1
|
Krauß D, Moreno-Viedma V, Adachi-Fernandez E, de Sá Fernandes C, Genger JW, Fari O, Blauensteiner B, Kirchhofer D, Bradaric N, Gushchina V, Fotakis G, Mohr T, Abramovich I, Mor I, Holcmann M, Bergthaler A, Haschemi A, Trajanoski Z, Winkler J, Gottlieb E, Sibilia M. EGFR controls transcriptional and metabolic rewiring in KRAS G12D colorectal cancer. EMBO Mol Med 2025:10.1038/s44321-025-00240-4. [PMID: 40329096 DOI: 10.1038/s44321-025-00240-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 03/26/2025] [Accepted: 04/02/2025] [Indexed: 05/08/2025] Open
Abstract
Inhibition of the epidermal growth factor receptor (EGFR) shows clinical benefit in metastatic colorectal cancer (CRC) patients, but KRAS-mutations are known to confer resistance. However, recent reports highlight EGFR as a crucial target to be co-inhibited with RAS inhibitors for effective treatment of KRAS mutant CRC. Here, we investigated the tumor cell-intrinsic contribution of EGFR in KRASG12D tumors by establishing murine CRC organoids with key CRC mutations (KRAS, APC, TP53) and inducible EGFR deletion. Metabolomic, transcriptomic, and scRNA-analyses revealed that EGFR deletion in KRAS-mutant organoids reduced their phenotypic heterogeneity and activated a distinct cancer-stem-cell/WNT signature associated with reduced cell size and downregulation of major signaling cascades like MAPK, PI3K, and ErbB. This was accompanied by metabolic rewiring with a decrease in glycolytic routing and increased anaplerotic glutaminolysis. Mechanistically, following EGFR loss, Smoc2 was identified as a key upregulated target mediating these phenotypes that could be rescued upon additional Smoc2 deletion. Validation in patient-datasets revealed that the identified signature is associated with better overall survival of RAS mutant CRC patients possibly allowing to predict therapy responses in patients.
Collapse
Affiliation(s)
- Dana Krauß
- Center for Cancer Research, Medical University of Vienna and Comprehensive Cancer Center, Vienna, Austria
| | - Veronica Moreno-Viedma
- Center for Cancer Research, Medical University of Vienna and Comprehensive Cancer Center, Vienna, Austria
| | - Emi Adachi-Fernandez
- Center for Cancer Research, Medical University of Vienna and Comprehensive Cancer Center, Vienna, Austria
| | - Cristiano de Sá Fernandes
- Center for Cancer Research, Medical University of Vienna and Comprehensive Cancer Center, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, 1090, Austria
| | - Jakob-Wendelin Genger
- Institute of Hygiene and Applied Immunology, Department of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, 1090, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, 1090, Austria
| | - Ourania Fari
- Center for Cancer Research, Medical University of Vienna and Comprehensive Cancer Center, Vienna, Austria
| | - Bernadette Blauensteiner
- Center for Cancer Research, Medical University of Vienna and Comprehensive Cancer Center, Vienna, Austria
| | - Dominik Kirchhofer
- Center for Cancer Research, Medical University of Vienna and Comprehensive Cancer Center, Vienna, Austria
| | - Nikolina Bradaric
- Department of Laboratory Medicine, Medical University of Vienna, 1090, Vienna, Austria
| | - Valeriya Gushchina
- Center for Cancer Research, Medical University of Vienna and Comprehensive Cancer Center, Vienna, Austria
| | - Georgios Fotakis
- Biocenter, Institute of Bioinformatics, Medical University of Innsbruck, Innsbruck, Austria
| | - Thomas Mohr
- Center for Cancer Research, Medical University of Vienna and Comprehensive Cancer Center, Vienna, Austria
| | - Ifat Abramovich
- Department of Cell Biology and Cancer Science, The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Inbal Mor
- Department of Cell Biology and Cancer Science, The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
- Department of Molecular Biology, Ariel University, Ariel, 4070000, Israel
| | - Martin Holcmann
- Center for Cancer Research, Medical University of Vienna and Comprehensive Cancer Center, Vienna, Austria
| | - Andreas Bergthaler
- Institute of Hygiene and Applied Immunology, Department of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, 1090, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, 1090, Austria
| | - Arvand Haschemi
- Department of Laboratory Medicine, Medical University of Vienna, 1090, Vienna, Austria
| | - Zlatko Trajanoski
- Biocenter, Institute of Bioinformatics, Medical University of Innsbruck, Innsbruck, Austria
| | - Juliane Winkler
- Center for Cancer Research, Medical University of Vienna and Comprehensive Cancer Center, Vienna, Austria
| | - Eyal Gottlieb
- Department of Cell Biology and Cancer Science, The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Maria Sibilia
- Center for Cancer Research, Medical University of Vienna and Comprehensive Cancer Center, Vienna, Austria.
| |
Collapse
|
2
|
Li S, Niu J, Smits R. RNF43 and ZNRF3: Versatile regulators at the membrane and their role in cancer. Biochim Biophys Acta Rev Cancer 2024; 1879:189217. [PMID: 39551397 DOI: 10.1016/j.bbcan.2024.189217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 11/08/2024] [Accepted: 11/08/2024] [Indexed: 11/19/2024]
Abstract
RNF43 and ZNRF3 are recognized as important regulators of Wnt/β-catenin signaling by maintaining Wnt-receptors at minimal essential levels. In various cancer types, particularly gastrointestinal tumors, mutations in these genes lead to abnormal Wnt-dependent activation of β-catenin signaling. However, recent findings implicate RNF43/ZNRF3 also in the regulation of other tumor-related proteins, including EGFR, BRAF, and the BMP-signaling pathway, which may have important implications for tumor biology. Additionally, we describe in detail how phosphorylation and ubiquitination may finetune RNF43 and ZNRF3 activity. We also address the variety of mutations observed in cancers and the mechanism through which they support tumor growth, and challenge the prevailing view that specific missense mutations in the R-spondin and RING domains may possess dominant-negative activity in contributing to tumor formation.
Collapse
Affiliation(s)
- Shanshan Li
- Department of Gastroenterology and Hepatology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, the Netherlands
| | - Jiahui Niu
- Department of Gastroenterology and Hepatology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, the Netherlands
| | - Ron Smits
- Department of Gastroenterology and Hepatology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, the Netherlands..
| |
Collapse
|
3
|
Kayama H, Takeda K. Regulation of intestinal epithelial homeostasis by mesenchymal cells. Inflamm Regen 2024; 44:42. [PMID: 39327633 PMCID: PMC11426228 DOI: 10.1186/s41232-024-00355-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 09/17/2024] [Indexed: 09/28/2024] Open
Abstract
The gastrointestinal tract harbors diverse microorganisms in the lumen. Epithelial cells segregate the luminal microorganisms from immune cells in the lamina propria by constructing chemical and physical barriers through the production of various factors to prevent excessive immune responses against microbes. Therefore, perturbations of epithelial integrity are linked to the development of gastrointestinal disorders. Several mesenchymal stromal cell populations, including fibroblasts, myofibroblasts, pericytes, and myocytes, contribute to the establishment and maintenance of epithelial homeostasis in the gut through regulation of the self-renewal, proliferation, and differentiation of intestinal stem cells. Recent studies have revealed alterations in the composition of intestinal mesenchymal stromal cells in patients with inflammatory bowel disease and colorectal cancer. A better understanding of the interplay between mesenchymal stromal cells and epithelial cells associated with intestinal health and diseases will facilitate identification of novel biomarkers and therapeutic targets for gastrointestinal disorders. This review summarizes the key findings obtained to date on the mechanisms by which functionally distinct mesenchymal stromal cells regulate epithelial integrity in intestinal health and diseases at different developmental stages.
Collapse
Affiliation(s)
- Hisako Kayama
- Laboratory of Immune Regulation, Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan.
- WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan.
- Institute for Advanced Co-Creation Studies, Osaka University, Suita, Osaka, 565-0871, Japan.
| | - Kiyoshi Takeda
- Laboratory of Immune Regulation, Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
- WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka, Japan
- Center for Infectious Disease Education and Research, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
4
|
Ariyannur P, Menon VP, Pavithran K, Paulose RR, Joy RA, Vasudevan DM. Molecular pathogenesis of microsatellite instability-high early-stage colorectal adenocarcinoma in India. Drug Metab Pers Ther 2024; 39:125-135. [PMID: 39042905 DOI: 10.1515/dmpt-2024-0033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 06/16/2024] [Indexed: 07/25/2024]
Abstract
OBJECTIVES The prevalence of microsatellite instability (MSI) subtype among all colon cancers in India is about 30 %, approximately two times more than that of western population suggesting different molecular pathogeneses. METHODS A NanoString analysis-based Pan cancer differential expression (DE) profile was determined in a primary cohort of early-stage CRC (tumor=10, normal=7), and correlated against MSI status. Using RT-PCR, tumor-specific DE genes were validated in another cohort of MSI-high CRC (n=15). RESULTS Among the most differentially expressed genes, AXIN2, ETV4, and RNF43 were tumor cell-specific signals, while a set of genes including COL11A1, COMP, INHBA, SPP1, MMP3, TLR2, and others were immune cell-specific signals, that had a differential expression between MSI and MSS groups. When overlapped with The Cancer Genome Atlas (TCGA) studies using the Tumor immune estimation resource tool (TIMER), and protein-protein interaction analysis by STRING.db, these genes were segregated to representative tumor cells and immune cells. On validation, the tumor-specific gene signals were inversely associated with TLR4 expression. CONCLUSIONS The differential expression distribution of AXIN2, ETV4, and RNF43 among tumor and immune cells, suggests more than one pathological subset in the MSI-H subgroup of early-stage CRC in the Indian population.
