1
|
Grolleau C, Poisot T, Hadjadj J, Jachiet M, Mahevas T, Le Buanec H, Bouaziz JD, Chasset F. Transcriptomic analysis of one patient with lupus skin lesions treated with anifrolumab. J Eur Acad Dermatol Venereol 2025; 39:e306-e309. [PMID: 39136527 DOI: 10.1111/jdv.20283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 08/02/2024] [Indexed: 03/26/2025]
Affiliation(s)
- Chloé Grolleau
- Dermatology Department, Saint Louis Hospital, Paris, France
- Saint-Louis Research Institute, INSERM U976 - HIPI Unit, University of Paris, Paris, France
| | - Thomas Poisot
- Saint-Louis Research Institute, INSERM U976 - HIPI Unit, University of Paris, Paris, France
| | - Jérôme Hadjadj
- Service de Médecine Interne et Inflammation-Immunopathology-Biotherapy Department (DMU i3), Sorbonne Université, Assistance Publique-Hôpitaux de Paris, Centre Hospitalo-Universitaire Saint-Antoine, Paris, France
| | - Marie Jachiet
- Dermatology Department, Saint Louis Hospital, Paris, France
| | | | - Hélène Le Buanec
- Saint-Louis Research Institute, INSERM U976 - HIPI Unit, University of Paris, Paris, France
| | - Jean-David Bouaziz
- Dermatology Department, Saint Louis Hospital, Paris, France
- Saint-Louis Research Institute, INSERM U976 - HIPI Unit, University of Paris, Paris, France
| | - François Chasset
- Service de Dermatologie et Allergologie, Faculté de médecine, Sorbonne Université, Hôpital Tenon, Assistance Publique-Hôpitaux de Paris, Paris, France
| |
Collapse
|
2
|
Howlader MJ, Rashighi M, Santambrogio L, Lu TT. Lymphatic messengers: Non-antigen soluble mediators from diseased tissues to draining lymph nodes. Curr Opin Immunol 2025; 93:102536. [PMID: 39914124 PMCID: PMC11885046 DOI: 10.1016/j.coi.2025.102536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/15/2025] [Accepted: 01/21/2025] [Indexed: 03/08/2025]
Abstract
Tissues deliver not only antigens and cells via afferent lymphatics to draining lymph nodes during immune responses but also deliver soluble molecules that reflect the state of the tissue. In autoimmune diseases, these signals from affected tissues can potentially impact the magnitude or other characteristics of autoimmune responses generated in lymph nodes. Here, we highlight recent studies illustrating the nature of these soluble signals relevant to lupus skin and in lymphatic fluid draining the gut in inflammatory bowel disease. We also highlight the role of lymph node stromal cells as recipients of lymph borne signals. Identifying the molecules delivered from the tissues and how exactly they modulate immune function in draining lymph nodes will help us to better understand aberrant immunity in disease.
Collapse
Affiliation(s)
- Mir J Howlader
- Inflammation and Autoimmunity Program, Hospital for Special Surgery Research Institute, New York, NY, USA; Biochemistry, Structural Biology, Cell Biology, Developmental Biology and Molecular Biology Graduate Program, Weill Cornell Medicine, New York, NY, USA
| | - Mehdi Rashighi
- Department of Dermatology, University of Massachusetts Medical School, Worcester, USA
| | - Laura Santambrogio
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY 10065, USA; Caryl and Israel Englander Institute for Precision Medicine, New York, NY 10065, USA
| | - Theresa T Lu
- Inflammation and Autoimmunity Program, Hospital for Special Surgery Research Institute, New York, NY, USA; Pediatric Rheumatology, Department of Medicine, Hospital for Special Surgery, New York, NY, USA; Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
3
|
Klein B, Reynolds MB, Xu B, Gharaee-Kermani M, Gao Y, Berthier CC, Henning S, Tsoi LC, Loftus SN, McNeely KE, Goudsmit CM, Victory AM, Dobry C, Hile GA, Ma F, Turnier JL, Gudjonsson JE, O'Riordan MX, Kahlenberg JM. Epidermal ZBP1 stabilizes mitochondrial Z-DNA to drive UV-induced IFN signaling in autoimmune photosensitivity. Sci Immunol 2025; 10:eado1710. [PMID: 40053607 DOI: 10.1126/sciimmunol.ado1710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 11/14/2024] [Accepted: 02/11/2025] [Indexed: 03/09/2025]
Abstract
Photosensitivity is observed in numerous autoimmune diseases and drives poor quality of life and disease flares. Elevated epidermal type I interferon (IFN) production primes for photosensitivity and enhanced inflammation, but the substrates that sustain and amplify this cycle remain undefined. We show that IFN-induced Z-DNA binding protein 1 (ZBP1) stabilizes ultraviolet (UV) B-induced cytosolic Z-DNA derived from oxidized mitochondrial DNA. ZBP1 is up-regulated in the epidermis of adult and pediatric patients with autoimmune photosensitivity. In patient-derived samples, lupus keratinocytes accumulate extensive cytosolic Z-DNA after UVB exposure, and transfection of keratinocytes with Z-DNA results in stronger IFN production through cyclic guanosine monophosphate-adenosine monophosphate synthase-stimulator of interferon genes (cGAS-STING) activation compared with the more conventional B-DNA. ZBP1 knockdown abrogates UVB-induced IFN responses, whereas overexpression results in a lupus-like phenotype with spontaneous Z-DNA accumulation and IFN production. Our results highlight Z-DNA and ZBP1 as critical mediators for UVB-induced inflammation and uncover how type I IFNs prime for cutaneous inflammation in photosensitivity.
Collapse
Affiliation(s)
- Benjamin Klein
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Mack B Reynolds
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA
| | - Bin Xu
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Mehrnaz Gharaee-Kermani
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- Department of Dermatology, University of Michigan, Ann Arbor, MI, USA
| | - Yiqing Gao
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Celine C Berthier
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Svenja Henning
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Lam C Tsoi
- Department of Dermatology, University of Michigan, Ann Arbor, MI, USA
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Shannon N Loftus
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Kelsey E McNeely
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Christine M Goudsmit
- Division of Pediatric Rheumatology, Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA
| | - Amanda M Victory
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Craig Dobry
- Department of Dermatology, University of Michigan, Ann Arbor, MI, USA
| | - Grace A Hile
- Department of Dermatology, University of Michigan, Ann Arbor, MI, USA
| | - Feiyang Ma
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- Department of Dermatology, University of Michigan, Ann Arbor, MI, USA
| | - Jessica L Turnier
- Division of Pediatric Rheumatology, Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA
| | - Johann E Gudjonsson
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- Department of Dermatology, University of Michigan, Ann Arbor, MI, USA
| | - Mary X O'Riordan
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA
| | - J Michelle Kahlenberg
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- Department of Dermatology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
4
|
Liu Y, Wang P, Li J, Chen L, Shu B, Wang H, Liu H, Zhao S, Zhou J, Chen X, Xie J. Single-cell RNA sequencing reveals the impaired epidermal differentiation and pathological microenvironment in diabetic foot ulcer. BURNS & TRAUMA 2025; 13:tkae065. [PMID: 40040959 PMCID: PMC11879498 DOI: 10.1093/burnst/tkae065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 09/21/2024] [Accepted: 10/17/2024] [Indexed: 03/06/2025]
Abstract
Background Diabetic foot ulcer (DFU) is one of the most common and complex complications of diabetes, but the underlying pathophysiology remains unclear. Single-cell RNA sequencing (scRNA-seq) has been conducted to explore novel cell types or molecular profiles of DFU from various perspectives. This study aimed to comprehensively analyze the potential mechanisms underlying impaired re-epithelization of DFU in a single-cell perspective. Methods We conducted scRNA-seq on tissues from human normal skin, acute wound, and DFU to investigate the potential mechanisms underlying impaired epidermal differentiation and the pathological microenvironment. Pseudo-time and lineage inference analyses revealed the distinct states and transition trajectories of epidermal cells under different conditions. Transcription factor analysis revealed the potential regulatory mechanism of key subtypes of keratinocytes. Cell-cell interaction analysis revealed the regulatory network between the proinflammatory microenvironment and epidermal cells. Laser-capture microscopy coupled with RNA sequencing (LCM-seq) and multiplex immunohistochemistry were used to validate the expression and location of key subtypes of keratinocytes. Results Our research provided a comprehensive map of the phenotypic and dynamic changes that occur during epidermal differentiation, alongside the corresponding regulatory networks in DFU. Importantly, we identified two subtypes of keratinocytes: basal cells (BC-2) and diabetes-associated keratinocytes (DAK) that might play crucial roles in the impairment of epidermal homeostasis. BC-2 and DAK showed a marked increase in DFU, with an inactive state and insufficient motivation for epidermal differentiation. BC-2 was involved in the cellular response and apoptosis processes, with high expression of TXNIP, IFITM1, and IL1R2. Additionally, the pro-differentiation transcription factors were downregulated in BC-2 in DFU, indicating that the differentiation process might be inhibited in BC-2 in DFU. DAK was associated with cellular glucose homeostasis. Furthermore, increased CCL2 + CXCL2+ fibroblasts, VWA1+ vascular endothelial cells, and GZMA+CD8+ T cells were detected in DFU. These changes in the wound microenvironment could regulate the fate of epidermal cells through the TNFSF12-TNFRSF12A, IFNG-IFNGR1/2, and IL-1B-IL1R2 pathways, which might result in persistent inflammation and impaired epidermal differentiation in DFU. Conclusions Our findings offer novel insights into the pathophysiology of DFU and present potential therapeutic targets that could improve wound care and treatment outcomes for DFU patients.
Collapse
Affiliation(s)
- Yiling Liu
- Department of Burn and Wound Repair Surgery, The First Affiliated Hospital of Sun Yat-sen University, No. 58 Zhongshan 2 Road, Guangzhou 510080, China
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-Sen University, No. 58, Zhongshan 2 Road, Guangzhou 510080, China
| | - Peng Wang
- Department of Burn and Wound Repair Surgery, The First Affiliated Hospital of Sun Yat-sen University, No. 58 Zhongshan 2 Road, Guangzhou 510080, China
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-Sen University, No. 58, Zhongshan 2 Road, Guangzhou 510080, China
| | - Jingting Li
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-Sen University, No. 58, Zhongshan 2 Road, Guangzhou 510080, China
| | - Lei Chen
- Department of Burn and Wound Repair Surgery, The First Affiliated Hospital of Sun Yat-sen University, No. 58 Zhongshan 2 Road, Guangzhou 510080, China
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-Sen University, No. 58, Zhongshan 2 Road, Guangzhou 510080, China
| | - Bin Shu
- Department of Burn and Wound Repair Surgery, The First Affiliated Hospital of Sun Yat-sen University, No. 58 Zhongshan 2 Road, Guangzhou 510080, China
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-Sen University, No. 58, Zhongshan 2 Road, Guangzhou 510080, China
| | - Hanwen Wang
- Department of Burn and Wound Repair Surgery, The First Affiliated Hospital of Sun Yat-sen University, No. 58 Zhongshan 2 Road, Guangzhou 510080, China
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-Sen University, No. 58, Zhongshan 2 Road, Guangzhou 510080, China
| | - Hengdeng Liu
- Department of Burn and Wound Repair Surgery, The First Affiliated Hospital of Sun Yat-sen University, No. 58 Zhongshan 2 Road, Guangzhou 510080, China
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-Sen University, No. 58, Zhongshan 2 Road, Guangzhou 510080, China
| | - Shixin Zhao
- Department of Burn and Wound Repair Surgery, The First Affiliated Hospital of Sun Yat-sen University, No. 58 Zhongshan 2 Road, Guangzhou 510080, China
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-Sen University, No. 58, Zhongshan 2 Road, Guangzhou 510080, China
| | - Junli Zhou
- Department of Burn and Plastic Surgery, The Tenth Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), No. 3 Wandao Road, Dongguan 523000, China
| | - Xiaodong Chen
- Department of Burn Surgery, The First People’s Hospital of Foshan, No. 3 Lingnan Road, Foshan 528000, China
| | - Julin Xie
- Department of Burn and Wound Repair Surgery, The First Affiliated Hospital of Sun Yat-sen University, No. 58 Zhongshan 2 Road, Guangzhou 510080, China
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-Sen University, No. 58, Zhongshan 2 Road, Guangzhou 510080, China
| |
Collapse
|
5
|
Klein B, Billi AC, Kahlenberg JM. Increasing evidence for the pathogenic role of keratinocytes in lupus. Cell Mol Immunol 2025; 22:333-335. [PMID: 39825106 PMCID: PMC11868540 DOI: 10.1038/s41423-024-01254-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 12/25/2024] [Indexed: 01/20/2025] Open
Affiliation(s)
- Benjamin Klein
- Department of Internal Medicine, Division of Rheumatology, University of Michigan, Ann Arbor, USA
| | - Allison C Billi
- Department of Dermatology, University of Michigan, Ann Arbor, MI, USA
| | - J Michelle Kahlenberg
- Department of Internal Medicine, Division of Rheumatology, University of Michigan, Ann Arbor, USA.
- Department of Dermatology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
6
|
Abernathy-Close L, Billi AC, Kahlenberg JM. Reply. Arthritis Rheumatol 2025. [PMID: 39866057 DOI: 10.1002/art.43128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Accepted: 01/23/2025] [Indexed: 01/28/2025]
|
7
|
Jafari AJ, McGee C, Klimas N, Hebert AA. Monoclonal antibodies for the management of cutaneous lupus erythematosus: an update on the current treatment landscape. Clin Exp Dermatol 2025; 50:314-322. [PMID: 39243383 DOI: 10.1093/ced/llae374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 08/07/2024] [Accepted: 08/27/2024] [Indexed: 09/09/2024]
Abstract
Cutaneous lupus erythematosus (CLE) is a complex autoimmune disease often characterized by a multitude of skin findings. CLE is generally classified into three main categories: acute CLE, subacute CLE and chronic CLE. The current therapeutic guidelines for CLE include counselling patients on general measures and medication regimens. Treatment options include optimized photoprotection, avoidance of environmental triggers, corticosteroids, topical and systemic immunomodulators, and antimalarials. To date, no biologic medications (i.e. monoclonal antibodies, mAbs) are approved for CLE. The first mAb for the treatment of both systemic lupus erythematosus (SLE) and active lupus nephritis was belimumab, and was approved for these diseases in 2011 and 2020, respectively. Belimumab is a specific inhibitor of B-lymphocyte stimulator. Anifrolumab, a type I interferon receptor antagonist, was approved in 2021 for SLE. Other mAbs with different targets, including a novel biologic that inhibits blood dendritic cell antigen 2, are currently under investigation for CLE. This review will describe the general treatment landscape for CLE. Selected studies related to these various mAbs will be discussed, as well as their safety profiles and efficacies demonstrated in clinical trials. Biologic medications can potentially augment the number of treatment options for patients living with CLE.
Collapse
Affiliation(s)
- Alexander J Jafari
- Department of Dermatology, UTHealth McGovern Medical School, Houston, TX, USA
| | | | - Natasha Klimas
- Department of Dermatology, UTHealth McGovern Medical School, Houston, TX, USA
| | - Adelaide A Hebert
- Department of Dermatology, UTHealth McGovern Medical School, Houston, TX, USA
- Department of Pediatrics, UTHealth McGovern Medical School, Houston, TX, USA
- Department of Dermatology, MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
8
|
Martín-Torregrosa D, Mansilla-Polo M, Morgado-Carrasco D. Use of Anifrolumab in Systemic Lupus Erythematosus, Cutaneous Lupus Erythematosus, and Other Autoimmune Dermatoses. ACTAS DERMO-SIFILIOGRAFICAS 2025; 116:55-67. [PMID: 38972582 DOI: 10.1016/j.ad.2024.05.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/13/2024] [Accepted: 05/21/2024] [Indexed: 07/09/2024] Open
Abstract
Anifrolumab is an inhibitor of the type I interferon receptor subunit 1 (IFNAR1) recently approved for the management of moderate-to-severe systemic lupus erythematosus (SLE). In 2 clinical trials, it has proven effective to treat cutaneous signs. Although anifrolumab has not been indicated for cutaneous lupus erythematosus (CLE), multiple cases and case series (20 publications with a total of 78 patients) have shown good and rapid responses with this drug, both in subacute CLE and discoid lupus erythematosus, as well as in lupus panniculitis and perniosis. Two case reports of dermatomyositis have also experienced clinical improvement with anifrolumab. Clinical trials of this drug are ongoing for subacute CLE and discoid lupus erythematosus, systemic sclerosis, and progressive vitiligo. Its most common adverse effects are respiratory infections and herpes zoster. Anifrolumab may be a well-tolerated alternative in the management of CLE.
