1
|
Güzel I, Öztürk G, Appak Ö, Çağlayan D, Süner AF, Irmak Ç, Türe N, Işik E, Çelik M, Ergör G, Ergör A, Demiral Y, Alp Çavuş S, Kilic B, Sayiner A. Neutralizing and binding antibody dynamics following primary and booster COVID-19 vaccination among healthcare workers. BMC Infect Dis 2025; 25:218. [PMID: 39953414 PMCID: PMC11827177 DOI: 10.1186/s12879-025-10621-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 02/07/2025] [Indexed: 02/17/2025] Open
Abstract
BACKGROUND Vaccine-induced neutralizing antibodies (NAbs) are key for COVID-19 protective-immunity. As the efficacy of SARS-CoV-2 vaccines declines over time and variants of the virus continue to emerge, the need for booster doses of vaccine remains on the agenda. The aim of this study was to assess NAbs dynamics and its correlation with anti-RBD IgG levels during the nine-month follow-up period after primary-CoronaVac vaccination and booster vaccinations to evaluate vaccination strategies. METHODS This prospective longitudinal observational study followed 226 healthcare workers who received primary (two doses CoronaVac) and booster (CoronaVac or BNT162b2) immunization. Serum samples were collected at four different time points, two after primary vaccination and two after booster. Anti-RBD IgG antibody levels were assessed with the SARS CoV-2 IgG-II-QUANT kit (Abbott, USA) and neutralizing antibody levels were determined with the ACE2-RBD-Neutralization-Assay (Dia-Pro, Italy) using a surrogate virus neutralization method. Factors affecting antibody response were analyzed. Statistical analysis was performed with IBM-SPSS-22.0. RESULTS One month after the second dose of CoronaVac, 79.2% of participants had NAb, but this had decreased to 49.7% by the fourth month and was influenced by smoking, BMI and chronic diseases. Boosters, regardless of type, significantly raised NAb levels. Heterologous vaccination yielded higher NAb and anti-RBD IgG responses. Both single or double-BNT162b2 boosters resulted in similar NAb responses. There was a strong correlation between anti-RBD IgG and NAb levels following CoronaVac vaccination, leading to the identification of predictive IgG threshold for the presence of NAb. The type of booster influenced the correlation strength and threshold-value. CONCLUSIONS NAbs levels decreased rapidly after primary CoronaVac vaccination. Boosters significantly increased levels while the heterologous vaccine combination induced a greater response. Anti-RBD IgG levels were able to predict the NAb response, however the correlation varied by the vaccine type, NAb response strength and the time since vaccination.
Collapse
Affiliation(s)
- Irmak Güzel
- Department of Medical Microbiology, Turkish Republic Ministry of Health, Nusaybin State Hospital, Nusaybin, Turkey
| | - Gamze Öztürk
- Department of Medical Microbiology, Faculty of Medicine, Dokuz Eylül University, Izmir, Turkey
| | - Özgür Appak
- Department of Medical Microbiology, Faculty of Medicine, Dokuz Eylül University, Izmir, Turkey
| | - Derya Çağlayan
- Department of Public Health, Division of Epidemiology, Turkish Republic Ministry of Health, Diyarbakır Provincial Health Directorate, Diyarbakır, Turkey
| | - Ahmet F Süner
- Çaycuma District Health Directorate, Zonguldak, Turkey
| | - Çağlar Irmak
- Infectious Diseases and Clinical Microbiology Unit, Hakkari Yüksekova State Hospital, Hakkari, Turkey
| | - Neslişah Türe
- Department of Public Health, Faculty of Medicine, Dokuz Eylül University, Izmir, Turkey
| | - Elif Işik
- Department of Public Health, Faculty of Medicine, Dokuz Eylül University, Izmir, Turkey
| | - Muammer Çelik
- Department of Infectious Diseases and Clinical Microbiology, Faculty of Medicine, Dokuz Eylül University, Izmir, Turkey
| | - Gül Ergör
- Department of Public Health, Division of Epidemiology, Faculty of Medicine, Dokuz Eylül University, Izmir, Turkey
| | - Alp Ergör
- Department of Public Health, Faculty of Medicine, Dokuz Eylül University, Izmir, Turkey
| | - Yücel Demiral
- Department of Public Health, Faculty of Medicine, Dokuz Eylül University, Izmir, Turkey
| | - Sema Alp Çavuş
- Department of Infectious Diseases and Clinical Microbiology, Faculty of Medicine, Dokuz Eylül University, Izmir, Turkey
| | - Bulent Kilic
- Department of Public Health, Faculty of Medicine, Dokuz Eylül University, Izmir, Turkey
| | - Arzu Sayiner
- Department of Medical Microbiology, Faculty of Medicine, Dokuz Eylül University, Izmir, Turkey.
| |
Collapse
|
2
|
Asamoah-Boaheng M, Goldfarb DM, Kayda I, Yap J, Kirkham T, Karim ME, Demers P, Copp JM, Grunau B. Immunogenicity of bivalent versus monovalent mRNA booster vaccination among adult paramedics in Canada who had received three prior mRNA wild-type doses. Access Microbiol 2025; 7:000791.v3. [PMID: 39807477 PMCID: PMC11728694 DOI: 10.1099/acmi.0.000791.v3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 12/16/2024] [Indexed: 01/16/2025] Open
Abstract
Introduction. Comparative immunogenicity from different mRNA booster vaccines (directed at WT, BA.1 or BA.4/5 antigens) remains unclear. Methods. We included blood samples from adult paramedics who received three mRNA WT-directed vaccines plus a fourth dose of the following: (1) WT monovalent, (2) Moderna BA.1-WT bivalent or (3) Pfizer BA.4/5 WT bivalent vaccine. The primary outcome was angiotensin-converting enzyme 2 (ACE2) inhibition to BA.4/5 antigen. We used optimal pair matching (using age, sex-at-birth, preceding SARS-CoV-2 infection and fourth vaccine-to-blood collection interval) to create balanced groups to individually compare each vaccine type to each other vaccine (overall, within subgroups defined by SARS-CoV-2 infection and after combining BA.1 and BA.4/5 cases). We compared outcomes with the Wilcoxon matched-pairs signed rank test. Results. Overall, 158 paramedics (mean age 45 years) were included. ACE2 inhibition was higher for BA.1 compared to WT (P=0.002); however, no difference was detected between BA.4/5 vs. WT or BA.1 vs. BA.4/5. Among cases with preceding SARS-CoV-2, there were no detected between-group differences. Among cases without preceding SARS-CoV-2, the only detected difference was BA.1>WT (P=0.003). BA.1 and BA.4/5 cases combined had higher ACE2 inhibition than WT (P=0.003). Conclusion. Omicron-directed vaccines appear to improve Omicron-specific immunogenicity; however, this appears limited to SARS-CoV-2-naive individuals.
Collapse
Affiliation(s)
- Michael Asamoah-Boaheng
- Department of Emergency Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Centre for Advancing Health Outcomes, St. Paul’s Hospital, Vancouver, British Columbia, Canada
- Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- British Columbia Resuscitation Research Collaborative, Vancouver, British Columbia, Canada
| | - David M. Goldfarb
- Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Iryna Kayda
- Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Justin Yap
- British Columbia Resuscitation Research Collaborative, Vancouver, British Columbia, Canada
- Faculty of Science, University of British Columbia, Vancouver, British Columbia, Canada
| | - Tracy Kirkham
- Occupational Cancer Research Centre, Ontario Health, Toronto, Ontario, Canada
- Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Mohammad Ehsanul Karim
- Centre for Advancing Health Outcomes, St. Paul’s Hospital, Vancouver, British Columbia, Canada
- School of Population and Public Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Paul Demers
- Occupational Cancer Research Centre, Ontario Health, Toronto, Ontario, Canada
- Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Jeffrey M. Copp
- British Columbia Emergency Health Services, British Columbia, Canada
| | - Brian Grunau
- Department of Emergency Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Centre for Advancing Health Outcomes, St. Paul’s Hospital, Vancouver, British Columbia, Canada
- Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- British Columbia Resuscitation Research Collaborative, Vancouver, British Columbia, Canada
| |
Collapse
|
3
|
Berman K, Van Slyke G, Novak H, Rock JM, Bievenue R, Damjanovic AK, DeRosa KL, Mirabile G, Phipps K, Machowski J, Bialosuknia S, Giradin RC, Dupuis AP, Payne AF, Lee WT, McDonough KA, Parker MM, Styer LM, Mantis NJ. Quantitating SARS-CoV-2 neutralizing antibodies from human dried blood spots. Microbiol Spectr 2024; 12:e0084624. [PMID: 39470282 PMCID: PMC11619372 DOI: 10.1128/spectrum.00846-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 08/30/2024] [Indexed: 10/30/2024] Open
Abstract
In the earliest days of the COVID-19 pandemic, the collection of dried blood spots (DBS) enabled public health laboratories to undertake population-scale seroprevalence studies used to estimate rates of SARS-CoV-2 exposure. With SARS-CoV-2 seropositivity levels now estimated to exceed 94% in the United States, attention has turned to using DBS to assess neutralizing antibodies within cohorts of interest. With this goal in mind, we generated contrived DBS (cDBS) and whole blood-derived DBS from convalescent and vaccinated individuals and subjected DBS eluates to a battery of assays, including a SARS-CoV-2 multiplexed microsphere immunoassay (MIA), a receptor binding domain (RBD)-human ACE2 inhibition assay (iACE2), a cell-based pseudovirus neutralization assay, and real-time PCR-based surrogate neutralization assay (NAB-Sure). The DBS results were benchmarked against paired serum samples tested in a clinically validated SARS-CoV-2 plaque reduction neutralization titer (PRNT) assay. The results of an 8-plex MIA and NAB-Sure assays demonstrated highly significant correlations with PRNT values when evaluated with a panel of 86 paired serum-DBS samples. Both the MIA and NAB-Sure are adaptable to automated liquid handlers for high-throughput capacity. While neutralizing assays were limited to the ancestral SARS-CoV-2 WA1, this study nonetheless represents an important proof of concept demonstrating the potential utility of DBS as a biospecimen type for use in assessing immunity to SARS-CoV-2 at the community and population levels.IMPORTANCESARS-CoV-2 variants of concern continue to circulate globally and remain a serious health threat to large segments of the population. From a public health standpoint, identifying vulnerable communities based on immune status is critical in terms of vaccine booster recommendations. In this report, we investigated the utility of dried blood spots (DBS) as a biospecimen type from which to estimate SARS-CoV-2 neutralizing antibody titers. Using contrived and whole blood-derived DBS, we demonstrate that SARS-CoV-2 neutralizing antibodies are readily measurable in DBS eluates and correlate with plaque reduction neutralization titer (PRNT) values from paired serum samples. Moreover, several of the methods used to estimate SARS-CoV-2 neutralizing antibodies in DBS eluates are adaptable to high-throughput platforms.