Collapse
Affiliation(s)
- Prasanth Ariyannur
- Molecular Oncology Laboratory, Amrita Institute of Medical Sciences, Amrita Vishwa Vidyapeetham, Kochi, Kerala, India
- Department of Health Sciences Research, Amrita Institute of Medical Sciences, Amrita Vishwa Vidyapeetham, Kochi, Kerala, India
| | - Veena P Menon
- Department of Virology, Amrita Institute of Medical Sciences, Amrita Vishwa Vidyapeetham, Kochi, Kerala, India
| | - Keechilat Pavithran
- Department of Medical Oncology, Amrita Institute of Medical Sciences, Amrita Vishwa Vidyapeetham, Kochi, Kerala, India
| | - Roopa R Paulose
- Department of Pathology, Amrita Institute of Medical Sciences, Amrita Vishwa Vidyapeetham, Kochi, Kerala, India
| | - Reenu A Joy
- Molecular Oncology Laboratory, Amrita Institute of Medical Sciences, Amrita Vishwa Vidyapeetham, Kochi, Kerala, India
| | - Damodaran M Vasudevan
- Department of Health Sciences Research, Amrita Institute of Medical Sciences, Amrita Vishwa Vidyapeetham, Kochi, Kerala, India
| |
Collapse
|
5
|
Gupta A, Avadhanula S, Bashyam MD. Evaluation of the gene fusion landscape in early onset sporadic rectal cancer reveals association with chromatin architecture and genome stability. Oncogene 2024; 43:2449-2462. [PMID: 38937601 DOI: 10.1038/s41388-024-03088-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/10/2024] [Accepted: 06/13/2024] [Indexed: 06/29/2024]
Abstract
Gene fusions represent a distinct class of structural variants identified frequently in cancer genomes across cancer types. Several gene fusions exhibit gain of oncogenic function and thus have been the focus of development of efficient targeted therapies. However, investigation of fusion landscape in early-onset sporadic rectal cancer, a poorly studied colorectal cancer subtype prevalent in developing countries, has not been performed. Here, we present a comprehensive landscape of gene fusions in EOSRC and CRC using patient derived tumor samples and data from The Cancer Genome Atlas, respectively. Gene Ontology analysis revealed enrichment of unique biological process terms associated with 5'- and 3'- fusion partner genes. Extensive network analysis highlighted genes exhibiting significant promiscuity in fusion formation and their association with chromosome fragile sites. Investigation of fusion formation in the context of global chromatin architecture unraveled a novel mode of gene activation that arose from fusion between genes located in orthogonal chromatin compartments. The study provides novel evidence linking fusions to genome stability and architecture and unearthed a hitherto unidentified mode of gene activation in cancer.
Collapse
Affiliation(s)
- Asmita Gupta
- Laboratory of Molecular Oncology, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India
| | - Sumedha Avadhanula
- Laboratory of Molecular Oncology, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India
| | - Murali Dharan Bashyam
- Laboratory of Molecular Oncology, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India.
| |
Collapse
|
6
|
Lund-Andersen C, Torgunrud A, Kanduri C, Dagenborg VJ, Frøysnes IS, Larsen MM, Davidson B, Larsen SG, Flatmark K. Novel drug resistance mechanisms and drug targets in BRAF-mutated peritoneal metastasis from colorectal cancer. J Transl Med 2024; 22:646. [PMID: 38982444 PMCID: PMC11234641 DOI: 10.1186/s12967-024-05467-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 07/03/2024] [Indexed: 07/11/2024] Open
Abstract
BACKGROUND Patients with peritoneal metastasis from colorectal cancer (PM-CRC) have inferior prognosis and respond particularly poorly to chemotherapy. This study aims to identify the molecular explanation for the observed clinical behavior and suggest novel treatment strategies in PM-CRC. METHODS Tumor samples (230) from a Norwegian national cohort undergoing surgery and hyperthermic intraperitoneal chemotherapy (HIPEC) with mitomycin C (MMC) for PM-CRC were subjected to targeted DNA sequencing, and associations with clinical data were analyzed. mRNA sequencing was conducted on a subset of 30 samples to compare gene expression in tumors harboring BRAF or KRAS mutations and wild-type tumors. RESULTS BRAF mutations were detected in 27% of the patients, and the BRAF-mutated subgroup had inferior overall survival compared to wild-type cases (median 16 vs 36 months, respectively, p < 0.001). BRAF mutations were associated with RNF43/RSPO aberrations and low expression of negative Wnt regulators (ligand-dependent Wnt activation). Furthermore, BRAF mutations were associated with gene expression changes in transport solute carrier proteins (specifically SLC7A6) and drug metabolism enzymes (CES1 and CYP3A4) that could influence the efficacy of MMC and irinotecan, respectively. BRAF-mutated tumors additionally exhibited increased expression of members of the novel butyrophilin subfamily of immune checkpoint molecules (BTN1A1 and BTNL9). CONCLUSIONS BRAF mutations were frequently detected and were associated with particularly poor survival in this cohort, possibly related to ligand-dependent Wnt activation and altered drug transport and metabolism that could confer resistance to MMC and irinotecan. Drugs that target ligand-dependent Wnt activation or the BTN immune checkpoints could represent two novel therapy approaches.
Collapse
Affiliation(s)
- Christin Lund-Andersen
- Departments of Tumor Biology, Norwegian Radium Hospital, Oslo University Hospital, Montebello, 0310, Oslo, Norway.
| | - Annette Torgunrud
- Departments of Tumor Biology, Norwegian Radium Hospital, Oslo University Hospital, Montebello, 0310, Oslo, Norway
| | | | - Vegar J Dagenborg
- Departments of Gastroenterological Surgery, Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Ida S Frøysnes
- Departments of Tumor Biology, Norwegian Radium Hospital, Oslo University Hospital, Montebello, 0310, Oslo, Norway
| | - Mette M Larsen
- Departments of Gastroenterological Surgery, Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Ben Davidson
- Departments of Pathology, Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Stein G Larsen
- Departments of Gastroenterological Surgery, Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Kjersti Flatmark
- Departments of Tumor Biology, Norwegian Radium Hospital, Oslo University Hospital, Montebello, 0310, Oslo, Norway
- Departments of Gastroenterological Surgery, Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
7
|
Jin H, Huang X, Pan Q, Ma N, Xie X, Wei Y, Yu F, Wen W, Zhang B, Zhang P, Chen X, Wang J, Liu RY, Lin J, Meng X, Lee MH. The EIF3H-HAX1 axis increases RAF-MEK-ERK signaling activity to promote colorectal cancer progression. Nat Commun 2024; 15:2551. [PMID: 38514606 PMCID: PMC10957977 DOI: 10.1038/s41467-024-46521-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 02/29/2024] [Indexed: 03/23/2024] Open
Abstract
Eukaryotic initiation translation factor 3 subunit h (EIF3H) plays critical roles in regulating translational initiation and predicts poor cancer prognosis, but the mechanism underlying EIF3H tumorigenesis remains to be further elucidated. Here, we report that EIF3H is overexpressed in colorectal cancer (CRC) and correlates with poor prognosis. Conditional Eif3h deletion suppresses colorectal tumorigenesis in AOM/DSS model. Mechanistically, EIF3H functions as a deubiquitinase for HAX1 and stabilizes HAX1 via antagonizing βTrCP-mediated ubiquitination, which enhances the interaction between RAF1, MEK1 and ERK1, thereby potentiating phosphorylation of ERK1/2. In addition, activation of Wnt/β-catenin signaling induces EIF3H expression. EIF3H/HAX1 axis promotes CRC tumorigenesis and metastasis in mouse orthotopic cancer model. Significantly, combined targeting Wnt and RAF1-ERK1/2 signaling synergistically inhibits tumor growth in EIF3H-high patient-derived xenografts. These results uncover the important roles of EIF3H in mediating CRC progression through regulating HAX1 and RAF1-ERK1/2 signaling. EIF3H represents a promising therapeutic target and prognostic marker in CRC.
Collapse
Affiliation(s)
- Huilin Jin
- Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Hepatobiliary, Pancreatic and Splenic surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaoling Huang
- Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qihao Pan
- Guangdong Provincial Key laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Obstetrics and Gynecology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ning Ma
- Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaoshan Xie
- Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yue Wei
- Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Fenghai Yu
- Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Weijie Wen
- Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Boyu Zhang
- Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Peng Zhang
- Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xijie Chen
- Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Gastrointestinal Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jie Wang
- Department of Radiation Oncology, Dalian Municipal Central Hospital, Dalian, China
| | - Ran-Yi Liu
- State Key Laboratory of Oncology in South China & Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Junzhong Lin
- State Key Laboratory of Oncology in South China & Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xiangqi Meng
- Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
- Guangdong Provincial Key laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| | - Mong-Hong Lee
- Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
- Guangdong Provincial Key laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
8
|
Huang ZY, Wen L, Ye LF, Lu YT, Pat Fong W, Zhang RJ, Wu SX, Chen ZG, Cai YY, Xu RH, Li YH, Du ZM, Wang DS. Clinical and molecular characteristics of RNF43 mutations as promising prognostic biomarkers in colorectal cancer. Ther Adv Med Oncol 2024; 16:17588359231220600. [PMID: 38205077 PMCID: PMC10777808 DOI: 10.1177/17588359231220600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 11/21/2023] [Indexed: 01/12/2024] Open
Abstract
Background Transmembrane E3 ubiquitin ligase (RNF43) mutations are present in approximately 6-18% of colorectal cancers (CRC) and could enhance Wnt/β-catenin signaling, which is emerging as a promising therapeutic target. This study aims to investigate the clinical and molecular characteristics and potential heterogeneity of RNF43-mutant CRC. Methods A total of 78 patients with RNF43-mutant CRC were enrolled from July 2013 to November 2022. Demographic data, clinical characteristics, treatment regimens used, and survival outcomes were collected and analyzed. Results Our study uncovered that patients with RNF43 mutations in the N-terminal domain (NTD; n = 50) exhibited shorter overall survival (OS; median months, 50.80 versus not reached; p = 0.043) compared to those in the C-terminal domain (CTD; n = 17). Most RNF43 mutations in NTD had positive primary lymph node status, low tumor mutation burden (TMB-L), and correlated with proficient mismatch repair (pMMR)/microsatellite stable (MSS) status. By contrast, RNF43 mutations in CTD were significantly enriched in deficient MMR (dMMR)/microsatellite instability (MSI-H) tumors with high TMB (TMB-H). N-terminal RNF43-mutated tumors harbored a hotspot variant (RNF43 R117fs), which independently predicted a significantly worse outcome in pMMR/MSS CRC with a median OS of 18.9 months. Patients with RNF43 mutations and the BRAF V600E alterations demonstrated sensitivity to BRAF/EGFR inhibitors. Moreover, we observed that pMMR/MSS patients with RNF43 R117fs mutation had a higher incidence of stage IV, ⩾2 metastatic sites, low TMB, and none of them received PD-1/PD-L1 inhibitor therapy. Conclusion Our findings provide the first evidence that RNF43 mutations in NTD and the R117fs variant correlate with a poorer prognosis in CRC patients, providing strategies for Wnt-targeted therapy to improve clinical efficacy.