Collapse
Affiliation(s)
- D Martín-Torregrosa
- Servicio de Dermatología, Hospital Universitario y Politécnico La Fe, IIS La Fe, Valencia, España
| | - M Mansilla-Polo
- Servicio de Dermatología, Hospital Universitario y Politécnico La Fe, IIS La Fe, Valencia, España
| | - D Morgado-Carrasco
- Servicio de Dermatología, Hospital de Figueres, Fundació Salut Empordà, Girona, España; Servicio de Dermatología, Hospital Clínic de Barcelona, Universitat de Barcelona, Barcelona, España.
| |
Collapse
|
9
|
Martín-Torregrosa D, Mansilla-Polo M, Morgado-Carrasco D. [Translated article] Use of Anifrolumab in Systemic Lupus Erythematosus, Cutaneous Lupus Erythematosus, and Other Autoimmune Dermatoses. ACTAS DERMO-SIFILIOGRAFICAS 2025; 116:T55-T67. [PMID: 39389344 DOI: 10.1016/j.ad.2024.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/13/2024] [Accepted: 05/21/2024] [Indexed: 10/12/2024] Open
Abstract
Anifrolumab is an inhibitor of the type I interferon receptor subunit 1 (IFNAR1) recently approved for the management of moderate-to-severe systemic lupus erythematosus (SLE). In 2 clinical trials, it has proven effective to treat cutaneous signs. Although anifrolumab has not been indicated for cutaneous lupus erythematosus (CLE), multiple cases and case series (20 publications with a total of 78 patients) have shown good and rapid responses with this drug, both in subacute CLE and discoid lupus erythematosus, as well as in lupus panniculitis and perniosis. Two case reports of dermatomyositis have also experienced clinical improvement with anifrolumab. Clinical trials of this drug are ongoing for subacute CLE and discoid lupus erythematosus, systemic sclerosis, and progressive vitiligo. Its most common adverse effects are respiratory infections and herpes zoster. Anifrolumab may be a well-tolerated alternative in the management of CLE.
Collapse
MESH Headings
- Humans
- Lupus Erythematosus, Cutaneous/chemically induced
- Lupus Erythematosus, Cutaneous/drug therapy
- Antibodies, Monoclonal, Humanized/therapeutic use
- Antibodies, Monoclonal, Humanized/adverse effects
- Lupus Erythematosus, Systemic/drug therapy
- Lupus Erythematosus, Systemic/chemically induced
- Lupus Erythematosus, Systemic/complications
- Autoimmune Diseases/drug therapy
- Autoimmune Diseases/chemically induced
- Antibodies, Monoclonal/therapeutic use
- Antibodies, Monoclonal/adverse effects
- Skin Diseases/chemically induced
- Clinical Trials as Topic
Collapse
Affiliation(s)
- D Martín-Torregrosa
- Servicio de Dermatología, Hospital Universitario y Politécnico La Fe, IIS La Fe, Valencia, Spain
| | - M Mansilla-Polo
- Servicio de Dermatología, Hospital Universitario y Politécnico La Fe, IIS La Fe, Valencia, Spain
| | - D Morgado-Carrasco
- Servicio de Dermatología, Hospital de Figueres, Fundació Salut Empordà, Girona, Spain; Servicio de Dermatología, Hospital Clínic de Barcelona, Universitat de Barcelona, Barcelona, Spain.
| |
Collapse
|
10
|
Hile GA, Werth VP. Understanding the Role of Type I Interferons in Cutaneous Lupus and Dermatomyositis: Toward Better Therapeutics. Arthritis Rheumatol 2025; 77:1-11. [PMID: 39262215 DOI: 10.1002/art.42983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/21/2024] [Accepted: 09/04/2024] [Indexed: 09/13/2024]
Abstract
A 29-year-old female presented to a rheumatology-dermatology clinic with a pruritic rash that began 6 months prior, after a viral illness. She had previously been diagnosed with eczema and treated with antihistamines and topical steroids without improvement. She also noted fatigue, hair loss, and severe scalp pruritus. Physical examination was notable for violaceous periorbital edema, scaly erythematous papules on the metacarpophalangeal joints of bilateral hands, dilated capillaries of the proximal nail folds, scaly plaques on bilateral elbows, and excoriated erythematous plaques on upper chest, back and hips. The patient reported no muscle weakness, and strength testing and creatinine phosphokinase were normal. Magnetic resonance imaging of the thigh showed no evidence of inflammation or edema. Antibody testing was negative. A diagnosis of clinically amyopathic dermatomyositis was made. Computed tomography scans of the chest, abdomen and pelvis, colonoscopy, and mammogram showed no evidence of cancer. The patient was initiated on methotrexate. Her cutaneous manifestations persisted with debilitating intractable pruritus, and thus, she was transitioned to mycophenolate mofetil, again with minimal improvement. Intravenous immunoglobulin was not approved by insurance given the lack of muscle involvement in her disease. This patient's case highlights a common clinical scenario in rheumatology and dermatology and raises several important issues related to the immunologic underpinnings of cutaneous lupus erythematosus (CLE) and dermatomyositis (DM): What is the role of type I interferon (IFN) in triggering skin disease in CLE and DM? What is the role of IFN in the pathogenesis of skin inflammation in CLE and DM? Can we apply what we know about IFN-targeted therapeutics in CLE and DM to develop better treatments for skin disease?
Collapse
Affiliation(s)
| | - Victoria P Werth
- Corporal Michael J. Crescenz Department of Veterans Affairs Medical Center and the University of Pennsylvania, Philadelphia
| |
Collapse
|
11
|
Tian J, Shi L, Zhang D, Yao X, Zhao M, Kumari S, Lu J, Yu D, Lu Q. Dysregulation in keratinocytes drives systemic lupus erythematosus onset. Cell Mol Immunol 2025; 22:83-96. [PMID: 39627610 PMCID: PMC11686216 DOI: 10.1038/s41423-024-01240-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 11/13/2024] [Indexed: 01/01/2025] Open
Abstract
Systemic lupus erythematosus (SLE) is a complex, multiorgan autoimmune disorder. Although it is widely believed that SLE originates from immune cell dysregulation, the etiology of SLE is not yet clear. Here, we propose a new theory in which SLE can be directly initiated by molecular alterations in keratinocytes rather than immune cells. We found that the level of peroxisome proliferator-activated receptor gamma (PPARγ) is substantially reduced in the skin lesions of patients, and replicating this reduction in mice led to rapid disease onset with multiple hallmarks of SLE. As PPARγ decreases in keratinocytes, which is accompanied by increased occupancy of interferon regulatory factor 3 at the type I interferon locus, dendritic cells (DCs) are recruited to the epidermis and are activated by keratinocyte-secreted type I interferon. These activated DCs migrate to local draining lymph nodes, where they activate CD4+ T cells in a non-MHC II-dependent manner, promoting their differentiation into effector T cells and thus contributing to disease onset. Our study revealed that the dysregulation of keratinocytes can be a pathogenic driver of SLE and describes a new mouse model that mimics human SLE. Our data also emphasize the pivotal role of skin immunity in the onset of systemic autoimmune disease.
Collapse
Affiliation(s)
- Jingru Tian
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, China
- Department of Allergy and Rheumatology, Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Liqing Shi
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, China
| | - Dingyao Zhang
- Program of Computational Biology and Bioinformatics, Yale University, New Haven, CT, USA
| | - Xu Yao
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
- Department of Allergy and Rheumatology, Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Ming Zhao
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, China
| | - Snehlata Kumari
- Faculty of Medicine, Frazer Institute, The University of Queensland, Brisbane, QLD, Australia
- Translational Research Institute, Brisbane, QLD, Australia
| | - Jun Lu
- Yale Stem Cell Center, New Haven, CT, USA
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- Yale Cancer Center, New Haven, CT, USA
- Yale Center for RNA Science and Medicine, New Haven, CT, USA
- Yale Cooperative Center of Excellence in Hematology, New Haven, CT, USA
| | - Di Yu
- Faculty of Medicine, Frazer Institute, The University of Queensland, Brisbane, QLD, Australia
- John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
- Faculty of Medicine, Ian Frazer Centre for Children's Immunotherapy Research, Child Health Research Centre, University of Queensland, Brisbane, QLD, Australia
| | - Qianjin Lu
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China.
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China.
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, China.
| |
Collapse
|
12
|
Abernathy-Close L, Mears J, Billi AC, Sirobhushanam S, Berthier C, Lu A, Zhang Z, Hurst A, Gudjonsson JE, Kahlenberg JM. Topical Mupirocin Treatment Reduces Interferon and Myeloid Signatures in Cutaneous Lupus Erythematous Lesions Through Targeting of Staphyloccal Species. Arthritis Rheumatol 2024. [PMID: 39648343 DOI: 10.1002/art.43079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 11/20/2024] [Accepted: 11/26/2024] [Indexed: 12/10/2024]
Abstract
OBJECTIVE Cutaneous lupus erythematosus (CLE) is an inflammatory skin manifestation of systemic lupus erythematosus. Type I interferons (IFNs) promote inflammatory responses and are elevated in CLE lesions. We recently reported that CLE lesions are frequently colonized with Staphylococcus aureus. Here, we follow up via a proof-of-concept study to investigate whether type I IFN and inflammatory gene signatures in CLE lesions can be modulated with mupirocin, a topical antibiotic treatment against S aureus-mediated skin infections. METHODS Participants with active CLE lesions (n = 12) were recruited and randomized into a week of topical treatment with either 2% mupirocin or petroleum jelly vehicle. Paired samples were collected before and after seven days of treatment to assess microbial lesional skin responses. Microbial samples from nares and lesional skin were used to determine baseline and posttreatment Staphylococcus abundance and microbial community profiles by 16S ribosomal RNA gene sequencing. Inflammatory responses were evaluated by bulk RNA sequencing of lesional skin biopsies. RESULTS We identified 173 differentially expressed genes in CLE lesions after topical mupirocin treatment. Decreased lesional Staphylococcus burden correlated with decreased IFN pathway signaling and inflammatory gene expression and barrier dysfunction. Interestingly, mupirocin treatment lowered skin monocyte levels, and this mupirocin-associated depletion of monocytes correlated with decreased inflammatory gene expression. CONCLUSION Mupirocin treatment decreased lesional Staphylococcus, and this correlated with decreased IFN signaling and inflammatory gene expression. This study suggests a topical antibiotic could be employed to decrease lupus skin inflammation and type I IFN responses by reducing Staphylococcus colonization.
Collapse
Affiliation(s)
| | | | | | | | | | - Annie Lu
- University of Michigan, Ann Arbor
| | | | | | | | | |
Collapse
|
13
|
Maz MP, Reddy AL, Berthier CC, Tsoi LC, Colesa DJ, Wolf SJ, Shi H, Loftus SN, Moallemian R, Bogle R, Kretzler M, Jacob CO, Gudjonsson JE, Kahlenberg JM. Lupus-prone NZM2328 mice exhibit enhanced UV-induced myeloid cell recruitment and activation in a type I interferon dependent manner. J Autoimmun 2024; 149:103296. [PMID: 39241536 DOI: 10.1016/j.jaut.2024.103296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 07/10/2024] [Accepted: 07/22/2024] [Indexed: 09/09/2024]
Abstract
Though the exact causes of systemic lupus erythematosus (SLE) remain unknown, exposure to ultraviolet (UV) light is one of the few well-known triggers of cutaneous inflammation in SLE. However, the precise cell types which contribute to the early cutaneous inflammatory response in lupus, and the ways that UV dosing and interferons modulate these findings, have not been thoroughly dissected. Here, we explore these questions using the NZM2328 spontaneous murine model of lupus. In addition, we use iNZM mice, which share the NZM2328 background but harbor a whole-body knockout of the type I interferon (IFN) receptor, and wild-type BALB/c mice. 10-13-week-old female mice of each strain were treated with acute (300 mJ/cm2 x1), chronic (100 mJ/cm2 daily x5 days), or no UVB, and skin was harvested and processed for bulk RNA sequencing and flow cytometry. We identify that inflammatory pathways and gene signatures related to myeloid cells - namely neutrophils and monocyte-derived dendritic cells - are a shared feature of the acute and chronic UVB response in NZM skin greater than iNZM and wild-type skin. We also verify recruitment and activation of these cells by flow cytometry in both acutely and chronically irradiated NZM and WT mice and demonstrate that these processes are dependent on type I IFN signaling. Taken together, these data indicate a skewed IFN-driven inflammatory response to both acute and chronic UVB exposure in lupus-prone skin dominated by myeloid cells, suggesting both the importance of type I IFNs and myeloid cells as therapeutic targets for photosensitive patients and highlighting the risks of even moderate UV exposure in this patient population.
Collapse
Affiliation(s)
- Mitra P Maz
- Div. of Rheumatology, Dept. of Internal Medicine, University of Michigan, Ann Arbor, MI, USA; Medical Scientist Training Program, University of Michigan, Ann Arbor, MI, USA; Immunology Graduate Program, University of Michigan, Ann Arbor, MI, USA
| | - Alayka L Reddy
- Div. of Rheumatology, Dept. of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Celine C Berthier
- Div. of Nephrology, Dept. of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Lam C Tsoi
- Department of Dermatology, University of Michigan, Ann Arbor, MI, USA
| | - Deborah J Colesa
- Div. of Rheumatology, Dept. of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Sonya J Wolf
- Div. of Rheumatology, Dept. of Internal Medicine, University of Michigan, Ann Arbor, MI, USA; Immunology Graduate Program, University of Michigan, Ann Arbor, MI, USA
| | - Hong Shi
- Div. of Rheumatology, Dept. of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Shannon N Loftus
- Div. of Rheumatology, Dept. of Internal Medicine, University of Michigan, Ann Arbor, MI, USA; Immunology Graduate Program, University of Michigan, Ann Arbor, MI, USA
| | - Rezvan Moallemian
- Div. of Rheumatology, Dept. of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Rachael Bogle
- Department of Dermatology, University of Michigan, Ann Arbor, MI, USA
| | - Matthias Kretzler
- Div. of Nephrology, Dept. of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Chaim O Jacob
- University of Southern California Keck School of Medicine, Los Angeles, CA, USA
| | - Johann E Gudjonsson
- Div. of Rheumatology, Dept. of Internal Medicine, University of Michigan, Ann Arbor, MI, USA; Department of Dermatology, University of Michigan, Ann Arbor, MI, USA
| | - J Michelle Kahlenberg
- Div. of Rheumatology, Dept. of Internal Medicine, University of Michigan, Ann Arbor, MI, USA; Department of Dermatology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
14
|
Wang ZY, Zhao ZQ, Sheng YJ, Chen KJ, Chen BZ, Guo XD, Cui Y. Dual-Action Psoriasis Therapy: Antiproliferative and Immunomodulatory Effects via Self-Locking Microneedles. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2409359. [PMID: 39473371 PMCID: PMC11672289 DOI: 10.1002/advs.202409359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/25/2024] [Indexed: 12/28/2024]
Abstract
Psoriasis is a chronic, immune-mediated disorder characterized by immune regulation disorders and abnormal keratinocyte proliferation. Deucravacitinib (Deu), a selective oral Tyrosine Kinase 2 (TYK2) inhibitor, shows promise in treating psoriasis but may cause systemic side effects and fail to address persistent localized thickened lesions. Herein, a self-locking microneedle (MN) patch with a polyvinyl alcohol (PVA) inner ring loaded with Deu is developed, designed to penetrate the transdermal barriers and dissolve rapidly, downregulating the IL-23/IL-17 pathway and serve as the first line of defense against the spread of skin-originated inflammation. Additionally, Calcipotriol (Cal), a vitamin D derivative, is incorporated into a methacrylated hyaluronic acid (HAMA) backing layer and outer ring that mimics occlusive administration, maintaining localized skin surface retention for prolonged anti-proliferative therapy. The Deu@Cal MN demonstrates satisfactory adhesiveness due to swelling-mediated mechanical interlocking via the outer ring, ensuring targeted drug release at lesion site. Besides its effectiveness in alleviating both skin inflammation and proliferation, it inhibits the differentiation of Th17 cells in the spleen, suggesting potential to reduce systemic inflammation. These findings offer a new therapeutic approach for treating psoriasis and other autoimmune and inflammatory conditions.
