapse
Affiliation(s)
- Mei Ren
- State Key Laboratory for Animal Disease Control and Prevention, CollegeofVeterinaryMedicine, Lanzhou UniversityLanzhou Veterinary Research InstituteChinese Academy of Agricultural Sciences, Lanzhou, 730000, China
- Gembloux Agro-Biotech, University of Liege, Gembloux, Belgium
| | - Sahibzada Waheed Abdullah
- Livestock and dairy development department peshawar, Government of Khyber Pakhtunkhwa, Peshawar, Pakistan
| | - Chenchen Pei
- State Key Laboratory for Animal Disease Control and Prevention, CollegeofVeterinaryMedicine, Lanzhou UniversityLanzhou Veterinary Research InstituteChinese Academy of Agricultural Sciences, Lanzhou, 730000, China
| | - Huichen Guo
- State Key Laboratory for Animal Disease Control and Prevention, CollegeofVeterinaryMedicine, Lanzhou UniversityLanzhou Veterinary Research InstituteChinese Academy of Agricultural Sciences, Lanzhou, 730000, China
| | - Shiqi Sun
- State Key Laboratory for Animal Disease Control and Prevention, CollegeofVeterinaryMedicine, Lanzhou UniversityLanzhou Veterinary Research InstituteChinese Academy of Agricultural Sciences, Lanzhou, 730000, China.
| |
Collapse
|
9
|
Sutter RW, Eisenhawer M, Molodecky NA, Verma H, Okayasu H. Inactivated Poliovirus Vaccine: Recent Developments and the Tortuous Path to Global Acceptance. Pathogens 2024; 13:224. [PMID: 38535567 PMCID: PMC10974833 DOI: 10.3390/pathogens13030224] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 04/21/2024] Open
Abstract
Inactivated poliovirus vaccine (IPV), available since 1955, became the first vaccine to be used to protect against poliomyelitis. While the immunogenicity of IPV to prevent paralytic poliomyelitis continues to be irrefutable, its requirement for strong containment (due to large quantities of live virus used in the manufacturing process), perceived lack of ability to induce intestinal mucosal immunity, high cost and increased complexity to administer compared to oral polio vaccine (OPV), have limited its use in the global efforts to eradicate poliomyelitis. In order to harvest the full potential of IPV, a program of work has been carried out by the Global Polio Eradication Initiative (GPEI) over the past two decades that has focused on: (1) increasing the scientific knowledge base of IPV; (2) translating new insights and evidence into programmatic action; (3) expanding the IPV manufacturing infrastructure for global demand; and (4) continuing to pursue an ambitious research program to develop more immunogenic and safer-to-produce vaccines. While the knowledge base of IPV continues to expand, further research and product development are necessary to ensure that the program priorities are met (e.g., non-infectious production through virus-like particles, non-transmissible vaccine inducing humoral and intestinal mucosal immunity and new methods for house-to-house administration through micro-needle patches and jet injectors), the discussions have largely moved from whether to how to use this vaccine most effectively. In this review, we summarize recent developments on expanding the science base of IPV and provide insight into policy development and the expansion of IPV manufacturing and production, and finally we provide an update on the current priorities.
Collapse
Affiliation(s)
| | - Martin Eisenhawer
- Polio Eradication Department, World Health Organization, 1211 Geneva, Switzerland; (M.E.); (H.V.)
| | - Natalia A. Molodecky
- Polio Surge Capacity Support Program, The Task Force for Global Health, Inc., Decatur, GE 30030, USA;
| | - Harish Verma
- Polio Eradication Department, World Health Organization, 1211 Geneva, Switzerland; (M.E.); (H.V.)