Collapse
Affiliation(s)
- Zi-Yao Huang
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, P. R. China
| | - Lei Wen
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, P. R. China
| | - Liu-Fang Ye
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, P. R. China
| | - Yu-Ting Lu
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, P. R. China
| | - William Pat Fong
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, P. R. China
| | - Ren-Jing Zhang
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
- Department of Molecular Diagnostics, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Si-Xian Wu
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, P. R. China
| | - Zhi-Gang Chen
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, P. R. China
| | - Yan-Yu Cai
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, P. R. China
| | - Rui-Hua Xu
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, P. R. China
| | - Yu-Hong Li
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, P. R. China
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou 510060, P. R. China
| | - Zi-Ming Du
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, P. R. China
- Department of Molecular Diagnostics, Sun Yat-sen University Cancer Center, Guangzhou 510060, P. R. China
| | - De-Shen Wang
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, P. R. China
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou 510060, P. R. China
| |
Collapse
|
9
|
Li B, Ming H, Qin S, Zhou L, Huang Z, Jin P, Peng L, Luo M, Zhang T, Wang K, Liu R, Liou Y, Nice EC, Jiang J, Huang C. HSPA8 Activates Wnt/β-Catenin Signaling to Facilitate BRAF V600E Colorectal Cancer Progression by CMA-Mediated CAV1 Degradation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306535. [PMID: 37973552 PMCID: PMC10797426 DOI: 10.1002/advs.202306535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Indexed: 11/19/2023]
Abstract
BRAF V600E attracts wide attention in the treatment of colorectal cancer (CRC) as stratifying and predicting a refractory classification of CRC. Recent evidence indicates that Wnt/β-catenin signaling is broadly activated and participates in the refractoriness of BRAF V600E CRC, but the underlying molecular mechanism needs to be elucidated. Here, heat shock 70 kDa protein 8 (HSPA8), an essential regulator in chaperone-mediated autophagy (CMA), is identified as a potential therapeutic target for advanced BRAF V600E CRC. These results show that HSPA8 is transcriptionally upregulated in BRAF V600E CRC, which promotes CMA-dependent degradation of caveolin-1 (CAV1) to release β-catenin into the nucleus and thus activates the Wnt/β-catenin pathway, contributing to metastasis and progression of BRAF V600E CRC. Of note, HSPA8 directly interacts with the KIFSN motif on CAV1, the interaction can be enhanced by p38 MAPK-mediated CAV1 S168 phosphorylation. Furthermore, pharmacological targeting HSPA8 by VER155008 exhibits synergistic effects with BRAF inhibitors on CRC mouse models. In summary, these findings discover the important role of the HSPA8/CAV1/β-catenin axis in the development of refractory BRAF V600E CRC and highlight HSPA8 as a predictive biomarker and therapeutic target in clinical practice.
Collapse
Affiliation(s)
- Bowen Li
- State Key Laboratory of Biotherapy and Cancer CenterWest China Hospital and West China School of Basic Medical Sciences and Forensic MedicineSichuan University and Collaborative Innovation Center for BiotherapyChengdu610041P. R. China
| | - Hui Ming
- State Key Laboratory of Biotherapy and Cancer CenterWest China Hospital and West China School of Basic Medical Sciences and Forensic MedicineSichuan University and Collaborative Innovation Center for BiotherapyChengdu610041P. R. China
| | - Siyuan Qin
- State Key Laboratory of Biotherapy and Cancer CenterWest China Hospital and West China School of Basic Medical Sciences and Forensic MedicineSichuan University and Collaborative Innovation Center for BiotherapyChengdu610041P. R. China
| | - Li Zhou
- State Key Laboratory of Biotherapy and Cancer CenterWest China Hospital and West China School of Basic Medical Sciences and Forensic MedicineSichuan University and Collaborative Innovation Center for BiotherapyChengdu610041P. R. China
| | - Zhao Huang
- State Key Laboratory of Biotherapy and Cancer CenterWest China Hospital and West China School of Basic Medical Sciences and Forensic MedicineSichuan University and Collaborative Innovation Center for BiotherapyChengdu610041P. R. China
| | - Ping Jin
- State Key Laboratory of Biotherapy and Cancer CenterWest China Hospital and West China School of Basic Medical Sciences and Forensic MedicineSichuan University and Collaborative Innovation Center for BiotherapyChengdu610041P. R. China
| | - Liyuan Peng
- State Key Laboratory of Biotherapy and Cancer CenterWest China Hospital and West China School of Basic Medical Sciences and Forensic MedicineSichuan University and Collaborative Innovation Center for BiotherapyChengdu610041P. R. China
| | - Maochao Luo
- State Key Laboratory of Biotherapy and Cancer CenterWest China Hospital and West China School of Basic Medical Sciences and Forensic MedicineSichuan University and Collaborative Innovation Center for BiotherapyChengdu610041P. R. China
| | - Tingting Zhang
- State Key Laboratory of Biotherapy and Cancer CenterWest China Hospital and West China School of Basic Medical Sciences and Forensic MedicineSichuan University and Collaborative Innovation Center for BiotherapyChengdu610041P. R. China
| | - Kui Wang
- State Key Laboratory of Biotherapy and Cancer CenterWest China Hospital and West China School of Basic Medical Sciences and Forensic MedicineSichuan University and Collaborative Innovation Center for BiotherapyChengdu610041P. R. China
| | - Rui Liu
- State Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral DiseasesChinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and ManagementWest China Hospital of StomatologySichuan UniversityChengduSichuan610041P. R. China
| | - Yih‐Cherng Liou
- Department of Biological SciencesFaculty of ScienceNational University of SingaporeSingapore117543Singapore
- Graduate School for Integrative Sciences and EngineeringNational University of SingaporeSingapore117573Singapore
| | - Edouard C. Nice
- Department of Biochemistry and Molecular BiologyMonash UniversityClaytonVIC3800Australia
| | - Jingwen Jiang
- West China School of Public Health and West China Fourth HospitalSichuan UniversityChengdu610041P. R. China
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer CenterWest China Hospital and West China School of Basic Medical Sciences and Forensic MedicineSichuan University and Collaborative Innovation Center for BiotherapyChengdu610041P. R. China
| |
Collapse
|
10
|
Ferrer-Mayorga G, Muñoz A, González-Sancho JM. Vitamin D and colorectal cancer. FELDMAN AND PIKE'S VITAMIN D 2024:859-899. [DOI: 10.1016/b978-0-323-91338-6.00039-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
11
|
Brügger MD, Basler K. The diverse nature of intestinal fibroblasts in development, homeostasis, and disease. Trends Cell Biol 2023; 33:834-849. [PMID: 37080817 DOI: 10.1016/j.tcb.2023.03.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 02/28/2023] [Accepted: 03/13/2023] [Indexed: 04/22/2023]
Abstract
Only in recent years have we begun to appreciate the involvement of fibroblasts in intestinal development, tissue homeostasis, and disease. These insights followed the advent of single-cell transcriptomics that allowed researchers to explore the heterogeneity of intestinal fibroblasts in unprecedented detail. Since researchers often defined cell types and their associated function based on the biological process they studied, there are a plethora of partially overlapping markers for different intestinal fibroblast populations. This ambiguity complicates putting different research findings into context. Here, we provide a census on the function and identity of intestinal fibroblasts in mouse and human. We propose a simplified framework consisting of three colonic and four small intestinal fibroblast populations to aid navigating the diversity of intestinal fibroblasts.
Collapse
Affiliation(s)
- Michael David Brügger
- Department of Molecular Life Sciences, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland.
| | - Konrad Basler
- Department of Molecular Life Sciences, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland.
| |
Collapse
|
12
|
Shen X, Gao C, Li H, Liu C, Wang L, Li Y, Liu R, Sun C, Zhuang J. Natural compounds: Wnt pathway inhibitors with therapeutic potential in lung cancer. Front Pharmacol 2023; 14:1250893. [PMID: 37841927 PMCID: PMC10568034 DOI: 10.3389/fphar.2023.1250893] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/20/2023] [Indexed: 10/17/2023] Open
Abstract
The Wnt/β-catenin pathway is abnormally activated in most lung cancer tissues and considered to be an accelerator of carcinogenesis and lung cancer progression, which is closely related to increased morbidity rates, malignant progression, and treatment resistance. Although targeting the canonical Wnt/β-catenin pathway shows significant potential for lung cancer therapy, it still faces challenges owing to its complexity, tumor heterogeneity and wide physiological activity. Therefore, it is necessary to elucidate the role of the abnormal activation of the Wnt/β-catenin pathway in lung cancer progression. Moreover, Wnt inhibitors used in lung cancer clinical trials are expected to break existing therapeutic patterns, although their adverse effects limit the treatment window. This is the first study to summarize the research progress on various compounds, including natural products and derivatives, that target the canonical Wnt pathway in lung cancer to develop safer and more targeted drugs or alternatives. Various natural products have been found to inhibit Wnt/β-catenin in various ways, such as through upstream and downstream intervention pathways, and have shown encouraging preclinical anti-tumor efficacy. Their diversity and low toxicity make them a popular research topic, laying the foundation for further combination therapies and drug development.
