1
|
Ballerini M, Galiè S, Tyagi P, Catozzi C, Raji H, Nabinejad A, Macandog ADG, Cordiale A, Slivinschi BI, Kugiejko KK, Freisa M, Occhetta P, Wargo JA, Ferrucci PF, Cocorocchio E, Segata N, Vignati A, Morgun A, Deleidi M, Manzo T, Rasponi M, Nezi L. A gut-on-a-chip incorporating human faecal samples and peristalsis predicts responses to immune checkpoint inhibitors for melanoma. Nat Biomed Eng 2025:10.1038/s41551-024-01318-z. [PMID: 39939548 DOI: 10.1038/s41551-024-01318-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 11/18/2024] [Indexed: 02/14/2025]
Abstract
Patient responses to immune checkpoint inhibitors can be influenced by the gastrointestinal microbiome. Mouse models can be used to study microbiome-host crosstalk, yet their utility is constrained by substantial anatomical, functional, immunological and microbial differences between mice and humans. Here we show that a gut-on-a-chip system mimicking the architecture and functionality of the human intestine by including faecal microbiome and peristaltic-like movements recapitulates microbiome-host interactions and predicts responses to immune checkpoint inhibitors in patients with melanoma. The system is composed of a vascular channel seeded with human microvascular endothelial cells and an intestinal channel with intestinal organoids derived from human induced pluripotent stem cells, with the two channels separated by a collagen matrix. By incorporating faecal samples from patients with melanoma into the intestinal channel and by performing multiomic analyses, we uncovered epithelium-specific biomarkers and microbial factors that correlate with clinical outcomes in patients with melanoma and that the microbiome of non-responders has a reduced ability to buffer cellular stress and self-renew. The gut-on-a-chip model may help identify prognostic biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Mattia Ballerini
- Department of Experimental Oncology, Istituto Europeo di Oncologia - IRCCS (IEO), Milan, Italy
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
| | - Serena Galiè
- Department of Experimental Oncology, Istituto Europeo di Oncologia - IRCCS (IEO), Milan, Italy
| | - Punit Tyagi
- Department of Experimental Oncology, Istituto Europeo di Oncologia - IRCCS (IEO), Milan, Italy
| | - Carlotta Catozzi
- Department of Experimental Oncology, Istituto Europeo di Oncologia - IRCCS (IEO), Milan, Italy
| | - Hariam Raji
- Mechanisms and Therapy of Genetic Brain Diseases, Institut Imagine, INSERM UMR1163, Université Paris Cité, Paris, France
| | - Amir Nabinejad
- Department of Experimental Oncology, Istituto Europeo di Oncologia - IRCCS (IEO), Milan, Italy
| | - Angeli D G Macandog
- Department of Experimental Oncology, Istituto Europeo di Oncologia - IRCCS (IEO), Milan, Italy
| | - Alessandro Cordiale
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
| | - Bianca Ionela Slivinschi
- Mechanisms and Therapy of Genetic Brain Diseases, Institut Imagine, INSERM UMR1163, Université Paris Cité, Paris, France
| | - Karol K Kugiejko
- Department of Experimental Oncology, Istituto Europeo di Oncologia - IRCCS (IEO), Milan, Italy
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
| | - Martina Freisa
- Department of Experimental Oncology, Istituto Europeo di Oncologia - IRCCS (IEO), Milan, Italy
| | - Paola Occhetta
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
| | - Jennifer A Wargo
- Department of Surgical Oncology, Division of Surgery and Department of Genomic Medicine, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Pier F Ferrucci
- Dipartimento di Oncologia Interpresidio Gruppo Multimedica IRCCS, Milan, Italy
| | - Emilia Cocorocchio
- Department of Experimental Oncology, Istituto Europeo di Oncologia - IRCCS (IEO), Milan, Italy
- Humanitas-Gavazzeni, Medical Oncology, Bergamo, Italy
| | - Nicola Segata
- Department of Experimental Oncology, Istituto Europeo di Oncologia - IRCCS (IEO), Milan, Italy
- Department CIBIO, University of Trento, Trento, Italy
| | - Andrea Vignati
- Department of Experimental Oncology, Istituto Europeo di Oncologia - IRCCS (IEO), Milan, Italy
| | - Andrey Morgun
- College of Pharmacy, Oregon State University, Corvallis, OR, USA
| | - Michela Deleidi
- Mechanisms and Therapy of Genetic Brain Diseases, Institut Imagine, INSERM UMR1163, Université Paris Cité, Paris, France
| | - Teresa Manzo
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Turin, Italy
| | - Marco Rasponi
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
| | - Luigi Nezi
- Department of Experimental Oncology, Istituto Europeo di Oncologia - IRCCS (IEO), Milan, Italy.
| |
Collapse
|
2
|
Chen Y, Li X, Sun X, Kou Y, Ma X, Song L, Zhang H, Xie F, Song Z, Yuan C, Huang S, Wu Y. Joint transcriptomics and metabolomics unveil the protective mechanism of tamarind seed polysaccharide against antibiotic-induced intestinal barrier damage. Int J Biol Macromol 2025; 305:140999. [PMID: 39952497 DOI: 10.1016/j.ijbiomac.2025.140999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 01/13/2025] [Accepted: 02/11/2025] [Indexed: 02/17/2025]
Abstract
Intestinal barrier damage is frequently caused by antibiotic therapy, potentially leading to bacterial translocation and toxin leakage, which triggers inflammation and increases the risk of various diseases. In this study, Tamarind seed polysaccharides (TSP) with different molecular weights were administered to mice during the recovery phase from clindamycin-induced intestinal barrier damage. The results indicated that TSP restored the shortened colon length, reduced the enlarged cecum index, and decreased the elevated level of inflammatory infiltration. Biochemical testing revealed that TSP decreased the levels of intestinal permeability biomarkers and inflammatory factors that were elevated by clindamycin treatment. Transcriptomics and non-targeted metabolomics analyses respectively uncovered changes in colon gene expression and fecal metabolites. The joint analysis of these omics data identified critical pathways, including arachidonic acid metabolism, retinol metabolism, and steroid hormone biosynthesis. These findings suggest that TSP could be a promising dietary supplement for protecting the intestinal barrier and alleviating inflammation.
Collapse
Affiliation(s)
- Yinan Chen
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xujiao Li
- Institute for Agro-food Standards and Testing Technology, Laboratory of Quality & Safety Risk Assessment for Agro-products (Shanghai), Ministry of Agriculture and Rural Affairs, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Xianbao Sun
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yuxing Kou
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xuan Ma
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lihua Song
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hui Zhang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Fan Xie
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Zibo Song
- Yunnan Maoduoli Group Food Co., Ltd., Yuxi 653100, China; Yunnan Special Favor Biotechnology Co., Ltd., Yuxi 653100, China
| | - Chunmei Yuan
- Yunnan Maoduoli Group Food Co., Ltd., Yuxi 653100, China; Yunnan Special Favor Biotechnology Co., Ltd., Yuxi 653100, China
| | - Siyan Huang
- Yunnan Maoduoli Group Food Co., Ltd., Yuxi 653100, China; Yunnan Special Favor Biotechnology Co., Ltd., Yuxi 653100, China
| | - Yan Wu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
3
|
Zhang Z, Mu X, Cao Q, Zhai Y, Zheng L, Liu Y, Zheng H, Zhang X. Antibiotic exposure alters the honeybee gut microbiota and may interfere with the honeybee behavioral caste transition. INSECT SCIENCE 2025; 32:260-276. [PMID: 38715477 DOI: 10.1111/1744-7917.13374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 03/30/2024] [Accepted: 04/03/2024] [Indexed: 02/14/2025]
Abstract
Behavioral division is essential for the sustainability and reproduction of honeybee populations. While accumulating evidence has documented that antibiotic exposure interferes with bee behavioral divisions, how the gut microbiome, host physiology, and genetic regulation are implicated in this process remains understudied. Here, by constructing single-cohort colonies, we validated that the gut microbiota varied in composition between age-matched nurse and forager bees. Perturbing the gut microbiota with a low dose of antibiotic retained the gut bacterial size, but the structure of the microbial community continuously diverged from the control group after antibiotic treatment. Fewer foragers were observed in the antibiotic groups in the field experiment. A combinatorial effect of decreased gut metabolic gene repertoires, reduced brain neurotransmitter titers, and downregulated brain immune genes could potentially be related to behavioral tasks transition delay. This work indicates that the disturbance to both the gut microbiome and host physiologies after antibiotic exposure may have implications on social behavior development, highlighting the need for further research focusing on antibiotic pollution threatening the honeybee population's health.
Collapse
Affiliation(s)
- Zijing Zhang
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, Hebei Collaborative Innovation Center for Eco-Environment, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Xiaohuan Mu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Qina Cao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Yifan Zhai
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan, China
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan, China
| | - Li Zheng
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan, China
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan, China
| | - Yan Liu
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan, China
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan, China
| | - Hao Zheng
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Xue Zhang
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
| |
Collapse
|
4
|
Cometta S, Donose BC, Juárez-Saldivar A, Ravichandran A, Xu Y, Bock N, Dargaville TR, Rakić AD, Hutmacher DW. Unravelling the physicochemical and antimicrobial mechanisms of human serum albumin/tannic acid coatings for medical-grade polycaprolactone scaffolds. Bioact Mater 2024; 42:68-84. [PMID: 39280579 PMCID: PMC11399811 DOI: 10.1016/j.bioactmat.2024.08.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/21/2024] [Accepted: 08/20/2024] [Indexed: 09/18/2024] Open
Abstract
Biofilm-related biomaterial infections are notoriously challenging to treat and can lead to chronic infection and persisting inflammation. To date, a large body of research can be reviewed for coatings which potentially prevent bacterial infection while promoting implant integration. Yet only a very small number has been translated from bench to bedside. This study provides an in-depth analysis of the stability, antibacterial mechanism, and biocompatibility of medical grade polycaprolactone (mPCL), coated with human serum albumin (HSA), the most abundant protein in blood plasma, and tannic acid (TA), a natural polyphenol with antibacterial properties. Molecular docking studies demonstrated that HSA and TA interact mainly through hydrogen-bonding, ionic and hydrophobic interactions, leading to smooth and regular assemblies. In vitro bacteria adhesion testing showed that coated scaffolds maintained their antimicrobial properties over 3 days by significantly reducing S. aureus colonization and biofilm formation. Notably, amplitude modulation-frequency modulation (AMFM) based viscoelasticity mapping and transmission electron microscopy (TEM) data suggested that HSA/TA-coatings cause morphological and mechanical changes on the outer cell membrane of S. aureus leading to membrane disruption and cell death while proving non-toxic to human primary cells. These results support this antibiotic-free approach as an effective and biocompatible strategy to prevent biofilm-related biomaterial infections.
Collapse
Affiliation(s)
- Silvia Cometta
- Faculty of Engineering, School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD, 4000, Australia
- Australian Research Council Training Centre for Multiscale 3D Imaging, Modelling and Manufacturing (M3D Innovation), Queensland University of Technology, Kelvin Grove, QLD, 4059, Australia
- Max Planck Queensland Centre, Queensland University of Technology, Brisbane, QLD, 4000, Australia
| | - Bogdan C Donose
- School of Electrical Engineering and Computer Science, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Alfredo Juárez-Saldivar
- Unidad Académica Multidisciplinaria Reynosa Aztlán, Universidad Autónoma de Tamaulipas, Reynosa, 88740, Mexico
| | - Akhilandeshwari Ravichandran
- Faculty of Engineering, School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD, 4000, Australia
| | - Yanan Xu
- Central Analytical Research Facility (CARF), Queensland University of Technology, Brisbane, QLD, 4000, Australia
| | - Nathalie Bock
- Australian Research Council Training Centre for Multiscale 3D Imaging, Modelling and Manufacturing (M3D Innovation), Queensland University of Technology, Kelvin Grove, QLD, 4059, Australia
- Max Planck Queensland Centre, Queensland University of Technology, Brisbane, QLD, 4000, Australia
- Faculty of Health, School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, 4000, Australia
- Translational Research Institute, Woolloongabba, QLD, 4102, Australia
| | - Tim R Dargaville
- Centre for Materials Science, School of Chemistry and Physics, Queensland University of Technology, Brisbane, QLD, 4000, Australia
- Australian Research Council Training Centre for Cell and Tissue Engineering Technologies, Queensland University of Technology, Brisbane, QLD, 4059, Australia
| | - Aleksandar D Rakić
- School of Electrical Engineering and Computer Science, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Dietmar W Hutmacher
- Faculty of Engineering, School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD, 4000, Australia
- Australian Research Council Training Centre for Multiscale 3D Imaging, Modelling and Manufacturing (M3D Innovation), Queensland University of Technology, Kelvin Grove, QLD, 4059, Australia
- Max Planck Queensland Centre, Queensland University of Technology, Brisbane, QLD, 4000, Australia
- Translational Research Institute, Woolloongabba, QLD, 4102, Australia
- Australian Research Council Training Centre for Cell and Tissue Engineering Technologies, Queensland University of Technology, Brisbane, QLD, 4059, Australia
| |
Collapse
|
5
|
Ng CYJ, Zhong L, Ng HS, Goh KS, Zhao Y. Managing Type 2 Diabetes Mellitus via the Regulation of Gut Microbiota: A Chinese Medicine Perspective. Nutrients 2024; 16:3935. [PMID: 39599721 PMCID: PMC11597546 DOI: 10.3390/nu16223935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/11/2024] [Accepted: 11/14/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND Type 2 Diabetes Mellitus (T2DM) is a metabolic disorder characterized by insulin resistance and inadequate insulin production. Given the increased frequency of T2DM and the health issues it can cause, there is an increasing need to develop alternative T2DM management strategies. One such approach is Chinese Medicine (CM), a complementary therapy widely used in T2DM treatment. Given the emphasis on gut microbiota in current research, studying CM in the treatment of T2DM via gut microbiota modulation could be beneficial. Scope and approach: The use of various CM methods for managing T2DM via gut microbiota modulation is highlighted in this review. Following an introduction of the gut microbiota and its role in T2DM pathogenesis, we will review the potential interactions between gut microbiota and T2DM. Thereafter, we will review various CM treatment modalities that modulate gut microbiota and provide perspectives for future research. Key findings and discussion: In T2DM, Akkermansia, Bifidobacterium, and Firmicutes are examples of gut microbiota commonly imbalanced. Studies have shown that CM therapies can modulate gut microbiota, leading to beneficial effects such as reduced inflammation, improved metabolism, and improved immunity. Among these treatment modalities, Chinese Herbal Medicine and acupuncture are the most well-studied, and several in vivo studies have demonstrated their potential in managing T2DM by modulating gut microbiota. However, the underlying biomolecular mechanisms of actions are not well elucidated, which is a key area for future research. Future studies could also investigate alternate CM therapies such as moxibustion and CM exercises and conduct large-scale clinical trials to validate their effectiveness in treatment.
Collapse
Affiliation(s)
- Chester Yan Jie Ng
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Linda Zhong
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Han Seong Ng
- Singapore General Hospital, Outram Rd., Singapore 169608, Singapore
- Academy of Chinese Medicine Singapore, 705 Serangoon Road, Singapore 328127, Singapore
| | - Kia Seng Goh
- Academy of Chinese Medicine Singapore, 705 Serangoon Road, Singapore 328127, Singapore
- Singapore College of Traditional Chinese Medicine, 640 Lor 4 Toa Payoh, Singapore 319522, Singapore
| | - Yan Zhao
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
- Academy of Chinese Medicine Singapore, 705 Serangoon Road, Singapore 328127, Singapore
| |
Collapse
|
6
|
dos Santos Pereira E, de Oliveira Raphaelli C, Massaut KB, Ribeiro JA, Soares Vitola HR, Pieniz S, Fiorentini ÂM. Probiotics: Therapeutic Strategy on the Prevention and Treatment of
Inflammatory Diseases: Obesity, Type 2 Diabetes Mellitus and Celiac
Disease. CURRENT NUTRITION & FOOD SCIENCE 2024; 20:1112-1125. [DOI: 10.2174/0115734013252358231016181809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/29/2023] [Accepted: 08/24/2023] [Indexed: 01/03/2025]
Abstract
Background:
Recent evidence demonstrates the fundamental role of the gut microbiota
in inflammatory diseases, and several mechanisms of action of probiotics in improvement of inflammatory
parameters.
Objective:
The objective of this review was to relate the consumption of probiotic bacteria and its
effects on inflammatory diseases, including obesity, type II diabetes and celiac disease.