| | - Hiromasa Okayasu
- Division of Healthy Environments and Population, Regional Office for the Western Pacific, World Health Organization, Manila 1000, Philippines
| |
Collapse
|
10
|
Kingston NJ, Snowden JS, Martyna A, Shegdar M, Grehan K, Tedcastle A, Pegg E, Fox H, Macadam AJ, Martin J, Hogle JM, Rowlands DJ, Stonehouse NJ. Production of antigenically stable enterovirus A71 virus-like particles in Pichia pastoris as a vaccine candidate. J Gen Virol 2023; 104:001867. [PMID: 37390009 PMCID: PMC10773253 DOI: 10.1099/jgv.0.001867] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 06/12/2023] [Indexed: 07/02/2023] Open
Abstract
Enterovirus A71 (EVA71) causes widespread disease in young children with occasional fatal consequences. In common with other picornaviruses, both empty capsids (ECs) and infectious virions are produced during the viral lifecycle. While initially antigenically indistinguishable from virions, ECs readily convert to an expanded conformation at moderate temperatures. In the closely related poliovirus, these conformational changes result in loss of antigenic sites required to elicit protective immune responses. Whether this is true for EVA71 remains to be determined and is the subject of this investigation.We previously reported the selection of a thermally resistant EVA71 genogroup B2 population using successive rounds of heating and passage. The mutations found in the structural protein-coding region of the selected population conferred increased thermal stability to both virions and naturally produced ECs. Here, we introduced these mutations into a recombinant expression system to produce stabilized virus-like particles (VLPs) in Pichia pastoris.The stabilized VLPs retain the native virion-like antigenic conformation as determined by reactivity with a specific antibody. Structural studies suggest multiple potential mechanisms of antigenic stabilization, however, unlike poliovirus, both native and expanded EVA71 particles elicited antibodies able to directly neutralize virus in vitro. Therefore, anti-EVA71 neutralizing antibodies are elicited by sites which are not canonically associated with the native conformation, but whether antigenic sites specific to the native conformation provide additional protective responses in vivo remains unclear. VLPs are likely to provide cheaper and safer alternatives for vaccine production and these data show that VLP vaccines are comparable with inactivated virus vaccines at inducing neutralising antibodies.
Collapse
Affiliation(s)
- Natalie J. Kingston
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Joseph S. Snowden
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Agnieszka Martyna
- Division of Virology, National Institute for Biological Standards and Control, Potters Bar, Hertfordshire, UK
| | - Mona Shegdar
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Keith Grehan
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Alison Tedcastle
- Division of Virology, National Institute for Biological Standards and Control, Potters Bar, Hertfordshire, UK
| | - Elaine Pegg
- Division of Virology, National Institute for Biological Standards and Control, Potters Bar, Hertfordshire, UK
| | - Helen Fox
- Division of Virology, National Institute for Biological Standards and Control, Potters Bar, Hertfordshire, UK
| | - Andrew J. Macadam
- Division of Virology, National Institute for Biological Standards and Control, Potters Bar, Hertfordshire, UK
| | - Javier Martin
- Division of Virology, National Institute for Biological Standards and Control, Potters Bar, Hertfordshire, UK
| | - James M. Hogle
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| | - David J. Rowlands
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Nicola J. Stonehouse
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| |
Collapse
|
11
|
Krug PW, Wang L, Shi W, Kong WP, Moss DL, Yang ES, Fisher BE, Morabito KM, Mascola JR, Kanekiyo M, Graham BS, Ruckwardt TJ. EV-D68 virus-like particle vaccines elicit cross-clade neutralizing antibodies that inhibit infection and block dissemination. SCIENCE ADVANCES 2023; 9:eadg6076. [PMID: 37196074 DOI: 10.1126/sciadv.adg6076] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 04/11/2023] [Indexed: 05/19/2023]
Abstract
Enterovirus D68 (EV-D68) causes severe respiratory illness in children and can result in a debilitating paralytic disease known as acute flaccid myelitis. No treatment or vaccine for EV-D68 infection is available. Here, we demonstrate that virus-like particle (VLP) vaccines elicit a protective neutralizing antibody against homologous and heterologous EV-D68 subclades. VLP based on a B1 subclade 2014 outbreak strain elicited comparable B1 EV-D68 neutralizing activity as an inactivated viral particle vaccine in mice. Both immunogens elicited weaker cross-neutralization against heterologous viruses. A B3 VLP vaccine elicited more robust neutralization of B3 subclade viruses with improved cross-neutralization. A balanced CD4+ T helper response was achieved using a carbomer-based adjuvant, Adjuplex. Nonhuman primates immunized with this B3 VLP Adjuplex formulation generated robust neutralizing antibodies against homologous and heterologous subclade viruses. Our results suggest that both vaccine strain and adjuvant selection are critical elements for improving the breadth of protective immunity against EV-D68.