Collapse
Affiliation(s)
- Katherine Berman
- Division of Infectious Disease, Wadsworth Center, New York State Department of Health, Albany, New York, USA
| | - Greta Van Slyke
- Division of Infectious Disease, Wadsworth Center, New York State Department of Health, Albany, New York, USA
| | - Hayley Novak
- Division of Infectious Disease, Wadsworth Center, New York State Department of Health, Albany, New York, USA
| | - Jean M. Rock
- Division of Infectious Disease, Wadsworth Center, New York State Department of Health, Albany, New York, USA
| | - Rachel Bievenue
- Division of Infectious Disease, Wadsworth Center, New York State Department of Health, Albany, New York, USA
| | - Amanda K. Damjanovic
- Division of Infectious Disease, Wadsworth Center, New York State Department of Health, Albany, New York, USA
| | - Kate L. DeRosa
- Division of Infectious Disease, Wadsworth Center, New York State Department of Health, Albany, New York, USA
| | - Gianna Mirabile
- Division of Infectious Disease, Wadsworth Center, New York State Department of Health, Albany, New York, USA
| | - Kara Phipps
- Division of Infectious Disease, Wadsworth Center, New York State Department of Health, Albany, New York, USA
| | - Jessica Machowski
- Division of Infectious Disease, Wadsworth Center, New York State Department of Health, Albany, New York, USA
| | - Sean Bialosuknia
- Division of Infectious Disease, Wadsworth Center, New York State Department of Health, Albany, New York, USA
| | - Roxie C. Giradin
- Division of Infectious Disease, Wadsworth Center, New York State Department of Health, Albany, New York, USA
| | - Alan P. Dupuis
- Division of Infectious Disease, Wadsworth Center, New York State Department of Health, Albany, New York, USA
| | - Anne F. Payne
- Division of Infectious Disease, Wadsworth Center, New York State Department of Health, Albany, New York, USA
| | - William T. Lee
- Division of Infectious Disease, Wadsworth Center, New York State Department of Health, Albany, New York, USA
| | - Kathleen A. McDonough
- Division of Infectious Disease, Wadsworth Center, New York State Department of Health, Albany, New York, USA
| | - Monica M. Parker
- Division of Infectious Disease, Wadsworth Center, New York State Department of Health, Albany, New York, USA
| | - Linda M. Styer
- Division of Infectious Disease, Wadsworth Center, New York State Department of Health, Albany, New York, USA
| | - Nicholas J. Mantis
- Division of Infectious Disease, Wadsworth Center, New York State Department of Health, Albany, New York, USA
| |
Collapse
|
4
|
Figueroa AL, Ali K, Berman G, Zhou H, Deng W, Xu W, Lussier S, Girard B, Dutko FJ, Slobod K, Yeakey A, Priddy F, Miller JM, Das R. Safety and durability of mRNA-1273-induced SARS-CoV-2 immune responses in adolescents: results from the phase 2/3 TeenCOVE trial. EClinicalMedicine 2024; 74:102720. [PMID: 39091673 PMCID: PMC11293523 DOI: 10.1016/j.eclinm.2024.102720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 06/13/2024] [Accepted: 06/20/2024] [Indexed: 08/04/2024] Open
Abstract
Background Longitudinal changes in vaccination-induced immune response remain inadequately characterized in adolescents. We present long-term safety, immunogenicity, and COVID-19 incidence following a 2-dose mRNA-1273 100-μg primary series, and immunogenicity following a single dose of mRNA-1273 50 μg in vaccine-naïve adolescents. Methods TeenCOVE (NCT04649151) Part 1 randomized adolescents (12-17 years) to 2-dose mRNA-1273 100 μg (n = 2490) or placebo (n = 1243) 28 days apart. Subsequently, placebo recipients (n = 91) could receive open-label mRNA-1273. Primary objectives included prespecified adverse events through 12 months; secondary objectives were COVID-19 incidence and neutralizing and spike-binding antibodies (nAbs/bAbs) against SARS-CoV-2 (ancestral/variants) through 12 months (study period: December 2020-January 2022). In Part 2, vaccine-naïve adolescents (n = 52) received up to 2 doses of mRNA-1273 50 μg; interim analysis included Day 28 (D28) nAbs post-injection 1 in SARS-CoV-2-baseline-positive participants (serologic/virologic evidence of prior infection). Findings In SARS-CoV-2-baseline-negative adolescents (N = 369), mRNA-1273 induced robust nAb responses versus baseline (geometric mean concentration [GMC] = 11; 95% CI, 11-12) at D28 (1868 [1759-1985]), 6 months (625 [583-670]) and 12 months (550 [490-618]) post-injection 2. Similar bAb responses were observed to alpha/beta/delta/gamma variants; nAb/bAb responses were similar in SARS-CoV-2-baseline-positive adolescents. The 2-dose mRNA-1273 100-μg primary series was generally well-tolerated; one case of nonserious, moderate, probable acute myocarditis resolved by 8 days from symptom onset. A single dose of mRNA-1273 50 μg in SARS-CoV-2-baseline-positive adolescents induced higher D28 nAb GMCs against ancestral SARS-CoV-2 than 2-dose mRNA-1273 100 μg in young adults (geometric mean ratio = 4.322 [3.274-5.707]). Interpretation The overall risk-benefit profile of mRNA-1273 remains favorable in adolescents, with durable 12-month immune responses against SARS-CoV-2 (ancestral/variants). A single mRNA-1273 50-μg injection in vaccine-naïve adolescents elicited robust immune responses against SARS-CoV-2. Funding This project has been funded in whole or in part with federal funds by the Department of Health and Human Services, United States; Administration for Strategic Preparedness and Response, United States; Biomedical Advanced Research and Development Authority, United States, under Contract No. 75A50120C00034. The findings and conclusions in this report are those of the authors and do not necessarily represent the views of the Department of Health and Human Services or its components.
Collapse
Affiliation(s)
| | - Kashif Ali
- Kool Kids Pediatrics, DM Clinical Research, Houston, TX, USA
| | - Gary Berman
- Clinical Research Institute, Minneapolis, MN, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Shengule S, Alai S, Bhandare S, Patil S, Gautam M, Mangaonkar B, Gupta S, Shaligram U, Gairola S. Validation and Suitability Assessment of Multiplex Mesoscale Discovery Immunogenicity Assay for Establishing Serological Signatures Using Vaccinated, Non-Vaccinated and Breakthrough SARS-CoV-2 Infected Cases. Vaccines (Basel) 2024; 12:433. [PMID: 38675815 PMCID: PMC11053742 DOI: 10.3390/vaccines12040433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/12/2024] [Accepted: 03/23/2024] [Indexed: 04/28/2024] Open
Abstract
Antibody responses to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are multi-targeted and variable over time. Multiplex quantitative serological assays are needed to provide accurate and robust seropositivity data for the establishment of serological signatures during vaccination and or infection. We describe here the validation and evaluation of an electro-chemiluminescence (ECL)-based Mesoscale Discovery assay (MSD) for estimation of total and functional IgG relative to SARS-CoV-2 spike, nucleocapsid and receptor binding (RBD) proteins in human serum samples to establish serological signatures of SARS-CoV-2 natural infection and breakthrough cases. The 9-PLEX assay was validated as per ICH, EMA, and US FDA guidelines using a panel of sera samples, including the NIBSC/WHO reference panel (20/268). The assay demonstrated high specificity and selectivity in inhibition assays, wherein the homologous inhibition was more than 85% and heterologous inhibition was below 10%. The assay also met predetermined acceptance criteria for precision (CV < 20%), accuracy (70-130%) and dilutional linearity. The method's applicability to serological signatures was demonstrated using sera samples (n = 45) representing vaccinated, infected and breakthrough cases. The method was able to establish distinct serological signatures and thus provide a potential tool for seroprevalence of SARS-CoV-2 during vaccination or infection.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Sunil Gairola
- Clinical Bioanalytical Department, Serum Institute of India Pvt. Ltd., Pune 411028, India; (S.S.); (S.A.); (M.G.); (U.S.)
| |
Collapse
|
6
|
Liu R, Natekar JP, Kim KH, Pathak H, Bhatnagar N, Raha JR, Park BR, Guglani A, Shin CH, Kumar M, Kang SM. Multivalent and Sequential Heterologous Spike Protein Vaccinations Effectively Induce Protective Humoral Immunity against SARS-CoV-2 Variants. Vaccines (Basel) 2024; 12:362. [PMID: 38675744 PMCID: PMC11053539 DOI: 10.3390/vaccines12040362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 03/23/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
The emergence of new SARS-CoV-2 variants continues to cause challenging problems for the effective control of COVID-19. In this study, we tested the hypothesis of whether a strategy of multivalent and sequential heterologous spike protein vaccinations would induce a broader range and higher levels of neutralizing antibodies against SARS-CoV-2 variants and more effective protection than homologous spike protein vaccination in a mouse model. We determined spike-specific IgG, receptor-binding inhibition titers, and protective efficacy in the groups of mice that were vaccinated with multivalent recombinant spike proteins (Wuhan, Delta, Omicron), sequentially with heterologous spike protein variants, or with homologous spike proteins. Trivalent (Wuhan + Delta + Omicron) and sequential heterologous spike protein vaccinations were more effective in inducing serum inhibition activities of receptor binding to spike variants and virus neutralizing antibody titers than homologous spike protein vaccination. The higher efficacy of protection was observed in mice with trivalent and sequential heterologous spike protein vaccination after a challenge with a mouse-adapted SARS-CoV-2 MA10 strain compared to homologous spike protein vaccination. This study provides evidence that a strategy of multivalent and sequential heterologous variant spike vaccination might provide more effective protection against emerging SARS-CoV-2 variants than homologous spike vaccination and significantly alleviate severe inflammation due to COVID-19.