Methods:
A search was carried out in English, between the years 2011 and 2022, for research articles
and clinical trials with humans and in vivo studies. Research showed improvement in cardiovascular
risk markers, and improvement in insulin sensitivity, lipid profile and plasma atherogenic
index, in obesity with the use of probiotics. In type II diabetes, decreased levels of fasting glucose,
glycated hemoglobin, insulin and glycemic index, and increased levels of peptide 1, superoxide
dismutase and glutathione peroxidase were observed.
Results:
In addition to cellular protection of the islets of Langerhans and positive alteration of TNF-
α and IL-1β markers. Improvement in the condition of patients with celiac disease was observed,
since the neutralization of the imbalance in serotonin levels was observed, reducing the expression
of genes of interest and also, a decrease in cytokines.
Conclusion:
Therefore, the use of probiotics should be encouraged.
Collapse
Affiliation(s)
| | | | - Khadija Bezerra Massaut
- Department of Food Science and Technology, Universidade Federal de Pelotas, Pelotas, Rs, Brazil
| | - Jardel Araújo Ribeiro
- Department of Food Science and Technology, Universidade Federal de Pelotas, Pelotas, Rs, Brazil
| | | | - Simone Pieniz
- Department of Food Science and Technology, Universidade Federal de Pelotas, Pelotas, Rs, Brazil
| | - Ângela Maria Fiorentini
- Department of Food Science and Technology, Universidade Federal de Pelotas, Pelotas, Rs, Brazil
| |
Collapse
|
7
|
Williams CE, Fontaine SS. Commentary: The microbial dependence continuum: Towards a comparative physiology approach to understand host reliance on microbes. Comp Biochem Physiol A Mol Integr Physiol 2024; 296:111690. [PMID: 38964709 DOI: 10.1016/j.cbpa.2024.111690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/28/2024] [Accepted: 06/30/2024] [Indexed: 07/06/2024]
Abstract
Comparative physiologists often compare physiological traits across organisms to understand the selective pressures influencing their evolution in different environments. Traditionally focused on the organisms themselves, comparative physiology has more recently incorporated studies of the microbiome-the communities of microbes living in and on animals that influence host physiology. In this commentary, we describe the utility of applying a comparative framework to study the microbiome, particularly in understanding how hosts vary in their dependence on microbial communities for physiological function, a concept we term the "microbial dependence continuum". This hypothesis suggests that hosts exist on a spectrum ranging from high to low reliance on their microbiota. Certain physiological traits may be highly dependent on microbes for proper function in some species but microbially independent in others. Comparative physiology can elucidate the selective pressures driving species along this continuum. Here, we discuss the microbial dependence continuum in detail and how comparative physiology can be useful to study it. Then, we discuss two example traits, herbivory and flight, where comparative physiology has helped reveal the selective pressures influencing host dependence on microbial communities. Lastly, we discuss useful experimental approaches for studying the microbial dependence continuum in a comparative physiology context.
Collapse
Affiliation(s)
- Claire E Williams
- University of Nevada, Department of Biology, 1664 N Virginia St, Reno, NV 89557, USA.
| | - Samantha S Fontaine
- Kent State University, Department of Biological Sciences, 800 E Summit St, Kent, OH, USA. https://twitter.com/sammiefontaine
| |
Collapse
|
8
|
Zhong Y, Zhang J, Fang L, Cheang UK. MOF-Modified Microrollers for Bioimaging and Sustained Antibiotic Delivery. ACS APPLIED MATERIALS & INTERFACES 2024; 16:47163-47177. [PMID: 39196769 DOI: 10.1021/acsami.4c08535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/30/2024]
Abstract
Central nervous system (CNS) infections caused by neurosurgery or intrathecal injection of contaminated cerebrospinal fluid are a common and difficult complication. Drug-delivery microrobots are among the latest solutions proposed for antibacterial applications. However, there is a lack of research into developing microrobots with the ability to sustain antibody delivery while can move efficiently in the CNS. Here, biocompatible antibacterial metal-organic framework (MOF)-modified microrollers (MMRs) to combat CNS infections are proposed. The MMRs are iron-based metal-organic framework (NH2-MIL-101(Fe)) modified for enhanced adsorption and Fe/Al coated for magnetic actuation and biocompatibility. The MMRs have demonstrated a faster and unhindered magnetically actuated motion on the uneven biological tissue surface in an organ-on-a-chip that mimicked the CNS compared to it on smooth surface. CFD results consistently align with the experimental findings. The MMRs can be loaded with rhodamine 6G for bioimaging, allowing them to be imaged through sections of the main human tissues by fluorescence microscopy, or tetracycline hydrochloride for antibiotic delivery, allowing them to inhibit the growth of Staphylococcus aureus biofilms by sustained release of antibiotics for 9 days. This study provides a strategy to integrate high-capacity adsorption material with magnetically actuated locomotion for long-term targeted antibacterial applications in biological environments.
Collapse
Affiliation(s)
- Yukun Zhong
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Junkai Zhang
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Lijun Fang
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - U Kei Cheang
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
9
|
Han Z, Sun J, Jiang B, Chen K, Ge L, Sun Z, Wang A. Fecal microbiota transplantation accelerates restoration of florfenicol-disturbed intestinal microbiota in a fish model. Commun Biol 2024; 7:1006. [PMID: 39152200 PMCID: PMC11329668 DOI: 10.1038/s42003-024-06727-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 08/13/2024] [Indexed: 08/19/2024] Open
Abstract
Antibiotic-induced dysbiosis in the fish gut causes significant adverse effects. We use fecal microbiota transplantation (FMT) to accelerate the restoration of florfenicol-perturbed intestinal microbiota in koi carp, identifying key bacterial populations and metabolites involved in the recovery process through microbiome and metabolome analyses. We demonstrate that florfenicol disrupts intestinal microbiota, reducing beneficial genera such as Lactobacillus, Bifidobacterium, Bacteroides, Romboutsia, and Faecalibacterium, and causing mucosal injuries. Key metabolites, including aromatic amino acids and glutathione-related compounds, are diminished. We show that FMT effectively restores microbial populations, repairs intestinal damage, and normalizes critical metabolites, while natural recovery is less effective. Spearman correlation analyses reveal strong associations between the identified bacterial genera and the levels of aromatic amino acids and glutathione-related metabolites. This study underscores the potential of FMT to counteract antibiotic-induced dysbiosis and maintain fish intestinal health. The restored microbiota and normalized metabolites provide a basis for developing personalized probiotic therapies for fish.
Collapse
Affiliation(s)
- Zhuoran Han
- Key Laboratory of Smart Breeding (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Tianjin Agricultural University, Tianjin, China
- Tianjin Key Laboratory of Aqua-ecology and Aquaculture, Fisheries College, Tianjin Agricultural University, Tianjin, China
- College of Life Science, South China Normal University, Guangzhou, Guangdong, China
| | - Jingfeng Sun
- Key Laboratory of Smart Breeding (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Tianjin Agricultural University, Tianjin, China.
- Tianjin Key Laboratory of Aqua-ecology and Aquaculture, Fisheries College, Tianjin Agricultural University, Tianjin, China.
| | - Boyun Jiang
- Tianjin Key Laboratory of Aqua-ecology and Aquaculture, Fisheries College, Tianjin Agricultural University, Tianjin, China
| | - Kun Chen
- Tianjin Key Laboratory of Aqua-ecology and Aquaculture, Fisheries College, Tianjin Agricultural University, Tianjin, China
| | - Lunhua Ge
- Tianjin Key Laboratory of Aqua-ecology and Aquaculture, Fisheries College, Tianjin Agricultural University, Tianjin, China
| | - Zhongshi Sun
- Tianjin Key Laboratory of Aqua-ecology and Aquaculture, Fisheries College, Tianjin Agricultural University, Tianjin, China
| | - Anli Wang
- College of Life Science, South China Normal University, Guangzhou, Guangdong, China
| |
Collapse
|
10
|
Cao S, Budina E, Wang R, Sabados M, Mukherjee A, Solanki A, Nguyen M, Hultgren K, Dhar A, Hubbell JA. Injectable butyrate-prodrug micelles induce long-acting immune modulation and prevent autoimmune arthritis in mice. J Control Release 2024; 372:281-294. [PMID: 38876359 DOI: 10.1016/j.jconrel.2024.06.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 05/31/2024] [Accepted: 06/11/2024] [Indexed: 06/16/2024]
Abstract
Short chain fatty acid (SCFAs), such as butyrate, have shown promising therapeutic potential due to their immunomodulatory effects, particularly in maintaining immune homeostasis. However, the clinical application of SCFAs is limited by the need for frequent and high oral dosages. Rheumatoid arthritis (RA) is characterized by aberrant activation of peripheral T cells and myeloid cells. In this study, we aimed to deliver butyrate directly to the lymphatics using a polymeric micelle-based butyrate prodrug to induce long-lasting immunomodulatory effects. Notably, negatively charged micelles (Neg-ButM) demonstrated superior efficacy in targeting the lymphatics following subcutaneous (s.c.) administration and were retained in the draining lymph nodes, spleen, and liver for over one month. In the collagen antibody-induced arthritis (CAIA) mouse model of RA, only two s.c. injections of Neg-ButM successfully prevented disease onset and promoted tolerogenic phenotypes in T cells and myeloid cells, both locally and systemically. These results underscore the potential of this strategy in managing inflammatory autoimmune diseases by directly modulating immune responses via lymphatic delivery.
Collapse
Affiliation(s)
- Shijie Cao
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, United States; Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, WA 98195, United States.
| | - Erica Budina
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, United States
| | - Ruyi Wang
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, United States; Department of Chemistry, University of Chicago, Chicago, IL 60637, United States
| | - Matthew Sabados
- Biological Sciences Division, University of Chicago, Chicago, IL 60637, United States
| | - Anish Mukherjee
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, United States
| | - Ani Solanki
- Animal Resource Center, University of Chicago, Chicago, IL 60637, United States
| | - Mindy Nguyen
- Animal Resource Center, University of Chicago, Chicago, IL 60637, United States
| | - Kevin Hultgren
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, United States
| | - Arjun Dhar
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, United States
| | - Jeffrey A Hubbell
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, United States; Committee on Immunology, University of Chicago, Chicago, IL 60637, United States; Committee on Cancer Biology, University of Chicago, Chicago, IL 60637, United States.
| |
Collapse
|
11
|
Newman NK, Monnier PM, Rodrigues RR, Gurung M, Vasquez-Perez S, Hioki KA, Greer RL, Brown K, Morgun A, Shulzhenko N. Host response to cholestyramine can be mediated by the gut microbiota. MICROBIOME RESEARCH REPORTS 2024; 3:40. [PMID: 39741955 PMCID: PMC11684918 DOI: 10.20517/mrr.2023.82] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 06/09/2024] [Accepted: 06/24/2024] [Indexed: 01/03/2025]
Abstract
Background: The gut microbiota has been implicated as a major factor contributing to metabolic diseases and the response to drugs used for the treatment of such diseases. In this study, we tested the effect of cholestyramine, a bile acid sequestrant that reduces blood cholesterol, on the murine gut microbiota and metabolism. We also explored the hypothesis that some effects of this drug on systemic metabolism can be attributed to alterations in the gut microbiota. Methods: We used a Western diet (WD) for 8 weeks to induce metabolic disease in mice, then treated some mice with cholestyramine added to WD. Metabolic phenotyping, gene expression in liver and ileum, and microbiota 16S rRNA genes were analyzed. Then, transkingdom network analysis was used to find candidate microbes for the cholestyramine effect. Results: We observed that cholestyramine decreased glucose and epididymal fat levels and detected dysregulation of genes known to be regulated by cholestyramine in the liver and ileum. Analysis of gut microbiota showed increased alpha diversity in cholestyramine-treated mice, with fourteen taxa showing restoration of relative abundance to levels resembling those in mice fed a control diet. Using transkingdom network analysis, we inferred two amplicon sequence variants (ASVs), one from the Lachnospiraceae family (ASV49) and the other from the Muribaculaceae family (ASV1), as potential regulators of cholestyramine effects. ASV49 was also negatively linked with glucose levels, further indicating its beneficial role. Conclusion: Our results indicate that the gut microbiota has a role in the beneficial effects of cholestyramine and suggest specific microbes as targets of future investigations.
Collapse
Affiliation(s)
- Nolan K. Newman
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR 97331, USA
| | - Philip M. Monnier
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR 97331, USA
| | - Richard R. Rodrigues
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR 97331, USA
| | - Manoj Gurung
- Department of Biomedical Sciences, Carson College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA
| | - Stephany Vasquez-Perez
- Department of Biomedical Sciences, Carson College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA
| | - Kaito A. Hioki
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR 97331, USA
| | - Renee L. Greer
- Department of Biomedical Sciences, Carson College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA
| | - Kevin Brown
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR 97331, USA
| | - Andrey Morgun
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR 97331, USA
| | - Natalia Shulzhenko
- Department of Biomedical Sciences, Carson College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA
| |
Collapse
|
12
|
Simonson M, Cueff G, Thibaut MM, Giraudet C, Salles J, Chambon C, Boirie Y, Bindels LB, Gueugneau M, Guillet C. Skeletal Muscle Proteome Modifications following Antibiotic-Induced Microbial Disturbances in Cancer Cachexia. J Proteome Res 2024; 23:2452-2473. [PMID: 38965921 DOI: 10.1021/acs.jproteome.4c00143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
Cancer cachexia is an involuntary loss of body weight, mostly of skeletal muscle. Previous research favors the existence of a microbiota-muscle crosstalk, so the aim of the study was to evaluate the impact of microbiota alterations induced by antibiotics on skeletal muscle proteins expression. Skeletal muscle proteome changes were investigated in control (CT) or C26 cachectic mice (C26) with or without antibiotic treatment (CT-ATB or C26-ATB, n = 8 per group). Muscle protein extracts were divided into a sarcoplasmic and myofibrillar fraction and then underwent label-free liquid chromatography separation, mass spectrometry analysis, Mascot protein identification, and METASCAPE platform data analysis. In C26 mice, the atrogen mafbx expression was 353% higher than CT mice and 42.3% higher than C26-ATB mice. No effect on the muscle protein synthesis was observed. Proteomic analyses revealed a strong effect of antibiotics on skeletal muscle proteome outside of cachexia, with adaptative processes involved in protein folding, growth, energy metabolism, and muscle contraction. In C26-ATB mice, proteome adaptations observed in CT-ATB mice were blunted. Differentially expressed proteins were involved in other processes like glucose metabolism, oxidative stress response, and proteolysis. This study confirms the existence of a microbiota-muscle axis, with a muscle response after antibiotics that varies depending on whether cachexia is present.
Collapse
Affiliation(s)
- Mathilde Simonson
- Université Clermont Auvergne, INRAE, UNH, Unité de Nutrition Humaine, CRNH Auvergne, Université Clermont Auvergne, 28 place Henri-Dunant, BP 38, cedex 1, Clermont-Ferrand 63001, France
| | - Gwendal Cueff
- Université Clermont Auvergne, INRAE, UNH, Unité de Nutrition Humaine, CRNH Auvergne, Université Clermont Auvergne, 28 place Henri-Dunant, BP 38, cedex 1, Clermont-Ferrand 63001, France
| | - Morgane M Thibaut
- MNUT Research group, Louvain Drug Research Institute, Université catholique de Louvain, LDRI, Avenue Mounier 73/B1.73.11, Brussels 1200, Belgium
| | - Christophe Giraudet
- Université Clermont Auvergne, INRAE, UNH, Unité de Nutrition Humaine, CRNH Auvergne, Université Clermont Auvergne, 28 place Henri-Dunant, BP 38, cedex 1, Clermont-Ferrand 63001, France
| | - Jérôme Salles
- Université Clermont Auvergne, INRAE, UNH, Unité de Nutrition Humaine, CRNH Auvergne, Université Clermont Auvergne, 28 place Henri-Dunant, BP 38, cedex 1, Clermont-Ferrand 63001, France
| | - Christophe Chambon
- Animal Products Quality Unit (QuaPA), INRAE, Clermont-Ferrand 63122, France
- Metabolomic and Proteomic Exploration Facility, Clermont Auvergne University, INRAE, Clermont-Ferrand 63122, France
| | - Yves Boirie
- Université Clermont Auvergne, INRAE, UNH, Unité de Nutrition Humaine, CRNH Auvergne, Université Clermont Auvergne, 28 place Henri-Dunant, BP 38, cedex 1, Clermont-Ferrand 63001, France
- CHU Clermont-Ferrandservice de Nutrition clinique, Université Clermont Auvergne, Service de nutrition clinique, CHU de Clermont-Ferrand. 58, rue Montalember, Cedex 1, Clermont-Ferrand 63003, France
| | - Laure B Bindels
- MNUT Research group, Louvain Drug Research Institute, Université catholique de Louvain, LDRI, Avenue Mounier 73/B1.73.11, Brussels 1200, Belgium
- Welbio Department, WEL Research Institute, avenue Pasteur, 6, Wavre 1300, Belgium
| | - Marine Gueugneau
- Université Clermont Auvergne, INRAE, UNH, Unité de Nutrition Humaine, CRNH Auvergne, Université Clermont Auvergne, 28 place Henri-Dunant, BP 38, cedex 1, Clermont-Ferrand 63001, France
| | - Christelle Guillet
- Université Clermont Auvergne, INRAE, UNH, Unité de Nutrition Humaine, CRNH Auvergne, Université Clermont Auvergne, 28 place Henri-Dunant, BP 38, cedex 1, Clermont-Ferrand 63001, France
| |
Collapse
|
13
|
Deek RA, Ma S, Lewis J, Li H. Statistical and computational methods for integrating microbiome, host genomics, and metabolomics data. eLife 2024; 13:e88956. [PMID: 38832759 PMCID: PMC11149933 DOI: 10.7554/elife.88956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 05/10/2024] [Indexed: 06/05/2024] Open
Abstract
Large-scale microbiome studies are progressively utilizing multiomics designs, which include the collection of microbiome samples together with host genomics and metabolomics data. Despite the increasing number of data sources, there remains a bottleneck in understanding the relationships between different data modalities due to the limited number of statistical and computational methods for analyzing such data. Furthermore, little is known about the portability of general methods to the metagenomic setting and few specialized techniques have been developed. In this review, we summarize and implement some of the commonly used methods. We apply these methods to real data sets where shotgun metagenomic sequencing and metabolomics data are available for microbiome multiomics data integration analysis. We compare results across methods, highlight strengths and limitations of each, and discuss areas where statistical and computational innovation is needed.