Collapse
Affiliation(s)
- Zi Yi Wang
- China‐Japan Friendship Hospital (Institute of Clinical Medical Sciences)Chinese Academy of Medical Sciences & Peking Union Medical CollegeBeijing100029China
- Department of DermatologyChina‐Japan Friendship HospitalBeijing100029China
| | - Ze Qiang Zhao
- State Key Laboratory of Organic‐Inorganic CompositesBeijing University of Chemical TechnologyBeijing100029China
- Beijing Laboratory of Biomedical MaterialsCollege of Materials Science and EngineeringBeijing University of Chemical TechnologyBeijing100029China
| | - Yu Jun Sheng
- Department of DermatologyChina‐Japan Friendship HospitalBeijing100029China
| | - Ke Jun Chen
- China‐Japan Friendship Hospital (Institute of Clinical Medical Sciences)Chinese Academy of Medical Sciences & Peking Union Medical CollegeBeijing100029China
- Department of DermatologyChina‐Japan Friendship HospitalBeijing100029China
| | - Bo Zhi Chen
- State Key Laboratory of Organic‐Inorganic CompositesBeijing University of Chemical TechnologyBeijing100029China
- Beijing Laboratory of Biomedical MaterialsCollege of Materials Science and EngineeringBeijing University of Chemical TechnologyBeijing100029China
| | - Xin Dong Guo
- State Key Laboratory of Organic‐Inorganic CompositesBeijing University of Chemical TechnologyBeijing100029China
- Beijing Laboratory of Biomedical MaterialsCollege of Materials Science and EngineeringBeijing University of Chemical TechnologyBeijing100029China
| | - Yong Cui
- China‐Japan Friendship Hospital (Institute of Clinical Medical Sciences)Chinese Academy of Medical Sciences & Peking Union Medical CollegeBeijing100029China
- Department of DermatologyChina‐Japan Friendship HospitalBeijing100029China
| |
Collapse
|
15
|
Klein B, Nguyen NTK, Moallemian R, Kahlenberg JM. Keratinocytes - Amplifiers of Immune Responses in Systemic Lupus Erythematosus. Curr Rheumatol Rep 2024; 27:1. [PMID: 39570551 DOI: 10.1007/s11926-024-01168-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/22/2024] [Indexed: 11/22/2024]
Abstract
PURPOSE OF REVIEW Epithelial cells have been acknowledged as important players in autoimmune diseases by directing and enhancing inflammatory responses. Here, we summarize recent publications that examine keratinocyte (KC) dysfunction and its contribution to cutaneous and systemic disease in systemic lupus erythematosus patients. RECENT FINDINGS Chronic upregulation of type I interferon (IFN) in KCs is a feature of both lesional and nonlesional lupus skin. This IFN rich environment modulates epidermal cell death responses and promotes inflammatory responses to UV light exposure. In addition, newer technologies such as single cell RNA-seq are informing our understanding of lupus-specific intercellular crosstalk and how this contributes to disease. Recent discoveries in KC dysfunction in lupus skin include aberrant IFN responses to environmental stress, enhanced cytokine and chemokine secretion and epigenetic changes leading to increased cell death. Further research will enable precision therapies for lupus treatment.
Collapse
Affiliation(s)
- Benjamin Klein
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, 2800 Plymouth Road, Ann Arbor, MI, 48109, USA
| | - Nguyen Thi Kim Nguyen
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, 2800 Plymouth Road, Ann Arbor, MI, 48109, USA
| | - Rezvan Moallemian
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, 2800 Plymouth Road, Ann Arbor, MI, 48109, USA
| | - J Michelle Kahlenberg
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, 2800 Plymouth Road, Ann Arbor, MI, 48109, USA.
- Department of Dermatology, University of Michigan, Ann Arbor, USA.
| |
Collapse
|
16
|
Jinshan Z, Yong Q, Fangqi C, Juanmei C, Min L, Changzheng H. The role of TNF-α as a potential marker for acute cutaneous lupus erythematosus in patients with systemic lupus erythematosus. J Dermatol 2024; 51:1481-1491. [PMID: 38963308 DOI: 10.1111/1346-8138.17355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 05/28/2024] [Accepted: 06/11/2024] [Indexed: 07/05/2024]
Abstract
Acute cutaneous lupus erythematosus (ACLE) is closely associated with systemic symptoms in systemic lupus erythematosus (SLE). This study aimed to identify potential biomarkers for ACLE and explore their association with SLE to enable early prediction of ACLE and identify potential treatment targets for the future. In total, 185 SLE-diagnosed patients were enrolled and categorized into two groups: those with ACLE and those without cutaneous involvement. After conducting logistic regression analysis of the differentiating factors, we concluded that tumor necrosis factor-alpha (TNF-α) is an independent risk factor for ACLE. Analysis of the receiver operating characteristic revealed an area under the curve of 0.716 for TNF-α. Additionally, both TNF-α and ACLE are positively correlated with disease activity. TNF-α shows promise as a biomarker for ACLE, and in SLE patients, ACLE may serve as a clear indicator of moderate-to-severe disease activity.
Collapse
Affiliation(s)
- Zhan Jinshan
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Qu Yong
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Chen Fangqi
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Cao Juanmei
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
- Department of Dermatology, The First Affiliated Hospital of Shihezi University, Shihezi University, Shihezi, Xinjiang, China
| | - Li Min
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Huang Changzheng
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| |
Collapse
|
17
|
Wang FQ, Dang X, Yang W. Transcriptomic studies unravel the molecular and cellular complexity of systemic lupus erythematosus: A review. Clin Immunol 2024; 268:110367. [PMID: 39293718 DOI: 10.1016/j.clim.2024.110367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/03/2024] [Accepted: 09/14/2024] [Indexed: 09/20/2024]
Abstract
Transcriptomic analysis plays a vital role in investigating Systemic Lupus Erythematosus (SLE), a complex autoimmune disease characterized by diverse clinical manifestations. This approach has yielded valuable insights into gene expression patterns and molecular regulatory mechanisms involved in SLE pathogenesis. Notably, interferon-stimulated gene (ISG) signatures are significantly upregulated in immune cells, skin, and kidney. Although a correlation with serological parameters and clinical symptoms has been proposed, the association with global disease activities remains controversial. Key findings in the field include an upregulated plasmablast signature, which positively correlates with disease activity; a neutrophil signature associated with lupus nephritis; and a decreased lymphocyte signature, reflecting lymphopenia. Tissue-level studies highlight the critical role of infiltrating immune cells in organ damage. Future research should leverage advanced technologies and integrate multi-omics data to deepen our understanding of SLE's molecular underpinnings, facilitating the development of targeted therapies.
Collapse
Affiliation(s)
- Frank Qingyun Wang
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, China
| | - Xiao Dang
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, China
| | - Wanling Yang
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
18
|
Mirceta M, Schmidt MHM, Shum N, Prasolava TK, Meikle B, Lanni S, Mohiuddin M, Mckeever PM, Zhang M, Liang M, van der Werf I, Scheers S, Dion PA, Wang P, Wilson MD, Abell T, Philips EA, Sznajder ŁJ, Swanson MS, Mehkary M, Khan M, Yokoi K, Jung C, de Jong PJ, Freudenreich CH, McGoldrick P, Yuen RKC, Abrahão A, Keith J, Zinman L, Robertson J, Rogaeva E, Rouleau GA, Kooy RF, Pearson CE. C9orf72 expansion creates the unstable folate-sensitive fragile site FRA9A. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.26.620312. [PMID: 39569145 PMCID: PMC11577248 DOI: 10.1101/2024.10.26.620312] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
The hyper-unstable Chr9p21 locus, harbouring the interferon gene cluster, oncogenes and C9orf72, is linked to multiple diseases. C9orf72 (GGGGCC)n expansions ( C9orf72 Exp) are associated with incompletely penetrant amyotrophic lateral sclerosis, frontotemporal dementia and autoimmune disorders. C9orf72 Exp patients display hyperactive cGAS-STING-linked interferon immune and DNA damage responses, but the source of immuno-stimulatory or damaged DNA is unknown. Here, we show C9orf72 Exp in pre-symptomatic and ALS-FTD patient cells and brains cause the folate-sensitive chromosomal fragile site, FRA9A. FRA9A centers on >33kb of C9orf72 as highly-compacted chromatin embedded in an 8.2Mb fragility zone spanning 9p21, encompassing 46 genes, making FRA9A one of the largest fragile sites. C9orf72 Exp cells show chromosomal instability, heightened global- and Chr9p-enriched sister-chromatid exchanges, truncated-Chr9s, acentric-Chr9s and Chr9-containing micronuclei, providing endogenous sources of damaged and immunostimulatory DNA. Cells from one C9orf72 Exp patient contained highly-rearranged FRA9A-expressing Chr9 with Chr9-wide dysregulated gene expression. Somatic C9orf72 Exp repeat instability and chromosomal fragility are sensitive to folate-deficiency. Age-dependent repeat instability, chromosomal fragility, and chromosomal instability can be transferred to CNS and peripheral tissues of transgenic C9orf72 Exp mice, implicating C9orf72 Exp as the source. Our results highlight unappreciated effects of C9orf72 expansions that trigger vitamin-sensitive chromosome fragility, adding structural variations to the disease-enriched 9p21 locus, and likely elsewhere.
Collapse
|
19
|
Arnaud L, Chasset F, Martin T. Immunopathogenesis of systemic lupus erythematosus: An update. Autoimmun Rev 2024; 23:103648. [PMID: 39343084 DOI: 10.1016/j.autrev.2024.103648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/01/2024]
Abstract
Systemic lupus erythematosus (SLE) is a chronic systemic autoimmune disease characterized by dysregulated immune responses leading to widespread inflammation and damage in various organs. Environmental factors such as infections, hormonal influences and exposure to ultraviolet light can trigger the disease in genetically predisposed individuals. Genome-wide association studies have identified over 100 susceptibility loci linked to immune regulation, interferon (IFN) signaling and antigen presentation in SLE. In addition, rare cases of monogenic lupus have been instrumental in understanding critical underlying disease mechanisms. Several immunological abnormalities contribute to the loss of self-tolerance and the perpetuation of autoimmune responses in SLE. In particular, defective clearance of apoptotic cells due to defective phagocytosis and complement activation leads to accumulation of self-antigens. Dysregulated innate immune responses activate the adaptive immune system, amplifying the inflammatory response with an important role for type I IFNs. Abnormalities in B cell development and activation lead to the production of autoreactive antibodies, forming immune complexes that cause tissue damage. Similarly, disturbances in T-cell compartments, altered regulatory T-cell functions and altered cytokine production, particularly IFN-α, contribute to tissue damage. Understanding of the immunopathogenesis of SLE is evolving rapidly, with ongoing research identifying new molecular pathways and potential therapeutic targets. Future classifications of SLE are likely to be based on underlying biological pathways rather than clinical and serological signs alone. This review aims to provide a detailed update on the most recent findings regarding the immunopathogenesis of SLE, focusing on the variability of biological pathways and the implications for future therapeutic strategies, in particular chimeric antigen receptor T (CAR T) cells.
Collapse
Affiliation(s)
- Laurent Arnaud
- Service de Rhumatologie, Hôpitaux Universitaires de Strasbourg, Centre National de Référence des Maladies Systémiques Auto-immunes Rares Est Sud-Ouest, INSERM UMRS-1109, Université de Strasbourg, Strasbourg, France.
| | - François Chasset
- Sorbonne Université, Faculté de Médecine, AP-HP, Service de Dermatologie et Allergologie, Hôpital Tenon, INSERM U1135, CIMI, Paris, France
| | - Thierry Martin
- Service d'immunologie Clinique et de médecine interne, Hôpitaux Universitaires de Strasbourg, Centre National de Référence des Maladies Systémiques Auto-immunes Rares, Strasbourg, France
| |
Collapse
|
20
|
Chen IC, Chan TC, Yang HW, Chen YJ, Chen YM. Interplay between polygenic risk score and solar insolation: Implication for systemic lupus erythematosus diagnosis and pathogenesis. Semin Arthritis Rheum 2024; 68:152531. [PMID: 39154620 DOI: 10.1016/j.semarthrit.2024.152531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 07/03/2024] [Accepted: 08/07/2024] [Indexed: 08/20/2024]
Abstract
OBJECTIVES This research elucidates the correlation between solar radiation insolation, polygenic risk score (PRS), and systemic lupus erythematosus (SLE) diagnosis, utilizing genomic, environmental, and clinical data. METHODS We included 1,800 SLE participants and 1,800 controls from the Taiwan Precision Medicine Initiative, genotyped via the Affymetrix Genome-Wide TWB 2.0 SNP Array. The study employed a SLE-PRS tailored for individuals of Taiwanese ancestry, comprising 27 single nucleotide polymorphisms (SNPs). QGIS computed solar radiation insolation from participants' residences. We employed logistic regression to investigate the associations between SLE-PRS, solar insolation susceptibility, and SLE. Additive and multiplicative interactions were utilized to assess the interactions between solar insolation and SLE-PRS regarding the risk of SLE. RESULTS SLE patients showed decreased solar insolation (p < 0.001). The highest decile of SLE-PRS exhibited a statistically significant lower solar insolation 1, 3, 6, and 12 months prior to diagnosis as compared to the lowest decile. Specifically, there were significant differences observed at 1 and 12 months (p = 0.025 and p = 0.004, respectively). It suggests that higher SLE-PRS correlated with reduced solar insolation tolerance. We observed an increase in SLE risk across ascending SLE-PRS percentiles exclusively in the high solar insolation group, not in the low solar insolation group. However, the interaction effect of SLE-PRS and solar insolation on SLE risk is not statistically significant. Compared to the lowest decile, the highest SLE-PRS decile showed a 10.98-fold increase in SLE risk (95 % CI, 3.773-31.952, p < 0.001). High SLE-PRS scores in conjunction with high solar insolation contribute to SLE incidence. CONCLUSIONS Our study unveils the intertwined nature of UV insolation and polygenic risks in SLE. Future studies should explore the preventative potential of robust solar radiation protection for high-risk individuals before the disease onset.
Collapse
Affiliation(s)
- I-Chieh Chen
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Ta-Chien Chan
- Research Center for Humanities and Social Sciences, Academia Sinica, Taipei City, Taiwan; Institute of Public Health, School of Medicine, National Yang Ming Chiao Tung University, Taipei City, Taiwan
| | - Hui-Wen Yang
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan; Department of Post-Baccalaureate Medicine, College of Medicine, National Chung-Hsing University, Taichung, Taiwan
| | - Yen-Ju Chen
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan; Division of Allergy, Immunology and Rheumatology, Taichung Veterans General Hospital, Taichung, Taiwan; School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yi-Ming Chen
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan; Department of Post-Baccalaureate Medicine, College of Medicine, National Chung-Hsing University, Taichung, Taiwan; Division of Allergy, Immunology and Rheumatology, Taichung Veterans General Hospital, Taichung, Taiwan; School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, National Chung Hsing University, Taichung, Taiwan; Precision Medicine Research Center, College of Medicine, National Chung Hsing University, Taichung, Taiwan.
| |
Collapse
|
21
|
Mirceta M, Schmidt MM, Shum N, Prasolava T, Meikle B, Lanni S, Mohiuddin M, McKeever P, Zhang M, Liang M, van der Werf I, Scheers S, Dion P, Wang P, Wilson M, Abell T, Philips E, Sznajder Ł, Swanson M, Mehkary M, Khan M, Yokoi K, Jung C, de Jong P, Freudenreich C, McGoldrick P, Yuen RC, Abrahão A, Keith J, Zinman L, Robertson J, Rogaeva E, Rouleau G, Kooy R, Pearson C. C9orf72 repeat expansion creates the unstable folate-sensitive fragile site FRA9A. NAR MOLECULAR MEDICINE 2024; 1:ugae019. [PMID: 39669124 PMCID: PMC11632612 DOI: 10.1093/narmme/ugae019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 11/11/2024] [Indexed: 12/14/2024]
Abstract
The hyper-unstable Chr9p21 locus, harbouring the interferon gene cluster, oncogenes and C9orf72, is linked to multiple diseases. C9orf72 (GGGGCC)n expansions (C9orf72Exp) are associated with incompletely penetrant amyotrophic lateral sclerosis, frontotemporal dementia and autoimmune disorders. C9orf72Exp patients display hyperactive cGAS-STING-linked interferon immune and DNA damage responses, but the source of immunostimulatory or damaged DNA is unknown. Here, we show C9orf72Exp in pre-symptomatic and amyotrophic lateral sclerosis-frontotemporal dementia patient cells and brains cause the folate-sensitive chromosomal fragile site, FRA9A. FRA9A centers on >33 kb of C9orf72 as highly compacted chromatin embedded in an 8.2 Mb fragility zone spanning 9p21, encompassing 46 genes, making FRA9A one of the largest fragile sites. C9orf72Exp cells show chromosomal instability, heightened global- and Chr9p-enriched sister-chromatid exchanges, truncated-Chr9s, acentric-Chr9s and Chr9-containing micronuclei, providing endogenous sources of damaged and immunostimulatory DNA. Cells from one C9orf72Exp patient contained a highly rearranged FRA9A-expressing Chr9 with Chr9-wide dysregulated gene expression. Somatic C9orf72Exp repeat instability and chromosomal fragility are sensitive to folate deficiency. Age-dependent repeat instability, chromosomal fragility and chromosomal instability can be transferred to CNS and peripheral tissues of transgenic C9orf72Exp mice, implicating C9orf72Exp as the source. Our results highlight unappreciated effects of C9orf72 expansions that trigger vitamin-sensitive chromosome fragility, adding structural variations to the disease-enriched 9p21 locus, and likely elsewhere.