Collapse
Affiliation(s)
- Rong Liu
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA; (R.L.); (K.-H.K.); (N.B.); (J.R.R.); (B.R.P.); (C.H.S.)
| | - Janhavi P. Natekar
- Department of Biology, College of Arts and Sciences, Georgia State University, Atlanta, GA 30303, USA; (J.P.N.); (H.P.)
| | - Ki-Hye Kim
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA; (R.L.); (K.-H.K.); (N.B.); (J.R.R.); (B.R.P.); (C.H.S.)
| | - Heather Pathak
- Department of Biology, College of Arts and Sciences, Georgia State University, Atlanta, GA 30303, USA; (J.P.N.); (H.P.)
| | - Noopur Bhatnagar
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA; (R.L.); (K.-H.K.); (N.B.); (J.R.R.); (B.R.P.); (C.H.S.)
| | - Jannatul Ruhan Raha
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA; (R.L.); (K.-H.K.); (N.B.); (J.R.R.); (B.R.P.); (C.H.S.)
| | - Bo Ryoung Park
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA; (R.L.); (K.-H.K.); (N.B.); (J.R.R.); (B.R.P.); (C.H.S.)
| | - Anchala Guglani
- Department of Biology, College of Arts and Sciences, Georgia State University, Atlanta, GA 30303, USA; (J.P.N.); (H.P.)
| | - Chong Hyun Shin
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA; (R.L.); (K.-H.K.); (N.B.); (J.R.R.); (B.R.P.); (C.H.S.)
| | - Mukesh Kumar
- Department of Biology, College of Arts and Sciences, Georgia State University, Atlanta, GA 30303, USA; (J.P.N.); (H.P.)
| | - Sang-Moo Kang
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA; (R.L.); (K.-H.K.); (N.B.); (J.R.R.); (B.R.P.); (C.H.S.)
| |
Collapse
|
7
|
Goguet E, Olsen CH, Meyer WA, Ansari S, Powers JH, Conner TL, Coggins SA, Wang W, Wang R, Illinik L, Sanchez Edwards M, Jackson-Thompson BM, Hollis-Perry M, Wang G, Alcorta Y, Wong MA, Saunders D, Mohammed R, Balogun B, Kobi P, Kosh L, Bishop-Lilly K, Cer RZ, Arnold CE, Voegtly LJ, Fitzpatrick M, Luquette AE, Malagon F, Ortega O, Parmelee E, Davies J, Lindrose AR, Haines-Hull H, Moser MS, Samuels EC, Rekedal MS, Graydon EK, Malloy AMW, Tribble D, Burgess TH, Campbell W, Robinson S, Broder CC, O’Connell RJ, Weiss CD, Pollett S, Laing E, Mitre E. Immune and behavioral correlates of protection against symptomatic post-vaccination SARS-CoV-2 infection. Front Immunol 2024; 15:1287504. [PMID: 38566991 PMCID: PMC10985347 DOI: 10.3389/fimmu.2024.1287504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 02/27/2024] [Indexed: 04/04/2024] Open
Abstract
Introduction We sought to determine pre-infection correlates of protection against SARS-CoV-2 post-vaccine inzfections (PVI) acquired during the first Omicron wave in the United States. Methods Serum and saliva samples from 176 vaccinated adults were collected from October to December of 2021, immediately before the Omicron wave, and assessed for SARS-CoV-2 Spike-specific IgG and IgA binding antibodies (bAb). Sera were also assessed for bAb using commercial assays, and for neutralization activity against several SARS-CoV-2 variants. PVI duration and severity, as well as risk and precautionary behaviors, were assessed by questionnaires. Results Serum anti-Spike IgG levels assessed by research assay, neutralization titers against Omicron subvariants, and low home risk scores correlated with protection against PVIs after multivariable regression analysis. Commercial assays did not perform as well as research assay, likely due to their lower dynamic range. Discussion In the 32 participants that developed PVI, anti-Spike IgG bAbs correlated with lower disease severity and shorter duration of illness.
Collapse
Affiliation(s)
- Emilie Goguet
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
| | - Cara H. Olsen
- Department of Preventive Medicine & Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | | | - Sara Ansari
- Quest Diagnostics, Secaucus, NJ, United States
| | - John H. Powers
- Clinical Research Directorate, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Tonia L. Conner
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Si’Ana A. Coggins
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
| | - Wei Wang
- Division of Viral Products, Office of Vaccine Research and Review, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, United States
| | - Richard Wang
- Division of Viral Products, Office of Vaccine Research and Review, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, United States
| | - Luca Illinik
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Margaret Sanchez Edwards
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Belinda M. Jackson-Thompson
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
| | - Monique Hollis-Perry
- Clinical Trials Center, Infectious Diseases Directorate, Naval Medical Research Center, Silver Spring, MD, United States
| | - Gregory Wang
- Clinical Trials Center, Infectious Diseases Directorate, Naval Medical Research Center, Silver Spring, MD, United States
- General Dynamics Information Technology, Falls Church, VA, United States
| | - Yolanda Alcorta
- Clinical Trials Center, Infectious Diseases Directorate, Naval Medical Research Center, Silver Spring, MD, United States
- General Dynamics Information Technology, Falls Church, VA, United States
| | - Mimi A. Wong
- Clinical Trials Center, Infectious Diseases Directorate, Naval Medical Research Center, Silver Spring, MD, United States
- General Dynamics Information Technology, Falls Church, VA, United States
| | - David Saunders
- Translational Medicine Unit, Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Roshila Mohammed
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Bolatito Balogun
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Priscilla Kobi
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Lakeesha Kosh
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Kimberly Bishop-Lilly
- Biological Defense Research Directorate, Naval Medical Research Command, Fort Detrick, MD, United States
| | - Regina Z. Cer
- Biological Defense Research Directorate, Naval Medical Research Command, Fort Detrick, MD, United States
| | - Catherine E. Arnold
- Biological Defense Research Directorate, Naval Medical Research Command, Fort Detrick, MD, United States
- Defense Threat Reduction Agency, Fort Belvoir, VA, United States
| | - Logan J. Voegtly
- Biological Defense Research Directorate, Naval Medical Research Command, Fort Detrick, MD, United States
- Leidos, Reston, VA, United States
| | - Maren Fitzpatrick
- Biological Defense Research Directorate, Naval Medical Research Command, Fort Detrick, MD, United States
- Leidos, Reston, VA, United States
| | - Andrea E. Luquette
- Biological Defense Research Directorate, Naval Medical Research Command, Fort Detrick, MD, United States
- Leidos, Reston, VA, United States
| | - Francisco Malagon
- Biological Defense Research Directorate, Naval Medical Research Command, Fort Detrick, MD, United States
- Leidos, Reston, VA, United States
| | - Orlando Ortega
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Edward Parmelee
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Julian Davies
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Alyssa R. Lindrose
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
| | - Hannah Haines-Hull
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
| | - Matthew S. Moser
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
| | - Emily C. Samuels
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
| | - Marana S. Rekedal
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
| | - Elizabeth K. Graydon
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
| | - Allison M. W. Malloy
- Department of Pediatrics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - David R. Tribble
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Timothy H. Burgess
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Wesley Campbell
- Division of Infectious Diseases, Walter Reed National Military Medical Center, Bethesda, MD, United States
| | - Sara Robinson
- Division of Infectious Diseases, Walter Reed National Military Medical Center, Bethesda, MD, United States
| | - Christopher C. Broder
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Robert J. O’Connell
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Carol D. Weiss
- Division of Viral Products, Office of Vaccine Research and Review, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, United States
| | - Simon Pollett
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Eric D. Laing
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Edward Mitre
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| |
Collapse
|
8
|
Haun BK, To A, Williams CA, Ball A, Fong K, Wong TAS, Shobayo B, Teahton J, Ching L, Kamara V, Tekah DM, Humphrey P, Berestecky J, Nerurkar VR, Lehrer AT. A Serological Multiplexed Immunoassay (MIA) Detects Antibody Reactivity to SARS-CoV-2 and Other Viral Pathogens in Liberia and Is Configurable as a Multiplexed Inhibition Test (MINT). IMMUNO 2024; 4:108-124. [PMID: 39391865 PMCID: PMC11465787 DOI: 10.3390/immuno4010007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024] Open
Abstract
The SARS-CoV-2 pandemic ignited global efforts to rapidly develop testing, therapeutics, and vaccines. However, the rewards of these efforts were slow to reach many low- to middle-income countries (LMIC) across the African continent and globally. Therefore, two bead-based multiplexed serological assays were developed to determine SARS-CoV-2 exposure across four counties in Liberia. This study was conducted during the summer of 2021 on 189 samples collected throughout Grand Bassa, Bong, Margibi, and Montserrado counties. Our multiplexed immunoassay (MIA) detected elevated exposure to SARS-CoV-2 and multiple variant antigens. Additionally, we detected evidence of exposure to Dengue virus serotype 2, Chikungunya virus, and the seasonal coronavirus NL63. Our multiplexed inhibition test (MINT) was developed from the MIA to observe antibody-mediated inhibition of SARS-CoV-2 spike protein binding to its cognate cellular receptor ACE-2. We detected inhibitory antibodies in the tested Liberian samples, which were collectively consistent with a convalescent serological profile. These complementary assays serve to supplement existing serological testing needs and may enhance the technical capacity of scientifically underrepresented regions globally.