Collapse
Affiliation(s)
- Peter W Krug
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Lingshu Wang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Wei Shi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Wing-Pui Kong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Daniel L Moss
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Eun Sung Yang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Brian E Fisher
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Kaitlyn M Morabito
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - John R Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Masaru Kanekiyo
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Barney S Graham
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Tracy J Ruckwardt
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| |
Collapse
|
12
|
VelcroVax: a "Bolt-On" Vaccine Platform for Glycoprotein Display. mSphere 2023; 8:e0056822. [PMID: 36719225 PMCID: PMC9942589 DOI: 10.1128/msphere.00568-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Having varied approaches to the design and manufacture of vaccines is critical in being able to respond to worldwide needs and newly emerging pathogens. Virus-like particles (VLPs) form the basis of two of the most successful licensed vaccines (against hepatitis B virus [HBV] and human papillomavirus). They are produced by recombinant expression of viral structural proteins, which assemble into immunogenic nanoparticles. VLPs can be modified to present unrelated antigens, and here we describe a universal "bolt-on" platform (termed VelcroVax) where the capturing VLP and the target antigen are produced separately. We utilize a modified HBV core (HBcAg) VLP with surface expression of a high-affinity binding sequence (Affimer) directed against a SUMO tag and use this to capture SUMO-tagged gp1 glycoprotein from the arenavirus Junín virus (JUNV). Using this model system, we have solved the first high-resolution structures of VelcroVax VLPs and shown that the VelcroVax-JUNV gp1 complex induces superior humoral immune responses compared to the noncomplexed viral protein. We propose that this system could be modified to present a range of antigens and therefore form the foundation of future rapid-response vaccination strategies. IMPORTANCE The hepatitis B core protein (HBc) forms noninfectious virus-like particles, which can be modified to present a capturing molecule, allowing suitably tagged antigens to be bound on their surface. This system can be adapted and provides the foundation for a universal "bolt-on" vaccine platform (termed VelcroVax) that can be easily and rapidly modified to generate nanoparticle vaccine candidates.
Collapse
|
13
|
Srivastava V, Nand KN, Ahmad A, Kumar R. Yeast-Based Virus-like Particles as an Emerging Platform for Vaccine Development and Delivery. Vaccines (Basel) 2023; 11:vaccines11020479. [PMID: 36851356 PMCID: PMC9965603 DOI: 10.3390/vaccines11020479] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 02/06/2023] [Accepted: 02/14/2023] [Indexed: 02/22/2023] Open
Abstract
Virus-like particles (VLPs) are empty, nanoscale structures morphologically resembling viruses. Internal cavity, noninfectious, and particulate nature with a high density of repeating epitopes, make them an ideal platform for vaccine development and drug delivery. Commercial use of Gardasil-9 and Cervarix showed the usefulness of VLPs in vaccine formulation. Further, chimeric VLPs allow the raising of an immune response against different immunogens and thereby can help reduce the generation of medical or clinical waste. The economically viable production of VLPs significantly impacts their usage, application, and availability. To this end, several hosts have been used and tested. The present review will discuss VLPs produced using different yeasts as fermentation hosts. We also compile a list of studies highlighting the expression and purification of VLPs using a yeast-based platform. We also discuss the advantages of using yeast to generate VLPs over other available systems. Further, the issues or limitations of yeasts for producing VLPs are also summarized. The review also compiles a list of yeast-derived VLP-based vaccines that are presently in public use or in different phases of clinical trials.
Collapse
Affiliation(s)
- Vartika Srivastava
- Department of Clinical Microbiology and Infectious Diseases, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa
| | - Kripa N. Nand
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Aijaz Ahmad
- Department of Clinical Microbiology and Infectious Diseases, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa
- Infection Control, Charlotte Maxeke Johannesburg Academic Hospital, National Health Laboratory Service, Johannesburg 2193, South Africa
| | - Ravinder Kumar
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
- Correspondence:
| |
Collapse
|
14
|
Protease-Independent Production of Poliovirus Virus-like Particles in Pichia pastoris: Implications for Efficient Vaccine Development and Insights into Capsid Assembly. Microbiol Spectr 2023; 11:e0430022. [PMID: 36507670 PMCID: PMC9927490 DOI: 10.1128/spectrum.04300-22] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The production of enterovirus virus-like particles (VLPs) that lack the viral genome have great potential as vaccines for a number of diseases, such as poliomyelitis and hand, foot, and mouth disease. These VLPs can mimic empty capsids, which are antigenically indistinguishable from mature virions, produced naturally during viral infection. Both in infection and in vitro, capsids and VLPs are generated by the cleavage of the P1 precursor protein by a viral protease. Here, using a stabilized poliovirus 1 (PV-1) P1 sequence as an exemplar, we show the production of PV-1 VLPs in Pichia pastoris in the absence of the potentially cytotoxic protease, 3CD, instead using the porcine teschovirus 2A (P2A) peptide sequence to terminate translation between individual capsid proteins. We compare this to protease-dependent production of PV-1 VLPs. Analysis of all permutations of the order of the capsid protein sequences revealed that only VP3 could be tagged with P2A and maintain native antigenicity. Transmission electron microscopy of these VLPs reveals the classic picornaviral icosahedral structure. Furthermore, these particles were thermostable above 37°C, demonstrating their potential as next generation vaccine candidates for PV. Finally, we believe the demonstration that native antigenic VLPs can be produced using protease-independent methods opens the possibility for future enteroviral vaccines to take advantage of recent vaccine technological advances, such as adenovirus-vectored vaccines and mRNA vaccines, circumventing the potential problems of cytotoxicity associated with 3CD, allowing for the production of immunogenic enterovirus VLPs in vivo. IMPORTANCE The widespread use of vaccines has dramatically reduced global incidence of poliovirus infections over a period of several decades and now the wild-type virus is only endemic in Pakistan and Afghanistan. However, current vaccines require the culture of large quantities of replication-competent virus for their manufacture, thus presenting a potential risk of reintroduction into the environment. It is now widely accepted that vaccination will need to be extended posteradication into the foreseeable future to prevent the potentially catastrophic reintroduction of poliovirus into an immunologically naive population. It is, therefore, imperative that novel vaccines are developed which are not dependent on the growth of live virus for their manufacture. We have expressed stabilized virus-like particles in yeast, from constructs that do not require coexpression of the protease. This is an important step in the development of environmentally safe and commercially viable vaccines against polio, which also provides some intriguing insights into the viral assembly process.