Collapse
Affiliation(s)
- Mila Mirceta
- Program of Genetics and Genome Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Toronto, M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON, M3S 1A8, Canada
| | - Monika H M Schmidt
- Program of Genetics and Genome Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Toronto, M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON, M3S 1A8, Canada
| | - Natalie Shum
- Program of Genetics and Genome Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Toronto, M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON, M3S 1A8, Canada
| | - Tanya K Prasolava
- Program of Genetics and Genome Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Toronto, M5G 0A4, Canada
| | - Bryanna Meikle
- Program of Genetics and Genome Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Toronto, M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON, M3S 1A8, Canada
| | - Stella Lanni
- Program of Genetics and Genome Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Toronto, M5G 0A4, Canada
| | - Mohiuddin Mohiuddin
- Program of Genetics and Genome Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Toronto, M5G 0A4, Canada
| | - Paul M McKeever
- Tanz Centre for Research of Neurodegenerative Diseases, University of Toronto, 60 Leonard Avenue, Toronto, M5T 2S8, Canada
| | - Ming Zhang
- Tanz Centre for Research of Neurodegenerative Diseases, University of Toronto, 60 Leonard Avenue, Toronto, M5T 2S8, Canada
- The First Rehabilitation Hospital of Shanghai, Department of Medical Genetics, School of Medicine, Tongji University, Shanghai, 200090, China
- State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
- Advanced Study, Tongji University, Shanghai, 200092, China
| | - Minggao Liang
- Program of Genetics and Genome Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Toronto, M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON, M3S 1A8, Canada
| | | | - Stefaan Scheers
- Department of Medical Genetics, University of Antwerp, Belgium
| | - Patrick A Dion
- Montreal Neurological Institute-Hospital, McGill University, 3801 University Avenue, Montreal, Quebec, H3A 2B4, Canada
- Department of Neurology and Neurosurgery, McGill University, 3801 University Avenue, Montreal, Quebec, H3A 2B4, Canada
| | - Peixiang Wang
- Program of Genetics and Genome Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Toronto, M5G 0A4, Canada
| | - Michael D Wilson
- Program of Genetics and Genome Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Toronto, M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON, M3S 1A8, Canada
| | - Theresa Abell
- Department of Biology, Tufts University, 200 Boston Avenue, Medford, MA 02155, USA
| | - Elliot A Philips
- Department of Biology, Tufts University, 200 Boston Avenue, Medford, MA 02155, USA
| | - Łukasz J Sznajder
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, College of Medicine, University of Florida, 2033 Mowry Road, Gainesville, FL 32610-3610, USA
- Department of Chemistry and Biochemistry, University of Nevada, 4003-4505 South Maryland Parkway, Las Vegas, NV 89154, USA
| | - Maurice S Swanson
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, College of Medicine, University of Florida, 2033 Mowry Road, Gainesville, FL 32610-3610, USA
| | - Mustafa Mehkary
- Program of Genetics and Genome Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Toronto, M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON, M3S 1A8, Canada
| | - Mahreen Khan
- Program of Genetics and Genome Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Toronto, M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON, M3S 1A8, Canada
| | - Katsuyuki Yokoi
- Program of Genetics and Genome Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Toronto, M5G 0A4, Canada
| | - Christine Jung
- BACPAC Resource Center, Children’s Hospital Oakland Research Institute, 25129 NE 42nd Pl, Redmond, WA 98053, USA
| | - Pieter J de Jong
- BACPAC Resource Center, Children’s Hospital Oakland Research Institute, 25129 NE 42nd Pl, Redmond, WA 98053, USA
| | | | - Philip McGoldrick
- Tanz Centre for Research of Neurodegenerative Diseases, University of Toronto, 60 Leonard Avenue, Toronto, M5T 2S8, Canada
| | - Ryan K C Yuen
- Program of Genetics and Genome Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Toronto, M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON, M3S 1A8, Canada
| | - Agessandro Abrahão
- Sunnybrook Health Sciences Centre, 2075 Bayview Avenue, North York, Toronto, ON, M4N 3M5, Canada
| | - Julia Keith
- Sunnybrook Health Sciences Centre, 2075 Bayview Avenue, North York, Toronto, ON, M4N 3M5, Canada
| | - Lorne Zinman
- Sunnybrook Health Sciences Centre, 2075 Bayview Avenue, North York, Toronto, ON, M4N 3M5, Canada
| | - Janice Robertson
- Tanz Centre for Research of Neurodegenerative Diseases, University of Toronto, 60 Leonard Avenue, Toronto, M5T 2S8, Canada
| | - Ekaterina Rogaeva
- Tanz Centre for Research of Neurodegenerative Diseases, University of Toronto, 60 Leonard Avenue, Toronto, M5T 2S8, Canada
| | - Guy A Rouleau
- Montreal Neurological Institute-Hospital, McGill University, 3801 University Avenue, Montreal, Quebec, H3A 2B4, Canada
- Department of Neurology and Neurosurgery, McGill University, 3801 University Avenue, Montreal, Quebec, H3A 2B4, Canada
- Department of Human Genetics, McGill University, 3801 University Avenue, Montreal, Quebec, H3A 2B4, Canada
| | - R Frank Kooy
- Department of Medical Genetics, University of Antwerp, Belgium
| | - Christopher E Pearson
- Program of Genetics and Genome Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Toronto, M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON, M3S 1A8, Canada
| |
Collapse
|
22
|
Malik AE, Slauenwhite D, McAlpine SM, Hanly JG, Marshall JS, Dérfalvi B, Issekutz TB. Differential type I and type III interferon expression profiles in rheumatoid and juvenile idiopathic arthritis. Front Med (Lausanne) 2024; 11:1466397. [PMID: 39399119 PMCID: PMC11468860 DOI: 10.3389/fmed.2024.1466397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 09/12/2024] [Indexed: 10/15/2024] Open
Abstract
Background The role of type I and type III interferons (IFNs) in rheumatoid arthritis (RA) and juvenile idiopathic arthritis (JIA) is still poorly understood. The objective of this study was to examine the hypothesis that IFN expression profiles in the peripheral blood differ between subsets of arthritic subjects. Multiple type I and type III IFNs were examined in patients with RA and JIA, as well as among subtypes of JIA. Methods Treatment-naïve RA and JIA patients were enrolled. Droplet digital PCR was used to measure the expression of type I, II, and III interferons in blood and synovial fluid leukocytes. Dendritic cell subsets were isolated from synovial fluid to examine IFN expression in each subset. Additionally, synovial mononuclear cells and JIA-derived fibroblast-like synoviocytes were stimulated with TNF, IFNγ, and poly(I:C) to examine inducible IFN expression. Results The predominant type I IFN gene expressed by blood leukocytes was IFNκ and was significantly lower in RA than JIA and controls. Oligoarticular and psoriatic JIA subgroups showed higher IFNκ expression compared to polyarticular JIA and RA. JIA synovial fluid leukocytes expressed abundant IFNγ and type III IFNs (IFNλ1, IFNλ3), with distinct dendritic cell subset contributions. JIA fibroblast-like synoviocytes produced IFNβ, IFNλ1, and IFNλ2 mRNA upon poly(I:C) stimulation. Conclusion This study revealed differences in IFN expression patterns in RA and JIA, with notable differences between JIA subtypes. The expression levels of IFNκ, IFNγ, IFNλ1 and IFNλ3 in JIA suggest specific roles in disease pathology, influenced by disease subtype and joint microenvironment. This study contributes to understanding IFN-mediated mechanisms in arthritis, potentially guiding targeted therapeutic strategies.
Collapse
Affiliation(s)
- Anikó E. Malik
- IWK Health Centre, Halifax, NS, Canada
- Department of Pediatrics, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Drew Slauenwhite
- IWK Health Centre, Halifax, NS, Canada
- Department of Pediatrics, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Sarah M. McAlpine
- IWK Health Centre, Halifax, NS, Canada
- Department of Pediatrics, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - John G. Hanly
- Division of Rheumatology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
- Queen Elizabeth II Health Sciences Centre, Halifax, NS, Canada
| | - Jean S. Marshall
- Department of Microbiology & Immunology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Beáta Dérfalvi
- IWK Health Centre, Halifax, NS, Canada
- Department of Pediatrics, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Thomas B. Issekutz
- IWK Health Centre, Halifax, NS, Canada
- Department of Pediatrics, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
23
|
Abacar K, Macleod T, Direskeneli H, McGonagle D. How underappreciated autoinflammatory (innate immunity) mechanisms dominate disparate autoimmune disorders. Front Immunol 2024; 15:1439371. [PMID: 39372419 PMCID: PMC11449752 DOI: 10.3389/fimmu.2024.1439371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 09/04/2024] [Indexed: 10/08/2024] Open
Abstract
Historically inflammation against self was considered autoimmune which stems back to the seminal observations by Ehrlich who described serum factors, now known to be autoantibodies produced by B lineage cells that mediate "horror autotoxicus". The 20th century elucidation of B- and T-cell adaptive immune responses cemented the understanding of the key role of adaptive immune responses in mediating pathology against self. However, Mechnikov shared the Nobel Prize for the discovery of phagocytosis, the most rudimentary aspect of innate immunity. Fast forward some 100 years and an immunogenetic understanding of innate immunity led to the categorising of innate immunopathology under the umbrella term 'auto inflammation' and terminology such as "horror autoinflammaticus" to highlight the schism from the classical adaptive immune understanding of autoimmunity. These concepts lead to calls for a two-tiered classification of inflammation against self, but just as innate and adaptive immunity are functionally integrated, so is immunopathology in many settings and the concept of an autoimmune to autoinflammation continuum emerged with overlaps between both. Herein we describe several historically designated disorders of adaptive immunity where innate immunity is key, including rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), systemic juvenile idiopathic arthritis (sJIA) and adult-onset Still's disease (AOSD) where the immunopathology phenotype is strongly linked to major histocompatibility complex (MHC) class II associations and responds to drugs that target T-cells. We also consider MHC-I-opathies including psoriasis and Behcet's disease(BD) that are increasingly viewed as archetype CD8 T-cell related disorders. We also briefly review the key role of barrier dysfunction in eczema and ulcerative colitis (UC) where innate tissue permeability barrier dysfunction and microbial dysbiosis contributes to prominent adaptive immune pathological mechanisms. We also highlight the emerging roles of intermediate populations of lymphocytes including gamma delta (γδ) and mucosal-associated invariant T (MAIT) cells that represent a blend of adaptive immune plasticity and innate immune rapid responders that may also determine site specific patterns of inflammation.
Collapse
Affiliation(s)
- Kerem Abacar
- Department of Internal Medicine, Division of Rheumatology, Marmara University School of Medicine, Istanbul, Türkiye
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, United Kingdom
| | - Tom Macleod
- Department of Internal Medicine, Division of Rheumatology, Marmara University School of Medicine, Istanbul, Türkiye
| | - Haner Direskeneli
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, United Kingdom
| | - Dennis McGonagle
- Department of Internal Medicine, Division of Rheumatology, Marmara University School of Medicine, Istanbul, Türkiye
- National Institute for Health Research, Leeds Biomedical Research Centre, Leeds Teaching Hospitals, Leeds, United Kingdom
| |
Collapse
|
24
|
Papasavvas E, Lu L, Fair M, Oliva I, Cassel J, Majumdar S, Mounzer K, Kostman JR, Tebas P, Bar-Or A, Muthumani K, Montaner LJ. Cloning and Functional Characterization of Novel Human Neutralizing Anti-IFN-α and Anti-IFN-β Antibodies. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:808-822. [PMID: 39109927 PMCID: PMC11575944 DOI: 10.4049/jimmunol.2400265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 07/15/2024] [Indexed: 09/05/2024]
Abstract
Type I IFNs play a pivotal role in immune response modulation, yet dysregulation is implicated in various disorders. Therefore, it is crucial to develop tools that facilitate the understanding of their mechanism of action and enable the development of more effective anti-IFN therapeutic strategies. In this study, we isolated, cloned, and characterized anti-IFN-α and anti-IFN-β Abs from PBMCs of individuals treated with IFN-α or IFN-β, harboring confirmed neutralizing Abs. Clones AH07856 and AH07857 were identified as neutralizing anti-IFN-α-specific with inhibition against IFN-α2a, -α2b, and -αK subtypes. Clones AH07859 and AH07866 were identified as neutralizing anti-IFN-β1a-specific signaling and able to block lipopolysaccharide or S100 calcium-binding protein A14-induced IFN-β signaling effects. Cloned Abs bind rhesus but not murine IFNs. The specificity of inhibition between IFN-α and IFN-β suggests potential for diverse research and clinical applications.
Collapse
Affiliation(s)
- Emmanouil Papasavvas
- The Wistar Institute, Philadelphia, Pennsylvania, 19104, United States of America
| | - Lily Lu
- The Wistar Institute, Philadelphia, Pennsylvania, 19104, United States of America
| | - Matthew Fair
- The Wistar Institute, Philadelphia, Pennsylvania, 19104, United States of America
| | - Isabela Oliva
- The Wistar Institute, Philadelphia, Pennsylvania, 19104, United States of America
| | - Joel Cassel
- The Wistar Institute, Philadelphia, Pennsylvania, 19104, United States of America
| | - Sonali Majumdar
- The Wistar Institute, Philadelphia, Pennsylvania, 19104, United States of America
| | - Karam Mounzer
- Jonathan Lax Immune Disorders Treatment Center, Philadelphia Field Initiating Group for HIV-1 Trials, Philadelphia, Pennsylvania, 19107, USA
| | - Jay R. Kostman
- Jonathan Lax Immune Disorders Treatment Center, Philadelphia Field Initiating Group for HIV-1 Trials, Philadelphia, Pennsylvania, 19107, USA
- John Bell Health Center, Philadelphia Field Initiating Group for HIV-1 Trials, Philadelphia, Pennsylvania, 19107, USA
| | - Pablo Tebas
- Department of Medicine, Perelman Center for Advanced Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA
| | - Amit Bar-Or
- Department of Neurology and Center for Neuroinflammation and Experimental Therapeutics, Perelman Center for Advanced Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA
| | - Kar Muthumani
- The Wistar Institute, Philadelphia, Pennsylvania, 19104, United States of America
- Current Address: GeneOne Life Science Inc, Fort Washington, Pennsylvania, 19034, USA
| | - Luis J. Montaner
- The Wistar Institute, Philadelphia, Pennsylvania, 19104, United States of America
| |
Collapse
|
25
|
Wolf SJ, Audu CO, Moon JY, Joshi AD, Melvin WJ, Barrett EC, Mangum K, de Jimenez GS, Rocco S, Buckley S, Ahmed Z, Wasikowski R, Kahlenberg JM, Tsoi LC, Gudjonsson JE, Gallagher KA. Diabetic Wound Keratinocytes Induce Macrophage JMJD3-Mediated Nlrp3 Expression via IL-1R Signaling. Diabetes 2024; 73:1462-1472. [PMID: 38869447 PMCID: PMC11333374 DOI: 10.2337/db23-0968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 05/29/2024] [Indexed: 06/14/2024]
Abstract
Macrophage (Mφ) plasticity is critical for normal wound repair; however, in type 2 diabetic wounds, Mφs persist in a low-grade inflammatory state that prevents the resolution of wound inflammation. Increased NLRP3 inflammasome activity has been shown in diabetic wound Mφs; however, the molecular mechanisms regulating NLRP3 expression and activity are unclear. Here, we identified that diabetic wound keratinocytes induce Nlrp3 gene expression in wound Mφs through IL-1 receptor-mediated signaling, resulting in enhanced inflammasome activation in the presence of pathogen-associated molecular patterns and damage-associated molecular patterns. We found that IL-1α is increased in human and murine wound diabetic keratinocytes compared with nondiabetic controls and directly induces Mφ Nlrp3 expression through IL-1 receptor signaling. Mechanistically, we report that the histone demethylase, JMJD3, is increased in wound Mφs late post-injury and is induced by IL-1α from diabetic wound keratinocytes, resulting in Nlrp3 transcriptional activation through an H3K27me3-mediated mechanism. Using genetically engineered mice deficient in JMJD3 in myeloid cells (Jmjd3f/flyz2Cre+), we demonstrate that JMJD3 controls Mφ-mediated Nlrp3 expression during diabetic wound healing. Thus, our data suggest a role for keratinocyte-mediated IL-1α/IL-1R signaling in driving enhanced NLRP3 inflammasome activity in wound Mφs. These data also highlight the importance of cell cross-talk in wound tissues and identify JMJD3 and the IL-1R signaling cascade as important upstream therapeutic targets for Mφ NLRP3 inflammasome hyperactivity in nonhealing diabetic wounds. ARTICLE HIGHLIGHTS
Collapse
Affiliation(s)
- Sonya J. Wolf
- Section of Vascular Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI
| | - Christopher O. Audu
- Section of Vascular Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI
| | - Jadie Y. Moon
- Section of Vascular Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI
| | - Amrita D. Joshi
- Section of Vascular Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI
| | - William J. Melvin
- Section of Vascular Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI
| | - Emily C. Barrett
- Section of Vascular Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI
| | - Kevin Mangum
- Section of Vascular Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI
| | | | - Sabrina Rocco
- Section of Vascular Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI
| | - Sam Buckley
- Section of Vascular Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI
| | - Zara Ahmed
- Section of Vascular Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI
| | | | - J. Michelle Kahlenberg
- Department of Dermatology, University of Michigan, Ann Arbor, MI
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI
| | - Lam C. Tsoi
- Department of Dermatology, University of Michigan, Ann Arbor, MI
| | | | - Katherine A. Gallagher
- Section of Vascular Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI
| |
Collapse
|
26
|
Christian L, Manjrekar P, Henkels KM, Rapp CM, Annamraju R, Lohade RP, Singh S, Carpenter MA, Khan S, Kemp MG, Chen Y, Sahu RP, Travers JB. Evidence for the involvement of keratinocyte-derived microvesicle particles in the photosensitivity associated with xeroderma pigmentosum type A deficiency. Photochem Photobiol 2024; 100:1457-1466. [PMID: 38287748 PMCID: PMC11284252 DOI: 10.1111/php.13915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/16/2024] [Accepted: 01/16/2024] [Indexed: 01/31/2024]
Abstract
Photosensitivity can be due to numerous causes. The photosensitivity associated with deficiency of xeroderma pigmentosum type A (XPA) has been previously shown to be associated with excess levels of the lipid mediator platelet-activating factor (PAF) generated by the keratinocyte. As PAF has been reported to trigger the production of subcellular microvesicle particles (MVP) due to the enzyme acid sphingomyelinase (aSMase), the goal of these studies was to discern if PAF and aSMase could serve as therapeutic targets for the XPA deficiency photosensitivity. HaCaT keratinocytes lacking XPA generated greater levels of MVP in comparison to control cells. Mice deficient in XPA also generated enhanced MVP levels in skin and in plasma in response to UV radiation. Use of a genetic strategy with mice deficient in both XPA and PAF receptors revealed that these mice generated less MVP release as well as decreased skin erythema and cytokine release compared to XPA knockout mice alone. Finally, the aSMase inhibitor imipramine blocked UV-induced MVP release in HaCaT keratinocytes, as well as XPA knockout mice. These studies support the concept that the photosensitivity associated with XPA involves PAF- and aSMase-mediated MVP release and provides a potential pharmacologic target in treating this form of photosensitivity.