Collapse
Affiliation(s)
- Xuetong Shen
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Chundi Gao
- College of Traditional Chinese Medicine, Weifang Medical University, Weifang, China
| | - Huayao Li
- College of Traditional Chinese Medicine, Weifang Medical University, Weifang, China
| | - Cun Liu
- College of Traditional Chinese Medicine, Weifang Medical University, Weifang, China
| | - Longyun Wang
- State Key Laboratory of Quality Research in Chinese Medicine and Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, China
| | - Ye Li
- State Key Laboratory of Quality Research in Chinese Medicine and Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, China
| | - Ruijuan Liu
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, China
| | - Changgang Sun
- College of Traditional Chinese Medicine, Weifang Medical University, Weifang, China
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, China
| | - Jing Zhuang
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, China
| |
Collapse
|
13
|
Cao J, Tao X, Shi B, Wang J, Ma R, Zhao J, Tian J, Huang Q, Yu J, Wang L. NKD1 targeting PCM1 regulates the therapeutic effects of homoharringtonine on colorectal cancer. Mol Biol Rep 2023; 50:6543-6556. [PMID: 37338734 DOI: 10.1007/s11033-023-08572-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 05/31/2023] [Indexed: 06/21/2023]
Abstract
BACKGROUND Colorectal cancer (CRC) is the most common primary malignancy. Recently, antineoplastic attributes of homoharringtonine (HHT) have attracted lots of attention. This study investigated the molecular target and underlying mechanism of HHT in the CRC process by using a cellular and animal models. METHODS This study first detected the effects of HHT on the proliferation, cell cycle and apoptosis ability of CRC cells using CCK-8, Edu staining, flow cytometry and Western blotting assay. In vitro recovery experiment and in vivo tumorigenesis experiment were used to detect the targeted interaction between HHT and NKD1. After that, the downstream target and mechanism of action of HHT targeting NKD1 was determined using quantitative proteomics combined with co-immunoprecipitation/immunofluorescence assay. RESULTS HHT suppressed CRC cells proliferation by inducing cell cycle arrest and apoptosis in vitro and vivo. HHT inhibited NKD1 expression in a concentration and time dependent manner. NKD1 was overexpressed in CRC and its depletion enhanced the therapeutic sensitivity of HHT on CRC, which indicating that NKD1 plays an important role in the development of CRC as the drug delivery target of HHT. Furthermore, proteomic analysis revealed that PCM1 participated the process of NKD1-regulated cell proliferation and cell cycle. NKD1 interacted with PCM1 and promoted PCM1 degradation through the ubiquitin-proteasome pathway. The overexpression of PCM1 effectively reversed the inhibition of siNKD1 on cell cycle. CONCLUSIONS The present findings revealed that HHT blocked NKD1 expression to participate in inhibiting cell proliferation and inducing cell apoptosis, ultimately leading to obstruction of CRC development through NKD1/PCM1 dependent mechanism. Our research provide evidence for clinical application of NKD1-targeted therapy in improving HHT sensitivity for CRC treatment.
Collapse
Affiliation(s)
- Jia Cao
- Department of Beijing National Biochip Research Center Sub-Center in Ningxia, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
- Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Xiang Tao
- College of Clinical Medicine, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Bin Shi
- Department of Emergency, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Jia Wang
- Department of Beijing National Biochip Research Center Sub-Center in Ningxia, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
- Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Rong Ma
- Department of Beijing National Biochip Research Center Sub-Center in Ningxia, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
- Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Jufen Zhao
- College of Clinical Medicine, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Jinhai Tian
- Department of Beijing National Biochip Research Center Sub-Center in Ningxia, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Qi Huang
- Department of Beijing National Biochip Research Center Sub-Center in Ningxia, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
- Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Jingjing Yu
- Department of Beijing National Biochip Research Center Sub-Center in Ningxia, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
- Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Libin Wang
- Department of Beijing National Biochip Research Center Sub-Center in Ningxia, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China.
- College of Clinical Medicine, Ningxia Medical University, Yinchuan, Ningxia, China.
| |
Collapse
|
14
|
van Driel MS, Linssen JDG, Flanagan DJ, Vlahov N, Nijman LE, de Groot NE, Elbers CC, Koster J, Sansom OJ, Vermeulen L, van Neerven SM. Caffeine Limits Expansion of Apc-Deficient Clones in the Intestine by NOTUM Inhibition. Cell Mol Gastroenterol Hepatol 2023; 16:652-655. [PMID: 37364735 PMCID: PMC10511923 DOI: 10.1016/j.jcmgh.2023.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 06/15/2023] [Accepted: 06/16/2023] [Indexed: 06/28/2023]
Affiliation(s)
- Milou S van Driel
- Amsterdam UMC, Location University of Amsterdam, Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Amsterdam, The Netherlands; Cancer Center Amsterdam, Amsterdam, The Netherlands; Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, The Netherlands; Oncode Institute, Amsterdam, The Netherlands
| | - Jasmijn D G Linssen
- Amsterdam UMC, Location University of Amsterdam, Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Amsterdam, The Netherlands; Cancer Center Amsterdam, Amsterdam, The Netherlands; Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, The Netherlands; Oncode Institute, Amsterdam, The Netherlands; Amsterdam UMC, Location University of Amsterdam, Department of Gastroenterology and Hepatology, Amsterdam, The Netherlands
| | - Dustin J Flanagan
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Australia; Cancer Program, Biomedicine Discovery Institute, Monash University, Melbourne, Australia; Cancer Research UK Beatson Institute, Glasgow, United Kingdom
| | - Nikola Vlahov
- Cancer Research UK Beatson Institute, Glasgow, United Kingdom
| | - Lisanne E Nijman
- Amsterdam UMC, Location University of Amsterdam, Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Amsterdam, The Netherlands; Cancer Center Amsterdam, Amsterdam, The Netherlands; Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, The Netherlands; Oncode Institute, Amsterdam, The Netherlands
| | - Nina E de Groot
- Amsterdam UMC, Location University of Amsterdam, Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Amsterdam, The Netherlands; Cancer Center Amsterdam, Amsterdam, The Netherlands; Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, The Netherlands; Oncode Institute, Amsterdam, The Netherlands
| | - Clara C Elbers
- Amsterdam UMC, Location University of Amsterdam, Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Amsterdam, The Netherlands; Cancer Center Amsterdam, Amsterdam, The Netherlands; Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, The Netherlands; Oncode Institute, Amsterdam, The Netherlands
| | - Jan Koster
- Amsterdam UMC, Location University of Amsterdam, Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Amsterdam, The Netherlands; Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Owen J Sansom
- Cancer Research UK Beatson Institute, Glasgow, United Kingdom; Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Louis Vermeulen
- Amsterdam UMC, Location University of Amsterdam, Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Amsterdam, The Netherlands; Cancer Center Amsterdam, Amsterdam, The Netherlands; Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, The Netherlands; Oncode Institute, Amsterdam, The Netherlands.
| | - Sanne M van Neerven
- Amsterdam UMC, Location University of Amsterdam, Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Amsterdam, The Netherlands; Cancer Center Amsterdam, Amsterdam, The Netherlands; Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, The Netherlands; Oncode Institute, Amsterdam, The Netherlands; Wellcome Trust-Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, United Kingdom.
| |
Collapse
|
15
|
Groenewald W, Lund AH, Gay DM. The Role of WNT Pathway Mutations in Cancer Development and an Overview of Therapeutic Options. Cells 2023; 12:990. [PMID: 37048063 PMCID: PMC10093220 DOI: 10.3390/cells12070990] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/21/2023] [Accepted: 03/23/2023] [Indexed: 04/14/2023] Open
Abstract
It is well established that mutations in the canonical WNT-signalling pathway play a major role in various cancers. Critical to developing new therapeutic strategies is understanding which cancers are driven by WNT pathway activation and at what level these mutations occur within the pathway. Some cancers harbour mutations in genes whose protein products operate at the receptor level of the WNT pathway. For instance, tumours with RNF43 or RSPO mutations, still require exogenous WNT ligands to drive WNT signalling (ligand-dependent mutations). Conversely, mutations within the cytoplasmic segment of the Wnt pathway, such as in APC and CTNNB1, lead to constitutive WNT pathway activation even in the absence of WNT ligands (ligand-independent). Here, we review the predominant driving mutations found in cancer that lead to WNT pathway activation, as well as explore some of the therapeutic interventions currently available against tumours harbouring either ligand-dependent or ligand-independent mutations. Finally, we discuss a potentially new therapeutic avenue by targeting the translational apparatus downstream from WNT signalling.
Collapse
Affiliation(s)
| | - Anders H. Lund
- Biotech Research and Innovation Centre, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - David Michael Gay
- Biotech Research and Innovation Centre, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| |
Collapse
|
16
|
Xu T, Li J, Wang Z, Zhang X, Zhou J, Lu Z, Shen L, Wang X. Real-world treatment and outcomes of patients with metastatic BRAF mutant colorectal cancer. Cancer Med 2023; 12:10473-10484. [PMID: 36912150 DOI: 10.1002/cam4.5783] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 02/20/2023] [Accepted: 02/25/2023] [Indexed: 03/14/2023] Open
Abstract
BACKGROUND BRAF mutation occurs in 5%-10% of metastatic colorectal cancers (mCRCs). Patients with BRAF mutant mCRC exhibit a specific metastatic pattern and poor prognosis. Survival outcomes are heterogeneous in cases of mCRC with a BRAF mutation. The optimal first-line therapy is still controversial. METHODS We retrospectively reviewed the medical records of patients with mCRC between June 2010 and December 2021. Clinicopathologic characteristics, treatment and BRAF mutation testing results were collected. Patients with a BRAF mutation were included. Kaplan-Meier methods and log-rank tests were used to analyze and compare survival. Cox proportional hazards regression was used to establish the predictive nomogram model. RESULTS Of the 4475 mCRC, 261 have a BRAF mutation, including 240 V600E and 21 non-V600E mutants. The median overall survival (OS) was 18.2 months in the BRAF V600E mutant group versus 38.0 months in the non-V600E mutant group (p = 0.022). ECOG score, tumor differentiation, liver metastasis, bone metastasis and primary tumor resection were independent prognostic factors for the OS of BRAF V600E mutant mCRC. A nomogram model was established using these factors. The median OS was 39.3 m, 18.2 m and 10.7 m for the low-risk, intermediate-risk and high-risk groups defined by this model, respectively (p < 0.0001). Patients who received first-line triplet chemotherapy ± bevacizumab had comparable progression free survival (PFS) and OS compared with those treated with doublets ± bevacizumab. CONCLUSION BRAF V600E mutant mCRCs exhibit unfavorable and heterogeneous prognosis. The first-line intensive chemotherapy did not confer a marked impact on the PFS and OS.
Collapse
Affiliation(s)
- Ting Xu
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, China
| | - Jian Li
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, China
| | - Zhenghang Wang
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, China
| | - Xiaotian Zhang
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, China
| | - Jun Zhou
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, China
| | - Zhihao Lu
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, China
| | - Lin Shen
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, China
| | - Xicheng Wang
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, China
| |
Collapse
|
17
|
Chen D, Zhou X, Yan P, Yang C, Li Y, Han L, Ren X. Lipid metabolism reprogramming in colorectal cancer. J Cell Biochem 2023; 124:3-16. [PMID: 36334309 DOI: 10.1002/jcb.30347] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 10/20/2022] [Accepted: 10/26/2022] [Indexed: 11/06/2022]
Abstract
The hallmark feature of metabolic reprogramming is now considered to be widespread in many malignancies, including colorectal cancer (CRC). Of the gastrointestinal tumors, CRC is one of the most common with a high metastasis rate and long insidious period. The incidence and mortality of CRC has increased in recent years. Metabolic reprogramming also has a significant role in the development and progression of CRC, especially lipid metabolic reprogramming. Many studies have reported that lipid metabolism reprogramming is similar to the Warburg effect with typical features affecting tumor biology including proliferation, migration, local invasion, apoptosis, and other biological behaviors of cancer cells. Therefore, studying the role of lipid metabolism in the occurrence and development of CRC will increase our understanding of its pathogenesis, invasion, metastasis, and other processes and provide new directions for the treatment of CRC. In this paper, we mainly describe the molecular mechanism of lipid metabolism reprogramming and its important role in the occurrence and development of CRC. In addition, to provide reference for subsequent research and clinical diagnosis and treatment we also review the treatments of CRC that target lipid metabolism.