Collapse
|
15
|
Kingston NJ, Snowden JS, Martyna A, Shegdar M, Grehan K, Tedcastle A, Pegg E, Fox H, Macadam AJ, Martin J, Hogle JM, Rowlands DJ, Stonehouse NJ. Production of antigenically stable enterovirus A71 virus-like particles in Pichia pastoris as a vaccine candidate. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.30.526315. [PMID: 36778240 PMCID: PMC9915507 DOI: 10.1101/2023.01.30.526315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Enterovirus A71 (EVA71) causes widespread disease in young children with occasional fatal consequences. In common with other picornaviruses, both empty capsids (ECs) and infectious virions are produced during the viral lifecycle. While initially antigenically indistinguishable from virions, ECs readily convert to an expanded conformation at moderate temperatures. In the closely related poliovirus, these conformational changes result in loss of antigenic sites required to elicit protective immune responses. Whether this is true for EVA71 remains to be determined and is the subject of this investigation. We previously reported the selection of a thermally resistant EVA71 genogroup B2 population using successive rounds of heating and passage. The mutations found in the structural protein-coding region of the selected population conferred increased thermal stability to both virions and naturally produced ECs. Here, we introduced these mutations into a recombinant expression system to produce stabilised virus-like particles (VLPs) in Pichia pastoris . The stabilised VLPs retain the native virion-like antigenic conformation as determined by reactivity with a specific antibody. Structural studies suggest multiple potential mechanisms of antigenic stabilisation, however, unlike poliovirus, both native and expanded EVA71 particles elicited antibodies able to directly neutralise virus in vitro . Therefore, the anti-EVA71 neutralising antibodies are elicited by sites which are not canonically associated with the native conformation, but whether antigenic sites specific to the native conformation provide additional protective responses in vivo remains unclear. VLPs are likely to provide cheaper and safer alternatives for vaccine production and these data show that VLP vaccines are comparable with inactivated virus vaccines at inducing neutralising antibodies.
Collapse
Affiliation(s)
- Natalie J Kingston
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Joseph S Snowden
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Agnieszka Martyna
- Division of Virology, National Institute for Biological Standards and Control, Potters Bar, Hertfordshire, United Kingdom
| | - Mona Shegdar
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Keith Grehan
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Alison Tedcastle
- Division of Virology, National Institute for Biological Standards and Control, Potters Bar, Hertfordshire, United Kingdom
| | - Elaine Pegg
- Division of Virology, National Institute for Biological Standards and Control, Potters Bar, Hertfordshire, United Kingdom
| | - Helen Fox
- Division of Virology, National Institute for Biological Standards and Control, Potters Bar, Hertfordshire, United Kingdom
| | - Andrew J Macadam
- Division of Virology, National Institute for Biological Standards and Control, Potters Bar, Hertfordshire, United Kingdom
| | - Javier Martin
- Division of Virology, National Institute for Biological Standards and Control, Potters Bar, Hertfordshire, United Kingdom
| | - James M Hogle
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| | - David J Rowlands
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Nicola J Stonehouse
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
16
|
Bahar MW, Nasta V, Fox H, Sherry L, Grehan K, Porta C, Macadam AJ, Stonehouse NJ, Rowlands DJ, Fry EE, Stuart DI. A conserved glutathione binding site in poliovirus is a target for antivirals and vaccine stabilisation. Commun Biol 2022; 5:1293. [PMID: 36434067 PMCID: PMC9700776 DOI: 10.1038/s42003-022-04252-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 11/11/2022] [Indexed: 11/27/2022] Open
Abstract
Strategies to prevent the recurrence of poliovirus (PV) after eradication may utilise non-infectious, recombinant virus-like particle (VLP) vaccines. Despite clear advantages over inactivated or attenuated virus vaccines, instability of VLPs can compromise their immunogenicity. Glutathione (GSH), an important cellular reducing agent, is a crucial co-factor for the morphogenesis of enteroviruses, including PV. We report cryo-EM structures of GSH bound to PV serotype 3 VLPs showing that it can enhance particle stability. GSH binds the positively charged pocket at the interprotomer interface shown recently to bind GSH in enterovirus F3 and putative antiviral benzene sulphonamide compounds in other enteroviruses. We show, using high-resolution cryo-EM, the binding of a benzene sulphonamide compound with a PV serotype 2 VLP, consistent with antiviral activity through over-stabilizing the interprotomer pocket, preventing the capsid rearrangements necessary for viral infection. Collectively, these results suggest GSH or an analogous tight-binding antiviral offers the potential for stabilizing VLP vaccines.