Collapse
Affiliation(s)
- Lea Christian
- Department of Pharmacology & Toxicology, Wright State University, Dayton OH
| | - Pranali Manjrekar
- Department of Pharmacology & Toxicology, Wright State University, Dayton OH
| | - Karen M. Henkels
- Department of Pharmacology & Toxicology, Wright State University, Dayton OH
| | - Christine M. Rapp
- Department of Pharmacology & Toxicology, Wright State University, Dayton OH
| | - Risha Annamraju
- Department of Pharmacology & Toxicology, Wright State University, Dayton OH
| | - Rushabh P. Lohade
- Department of Pharmacology & Toxicology, Wright State University, Dayton OH
| | - Shikshita Singh
- Department of Pharmacology & Toxicology, Wright State University, Dayton OH
| | | | - Saman Khan
- Department of Pharmacology & Toxicology, Wright State University, Dayton OH
| | - Michael G. Kemp
- Department of Pharmacology & Toxicology, Wright State University, Dayton OH
- The Dayton V.A. Medical Center, Dayton, OH
| | - Yanfang Chen
- Department of Pharmacology & Toxicology, Wright State University, Dayton OH
| | - Ravi P. Sahu
- Department of Pharmacology & Toxicology, Wright State University, Dayton OH
| | - Jeffrey B. Travers
- Department of Pharmacology & Toxicology, Wright State University, Dayton OH
- Department of Dermatology, Wright State University, Dayton OH
- The Dayton V.A. Medical Center, Dayton, OH
| |
Collapse
|
27
|
Crow MK, Olferiev M, Kirou KA. Standing on Shoulders: Interferon Research From Viral Interference to Lupus Pathogenesis and Treatment. Arthritis Rheumatol 2024; 76:1002-1012. [PMID: 38500017 DOI: 10.1002/art.42849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/24/2024] [Accepted: 02/29/2024] [Indexed: 03/20/2024]
Abstract
The discovery of interferon in the 1950s represents much more than the identification of the first cytokine and the key mediator of antiviral host defense. Defining the molecular nature and complexity of the type I interferon family, as well as its inducers and molecular mechanisms of action, was the work of investigators working at the highest level and producing insights of great consequence. Current knowledge of receptor-ligand interactions, cell signaling, and transcriptional regulation derives from studies of type I interferon. It is on the shoulders of the giants who produced that knowledge that others stand and have revealed critical mechanisms of the pathogenesis of systemic lupus erythematosus and other autoimmune diseases. The design of novel therapeutics is informed by the advances in investigation of type I interferon, with the potential for important impact on patient management.
Collapse
Affiliation(s)
- Mary K Crow
- Mary Kirkland Center for Lupus Research, Hospital for Special Surgery and Weill Cornell Medicine, New York City, New York
| | - Mikhail Olferiev
- Mary Kirkland Center for Lupus Research, Hospital for Special Surgery and Weill Cornell Medicine, New York City, New York
| | - Kyriakos A Kirou
- Mary Kirkland Center for Lupus Research, Hospital for Special Surgery and Weill Cornell Medicine, New York City, New York
| |
Collapse
|
28
|
Kurz B, Klein B, Berneburg M, Meller S. [Ultraviolet radiation in the pathogenesis of lupus erythematosus]. DERMATOLOGIE (HEIDELBERG, GERMANY) 2024; 75:528-538. [PMID: 38916603 DOI: 10.1007/s00105-024-05369-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/16/2024] [Indexed: 06/26/2024]
Abstract
Photosensitivity represents an increased inflammatory reaction to sunlight, which can be observed particularly in the autoimmune disease lupus erythematosus. Cutaneous lupus erythematosus (CLE) can be provoked by ultraviolet (UV) radiation and can cause both acute, nonscarring and chronic, scarring skin changes. In systemic lupus erythematosus, on the other hand, provocation by UV radiation can lead to flare or progression of systemic involvement. The etiology of lupus erythematosus is multifactorial and includes genetic, epigenetic and immunologic mechanisms. In this review, we address the effect of UV radiation on healthy skin and photosensitive skin using the example of lupus erythematosus. We describe possible mechanisms of UV-triggered immune responses that could offer therapeutic approaches. Currently, photosensitivity can only be prevented by avoiding UV exposure itself. Therefore, it is important to better understand the underlying mechanisms in order to develop strategies to counteract the deleterious effects of photosensitivity.
Collapse
Affiliation(s)
- Bernadett Kurz
- Klinik und Poliklinik für Dermatologie, Universität Regensburg, Franz-Josef-Strauß-Allee 11, 93053, Regensburg, Deutschland.
| | - Benjamin Klein
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, USA
| | - Mark Berneburg
- Klinik und Poliklinik für Dermatologie, Universität Regensburg, Franz-Josef-Strauß-Allee 11, 93053, Regensburg, Deutschland
| | - Stephan Meller
- Klinik und Poliklinik für Dermatologie, Universität Düsseldorf, Düsseldorf, Deutschland
| |
Collapse
|
29
|
Kuba‐Fuyuno Y, Kido‐Nakahara M, Tsuji G, Sakai S, Nakahara T. Proposal of a cutaneous lupus erythematosus-like keratinocyte model in vitro under local conditions using interferon-alpha and Poly I:C and its use in examining the therapeutic effects of tyrosine kinase 2 inhibitor. J Dermatol 2024; 51:1031-1033. [PMID: 38831616 PMCID: PMC11483919 DOI: 10.1111/1346-8138.17318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 05/02/2024] [Accepted: 05/20/2024] [Indexed: 06/05/2024]
Affiliation(s)
- Yoko Kuba‐Fuyuno
- Department of Dermatology, Graduate School of Medical SciencesKyushu UniversityHigashiku, FukuokaJapan
| | - Makiko Kido‐Nakahara
- Department of Dermatology, Graduate School of Medical SciencesKyushu UniversityHigashiku, FukuokaJapan
| | - Gaku Tsuji
- Department of Dermatology, Graduate School of Medical SciencesKyushu UniversityHigashiku, FukuokaJapan
- Research and Clinical Center for Yusho and DioxinKyushu University HospitalHigashiku, FukuokaJapan
| | - Sawako Sakai
- Department of Dermatology, Graduate School of Medical SciencesKyushu UniversityHigashiku, FukuokaJapan
| | - Takeshi Nakahara
- Department of Dermatology, Graduate School of Medical SciencesKyushu UniversityHigashiku, FukuokaJapan
| |
Collapse
|
30
|
Li TM, Zyulina V, Seltzer ES, Dacic M, Chinenov Y, Daamen AR, Veiga KR, Schwartz N, Oliver DJ, Cabahug-Zuckerman P, Lora J, Liu Y, Shipman WD, Ambler WG, Taber SF, Onel KB, Zippin JH, Rashighi M, Krueger JG, Anandasabapathy N, Rogatsky I, Jabbari A, Blobel CP, Lipsky PE, Lu TT. The interferon-rich skin environment regulates Langerhans cell ADAM17 to promote photosensitivity in lupus. eLife 2024; 13:e85914. [PMID: 38860651 PMCID: PMC11213570 DOI: 10.7554/elife.85914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 06/10/2024] [Indexed: 06/12/2024] Open
Abstract
The autoimmune disease lupus erythematosus (lupus) is characterized by photosensitivity, where even ambient ultraviolet radiation (UVR) exposure can lead to development of inflammatory skin lesions. We have previously shown that Langerhans cells (LCs) limit keratinocyte apoptosis and photosensitivity via a disintegrin and metalloprotease 17 (ADAM17)-mediated release of epidermal growth factor receptor (EGFR) ligands and that LC ADAM17 sheddase activity is reduced in lupus. Here, we sought to understand how the lupus skin environment contributes to LC ADAM17 dysfunction and, in the process, differentiate between effects on LC ADAM17 sheddase function, LC ADAM17 expression, and LC numbers. We show through transcriptomic analysis a shared IFN-rich environment in non-lesional skin across human lupus and three murine models: MRL/lpr, B6.Sle1yaa, and imiquimod (IMQ) mice. IFN-I inhibits LC ADAM17 sheddase activity in murine and human LCs, and IFNAR blockade in lupus model mice restores LC ADAM17 sheddase activity, all without consistent effects on LC ADAM17 protein expression or LC numbers. Anti-IFNAR-mediated LC ADAM17 sheddase function restoration is associated with reduced photosensitive responses that are dependent on EGFR signaling and LC ADAM17. Reactive oxygen species (ROS) is a known mediator of ADAM17 activity; we show that UVR-induced LC ROS production is reduced in lupus model mice, restored by anti-IFNAR, and is cytoplasmic in origin. Our findings suggest that IFN-I promotes photosensitivity at least in part by inhibiting UVR-induced LC ADAM17 sheddase function and raise the possibility that anifrolumab ameliorates lupus skin disease in part by restoring this function. This work provides insight into IFN-I-mediated disease mechanisms, LC regulation, and a potential mechanism of action for anifrolumab in lupus.
Collapse
Affiliation(s)
- Thomas Morgan Li
- Autoimmunity and Inflammation Program, Hospital for Special Surgery Research InstituteNew YorkUnited States
| | - Victoria Zyulina
- Autoimmunity and Inflammation Program, Hospital for Special Surgery Research InstituteNew YorkUnited States
- Department of Microbiology and Immunology, Weill Cornell Medical CollegeNew YorkUnited States
| | - Ethan S Seltzer
- Autoimmunity and Inflammation Program, Hospital for Special Surgery Research InstituteNew YorkUnited States
| | - Marija Dacic
- David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery Research InstituteNew YorkUnited States
- Arthritis and Tissue Degeneration Program, Hospital for Special Surgery Research InstituteNew YorkUnited States
- Physiology, Biophysics, and Systems Biology Program, Weill Cornell Graduate School of Medical SciencesNew YorkUnited States
| | - Yurii Chinenov
- David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery Research InstituteNew YorkUnited States
| | - Andrea R Daamen
- Department of Medicine, AMPEL BioSolutionsCharlottesvilleUnited States
| | - Keila R Veiga
- Autoimmunity and Inflammation Program, Hospital for Special Surgery Research InstituteNew YorkUnited States
- Pediatric Rheumatology, Department of Medicine, Hospital for Special SurgeryNew YorkUnited States
- Department of Pediatrics, Weill Cornell Medical CollegeNew YorkUnited States
| | - Noa Schwartz
- Autoimmunity and Inflammation Program, Hospital for Special Surgery Research InstituteNew YorkUnited States
- Rheumatology, Department of Medicine, Hospital for Special SurgeryNew YorkUnited States
| | - David J Oliver
- David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery Research InstituteNew YorkUnited States
| | - Pamela Cabahug-Zuckerman
- Autoimmunity and Inflammation Program, Hospital for Special Surgery Research InstituteNew YorkUnited States
| | - Jose Lora
- Arthritis and Tissue Degeneration Program, Hospital for Special Surgery Research InstituteNew YorkUnited States
- Physiology, Biophysics, and Systems Biology Program, Weill Cornell Graduate School of Medical SciencesNew YorkUnited States
| | - Yong Liu
- Department of Dermatology, Weill Cornell Medical CollegeNew YorkUnited States
| | - William D Shipman
- Autoimmunity and Inflammation Program, Hospital for Special Surgery Research InstituteNew YorkUnited States
- Weill Cornell/Rockefeller/Sloan-Kettering Tri-Institutional MD-PhD Program, Weill Cornell Medical CollegeNew YorkUnited States
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical SciencesNew YorkUnited States
| | - William G Ambler
- Autoimmunity and Inflammation Program, Hospital for Special Surgery Research InstituteNew YorkUnited States
- Pediatric Rheumatology, Department of Medicine, Hospital for Special SurgeryNew YorkUnited States
- Department of Pediatrics, Weill Cornell Medical CollegeNew YorkUnited States
| | - Sarah F Taber
- Pediatric Rheumatology, Department of Medicine, Hospital for Special SurgeryNew YorkUnited States
- Department of Pediatrics, Weill Cornell Medical CollegeNew YorkUnited States
| | - Karen B Onel
- Pediatric Rheumatology, Department of Medicine, Hospital for Special SurgeryNew YorkUnited States
- Department of Pediatrics, Weill Cornell Medical CollegeNew YorkUnited States
| | - Jonathan H Zippin
- Department of Dermatology, Weill Cornell Medical CollegeNew YorkUnited States
| | - Mehdi Rashighi
- Department of Dermatology, University of Massachusetts Medical SchoolWorcesterUnited States
| | - James G Krueger
- Laboratory of Investigative Dermatology, Rockefeller UniversityNew YorkUnited States
| | - Niroshana Anandasabapathy
- Department of Dermatology, Weill Cornell Medical CollegeNew YorkUnited States
- Weill Cornell/Rockefeller/Sloan-Kettering Tri-Institutional MD-PhD Program, Weill Cornell Medical CollegeNew YorkUnited States
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical SciencesNew YorkUnited States
| | - Inez Rogatsky
- Department of Microbiology and Immunology, Weill Cornell Medical CollegeNew YorkUnited States
- David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery Research InstituteNew YorkUnited States
- Arthritis and Tissue Degeneration Program, Hospital for Special Surgery Research InstituteNew YorkUnited States
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical SciencesNew YorkUnited States
| | - Ali Jabbari
- Laboratory of Investigative Dermatology, Rockefeller UniversityNew YorkUnited States
| | - Carl P Blobel
- Arthritis and Tissue Degeneration Program, Hospital for Special Surgery Research InstituteNew YorkUnited States
- Physiology, Biophysics, and Systems Biology Program, Weill Cornell Graduate School of Medical SciencesNew YorkUnited States
- Department of Physiology, Biophysics, and Systems Biology, Weill Cornell Medical CollegeNew YorkUnited States
| | - Peter E Lipsky
- Department of Medicine, AMPEL BioSolutionsCharlottesvilleUnited States
| | - Theresa T Lu
- Autoimmunity and Inflammation Program, Hospital for Special Surgery Research InstituteNew YorkUnited States
- Department of Microbiology and Immunology, Weill Cornell Medical CollegeNew YorkUnited States
- Pediatric Rheumatology, Department of Medicine, Hospital for Special SurgeryNew YorkUnited States
- Department of Pediatrics, Weill Cornell Medical CollegeNew YorkUnited States
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical SciencesNew YorkUnited States
| |
Collapse
|
31
|
Deligeorgakis D, Skouvaklidou E, Adamichou C. Interferon Inhibition in SLE: From Bench to Bedside. Mediterr J Rheumatol 2024; 35:354-364. [PMID: 39193183 PMCID: PMC11345605 DOI: 10.31138/mjr.010324.iis] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/15/2024] [Accepted: 05/15/2024] [Indexed: 08/29/2024] Open
Abstract
Despite advances in the management of systemic lupus erythematosus (SLE), it remains a chronic disease with frequent flares, requiring constant medical care, laboratory exams, hospitalisations, and the use of immunosuppressive drugs and corticosteroids, increasing the morbidity and mortality of these patients. The past decade of research has brought to light multiple observations on the role of interferons (IFNs) in the pathogenesis of SLE, which paved the way for the development of potential novel therapies targeting the interferon pathway. Following two phase III trials, anifrolumab, a monoclonal antibody which binds to the type I IFN receptor, blocking the activity of type I IFNs, was approved for active SLE. This review summarises the latest research on the role and mechanisms of type I IFNs in SLE and the development and advances on new therapeutic drugs based on IFN inhibition for SLE.