Collapse
Affiliation(s)
- Dan Chen
- Department of Pathology & Cancer Research Center, Yanbian University Medical College, Yanji, China.,Key Laboratory of Pathobiology, Yanbian University, State Ethnic Affairs Commission, Yanji, China
| | - Xuebing Zhou
- Department of Pathology & Cancer Research Center, Yanbian University Medical College, Yanji, China.,Key Laboratory of Pathobiology, Yanbian University, State Ethnic Affairs Commission, Yanji, China
| | - PengYu Yan
- Department of Urology, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Chunyu Yang
- Department of Pathology & Cancer Research Center, Yanbian University Medical College, Yanji, China.,Key Laboratory of Pathobiology, Yanbian University, State Ethnic Affairs Commission, Yanji, China
| | - Yuan Li
- Department of Pathology & Cancer Research Center, Yanbian University Medical College, Yanji, China.,Key Laboratory of Pathobiology, Yanbian University, State Ethnic Affairs Commission, Yanji, China
| | - Longzhe Han
- Key Laboratory of Pathobiology, Yanbian University, State Ethnic Affairs Commission, Yanji, China.,Department of Pathology, Affiliated Hospital of Yanbian University, Yanji, China
| | - Xiangshan Ren
- Department of Pathology & Cancer Research Center, Yanbian University Medical College, Yanji, China.,Key Laboratory of Pathobiology, Yanbian University, State Ethnic Affairs Commission, Yanji, China
| |
Collapse
|
18
|
van Neerven SM, Smit WL, van Driel MS, Kakkar V, de Groot NE, Nijman LE, Elbers CC, Léveillé N, Heijmans J, Vermeulen L. Intestinal Apc-inactivation induces HSP25 dependency. EMBO Mol Med 2022; 14:e16194. [PMID: 36321561 PMCID: PMC9727927 DOI: 10.15252/emmm.202216194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 10/12/2022] [Accepted: 10/12/2022] [Indexed: 12/12/2022] Open
Abstract
The majority of colorectal cancers (CRCs) present with early mutations in tumor suppressor gene APC. APC mutations result in oncogenic activation of the Wnt pathway, which is associated with hyperproliferation, cytoskeletal remodeling, and a global increase in mRNA translation. To compensate for the increased biosynthetic demand, cancer cells critically depend on protein chaperones to maintain proteostasis, although their function in CRC remains largely unexplored. In order to investigate the role of molecular chaperones in driving CRC initiation, we captured the transcriptomic profiles of murine wild type and Apc-mutant organoids during active transformation. We discovered a strong transcriptional upregulation of Hspb1, which encodes small heat shock protein 25 (HSP25). We reveal an indispensable role for HSP25 in facilitating Apc-driven transformation, using both in vitro organoid cultures and mouse models, and demonstrate that chemical inhibition of HSP25 using brivudine reduces the development of premalignant adenomas. These findings uncover a hitherto unknown vulnerability in intestinal transformation that could be exploited for the development of chemopreventive strategies in high-risk individuals.
Collapse
Affiliation(s)
- Sanne M van Neerven
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular MedicineAmsterdam UMC Location University of AmsterdamAmsterdamThe Netherlands,Cancer Center AmsterdamAmsterdamThe Netherlands,Amsterdam Gastroenterology Endocrinology MetabolismAmsterdamThe Netherlands,Oncode InstituteAmsterdamThe Netherlands
| | - Wouter L Smit
- Amsterdam Gastroenterology Endocrinology MetabolismAmsterdamThe Netherlands,Department of Gastroenterology and Hepatology, Tytgat Institute for Liver and Intestinal ResearchAmsterdam UMC Location University of AmsterdamAmsterdamThe Netherlands
| | - Milou S van Driel
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular MedicineAmsterdam UMC Location University of AmsterdamAmsterdamThe Netherlands,Cancer Center AmsterdamAmsterdamThe Netherlands,Amsterdam Gastroenterology Endocrinology MetabolismAmsterdamThe Netherlands,Oncode InstituteAmsterdamThe Netherlands
| | - Vaishali Kakkar
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular MedicineAmsterdam UMC Location University of AmsterdamAmsterdamThe Netherlands,Cancer Center AmsterdamAmsterdamThe Netherlands,Amsterdam Gastroenterology Endocrinology MetabolismAmsterdamThe Netherlands,Oncode InstituteAmsterdamThe Netherlands
| | - Nina E de Groot
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular MedicineAmsterdam UMC Location University of AmsterdamAmsterdamThe Netherlands,Cancer Center AmsterdamAmsterdamThe Netherlands,Amsterdam Gastroenterology Endocrinology MetabolismAmsterdamThe Netherlands,Oncode InstituteAmsterdamThe Netherlands
| | - Lisanne E Nijman
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular MedicineAmsterdam UMC Location University of AmsterdamAmsterdamThe Netherlands,Cancer Center AmsterdamAmsterdamThe Netherlands,Amsterdam Gastroenterology Endocrinology MetabolismAmsterdamThe Netherlands,Oncode InstituteAmsterdamThe Netherlands
| | - Clara C Elbers
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular MedicineAmsterdam UMC Location University of AmsterdamAmsterdamThe Netherlands,Cancer Center AmsterdamAmsterdamThe Netherlands,Amsterdam Gastroenterology Endocrinology MetabolismAmsterdamThe Netherlands,Oncode InstituteAmsterdamThe Netherlands
| | - Nicolas Léveillé
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular MedicineAmsterdam UMC Location University of AmsterdamAmsterdamThe Netherlands,Cancer Center AmsterdamAmsterdamThe Netherlands,Amsterdam Gastroenterology Endocrinology MetabolismAmsterdamThe Netherlands,Oncode InstituteAmsterdamThe Netherlands
| | - Jarom Heijmans
- Amsterdam Gastroenterology Endocrinology MetabolismAmsterdamThe Netherlands,Department of Gastroenterology and Hepatology, Tytgat Institute for Liver and Intestinal ResearchAmsterdam UMC Location University of AmsterdamAmsterdamThe Netherlands,Department of Internal MedicineAmsterdam UMC Location University of AmsterdamAmsterdamThe Netherlands
| | - Louis Vermeulen
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular MedicineAmsterdam UMC Location University of AmsterdamAmsterdamThe Netherlands,Cancer Center AmsterdamAmsterdamThe Netherlands,Amsterdam Gastroenterology Endocrinology MetabolismAmsterdamThe Netherlands,Oncode InstituteAmsterdamThe Netherlands
| |
Collapse
|
19
|
ter Steege EJ, Boer M, Timmer NC, Ammerlaan CME, Song J, Derksen PWB, Hilkens J, Bakker ERM. R-spondin-3 is an oncogenic driver of poorly differentiated invasive breast cancer. J Pathol 2022; 258:289-299. [PMID: 36106661 PMCID: PMC9825844 DOI: 10.1002/path.5999] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/28/2022] [Accepted: 08/05/2022] [Indexed: 01/11/2023]
Abstract
R-spondins (RSPOs) are influential signaling molecules that promote the Wnt/β-catenin pathway and self-renewal of stem cells. Currently, RSPOs are emerging as clinically relevant oncogenes, being linked to cancer development in multiple organs. Although this has instigated the rapid development and testing of therapeutic antibodies targeting RSPOs, functional evidence that RSPO causally drives cancer has focused primarily on the intestinal tract. Here, we assess the oncogenic capacity of RSPO in breast cancer in a direct fashion by generating and characterizing a novel mouse model with conditional Rspo3 expression in the mammary gland. We also address the prevalence of RSPO gene alterations in breast cancer patients. We found that a quarter of breast cancer patients harbor RSPO2/RSPO3 copy number amplifications, which are associated with lack of steroid hormone receptor expression and reduced patient survival. Foremost, we demonstrate the causal oncogenic capacity of RSPO3 in the breast, as conditional Rspo3 overexpression consistently drives the development of mammary adenocarcinomas in our novel Rspo3 breast cancer model. RSPO3-driven mammary tumors typically show poor differentiation, areas of epithelial-to-mesenchymal transition, and metastatic potential. Given the reported interplay in the Wnt/β-catenin pathway, we comparatively analyzed RSPO3-driven mouse mammary tumors versus classical WNT1-driven analogues. This revealed that RSPO3-driven tumors are distinct, as the poorly differentiated tumor morphology and metastatic potential were observed in RSPO3-driven tumorigenesis exclusively, further substantiated by differentiating gene expression profiles. Co-expression of Rspo3 and Wnt1 transduced mammary tumors with a mixed phenotype harboring morphological features characteristic of both transgenes. In summary, we report that a quarter of breast cancer patients harbor RSPO2/RSPO3 copy number gains, and these patients have a worse prognosis, whilst providing in vivo evidence that RSPO3 drives poorly differentiated invasive breast cancer in mice. Herewith, we establish RSPO3 as a driver of breast cancer with clinical relevance, proposing RSPO3 as a novel candidate target for therapy in breast cancer. © 2022 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Eline J ter Steege
- Department of PathologyUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Mandy Boer
- Department of Molecular GeneticsThe Netherlands Cancer InstituteAmsterdamThe Netherlands
| | - Nikki C Timmer
- Department of Molecular GeneticsThe Netherlands Cancer InstituteAmsterdamThe Netherlands
| | - Carola ME Ammerlaan
- Department of Molecular GeneticsThe Netherlands Cancer InstituteAmsterdamThe Netherlands
| | - Ji‐Ying Song
- Department of Experimental Animal PathologyThe Netherlands Cancer InstituteAmsterdamThe Netherlands
| | - Patrick WB Derksen
- Department of PathologyUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - John Hilkens
- Department of Molecular GeneticsThe Netherlands Cancer InstituteAmsterdamThe Netherlands
| | - Elvira RM Bakker
- Department of PathologyUniversity Medical Center UtrechtUtrechtThe Netherlands,Department of Molecular GeneticsThe Netherlands Cancer InstituteAmsterdamThe Netherlands
| |
Collapse
|
20
|
Li JY, Gillilland M, Lee AA, Wu X, Zhou SY, Owyang C. Secondary bile acids mediate high-fat diet-induced upregulation of R-spondin 3 and intestinal epithelial proliferation. JCI Insight 2022; 7:e148309. [PMID: 36099053 PMCID: PMC9675439 DOI: 10.1172/jci.insight.148309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 08/31/2022] [Indexed: 11/17/2022] Open
Abstract
A high-fat diet (HFD) contributes to the increased incidence of colorectal cancer, but the mechanisms are unclear. We found that R-spondin 3 (Rspo3), a ligand for leucine-rich, repeat-containing GPCR 4 and 5 (LGR4 and LGR5), was the main subtype of R-spondins and was produced by myofibroblasts beneath the crypts in the intestine. HFD upregulated colonic Rspo3, LGR4, LGR5, and β-catenin gene expression in specific pathogen-free rodents, but not in germ-free mice, and the upregulations were prevented by the bile acid (BA) binder cholestyramine or antibiotic treatment, indicating mediation by both BA and gut microbiota. Cholestyramine or antibiotic treatments prevented HFD-induced enrichment of members of the Lachnospiraceae and Rumincoccaceae, which can transform primary BA into secondary BA. Oral administration of deoxycholic acid (DCA), or inoculation of a combination of the BA deconjugator Lactobacillus plantarum and 7α-dehydroxylase-containing Clostridium scindens with an HFD to germ-free mice increased serum DCA and colonic Rspo3 mRNA levels, indicating that formation of secondary BA by gut microbiota is responsible for HFD-induced upregulation of Rspo3. In primary myofibroblasts, DCA increased Rspo3 mRNA via TGR5. Finally, we showed that cholestyramine or conditional deletion of Rspo3 prevented HFD- or DCA-induced intestinal proliferation. We conclude that secondary BA is responsible for HFD-induced upregulation of Rspo3, which, in turn, mediates HFD-induced intestinal epithelial proliferation.