Collapse
Affiliation(s)
- Brien K. Haun
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, USA
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, USA
| | - Albert To
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, USA
| | - Caitlin A. Williams
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, USA
| | - Aquena Ball
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, USA
| | - Karalyn Fong
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, USA
| | - Teri Ann S. Wong
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, USA
| | - Bode Shobayo
- National Public Health Institute of Liberia, Monrovia 1000, Liberia
| | - Julius Teahton
- National Public Health Institute of Liberia, Monrovia 1000, Liberia
| | - Lauren Ching
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, USA
| | - Varney Kamara
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, USA
- Department of Biological Sciences, Medical Science, TJR Faulkner College of Science and Technology, University of Liberia, Fendall 1000, Liberia
| | - Davidetta M. Tekah
- Department of Biological Sciences, Medical Science, TJR Faulkner College of Science and Technology, University of Liberia, Fendall 1000, Liberia
| | - Peter Humphrey
- Department of Biological Sciences, Medical Science, TJR Faulkner College of Science and Technology, University of Liberia, Fendall 1000, Liberia
| | - John Berestecky
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, USA
- Department of Biological Sciences, Medical Science, TJR Faulkner College of Science and Technology, University of Liberia, Fendall 1000, Liberia
- Math Science Department, Kapiolani Community College, University of Hawaii, Honolulu, HI 96816, USA
| | - Vivek R. Nerurkar
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, USA
| | - Axel T. Lehrer
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, USA
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, USA
| |
Collapse
|
9
|
Almeida ND, Schiller I, Ke D, Sakr E, Plesa M, Vanamala S, Moneger AL, Bazan M, Lucchesi C, Wozniak N, Fritz JH, Piccirillo CA, Pelchat M, Arnold C, Galipeau Y, McCluskie PS, Langlois MA, Dasgupta K, Mazer BD. The effect of dose-interval on antibody response to mRNA COVID-19 vaccines: a prospective cohort study. Front Immunol 2024; 15:1330549. [PMID: 38433831 PMCID: PMC10904688 DOI: 10.3389/fimmu.2024.1330549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/25/2024] [Indexed: 03/05/2024] Open
Abstract
Background Vaccination against COVID-19 is highly effective in preventing severe disease and hospitalization, but primary COVID mRNA vaccination schedules often differed from those recommended by the manufacturers due to supply chain issues. We investigated the impact of delaying the second dose on antibody responses to COVID mRNA-vaccines in a prospective cohort of health-care workers in Quebec. Methods We recruited participants from the McGill University Health Centre who provided serum or participant-collected dried blood samples (DBS) at 28-days, 3 months, and 6 months post-second dose and at 28-days after a third dose. IgG antibodies to SARS-CoV2 spike (S), the receptor-binding domain (RBD), nucleocapsid (N) and neutralizing antibodies to the ancestral strain were assessed by enzyme-linked immunosorbent assay (ELISA). We examined associations between long (≤89 days) versus short (<89 days) between-dose intervals and antibody response through multivariable mixed-effects models adjusted for age, sex, prior covid infection status, time since vaccine dose, and assay batch. Findings The cohort included 328 participants who received up to three vaccine doses (>80% Pfizer-BioNTech). Weighted averages of the serum (n=744) and DBS (n=216) cohort results from the multivariable models showed that IgG anti-S was 31% higher (95% CI: 12% to 53%) and IgG anti-RBD was 37% higher (95% CI: 14% to 65%) in the long vs. short interval participants, across all time points. Interpretation Our study indicates that extending the covid primary series between-dose interval beyond 89 days (approximately 3 months) provides stronger antibody responses than intervals less than 89 days. Our demonstration of a more robust antibody response with a longer between dose interval is reassuring as logistical and supply challenges are navigated in low-resource settings.
Collapse
Affiliation(s)
- Nisha D. Almeida
- Department of Medicine, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
- Health Technology Assessment Unit, McGill University Health Centre, Montreal, QC, Canada
| | - Ian Schiller
- Health Technology Assessment Unit, McGill University Health Centre, Montreal, QC, Canada
- Centre for Outcomes Research and Evaluation, Research Institute of the McGill University Health Center, Montreal, QC, Canada
| | - Danbing Ke
- Translational Research in Respiratory Diseases, Meakins-Christie Laboratories, Research Institute of the McGill University Health Center, Montreal, QC, Canada
| | - Elsa Sakr
- Translational Research in Respiratory Diseases, Meakins-Christie Laboratories, Research Institute of the McGill University Health Center, Montreal, QC, Canada
| | - Maria Plesa
- Translational Research in Respiratory Diseases, Meakins-Christie Laboratories, Research Institute of the McGill University Health Center, Montreal, QC, Canada
| | - Sandeep Vanamala
- Translational Research in Respiratory Diseases, Meakins-Christie Laboratories, Research Institute of the McGill University Health Center, Montreal, QC, Canada
| | - Anne-Laure Moneger
- Translational Research in Respiratory Diseases, Meakins-Christie Laboratories, Research Institute of the McGill University Health Center, Montreal, QC, Canada
| | - Maria Bazan
- Translational Research in Respiratory Diseases, Meakins-Christie Laboratories, Research Institute of the McGill University Health Center, Montreal, QC, Canada
| | - Chiara Lucchesi
- Translational Research in Respiratory Diseases, Meakins-Christie Laboratories, Research Institute of the McGill University Health Center, Montreal, QC, Canada
| | - Natalia Wozniak
- Translational Research in Respiratory Diseases, Meakins-Christie Laboratories, Research Institute of the McGill University Health Center, Montreal, QC, Canada
| | - Jorg H. Fritz
- Goodman Cancer Centre, and Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
| | - Ciriaco A. Piccirillo
- Infectious Diseases and Immunology in Global Health Program, Research Institute of Research Institute of the McGill University Health Center, and Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
| | - Martin Pelchat
- Faculty of Medicine, Department of Biochemistry, Microbiology and Immunology and University of Ottawa, Ottawa, ON, Canada
| | - Corey Arnold
- Faculty of Medicine, Department of Biochemistry, Microbiology and Immunology and University of Ottawa, Ottawa, ON, Canada
| | - Yannick Galipeau
- Faculty of Medicine, Department of Biochemistry, Microbiology and Immunology and University of Ottawa, Ottawa, ON, Canada
| | - Pauline S. McCluskie
- Faculty of Medicine, Department of Biochemistry, Microbiology and Immunology and University of Ottawa, Ottawa, ON, Canada
| | - Marc-Andre Langlois
- Faculty of Medicine, Department of Biochemistry, Microbiology and Immunology and University of Ottawa, Ottawa, ON, Canada
| | - Kaberi Dasgupta
- Department of Medicine, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
- Centre for Outcomes Research and Evaluation, Research Institute of the McGill University Health Center, Montreal, QC, Canada
| | - Bruce D. Mazer
- Translational Research in Respiratory Diseases, Meakins-Christie Laboratories, Research Institute of the McGill University Health Center, Montreal, QC, Canada
- Department of Pediatrics, Faculty of Medicine and Health Sciences, McGill University, Montréal, QC, Canada
| |
Collapse
|
10
|
Ranjbaran H, Ehteshaminia Y, Nadernezhad M, Jalali SF, Jadidi-Niaragh F, Pagheh AS, Enderami SE, Kenari SA, Hassannia H. Comparison of neutralization potency across passive immunotherapy approaches as potential treatments for emerging infectious diseases. Heliyon 2024; 10:e23478. [PMID: 38226283 PMCID: PMC10788261 DOI: 10.1016/j.heliyon.2023.e23478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/01/2023] [Accepted: 12/05/2023] [Indexed: 01/17/2024] Open
Abstract
The use of passive immunotherapy, either as plasma or purified antibodies, has been recommended to treat the emerging infectious diseases (EIDs) in the absence of alternative therapeutic options. Here, we compare the neutralization potency of various passive immunotherapy approaches designed to provide the immediate neutralizing antibodies as potential EID treatments. To prepare human plasma and purified IgG, we screened and classified individuals into healthy, convalescent, and vaccinated groups against SARS-CoV-2 using qRT-PCR, anti-nucleocapsid, and anti-spike tests. Moreover, we prepared purified IgG from non-immunized and hyperimmunized rabbits against SARS-CoV-2 spike protein. Human and rabbit samples were used to evaluate the neutralization potency by sVNT. All vaccinated and convalescent human plasma and purified IgG groups, as well as purified IgG from hyperimmunized rabbits, had significantly greater levels of spike-specific antibodies than the control groups. Furthermore, when compared to the other groups, the purified IgG from hyperimmunized rabbits exhibited superior levels of neutralizing antibodies, with an IC50 value of 2.08 μg/ml. Additionally, our results indicated a statistically significant positive correlation between the neutralization IC50 value and the positive endpoint concentration of spike-specific antibodies. In conclusion, our study revealed that purified IgG from hyperimmunized animals has greater neutralization potency than other passive immunotherapy methods and may be the most suitable treatment of critically ill patients in EIDs.
Collapse
Affiliation(s)
- Hossein Ranjbaran
- Immunogenetics Research Center, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Yahya Ehteshaminia
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammadreza Nadernezhad
- Division of Microbiology, Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyedeh Farzaneh Jalali
- Department of Hematology, Faculty of Allied Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | | | - Abdol Sattar Pagheh
- Infectious Diseases Research Center, Birjand University of Medical Science, Birjand, Iran
| | - Seyed Ehsan Enderami
- Immunogenetics Research Center, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Saeid Abedian Kenari
- Immunogenetics Research Center, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Hadi Hassannia
- Immunogenetics Research Center, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- Department of Paramedicine, Amol School of Paramedical Sciences, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
11
|
Dowell AC, Tut G, Begum J, Bruton R, Bentley C, Butler M, Uwenedi G, Zuo J, Powell AA, Brent AJ, Brent B, Baawuah F, Okike I, Beckmann J, Ahmad S, Aiano F, Garstang J, Ramsay ME, Moss P, Ladhani SN. Nasal mucosal IgA levels against SARS-CoV-2 and seasonal coronaviruses are low in children but boosted by reinfection. J Infect 2023; 87:403-412. [PMID: 37660754 DOI: 10.1016/j.jinf.2023.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/25/2023] [Accepted: 08/29/2023] [Indexed: 09/05/2023]
Abstract
Repeated coronavirus infections in childhood drive progressive maturation of systemic immune responses into adulthood. Analyses of immune responses in children have focused primarily upon systemic assessment but the importance of mucosal immunity is increasingly recognised. We studied virus-specific antibody responses in contemporaneous nasal swabs and blood samples from 99 children (4-15 years) and 28 adults (22-56 years), all of whom had prior SARS-CoV-2 infection. Whilst mucosal IgA titres against Influenza and Respiratory Syncytial virus were comparable between children and adults, those against all coronaviruses, including SARS-CoV-2, were lower in children. Mucosal IgA antibodies demonstrated comparable relative neutralisation capacity in both groups and retained activity against recent omicron variants such as XBB.1 which are highly evasive of IgG neutralisation. SARS-CoV-2 reinfection preferentially enhanced mucosal IgA responses whilst the impact of vaccination was more modest. Nasal IgA levels against coronaviruses thus display a pattern of incremental response to reinfection which likely determines the natural history of reinfection. This highlights the particular significance of developing mucosal vaccines against coronaviruses in children.