Collapse
Affiliation(s)
- Dimitrios Deligeorgakis
- Department of Rheumatology, 4th Department of Internal Medicine, Hippokration Hospital, Thessaloniki, Greece
| | - Elpida Skouvaklidou
- Department of Rheumatology, 4th Department of Internal Medicine, Hippokration Hospital, Thessaloniki, Greece
| | - Christina Adamichou
- Department of Rheumatology, 4th Department of Internal Medicine, Hippokration Hospital, Thessaloniki, Greece
| |
Collapse
|
32
|
Jones SA, Morand EF. Targeting Interferon Signalling in Systemic Lupus Erythematosus: Lessons Learned. Drugs 2024; 84:625-635. [PMID: 38807010 PMCID: PMC11196297 DOI: 10.1007/s40265-024-02043-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/30/2024] [Indexed: 05/30/2024]
Abstract
The development of new medicines for systemic lupus erythematosus (SLE) has not addressed unmet clinical need, with only three drugs receiving regulatory approval for SLE in the last 60 years, one of which was specifically licensed for lupus nephritis. In the last 20 years it has become clear that activation of type 1 interferons (IFN) is reproducibly detected in the majority of SLE patients, and the actions of IFN in the immune system and on target tissues is consistent with a pathogenic role in SLE. These findings led to considerable drug discovery activity, first with agents directly targeting IFN family cytokines, with results that were encouraging but underwhelming. In contrast, targeting the type I IFN receptor with the monoclonal antibody anifrolumab, thereby blocking all IFN family members, was effective in a phase II clinical trial. This led to a pair of phase III trials, one of which was negative and the other positive, reflecting the difficulty of obtaining outcomes from trials in this complex disease. Nonetheless, the balance of evidence resulted in approval of anifrolumab in multiple jurisdictions from 2021 onwards. Multiple approaches to targeting the type 1 IFN pathway have subsequently had positive phase II clinical trials, including antibodies targeting cells that produce IFN, and small molecules targeting the receptor kinase TYK2, required for IFN signalling. Despite multiple hurdles, it is clear that IFN targeting in SLE is here to stay. The story of IFN-targeting therapy in SLE has lessons for drug development overall in this disease.
Collapse
Affiliation(s)
- Sarah A Jones
- Centre for Inflammatory Disease, Monash University, Clayton, Australia
| | - Eric F Morand
- Centre for Inflammatory Disease, Monash University, Clayton, Australia.
- Department of Rheumatology, Monash Health, Melbourne, Australia.
- Monash Medical Centre, 246 Clayton Rd, Clayton, VIC, 3168, Australia.
| |
Collapse
|
33
|
Vazquez T, Patel J, Kodali N, Diaz D, Bashir MM, Chin F, Keyes E, Sharma M, Sprow G, Grinnell M, Dan J, Werth VP. Plasmacytoid Dendritic Cells Are Not Major Producers of Type 1 IFN in Cutaneous Lupus: An In-Depth Immunoprofile of Subacute and Discoid Lupus. J Invest Dermatol 2024; 144:1262-1272.e7. [PMID: 38086428 DOI: 10.1016/j.jid.2023.10.039] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 10/16/2023] [Accepted: 10/25/2023] [Indexed: 03/12/2024]
Abstract
The immunologic drivers of cutaneous lupus erythematosus (CLE) and its clinical subtypes remain poorly understood. We sought to characterize the immune landscape of discoid lupus erythematosus and subacute CLE using multiplexed immunophenotyping. We found no significant differences in immune cell percentages between discoid lupus erythematosus and subacute CLE (P > .05) with the exception of an increase in TBK1 in discoid lupus erythematosus (P < .05). Unbiased clustering grouped subjects into 2 major clusters without respect to clinical subtype. Subjects with a history of smoking had increased percentages of neutrophils, disease activity, and endothelial granzyme B compared with nonsmokers. Despite previous assumptions, plasmacytoid dendritic cells (pDCs) did not stain for IFN-1. Skin-eluted and circulating pDCs from subjects with CLE expressed significantly less IFNα than healthy control pDCs upon toll-like receptor 7 stimulation ex vivo (P < .0001). These data suggest that discoid lupus erythematosus and subacute CLE have similar immune microenvironments in a multiplexed investigation. Our aggregated analysis of CLE revealed that smoking may modulate disease activity in CLE through neutrophils and endothelial granzyme B. Notably, our data suggest that pDCs are not the major producers of IFN-1 in CLE. Future in vitro studies to investigate the role of pDCs in CLE are needed.
Collapse
Affiliation(s)
- Thomas Vazquez
- Corporal Michael J. Crescenz VA Medical Center, Philadelphia, Pennsylvania, USA; Department of Dermatology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Jay Patel
- Corporal Michael J. Crescenz VA Medical Center, Philadelphia, Pennsylvania, USA; Department of Dermatology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Nilesh Kodali
- Corporal Michael J. Crescenz VA Medical Center, Philadelphia, Pennsylvania, USA; Department of Dermatology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - DeAnna Diaz
- Corporal Michael J. Crescenz VA Medical Center, Philadelphia, Pennsylvania, USA; Department of Dermatology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Muhammad M Bashir
- Corporal Michael J. Crescenz VA Medical Center, Philadelphia, Pennsylvania, USA; Department of Dermatology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Felix Chin
- Corporal Michael J. Crescenz VA Medical Center, Philadelphia, Pennsylvania, USA; Department of Dermatology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Emily Keyes
- Corporal Michael J. Crescenz VA Medical Center, Philadelphia, Pennsylvania, USA; Department of Dermatology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Meena Sharma
- Corporal Michael J. Crescenz VA Medical Center, Philadelphia, Pennsylvania, USA; Department of Dermatology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Grant Sprow
- Corporal Michael J. Crescenz VA Medical Center, Philadelphia, Pennsylvania, USA; Department of Dermatology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Madison Grinnell
- Corporal Michael J. Crescenz VA Medical Center, Philadelphia, Pennsylvania, USA; Department of Dermatology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Joshua Dan
- Corporal Michael J. Crescenz VA Medical Center, Philadelphia, Pennsylvania, USA; Department of Dermatology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Victoria P Werth
- Corporal Michael J. Crescenz VA Medical Center, Philadelphia, Pennsylvania, USA; Department of Dermatology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
34
|
Drougkas K, Skarlis C, Mavragani C. Type I Interferons in Systemic Autoimmune Rheumatic Diseases: Pathogenesis, Clinical Features and Treatment Options. Mediterr J Rheumatol 2024; 35:365-380. [PMID: 39193187 PMCID: PMC11345602 DOI: 10.31138/mjr.270324.tis] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/27/2024] [Accepted: 05/29/2024] [Indexed: 08/29/2024] Open
Abstract
Type I interferon (IFN) pathway dysregulation plays a crucial role in the pathogenesis of several systemic autoimmune rheumatic diseases (SARDs), including systemic lupus erythematosus (SLE), Sjögren's disease (SjD), systemic sclerosis (SSc), dermatomyositis (DM) and rheumatoid arthritis (RA). Genetic and epigenetic alterations have been involved in dysregulated type I IFN responses in systemic autoimmune disorders. Aberrant type I IFN production and secretion have been associated with distinct clinical phenotypes, disease activity, and severity as well as differentiated treatment responses among SARDs. In this review, we provide an overview of the role of type I IFNs in systemic autoimmune diseases including SLE, RA, SjD, SSc, and DM focusing on pathophysiological, clinical, and therapeutical aspects.
Collapse
Affiliation(s)
- Konstantinos Drougkas
- Department of Physiology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Charalampos Skarlis
- Department of Physiology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Clio Mavragani
- Department of Physiology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
- Joint Academic Rheumatology Program, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
35
|
Papasavvas E, Lu L, Fair M, Oliva I, Cassel J, Majumdar S, Mounzer K, Kostman JR, Tebas P, Bar-Or A, Muthumani K, Montaner LJ. Cloning and functional characterization of novel human neutralizing anti-interferon-alpha and anti-interferon-beta antibodies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.05.591636. [PMID: 38746170 PMCID: PMC11092762 DOI: 10.1101/2024.05.05.591636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Type I interferons (IFNs) play a pivotal role in immune response modulation, yet dysregulation is implicated in various disorders. Therefore, it is crucial to develop tools that facilitate the understanding of their mechanism of action and enable the development of more effective anti-IFN therapeutic strategies. In this study, we isolated, cloned, and characterized anti-IFN-α and anti-IFN-β antibodies (Abs) from peripheral blood mononuclear cells of individuals treated with IFN-α or IFN-β, harboring confirmed neutralizing Abs. Clones AH07856 and AH07857 were identified as neutralizing anti-IFN-α-specific with inhibition against IFN-α2a, -α2b, and -αK subtypes. Clones AH07859 and AH07866 were identified as neutralizing anti-IFN-β1a-specific signaling, and able to block Lipopolysaccharide or S100 calcium binding protein A14-induced IFN-β signaling effects. Cloned Abs bind rhesus but not murine IFNs. The specificity of inhibition between IFN-α and IFN-β suggests potential for diverse research and clinical applications.
Collapse
|
36
|
Zhang Y, Lu Q. Immune cells in skin inflammation, wound healing, and skin cancer. J Leukoc Biol 2024; 115:852-865. [PMID: 37718697 DOI: 10.1093/jleuko/qiad107] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 08/22/2023] [Accepted: 09/05/2023] [Indexed: 09/19/2023] Open
Abstract
Given the self-evident importance of cutaneous immunity in the maintenance of body-surface homeostasis, disturbance of the steady-state skin is inextricably intertwined with dysfunction in cutaneous immunity. It is often overlooked by people that skin, well-known as a solid physical barrier, is also a strong immunological barrier, considering the abundant presence of immune cells including lymphocytes, granulocytes, dendritic cells, and macrophages. What's more, humoral immune components including cytokines, immunoglobulins, and antimicrobial peptides are also rich in the skin. This review centers on skin inflammation (acute and chronic, infection and aseptic inflammation), wound healing, and skin cancer to elucidate the elaborate network of immune cells in skin diseases.
Collapse
Affiliation(s)
- Yuhan Zhang
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Jiangwangmiao Street No. 12, Xuanwu, Nanjing 210042, China
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Jiangwangmiao Street No. 12, Xuanwu, Nanjing 210042, China
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing 210042, China
| | - Qianjin Lu
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Jiangwangmiao Street No. 12, Xuanwu, Nanjing 210042, China
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Jiangwangmiao Street No. 12, Xuanwu, Nanjing 210042, China
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing 210042, China
| |
Collapse
|
37
|
Loftus SN, Gharaee-Kermani M, Xu B, Moore TM, Hannoudi A, Mallbris MJ, Klein B, Gudjonsson JE, Kahlenberg JM. Interferon alpha promotes caspase-8 dependent ultraviolet light-mediated keratinocyte apoptosis via interferon regulatory factor 1. Front Immunol 2024; 15:1384606. [PMID: 38660315 PMCID: PMC11039837 DOI: 10.3389/fimmu.2024.1384606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 03/27/2024] [Indexed: 04/26/2024] Open
Abstract
Introduction Ultraviolet (UV) light is a known trigger of both cutaneous and systemic disease manifestations in lupus patients. Lupus skin has elevated expression of type I interferons (IFNs) that promote increased keratinocyte (KC) death after UV exposure. The mechanisms by which KC cell death is increased by type I IFNs are unknown. Methods Here, we examine the specific cell death pathways that are activated in KCs by type I IFN priming and UVB exposure using a variety of pharmacological and genetic approaches. Mice that overexpress Ifnk in the epidermis were exposed to UVB light and cell death was measured. RNA-sequencing from IFN-treated KCs was analyzed to identify candidate genes for further analysis that could drive enhanced cell death responses after UVB exposure. Results We identify enhanced activation of caspase-8 dependent apoptosis, but not other cell death pathways, in type I IFN and UVB-exposed KCs. In vivo, overexpression of epidermal Ifnk resulted in increased apoptosis in murine skin after UVB treatment. This increase in KC apoptosis was not dependent on known death ligands but rather dependent on type I IFN-upregulation of interferon regulatory factor 1 (IRF1). Discussion These data suggest that enhanced sensitivity to UV light exhibited by lupus patients results from type I IFN priming of KCs that drives IRF1 expression resulting in caspase-8 activation and increased apoptosis after minimal exposures to UVB.
Collapse
Affiliation(s)
- Shannon N. Loftus
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
- Graduate Program in Immunology, University of Michigan, Ann Arbor, MI, United States
| | - Mehrnaz Gharaee-Kermani
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
- Department of Dermatology, University of Michigan, Ann Arbor, MI, United States
| | - Bin Xu
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Tyson M. Moore
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Andrew Hannoudi
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Mischa J. Mallbris
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Benjamin Klein
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
| | | | - J. Michelle Kahlenberg
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
- Department of Dermatology, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
38
|
Xu B, Musai J, Tan YS, Hile GA, Swindell WR, Klein B, Qin JT, Sarkar MK, Gudjonsson JE, Kahlenberg JM. A Critical Role for IFN-β Signaling for IFN-κ Induction in Keratinocytes. FRONTIERS IN LUPUS 2024; 2:1359714. [PMID: 38707772 PMCID: PMC11065136 DOI: 10.3389/flupu.2024.1359714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Abstract
Background/Purpose Cutaneous lupus erythematosus (CLE) affects up to 70% of patients with systemic lupus erythematosus (SLE), and type I interferons (IFNs) are important promoters of SLE and CLE. Our previous work identified IFN-kappa (IFN-κ), a keratinocyte-produced type I IFN, as upregulated in non-lesional and lesional lupus skin and as a critical regulator for enhanced UVB-mediated cell death in SLE keratinocytes. Importantly, the molecular mechanisms governing regulation of IFN-κ expression have been relatively unexplored. Thus, this study sought to identify critical regulators of IFN-κ and identified a novel role for IFN-beta (IFN-β). Methods Human N/TERT keratinocytes were treated with the RNA mimic poly (I:C) or 50 mJ/cm2 ultraviolet B (UVB), followed by mRNA expression quantification by RT-qPCR in the presence or absence neutralizing antibody to the type I IFN receptor (IFNAR). IFNB and STAT1 knockout (KO) keratinocytes were generated using CRISPR/Cas9. Results Time courses of poly(I:C) and UVB treatment revealed a differential expression of IFNB, which was upregulated between 3-6 hours and IFNK, which was upregulated 24 hours after stimulation. Intriguingly, only IFNK expression was substantially abrogated by neutralizing antibodies to IFNAR, suggesting that IFNK upregulation required type I IFN signaling for induction. Indeed, deletion of IFNB abrogated IFNK expression. Further exploration confirmed a role for type I IFN-triggered STAT1 activation. Conclusion Collectively, our work describes a novel mechanistic paradigm in keratinocytes in which initial IFN-κ induction in response to poly(I:C) and UVB is IFNβ1-dependent, thus describing IFNK as both an IFN gene and an interferon-stimulated gene.