Collapse
|
21
|
Flanagan DJ, Woodcock SA, Phillips C, Eagle C, Sansom OJ. Targeting ligand-dependent wnt pathway dysregulation in gastrointestinal cancers through porcupine inhibition. Pharmacol Ther 2022; 238:108179. [PMID: 35358569 PMCID: PMC9531712 DOI: 10.1016/j.pharmthera.2022.108179] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 12/20/2022]
Abstract
Gastrointestinal cancers are responsible for more cancer deaths than any other system of the body. This review summarises how Wnt pathway dysregulation contributes to the development of the most common gastrointestinal cancers, with a particular focus on the nature and frequency of upstream pathway aberrations. Tumors with upstream aberrations maintain a dependency on the presence of functional Wnt ligand, and are predicted to be tractable to inhibitors of Porcupine, an enzyme that plays a key role in Wnt secretion. We summarise available pre-clinical efficacy data from Porcupine inhibitors in vitro and in vivo, as well as potential toxicities and the data from early phase clinical trials. We appraise the rationale for biomarker-defined targeted approaches, as well as outlining future opportunities for combination with other therapeutics.
Collapse
Affiliation(s)
- Dustin J Flanagan
- Cancer Research UK Beatson Institute, Glasgow, UK; Biomedicine Discovery Institute, Monash University, Melbourne, Australia
| | | | | | | | - Owen J Sansom
- Cancer Research UK Beatson Institute, Glasgow, UK; Institute of Cancer Sciences, University of Glasgow, Glasgow, UK.
| |
Collapse
|
22
|
Hashimoto T, Takayanagi D, Yonemaru J, Naka T, Nagashima K, Yatabe Y, Shida D, Hamamoto R, Kleeman SO, Leedham SJ, Maughan T, Takashima A, Shiraishi K, Sekine S. Clinicopathological and molecular characteristics of RSPO fusion-positive colorectal cancer. Br J Cancer 2022; 127:1043-1050. [PMID: 35715628 PMCID: PMC9470590 DOI: 10.1038/s41416-022-01880-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 05/26/2022] [Accepted: 06/01/2022] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND RSPO fusions that lead to WNT pathway activation are potential therapeutic targets in colorectal cancer (CRC), but their clinicopathological significance remains unclear. METHODS We screened 1019 CRCs for RSPO fusions using multiplex reverse transcription-PCR. The RSPO fusion-positive tumours were subjected to whole-exome sequencing (WES). RESULTS Our analysis identified 29 CRCs with RSPO fusions (2.8%), consisting of five with an EIF3E-RSPO2 fusion and 24 with PTPRK-RSPO3 fusions. The patients were 17 women and 12 men. Thirteen tumours (45%) were right-sided. Histologically, approximately half of the tumours (13/29, 45%) had a focal or extensive mucinous component that was significantly more frequent than the RSPO fusion-negative tumours (13%; P = 8.1 × 10-7). Four tumours (14%) were mismatch repair-deficient. WES identified KRAS, BRAF, and NRAS mutations in a total of 27 tumours (93%). In contrast, pathogenic mutations in major WNT pathway genes, such as APC, CTNNB1 and RNF43, were absent. RSPO fusion status did not have a statistically significant influence on the overall or recurrence-free survival. These clinicopathological and genetic features were also confirmed in a pooled analysis of previous studies. CONCLUSION RSPO fusion-positive CRCs constitute a rare subgroup of CRCs with several characteristic clinicopathological and genetic features.
Collapse
Affiliation(s)
- Taiki Hashimoto
- Division of Diagnostic Pathology, National Cancer Center Hospital, Tokyo, Japan
| | - Daisuke Takayanagi
- Division of Genome Biology, National Cancer Center Research Institute, Tokyo, Japan
| | - Junpei Yonemaru
- Division of Diagnostic Pathology, National Cancer Center Hospital, Tokyo, Japan
| | - Tomoaki Naka
- Division of Diagnostic Pathology, National Cancer Center Hospital, Tokyo, Japan
| | - Kengo Nagashima
- Biostatistics Unit, Clinical and Translational Research Center, Keio University Hospital, Tokyo, Japan
| | - Yasushi Yatabe
- Division of Diagnostic Pathology, National Cancer Center Hospital, Tokyo, Japan
- Division of Molecular Pathology, National Cancer Center Research Institute, Tokyo, Japan
| | - Dai Shida
- Division of Colorectal Surgery, National Cancer Center Hospital, Tokyo, Japan
- Division of Frontier Surgery, The Institute of Medical Science, Tokyo, Japan
| | - Ryuji Hamamoto
- Division of Medical AI Research and Development, National Cancer Center Research Institute, Tokyo, Japan
| | | | - Simon J Leedham
- Intestinal Stem Cell Biology Lab, Welcome Trust Centre Human Genetics, University of Oxford, Oxford, UK
| | | | - Atsuo Takashima
- Division of Gastrointestinal Medical Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Kouya Shiraishi
- Division of Genome Biology, National Cancer Center Research Institute, Tokyo, Japan
| | - Shigeki Sekine
- Division of Diagnostic Pathology, National Cancer Center Hospital, Tokyo, Japan.
- Division of Molecular Pathology, National Cancer Center Research Institute, Tokyo, Japan.
| |
Collapse
|
23
|
Moretto R, Elliott A, Rossini D, Intini R, Conca V, Pietrantonio F, Sartore-Bianchi A, Antoniotti C, Rasola C, Scartozzi M, Salati M, Pella N, Calegari MA, Carullo M, Corti F, Mauri G, Fassan M, Masi G, Brodskiy P, Lenz HJ, Shields A, Lonardi S, Korn M, Cremolini C. Benefit from upfront FOLFOXIRI and bevacizumab in BRAFV600E-mutated metastatic colorectal cancer patients: does primary tumour location matter? Br J Cancer 2022; 127:957-967. [PMID: 35665778 PMCID: PMC9428147 DOI: 10.1038/s41416-022-01852-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 04/02/2022] [Accepted: 05/09/2022] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Recent data suggest that BRAFV600E-mutated metastatic colorectal cancer (mCRC) patients with right-sided tumours and ECOG-PS = 0 may achieve benefit from the triplet regimen differently than those with left-sided tumours and ECOG-PS > 0. METHODS The predictive impact of primary sidedness and ECOG-PS was evaluated in a large real-life dataset of 296 BRAFV600E-mutated mCRC patients treated with upfront triplet or doublet ± bevacizumab. Biological differences between right- and left-sided BRAFV600E-mutated CRCs were further investigated in an independent cohort of 1162 samples. RESULTS A significant interaction effect between primary sidedness and treatment intensity was reported in terms of both PFS (p = 0.010) and OS (p = 0.003), with a beneficial effect of the triplet in the right-sided group and a possible detrimental effect in the left-sided. No interaction effect was observed between ECOG-PS and chemo-backbone. In the MSS/pMMR population, a consistent trend for a side-related subgroup effect was observed when FOLFOXIRI ± bevacizumab was compared to oxaliplatin-based doublets±bevacizumab (p = 0.097 and 0.16 for PFS and OS, respectively). Among MSS/pMMR tumours, the BM1 subtype was more prevalent in the right-sided group (p = 0.0019, q = 0.0139). No significant differences were observed according to sidedness in the MSI-H/dMMR population. CONCLUSIONS Real-life data support the use of FOLFOXIRI ± bevacizumab only in BRAFV600E-mutated mCRC patients with right-sided tumours.