Collapse
Affiliation(s)
- Rebecca A Deek
- Department of Biostatistics, University of PittsburghPittsburghUnited States
| | - Siyuan Ma
- Department of Biostatistics, Vanderbilt School of MedicineNashvilleUnited States
| | - James Lewis
- Division of Gastroenterology and Hepatology, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Hongzhe Li
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| |
Collapse
|
14
|
Newman NK, Macovsky MS, Rodrigues RR, Bruce AM, Pederson JW, Padiadpu J, Shan J, Williams J, Patil SS, Dzutsev AK, Shulzhenko N, Trinchieri G, Brown K, Morgun A. Transkingdom Network Analysis (TkNA): a systems framework for inferring causal factors underlying host-microbiota and other multi-omic interactions. Nat Protoc 2024; 19:1750-1778. [PMID: 38472495 DOI: 10.1038/s41596-024-00960-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 11/29/2023] [Indexed: 03/14/2024]
Abstract
We present Transkingdom Network Analysis (TkNA), a unique causal-inference analytical framework that offers a holistic view of biological systems by integrating data from multiple cohorts and diverse omics types. TkNA helps to decipher key players and mechanisms governing host-microbiota (or any multi-omic data) interactions in specific conditions or diseases. TkNA reconstructs a network that represents a statistical model capturing the complex relationships between different omics in the biological system. It identifies robust and reproducible patterns of fold change direction and correlation sign across several cohorts to select differential features and their per-group correlations. The framework then uses causality-sensitive metrics, statistical thresholds and topological criteria to determine the final edges forming the transkingdom network. With the subsequent network's topological features, TkNA identifies nodes controlling a given subnetwork or governing communication between kingdoms and/or subnetworks. The computational time for the millions of correlations necessary for network reconstruction in TkNA typically takes only a few minutes, varying with the study design. Unlike most other multi-omics approaches that find only associations, TkNA focuses on establishing causality while accounting for the complex structure of multi-omic data. It achieves this without requiring huge sample sizes. Moreover, the TkNA protocol is user friendly, requiring minimal installation and basic familiarity with Unix. Researchers can access the TkNA software at https://github.com/CAnBioNet/TkNA/ .
Collapse
Affiliation(s)
- Nolan K Newman
- College of Pharmacy, Oregon State University, Corvallis, OR, USA
| | | | - Richard R Rodrigues
- Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
- Microbiome and Genetics Core, Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Amanda M Bruce
- College of Pharmacy, Oregon State University, Corvallis, OR, USA
| | - Jacob W Pederson
- Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR, USA
| | - Jyothi Padiadpu
- College of Pharmacy, Oregon State University, Corvallis, OR, USA
| | - Jigui Shan
- Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Joshua Williams
- Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Sankalp S Patil
- College of Pharmacy, Oregon State University, Corvallis, OR, USA
| | - Amiran K Dzutsev
- Cancer Immunobiology Section, Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Natalia Shulzhenko
- Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR, USA
| | - Giorgio Trinchieri
- Cancer Immunobiology Section, Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA.
| | - Kevin Brown
- College of Pharmacy, Oregon State University, Corvallis, OR, USA.
| | - Andrey Morgun
- College of Pharmacy, Oregon State University, Corvallis, OR, USA.
| |
Collapse
|
15
|
Xu B, Wang Z, Wang Y, Zhang K, Li J, Zhou L, Li B. Milk-derived Lactobacillus with high production of short-chain fatty acids relieves antibiotic-induced diarrhea in mice. Food Funct 2024; 15:5329-5342. [PMID: 38625681 DOI: 10.1039/d3fo04706g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Antibiotic-associated diarrhea (AAD) is a common side effect during antibiotic treatment, and this has warranted research into alternative protocols. In this study, we investigated the potential therapeutic effects of three cohorts, Lactobacillus plantarum KLDS 1.0386, Lactobacillus acidophilus KLDS 1.0901 and a mixed strain of both, on intestinal inflammation, the intestinal mucosal barrier, and microbial community in mice with ampicillin-induced diarrhea. The results showed that Lactobacillus inhibited the activation of the TLR4/NF-κB signaling pathway, decreased the expression of pro-inflammatory cytokines, increased the expression of anti-inflammatory cytokines in the murine intestine, and alleviated the intestinal barrier damage and inflammation induced by ampicillin. In addition, Lactobacillus ameliorates intestinal epithelial barrier damage by increasing the expression of tight junction proteins and aquaporins. After Lactobacillus treatment, the diversity of gut microbiota increased significantly, and the composition and function of gut microbiota gradually recovered. In the gut microbiota, Bacteroidetes and Escherichia Shigella related to the synthesis of short-chain fatty acids (SCFAs) were significantly affected by ampicillin, while Lactobacillus regulates the cascade of the microbial-SCFA signaling pathway, which greatly promoted the generation of SCFAs. Collectively, Lactobacillus showed better results in treating AAD, especially in mixed strains.
Collapse
Affiliation(s)
- Baofeng Xu
- China School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China.
- Food College, Northeast Agricultural University, Harbin 150030, China.
| | - Zengbo Wang
- Food College, Northeast Agricultural University, Harbin 150030, China.
| | - Yuqi Wang
- Food College, Northeast Agricultural University, Harbin 150030, China.
- Heilongjiang Jinxiang Biochemical Co., LTD, Harbin 150030, China
| | - Kangyong Zhang
- Food College, Northeast Agricultural University, Harbin 150030, China.
| | - Jian Li
- China School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China.
| | - Linyi Zhou
- China School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China.
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Wuhan, 430000, China
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan, 430000, China
| | - Bailiang Li
- Food College, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
16
|
Kong M, Zhao W, Wang C, Qi J, Liu J, Zhang Q. A Well-Established Gut Microbiota Enhances the Efficiency of Nutrient Metabolism and Improves the Growth Performance of Trachinotus ovatus. Int J Mol Sci 2024; 25:5525. [PMID: 38791564 PMCID: PMC11121967 DOI: 10.3390/ijms25105525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/14/2024] [Accepted: 05/16/2024] [Indexed: 05/26/2024] Open
Abstract
The gut microbiota has become an essential component of the host organism and plays a crucial role in the host immune system, metabolism, and physiology. Nevertheless, our comprehension of how the fish gut microbiota contributes to enhancing nutrient utilization in the diet and improving host growth performance remains unclear. In this study, we employed a comprehensive analysis of the microbiome, metabolome, and transcriptome to analyze intestines of the normal control group and the antibiotic-treated model group of T. ovatus to investigate how the gut microbiota enhances fish growth performance and uncover the underlying mechanisms. First, we found that the growth performance of the control group was significantly higher than that of the antibiotic-treated model under the same feeding conditions. Subsequent multiomics analyses showed that the gut microbiota can improve its own composition by mediating the colonization of some probiotics represented by Lactobacillus in the intestine, improving host metabolic efficiency with proteins and lipids, and also influencing the expression of genes in signaling pathways related to cell proliferation, which together contribute to the improved growth performance of T. ovatus. Our results demonstrated the important contribution of gut microbiota and its underlying molecular mechanisms on the growth performance of T. ovatus.
Collapse
Affiliation(s)
- Miao Kong
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya 572025, China; (M.K.); (W.Z.); (C.W.); (J.Q.); (J.L.)
- MOE Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Wendong Zhao
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya 572025, China; (M.K.); (W.Z.); (C.W.); (J.Q.); (J.L.)
- MOE Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Cong Wang
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya 572025, China; (M.K.); (W.Z.); (C.W.); (J.Q.); (J.L.)
- MOE Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Jie Qi
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya 572025, China; (M.K.); (W.Z.); (C.W.); (J.Q.); (J.L.)
- MOE Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Jinxiang Liu
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya 572025, China; (M.K.); (W.Z.); (C.W.); (J.Q.); (J.L.)
- MOE Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Quanqi Zhang
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya 572025, China; (M.K.); (W.Z.); (C.W.); (J.Q.); (J.L.)
- MOE Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao 266003, China
| |
Collapse
|
17
|
Argaw-Denboba A, Schmidt TSB, Di Giacomo M, Ranjan B, Devendran S, Mastrorilli E, Lloyd CT, Pugliese D, Paribeni V, Dabin J, Pisaniello A, Espinola S, Crevenna A, Ghosh S, Humphreys N, Boruc O, Sarkies P, Zimmermann M, Bork P, Hackett JA. Paternal microbiome perturbations impact offspring fitness. Nature 2024; 629:652-659. [PMID: 38693261 PMCID: PMC11096121 DOI: 10.1038/s41586-024-07336-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 03/20/2024] [Indexed: 05/03/2024]
Abstract
The gut microbiota operates at the interface of host-environment interactions to influence human homoeostasis and metabolic networks1-4. Environmental factors that unbalance gut microbial ecosystems can therefore shape physiological and disease-associated responses across somatic tissues5-9. However, the systemic impact of the gut microbiome on the germline-and consequently on the F1 offspring it gives rise to-is unexplored10. Here we show that the gut microbiota act as a key interface between paternal preconception environment and intergenerational health in mice. Perturbations to the gut microbiota of prospective fathers increase the probability of their offspring presenting with low birth weight, severe growth restriction and premature mortality. Transmission of disease risk occurs via the germline and is provoked by pervasive gut microbiome perturbations, including non-absorbable antibiotics or osmotic laxatives, but is rescued by restoring the paternal microbiota before conception. This effect is linked with a dynamic response to induced dysbiosis in the male reproductive system, including impaired leptin signalling, altered testicular metabolite profiles and remapped small RNA payloads in sperm. As a result, dysbiotic fathers trigger an elevated risk of in utero placental insufficiency, revealing a placental origin of mammalian intergenerational effects. Our study defines a regulatory 'gut-germline axis' in males, which is sensitive to environmental exposures and programmes offspring fitness through impacting placenta function.
Collapse
Affiliation(s)
- Ayele Argaw-Denboba
- European Molecular Biology Laboratory (EMBL), Epigenetics & Neurobiology Unit, Rome, Italy
| | - Thomas S B Schmidt
- European Molecular Biology Laboratory (EMBL), Structural & Computational Biology Unit, Heidelberg, Germany
| | - Monica Di Giacomo
- European Molecular Biology Laboratory (EMBL), Epigenetics & Neurobiology Unit, Rome, Italy
| | - Bobby Ranjan
- European Molecular Biology Laboratory (EMBL), Epigenetics & Neurobiology Unit, Rome, Italy
| | - Saravanan Devendran
- European Molecular Biology Laboratory (EMBL), Structural & Computational Biology Unit, Heidelberg, Germany
| | - Eleonora Mastrorilli
- European Molecular Biology Laboratory (EMBL), Structural & Computational Biology Unit, Heidelberg, Germany
| | - Catrin T Lloyd
- European Molecular Biology Laboratory (EMBL), Epigenetics & Neurobiology Unit, Rome, Italy
| | - Danilo Pugliese
- European Molecular Biology Laboratory (EMBL), Epigenetics & Neurobiology Unit, Rome, Italy
| | - Violetta Paribeni
- European Molecular Biology Laboratory (EMBL), Epigenetics & Neurobiology Unit, Rome, Italy
| | - Juliette Dabin
- European Molecular Biology Laboratory (EMBL), Epigenetics & Neurobiology Unit, Rome, Italy
| | - Alessandra Pisaniello
- European Molecular Biology Laboratory (EMBL), Epigenetics & Neurobiology Unit, Rome, Italy
| | - Sergio Espinola
- European Molecular Biology Laboratory (EMBL), Epigenetics & Neurobiology Unit, Rome, Italy
| | - Alvaro Crevenna
- European Molecular Biology Laboratory (EMBL), Epigenetics & Neurobiology Unit, Rome, Italy
| | - Subhanita Ghosh
- MRC London Institute for Medical Science (LMS), London, UK
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Neil Humphreys
- European Molecular Biology Laboratory (EMBL), Epigenetics & Neurobiology Unit, Rome, Italy
| | - Olga Boruc
- European Molecular Biology Laboratory (EMBL), Epigenetics & Neurobiology Unit, Rome, Italy
| | - Peter Sarkies
- MRC London Institute for Medical Science (LMS), London, UK
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Michael Zimmermann
- European Molecular Biology Laboratory (EMBL), Structural & Computational Biology Unit, Heidelberg, Germany
| | - Peer Bork
- European Molecular Biology Laboratory (EMBL), Structural & Computational Biology Unit, Heidelberg, Germany
- Department of Bioinformatics, Biozentrum, University of Würzburg, Würzburg, Germany
- Yonsei Frontier Lab (YFL), Yonsei University, Seoul, South Korea
| | - Jamie A Hackett
- European Molecular Biology Laboratory (EMBL), Epigenetics & Neurobiology Unit, Rome, Italy.
| |
Collapse
|
18
|
Tamura K, Okuma Y, Nomura S, Fukuda A, Masuda K, Matsumoto Y, Shinno Y, Yoshida T, Goto Y, Horinouchi H, Yamamoto N, Ohe Y. Efficacy and safety of chemoimmunotherapy in advanced non-small cell lung cancer patients with antibiotics-induced dysbiosis: a propensity-matched real-world analysis. J Cancer Res Clin Oncol 2024; 150:216. [PMID: 38668936 PMCID: PMC11052849 DOI: 10.1007/s00432-024-05649-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 02/09/2024] [Indexed: 04/29/2024]
Abstract
PURPOSE The gut microbiota is hypothesized as a prognostic biomarker for cancer immunotherapy. Antibiotic-induced dysbiosis negatively affects the clinical outcomes of immunotherapy. However, the effect of dysbiosis on the efficacy and safety of Chemoimmunotherapy (chemo-IOs), the frontline standard of care, in advanced non-small cell lung cancer (NSCLC) remains unknown. We aimed to compare the efficacy and safety of chemo-IOs in patients exposed to antibiotics before treatment with those of patients who were not exposed. METHODS We retrospectively reviewed patients with advanced NSCLC treated with first-line chemo-IOs between 2018 and 2020 at the National Cancer Center Hospital. The patients were divided into two groups: those exposed to antibiotics within 30 days before induction therapy (ABx group) and those did not antibiotics (Non-ABx group). Propensity score matching was used to control for potential confounding factors. Clinical outcomes including progression-free survival (PFS), overall survival (OS), and immune-related adverse events (irAEs) were compared. RESULTS Of 201 eligible patients, 21 were in the ABx group, and 42 were in the non-ABx group after propensity score matching. No differences in PFS or OS emerged between the two groups (ABx group vs. Non-ABx group) (PFS:7.0 months vs. 6.4 months, hazard ratio [HR] 0.89; 95% confidence interval [CI], 0.49-1.63, OS:20.4 months vs. 20.1 months, HR 0.87; 95% CI 0.44-1.71). The frequency of irAEs before propensity score matching was similar across any-grade irAEs (39.4% vs. 42.9%) or grade 3 or higher irAEs (9.1% vs. 11.3%). CONCLUSION Antibiotic-induced dysbiosis may not affect the efficacy of chemo-IOs in patients with advanced NSCLC.