Collapse
Affiliation(s)
- Alexander C Dowell
- Institute of Immunology & Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Gokhan Tut
- Institute of Immunology & Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Jusnara Begum
- Institute of Immunology & Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Rachel Bruton
- Institute of Immunology & Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Christopher Bentley
- Institute of Immunology & Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Megan Butler
- Institute of Immunology & Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Grace Uwenedi
- Institute of Immunology & Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Jianmin Zuo
- Institute of Immunology & Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Annabel A Powell
- Immunisation Department, UK Health Security Agency, 61 Colindale Avenue, London, United Kingdom
| | - Andrew J Brent
- Oxford University Hospitals NHS Foundation Trust, Old Road, Oxford, United Kingdom; University of Oxford, Wellington Square, Oxford, United Kingdom
| | - Bernadette Brent
- Oxford University Hospitals NHS Foundation Trust, Old Road, Oxford, United Kingdom
| | - Frances Baawuah
- Immunisation Department, UK Health Security Agency, 61 Colindale Avenue, London, United Kingdom
| | - Ifeanyichukwu Okike
- Immunisation Department, UK Health Security Agency, 61 Colindale Avenue, London, United Kingdom; University Hospitals of Derby and Burton NHS Foundation Trust, Uttoxeter New Road, Derby, United Kingdom
| | - Joanne Beckmann
- East London NHS Foundation Trust, 9 Allie Street, London, United Kingdom
| | - Shazaad Ahmad
- Manchester University NHS Foundation Trust, Oxford Road, Manchester, United Kingdom
| | - Felicity Aiano
- Immunisation Department, UK Health Security Agency, 61 Colindale Avenue, London, United Kingdom
| | - Joanna Garstang
- Birmingham Community Healthcare NHS Trust, Holt Street, Aston, United Kingdom
| | - Mary E Ramsay
- Immunisation Department, UK Health Security Agency, 61 Colindale Avenue, London, United Kingdom
| | - Paul Moss
- Institute of Immunology & Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom.
| | - Shamez N Ladhani
- Immunisation Department, UK Health Security Agency, 61 Colindale Avenue, London, United Kingdom.
| |
Collapse
|
12
|
Sobhani K, Cheng S, Binder RA, Mantis NJ, Crawford JM, Okoye N, Braun JG, Joung S, Wang M, Lozanski G, King CL, Roback JD, Granger DA, Boppana SB, Karger AB. Clinical Utility of SARS-CoV-2 Serological Testing and Defining a Correlate of Protection. Vaccines (Basel) 2023; 11:1644. [PMID: 38005976 PMCID: PMC10674881 DOI: 10.3390/vaccines11111644] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/12/2023] [Accepted: 10/18/2023] [Indexed: 11/26/2023] Open
Abstract
Herein, we review established clinical use cases for SARS-CoV-2 antibody measures, which include diagnosis of recent prior infection, isolating high titer convalescent plasma, diagnosing multisystem inflammatory syndrome in children (MIS-C), and booster dosing in the immunosuppressed and other populations. We then address whether an antibody correlate of protection (CoP) for SARS-CoV-2 has been successfully defined with the following considerations: Antibody responses in the immunocompetent, vaccine type, variants, use of binding antibody tests vs. neutralization tests, and endpoint measures. In the transition from the COVID-19 pandemic to endemic, there has been much interest in defining an antibody CoP. Due to the high mutability of respiratory viruses and our current knowledge of SARS-CoV-2 variants defining a CoP for prevention of infection is unrealistic. However, a CoP may be defined for prevention of severe disease requiring hospitalization and/or death. Most SARS-CoV-2 CoP research has focused on neutralization measurements. However, there can be significant differences in neutralization test methods, and disparate responses to new variants depending on format. Furthermore, neutralization assays are often impractical for high throughput applications (e.g., assessing humoral immune response in populations or large cohorts). Nevertheless, CoP studies using neutralization measures are reviewed to determine where there is consensus. Alternatively, binding antibody tests could be used to define a CoP. Binding antibody assays tend to be highly automatable, high throughput, and therefore practical for large population applications. Again, we review studies for consensus on binding antibody responses to vaccines, focusing on standardized results. Binding antibodies directed against the S1 receptor binding domain (S1-RBD) of the viral spike protein can provide a practical, indirect measure of neutralization. Initially, a response for S1-RBD antibodies may be selected that reflects the peak response in immunocompetent populations and may serve as a target for booster dosing in the immunocompromised. From existing studies reporting peak S1-RBD responses in standardized units, an approximate range of 1372-2744 BAU/mL for mRNA and recombinant protein vaccines was extracted that could serve as an initial CoP target. This target would need to be confirmed and potentially adjusted for updated vaccines, and almost certainly for other vaccine formats (i.e., viral vector). Alternatively, a threshold or response could be defined based on outcomes over time (i.e., prevention of severe disease). We also discuss the precedent for clinical measurement of antibodies for vaccine-preventable diseases (e.g., hepatitis B). Lastly, cellular immunity is briefly addressed for its importance in the nature and durability of protection.
Collapse
Affiliation(s)
- Kimia Sobhani
- Department of Pathology and Laboratory Medicine, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Susan Cheng
- Department of Cardiology, Smidt Heart Institute, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA; (S.C.)
| | - Raquel A. Binder
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Nicholas J. Mantis
- Wadsworth Center, New York State Department of Health, Albany, NY 12201, USA
- Department of Biomedical Sciences, School of Public Health, University at Albany, Albany, NY 12222, USA
| | - James M. Crawford
- Department of Pathology and Laboratory Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
| | - Nkemakonam Okoye
- Department of Pathology and Laboratory Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
| | - Jonathan G. Braun
- Department of Pathology and Laboratory Medicine, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA
- F. Widjaja Inflammatory Bowel Disease Institute, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Sandy Joung
- Department of Cardiology, Smidt Heart Institute, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA; (S.C.)
| | - Minhao Wang
- Department of Cardiology, Smidt Heart Institute, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA; (S.C.)
| | - Gerard Lozanski
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Christopher L. King
- Department of Pathology, Case Western Reserve University and Veterans Affairs Research Service, Cleveland, OH 44106, USA
| | - John D. Roback
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Douglas A. Granger
- Institute for Interdisciplinary Salivary Bioscience Research, University of California Irvine, Irvine, CA 92697, USA
| | - Suresh B. Boppana
- Department of Pediatrics and Department of Microbiology, Heersink School of Medicine, UAB, Birmingham, AL 35233, USA
| | - Amy B. Karger
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA;
| |
Collapse
|
13
|
Zendt M, Bustos Carrillo FA, Kelly S, Saturday T, DeGrange M, Ginigeme A, Wu L, Callier V, Ortega-Villa A, Faust M, Chang-Rabley E, Bugal K, Kenney H, Khil P, Youn JH, Osei G, Regmi P, Anderson V, Bosticardo M, Daub J, DiMaggio T, Kreuzburg S, Pala F, Pfister J, Treat J, Ulrick J, Karkanitsa M, Kalish H, Kuhns DB, Priel DL, Fink DL, Tsang JS, Sparks R, Uzel G, Waldman MA, Zerbe CS, Delmonte OM, Bergerson JRE, Das S, Freeman AF, Lionakis MS, Sadtler K, van Doremalen N, Munster V, Notarangelo LD, Holland SM, Ricotta EE. Characterization of the antispike IgG immune response to COVID-19 vaccines in people with a wide variety of immunodeficiencies. SCIENCE ADVANCES 2023; 9:eadh3150. [PMID: 37824621 PMCID: PMC10569702 DOI: 10.1126/sciadv.adh3150] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 09/07/2023] [Indexed: 10/14/2023]
Abstract
Research on coronavirus disease 2019 vaccination in immune-deficient/disordered people (IDP) has focused on cancer and organ transplantation populations. In a prospective cohort of 195 IDP and 35 healthy volunteers (HV), antispike immunoglobulin G (IgG) was detected in 88% of IDP after dose 2, increasing to 93% by 6 months after dose 3. Despite high seroconversion, median IgG levels for IDP never surpassed one-third that of HV. IgG binding to Omicron BA.1 was lowest among variants. Angiotensin-converting enzyme 2 pseudo-neutralization only modestly correlated with antispike IgG concentration. IgG levels were not significantly altered by receipt of different messenger RNA-based vaccines, immunomodulating treatments, and prior severe acute respiratory syndrome coronavirus 2 infections. While our data show that three doses of coronavirus disease 2019 vaccinations induce antispike IgG in most IDP, additional doses are needed to increase protection. Because of the notably reduced IgG response to Omicron BA.1, the efficacy of additional vaccinations, including bivalent vaccines, should be studied in this population.