Collapse
Affiliation(s)
- Roberto Moretto
- Unit of Medical Oncology 2, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| | - Andrew Elliott
- Clinical & Translational Research, Medical Affairs, Caris Life Sciences, Phoenix, AZ, USA
| | - Daniele Rossini
- Unit of Medical Oncology 2, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
- Department of Translational Research and New Technology in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Rossana Intini
- Oncology Unit 1, Veneto Institute of Oncology-IRCCS, Padua, Italy
| | - Veronica Conca
- Unit of Medical Oncology 2, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
- Department of Translational Research and New Technology in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Filippo Pietrantonio
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | | | - Carlotta Antoniotti
- Unit of Medical Oncology 2, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
- Department of Translational Research and New Technology in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Cosimo Rasola
- Oncology Unit 1, Veneto Institute of Oncology-IRCCS, Padua, Italy
- Department of Surgery, Oncology and Gastroenterology, University of Padua, Padua, Italy
| | - Mario Scartozzi
- Medical Oncology, University and University Hospital of Cagliari, Cagliari, Italy
| | - Massimiliano Salati
- Division of Oncology, Department of Oncology and Hematology, University Hospital of Modena, Modena, Italy
- PhD Program Clinical and Experimental Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Nicoletta Pella
- Department of Oncology, ASUFC University Hospital of Udine, Udine, Italy
| | - Maria Alessandra Calegari
- Comprensive Cancer Center, UOC di Oncologia Medica, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
| | - Martina Carullo
- Unit of Medical Oncology 2, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
- Department of Translational Research and New Technology in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Francesca Corti
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Gianluca Mauri
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Matteo Fassan
- Department of Medicine (DIMED), Surgical Pathology Unit, University of Padua, Padua, Italy
- Veneto Institute of Oncology-IRCCS, Padua, Italy
| | - Gianluca Masi
- Unit of Medical Oncology 2, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
- Department of Translational Research and New Technology in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Pavel Brodskiy
- Clinical & Translational Research, Medical Affairs, Caris Life Sciences, Phoenix, AZ, USA
| | - Heinz-Josef Lenz
- Division of Medical Oncology, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
| | - Anthony Shields
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, USA
| | - Sara Lonardi
- Oncology Unit 3, Veneto Institute of Oncology-IRCCS, Padua, Italy.
| | - Michael Korn
- Clinical & Translational Research, Medical Affairs, Caris Life Sciences, Phoenix, AZ, USA
| | - Chiara Cremolini
- Unit of Medical Oncology 2, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
- Department of Translational Research and New Technology in Medicine and Surgery, University of Pisa, Pisa, Italy
| |
Collapse
|
24
|
Phillips C, Bhamra I, Eagle C, Flanagan E, Armer R, Jones CD, Bingham M, Calcraft P, Edmenson Cook A, Thompson B, Woodcock SA. The Wnt Pathway Inhibitor RXC004 Blocks Tumor Growth and Reverses Immune Evasion in Wnt Ligand-dependent Cancer Models. CANCER RESEARCH COMMUNICATIONS 2022; 2:914-928. [PMID: 36922934 PMCID: PMC10010340 DOI: 10.1158/2767-9764.crc-21-0095] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 05/16/2022] [Accepted: 08/08/2022] [Indexed: 11/16/2022]
Abstract
Wnt signaling is implicated in the etiology of gastrointestinal tract cancers. Targeting Wnt signaling is challenging due to on-target toxicity concerns and lack of druggable pathway components. We describe the discovery and characterization of RXC004, a potent and selective inhibitor of the membrane-bound o-acyl transferase Porcupine, essential for Wnt ligand secretion. Absorption, distribution, metabolism, and excretion and safety pharmacology studies were conducted with RXC004 in vitro, and pharmacokinetic exposure assessed in vivo. RXC004 effects on proliferation and tumor metabolism were explored in genetically defined colorectal and pancreatic cancer models in vitro and in vivo. RXC004 effects on immune evasion were assessed in B16F10 immune "cold" and CT26 immune "hot" murine syngeneic models, and in human cell cocultures. RXC004 showed a promising pharmacokinetic profile, inhibited Wnt ligand palmitoylation, secretion, and pathway activation, and demonstrated potent antiproliferative effects in Wnt ligand-dependent (RNF43-mutant or RSPO3-fusion) colorectal and pancreatic cell lines. Reduced tumor growth and increased cancer cell differentiation were observed in SNU-1411 (RSPO3-fusion), AsPC1 and HPAF-II (both RNF43-mutant) xenograft models, with a therapeutic window versus Wnt homeostatic functions. Additional effects of RXC004 on tumor cell metabolism were confirmed in vitro and in vivo by glucose uptake and 18fluorodeoxyglucose-PET, respectively. RXC004 stimulated host tumor immunity; reducing resident myeloid-derived suppressor cells within B16F10 tumors and synergizing with anti-programmed cell death protein-1 (PD-1) to increase CD8+/regulatory T cell ratios within CT26 tumors. Moreover, RXC004 reversed the immunosuppressive effects of HPAF-II cells cocultured with human peripheral blood mononuclear cells, confirming the multiple anticancer mechanisms of this compound, which has progressed into phase II clinical trials. Significance Wnt pathway dysregulation drives many gastrointestinal cancers; however, there are no approved therapies that target the pathway. RXC004 has demonstrated the potential to block both tumor growth and tumor immune evasion in a genetically defined, clinically actionable subpopulation of Wnt ligand-dependent gastrointestinal cancers. The clinical utility of RXC004, and other Porcupine inhibitors, in such Wnt ligand-dependent cancers is currently being assessed in patient trials.
Collapse
Affiliation(s)
| | - Inder Bhamra
- Redx Oncology Ltd, Redx Pharma PLC; Cheshire, United Kingdom
| | - Catherine Eagle
- Redx Oncology Ltd, Redx Pharma PLC; Cheshire, United Kingdom
| | - Eimear Flanagan
- Redx Oncology Ltd, Redx Pharma PLC; Cheshire, United Kingdom
| | - Richard Armer
- Redx Oncology Ltd, Redx Pharma PLC; Cheshire, United Kingdom
| | | | - Matilda Bingham
- Redx Oncology Ltd, Redx Pharma PLC; Cheshire, United Kingdom.,Concept Life Sciences Ltd, Manchester, United Kingdom
| | - Peter Calcraft
- Redx Oncology Ltd, Redx Pharma PLC; Cheshire, United Kingdom.,Analytical Development, Flu-BPD, AstraZeneca PLC, Manchester, United Kingdom
| | - Alicia Edmenson Cook
- Redx Oncology Ltd, Redx Pharma PLC; Cheshire, United Kingdom.,Oncology Cell Therapy, GlaxoSmithKline PLC, London, United Kingdom
| | - Ben Thompson
- Redx Oncology Ltd, Redx Pharma PLC; Cheshire, United Kingdom.,In Vitro, RxCelerate Ltd, Cambridge, United Kingdom
| | | |
Collapse
|
25
|
Krieg C, Weber LM, Fosso B, Marzano M, Hardiman G, Olcina MM, Domingo E, El Aidy S, Mallah K, Robinson MD, Guglietta S. Complement downregulation promotes an inflammatory signature that renders colorectal cancer susceptible to immunotherapy. J Immunother Cancer 2022; 10:e004717. [PMID: 36137652 PMCID: PMC9511657 DOI: 10.1136/jitc-2022-004717] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/29/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND AND AIMS The role of inflammatory immune responses in colorectal cancer (CRC) development and response to therapy is a matter of intense debate. While inflammation is a known driver of CRC, inflammatory immune infiltrates are a positive prognostic factor in CRC and predispose to response to immune checkpoint blockade (ICB) therapy. Unfortunately, over 85% of CRC cases are primarily unresponsive to ICB due to the absence of an immune infiltrate, and even the cases that show an initial immune infiltration can become refractory to ICB. The identification of therapy supportive immune responses in the field has been partially hindered by the sparsity of suitable mouse models to recapitulate the human disease. In this study, we aimed to understand how the dysregulation of the complement anaphylatoxin C3a receptor (C3aR), observed in subsets of patients with CRC, affects the immune responses, the development of CRC, and response to ICB therapy. METHODS We use a comprehensive approach encompassing analysis of publicly available human CRC datasets, inflammation-driven and newly generated spontaneous mouse models of CRC, and multiplatform high-dimensional analysis of immune responses using microbiota sequencing, RNA sequencing, and mass cytometry. RESULTS We found that patients' regulation of the complement C3aR is associated with epigenetic modifications. Specifically, downregulation of C3ar1 in human CRC promotes a tumor microenvironment characterized by the accumulation of innate and adaptive immune cells that support antitumor immunity. In addition, in vivo studies in our newly generated mouse model revealed that the lack of C3a in the colon activates a microbiota-mediated proinflammatory program which promotes the development of tumors with an immune signature that renders them responsive to the ICB therapy. CONCLUSIONS Our findings reveal that C3aR may act as a previously unrecognized checkpoint to enhance antitumor immunity in CRC. C3aR can thus be exploited to overcome ICB resistance in a larger group of patients with CRC.
Collapse
Affiliation(s)
- Carsten Krieg
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
- Hollings Cancer Center Charleston, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Lukas M Weber
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
- SIB Swiss Institute of Bioinformatics, University of Zurich, Zurich, Switzerland
| | - Bruno Fosso
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, Consiglio Nazionale delle Ricerche, Bari, Italy
| | - Marinella Marzano
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, Consiglio Nazionale delle Ricerche, Bari, Italy
| | - Gary Hardiman
- School of Biological Sciences and Institute for Global Food Security, Queens University of Belfast, Belfast, UK
| | - Monica M Olcina
- Institute of Radiation Oncology, Medical Research Council Oxford Institute for Radiation Oncology, Oxford, UK
| | - Enric Domingo
- Institute of Radiation Oncology, Medical Research Council Oxford Institute for Radiation Oncology, Oxford, UK
| | - Sahar El Aidy
- Host-microbe Metabolic Interactions, Microbiology, University of Groningen, Groningen, The Netherlands
| | - Khalil Mallah
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Mark D Robinson
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
- SIB Swiss Institute of Bioinformatics, University of Zurich, Zurich, Switzerland
| | - Silvia Guglietta
- Hollings Cancer Center Charleston, Medical University of South Carolina, Charleston, South Carolina, USA
- Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, South Carolina, USA
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy
| |
Collapse
|
26
|
Linssen JDG, van Neerven SM, Aelvoet AS, Elbers CC, Vermeulen L, Dekker E. The CHAMP-study: the CHemopreventive effect of lithium in familial AdenoMatous Polyposis; study protocol of a phase II trial. BMC Gastroenterol 2022; 22:383. [PMID: 35962368 PMCID: PMC9373414 DOI: 10.1186/s12876-022-02442-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 07/20/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Familial adenomatous polyposis (FAP) is a rare autosomal dominant disease characterized by germline mutations in the Adenomatous Polyposis Coli (APC) gene, resulting in the development of numerous colorectal adenomas. As these patients have a high risk of developing colorectal cancer (CRC), guidelines suggest prophylactic colectomy during early adulthood, however, adenoma development is still observed in the remaining intestinal tract. Therefore, FAP patients would benefit from chemoprevention strategies reducing the development of adenomas. Recent work in mice reveals a chemopreventive effect of lithium on the development of adenomas by inhibiting the expansion of Apc mutated intestinal stem cells (ISCs) within the crypts of normal intestinal mucosa. Here, we aim to investigate the effect of lithium on the spread of APC mutant cells within the human intestinal epithelium. METHODS This prospective phase II single arm trial has a duration of 18 months. FAP patients (18-35 years) with a genetically confirmed APC mutation who did not undergo colectomy will be treated with lithium carbonate orally achieving a serum level of 0.2-0.4 mmol/l between month 6 and 12. Colonoscopy with biopsies of normal intestinal mucosa will be performed at baseline and every six months. The primary endpoint is the effect of lithium on the spread of APC mutant cells within intestinal crypts over time by using APC specific marker NOTUM in situ hybridization. Secondary endpoints include change in adenoma burden, patient reported side effects and safety-outcomes. Total sample size is 12 patients and recruitment will take place in the Amsterdam UMC, location AMC in the Netherlands. DISCUSSION The outcome of this study will function as a proof-of-concept for the development of novel chemoprevention approaches that interfere with the competition between normal and mutant ISCs. TRIAL REGISTRATION ClinicalTrials.gov ( https://clinicaltrials.gov/ ): NCT05402891 (June 1, 2022) and the EU Clinical Trials Register: EuraCT 2022-000240-30 (January 1, 2022).