Collapse
Affiliation(s)
- Kentaro Tamura
- Department of Thoracic Oncology, National Cancer Center Hospital, 5-1-1, Tsukiji, Chuo, Tokyo, 104-0045, Japan
- Division of Respiratory Diseases, Department of Internal Medicine, The Jikei University School of Medicine, 3-25-8, Nishi-Shimbashi, Minato, Tokyo, 105-8461, Japan
| | - Yusuke Okuma
- Department of Thoracic Oncology, National Cancer Center Hospital, 5-1-1, Tsukiji, Chuo, Tokyo, 104-0045, Japan.
| | - Shogo Nomura
- Department of Biostatics and Bioinformatics, Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo, Tokyo, 113-8655, Japan
| | - Akito Fukuda
- Department of Thoracic Oncology, National Cancer Center Hospital, 5-1-1, Tsukiji, Chuo, Tokyo, 104-0045, Japan
| | - Ken Masuda
- Department of Thoracic Oncology, National Cancer Center Hospital, 5-1-1, Tsukiji, Chuo, Tokyo, 104-0045, Japan
| | - Yuji Matsumoto
- Department of Thoracic Oncology, National Cancer Center Hospital, 5-1-1, Tsukiji, Chuo, Tokyo, 104-0045, Japan
| | - Yuki Shinno
- Department of Thoracic Oncology, National Cancer Center Hospital, 5-1-1, Tsukiji, Chuo, Tokyo, 104-0045, Japan
| | - Tatsuya Yoshida
- Department of Thoracic Oncology, National Cancer Center Hospital, 5-1-1, Tsukiji, Chuo, Tokyo, 104-0045, Japan
- Department of Experimental Therapeutics, National Cancer Center Hospital, 5-1-1, Tsukiji, Chuo, Tokyo, 104-0045, Japan
| | - Yasushi Goto
- Department of Thoracic Oncology, National Cancer Center Hospital, 5-1-1, Tsukiji, Chuo, Tokyo, 104-0045, Japan
| | - Hidehito Horinouchi
- Department of Thoracic Oncology, National Cancer Center Hospital, 5-1-1, Tsukiji, Chuo, Tokyo, 104-0045, Japan
| | - Noboru Yamamoto
- Department of Thoracic Oncology, National Cancer Center Hospital, 5-1-1, Tsukiji, Chuo, Tokyo, 104-0045, Japan
- Department of Experimental Therapeutics, National Cancer Center Hospital, 5-1-1, Tsukiji, Chuo, Tokyo, 104-0045, Japan
| | - Yuichiro Ohe
- Department of Thoracic Oncology, National Cancer Center Hospital, 5-1-1, Tsukiji, Chuo, Tokyo, 104-0045, Japan
| |
Collapse
|
19
|
Islam T, Haque MA, Barai HR, Istiaq A, Kim JJ. Antibiotic Resistance in Plant Pathogenic Bacteria: Recent Data and Environmental Impact of Unchecked Use and the Potential of Biocontrol Agents as an Eco-Friendly Alternative. PLANTS (BASEL, SWITZERLAND) 2024; 13:1135. [PMID: 38674544 PMCID: PMC11054394 DOI: 10.3390/plants13081135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/15/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024]
Abstract
The economic impact of phytopathogenic bacteria on agriculture is staggering, costing billions of US dollars globally. Pseudomonas syringae is the top most phytopathogenic bacteria, having more than 60 pathovars, which cause bacteria speck in tomatoes, halo blight in beans, and so on. Although antibiotics or a combination of antibiotics are used to manage infectious diseases in plants, they are employed far less in agriculture compared to human and animal populations. Moreover, the majority of antibiotics used in plants are immediately washed away, leading to environmental damage to ecosystems and food chains. Due to the serious risk of antibiotic resistance (AR) and the potential for environmental contamination with antibiotic residues and resistance genes, the use of unchecked antibiotics against phytopathogenic bacteria is not advisable. Despite the significant concern regarding AR in the world today, there are inadequate and outdated data on the AR of phytopathogenic bacteria. This review presents recent AR data on plant pathogenic bacteria (PPB), along with their environmental impact. In light of these findings, we suggest the use of biocontrol agents as a sustainable, eco-friendly, and effective alternative to controlling phytopathogenic bacteria.
Collapse
Affiliation(s)
- Tarequl Islam
- Department of Microbiology, Noakhali Science and Technology University, Sonapur, Noakhali 3814, Bangladesh;
| | - Md Azizul Haque
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Republic of Korea;
| | - Hasi Rani Barai
- School of Mechanical and IT Engineering, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Republic of Korea;
| | - Arif Istiaq
- Department of Pediatrics, Division of Genetics and Genomic Medicine, Washington University School of Medicine, St Louis, MO 63110-1010, USA
| | - Jong-Joo Kim
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Republic of Korea;
| |
Collapse
|
20
|
Ma X, Qiu Y, Mao M, Lu B, Zhao H, Pang Z, Li S. PuRenDan alleviates type 2 diabetes mellitus symptoms by modulating the gut microbiota and its metabolites. JOURNAL OF ETHNOPHARMACOLOGY 2024; 322:117627. [PMID: 38147943 DOI: 10.1016/j.jep.2023.117627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 11/06/2023] [Accepted: 12/19/2023] [Indexed: 12/28/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE PuRenDan (PRD) is a traditional Chinese medicine formula comprising five herbs that have been traditionally used to treat type 2 diabetes mellitus (T2DM). While PRD has been shown to be effective in treating T2DM in clinical and animal studies, the mechanisms by which it works on the gut microbiome and metabolites related to T2DM are not well understood. AIM OF THE STUDY The objective of this study was to partially elucidate the mechanism of PRD in treating T2DM through analyses of the gut microbiota metagenome and metabolome. MATERIALS AND METHODS Sprague-Dawley rats were fed high-fat diets (HFDs) and injected with low-dose streptozotocin (STZ) to replicate T2DM models. Then the therapeutic effects of PRD were evaluated by measuring clinical markers such as blood glucose, insulin resistance (IR), lipid metabolism biomarkers (total cholesterol, low-density lipoprotein, non-esterified fatty acids, and triglycerides), and inflammatory factors (tumor necrosis factor alpha, interleukin-6 [IL-6], interferon gamma, and IL-1β). Colon contents were collected, and metagenomics, combined with ultra-high-performance liquid chromatography quadrupole time-of-flight mass spectrometry metabolic profiling, was performed to evaluate the effects of T2DM and PRD on gut microbiota and its metabolites in rats. Spearman analysis was used to calculate the correlation coefficient among different microbiota, clinical indices, and metabolites. RESULTS PRD exhibited significant improvement in blood glucose and IR, and reduced serum levels of lipid metabolism biomarkers and inflammatory factors. Moreover, the diversity and abundance of gut microbiota undergo significant changes in rats with T2DM that PRD was able to reverse. The gut microbiota associated with T2DM including Rickettsiaceae bacterium 4572_127, Psychrobacter pasteurii, Parabacteroides sp. CAG409, and Paludibacter propionicigenes were identified. The gut microbiota most closely related to PRD were Prevotella sp. 10(H), Parabacteroides sp. SN4, Flavobacteriales bacterium, Bacteroides massiliensis, Alistipes indistinctus, and Ruminococcus flavefaciens. Additionally, PRD regulated the levels of gut microbiota metabolites including pantothenic acid, 1-Methylhistamine, and 1-Methylhistidine; these affected metabolites were involved in pantothenate and coenzyme A biosynthesis, histidine metabolism, and secondary bile acid biosynthesis. Correlation analysis illustrated a close relationship among gut microbiota, its metabolites, and T2DM-related indexes. CONCLUSION Our study provides insights into the gut microbiota and its metabolites of PRD therapy for T2DM. It clarifies the role of gut microbiota and the metabolites in the pathogenesis of T2DM, highlighting the potential of PRD for the treatment of this disease.
Collapse
Affiliation(s)
- Xiaoqin Ma
- School of Pharmacy, Minzu University of China, Key Laboratory of Ethnomedicine (Minzu University of China), Minority of Education, Beijing, 100081, PR China.
| | - Yuqing Qiu
- School of Pharmacy, Minzu University of China, Key Laboratory of Ethnomedicine (Minzu University of China), Minority of Education, Beijing, 100081, PR China.
| | - Minghui Mao
- School of Pharmacy, Minzu University of China, Key Laboratory of Ethnomedicine (Minzu University of China), Minority of Education, Beijing, 100081, PR China.
| | - Binan Lu
- School of Pharmacy, Minzu University of China, Key Laboratory of Ethnomedicine (Minzu University of China), Minority of Education, Beijing, 100081, PR China.
| | - Huanhu Zhao
- School of Pharmacy, Minzu University of China, Key Laboratory of Ethnomedicine (Minzu University of China), Minority of Education, Beijing, 100081, PR China.
| | - Zongran Pang
- School of Pharmacy, Minzu University of China, Key Laboratory of Ethnomedicine (Minzu University of China), Minority of Education, Beijing, 100081, PR China.
| | - Shuchun Li
- School of Pharmacy, Minzu University of China, Key Laboratory of Ethnomedicine (Minzu University of China), Minority of Education, Beijing, 100081, PR China.
| |
Collapse
|
21
|
Pasam T, Dandekar MP. Fecal microbiota transplantation unveils sex-specific differences in a controlled cortical impact injury mouse model. Front Microbiol 2024; 14:1336537. [PMID: 38410824 PMCID: PMC10894955 DOI: 10.3389/fmicb.2023.1336537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 12/22/2023] [Indexed: 02/28/2024] Open
Abstract
Introduction Contusion type of traumatic brain injury (TBI) is a major cause of locomotor disability and mortality worldwide. While post-TBI deleterious consequences are influenced by gender and gut dysbiosis, the sex-specific importance of commensal gut microbiota is underexplored after TBI. In this study, we investigated the impact of controlled cortical impact (CCI) injury on gut microbiota signature in a sex-specific manner in mice. Methods We depleted the gut microflora of male and female C57BL/6 mice using antibiotic treatment. Thereafter, male mice were colonized by the gut microbiota of female mice and vice versa, employing the fecal microbiota transplantation (FMT) method. CCI surgery was executed using a stereotaxic impactor (Impact One™). For the 16S rRNA gene amplicon study, fecal boli of mice were collected at 3 days post-CCI (dpi). Results and discussion CCI-operated male and female mice exhibited a significant alteration in the genera of Akkermansia, Alistipes, Bacteroides, Clostridium, Lactobacillus, Prevotella, and Ruminococcus. At the species level, less abundance of Lactobacillus helveticus and Lactobacillus hamsteri was observed in female mice, implicating the importance of sex-specific bacteriotherapy in CCI-induced neurological deficits. FMT from female donor mice to male mice displayed an increase in genera of Alistipes, Lactobacillus, and Ruminococcus and species of Bacteroides acidifaciens and Ruminococcus gnavus. Female FMT-recipient mice from male donors showed an upsurge in the genus Lactobacillus and species of Lactobacillus helveticus, Lactobacillus hamsteri, and Prevotella copri. These results suggest that the post-CCI neurological complications may be influenced by the differential gut microbiota perturbation in male and female mice.
Collapse
Affiliation(s)
| | - Manoj P. Dandekar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| |
Collapse
|
22
|
Aghighi F, Salami M. What we need to know about the germ-free animal models. AIMS Microbiol 2024; 10:107-147. [PMID: 38525038 PMCID: PMC10955174 DOI: 10.3934/microbiol.2024007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/30/2024] [Accepted: 02/01/2024] [Indexed: 03/26/2024] Open
Abstract
The gut microbiota (GM), as a forgotten organ, refers to the microbial community that resides in the gastrointestinal tract and plays a critical role in a variety of physiological activities in different body organs. The GM affects its targets through neurological, metabolic, immune, and endocrine pathways. The GM is a dynamic system for which exogenous and endogenous factors have negative or positive effects on its density and composition. Since the mid-twentieth century, laboratory animals are known as the major tools for preclinical research; however, each model has its own limitations. So far, two main models have been used to explore the effects of the GM under normal and abnormal conditions: the isolated germ-free and antibiotic-treated models. Both methods have strengths and weaknesses. In many fields of host-microbe interactions, research on these animal models are known as appropriate experimental subjects that enable investigators to directly assess the role of the microbiota on all features of physiology. These animal models present biological model systems to either study outcomes of the absence of microbes, or to verify the effects of colonization with specific and known microbial species. This paper reviews these current approaches and gives advantages and disadvantages of both models.
Collapse
Affiliation(s)
| | - Mahmoud Salami
- Physiology Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, I. R. Iran
| |
Collapse
|
23
|
Ge W, Li Z, Yang Y, Liu X, Zhu Z, Bai L, Qin Z, Xu X, Li J, Li S. Synthesis and antibacterial activity of FST and its effects on inflammatory response and intestinal barrier function in mice infected with Escherichia coli O78. Int Immunopharmacol 2024; 127:111386. [PMID: 38109839 DOI: 10.1016/j.intimp.2023.111386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/12/2023] [Accepted: 12/12/2023] [Indexed: 12/20/2023]
Abstract
Pathogenic Escherichia coli (E. coli) can cause intestinal diseases in humans and livestock, damage the intestinal barrier, increase systemic inflammation, and seriously threaten human health and the development of animal husbandry. In this study, we designed and synthesized a novel conjugate florfenicol sulfathiazole (FST) based on drug combination principles, and investigated its antibacterial activity in vitro and its protective effect on inflammatory response and intestinal barrier function in E. coli O78-infected mice in vivo. The results showed that FST had superior antibacterial properties and minimal cytotoxicity compared with its prodrugs as florfenicol and sulfathiazole. FST protected mice from lethal E. coli infection, reduced clinical signs of inflammation, reduced weight loss, alleviated intestinal structural damage. FST decreased the expression of inflammatory cytokines IL-1β, IL-6, TNF-α, and increased the expression of claudin-1, Occludin, and ZO-1 in the jejunum, improved the intestinal barrier function, and promoted the absorption of nutrients. FST also inhibited the expression of TLR4, MyD88, p-p65, and p-p38 in the jejunum. The study may lay the foundation for the development of FST as new drugs for intestinal inflammation and injury in enteric pathogen infection.
Collapse
Affiliation(s)
- Wenbo Ge
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, China
| | - Zhun Li
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, China
| | - Yajun Yang
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, China
| | - Xiwang Liu
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, China
| | - Zhaohan Zhu
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, China
| | - Lixia Bai
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, China
| | - Zhe Qin
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, China
| | - Xiao Xu
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, China
| | - Jianyong Li
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, China.
| | - Shihong Li
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, China.
| |
Collapse
|
24
|
Cao S, Maulloo CD, Raczy MM, Sabados M, Slezak AJ, Nguyen M, Solanki A, Wallace RP, Shim HN, Wilson DS, Hubbell JA. Glycosylation-modified antigens as a tolerance-inducing vaccine platform prevent anaphylaxis in a pre-clinical model of food allergy. Cell Rep Med 2024; 5:101346. [PMID: 38128531 PMCID: PMC10829738 DOI: 10.1016/j.xcrm.2023.101346] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 09/06/2023] [Accepted: 11/27/2023] [Indexed: 12/23/2023]
Abstract
The only FDA-approved oral immunotherapy for a food allergy provides protection against accidental exposure to peanuts. However, this therapy often causes discomfort or side effects and requires long-term commitment. Better preventive and therapeutic solutions are urgently needed. We develop a tolerance-inducing vaccine technology that utilizes glycosylation-modified antigens to induce antigen-specific non-responsiveness. The glycosylation-modified antigens are administered intravenously (i.v.) or subcutaneously (s.c.) and traffic to the liver or lymph nodes, respectively, leading to preferential internalization by antigen-presenting cells, educating the immune system to respond in an innocuous way. In a mouse model of cow's milk allergy, treatment with glycosylation-modified β-lactoglobulin (BLG) is effective in preventing the onset of allergy. In addition, s.c. administration of glycosylation-modified BLG shows superior safety and potential in treating existing allergies in combination with anti-CD20 co-therapy. This platform provides an antigen-specific immunomodulatory strategy to prevent and treat food allergies.