Collapse
Affiliation(s)
- Mackenzie Zendt
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research (DIR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Fausto A. Bustos Carrillo
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research (DIR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
- Office of Data Science and Emerging Technologies, Office of Science Management and Operations, NIAID, NIH, Rockville, MD, USA
| | - Sophie Kelly
- Trans-NIH Shared Resource on Biomedical Engineering and Physical Science, National Institute of Biomedical Imaging and Bioengineering (NIBIB), NIH, Bethesda, MD, USA
| | | | - Maureen DeGrange
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research (DIR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
- Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Anita Ginigeme
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research (DIR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
- Medical Science and Computing LLC, Rockville, MD, USA
| | - Lurline Wu
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research (DIR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Viviane Callier
- Clinical Monitoring Research Program Directorate, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Ana Ortega-Villa
- Biostatistics Research Branch, Division of Clinical Research, NIAID, NIH, Rockville, MD, USA
| | | | - Emma Chang-Rabley
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research (DIR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Kara Bugal
- Division of Laboratory Medicine, NIH Clinical Center, Bethesda, MD,USA
| | - Heather Kenney
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research (DIR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Pavel Khil
- Division of Laboratory Medicine, NIH Clinical Center, Bethesda, MD,USA
| | - Jung-Ho Youn
- Division of Laboratory Medicine, NIH Clinical Center, Bethesda, MD,USA
| | - Gloria Osei
- Division of Laboratory Medicine, NIH Clinical Center, Bethesda, MD,USA
| | - Pravesh Regmi
- Division of Laboratory Medicine, NIH Clinical Center, Bethesda, MD,USA
| | - Victoria Anderson
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research (DIR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Marita Bosticardo
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research (DIR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Janine Daub
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research (DIR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Thomas DiMaggio
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research (DIR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Samantha Kreuzburg
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research (DIR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Francesca Pala
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research (DIR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Justina Pfister
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research (DIR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Jennifer Treat
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research (DIR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Jean Ulrick
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research (DIR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | | | - Heather Kalish
- Trans-NIH Shared Resource on Biomedical Engineering and Physical Science, National Institute of Biomedical Imaging and Bioengineering (NIBIB), NIH, Bethesda, MD, USA
| | - Douglas B. Kuhns
- Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Debra L. Priel
- Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Danielle L. Fink
- Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - John S. Tsang
- Department of Immunobiology and Yale Center for Systems and Engineering Immunology, Yale School of Medicine, New Haven, CT, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT,USA
| | - Rachel Sparks
- Laboratory of Immune System Biology, DIR, NIAID, NIH, Bethesda, MD,USA
| | - Gulbu Uzel
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research (DIR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Meryl A. Waldman
- Kidney Disease Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD, USA
| | - Christa S. Zerbe
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research (DIR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Ottavia M. Delmonte
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research (DIR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Jenna R. E. Bergerson
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research (DIR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Sanchita Das
- Division of Laboratory Medicine, NIH Clinical Center, Bethesda, MD,USA
| | - Alexandra F. Freeman
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research (DIR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Michail S. Lionakis
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research (DIR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Kaitlyn Sadtler
- Section for Immunoengineering, NIBIB, NIH, Bethesda, MD, USA
| | | | | | - Luigi D. Notarangelo
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research (DIR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Steven M. Holland
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research (DIR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Emily E. Ricotta
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research (DIR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| |
Collapse
|
14
|
Jay C, Adland E, Csala A, Lim N, Longet S, Ogbe A, Ratcliff J, Sampson O, Thompson CP, Turtle L, Barnes E, Dunachie S, Klenerman P, Carroll M, Goulder P. Age- and sex-specific differences in immune responses to BNT162b2 COVID-19 and live-attenuated influenza vaccines in UK adolescents. Front Immunol 2023; 14:1248630. [PMID: 37942333 PMCID: PMC10627794 DOI: 10.3389/fimmu.2023.1248630] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 09/15/2023] [Indexed: 11/10/2023] Open
Abstract
Introduction The key to understanding the COVID-19 correlates of protection is assessing vaccine-induced immunity in different demographic groups. Young people are at a lower risk of COVID-19 mortality, females are at a lower risk than males, and females often generate stronger immune responses to vaccination. Methods We studied immune responses to two doses of BNT162b2 Pfizer COVID-19 vaccine in an adolescent cohort (n = 34, ages 12-16), an age group previously shown to elicit significantly greater immune responses to the same vaccine than young adults. Adolescents were studied with the aim of comparing their response to BNT162b2 to that of adults; and to assess the impacts of other factors such as sex, ongoing SARS-CoV-2 infection in schools, and prior exposure to endemic coronaviruses that circulate at high levels in young people. At the same time, we were able to evaluate immune responses to the co-administered live attenuated influenza vaccine. Blood samples from 34 adolescents taken before and after vaccination with COVID-19 and influenza vaccines were assayed for SARS-CoV-2-specific IgG and neutralising antibodies and cellular immunity specific for SARS-CoV-2 and endemic betacoronaviruses. The IgG targeting influenza lineages contained in the influenza vaccine were also assessed. Results Robust neutralising responses were identified in previously infected adolescents after one dose, and two doses were required in infection-naïve adolescents. As previously demonstrated, total IgG responses to SARS-CoV-2 Spike were significantly higher among vaccinated adolescents than among adults (aged 32-52) who received the BNT162b2 vaccine (comparing infection-naïve, 49,696 vs. 33,339; p = 0.03; comparing SARS-CoV-2 previously infected, 743,691 vs. 269,985; p <0.0001) by the MSD v-plex assay. There was no evidence of a stronger vaccine-induced immunity in females compared than in males. Discussion These findings may result from the introduction of novel mRNA vaccination platforms, generating patterns of immunity divergent from established trends and providing new insights into what might be protective following COVID-19 vaccination.
Collapse
Affiliation(s)
- Cecilia Jay
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Emily Adland
- Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| | - Anna Csala
- Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| | - Nicholas Lim
- Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| | - Stephanie Longet
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Ane Ogbe
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Jeremy Ratcliff
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Oliver Sampson
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, United Kingdom
| | - Craig P. Thompson
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Warwick, United Kingdom
| | - Lance Turtle
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Eleanor Barnes
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- National Institute for Health and Care Research (NIHR) Oxford Biomedical Research Centre, Oxford University Hospitals National Health Service (NHS) Foundation Trust, Oxford, United Kingdom
| | - Susanna Dunachie
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- National Institute for Health and Care Research (NIHR) Oxford Biomedical Research Centre, Oxford University Hospitals National Health Service (NHS) Foundation Trust, Oxford, United Kingdom
| | - Paul Klenerman
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- National Institute for Health and Care Research (NIHR) Oxford Biomedical Research Centre, Oxford University Hospitals National Health Service (NHS) Foundation Trust, Oxford, United Kingdom
| | - Miles Carroll
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- National Institute for Health and Care Research (NIHR) Oxford Biomedical Research Centre, Oxford University Hospitals National Health Service (NHS) Foundation Trust, Oxford, United Kingdom
| | - Philip Goulder
- Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
15
|
Kulkarni PS, Gunale B, Kohli S, Lalwani S, Tripathy S, Kar S, Raut S, Kulkarni P, Apte A, Bavdekar A, Bhalla HL, Plested JS, Cloney-Clark S, Zhu M, Kalkeri R, Pryor M, Hamilton S, Thakar M, Sannidhi RS, Baranwal P, Bhamare C, Dharmadhikari A, Gupta M, Poonawalla CS, Shaligram U, Kapse D. A Phase 3, randomized, non-inferiority study of a heterologous booster dose of SARS CoV-2 recombinant spike protein vaccine in adults. Sci Rep 2023; 13:16579. [PMID: 37789040 PMCID: PMC10547846 DOI: 10.1038/s41598-023-43578-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 09/26/2023] [Indexed: 10/05/2023] Open
Abstract
Due to waning immunity following primary immunization with COVID-19 vaccines, booster doses may be required. The present study assessed a heterologous booster of SII-NVX-CoV2373 (spike protein vaccine) in adults primed with viral vector and inactivated vaccines. In this Phase 3, observer-blind, randomized, active controlled study, a total of 372 adults primed with two doses of ChAdOx1 nCoV-19 (n = 186) or BBV152 (n = 186) at least six months ago, were randomized to receive a booster of SII-NVX-CoV2373 or control vaccine (homologous booster of ChAdOx1 nCoV-19 or BBV152). Anti-S IgG and neutralizing antibodies (nAbs) were assessed at days 1, 29, and 181. Non-inferiority (NI) of SII-NVX-CoV2373 to the control vaccine was assessed based on the ratio of geometric mean ELISA units (GMEU) of anti-S IgG and geometric mean titers (GMT) of nAbs (NI margin > 0.67) as well as seroresponse (≥ 2 fold-rise in titers) (NI margin -10%) at day 29. Safety was assessed throughout the study period. In both the ChAdOx1 nCoV-19 prime and BBV152 prime cohorts, 186 participants each received the study vaccines. In the ChAdOx1 nCoV-19 prime cohort, the GMEU ratio was 2.05 (95% CI 1.73, 2.43) and the GMT ratio was 1.89 (95% CI 1.55, 2.32) whereas the difference in the proportion of seroresponse was 49.32% (95% CI 36.49, 60.45) for anti-S IgG and 15% (95% CI 5.65, 25.05) for nAbs on day 29. In the BBV152 prime cohort, the GMEU ratio was 5.12 (95% CI 4.20, 6.24) and the GMT ratio was 4.80 (95% CI 3.76, 6.12) whereas the difference in the proportion of seroresponse was 74.08% (95% CI 63.24, 82.17) for anti-S IgG and 24.71% (95% CI 16.26, 34.62) for nAbs on day 29. The non-inferiority of SII-NVX-CoV2373 booster to the control vaccine for each prime cohort was met. SII-NVX-CoV2373 booster showed significantly higher immune responses than BBV152 homologous booster. On day 181, seroresponse rates were ≥ 70% in all the groups for both nAbs and anti-S IgG. Solicited adverse events reported were transient and mostly mild in severity in all the groups. No causally related SAE was reported. SII-NVX-CoV2373 as a heterologous booster induced non-inferior immune responses as compared to homologous boosters in adults primed with ChAdOx1 nCoV-19 and BBV152. SII-NVX-CoV2373 showed a numerically higher boosting effect than homologous boosters. The vaccine was also safe and well tolerated.