Collapse
Affiliation(s)
- Bin Xu
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor
| | - Jon Musai
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor
| | - Yee Sun Tan
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor
| | - Grace A Hile
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan
| | - William R Swindell
- University of Texas Southwestern Medical Center, Department of Internal Medicine, Dallas, Texas, 75390-9175
| | - Benjamin Klein
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor
| | - J Tingting Qin
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Mrinal K Sarkar
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan
| | | | - J Michelle Kahlenberg
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor
| |
Collapse
|
39
|
Jiang Y, Gruszka D, Zeng C, Swindell WR, Gaskill C, Sorensen C, Brown W, Gangwar RS, Tsoi LC, Webster J, Sigurðardóttir SL, Sarkar MK, Uppala R, Kidder A, Xing X, Plazyo O, Xing E, Billi AC, Maverakis E, Kahlenberg JM, Gudjonsson JE, Ward NL. Suppression of TCF4 promotes a ZC3H12A-mediated self-sustaining inflammatory feedback cycle involving IL-17RA/IL-17RE epidermal signaling. JCI Insight 2024; 9:e172764. [PMID: 38470486 PMCID: PMC11141873 DOI: 10.1172/jci.insight.172764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 03/05/2024] [Indexed: 03/13/2024] Open
Abstract
IL-17C is an epithelial cell-derived proinflammatory cytokine whose transcriptional regulation remains unclear. Analysis of the IL17C promoter region identified TCF4 as putative regulator, and siRNA knockdown of TCF4 in human keratinocytes (KCs) increased IL17C. IL-17C stimulation of KCs (along with IL-17A and TNF-α stimulation) decreased TCF4 and increased NFKBIZ and ZC3H12A expression in an IL-17RA/RE-dependent manner, thus creating a feedback loop. ZC3H12A (MCPIP1/Regnase-1), a transcriptional immune-response regulator, also increased following TCF4 siRNA knockdown, and siRNA knockdown of ZC3H12A decreased NFKBIZ, IL1B, IL36G, CCL20, and CXCL1, revealing a proinflammatory role for ZC3H12A. Examination of lesional skin from the KC-Tie2 inflammatory dermatitis mouse model identified decreases in TCF4 protein concomitant with increases in IL-17C and Zc3h12a that reversed following the genetic elimination of Il17c, Il17ra, and Il17re and improvement in the skin phenotype. Conversely, interference with Tcf4 in KC-Tie2 mouse skin increased Il17c and exacerbated the inflammatory skin phenotype. Together, these findings identify a role for TCF4 in the negative regulation of IL-17C, which, alone and with TNF-α and IL-17A, feed back to decrease TCF4 in an IL-17RA/RE-dependent manner. This loop is further amplified by IL-17C-TCF4 autocrine regulation of ZC3H12A and IL-17C regulation of NFKBIZ to promote self-sustaining skin inflammation.
Collapse
Affiliation(s)
- Yanyun Jiang
- Department of Dermatology, Ann Arbor, Michigan, USA
- Department of Dermatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Dennis Gruszka
- Departments of Nutrition and Dermatology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Chang Zeng
- Department of Dermatology, Ann Arbor, Michigan, USA
| | - William R. Swindell
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Christa Gaskill
- Department of Dermatology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Christian Sorensen
- Department of Dermatology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Whitney Brown
- Department of Dermatology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Roopesh Singh Gangwar
- Departments of Nutrition and Dermatology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Lam C. Tsoi
- Department of Dermatology, Ann Arbor, Michigan, USA
| | - Joshua Webster
- Departments of Nutrition and Dermatology, Case Western Reserve University, Cleveland, Ohio, USA
| | | | | | | | | | | | | | - Enze Xing
- Department of Dermatology, Ann Arbor, Michigan, USA
| | | | - Emanual Maverakis
- Department of Dermatology, University of California Davis School of Medicine, Sacramento, California, USA
| | - J. Michelle Kahlenberg
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | | | - Nicole L. Ward
- Departments of Nutrition and Dermatology, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Dermatology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation (VI4) and Vanderbilt Center for Immunobiology (VCI), Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
40
|
Goel RR, Rook AH. Psoralen Plus UVA Induces Local IFN Production and Antitumor Responses in Cutaneous T-Cell Lymphoma. J Invest Dermatol 2024; 144:449-450. [PMID: 37921716 DOI: 10.1016/j.jid.2023.08.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 08/18/2023] [Indexed: 11/04/2023]
Affiliation(s)
- Rishi R Goel
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA; Institute for Immunology and Immune Health (I3H), Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Alain H Rook
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
41
|
Yu Z, Vieyra-Garcia P, Benezeder T, Crouch JD, Kim IR, O'Malley JT, Devlin PM, Gehad A, Zhan Q, Gudjonsson JE, Sarkar MK, Kahlenberg JM, Gerard N, Teague JE, Kupper TS, LeBoeuf NR, Larocca C, Tawa M, Pomahac B, Talbot SG, Orgill DP, Wolf P, Clark RA. Phototherapy Restores Deficient Type I IFN Production and Enhances Antitumor Responses in Mycosis Fungoides. J Invest Dermatol 2024; 144:621-632.e1. [PMID: 37716650 PMCID: PMC10922223 DOI: 10.1016/j.jid.2023.06.212] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/21/2023] [Accepted: 06/23/2023] [Indexed: 09/18/2023]
Abstract
Transcriptional profiling demonstrated markedly reduced type I IFN gene expression in untreated mycosis fungoides (MF) skin lesions compared with that in healthy skin. Type I IFN expression in MF correlated with antigen-presenting cell-associated IRF5 before psoralen plus UVA therapy and epithelial ULBP2 after therapy, suggesting an enhancement of epithelial type I IFN. Immunostains confirmed reduced baseline type I IFN production in MF and increased levels after psoralen plus UVA treatment in responding patients. Effective tumor clearance was associated with increased type I IFN expression, enhanced recruitment of CD8+ T cells into skin lesions, and expression of genes associated with antigen-specific T-cell activation. IFNk, a keratinocyte-derived inducer of type I IFNs, was increased by psoralen plus UVA therapy and expression correlated with upregulation of other type I IFNs. In vitro, deletion of keratinocyte IFNk decreased baseline and UVA-induced expression of type I IFN and IFN response genes. In summary, we find a baseline deficit in type I IFN production in MF that is restored by psoralen plus UVA therapy and correlates with enhanced antitumor responses. This may explain why MF generally develops in sun-protected skin and suggests that drugs that increase epithelial type I IFNs, including topical MEK and EGFR inhibitors, may be effective therapies for MF.
Collapse
Affiliation(s)
- Zizi Yu
- Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Pablo Vieyra-Garcia
- Research Unit for Photodermatology, Department of Dermatology and Venereology, Medical University of Graz, Graz, Austria
| | - Theresa Benezeder
- Research Unit for Photodermatology, Department of Dermatology and Venereology, Medical University of Graz, Graz, Austria
| | - Jack D Crouch
- Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Ira R Kim
- Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - John T O'Malley
- Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Phillip M Devlin
- Department of Radiation Oncology, Dana-Farber Cancer Institute/Brigham and Women's Cancer Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Ahmed Gehad
- Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Qian Zhan
- Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | | - Mrinal K Sarkar
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan, USA
| | - J Michelle Kahlenberg
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Nega Gerard
- Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Jessica E Teague
- Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Thomas S Kupper
- Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA; Center for Cutaneous Oncology, Dana-Farber Cancer Institute/Brigham and Women's Cancer Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Nicole R LeBoeuf
- Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA; Center for Cutaneous Oncology, Dana-Farber Cancer Institute/Brigham and Women's Cancer Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Cecilia Larocca
- Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA; Center for Cutaneous Oncology, Dana-Farber Cancer Institute/Brigham and Women's Cancer Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Marianne Tawa
- Center for Cutaneous Oncology, Dana-Farber Cancer Institute/Brigham and Women's Cancer Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Bohdan Pomahac
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Yale School of Medicine, New Haven, Connecticut, USA
| | - Simon G Talbot
- Division of Plastic and Reconstructive Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Dennis P Orgill
- Division of Plastic and Reconstructive Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Peter Wolf
- Research Unit for Photodermatology, Department of Dermatology and Venereology, Medical University of Graz, Graz, Austria.
| | - Rachael A Clark
- Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA.
| |
Collapse
|
42
|
Mathian A, Felten R, Alarcon-Riquelme ME, Psarras A, Mertz P, Chasset F, Vital EM, Arnaud L. Type 1 interferons: A target for immune-mediated inflammatory diseases (IMIDs). Joint Bone Spine 2024; 91:105627. [PMID: 37640261 DOI: 10.1016/j.jbspin.2023.105627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/28/2023] [Accepted: 08/22/2023] [Indexed: 08/31/2023]
Abstract
The improved understanding of the molecular basis of innate immunity have led to the identification of type I interferons (IFNs), particularly IFN-α, as central mediators in the pathogenesis of several Immune-mediated inflammatory diseases (IMIDs) such as systemic lupus erythematosus (SLE), systemic sclerosis, inflammatory myositis and Sjögren's syndrome. Here, we review the main data regarding the opportunity to target type I IFNs for the treatment of IMIDs. Type I IFNs and their downstream pathways can be targeted pharmacologically in several manners. One approach is to use monoclonal antibodies against IFNs or the IFN-receptors (IFNARs, such as with anifrolumab). The downstream signaling pathways of type I IFNs also contain several targets of interest in IMIDs, such as JAK1 and Tyk2. Of these, anifrolumab is licensed and JAK1/Tyk2 inhibitors are in phase III trials in SLE. Targeting IFN-Is for the treatment of SLE is already a reality and in the near future may prove useful in other IMIDs. IFN assays will find a role in routine clinical practice for the care of IMIDs as further validation work is completed and a greater range of targeted therapies becomes available.
Collapse
Affiliation(s)
- Alexis Mathian
- Assistance publique-Hôpitaux de Paris (AP-HP), groupement hospitalier Pitié-Salpêtrière, centre de référence pour le Lupus, le syndrome des anti-phospholipides et autres maladies auto-immunes rares, service de médecine interne 2, institut E3M, Inserm, centre d'immunologie et des maladies infectieuses (CIMI-Paris), 47-83, boulevard de l'hôpital, 75651 Paris cedex 13, France
| | - Renaud Felten
- Centre d'investigation clinique, Inserm 1434, nouvel hôpital civil, quai Louis-Pasteur, 67000 Strasbourg, France; Département universitaire de pharmacologie-addictologie, toxicologie et thérapeutique, université de Strasbourg, 4, rue Kirschleger, 67000 Strasbourg, France; Service de rhumatologie, centre national de référence maladies rares Est Sud-Ouest (RESO), hôpitaux universitaires de Strasbourg, université de Strasbourg, 1, avenue Molière, 67200 Strasbourg, France
| | - Marta E Alarcon-Riquelme
- GENYO, Center for Genomics and Oncological Research Pfizer - University of Granada-Andalusian Government, avenue de la Ilustración, 114, 18016 Granada, Spain; Institute for Environmental Medicine, Karolinska Institutet, Solnavägen 1, 171 77 Solna, Sweden
| | - Antony Psarras
- Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Old Road Campus Research Build, Roosevelt Dr, Headington, OX3 7DQ Oxford, United Kingdom
| | - Philippe Mertz
- Service de rhumatologie, centre national de référence maladies rares Est Sud-Ouest (RESO), hôpitaux universitaires de Strasbourg, université de Strasbourg, 1, avenue Molière, 67200 Strasbourg, France
| | - François Chasset
- Service de dermatologie et allergologie, hôpital Tenon, faculté de médecine Sorbonne Université, Sorbonne université, AP-HP, 4, rue de la Chine, 75020 Paris, France
| | - Edward M Vital
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Woodhouse, LS2 9JT Leeds, United Kingdom; NIHR Leeds Biomedical Research Centre, Leeds Teaching Hospitals NHS Trust, Chapel Allerton Hospital Chape, Chapeltown Rd, Leeds LS7 4SA, United Kingdom
| | - Laurent Arnaud
- Service de rhumatologie, centre national de référence maladies rares Est Sud-Ouest (RESO), hôpitaux universitaires de Strasbourg, université de Strasbourg, 1, avenue Molière, 67200 Strasbourg, France.
| |
Collapse
|
43
|
Uppala R, Sarkar MK, Young KZ, Ma F, Vemulapalli P, Wasikowski R, Plazyo O, Swindell WR, Maverakis E, Gharaee-Kermani M, Billi AC, Tsoi LC, Kahlenberg JM, Gudjonsson JE. HERC6 regulates STING activity in a sex-biased manner through modulation of LATS2/VGLL3 Hippo signaling. iScience 2024; 27:108986. [PMID: 38327798 PMCID: PMC10847730 DOI: 10.1016/j.isci.2024.108986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/10/2023] [Accepted: 01/17/2024] [Indexed: 02/09/2024] Open
Abstract
Interferon (IFN) activity exhibits a gender bias in human skin, skewed toward females. We show that HERC6, an IFN-induced E3 ubiquitin ligase, is induced in human keratinocytes through the epidermal type I IFN; IFN-κ. HERC6 knockdown in human keratinocytes results in enhanced induction of interferon-stimulated genes (ISGs) upon treatment with a double-stranded (ds) DNA STING activator cGAMP but not in response to the RNA-sensing TLR3 agonist. Keratinocytes lacking HERC6 exhibit sustained STING-TBK1 signaling following cGAMP stimulation through modulation of LATS2 and TBK1 activity, unmasking more robust ISG responses in female keratinocytes. This enhanced female-biased immune response with loss of HERC6 depends on VGLL3, a regulator of type I IFN signature. These data identify HERC6 as a previously unrecognized negative regulator of ISG expression specific to dsDNA sensing and establish it as a regulator of female-biased immune responses through modulation of STING signaling.
Collapse
Affiliation(s)
- Ranjitha Uppala
- Graduate Program in Immunology, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Dermatology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Mrinal K. Sarkar
- Department of Dermatology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Kelly Z. Young
- Department of Dermatology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Feiyang Ma
- Department of Dermatology, University of Michigan, Ann Arbor, MI 48109, USA
| | | | - Rachael Wasikowski
- Department of Dermatology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Olesya Plazyo
- Department of Dermatology, University of Michigan, Ann Arbor, MI 48109, USA
| | - William R. Swindell
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Emanual Maverakis
- Department of Dermatology, University of California, Davis, Davis, CA 95616, USA
| | - Mehrnaz Gharaee-Kermani
- Department of Dermatology, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Allison C. Billi
- Department of Dermatology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Lam C. Tsoi
- Department of Dermatology, University of Michigan, Ann Arbor, MI 48109, USA
| | - J. Michelle Kahlenberg
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
- A. Alfred Taubman Medical Research Institute, Ann Arbor, MI 48109, USA
| | - Johann E. Gudjonsson
- Department of Dermatology, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
- A. Alfred Taubman Medical Research Institute, Ann Arbor, MI 48109, USA
| |
Collapse
|
44
|
Wu S, Wang Y, Duan J, Teng Y, Wang D, Qi F. Identification of a shared gene signature and biological mechanism between diabetic foot ulcers and cutaneous lupus erythemnatosus by transcriptomic analysis. Front Physiol 2024; 15:1297810. [PMID: 38434138 PMCID: PMC10907995 DOI: 10.3389/fphys.2024.1297810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 02/05/2024] [Indexed: 03/05/2024] Open
Abstract
Diabetic foot ulcers (DFU) and cutaneous lupus erythematosus (CLE) are both diseases that can seriously affect a patient's quality of life and generate economic pressure in society. Symptomatically, both DLU and CLE exhibit delayed healing and excessive inflammation; however, there is little evidence to support a molecular and cellular connection between these two diseases. In this study, we investigated potential common characteristics between DFU and CLE at the molecular level to provide new insights into skin diseases and regeneration, and identify potential targets for the development of new therapies. The gene expression profiles of DFU and CLE were obtained from the Gene Expression Omnibus (GEO) database and used for analysis. A total of 41 common differentially expressed genes (DEGs), 16 upregulated genes and 25 downregulated genes, were identified between DFU and CLE. GO and KEGG analysis showed that abnormalities in epidermal cells and the activation of inflammatory factors were both involved in the occurrence and development of DFU and CLE. Protein-protein interaction network (PPI) and sub-module analysis identified enrichment in seven common key genes which is KRT16, S100A7, KRT77, OASL, S100A9, EPGN and SAMD9. Based on these seven key genes, we further identified five miRNAs(has-mir-532-5p, has-mir-324-3p,has-mir-106a-5p,has-mir-20a-5p,has-mir-93-5p) and7 transcription factors including CEBPA, CEBPB, GLI1, EP30D, JUN,SP1, NFE2L2 as potential upstream molecules. Functional immune infiltration assays showed that these genes were related to immune cells. The CIBERSORT algorithm and Pearson method were used to determine the correlations between key genes and immune cells, and reverse key gene-immune cell correlations were found between DFU and CLE. Finally, the DGIbd database demonstrated that Paquinimod and Tasquinimod could be used to target S100A9 and Ribavirin could be used to target OASL. Our findings highlight common gene expression characteristics and signaling pathways between DFU and CLE, indicating a close association between these two diseases. This provides guidance for the development of targeted therapies and mutual interactions.