Collapse
Affiliation(s)
- Mohammad W Bahar
- Division of Structural Biology, University of Oxford, The Henry Wellcome Building for Genomic Medicine, Headington, Oxford, OX3 7BN, UK.
| | - Veronica Nasta
- Division of Structural Biology, University of Oxford, The Henry Wellcome Building for Genomic Medicine, Headington, Oxford, OX3 7BN, UK
- Magnetic Resonance Center CERM, University of Florence, Via Luigi Sacconi 6, 50019, Sesto Fiorentino, Florence, Italy
- Department of Chemistry, University of Florence, Via della Lastruccia 3, 50019, Sesto Fiorentino, Florence, Italy
| | - Helen Fox
- The National Institute for Biological Standards and Control, Potters Bar, EN6 3QG, UK
| | - Lee Sherry
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Keith Grehan
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Claudine Porta
- Division of Structural Biology, University of Oxford, The Henry Wellcome Building for Genomic Medicine, Headington, Oxford, OX3 7BN, UK
- The Pirbright Institute, Pirbright, Surrey, GU24 0NF, UK
| | - Andrew J Macadam
- The National Institute for Biological Standards and Control, Potters Bar, EN6 3QG, UK
| | - Nicola J Stonehouse
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - David J Rowlands
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Elizabeth E Fry
- Division of Structural Biology, University of Oxford, The Henry Wellcome Building for Genomic Medicine, Headington, Oxford, OX3 7BN, UK
| | - David I Stuart
- Division of Structural Biology, University of Oxford, The Henry Wellcome Building for Genomic Medicine, Headington, Oxford, OX3 7BN, UK.
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, OX11 0DE, UK.
| |
Collapse
|
17
|
Sherry L, Grehan K, Swanson JJ, Bahar MW, Porta C, Fry EE, Stuart DI, Rowlands DJ, Stonehouse NJ. Production and Characterisation of Stabilised PV-3 Virus-like Particles Using Pichia pastoris. Viruses 2022; 14:2159. [PMID: 36298714 PMCID: PMC9611624 DOI: 10.3390/v14102159] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/21/2022] [Accepted: 09/28/2022] [Indexed: 11/05/2022] Open
Abstract
Following the success of global vaccination programmes using the live-attenuated oral and inactivated poliovirus vaccines (OPV and IPV), wild poliovirus (PV) is now only endemic in Afghanistan and Pakistan. However, the continued use of these vaccines poses potential risks to the eradication of PV. The production of recombinant PV virus-like particles (VLPs), which lack the viral genome offer great potential as next-generation vaccines for the post-polio world. We have previously reported production of PV VLPs using Pichia pastoris, however, these VLPs were in the non-native conformation (C Ag), which would not produce effective protection against PV. Here, we build on this work and show that it is possible to produce wt PV-3 and thermally stabilised PV-3 (referred to as PV-3 SC8) VLPs in the native conformation (D Ag) using Pichia pastoris. We show that the PV-3 SC8 VLPs provide a much-improved D:C antigen ratio as compared to wt PV-3, whilst exhibiting greater thermostability than the current IPV vaccine. Finally, we determine the cryo-EM structure of the yeast-derived PV-3 SC8 VLPs and compare this to previously published PV-3 D Ag structures, highlighting the similarities between these recombinantly expressed VLPs and the infectious virus, further emphasising their potential as a next-generation vaccine candidate for PV.