Collapse
Affiliation(s)
- Shijie Cao
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA; Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, WA 98195, USA.
| | - Chitavi D Maulloo
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Michal M Raczy
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Matthew Sabados
- Biological Sciences Division, University of Chicago, Chicago, IL 60637, USA
| | - Anna J Slezak
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Mindy Nguyen
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA; Animal Resource Center, University of Chicago, Chicago, IL 60637, USA
| | - Ani Solanki
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA; Animal Resource Center, University of Chicago, Chicago, IL 60637, USA
| | - Rachel P Wallace
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Ha-Na Shim
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - D Scott Wilson
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA; Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MD 21231, USA
| | - Jeffrey A Hubbell
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA; Committee on Immunology, University of Chicago, Chicago, IL 60637, USA; Committee on Cancer Biology, University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
25
|
Stapleton S, Welch G, DiBerardo L, Freeman LR. Sex differences in a mouse model of diet-induced obesity: the role of the gut microbiome. Biol Sex Differ 2024; 15:5. [PMID: 38200579 PMCID: PMC10782710 DOI: 10.1186/s13293-023-00580-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
BACKGROUND Recent decades have seen an exponential rise in global obesity prevalence, with rates nearly doubling in a span of 40 years. A comprehensive knowledge base regarding the systemic effects of obesity is required to create new preventative and therapeutic agents effective at combating the current obesity epidemic. Previous studies of diet-induced obesity utilizing mouse models have demonstrated a difference in bodyweight gain by sex. In such studies, female mice gained significantly less weight than male mice when given the same high fat (HF) diet, indicating a resistance to diet-induced obesity. Research has also shown sex differences in gut microbiome composition between males and females, indicated to be in part a result of sex hormones. Understanding metabolic differences between sexes could assist in the development of new measures for obesity prevention and treatment. This study aimed to characterize sex differences in weight gain, plasma lipid profiles, fecal microbiota composition, and fecal short chain fatty acid levels. We hypothesized a role for the gut microbiome in these sex differences that would be normalized following microbiome depletion. METHODS A mouse model was used to study these effects. Mice were divided into treatment groups by sex, diet, and presence/absence of an antibiotic cocktail to deplete genera in the gut microbiome. We hypothesized that sex differences would be present both in bodyweight gain and systemic measures of obesity, including hormone and circulating free fatty acid levels. RESULTS We determined statistically significant differences for sex and/or treatment for the outcome measures. We confirm previous findings in which male mice gained significantly more weight than female mice fed the same high fat diet. However, sex differences persisted following antibiotic administration for microbiome depletion. CONCLUSIONS We conclude that sex differences in the gut microbiome may contribute to sex differences in obesity, but they do not explain all of the differences.
Collapse
Affiliation(s)
| | - Grace Welch
- Department of Biology, Furman University, Greenville, SC, USA
| | | | - Linnea R Freeman
- Department of Biology, Furman University, Greenville, SC, USA.
- Neurosciences, Furman University, Greenville, SC, USA.
| |
Collapse
|
26
|
Abbondio M, Tanca A, De Diego L, Sau R, Bibbò S, Pes GM, Dore MP, Uzzau S. Metaproteomic assessment of gut microbial and host functional perturbations in Helicobacter pylori-infected patients subjected to an antimicrobial protocol. Gut Microbes 2023; 15:2291170. [PMID: 38063474 PMCID: PMC10730194 DOI: 10.1080/19490976.2023.2291170] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/30/2023] [Indexed: 12/18/2023] Open
Abstract
The impact of therapeutic interventions on the human gut microbiota (GM) is a clinical issue of paramount interest given the strong interconnection between microbial dynamics and human health. Orally administered antibiotics are known to reduce GM biomass and modify GM taxonomic profile. However, the impact of antimicrobial therapies on GM functions and biochemical pathways has scarcely been studied. Here, we characterized the fecal metaproteome of 10 Helicobacter pylori-infected patients before (T0) and after 10 days (T1) of a successful quadruple therapy (bismuth, tetracycline, metronidazole, and rabeprazole) and 30 days after therapy cessation (T2), to investigate how GM and host functions change during the eradication and healing processes. At T1, the abundance ratio between microbial and host proteins was reversed compared with that at T0 and T2. Several pathobionts (including Klebsiella, Proteus, Enterococcus, Muribaculum, and Enterocloster) were increased at T1. Therapy reshaped the relative contributions of the functions required to produce acetate, propionate, and butyrate. Proteins related to the uptake and processing of complex glycans were increased. Microbial cross-feeding with sialic acid, fucose, and rhamnose was enhanced, whereas hydrogen sulfide production was reduced. Finally, microbial proteins involved in antibiotic resistance and inflammation were more abundant after therapy. Moreover, a reduction in host proteins with known roles in inflammation and H. pylori-mediated carcinogenesis was observed. In conclusion, our results support the use of metaproteomics to monitor drug-induced remodeling of GM and host functions, opening the way for investigating new antimicrobial therapies aimed at preserving gut environmental homeostasis.
Collapse
Affiliation(s)
- Marcello Abbondio
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Alessandro Tanca
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Laura De Diego
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Rosangela Sau
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Stefano Bibbò
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Sassari, Italy
| | - Giovanni Mario Pes
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Sassari, Italy
| | - Maria Pina Dore
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Sassari, Italy
| | - Sergio Uzzau
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| |
Collapse
|
27
|
Hu J, Li G, Huang M, Shen Q, Gu H, Xue N, Zhang J, Xu X, Yang W, Xing A, Wu X, Wang Y, Wu R, Xu C, Li Y, Fang Y, Cao Y. Analysis of microbiota reveals the underlying mechanism of PHF11 in the development of Enterococcus-regulated endometriotic cysts. iScience 2023; 26:108158. [PMID: 37915596 PMCID: PMC10616313 DOI: 10.1016/j.isci.2023.108158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 09/25/2023] [Accepted: 10/05/2023] [Indexed: 11/03/2023] Open
Abstract
Endometriosis (EMS) is a prevalent disease and the etiologies has not uniform. Microbiota is associated with human diseases. To delve into the relationship between EMS and microbiota, Ectopic (EM) and eutopic (EU) endometrial tissues, pharyngeal swabs, and stools were collected from EMS patients. The microbiota composition of EM and EU partially overlapped, with similar taxon numbers and diversity, but the richness levels were significantly different. A comparison of intestinal microbes in healthy individuals (FN) and EMS patients (FE) revealed that the richness of Enterococcus, Pseudomonas, Haemophilus, and Neisseria was enhanced in FE. In addition, Enterococcus-induced mice (EFA) presented with a higher degree of lesion infiltration and a wider distribution of lesions. Proteomic analysis revealed the expression of plant homeodomain finger 11 (PHF11) was notably downregulated in EFA. And the downregulated expression of PHF11 was accompanied by the upregulated expression of interleukin 8 (IL-8). Our findings suggest a potential regulatory mechanism for PHF11 in EMS development.
Collapse
Affiliation(s)
- Jingjing Hu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, Anhui 230022, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, Anhui 230032, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People’s Republic of China, No 81 Meishan Road, Hefei, Anhui 230032, China
| | - Guanjian Li
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, Anhui 230022, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, Anhui 230032, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People’s Republic of China, No 81 Meishan Road, Hefei, Anhui 230032, China
| | - Miaomiao Huang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, Anhui 230022, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, Anhui 230032, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People’s Republic of China, No 81 Meishan Road, Hefei, Anhui 230032, China
| | - Qunshan Shen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, Anhui 230022, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, Anhui 230032, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People’s Republic of China, No 81 Meishan Road, Hefei, Anhui 230032, China
| | - Hao Gu
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230022, China
| | - Nairui Xue
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, Anhui 230022, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, Anhui 230032, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People’s Republic of China, No 81 Meishan Road, Hefei, Anhui 230032, China
| | - Junqiang Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, Anhui 230022, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, Anhui 230032, China
- Engineering Research Center of Biopreservation and Artifical Organs, Ministry of Education, No 81 Meishan Road, Hefei, Anhui 230032, China
| | - Xiaofeng Xu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, Anhui 230022, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, Anhui 230032, China
- Engineering Research Center of Biopreservation and Artifical Organs, Ministry of Education, No 81 Meishan Road, Hefei, Anhui 230032, China
| | - Wenjuan Yang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, Anhui 230022, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, Anhui 230032, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, No 81 Meishan Road, Hefei, Anhui 230032, China
| | - Aying Xing
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, Anhui 230022, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, Anhui 230032, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, No 81 Meishan Road, Hefei, Anhui 230032, China
| | - Xiao Wu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, Anhui 230022, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, Anhui 230032, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, No 81 Meishan Road, Hefei, Anhui 230032, China
| | - Ying Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, Anhui 230022, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, Anhui 230032, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, No 81 Meishan Road, Hefei, Anhui 230032, China
| | - Rong Wu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, Anhui 230022, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, Anhui 230032, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, No 81 Meishan Road, Hefei, Anhui 230032, China
| | - Chuan Xu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, Anhui 230022, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, Anhui 230032, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, No 81 Meishan Road, Hefei, Anhui 230032, China
| | - Yuqian Li
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, Anhui 230022, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, Anhui 230032, China
- Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, No 81 Meishan Road, Hefei, Anhui 230032, China
| | - Yuan Fang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, Anhui 230022, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, Anhui 230032, China
- Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, No 81 Meishan Road, Hefei, Anhui 230032, China
| | - Yunxia Cao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, Anhui 230022, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, Anhui 230032, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People’s Republic of China, No 81 Meishan Road, Hefei, Anhui 230032, China
| |
Collapse
|
28
|
Padiadpu J, Garcia‐Jaramillo M, Newman NK, Pederson JW, Rodrigues R, Li Z, Singh S, Monnier P, Trinchieri G, Brown K, Dzutsev AK, Shulzhenko N, Jump DB, Morgun A. Multi-omic network analysis identified betacellulin as a novel target of omega-3 fatty acid attenuation of western diet-induced nonalcoholic steatohepatitis. EMBO Mol Med 2023; 15:e18367. [PMID: 37859621 PMCID: PMC10630881 DOI: 10.15252/emmm.202318367] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/19/2023] [Accepted: 09/21/2023] [Indexed: 10/21/2023] Open
Abstract
Clinical and preclinical studies established that supplementing diets with ω3 polyunsaturated fatty acids (PUFA) can reduce hepatic dysfunction in nonalcoholic steatohepatitis (NASH) but molecular underpinnings of this action were elusive. Herein, we used multi-omic network analysis that unveiled critical molecular pathways involved in ω3 PUFA effects in a preclinical mouse model of western diet induced NASH. Since NASH is a precursor of liver cancer, we also performed meta-analysis of human liver cancer transcriptomes that uncovered betacellulin as a key EGFR-binding protein upregulated in liver cancer and downregulated by ω3 PUFAs in animals and humans with NASH. We then confirmed that betacellulin acts by promoting proliferation of quiescent hepatic stellate cells, inducing transforming growth factor-β2 and increasing collagen production. When used in combination with TLR2/4 agonists, betacellulin upregulated integrins in macrophages thereby potentiating inflammation and fibrosis. Taken together, our results suggest that suppression of betacellulin is one of the key mechanisms associated with anti-inflammatory and anti-fibrotic effects of ω3 PUFA on NASH.
Collapse
Affiliation(s)
| | | | - Nolan K Newman
- College of PharmacyOregon State UniversityCorvallisORUSA
| | - Jacob W Pederson
- Carlson College of Veterinary MedicineOregon State UniversityCorvallisORUSA
| | - Richard Rodrigues
- College of PharmacyOregon State UniversityCorvallisORUSA
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer InstituteNational Institutes of HealthBethesdaMDUSA
| | - Zhipeng Li
- Carlson College of Veterinary MedicineOregon State UniversityCorvallisORUSA
| | - Sehajvir Singh
- College of PharmacyOregon State UniversityCorvallisORUSA
| | - Philip Monnier
- College of PharmacyOregon State UniversityCorvallisORUSA
| | - Giorgio Trinchieri
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer InstituteNational Institutes of HealthBethesdaMDUSA
| | - Kevin Brown
- College of PharmacyOregon State UniversityCorvallisORUSA
- School of Chemical, Biological, and Environmental EngineeringOregon State UniversityCorvallisORUSA
| | - Amiran K Dzutsev
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer InstituteNational Institutes of HealthBethesdaMDUSA
| | - Natalia Shulzhenko
- Carlson College of Veterinary MedicineOregon State UniversityCorvallisORUSA
| | - Donald B Jump
- Nutrition Program, School of Biological and Population Health Sciences, Linus Pauling InstituteOregon State UniversityCorvallisORUSA
| | - Andrey Morgun
- College of PharmacyOregon State UniversityCorvallisORUSA
| |
Collapse
|
29
|
Adam I, Motyka B, Tao K, Jeyakanthan M, Alegre ML, Cowan PJ, West LJ. Sex, T Cells, and the Microbiome in Natural ABO Antibody Production in Mice. Transplantation 2023; 107:2353-2363. [PMID: 37871273 PMCID: PMC10593149 DOI: 10.1097/tp.0000000000004658] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 02/10/2023] [Accepted: 02/21/2023] [Indexed: 06/09/2023]
Abstract
BACKGROUND "Natural" ABO antibodies (Abs) are produced without known exposure to A/B carbohydrate antigens, posing significant risks for hyperacute rejection during ABO-incompatible transplantation. We investigated anti-A "natural" ABO antibodies versus intentionally induced Abs with regard to the need for T-cell help, the impact of sex, and stimulation by the microbiome. METHODS Anti-A was measured by hemagglutination assay of sera from untreated C57BL/6 wild-type (WT) or T cell-deficient mice of both sexes. Human ABO-A reagent blood cell membranes were injected intraperitoneally to induce anti-A Abs. The gut microbiome was eliminated by maintenance of mice in germ-free housing. RESULTS Compared with WT mice, CD4 + T-cell knockout (KO), major histocompability complex-II KO, and αβ/γδ T-cell receptor KO mice produced much higher levels of anti-A nAbs; females produced dramatically more anti-A nAbs than males, rising substantially with puberty. Sensitization with human ABO-A reagent blood cell membranes did not induce additional anti-A in KO mice, unlike WT. Sex-matched CD4 + T-cell transfer significantly suppressed anti-A nAbs in KO mice and rendered mice responsive to A-sensitization. Even under germ-free conditions, WT mice of several strains produced anti-A nAbs, with significantly higher anti-A nAbs levels in females than males. CONCLUSIONS Anti-A nAbs were produced without T-cell help, without microbiome stimulation, in a sex- and age-dependent manner, suggestive of a role for sex hormones in regulating anti-A nAbs. Although CD4 + T cells were not required for anti-A nAbs, our findings indicate that T cells regulate anti-A nAb production. In contrast to anti-A nAbs, induced anti-A production was T-cell dependent without a sex bias.
Collapse
Affiliation(s)
- Ibrahim Adam
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada
- Alberta Transplant Institute and Canadian Donation and Transplantation Research Program, Edmonton, AB, Canada
| | - Bruce Motyka
- Alberta Transplant Institute and Canadian Donation and Transplantation Research Program, Edmonton, AB, Canada
- Department of Pediatrics, University of Alberta, Edmonton, AB, Canada
| | - Kesheng Tao
- Alberta Transplant Institute and Canadian Donation and Transplantation Research Program, Edmonton, AB, Canada
- Department of Pediatrics, University of Alberta, Edmonton, AB, Canada
| | - Mylvaganam Jeyakanthan
- Department of Pediatrics, University of Alberta, Edmonton, AB, Canada
- Department of Cardiothoracic Surgery, Freeman Hospital, Newcastle-Upon-Tyne, United Kingdom
| | | | - Peter J. Cowan
- Department of Medicine, Immunology Research Centre, St. Vincent’s Hospital, University of Melbourne, Melbourne, VIC, Australia
| | - Lori J. West
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada
- Alberta Transplant Institute and Canadian Donation and Transplantation Research Program, Edmonton, AB, Canada
- Department of Pediatrics, University of Alberta, Edmonton, AB, Canada
- Department of Surgery, University of Alberta, Edmonton, AB, Canada
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
30
|
Stapleton S, Welch G, DiBerardo L, Freeman LR. Sex differences in a mouse model of diet-induced obesity: the role of the gut microbiome. RESEARCH SQUARE 2023:rs.3.rs-3496738. [PMID: 37961721 PMCID: PMC10635401 DOI: 10.21203/rs.3.rs-3496738/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Background Recent decades have seen an exponential rise in global obesity prevalence, with rates nearly doubling in a span of forty years. A comprehensive knowledge base regarding the systemic effects of obesity is required to create new preventative and therapeutic agents effective at combating the current obesity epidemic. Previous studies of diet-induced obesity utilizing mouse models have demonstrated a difference in bodyweight gain by sex. In such studies, female mice gained significantly less weight than male mice when given the same high fat (HF) diet, indicating a resistance to diet-induced obesity. Research has also shown sex differences in gut microbiome composition between males and females, indicated to be in part a result of sex hormones. Understanding metabolic differences between sexes could assist in the development of new measures for obesity prevention and treatment. This study aimed to characterize sex differences in weight gain, plasma lipid profiles, fecal microbiota composition, and fecal short chain fatty acid levels. We hypothesized a role for the gut microbiome in these sex differences that would be normalized following microbiome depletion. Methods A mouse model was used to study these effects. Mice were divided into treatment groups by sex, diet, and presence/absence of an antibiotic cocktail to deplete genera in the gut microbiome. We hypothesized that sex differences would be present both in bodyweight gain and systemic measures of obesity, including hormone and circulating free fatty acid levels. Results We determined statistically significant differences for sex and/or treatment for the outcome measures. We confirm previous findings in which male mice gained significantly more weight than female mice fed the same high fat diet. However, sex differences persisted following antibiotic administration for microbiome depletion. Conclusions We conclude that sex differences in the gut microbiome may contribute to sex differences in obesity, but they do not explain all of the differences.