Collapse
Affiliation(s)
- Siqi Wu
- Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, China
| | - Yuetong Wang
- Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Jingyi Duan
- Medicine and Technology College of Zunyi Medical University, Zunyi, China
| | - Ying Teng
- Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, China
| | - Dali Wang
- Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, China
| | - Fang Qi
- Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, China
| |
Collapse
|
45
|
Aevermann BD, Di Domizio J, Olah P, Saidoune F, Armstrong JM, Bachelez H, Barker J, Haniffa M, Julia V, Juul K, Krishnaswamy JK, Litman T, Parsons I, Sarin KY, Schmuth M, Sierra M, Simpson M, Homey B, Griffiths CEM, Scheuermann RH, Gilliet M. Cross-Comparison of Inflammatory Skin Disease Transcriptomics Identifies PTEN as a Pathogenic Disease Classifier in Cutaneous Lupus Erythematosus. J Invest Dermatol 2024; 144:252-262.e4. [PMID: 37598867 DOI: 10.1016/j.jid.2023.06.211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 06/05/2023] [Accepted: 06/09/2023] [Indexed: 08/22/2023]
Abstract
Tissue transcriptomics is used to uncover molecular dysregulations underlying diseases. However, the majority of transcriptomics studies focus on single diseases with limited relevance for understanding the molecular relationship between diseases or for identifying disease-specific markers. In this study, we used a normalization approach to compare gene expression across nine inflammatory skin diseases. The normalized datasets were found to retain differential expression signals that allowed unsupervised disease clustering and identification of disease-specific gene signatures. Using the NS-Forest algorithm, we identified a minimal set of biomarkers and validated their use as diagnostic disease classifier. Among them, PTEN was identified as being a specific marker for cutaneous lupus erythematosus and found to be strongly expressed by lesional keratinocytes in association with pathogenic type I IFNs. In fact, PTEN facilitated the expression of IFN-β and IFN-κ in keratinocytes by promoting activation and nuclear translocation of IRF3. Thus, cross-comparison of tissue transcriptomics is a valid strategy to establish a molecular disease classification and to identify pathogenic disease biomarkers.
Collapse
Affiliation(s)
- Brian D Aevermann
- J. Craig Venter Institute, La Jolla, California, USA; Chan Zuckerberg Initiative, Redwood City, California, USA
| | - Jeremy Di Domizio
- Department of Dermatology, Lausanne University Hospital (CHUV), University of Lausanne, Lausanne, Switzerland
| | - Peter Olah
- Department of Dermatology, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Fanny Saidoune
- Department of Dermatology, Lausanne University Hospital (CHUV), University of Lausanne, Lausanne, Switzerland
| | | | - Hervé Bachelez
- Department of Dermatology, Paris Diderot University, Paris, France
| | - Jonathan Barker
- St John's Institute of Dermatology, Faculty of Life Sciences & Medicine, Kings College London, London, United Kingdom
| | - Muzlifah Haniffa
- Department of Dermatology and NIHR Newcastle Biomedical Research Centre, Newcastle, United Kingdom
| | | | | | | | | | - Ian Parsons
- Celgene International Sarl, Boudry, Switzerland
| | - Kavita Y Sarin
- Department of Dermatology, Stanford University Medical Center, Palo Alto, California, USA
| | - Matthias Schmuth
- Department of Dermatology, Venereology and Allergy, Medical University Innsbruck, Innsbruck, Austria
| | | | - Michael Simpson
- Department of Genomic Medicine, King's College London, London, United Kingdom
| | - Bernhard Homey
- Department of Dermatology, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Christopher E M Griffiths
- Section of Dermatology, Department of Medicine, University of Manchester, Manchester, United Kingdom
| | - Richard H Scheuermann
- J. Craig Venter Institute, La Jolla, California, USA; Department of Pathology, University of California San Diego School of Medicine, La Jolla, California, USA; La Jolla Institute for Immunology, La Jolla, California, USA
| | - Michel Gilliet
- Department of Dermatology, Lausanne University Hospital (CHUV), University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
46
|
Aringer M, Finzel S, Voll RE. [Immunopathogenesis of systemic lupus erythematosus]. Z Rheumatol 2024; 83:68-76. [PMID: 35551439 PMCID: PMC10847069 DOI: 10.1007/s00393-022-01214-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/13/2022] [Indexed: 11/28/2022]
Abstract
Insights into the immunopathogenesis of systemic lupus erythematosus (SLE) help to understand the complex disease patterns and to develop new treatment strategies. The disease manifestations essentially result from autoantibodies, immune complexes and cytokines. Particularly the propensity towards developing various autoantibodies is central to the disease itself; autoantibody specificities lead to highly variable organ manifestations. This review article delineates the clinically relevant state of knowledge on SLE pathogenesis, with the goal to establish a model useful for clinical practice, which also helps to classify the novel therapeutic approaches.
Collapse
Affiliation(s)
- Martin Aringer
- Rheumatologie, Medizinische Klinik III und UniversitätsCentrum für Autoimmun- und Rheumatische Erkrankungen (UCARE), Universitätsklinikum und Medizinische Fakultät Carl Gustav Carus, TU Dresden, Fetscherstr. 74, 01307, Dresden, Deutschland.
| | - Stephanie Finzel
- Klinik für Rheumatologie und Klinische Immunologie & Centrum für chronische Immundefizienz, Universitätsklinikum Freiburg, Freiburg, Deutschland
| | - Reinhard E Voll
- Klinik für Rheumatologie und Klinische Immunologie & Centrum für chronische Immundefizienz, Universitätsklinikum Freiburg, Freiburg, Deutschland
| |
Collapse
|
47
|
Klein B, Reynolds MB, Xu B, Gharaee-Kermani M, Gao Y, Berthier CC, Henning S, Loftus SN, McNeely KE, Victory AM, Dobry C, Hile GA, Ma F, Turnier JL, Gudjonsson JE, O’Riordan MX, Kahlenberg JM. Epidermal ZBP1 stabilizes mitochondrial Z-DNA to drive UV-induced IFN signaling in autoimmune photosensitivity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.23.576771. [PMID: 38328232 PMCID: PMC10849619 DOI: 10.1101/2024.01.23.576771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Photosensitivity is observed in numerous autoimmune diseases and drives poor quality of life and disease flares. Elevated epidermal type I interferon (IFN) production primes for photosensitivity and enhanced inflammation, but the substrates that sustain and amplify this cycle remain undefined. Here, we show that IFN-induced Z-DNA binding protein 1 (ZBP1) stabilizes ultraviolet (UV)B-induced cytosolic Z-DNA derived from oxidized mitochondrial DNA. ZBP1 is significantly upregulated in the epidermis of adult and pediatric patients with autoimmune photosensitivity. Strikingly, lupus keratinocytes accumulate extensive cytosolic Z-DNA after UVB, and transfection of keratinocytes with Z-DNA results in stronger IFN production through cGAS-STING activation compared to B-DNA. ZBP1 knockdown abrogates UV-induced IFN responses, whereas overexpression results in a lupus-like phenotype with spontaneous Z-DNA accumulation and IFN production. Our results highlight Z-DNA and ZBP1 as critical mediators for UVB-induced inflammation and uncover how type I IFNs prime for cutaneous inflammation in photosensitivity.
Collapse
Affiliation(s)
- Benjamin Klein
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor
| | - Mack B. Reynolds
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor
| | - Bin Xu
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor
| | - Mehrnaz Gharaee-Kermani
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan
| | - Yiqing Gao
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor
| | - Celine C. Berthier
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Svenja Henning
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor
| | - Shannon N. Loftus
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor
| | - Kelsey E. McNeely
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor
| | - Amanda M. Victory
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor
| | - Craig Dobry
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan
| | - Grace A. Hile
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan
| | - Feiyang Ma
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan
| | - Jessica L. Turnier
- Division of Pediatric Rheumatology, Department of Pediatrics, University of Michigan, Ann Arbor
| | | | - Mary X. O’Riordan
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor
| | - J. Michelle Kahlenberg
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
48
|
Zhou Y, Cao T, Li Z, Qiao H, Dang E, Shao S, Wang G. Fibroblasts in immune-mediated inflammatory diseases: The soil of inflammation. Clin Immunol 2024; 258:109849. [PMID: 38008146 DOI: 10.1016/j.clim.2023.109849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 10/11/2023] [Accepted: 11/08/2023] [Indexed: 11/28/2023]
Abstract
As one of the most abundant stromal cells, fibroblasts are primarily responsible for the production and remodeling of the extracellular matrix. Traditionally, fibroblasts have been viewed as quiescent cells. However, recent advances in multi-omics technologies have demonstrated that fibroblasts exhibit remarkable functional diversity at the single-cell level. Additionally, fibroblasts are heterogeneous in their origins, tissue locations, and transitions with stromal cells. The dynamic nature of fibroblasts is further underscored by the fact that disease stages can impact their heterogeneity and behavior, particularly in immune-mediated inflammatory diseases such as psoriasis, inflammatory bowel diseases, and rheumatoid arthritis, etc. Fibroblasts can actively contribute to the disease initiation, progression, and relapse by responding to local microenvironmental signals, secreting downstream inflammatory factors, and interacting with immune cells during the pathological process. Here we focus on the development, plasticity, and heterogeneity of fibroblasts in inflammation, emphasizing the need for a developmental and dynamic perspective on fibroblasts.
Collapse
Affiliation(s)
- Yifan Zhou
- Department of Dermatology, Xijing hospital, Fourth Military Medical University, Xi'an, Shannxi 710032, China
| | - Tianyu Cao
- Department of Dermatology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Zhiguo Li
- Department of Dermatology, Xijing hospital, Fourth Military Medical University, Xi'an, Shannxi 710032, China
| | - Hongjiang Qiao
- Department of Dermatology, Xijing hospital, Fourth Military Medical University, Xi'an, Shannxi 710032, China
| | - Erle Dang
- Department of Dermatology, Xijing hospital, Fourth Military Medical University, Xi'an, Shannxi 710032, China
| | - Shuai Shao
- Department of Dermatology, Xijing hospital, Fourth Military Medical University, Xi'an, Shannxi 710032, China.
| | - Gang Wang
- Department of Dermatology, Xijing hospital, Fourth Military Medical University, Xi'an, Shannxi 710032, China.
| |
Collapse
|
49
|
Lim D, Kleitsch J, Werth VP. Emerging immunotherapeutic strategies for cutaneous lupus erythematosus: an overview of recent phase 2 and 3 clinical trials. Expert Opin Emerg Drugs 2023; 28:257-273. [PMID: 37860982 DOI: 10.1080/14728214.2023.2273536] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/17/2023] [Indexed: 10/21/2023]
Abstract
INTRODUCTION Cutaneous lupus erythematosus (CLE) is an autoimmune disease that is clinically heterogenous and may occur with or without the presence of systemic lupus erythematosus (SLE). While existing on a spectrum, CLE and SLE present differences in their underlying pathogenesis and therapeutic responses. No new therapies have been approved in recent decades by the U.S. Food and Drug Administration for CLE, although frequently refractory to conventional therapies. There is an unmet need to develop effective drugs for CLE as it significantly impacts patients' quality of life and may leave irreversible disfiguring damage. AREAS COVERED This review provides an update on the latest phase 2 and 3 clinical trials performed in CLE or SLE using skin-specific outcome measures. Emergent therapies are presented alongside their mechanism of action as recent translational studies have permitted identification of critical targets among immune cells and/or pathways involved in CLE. EXPERT OPINION While the recent literature has few trials for CLE, drugs targeting type I interferon, its downstream signaling and plasmacytoid dendritic cells have shown promising results. Further research is required to develop long-awaited effective therapies, and this review highlights the importance of implementing trials dedicated to CLE to fill the current gap in CLE therapeutics.
Collapse
Affiliation(s)
- Darosa Lim
- Department of Dermatology, Corporal Michael J. Crescenz VAMC, Philadelphia, PA, USA
- Perelman School of Medicine, Department of Dermatology, University of Pennsylvania, Philadelphia, PA, USA
| | - Julianne Kleitsch
- Department of Dermatology, Corporal Michael J. Crescenz VAMC, Philadelphia, PA, USA
- Perelman School of Medicine, Department of Dermatology, University of Pennsylvania, Philadelphia, PA, USA
| | - Victoria P Werth
- Department of Dermatology, Corporal Michael J. Crescenz VAMC, Philadelphia, PA, USA
- Perelman School of Medicine, Department of Dermatology, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
50
|
Ma L, Peng L, Zhao J, Bai W, Jiang N, Zhang S, Wu C, Wang L, Xu D, Leng X, Wang Q, Zhang W, Zhao Y, Tian X, Li M, Zeng X. Efficacy and safety of Janus kinase inhibitors in systemic and cutaneous lupus erythematosus: A systematic review and meta-analysis. Autoimmun Rev 2023; 22:103440. [PMID: 37678618 DOI: 10.1016/j.autrev.2023.103440] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 09/03/2023] [Indexed: 09/09/2023]
Abstract
BACKGROUND Janus kinase (JAK) inhibitors have been proven to be effective and safe in various autoimmune diseases. However, there is still a lack of comprehensive evidence regarding their efficacy and safety in systemic and cutaneous lupus erythematosus. METHODS We searched for systemic and cutaneous lupus erythematosus patients who were treated with JAK inhibitors in PubMed, Embase, Web of Science, and the Cochrane Library until February 28, 2023. The quality of clinical trials was assessed using the Cochrane risk-of-bias tool. Meta-analysis was conducted when at least three studies had comparable measures of outcome. If meta-analysis was not feasible, a descriptive review was carried out. RESULTS We included 30 studies, consisting of 10 randomized controlled trials and 20 case series or reports, with a total of 2,460 patients. JAK inhibitors were found to be more effective than placebo in systemic lupus erythematosus (SLE) based on the percentage of achieving SLE Responder Index (SRI)-4 response (RR = 1.18; 95% CI 1.07 to 1.31; p = 0.001), British Isles Lupus Assessment Group -based Composite Lupus Assessment (BICLA) response (RR = 1.16; 95% CI 1.02 to 1.31; p = 0.02), Lupus Low Disease Activity State (LLDAS) (RR = 1.28; 95% CI 1.07 to 1.54; p = 0.008), and Systemic Lupus Erythematosus Disease Activity Index 2000 (SLEDAI-2 K) remission of arthritis or rash (RR = 1.09; 95% CI 1.00 to 1.18; p = 0.04), particularly in treating musculoskeletal and mucocutaneous involvement. However, the effect of JAK inhibitors on cutaneous lupus erythematosus was uncertain. JAK inhibitors and placebo had a similar incidence of adverse events (RR = 1.01; 95% CI 0.97 to 1.04; p = 0.65). CONCLUSION JAK inhibitors could be a potential treatment option for systemic and cutaneous lupus erythematosus, particularly in treating cutaneous and musculoskeletal lesions of SLE. JAK inhibitors had a safe profile.
Collapse
Affiliation(s)
- Leyao Ma
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China; National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology, Beijing, China; State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Beijing, China; Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Liying Peng
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China; National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology, Beijing, China; State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Beijing, China; Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Jiuliang Zhao
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China; National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology, Beijing, China; State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Beijing, China; Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China.
| | - Wei Bai
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China; National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology, Beijing, China; State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Beijing, China; Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Nan Jiang
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China; National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology, Beijing, China; State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Beijing, China; Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Shangzhu Zhang
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China; National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology, Beijing, China; State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Beijing, China; Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Chanyuan Wu
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China; National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology, Beijing, China; State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Beijing, China; Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Li Wang
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China; National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology, Beijing, China; State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Beijing, China; Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Dong Xu
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China; National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology, Beijing, China; State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Beijing, China; Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Xiaomei Leng
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China; National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology, Beijing, China; State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Beijing, China; Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Qian Wang
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China; National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology, Beijing, China; State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Beijing, China; Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Wen Zhang
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China; National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology, Beijing, China; State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Beijing, China; Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Yan Zhao
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China; National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology, Beijing, China; State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Beijing, China; Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Xinping Tian
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China; National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology, Beijing, China; State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Beijing, China; Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China.
| | - Mengtao Li
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China; National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology, Beijing, China; State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Beijing, China; Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China.
| | - Xiaofeng Zeng
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China; National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology, Beijing, China; State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Beijing, China; Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| |
Collapse
|