Collapse
Affiliation(s)
- Prasad S Kulkarni
- Serum Institute of India Pvt Ltd, Manjari (Bk), Administration Building, Poonawalla Biotechnology Park SEZ, Taluka Haveli, Pune, India.
| | - Bhagwat Gunale
- Serum Institute of India Pvt Ltd, Manjari (Bk), Administration Building, Poonawalla Biotechnology Park SEZ, Taluka Haveli, Pune, India
| | - Sunil Kohli
- Hamdard Institute of Medical Sciences and Research, New Delhi, India
| | - Sanjay Lalwani
- Bharati Vidyapeeth Deemed University Medical College and Hospital, Pune, India
| | - Srikanth Tripathy
- Dr. D. Y. Patil Medical College, Hospital and Research Centre, Pune, India
| | - Sonali Kar
- Kalinga Institute of Medical Sciences, Bhubaneswar, India
| | | | | | - Aditi Apte
- KEM Hospital Research Centre-Community Health Research Unit, P.O. Manchar, Pune, India
| | - Ashish Bavdekar
- KEM Hospital Research Centre-Community Health Research Unit, P.O. Manchar, Pune, India
| | - Hira Lal Bhalla
- All India Institute of Medical Sciences (AIIMS), Gorakhpur, India
| | | | | | | | | | | | | | | | | | | | - Chetanraj Bhamare
- Serum Institute of India Pvt Ltd, Manjari (Bk), Administration Building, Poonawalla Biotechnology Park SEZ, Taluka Haveli, Pune, India
| | - Abhijeet Dharmadhikari
- Serum Institute of India Pvt Ltd, Manjari (Bk), Administration Building, Poonawalla Biotechnology Park SEZ, Taluka Haveli, Pune, India
| | - Manish Gupta
- Serum Institute of India Pvt Ltd, Manjari (Bk), Administration Building, Poonawalla Biotechnology Park SEZ, Taluka Haveli, Pune, India
| | - Cyrus S Poonawalla
- Serum Institute of India Pvt Ltd, Manjari (Bk), Administration Building, Poonawalla Biotechnology Park SEZ, Taluka Haveli, Pune, India
| | - Umesh Shaligram
- Serum Institute of India Pvt Ltd, Manjari (Bk), Administration Building, Poonawalla Biotechnology Park SEZ, Taluka Haveli, Pune, India
| | - Dhananjay Kapse
- Serum Institute of India Pvt Ltd, Manjari (Bk), Administration Building, Poonawalla Biotechnology Park SEZ, Taluka Haveli, Pune, India
| |
Collapse
|
16
|
Woelfel S, Dütschler J, König M, Dulovic A, Graf N, Junker D, Oikonomou V, Krieger C, Truniger S, Franke A, Eckhold A, Forsch K, Koller S, Wyss J, Krupka N, Oberholzer M, Frei N, Geissler N, Schaub P, Albrich WC, Friedrich M, Schneiderhan-Marra N, Misselwitz B, Korte W, Bürgi JJ, Brand S. STAR SIGN study: Evaluation of COVID-19 vaccine efficacy against the SARS-CoV-2 variants BQ.1.1 and XBB.1.5 in patients with inflammatory bowel disease. Aliment Pharmacol Ther 2023; 58:678-691. [PMID: 37571863 DOI: 10.1111/apt.17661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/06/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023]
Abstract
BACKGROUND Vaccine-elicited immune responses are impaired in patients with inflammatory bowel disease (IBD) treated with anti-TNF biologics. AIMS To assess vaccination efficacy against the novel omicron sublineages BQ.1.1 and XBB.1.5 in immunosuppressed patients with IBD. METHODS This prospective multicentre case-control study included 98 biologic-treated patients with IBD and 48 healthy controls. Anti-spike IgG concentrations and surrogate neutralisation against SARS-CoV-2 wild-type, BA.1, BA.5, BQ.1.1, and XBB.1.5 were measured at two different time points (2-16 weeks and 22-40 weeks) following third dose vaccination. Surrogate neutralisation was based on antibody-mediated blockage of ACE2-spike protein-protein interaction. Primary outcome was surrogate neutralisation against tested SARS-CoV-2 sublineages. Secondary outcomes were proportions of participants with insufficient surrogate neutralisation, impact of breakthrough infection, and correlation of surrogate neutralisation with anti-spike IgG concentration. RESULTS Surrogate neutralisation against all tested sublineages was reduced in patients with IBD who were treated with anti-TNF biologics compared to patients treated with non-anti-TNF biologics and healthy controls (each p ≤ 0.001) at visit 1. Anti-TNF therapy (odds ratio 0.29 [95% CI 0.19-0.46]) and time since vaccination (0.85 [0.72-1.00]) were associated with low, and mRNA-1273 vaccination (1.86 [1.12-3.08]) with high wild-type surrogate neutralisation in a β-regression model. Accordingly, higher proportions of patients treated with anti-TNF biologics had insufficient surrogate neutralisation against omicron sublineages at visit 1 compared to patients treated with non-anti-TNF biologics and healthy controls (each p ≤ 0.015). Surrogate neutralisation against all tested sublineages decreased over time but was increased by breakthrough infection. Anti-spike IgG concentrations correlated with surrogate neutralisation. CONCLUSIONS Patients with IBD who are treated with anti-TNF biologics show impaired neutralisation against novel omicron sublineages BQ.1.1 and XBB.1.5 and may benefit from prioritisation for future variant-adapted vaccines.
Collapse
Affiliation(s)
- Simon Woelfel
- Max von Pettenkofer Institute of Hygiene and Medical Microbiology, Faculty of Medicine, Ludwig Maximilian University of Munich (LMU Munich), Munich, Germany
- Department of Gastroenterology and Hepatology, Cantonal Hospital St. Gallen, St. Gallen, Switzerland
| | - Joel Dütschler
- Department of Gastroenterology and Hepatology, Cantonal Hospital St. Gallen, St. Gallen, Switzerland
- Outpatient Clinic, Ambulatory Services Rorschach, Rorschach, Switzerland
| | - Marius König
- Department of Gastroenterology and Hepatology, Cantonal Hospital St. Gallen, St. Gallen, Switzerland
| | - Alex Dulovic
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
| | - Nicole Graf
- Clinical Trials Unit, Cantonal Hospital St. Gallen, St. Gallen, Switzerland
| | - Daniel Junker
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
| | - Vasileios Oikonomou
- Department of Visceral Surgery and Medicine, Inselspital Bern University Hospital, University of Bern, Bern, Switzerland
| | - Claudia Krieger
- Department of Gastroenterology and Hepatology, Cantonal Hospital St. Gallen, St. Gallen, Switzerland
| | - Samuel Truniger
- Department of Gastroenterology and Hepatology, Cantonal Hospital St. Gallen, St. Gallen, Switzerland
- Outpatient Clinic, Ambulatory Services Rorschach, Rorschach, Switzerland
| | - Annett Franke
- Department of Gastroenterology and Hepatology, Cantonal Hospital St. Gallen, St. Gallen, Switzerland
- Outpatient Clinic, Ambulatory Services Rorschach, Rorschach, Switzerland
| | - Annika Eckhold
- Department of Gastroenterology and Hepatology, Cantonal Hospital St. Gallen, St. Gallen, Switzerland
| | - Kristina Forsch
- Department of Gastroenterology and Hepatology, Cantonal Hospital St. Gallen, St. Gallen, Switzerland
| | - Seraina Koller
- Department of Gastroenterology and Hepatology, Cantonal Hospital St. Gallen, St. Gallen, Switzerland
| | - Jacqueline Wyss
- Department of Visceral Surgery and Medicine, Inselspital Bern University Hospital, University of Bern, Bern, Switzerland
| | - Niklas Krupka
- Department of Visceral Surgery and Medicine, Inselspital Bern University Hospital, University of Bern, Bern, Switzerland
| | | | - Nicola Frei
- Department of Gastroenterology and Hepatology, Cantonal Hospital St. Gallen, St. Gallen, Switzerland
| | - Nora Geissler
- Department of Gastroenterology and Hepatology, Cantonal Hospital St. Gallen, St. Gallen, Switzerland
| | - Peter Schaub
- Department of Gastroenterology and Hepatology, Cantonal Hospital St. Gallen, St. Gallen, Switzerland
| | - Werner C Albrich
- Division of Infectious Diseases & Hospital Epidemiology, Cantonal Hospital St. Gallen, St. Gallen, Switzerland
| | - Matthias Friedrich
- Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | | | - Benjamin Misselwitz
- Department of Visceral Surgery and Medicine, Inselspital Bern University Hospital, University of Bern, Bern, Switzerland
| | | | | | - Stephan Brand
- Department of Gastroenterology and Hepatology, Cantonal Hospital St. Gallen, St. Gallen, Switzerland
| |
Collapse
|
17
|
Wang S, Qin M, Xu L, Mu T, Zhao P, Sun B, Wu Y, Song L, Wu H, Wang W, Liu X, Li Y, Yang F, Xu K, He Z, Klein M, Wu K. Aerosol Inhalation of Chimpanzee Adenovirus Vectors (ChAd68) Expressing Ancestral or Omicron BA.1 Stabilized Pre-Fusion Spike Glycoproteins Protects Non-Human Primates against SARS-CoV-2 Infection. Vaccines (Basel) 2023; 11:1427. [PMID: 37766104 PMCID: PMC10535855 DOI: 10.3390/vaccines11091427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/12/2023] [Accepted: 08/22/2023] [Indexed: 09/29/2023] Open
Abstract
Current COVID-19 vaccines are effective countermeasures to control the SARS-CoV-2 virus pandemic by inducing systemic immune responses through intramuscular injection. However, respiratory mucosal immunization will be needed to elicit local sterilizing immunity to prevent virus replication in the nasopharynx, shedding, and transmission. In this study, we first compared the immunoprotective ability of a chimpanzee replication-deficient adenovirus-vectored COVID-19 vaccine expressing a stabilized pre-fusion spike glycoprotein from the ancestral SARS-CoV-2 strain Wuhan-Hu-1 (BV-AdCoV-1) administered through either aerosol inhalation, intranasal spray, or intramuscular injection in cynomolgus monkeys and rhesus macaques. Compared with intranasal administration, aerosol inhalation of BV-AdCoV-1 elicited stronger humoral and mucosal immunity that conferred excellent protection against SARS-CoV-2 infection in rhesus macaques. Importantly, aerosol inhalation induced immunity comparable to that obtained by intramuscular injection, although at a significantly lower dose. Furthermore, to address the problem of immune escape variants, we evaluated the merits of heterologous boosting with an adenovirus-based Omicron BA.1 vaccine (C68-COA04). Boosting rhesus macaques vaccinated with two doses of BV-AdCoV-1 with either the homologous or the heterologous C68-COA04 vector resulted in cross-neutralizing immunity against WT, Delta, and Omicron subvariants, including BA.4/5 stronger than that obtained by administering a bivalent BV-AdCoV-1/C68-COA04 vaccine. These results demonstrate that the administration of BV-AdCoV-1 or C68-COA04 via aerosol inhalation is a promising approach to prevent SARS-CoV-2 infection and transmission and curtail the pandemic spread.