Collapse
|
31
|
Beaumont M, Lencina C, Fève K, Barilly C, Le-Normand L, Combes S, Devailly G, Boudry G. Disruption of the primocolonizing microbiota alters epithelial homeostasis and imprints stem cells in the colon of neonatal piglets. FASEB J 2023; 37:e23149. [PMID: 37671857 DOI: 10.1096/fj.202301182r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/21/2023] [Accepted: 08/04/2023] [Indexed: 09/07/2023]
Abstract
The gut microbiota plays a key role in the postnatal development of the intestinal epithelium. However, the bacterial members of the primocolonizing microbiota driving these effects are not fully identified and the mechanisms underlying their long-term influence on epithelial homeostasis remain poorly described. Here, we used a model of newborn piglets treated during the first week of life with the antibiotic colistin in order to deplete specific gram-negative bacteria that are transiently dominant in the neonatal gut microbiota. Colistin depleted Proteobacteria and Fusobacteriota from the neonatal colon microbiota, reduced the bacterial predicted capacity to synthetize lipopolysaccharide (LPS), and increased the concentration of succinate in the colon. The colistin-induced disruption of the primocolonizing microbiota was associated with altered gene expression in the colon epithelium including a reduction of toll-like receptor 4 (TLR4) and lysozyme (LYZ). Our data obtained in porcine colonic organoid cell monolayers suggested that these effects were not driven by the variation of succinate or LPS levels nor by a direct effect of colistin on epithelial cells. The disruption of the primocolonizing microbiota imprinted colon epithelial stem cells since the expression of TLR4 and LYZ remained lower in organoids derived from colistin-treated piglet colonic crypts after several passages when compared to control piglets. Finally, the stable imprinting of LYZ in colon organoids was independent of the H3K4me3 level in its transcription start site. Altogether, our results show that disruption of the primocolonizing gut microbiota alters epithelial innate immunity in the colon and imprints stem cells, which could have long-term consequences for gut health.
Collapse
Affiliation(s)
- Martin Beaumont
- GenPhySE, Université de Toulouse, INRAE, ENVT, Castanet-Tolosan, France
| | - Corinne Lencina
- GenPhySE, Université de Toulouse, INRAE, ENVT, Castanet-Tolosan, France
| | - Katia Fève
- GenPhySE, Université de Toulouse, INRAE, ENVT, Castanet-Tolosan, France
| | - Céline Barilly
- GenPhySE, Université de Toulouse, INRAE, ENVT, Castanet-Tolosan, France
| | | | - Sylvie Combes
- GenPhySE, Université de Toulouse, INRAE, ENVT, Castanet-Tolosan, France
| | | | - Gaëlle Boudry
- Institut NuMeCan, INRAE, INSERM, Univ Rennes, Saint-Gilles, France
| |
Collapse
|
32
|
Newman NK, Zhang Y, Padiadpu J, Miranda CL, Magana AA, Wong CP, Hioki KA, Pederson JW, Li Z, Gurung M, Bruce AM, Brown K, Bobe G, Sharpton TJ, Shulzhenko N, Maier CS, Stevens JF, Gombart AF, Morgun A. Reducing gut microbiome-driven adipose tissue inflammation alleviates metabolic syndrome. MICROBIOME 2023; 11:208. [PMID: 37735685 PMCID: PMC10512512 DOI: 10.1186/s40168-023-01637-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 08/01/2023] [Indexed: 09/23/2023]
Abstract
BACKGROUND The gut microbiota contributes to macrophage-mediated inflammation in adipose tissue with consumption of an obesogenic diet, thus driving the development of metabolic syndrome. There is a need to identify and develop interventions that abrogate this condition. The hops-derived prenylated flavonoid xanthohumol (XN) and its semi-synthetic derivative tetrahydroxanthohumol (TXN) attenuate high-fat diet-induced obesity, hepatosteatosis, and metabolic syndrome in C57Bl/6J mice. This coincides with a decrease in pro-inflammatory gene expression in the gut and adipose tissue, together with alterations in the gut microbiota and bile acid composition. RESULTS In this study, we integrated and interrogated multi-omics data from different organs with fecal 16S rRNA sequences and systemic metabolic phenotypic data using a Transkingdom Network Analysis. By incorporating cell type information from single-cell RNA-seq data, we discovered TXN attenuates macrophage inflammatory processes in adipose tissue. TXN treatment also reduced levels of inflammation-inducing microbes, such as Oscillibacter valericigenes, that lead to adverse metabolic phenotypes. Furthermore, in vitro validation in macrophage cell lines and in vivo mouse supplementation showed addition of O. valericigenes supernatant induced the expression of metabolic macrophage signature genes that are downregulated by TXN in vivo. CONCLUSIONS Our findings establish an important mechanism by which TXN mitigates adverse phenotypic outcomes of diet-induced obesity and metabolic syndrome. TXN primarily reduces the abundance of pro-inflammatory gut microbes that can otherwise promote macrophage-associated inflammation in white adipose tissue. Video Abstract.
Collapse
Affiliation(s)
- N K Newman
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR, USA
| | - Y Zhang
- School of Biological and Population Health Sciences, Nutrition Program, Linus Pauling Institute, Oregon State University, Corvallis, OR, USA
- Present address: Oregon Health & Science University, Portland, OR, USA
| | - J Padiadpu
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR, USA
| | - C L Miranda
- Department of Pharmaceutical Sciences, Linus Pauling Institute, Oregon State University, Corvallis, OR, USA
| | - A A Magana
- Department of Chemistry, Linus Pauling Institute, Oregon State University, Corvallis, OR, USA
| | - C P Wong
- School of Biological and Population Health Sciences, Nutrition Program, Linus Pauling Institute, Oregon State University, Corvallis, OR, USA
| | - K A Hioki
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR, USA
- Present address: UMASS, Amherst, MA, USA
| | - J W Pederson
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR, USA
| | - Z Li
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR, USA
| | - M Gurung
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR, USA
- Present address: Children Nutrition Center, USDA, Little Rock, AR, USA
| | - A M Bruce
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR, USA
| | - K Brown
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR, USA
- Chemical, Biological & Environmental Engineering, Oregon State University, Corvallis, OR, USA
| | - G Bobe
- Department of Animal Sciences, Linus Pauling Institute, Oregon State University, Corvallis, OR, USA
| | - T J Sharpton
- Department of Microbiology, Department of Statistics, Oregon State University, Corvallis, OR, USA
| | - N Shulzhenko
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR, USA.
| | - C S Maier
- Department of Chemistry, Linus Pauling Institute, Oregon State University, Corvallis, OR, USA
| | - J F Stevens
- Department of Pharmaceutical Sciences, Linus Pauling Institute, Oregon State University, Corvallis, OR, USA
| | - A F Gombart
- Department of Biochemistry and Biophysics, Linus Pauling Institute, Corvallis, OR, USA.
| | - A Morgun
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR, USA.
| |
Collapse
|
33
|
Gravdal K, Kirste KH, Grzelak K, Kirubakaran GT, Leissner P, Saliou A, Casèn C. Exploring the gut microbiota in patients with pre-diabetes and treatment naïve diabetes type 2 - a pilot study. BMC Endocr Disord 2023; 23:179. [PMID: 37605183 PMCID: PMC10440924 DOI: 10.1186/s12902-023-01432-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 08/09/2023] [Indexed: 08/23/2023] Open
Abstract
BACKGROUND Compared to their healthy counterparts, patients with type 2 diabetes (T2D) can exhibit an altered gut microbiota composition, correlated with detrimental outcomes, including reduced insulin sensitivity, dyslipidemia, and increased markers of inflammation. However, a typical T2D microbiota profile is not established. The aim of this pilot study was to explore the gut microbiota and bacteria associated with prediabetes (pre-T2D) patients, and treatment naïve T2D patients, compared to healthy subjects. METHODS Fecal samples were collected from patients and healthy subjects (from Norway). The bacterial genomic DNA was extracted, and the microbiota analyzed utilizing the bacterial 16S rRNA gene. To secure a broad coverage of potential T2D associated bacteria, two technologies were used: The GA-map® 131-plex, utilizing 131 DNA probes complementary to pre-selected bacterial targets (covering the 16S regions V3-V9), and the LUMI-Seq™ platform, a full-length 16S sequencing technology (V1-V9). Variations in the gut microbiota between groups were explored using multivariate methods, differential bacterial abundance was estimated, and microbiota signatures discriminating the groups were assessed using classification models. RESULTS In total, 24 pre-T2D patients, 18 T2D patients, and 52 healthy subjects were recruited. From the LUMI-Seq™ analysis, 10 and 9 bacterial taxa were differentially abundant between pre-T2D and healthy, and T2D and healthy, respectively. From the GA-map® 131-plex analysis, 10 bacterial markers were differentially abundant when comparing pre-T2D and healthy. Several of the bacteria were short-chain fatty acid (SCFA) producers or typical opportunistic bacteria. Bacteria with similar function or associated properties also contributed to the separation of pre-T2D and T2D from healthy as found by classification models. However, limited overlap was found for specific bacterial genera and species. CONCLUSIONS This pilot study revealed that differences in the abundance of SCFA producing bacteria, and an increase in typical opportunistic bacteria, may contribute to the variations in the microbiota separating the pre-T2D and T2D patients from healthy subjects. However, further efforts in investigating the relationship between gut microbiota, diabetes, and associated factors such as BMI, are needed for developing specific diabetes microbiota signatures.
Collapse
Affiliation(s)
| | | | | | | | - Philippe Leissner
- BIOASTER Microbiology Technology Institute, 40 Avenue Tony Garnier, 69007, Lyon, France
| | - Adrien Saliou
- BIOASTER Microbiology Technology Institute, 40 Avenue Tony Garnier, 69007, Lyon, France
| | | |
Collapse
|
34
|
Tucker TR, Knitter CA, Khoury DM, Eshghi S, Tran S, Sharrock AV, Wiles TJ, Ackerley DF, Mumm JS, Parsons MJ. An inducible model of chronic hyperglycemia. Dis Model Mech 2023; 16:dmm050215. [PMID: 37401381 PMCID: PMC10417516 DOI: 10.1242/dmm.050215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 06/28/2023] [Indexed: 07/05/2023] Open
Abstract
Transgene driven expression of Escherichia coli nitroreductase (NTR1.0) renders animal cells susceptible to the antibiotic metronidazole (MTZ). Many NTR1.0/MTZ ablation tools have been reported in zebrafish, which have significantly impacted regeneration studies. However, NTR1.0-based tools are not appropriate for modeling chronic cell loss as prolonged application of the required MTZ dose (10 mM) is deleterious to zebrafish health. We established that this dose corresponds to the median lethal dose (LD50) of MTZ in larval and adult zebrafish and that it induced intestinal pathology. NTR2.0 is a more active nitroreductase engineered from Vibrio vulnificus NfsB that requires substantially less MTZ to induce cell ablation. Here, we report on the generation of two new NTR2.0-based zebrafish lines in which acute β-cell ablation can be achieved without MTZ-associated intestinal pathology. For the first time, we were able to sustain β-cell loss and maintain elevated glucose levels (chronic hyperglycemia) in larvae and adults. Adult fish showed significant weight loss, consistent with the induction of a diabetic state, indicating that this paradigm will allow the modeling of diabetes and associated pathologies.
Collapse
Affiliation(s)
- Tori R. Tucker
- Department of Developmental and Cell Biology, University of California, Irvine, Natural Sciences II, Irvine, CA 92697, USA
| | - Courtney A. Knitter
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Natural Sciences II, Irvine, CA 92697, USA
| | - Deena M. Khoury
- Department of Developmental and Cell Biology, University of California, Irvine, Natural Sciences II, Irvine, CA 92697, USA
| | - Sheida Eshghi
- Department of Developmental and Cell Biology, University of California, Irvine, Natural Sciences II, Irvine, CA 92697, USA
| | - Sophia Tran
- Department of Developmental and Cell Biology, University of California, Irvine, Natural Sciences II, Irvine, CA 92697, USA
| | - Abigail V. Sharrock
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Travis J. Wiles
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Natural Sciences II, Irvine, CA 92697, USA
| | - David F. Ackerley
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Jeff S. Mumm
- Department of Ophthalmology, The Wilmer Eye Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Michael J. Parsons
- Department of Developmental and Cell Biology, University of California, Irvine, Natural Sciences II, Irvine, CA 92697, USA
| |
Collapse
|
35
|
Vigeland MD, Flåm ST, Vigeland MD, Espeland A, Zucknick M, Wigemyr M, Bråten LCH, Gjefsen E, Zwart JA, Storheim K, Pedersen LM, Selmer K, Lie BA, Gervin K, The Aim Study Group. Long-Term Use of Amoxicillin Is Associated with Changes in Gene Expression and DNA Methylation in Patients with Low Back Pain and Modic Changes. Antibiotics (Basel) 2023; 12:1217. [PMID: 37508313 PMCID: PMC10376514 DOI: 10.3390/antibiotics12071217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/09/2023] [Accepted: 07/15/2023] [Indexed: 07/30/2023] Open
Abstract
Long-term antibiotics are prescribed for a variety of medical conditions, recently including low back pain with Modic changes. The molecular impact of such treatment is unknown. We conducted longitudinal transcriptome and epigenome analyses in patients (n = 100) receiving amoxicillin treatment or placebo for 100 days in the Antibiotics in Modic Changes (AIM) study. Gene expression and DNA methylation were investigated at a genome-wide level at screening, after 100 days of treatment, and at one-year follow-up. We identified intra-individual longitudinal changes in gene expression and DNA methylation in patients receiving amoxicillin, while few changes were observed in patients receiving placebo. After 100 days of amoxicillin treatment, 28 genes were significantly differentially expressed, including the downregulation of 19 immunoglobulin genes. At one-year follow-up, the expression levels were still not completely restored. The significant changes in DNA methylation (n = 4548 CpGs) were mainly increased methylation levels between 100 days and one-year follow-up. Hence, the effects on gene expression occurred predominantly during treatment, while the effects on DNA methylation occurred after treatment. In conclusion, unrecognized side effects of long-term amoxicillin treatment were revealed, as alterations were observed in both gene expression and DNA methylation that lasted long after the end of treatment.