Collapse
Affiliation(s)
- Lee Sherry
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Keith Grehan
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Jessica J. Swanson
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Mohammad W. Bahar
- Division of Structural Biology, University of Oxford, The Henry Wellcome Building for Genomic Medicine, Headington, Oxford OX3 7BN, UK
| | - Claudine Porta
- Division of Structural Biology, University of Oxford, The Henry Wellcome Building for Genomic Medicine, Headington, Oxford OX3 7BN, UK
| | - Elizabeth E. Fry
- Division of Structural Biology, University of Oxford, The Henry Wellcome Building for Genomic Medicine, Headington, Oxford OX3 7BN, UK
| | - David I. Stuart
- Division of Structural Biology, University of Oxford, The Henry Wellcome Building for Genomic Medicine, Headington, Oxford OX3 7BN, UK
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK
| | - David J. Rowlands
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Nicola J. Stonehouse
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
18
|
Thompson KM, Kalkowska DA, Badizadegan K. Health economic analysis of vaccine options for the polio eradication endgame: 2022-2036. Expert Rev Vaccines 2022; 21:1667-1674. [PMID: 36154436 PMCID: PMC10116513 DOI: 10.1080/14760584.2022.2128108] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
BACKGROUND : Multiple vaccine options are available for polio prevention and risk management. Integrated global risk, economic, and poliovirus transmission modeling provides a tool to explore the dynamics of ending all use of one or more poliovirus vaccines to simplify the polio eradication endgame. RESEARCH DESIGN AND METHODS : With global reported cases of poliomyelitis trending higher since 2016, we apply an integrated global model to simulate prospective vaccine policies and strategies for OPV-using countries starting with initial conditions that correspond to the epidemiological poliovirus transmission situation at the beginning of 2022. RESULTS : Abruptly ending all OPV use in 2023 and relying only on IPV to prevent paralysis with current routine immunization coverage would lead to expected reestablished endemic transmission of poliovirus types 1 and 2, and approximately 150,000 expected cases of poliomyelitis per year. Alternatively, if OPV-using countries restart trivalent OPV (tOPV) use for all immunization activities and end IPV use, the model shows the lowest anticipated annual polio cases and lowest costs. CONCLUSIONS : Poor global risk management and coordination of OPV cessation remain a critical failure mode for the polio endgame, and national and global decision makers face difficult choices due to multiple available polio vaccine options and immunization strategies.
Collapse
|
19
|
Novikov DV, Melentev DA. [Enteroviral (Picornaviridae: Enterovirus) (nonpolio) vaccines]. Vopr Virusol 2022; 67:185-192. [PMID: 35831961 DOI: 10.36233/0507-4088-111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 07/13/2022] [Indexed: 06/15/2023]
Abstract
Non-polio enteroviruses (NPEVs) are ubiquitous and are one of the main causative agents of viral infections in children. NPEVs most commonly infect newborns and young children, due to their lack of antibodies. In children, clinical manifestations can range from acute febrile illness to severe complications that require hospitalization and lead in some cases to disability or death. NPEV infections can have severe consequences, such as polio-like diseases, serous meningitis, meningoencephalitis, myocarditis, etc. The most promising strategy for preventing such diseases is vaccination. No less than 53 types of NPEVs have been found to circulate in Russia. However, of epidemic importance are the causative agents of exanthemic forms of the disease, aseptic meningitis and myocarditis. At the same time, the frequency of NPEV detection in the constituent entities of the Russian Federation is characterized by uneven distribution and seasonal upsurges. The review discusses the epidemic significance of different types of enteroviruses, including those relevant to the Russian Federation, as well as current technologies used to create enterovirus vaccines for the prevention of serious diseases.
Collapse
Affiliation(s)
- D V Novikov
- 1Academician I.N. Blokhina Nizhny Novgorod Scientific Research Institute of Epidemiology and Microbiology
| | - D A Melentev
- Academician I.N. Blokhina Nizhny Novgorod Scientific Research Institute of Epidemiology and Microbiology; N.I. Lobachevsky State University of Nizhny Novgorod
| |
Collapse
|
20
|
Development of an Enzyme-Linked Immunosorbent Assay for Detection of the Native Conformation of Enterovirus A71. mSphere 2022; 7:e0008822. [PMID: 35642505 PMCID: PMC9241546 DOI: 10.1128/msphere.00088-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Enterovirus A71 (EVA71) is a medically important virus that is commonly associated with hand, foot, and mouth disease (HFMD). It is responsible for periodic outbreaks, resulting in significant economic impact and loss of life. Vaccination offers the potential to control future outbreaks, and vaccine development has been increasingly the focus of global research efforts. However, antigenic characterization of vaccine candidates is challenging because there are few tools to characterize the different antigenic forms of the virus. As with other picornaviruses, EVA71 virions exist in two antigenic states, native (NAg) and expanded (HAg). It is likely that the composition of vaccines, in terms of the proportions of NAg and HAg, will be important for vaccine efficacy and batch-to-batch consistency. This paper describes the development of a single-chain fused variable (scFv) domain fragment and the optimization of a sandwich enzyme-linked immunosorbent assay (ELISA) for the specific detection of the NAg conformation of EVA71. NAg specificity of the scFv was demonstrated using purified EVA71, and conversion of NAg to HAg by heating resulted in a loss of binding. We have thus developed an effective tool for characterization of the specific antigenic state of EVA71. IMPORTANCE EVA71 is a medically important virus that is commonly associated with HFMD, resulting in periodic outbreaks, significant economic impact, and loss of life. Vaccination offers the potential to curtail future outbreaks, and vaccine development has been increasingly the focus of global research efforts. However, antigenic characterization of vaccine candidates is challenging because there are very limited effective tools to characterize the different antigenic forms of EV71. As with other picornaviruses, EVA71 virions exist in two antigenic states, native and expanded. This paper describes the development of an scFv and the optimization of a sandwich ELISA for the specific detection of the native conformation of EVA71 as an effective tool for characterization of the specific antigenic state of EVA71.