Collapse
Affiliation(s)
- Shen Wang
- Regulatory and Medical Affairs Department, Wuhan BravoVax Co., Ltd., Wuhan 430070, China; (S.W.); (L.S.)
| | - Mian Qin
- Project Management Department, Wuhan BravoVax Co., Ltd., Wuhan 430070, China; (M.Q.); (L.X.)
| | - Long Xu
- Project Management Department, Wuhan BravoVax Co., Ltd., Wuhan 430070, China; (M.Q.); (L.X.)
| | - Ting Mu
- Innovative Discovery Department, Wuhan BravoVax Co., Ltd., Wuhan 430070, China; (T.M.); (B.S.)
| | - Ping Zhao
- Test Development Department, Wuhan BravoVax Co., Ltd., Wuhan 430070, China; (P.Z.); (Y.W.)
| | - Bing Sun
- Innovative Discovery Department, Wuhan BravoVax Co., Ltd., Wuhan 430070, China; (T.M.); (B.S.)
| | - Yue Wu
- Test Development Department, Wuhan BravoVax Co., Ltd., Wuhan 430070, China; (P.Z.); (Y.W.)
| | - Lingli Song
- Regulatory and Medical Affairs Department, Wuhan BravoVax Co., Ltd., Wuhan 430070, China; (S.W.); (L.S.)
| | - Han Wu
- Quality Control Department, Wuhan BravoVax Co., Ltd., Wuhan 430070, China;
| | - Weicheng Wang
- Pilot Production Department, Wuhan BravoVax Co., Ltd., Wuhan 430070, China;
| | - Xingwen Liu
- Quality Assurance Department, Wuhan BravoVax Co., Ltd., Wuhan 430070, China;
| | - Yanyan Li
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650000, China; (Y.L.); (Z.H.)
| | - Fengmei Yang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650000, China; (Y.L.); (Z.H.)
| | - Ke Xu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China;
- Executive Office, Wuhan BravoVax Co., Ltd., Wuhan 430070, China;
| | - Zhanlong He
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650000, China; (Y.L.); (Z.H.)
| | - Michel Klein
- Executive Office, Wuhan BravoVax Co., Ltd., Wuhan 430070, China;
- Executive Office, Shanghai BravoBio Co., Ltd., Shanghai 200000, China
| | - Ke Wu
- Executive Office, Wuhan BravoVax Co., Ltd., Wuhan 430070, China;
- Executive Office, Shanghai BravoBio Co., Ltd., Shanghai 200000, China
| |
Collapse
|
18
|
Wasserman EB, Sills AK, Martins D, Casolaro A, Walton P, Anderson D, Pasha S, O'Neal C, Eichner D, Osterholm M, Mancell J, Mack CD. Factors associated with antibody titer levels among an occupational cohort of fully vaccinated individuals and subsequent risk of COVID-19 infection: A cohort study. J Med Virol 2023; 95:e28999. [PMID: 37554019 DOI: 10.1002/jmv.28999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/03/2023] [Accepted: 07/16/2023] [Indexed: 08/10/2023]
Abstract
This study (1) determined the association of time since initial vaccine regimen, booster dose receipt, and COVID-19 history with antibody titer, as well as change in titer levels over a defined period, and (2) determined risk of COVID-19 associated with low titer levels. This observational study used data from staff participating in the National Football League COVID-19 Monitoring Program. A cohort of staff consented to antibody-focused sub-study, during which detailed longitudinal data were collected. Among all staff in the program who received antibody testing, COVID-19 incidence following antibody testing was determined. Five hundred eighty-six sub-study participants completed initial antibody testing; 80% (469) completed follow-up testing 50-101 days later. Among 389 individuals who were not boosted at initial testing, the odds of titer < 1000 AU/mL (vs. ≥1000 AU/mL) increased 44% (odds ratio [OR] = 1.44, 95% confidence interval [CI]: 1.18-1.75) for every 30 days since final dose. Among 126 participants boosted before initial testing with no COVID-19 history, 125 (99%) had a value > 2500 AU/ml; 86 (96%) of 90 tested at follow-up and did not develop COVID-19 in the interim remained at that value. One thousand fifty-seven fully vaccinated (330 [29%] boosted at antibody test) individuals participating in the monitoring program were followed to determine COVID-19 status. Individuals with titer value < 1000 AU/mL had twice the risk of COVID-19 as those with >2500 AU/mL (HR = 2.02, 95% CI: 1.28-3.18). Antibody levels decrease postvaccination; boosting increases titer values. While antibody level is not a clear proxy for infection immunity, lower titer values are associated with higher COVID-19 incidence, suggesting increased protection from boosters.
Collapse
Affiliation(s)
| | | | - Damion Martins
- Atlantic Sports Health, Morristown Medical Center, Morristown, New Jersey, USA
| | - Anthony Casolaro
- MD2 McLean, Virginia Hospital Center, Tysons Corner, Virginia, USA
| | | | - Deverick Anderson
- Duke University School of Medicine, Durham, North Carolina, USA
- Infection Control Education for Major Sports, Chapel Hill, North Carolina, USA
| | - Saamir Pasha
- IQVIA Real-World Solutions, Durham, North Carolina, USA
| | - Catherine O'Neal
- Louisiana State University Health Sciences Center, Baton Rouge, Louisiana, USA
| | - Daniel Eichner
- Sports Medicine Research and Testing Laboratory, South Jordan, Utah, USA
| | - Michael Osterholm
- Center for Infectious Disease Research and Policy, University of Minnesota, Minneapolis, Minnesota, USA
| | - Jimmie Mancell
- University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | | |
Collapse
|
19
|
Permpikul P, Tongyoo S, Chaimayo C, Kanpai P, Virat J, Virat S, Chuchaaim J, Thongput A, Bhatnagar S. Anti-SARS-CoV-2 antibody among SARS-CoV-2 vaccinated vs post-infected blood donors in a tertiary hospital, Bangkok, Thailand. PLoS One 2023; 18:e0285737. [PMID: 37200273 DOI: 10.1371/journal.pone.0285737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 05/02/2023] [Indexed: 05/20/2023] Open
Abstract
SARS-CoV-2 virus infection has imposed a significant healthcare burden globally. To contain its spread and decrease infection-related mortality, several vaccines have been deployed worldwide in the past 3 years. We conducted a cross-sectional seroprevalence study to assess the immune response against the virus among blood donors at a tertiary care hospital, Bangkok, Thailand. From December 2021 to March 2022, total of 1,520 participants were enrolled, and their past history of SARS-CoV-2 infection and vaccination was recorded. Two serology test, namely, quantitative IgG spike protein (IgGSP) and qualitative IgG nucleocapsid antibody (IgGNC) were performed. The median age of study participants was 40 years (IQR 30-48) and 833 (54.8%) were men. Vaccine uptake was reported in 1,500 donors (98.7%) and 84 (5.5%) reported the past infection history. IgGNC was detected in 46/84 donors with the past infection history (54.8%) and in 36 out of the rest 1,436 (2.5%) with no past history. IgGSP positivity was observed in 1484 donors (97.6%). When compared to unvaccinated donors (n = 20), IgGSP level was higher in the donors who had received one vaccine dose (p< 0.001) and these antibody levels increased significantly among those with 3rd and 4th vaccine doses. Factors associated with low IgGSP (lowest quartile) by multivariate analysis included: no past infection history, homologous vaccination, < 3 vaccine doses, and > 90 days duration since last vaccination. In conclusion, vaccine uptake among our study donors was high (98.7%) and IgGSP antibody was observed in nearly all the vaccinated donors (97.6%). Previous SARS-CoV-2 infection, use of heterologous vaccination, vaccines ≥ 3 doses, and duration of the last vaccination >90 days affected IgGSP levels. Use of serological assays were found beneficial in the evaluation and differentiation of immune response to vaccination, and natural infection including the identification of previous asymptomatic infections.
Collapse
Affiliation(s)
- Parichart Permpikul
- Department of Transfusion Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Surat Tongyoo
- Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Chutikarn Chaimayo
- Department of Microbiology, Faculty of Medicine, Siriraj Hospital Mahidol University, Bangkok, Thailand
| | - Prapan Kanpai
- Department of Transfusion Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Jitmanee Virat
- Department of Transfusion Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Sutasinee Virat
- Department of Transfusion Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Jaratsri Chuchaaim
- Department of Transfusion Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Anchalee Thongput
- Department of Microbiology, Faculty of Medicine, Siriraj Hospital Mahidol University, Bangkok, Thailand
| | - Sonu Bhatnagar
- Scientific Affairs, Abbott Laboratories Singapore Pte Ltd., Singapore, Singapore
| |
Collapse
|
20
|
Jha A, Doyle-Eisele M, Revelli D, Carnelley T, Barker D, Kodihalli S. Pharmacokinetic and Pharmacodynamic Effects of Polyclonal Antibodies against SARS-CoV2 in Mice. Viruses 2022; 15:123. [PMID: 36680164 PMCID: PMC9860936 DOI: 10.3390/v15010123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 12/26/2022] [Indexed: 01/03/2023] Open
Abstract
Despite ongoing vaccination efforts to prevent SARS-CoV-2 infections, treatment tools are still necessary to address the ongoing COVID-19 pandemic. We report here that COVID-HIGIV, a human immunoglobulin product for treatment of COVID-19, provided a significant survival benefit in SARS-CoV-2 infected transgenic mice compared to controls. COVID-HIGIV also has similar pharmacokinetic profiles in healthy and SARS-CoV-2 infected mice over time after intravenous administration, with identical or comparable Tmax, Cmax, AUC0-∞ and Cl. AUC0-last increased and mean residence time, T1/2, and Vd reduced in infected animals compared to healthy animals. These data suggest that COVID-HIGIV may be an effective treatment for SARS-CoV-2 infection when given early after exposure.
Collapse
Affiliation(s)
- Aruni Jha
- Emergent BioSolutions Canada Inc., Winnipeg, MB R3T 5Y3, Canada
| | | | - David Revelli
- Lovelace Biomedical Research Institute, Albuquerque, NM 87108, USA
| | | | - Douglas Barker
- Emergent BioSolutions Canada Inc., Winnipeg, MB R3T 5Y3, Canada
| | | |
Collapse
|