Collapse
Affiliation(s)
- Maria Dehli Vigeland
- Department of Research, Innovation and Education, Division of Clinical Neuroscience, Oslo University Hospital, 0450 Oslo, Norway
- Faculty of Medicine, University of Oslo, 0313 Oslo, Norway
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, 0450 Oslo, Norway
| | - Siri Tennebø Flåm
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, 0450 Oslo, Norway
| | - Magnus Dehli Vigeland
- Faculty of Medicine, University of Oslo, 0313 Oslo, Norway
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, 0450 Oslo, Norway
| | - Ansgar Espeland
- Department of Radiology, Haukeland University Hospital, 5021 Bergen, Norway
- Department of Clinical Medicine, University of Bergen, 5020 Bergen, Norway
| | - Manuela Zucknick
- Oslo Centre for Biostatistics and Epidemiology, University of Oslo, 0313 Oslo, Norway
| | - Monica Wigemyr
- Department of Research, Innovation and Education, Division of Clinical Neuroscience, Oslo University Hospital, 0450 Oslo, Norway
| | - Lars Christian Haugli Bråten
- Department of Research, Innovation and Education, Division of Clinical Neuroscience, Oslo University Hospital, 0450 Oslo, Norway
| | - Elisabeth Gjefsen
- Department of Research, Innovation and Education, Division of Clinical Neuroscience, Oslo University Hospital, 0450 Oslo, Norway
- Faculty of Medicine, University of Oslo, 0313 Oslo, Norway
| | - John-Anker Zwart
- Department of Research, Innovation and Education, Division of Clinical Neuroscience, Oslo University Hospital, 0450 Oslo, Norway
- Faculty of Medicine, University of Oslo, 0313 Oslo, Norway
| | - Kjersti Storheim
- Department of Research, Innovation and Education, Division of Clinical Neuroscience, Oslo University Hospital, 0450 Oslo, Norway
- Department of Physiotherapy, Oslo Metropolitan University, 0167 Oslo, Norway
| | - Linda Margareth Pedersen
- Department of Research, Innovation and Education, Division of Clinical Neuroscience, Oslo University Hospital, 0450 Oslo, Norway
- Department of Physiotherapy, Oslo Metropolitan University, 0167 Oslo, Norway
| | - Kaja Selmer
- Department of Research, Innovation and Education, Division of Clinical Neuroscience, Oslo University Hospital, 0450 Oslo, Norway
- Faculty of Medicine, University of Oslo, 0313 Oslo, Norway
- National Center for Epilepsy, Oslo University Hospital, 1337 Sandvika, Norway
| | - Benedicte Alexandra Lie
- Faculty of Medicine, University of Oslo, 0313 Oslo, Norway
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, 0450 Oslo, Norway
| | - Kristina Gervin
- Department of Research, Innovation and Education, Division of Clinical Neuroscience, Oslo University Hospital, 0450 Oslo, Norway
- Pharmacoepidemiology and Drug Safety Research Group, Department of Pharmacy, School of Pharmacy, University of Oslo, 0313 Oslo, Norway
| | - The Aim Study Group
- Department of Research, Innovation and Education, Division of Clinical Neuroscience, Oslo University Hospital, 0450 Oslo, Norway
| |
Collapse
|
36
|
Liu X, Ke L, Lei K, Yu Q, Zhang W, Li C, Tian Z. Antibiotic-induced gut microbiota dysbiosis has a functional impact on purine metabolism. BMC Microbiol 2023; 23:187. [PMID: 37442943 PMCID: PMC10339580 DOI: 10.1186/s12866-023-02932-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 07/04/2023] [Indexed: 07/15/2023] Open
Abstract
BACKGROUND Dysbiosis of the gut microbiota is closely linked to hyperuricemia. However, the effect of the microbiome on uric acid (UA) metabolism remains unclear. This study aimed to explore the mechanisms through which microbiomes affect UA metabolism with the hypothesis that modifying the intestinal microbiota influences the development of hyperuricemia. RESULTS We proposed combining an antibiotic strategy with protein-protein interaction analysis to test this hypothesis. The data demonstrated that antibiotics altered the composition of gut microbiota as UA increased, and that the spectrum of the antibiotic was connected to the purine salvage pathway. The antibiotic-elevated UA concentration was dependent on the increase in microbiomes that code for the proteins involved in purine metabolism, and was paralleled by the depletion of bacteria-coding enzymes required for the purine salvage pathway. On the contrary, the microbiota with abundant purine salvage proteins decreased hyperuricemia. We also found that the antibiotic-increased microbiota coincided with a higher relative abundance of bacteria in hyperuricemia mice. CONCLUSIONS An antibiotic strategy combined with the prediction of microbiome bacterial function presents a feasible method for defining the key bacteria involved in hyperuricemia. Our investigations discovered that the core microbiomes of hyperuricemia may be related to the gut microbiota that enriches purine metabolism related-proteins. However, the bacteria that enrich the purine salvage-proteins may be a probiotic for decreasing urate, and are more likely to be killed by antibiotics. Therefore, the purine salvage pathway may be a potential target for the treatment of both hyperuricemia and antibiotic resistance.
Collapse
Affiliation(s)
- Xin Liu
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, 266000, China
| | - Leyong Ke
- Department of Cosmetic surgery, Kunming Medical University, Kunming, 650000, China
| | - Ke Lei
- Center of Tumor Immunology and Cytotherapy, Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Qian Yu
- Center of Tumor Immunology and Cytotherapy, Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Wenqing Zhang
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, 266000, China
| | - Changgui Li
- Institute of Metabolic Diseases, Qingdao University, Qingdao, 266003, China
| | - Zibin Tian
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, 266000, China.
| |
Collapse
|
37
|
Emerson KJ, Fontaine SS, Kohl KD, Woodley SK. Temperature and the microbial environment alter brain morphology in a larval amphibian. J Exp Biol 2023; 226:jeb245333. [PMID: 37232216 DOI: 10.1242/jeb.245333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 05/19/2023] [Indexed: 05/27/2023]
Abstract
Understanding how the global climate impacts the physiology of wildlife animals is of importance. Amphibians are particularly sensitive to climate change, and it is hypothesized that rising temperatures impair their neurodevelopment. Temperature influences the composition of the gut microbiota, which is critical to host neurodevelopment through the microbiota-gut-brain (MGB) axis. Most research investigating the link between the gut microbiota and neurodevelopment occurs in germ-free mammalian model systems, leaving the nature of the MGB axis in non-mammalian wildlife unclear. Here, we tested the hypothesis that the temperature and the microbial environment in which tadpoles were raised shapes neurodevelopment, possibly through the MGB axis. Newly hatched green frog tadpoles (Lithobates clamitans) were raised in natural pond water or autoclaved pond water, serving as an experimental manipulation of the microbiota by reducing colonizing microbes, at three different water temperatures: 14, 22 and 28°C. Neurodevelopment was analyzed through measures of relative brain mass and morphology of brain structures of interest. We found that tadpole development in warmer temperatures increased relative brain mass and optic tectum width and length. Further, tadpole development in autoclaved pond water increased relative optic tectum width and length. Additionally, the interaction of treatments altered relative diencephalon length. Lastly, we found that variation in brain morphology was associated with gut microbial diversity and the relative abundance of individual bacterial taxa. Our results indicate that both environmental temperature and microbial communities influence relative brain mass and shape. Furthermore, we provide some of the first evidence for the MGB axis in amphibians.
Collapse
Affiliation(s)
- Kyle J Emerson
- Department of Biological Sciences, Duquesne University, Pittsburgh, PA 15282, USA
| | - Samantha S Fontaine
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Kevin D Kohl
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Sarah K Woodley
- Department of Biological Sciences, Duquesne University, Pittsburgh, PA 15282, USA
| |
Collapse
|
38
|
Pandey U, Tambat S, Aich P. Postnatal 14D is the Key Window for Mice Intestinal Development- An Insight from Age-Dependent Antibiotic-Mediated Gut Microbial Dysbiosis Study. Adv Biol (Weinh) 2023:e2300089. [PMID: 37178322 DOI: 10.1002/adbi.202300089] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/13/2023] [Indexed: 05/15/2023]
Abstract
The postnatal period is one of the critical windows for the structure-function development of the gastrointestinal tract and associated mucosal immunity. Along with other constituent members, recent studies suggest the contribution of gut microbiota in maintaining host health, immunity, and development. Although the gut microbiota's role in maintaining barrier integrity is known, its function in early life development still needs to be better understood. To understand the details of gut microbiota's effects on intestinal integrity, epithelium development, and immune profile, the route of antibiotic-mediated perturbation is taken. Mice on days 7(P7D), 14(P14D), 21(P21D) and 28(P28D) are sacrificed and 16S rRNA metagenomic analysis is performed. The barrier integrity, tight junction proteins (TJPs) expression, intestinal epithelial cell (IEC) markers, and inflammatory cytokines are analyzed. Results reveal a postnatal age-related impact of gut microbiota perturbation, with a gradual increase in the relative abundance of Proteobacteria and a reduction in Bacteroidetes and Firmicutes. Significant barrier integrity disruption, reduced TJPs and IECs marker expression, and increased systemic inflammation at P14D of AVNM-treated mice are found. Moreover, the microbiota transplantation shows recolonization of Verrucomicrobia, proving a causal role in barrier functions. The investigation reveals P14D as a critical period for neonatal intestinal development, regulated by specific microbiota composition.
Collapse
Affiliation(s)
- Uday Pandey
- School of Biological Sciences, National Institute of Science Education and Research (NISER), P.O. Jatni, Khurda, Odisha, 752050, India
- Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai, 400094, India
| | - Subodh Tambat
- Department of Life Sciences and Healthcare, Persistent Systems Limited, Pune, Maharashtra, 411004, India
| | - Palok Aich
- School of Biological Sciences, National Institute of Science Education and Research (NISER), P.O. Jatni, Khurda, Odisha, 752050, India
- Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai, 400094, India
| |
Collapse
|
39
|
Bu Y, Zhao K, Xu Z, Zheng Y, Hua R, Wu C, Zhu C, Xia Y, Cheng X. Antibiotic-induced gut bacteria depletion has no effect on HBV replication in HBV immune tolerance mouse model. Virol Sin 2023:S1995-820X(23)00048-2. [PMID: 37141990 DOI: 10.1016/j.virs.2023.04.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 04/26/2023] [Indexed: 05/06/2023] Open
Abstract
Commensal microbiota is closely related to Hepatitis B virus (HBV) infection. Gut bacteria maturation accelerates HBV immune clearance in hydrodynamic injection (HDI) HBV mouse model. However, the effect of gut bacteria on HBV replication in recombinant adeno-associated virus (AAV)-HBV mouse model with immune tolerance remains obscure. We aim to investigate its role on HBV replication in AAV-HBV mouse model. C57BL/6 mice were administrated with broad-spectrum antibiotic mixtures (ABX) to deplete gut bacteria and intravenously injected with AAV-HBV to establish persistent HBV replication. Gut microbiota community was analyzed by fecal qPCR assay and 16S ribosomal RNA (rRNA) gene sequencing. HBV replication markers in blood and liver were determined by ELISA, qPCR assay and Western blot at indicated time points. Immune response in AAV-HBV mouse model was activated through HDI of HBV plasmid or poly(I:C) and then detected by quantifying the percentage of IFN-γ+/CD8+ T cells in the spleen via flow cytometry as well as the splenic IFN-γ mRNA level via qPCR assay. We found that antibiotic exposure remarkably decreased gut bacteria abundance and diversity. Antibiotic treatment failed to alter the levels of serological HBV antigens, intrahepatic HBV RNA transcripts and HBc protein in AAV-HBV mouse model, but contributed to HBsAg increase after breaking of immune tolerance. Overall, our data uncovered that antibiotic-induced gut bacteria depletion has no effect on HBV replication in immune tolerant AAV-HBV mouse model, providing new thoughts for elucidating the correlation between gut bacteria dysbiosis by antibiotic abuse and clinical chronic HBV infection.
Collapse
Affiliation(s)
- Yanan Bu
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology, Hubei Jiangxia Laboratory, Institute of Medical Virology, TaiKang Center for Life and Medical Sciences, TaiKang Medical School, Wuhan University, Wuhan, 430071, China
| | - Kaitao Zhao
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology, Hubei Jiangxia Laboratory, Institute of Medical Virology, TaiKang Center for Life and Medical Sciences, TaiKang Medical School, Wuhan University, Wuhan, 430071, China
| | - Zaichao Xu
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology, Hubei Jiangxia Laboratory, Institute of Medical Virology, TaiKang Center for Life and Medical Sciences, TaiKang Medical School, Wuhan University, Wuhan, 430071, China
| | - Yingcheng Zheng
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology, Hubei Jiangxia Laboratory, Institute of Medical Virology, TaiKang Center for Life and Medical Sciences, TaiKang Medical School, Wuhan University, Wuhan, 430071, China
| | - Rong Hua
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology, Hubei Jiangxia Laboratory, Institute of Medical Virology, TaiKang Center for Life and Medical Sciences, TaiKang Medical School, Wuhan University, Wuhan, 430071, China
| | - Chuanjian Wu
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology, Hubei Jiangxia Laboratory, Institute of Medical Virology, TaiKang Center for Life and Medical Sciences, TaiKang Medical School, Wuhan University, Wuhan, 430071, China
| | - Chengliang Zhu
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060; China
| | - Yuchen Xia
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology, Hubei Jiangxia Laboratory, Institute of Medical Virology, TaiKang Center for Life and Medical Sciences, TaiKang Medical School, Wuhan University, Wuhan, 430071, China.
| | - Xiaoming Cheng
- Department of Pathology, Center for Pathology and Molecular Diagnostics, Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Zhongnan Hospital of Wuhan University, TaiKang Medical School, Wuhan University, Wuhan, 430071, China.
| |
Collapse
|
40
|
Newman NK, Macovsky M, Rodrigues RR, Bruce AM, Pederson JW, Patil SS, Padiadpu J, Dzutsev AK, Shulzhenko N, Trinchieri G, Brown K, Morgun A. Transkingdom Network Analysis (TkNA): a systems framework for inferring causal factors underlying host-microbiota and other multi-omic interactions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.22.529449. [PMID: 36865280 PMCID: PMC9980039 DOI: 10.1101/2023.02.22.529449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Technological advances have generated tremendous amounts of high-throughput omics data. Integrating data from multiple cohorts and diverse omics types from new and previously published studies can offer a holistic view of a biological system and aid in deciphering its critical players and key mechanisms. In this protocol, we describe how to use Transkingdom Network Analysis (TkNA), a unique causal-inference analytical framework that can perform meta-analysis of cohorts and detect master regulators among measured parameters that govern pathological or physiological responses of host-microbiota (or any multi-omic data) interactions in a particular condition or disease. TkNA first reconstructs the network that represents a statistical model capturing the complex relationships between the different omics of the biological system. Here, it selects differential features and their per-group correlations by identifying robust and reproducible patterns of fold change direction and sign of correlation across several cohorts. Next, a causality-sensitive metric, statistical thresholds, and a set of topological criteria are used to select the final edges that form the transkingdom network. The second part of the analysis involves interrogating the network. Using the network's local and global topology metrics, it detects nodes that are responsible for control of given subnetwork or control of communication between kingdoms and/or subnetworks. The underlying basis of the TkNA approach involves fundamental principles including laws of causality, graph theory and information theory. Hence, TkNA can be used for causal inference via network analysis of any host and/or microbiota multi-omics data. This quick and easy-to-run protocol requires very basic familiarity with the Unix command-line environment.
Collapse
Affiliation(s)
- Nolan K Newman
- College of Pharmacy, Oregon State University, Corvallis, OR, USA
| | - Matthew Macovsky
- College of Pharmacy, Oregon State University, Corvallis, OR, USA
| | - Richard R Rodrigues
- Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
- Microbiome and Genetics Core, Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Amanda M Bruce
- College of Pharmacy, Oregon State University, Corvallis, OR, USA
| | - Jacob W Pederson
- Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR
| | - Sankalp S Patil
- College of Pharmacy, Oregon State University, Corvallis, OR, USA
| | - Jyothi Padiadpu
- College of Pharmacy, Oregon State University, Corvallis, OR, USA
| | - Amiran K Dzutsev
- Cancer Immunobiology Section, Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Natalia Shulzhenko
- Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR
| | - Giorgio Trinchieri
- Cancer Immunobiology Section, Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Kevin Brown
- College of Pharmacy, Oregon State University, Corvallis, OR, USA
| | - Andrey Morgun
- College of Pharmacy, Oregon State University, Corvallis, OR, USA
| |
Collapse
|
41
|
Pöltl L, Kitsera M, Raffl S, Schild S, Cosic A, Kienesberger S, Unterhauser K, Raber G, Lembacher-Fadum C, Breinbauer R, Gorkiewicz G, Sebastian C, Hoefler G, Zechner EL. Microbiota-derived genotoxin tilimycin generates colonic stem cell mutations. Cell Rep 2023; 42:112199. [PMID: 36870054 DOI: 10.1016/j.celrep.2023.112199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 12/19/2022] [Accepted: 02/14/2023] [Indexed: 03/05/2023] Open
Abstract
The DNA-alkylating metabolite tilimycin is a microbial genotoxin. Intestinal accumulation of tilimycin in individuals carrying til+ Klebsiella spp. causes apoptotic erosion of the epithelium and colitis. Renewal of the intestinal lining and response to injury requires the activities of stem cells located at the base of intestinal crypts. This study interrogates the consequences of tilimycin-induced DNA damage to cycling stem cells. We charted the spatial distribution and luminal quantities of til metabolites in Klebsiella-colonized mice in the context of a complex microbial community. Loss of marker gene G6pd function indicates genetic aberrations in colorectal stem cells that became stabilized in monoclonal mutant crypts. Mice colonized with tilimycin-producing Klebsiella displayed both higher frequencies of somatic mutation and more mutations per affected individual than animals carrying a non-producing mutant. Our findings imply that genotoxic til+ Klebsiella may drive somatic genetic change in the colon and increase disease susceptibility in human hosts.