Collapse
|
21
|
Tariq H, Batool S, Asif S, Ali M, Abbasi BH. Virus-Like Particles: Revolutionary Platforms for Developing Vaccines Against Emerging Infectious Diseases. Front Microbiol 2022; 12:790121. [PMID: 35046918 PMCID: PMC8761975 DOI: 10.3389/fmicb.2021.790121] [Citation(s) in RCA: 115] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 12/10/2021] [Indexed: 02/06/2023] Open
Abstract
Virus-like particles (VLPs) are nanostructures that possess diverse applications in therapeutics, immunization, and diagnostics. With the recent advancements in biomedical engineering technologies, commercially available VLP-based vaccines are being extensively used to combat infectious diseases, whereas many more are in different stages of development in clinical studies. Because of their desired characteristics in terms of efficacy, safety, and diversity, VLP-based approaches might become more recurrent in the years to come. However, some production and fabrication challenges must be addressed before VLP-based approaches can be widely used in therapeutics. This review offers insight into the recent VLP-based vaccines development, with an emphasis on their characteristics, expression systems, and potential applicability as ideal candidates to combat emerging virulent pathogens. Finally, the potential of VLP-based vaccine as viable and efficient immunizing agents to induce immunity against virulent infectious agents, including, SARS-CoV-2 and protein nanoparticle-based vaccines has been elaborated. Thus, VLP vaccines may serve as an effective alternative to conventional vaccine strategies in combating emerging infectious diseases.
Collapse
Affiliation(s)
- Hasnat Tariq
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Sannia Batool
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Saaim Asif
- Department of Biosciences, COMSATS University, Islamabad, Pakistan
| | - Mohammad Ali
- Center for Biotechnology and Microbiology, University of Swat, Swat, Pakistan
| | | |
Collapse
|
22
|
Particles in Biopharmaceutical Formulations, Part 2: An Update on Analytical Techniques and Applications for Therapeutic Proteins, Viruses, Vaccines and Cells. J Pharm Sci 2021; 111:933-950. [PMID: 34919969 DOI: 10.1016/j.xphs.2021.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 12/09/2021] [Accepted: 12/09/2021] [Indexed: 11/21/2022]
Abstract
Particles in biopharmaceutical formulations remain a hot topic in drug product development. With new product classes emerging it is crucial to discriminate particulate active pharmaceutical ingredients from particulate impurities. Technical improvements, new analytical developments and emerging tools (e.g., machine learning tools) increase the amount of information generated for particles. For a proper interpretation and judgment of the generated data a thorough understanding of the measurement principle, suitable application fields and potential limitations and pitfalls is required. Our review provides a comprehensive overview of novel particle analysis techniques emerging in the last decade for particulate impurities in therapeutic protein formulations (protein-related, excipient-related and primary packaging material-related), as well as particulate biopharmaceutical formulations (virus particles, virus-like particles, lipid nanoparticles and cell-based medicinal products). In addition, we review the literature on applications, describe specific analytical approaches and illustrate advantages and drawbacks of currently available techniques for particulate biopharmaceutical formulations.
Collapse
|
23
|
de Sá Magalhães S, Keshavarz-Moore E. Pichia pastoris ( Komagataella phaffii) as a Cost-Effective Tool for Vaccine Production for Low- and Middle-Income Countries (LMICs). Bioengineering (Basel) 2021; 8:119. [PMID: 34562941 PMCID: PMC8468848 DOI: 10.3390/bioengineering8090119] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 08/05/2021] [Accepted: 08/24/2021] [Indexed: 01/26/2023] Open
Abstract
Vaccination is of paramount importance to global health. With the advent of the more recent pandemics, the urgency to expand the range has become even more evident. However, the potential limited availability and affordability of vaccines to resource low- and middle-income countries has created a need for solutions that will ensure cost-effective vaccine production methods for these countries. Pichia pastoris (P. pastoris) (also known as Komagataella phaffii) is one of the most promising candidates for expression of heterologous proteins in vaccines development. It combines the speed and ease of highly efficient prokaryotic platforms with some key capabilities of mammalian systems, potentially reducing manufacturing costs. This review will examine the latest developments in P. pastoris from cell engineering and design to industrial production systems with focus on vaccine development and with reference to specific key case studies.