Collapse
Affiliation(s)
- Lisa Pöltl
- Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria
| | - Maksym Kitsera
- Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria
| | - Sandra Raffl
- Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria
| | - Stefan Schild
- Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria; BioTechMed-Graz, 8010 Graz, Austria; Field of Excellence BioHealth, University of Graz, 8010 Graz, Austria
| | - Amar Cosic
- Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria
| | - Sabine Kienesberger
- Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria; BioTechMed-Graz, 8010 Graz, Austria; Field of Excellence BioHealth, University of Graz, 8010 Graz, Austria
| | - Katrin Unterhauser
- Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria
| | - Georg Raber
- Institute of Chemistry, University of Graz, 8010 Graz, Austria
| | | | - Rolf Breinbauer
- BioTechMed-Graz, 8010 Graz, Austria; Institute of Organic Chemistry, Graz University of Technology, 8010 Graz, Austria
| | - Gregor Gorkiewicz
- BioTechMed-Graz, 8010 Graz, Austria; Diagnostic and Research Institute of Pathology, Medical University of Graz, 8036 Graz, Austria
| | - Carlos Sebastian
- Candiolo Cancer Institute-FPO, IRCCS, 10060 Candiolo, Italy; Departament de Biologia Cellular, Fisiologia i Immunologia, Facultad de Biologia, Universitat de Barcelona (UB), 08028 Barcelona, Spain; Institut de Biomedicina de la Universitat de Barcelona (IBUB), 08028 Barcelona, Spain
| | - Gerald Hoefler
- Diagnostic and Research Institute of Pathology, Medical University of Graz, 8036 Graz, Austria
| | - Ellen L Zechner
- Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria; BioTechMed-Graz, 8010 Graz, Austria; Field of Excellence BioHealth, University of Graz, 8010 Graz, Austria.
| |
Collapse
|
42
|
Atallah J, Ghebremichael M, Timmer KD, Warren HM, Mallinger E, Wallace E, Strouts FR, Persing DH, Mansour MK. Novel Host Response-Based Diagnostics to Differentiate the Etiology of Fever in Patients Presenting to the Emergency Department. Diagnostics (Basel) 2023; 13:953. [PMID: 36900096 PMCID: PMC10000761 DOI: 10.3390/diagnostics13050953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023] Open
Abstract
Fever is a common presentation to urgent-care services and is linked to multiple disease processes. To rapidly determine the etiology of fever, improved diagnostic modalities are necessary. This prospective study of 100 hospitalized febrile patients included both positive (FP) and negative (FN) subjects in terms of infection status and 22 healthy controls (HC). We evaluated the performance of a novel PCR-based assay measuring five host mRNA transcripts directly from whole blood to differentiate infectious versus non-infectious febrile syndromes as compared to traditional pathogen-based microbiology results. The FP and FN groups observed a robust network structure with a significant correlation between the five genes. There were statistically significant associations between positive infection status and four of the five genes: IRF-9 (OR = 1.750, 95% CI = 1.16-2.638), ITGAM (OR = 1.533, 95% CI = 1.047-2.244), PSTPIP2 (OR = 2.191, 95% CI = 1.293-3.711), and RUNX1 (OR = 1.974, 95% CI = 1.069-3.646). We developed a classifier model to classify study participants based on these five genes and other variables of interest to assess the discriminatory power of the genes. The classifier model correctly classified more than 80% of the participants into their respective groups, i.e., FP or FN. The GeneXpert prototype holds promise for guiding rapid clinical decision-making, reducing healthcare costs, and improving outcomes in undifferentiated febrile patients presenting for urgent evaluation.
Collapse
Affiliation(s)
- Johnny Atallah
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
- Infectious Diseases Division, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Musie Ghebremichael
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02138, USA
| | - Kyle D. Timmer
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
- Infectious Diseases Division, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Hailey M. Warren
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
- Infectious Diseases Division, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Ella Mallinger
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
- Infectious Diseases Division, Massachusetts General Hospital, Boston, MA 02114, USA
| | | | | | | | - Michael K. Mansour
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
- Infectious Diseases Division, Massachusetts General Hospital, Boston, MA 02114, USA
| |
Collapse
|
43
|
Shim H. Three Innovations of Next-Generation Antibiotics: Evolvability, Specificity, and Non-Immunogenicity. Antibiotics (Basel) 2023; 12:antibiotics12020204. [PMID: 36830114 PMCID: PMC9952447 DOI: 10.3390/antibiotics12020204] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 01/21/2023] Open
Abstract
Antimicrobial resistance is a silent pandemic exacerbated by the uncontrolled use of antibiotics. Since the discovery of penicillin, we have been largely dependent on microbe-derived small molecules to treat bacterial infections. However, the golden era of antibiotics is coming to an end, as the emergence and spread of antimicrobial resistance against these antibacterial compounds are outpacing the discovery and development of new antibiotics. The current antibiotic market suffers from various shortcomings, including the absence of profitability and investment. The most important underlying issue of traditional antibiotics arises from the inherent properties of these small molecules being mostly broad-spectrum and non-programmable. As the scientific knowledge of microbes progresses, the scientific community is starting to explore entirely novel approaches to tackling antimicrobial resistance. One of the most prominent approaches is to develop next-generation antibiotics. In this review, we discuss three innovations of next-generation antibiotics compared to traditional antibiotics as specificity, evolvability, and non-immunogenicity. We present a number of potential antimicrobial agents, including bacteriophage-based therapy, CRISPR-Cas-based antimicrobials, and microbiome-derived antimicrobial agents. These alternative antimicrobial agents possess innovative properties that may overcome the inherent shortcomings of traditional antibiotics, and some of these next-generation antibiotics are not merely far-fetched ideas but are currently in clinical development. We further discuss some related issues and challenges such as infection diagnostics and regulatory frameworks that still need to be addressed to bring these next-generation antibiotics to the antibiotic market as viable products to combat antimicrobial resistance using a diversified set of strategies.
Collapse
Affiliation(s)
- Hyunjin Shim
- Center for Biosystems and Biotech Data Science, Ghent University Global Campus, Incheon 21985, Republic of Korea
| |
Collapse
|
44
|
Ramai D, Salati M, Pomati G, Amoroso C, Facciorusso A, Botticelli A, Ghidini M. Antibiotics, the microbiome and gastrointestinal cancers: A causal interference? Curr Opin Pharmacol 2022; 67:102315. [PMID: 36351361 DOI: 10.1016/j.coph.2022.102315] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/03/2022] [Accepted: 10/08/2022] [Indexed: 11/07/2022]
Abstract
Our understanding of the gut microbiota has significantly evolved over the last two decades. Advances in the analysis of the gut microbiome continues to reveal complex microbial communities and discoveries about their role in health and diseases, including cancer development, are continuously growing. In addition, research has demonstrated that the use of antibiotics can modulate the gut microbiota composition negatively and influence cancer treatment outcomes, suggesting that antibiotics should be avoided if possible. In this article, we review the role of the gut microbiota in the formation of GI cancers. We show that specific bacterial populations can positively or negatively affect cancer formation with specific attention given to gastric and colorectal cancer. We also review the role of microbial-targeted therapies on cancer treatment outcomes.
Collapse
Affiliation(s)
- Daryl Ramai
- Division of Gastroenterology and Hepatology, University of Utah Health, Salt Lake City, UT, USA
| | - Massimiliano Salati
- Department of Oncology and Hematology, Division of Oncology, University Hospital of Modena, Modena, Italy
| | - Giulia Pomati
- Department of Molecular Medicine, Sapienza University of Rome, Italy
| | - Chiara Amoroso
- Gastroenterology and Endoscopy Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Antonio Facciorusso
- Gastroenterology Unit, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Andrea Botticelli
- Department of Radiological, Oncological, Pathological Department, La Sapienza, University of Rome, Policlinico Umberto I, Rome, Italy
| | - Michele Ghidini
- Division of Medical Oncology, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy.
| |
Collapse
|
45
|
Fernandes MR, Aggarwal P, Costa RGF, Cole AM, Trinchieri G. Targeting the gut microbiota for cancer therapy. Nat Rev Cancer 2022; 22:703-722. [PMID: 36253536 DOI: 10.1038/s41568-022-00513-x] [Citation(s) in RCA: 97] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/07/2022] [Indexed: 02/06/2023]
Abstract
Growing evidence suggests that the gut microbiota modulates the efficacy and toxicity of cancer therapy, most notably immunotherapy and its immune-related adverse effects. The poor response to immunotherapy in patients treated with antibiotics supports this influential role of the microbiota. Until recently, results pertaining to the identification of the microbial species responsible for these effects were incongruent, and relatively few studies analysed the underlying mechanisms. A better understanding of the taxonomy of the species involved and of the mechanisms of action has since been achieved. Defined bacterial species have been shown to promote an improved response to immune-checkpoint inhibitors by producing different products or metabolites. However, a suppressive effect of Gram-negative bacteria may be dominant in some unresponsive patients. Machine learning approaches trained on the microbiota composition of patients can predict the ability of patients to respond to immunotherapy with some accuracy. Thus, interest in modulating the microbiota composition to improve patient responsiveness to therapy has been mounting. Clinical proof-of-concept studies have demonstrated that faecal microbiota transplantation or dietary interventions might be utilized clinically to improve the success rate of immunotherapy in patients with cancer. Here, we review recent advances and discuss emerging strategies for microbiota-based cancer therapies.
Collapse
Affiliation(s)
- Miriam R Fernandes
- Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Poonam Aggarwal
- Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Raquel G F Costa
- Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Alicia M Cole
- Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Giorgio Trinchieri
- Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA.
| |
Collapse
|
46
|
Illikoud N, Mantel M, Rolli-Derkinderen M, Gagnaire V, Jan G. Dairy starters and fermented dairy products modulate gut mucosal immunity. Immunol Lett 2022; 251-252:91-102. [DOI: 10.1016/j.imlet.2022.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 10/24/2022] [Accepted: 11/01/2022] [Indexed: 11/07/2022]
|
47
|
Investigating the Relation between the Gut Microbiota and Inflammatory Bowel Disease in a Mouse Model. JOURNAL OF MEDICAL MICROBIOLOGY AND INFECTIOUS DISEASES 2022. [DOI: 10.52547/jommid.10.3.122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
|
48
|
Medel-Matus JS, Simpson CA, Ahdoot AI, Shin D, Sankar R, Jacobs JP, Mazarati AM. Modification of post-traumatic epilepsy by fecal microbiota transfer. Epilepsy Behav 2022; 134:108860. [PMID: 35914438 DOI: 10.1016/j.yebeh.2022.108860] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/17/2022] [Accepted: 07/18/2022] [Indexed: 11/15/2022]
Abstract
It has been well established that traumatic brain injury (TBI) modifies the composition of gut microbiome. Epilepsy, which represents one of the common sequelae of TBI, has been associated with dysbiosis. Earlier study showed that the risk of post-traumatic epilepsy (PTE) after lateral fluid percussion injury (LFPI) in rats can be stratified based on pre-existing (i.e., pre-TBI) gut microbiome profile. In the present study, we examined whether fecal microbiota transfer (FMT) from naïve rats with different prospective histories of PTE would affect the trajectory of PTE in recipients. Fecal samples were collected from naïve adult male Sprague-Dawley rats, followed by LFPI. Seven months later, upon four weeks of vide-EEG monitoring (vEEG), the rats were categorized as those with and without PTE. Recipients were subjected to LFPI, followed by FMT from donors with and without impending PTE. Control groups included auto-FMT and no-FMT subjects. Seven month after LFPI, recipients underwent four-week vEEG to detect spontaneous seizures. After completing vEEG, rats of all groups underwent kindling of basolateral amygdala. Fecal microbiota transfer from donors with impending PTE exerted mild-to-moderate pro-epileptic effects in recipients, evident as marginal increase in multiple spontaneous seizure incidence, and facilitation of kindling. Analysis of fecal samples in selected recipients and their respective donors confirmed that FMT modified microbiota in recipients along the donors' lines, albeit without full microbiome conversion. The findings provide further evidence that gut microbiome may actively modulate the susceptibility to epilepsy.
Collapse
Affiliation(s)
- Jesus-Servando Medel-Matus
- Department of Pediatrics, David Geffen School of Medicine at the University of California, Los Angeles (DGSOM UCLA), Los Angeles, CA, USA
| | - Carra A Simpson
- Department of Medicine, DGSOM UCLA, USA; Microbiome Center, DGSOM UCLA, USA
| | - Aaron I Ahdoot
- Department of Medicine, DGSOM UCLA, USA; Microbiome Center, DGSOM UCLA, USA
| | - Don Shin
- Department of Pediatrics, David Geffen School of Medicine at the University of California, Los Angeles (DGSOM UCLA), Los Angeles, CA, USA
| | - Raman Sankar
- Department of Pediatrics, David Geffen School of Medicine at the University of California, Los Angeles (DGSOM UCLA), Los Angeles, CA, USA; Department of Neurology, David Geffen School of Medicine at the University of California, Los Angeles (DGSOM UCLA), Los Angeles, CA, USA; Children's Discovery and Innovation Institute, DGSOM UCLA, USA
| | - Jonathan P Jacobs
- Department of Medicine, DGSOM UCLA, USA; Microbiome Center, DGSOM UCLA, USA; Division of Gastroenterology, Hepatology and Parenteral Nutrition, VA Greater Los Angeles Healthcare System, Los Angeles, CA, USA
| | - Andrey M Mazarati
- Department of Pediatrics, David Geffen School of Medicine at the University of California, Los Angeles (DGSOM UCLA), Los Angeles, CA, USA; Microbiome Center, DGSOM UCLA, USA; Children's Discovery and Innovation Institute, DGSOM UCLA, USA.
| |
Collapse
|
49
|
Ma Y, Choi CY, Thomas A, Gibson L. Review of contaminant levels and effects in shorebirds: Knowledge gaps and conservation priorities. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 242:113868. [PMID: 35863215 DOI: 10.1016/j.ecoenv.2022.113868] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 06/20/2022] [Accepted: 07/05/2022] [Indexed: 06/15/2023]
Abstract
Environmental pollution has emerged as a major threat to bird populations. Many shorebird populations are declining, although contamination has been documented in some shorebirds, evidence of negative impacts is sparse and this important topic remains understudied. To guide future research and develop effective conservation strategies, we carried out a comprehensive review of environmental pollutants and their consequences on shorebirds. In total, we found 93 relevant articles which examined pollutant contamination in ~37% (79 of 215) of all shorebird species, mostly from the Charadriidae and Scolopacidae families. Studies were geographically biased: the majority were conducted in American flyways, while only 1 was found from Australasia and few were conducted in Asian flyways. The main geographic gap for research includes East Africa, South Asia and Siberian Arctic. The most well-documented pollutants included mercury (Hg, 37 studies), cadmium (33), and lead (Pb, 28); less well studied pollutants were barium (1), calcium (1), strontium (1), dicofols (1), and other newly emerging contaminants, such as plastic debris/microplastics (4) and antibiotics resistance (2). Several pollutants have caused considerable concerns in shorebirds, including embryotoxicity caused by PCBs at non-optimum temperature (laboratory experiments); reduced reproduction performance linked to maternal Hg and paternal Pb (field evidence); and reduced refueling and flight performance related to oil contamination (both field and laboratory evidence). Our results confirm that an in-depth understanding of the local, regional and global factors that influence population trends of shorebirds in light of increasing pollution threats is essential for accurate and effective management and conservation strategies.
Collapse
Affiliation(s)
- Yanju Ma
- School of Environmental Science & Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Chi-Yeung Choi
- School of Environmental Science & Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Alex Thomas
- School of Environmental Science & Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Luke Gibson
- School of Environmental Science & Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China.
| |
Collapse
|
50
|
Impacts of Gut Microbiota on the Immune System and Fecal Microbiota Transplantation as a Re-Emerging Therapy for Autoimmune Diseases. Antibiotics (Basel) 2022; 11:antibiotics11081093. [PMID: 36009962 PMCID: PMC9404867 DOI: 10.3390/antibiotics11081093] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/08/2022] [Accepted: 08/10/2022] [Indexed: 12/02/2022] Open
Abstract
The enormous and diverse population of microorganisms residing in the digestive tracts of humans and animals influence the development, regulation, and function of the immune system. Recently, the understanding of the association between autoimmune diseases and gut microbiota has been improved due to the innovation of high-throughput sequencing technologies with high resolutions. Several studies have reported perturbation of gut microbiota as one of the factors playing a role in the pathogenesis of many diseases, such as inflammatory bowel disease, recurrent diarrhea due to Clostridioides difficile infections. Restoration of healthy gut microbiota by transferring fecal material from a healthy donor to a sick recipient, called fecal microbiota transplantation (FMT), has resolved or improved symptoms of autoimmune diseases. This (re)emerging therapy was approved for the treatment of drug-resistant recurrent C. difficile infections in 2013 by the U.S. Food and Drug Administration. Numerous human and animal studies have demonstrated FMT has the potential as the next generation therapy to control autoimmune and other health problems. Alas, this new therapeutic method has limitations, including the risk of transferring antibiotic-resistant pathogens or transmission of genes from donors to recipients and/or exacerbating the conditions in some patients. Therefore, continued research is needed to elucidate the mechanisms by which gut microbiota is involved in the pathogenesis of autoimmune diseases and to improve the efficacy and optimize the preparation of FMT for different disease conditions, and to tailor FMT to meet the needs in both humans and animals. The prospect of FMT therapy includes shifting from the current practice of using the whole fecal materials to the more aesthetic transfer of selective microbial consortia assembled in vitro or using their metabolic products.
Collapse
|