Collapse
Affiliation(s)
| | - Eli Keshavarz-Moore
- Department of Biochemical Engineering, University College London, Gower Street, London WC1E 6BT, UK;
| |
Collapse
|
24
|
Snowden JS, Alzahrani J, Sherry L, Stacey M, Rowlands DJ, Ranson NA, Stonehouse NJ. Structural insight into Pichia pastoris fatty acid synthase. Sci Rep 2021; 11:9773. [PMID: 33963233 PMCID: PMC8105331 DOI: 10.1038/s41598-021-89196-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 04/19/2021] [Indexed: 11/24/2022] Open
Abstract
Type I fatty acid synthases (FASs) are critical metabolic enzymes which are common targets for bioengineering in the production of biofuels and other products. Serendipitously, we identified FAS as a contaminant in a cryoEM dataset of virus-like particles (VLPs) purified from P. pastoris, an important model organism and common expression system used in protein production. From these data, we determined the structure of P. pastoris FAS to 3.1 Å resolution. While the overall organisation of the complex was typical of type I FASs, we identified several differences in both structural and enzymatic domains through comparison with the prototypical yeast FAS from S. cerevisiae. Using focussed classification, we were also able to resolve and model the mobile acyl-carrier protein (ACP) domain, which is key for function. Ultimately, the structure reported here will be a useful resource for further efforts to engineer yeast FAS for synthesis of alternate products.
Collapse
Affiliation(s)
- Joseph S Snowden
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Jehad Alzahrani
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Lee Sherry
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Martin Stacey
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - David J Rowlands
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Neil A Ranson
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK.
| | - Nicola J Stonehouse
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK.
| |
Collapse
|
25
|
Bahar MW, Porta C, Fox H, Macadam AJ, Fry EE, Stuart DI. Mammalian expression of virus-like particles as a proof of principle for next generation polio vaccines. NPJ Vaccines 2021; 6:5. [PMID: 33420068 PMCID: PMC7794334 DOI: 10.1038/s41541-020-00267-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 12/02/2020] [Indexed: 02/07/2023] Open
Abstract
Global vaccination programs using live-attenuated oral and inactivated polio vaccine (OPV and IPV) have almost eradicated poliovirus (PV) but these vaccines or their production pose significant risk in a polio-free world. Recombinant PV virus-like particles (VLPs), lacking the viral genome, represent safe next-generation vaccines, however their production requires optimisation. Here we present an efficient mammalian expression strategy producing good yields of wild-type PV VLPs for all three serotypes and a thermostabilised variant for PV3. Whilst the wild-type VLPs were predominantly in the non-native C-antigenic form, the thermostabilised PV3 VLPs adopted the native D-antigenic conformation eliciting neutralising antibody titres equivalent to the current IPV and were indistinguishable from natural empty particles by cryo-electron microscopy with a similar stabilising lipidic pocket-factor in the VP1 β-barrel. This factor may not be available in alternative expression systems, which may require synthetic pocket-binding factors. VLPs equivalent to these mammalian expressed thermostabilized particles, represent safer non-infectious vaccine candidates for the post-eradication era.
Collapse
Affiliation(s)
- Mohammad W Bahar
- Division of Structural Biology, University of Oxford, The Henry Wellcome Building for Genomic Medicine, Headington, Oxford, OX3 7BN, UK.
| | - Claudine Porta
- Division of Structural Biology, University of Oxford, The Henry Wellcome Building for Genomic Medicine, Headington, Oxford, OX3 7BN, UK
- The Pirbright Institute, Pirbright, Surrey, GU24 0NF, UK
| | - Helen Fox
- The National Institute for Biological Standards and Control, Potters Bar, EN6 3QG, UK
| | - Andrew J Macadam
- The National Institute for Biological Standards and Control, Potters Bar, EN6 3QG, UK
| | - Elizabeth E Fry
- Division of Structural Biology, University of Oxford, The Henry Wellcome Building for Genomic Medicine, Headington, Oxford, OX3 7BN, UK
| | - David I Stuart
- Division of Structural Biology, University of Oxford, The Henry Wellcome Building for Genomic Medicine, Headington, Oxford, OX3 7BN, UK.
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, OX11 0DE, UK.
| |
Collapse
|