Collapse
Affiliation(s)
- Jasmijn D G Linssen
- Department of Gastroenterology and Hepatology, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Amsterdam, The Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Amsterdam, The Netherlands
- Oncode Institute, Amsterdam, The Netherlands
| | - Sanne M van Neerven
- Cancer Center Amsterdam, Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Amsterdam, The Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Amsterdam, The Netherlands
- Oncode Institute, Amsterdam, The Netherlands
| | - Arthur S Aelvoet
- Department of Gastroenterology and Hepatology, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Amsterdam, The Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Amsterdam, The Netherlands
| | - Clara C Elbers
- Cancer Center Amsterdam, Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Amsterdam, The Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Amsterdam, The Netherlands
- Oncode Institute, Amsterdam, The Netherlands
| | - Louis Vermeulen
- Cancer Center Amsterdam, Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Amsterdam, The Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Amsterdam, The Netherlands
- Oncode Institute, Amsterdam, The Netherlands
| | - Evelien Dekker
- Department of Gastroenterology and Hepatology, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands.
- Cancer Center Amsterdam, Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Amsterdam, The Netherlands.
- Amsterdam Gastroenterology Endocrinology Metabolism, Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Amsterdam, The Netherlands.
| |
Collapse
|
27
|
Wu CWK, Reid M, Leedham S, Lui RN. The emerging era of personalized medicine in advanced colorectal cancer. J Gastroenterol Hepatol 2022; 37:1411-1425. [PMID: 35815339 PMCID: PMC7617119 DOI: 10.1111/jgh.15937] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/01/2022] [Accepted: 07/05/2022] [Indexed: 12/09/2022]
Abstract
Colorectal cancer (CRC) is a genetically heterogeneous disease with its pathogenesis often driven by varying genetic or epigenetic alterations. This has led to a substantial number of patients developing chemoresistance and treatment failure, resulting in a high mortality rate for advanced disease. Deep molecular analysis has allowed for the discovery of key intestinal signaling pathways which impacts colonic epithelial cell fate, and the integral role of the tumor microenvironment on cancer growth and dissemination. Through transitioning pre-clinical knowledge in research into clinical practice, many potential druggable targets within these pathways have been discovered in the hopes of overcoming the roadblocks encountered by conventional therapies. A personalized approach tailoring treatment according to the histopathological and molecular features of individual tumors can hopefully translate to better patient outcomes, and reduce the rate of recurrence in patients with advanced CRC. Herein, the latest understanding on the molecular science behind CRC tumorigenesis, and the potential treatment targets currently at the forefront of research are summarized.
Collapse
Affiliation(s)
- Claudia WK Wu
- Institute of Digestive Disease, Chinese University of Hong Kong, Hong Kong, China
- Division of Gastroenterology and Hepatology, Department of Medicine and Therapeutics, Prince of Wales Hospital, Hong Kong, China
| | - Madeleine Reid
- Translational Gastroenterology Unit, John Radcliffe hospital, University of Oxford, Oxford, United Kingdom
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Simon Leedham
- Translational Gastroenterology Unit, John Radcliffe hospital, University of Oxford, Oxford, United Kingdom
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Rashid N Lui
- Institute of Digestive Disease, Chinese University of Hong Kong, Hong Kong, China
- Division of Gastroenterology and Hepatology, Department of Medicine and Therapeutics, Prince of Wales Hospital, Hong Kong, China
- Department of Clinical Oncology, Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
28
|
Joanito I, Wirapati P, Zhao N, Nawaz Z, Yeo G, Lee F, Eng CLP, Macalinao DC, Kahraman M, Srinivasan H, Lakshmanan V, Verbandt S, Tsantoulis P, Gunn N, Venkatesh PN, Poh ZW, Nahar R, Oh HLJ, Loo JM, Chia S, Cheow LF, Cheruba E, Wong MT, Kua L, Chua C, Nguyen A, Golovan J, Gan A, Lim WJ, Guo YA, Yap CK, Tay B, Hong Y, Chong DQ, Chok AY, Park WY, Han S, Chang MH, Seow-En I, Fu C, Mathew R, Toh EL, Hong LZ, Skanderup AJ, DasGupta R, Ong CAJ, Lim KH, Tan EKW, Koo SL, Leow WQ, Tejpar S, Prabhakar S, Tan IB. Single-cell and bulk transcriptome sequencing identifies two epithelial tumor cell states and refines the consensus molecular classification of colorectal cancer. Nat Genet 2022; 54:963-975. [PMID: 35773407 PMCID: PMC9279158 DOI: 10.1038/s41588-022-01100-4] [Citation(s) in RCA: 177] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 05/16/2022] [Indexed: 12/12/2022]
Abstract
The consensus molecular subtype (CMS) classification of colorectal cancer is based on bulk transcriptomics. The underlying epithelial cell diversity remains unclear. We analyzed 373,058 single-cell transcriptomes from 63 patients, focusing on 49,155 epithelial cells. We identified a pervasive genetic and transcriptomic dichotomy of malignant cells, based on distinct gene expression, DNA copy number and gene regulatory network. We recapitulated these subtypes in bulk transcriptomes from 3,614 patients. The two intrinsic subtypes, iCMS2 and iCMS3, refine CMS. iCMS3 comprises microsatellite unstable (MSI-H) cancers and one-third of microsatellite-stable (MSS) tumors. iCMS3 MSS cancers are transcriptomically more similar to MSI-H cancers than to other MSS cancers. CMS4 cancers had either iCMS2 or iCMS3 epithelium; the latter had the worst prognosis. We defined the intrinsic epithelial axis of colorectal cancer and propose a refined ‘IMF’ classification with five subtypes, combining intrinsic epithelial subtype (I), microsatellite instability status (M) and fibrosis (F). A single-cell transcriptomic analysis of 63 patients with colorectal cancer classifies tumor cells into two epithelial subtypes. An improved tumor classification based on epithelial subtype, microsatellite stability and fibrosis reveals differences in pathway activation and metastasis.
Collapse
Affiliation(s)
- Ignasius Joanito
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Pratyaksha Wirapati
- Bioinformatics Core Facility, Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Nancy Zhao
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Zahid Nawaz
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Grace Yeo
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Fiona Lee
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.,National Cancer Centre, Singapore, Singapore
| | - Christine L P Eng
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.,National Cancer Centre, Singapore, Singapore
| | | | - Merve Kahraman
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Harini Srinivasan
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.,National Cancer Centre, Singapore, Singapore
| | | | - Sara Verbandt
- Molecular Digestive Oncology, Department of Oncology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Petros Tsantoulis
- Hôpitaux Universitaires de Genève, Geneva, Switzerland.,University of Geneva, Geneva, Switzerland
| | - Nicole Gunn
- National Cancer Centre, Singapore, Singapore
| | - Prasanna Nori Venkatesh
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Zhong Wee Poh
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.,Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Rahul Nahar
- MSD International GmbH (Singapore Branch), Singapore, Singapore
| | | | - Jia Min Loo
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Shumei Chia
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | | | - Elsie Cheruba
- National University of Singapore, Singapore, Singapore
| | | | - Lindsay Kua
- National Cancer Centre, Singapore, Singapore
| | | | | | | | - Anna Gan
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Wan-Jun Lim
- National Cancer Centre, Singapore, Singapore
| | - Yu Amanda Guo
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Choon Kong Yap
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Brenda Tay
- National Cancer Centre, Singapore, Singapore
| | - Yourae Hong
- Samsung Genome Institute, Samsung Medical Center, Seoul, Korea
| | - Dawn Qingqing Chong
- National Cancer Centre, Singapore, Singapore.,Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Aik-Yong Chok
- Department of Colorectal Surgery, Singapore General Hospital, Singapore, Singapore
| | - Woong-Yang Park
- Samsung Genome Institute, Samsung Medical Center, Seoul, Korea
| | - Shuting Han
- National Cancer Centre, Singapore, Singapore
| | - Mei Huan Chang
- Department of Colorectal Surgery, Singapore General Hospital, Singapore, Singapore
| | - Isaac Seow-En
- Department of Colorectal Surgery, Singapore General Hospital, Singapore, Singapore
| | - Cherylin Fu
- Department of Colorectal Surgery, Singapore General Hospital, Singapore, Singapore
| | - Ronnie Mathew
- Department of Colorectal Surgery, Singapore General Hospital, Singapore, Singapore
| | - Ee-Lin Toh
- Department of Colorectal Surgery, Singapore General Hospital, Singapore, Singapore.,EL Toh Colorectal & Minimally Invasive Surgery, Singapore, Singapore
| | - Lewis Z Hong
- MSD International GmbH (Singapore Branch), Singapore, Singapore
| | - Anders Jacobsen Skanderup
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Ramanuj DasGupta
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Chin-Ann Johnny Ong
- Department of Sarcoma, Peritoneal and Rare Tumours (SPRinT), Division of Surgery and Surgical Oncology, National Cancer Centre Singapore, Singapore, Singapore.,Department of Sarcoma, Peritoneal and Rare Tumours (SPRinT), Division of Surgery and Surgical Oncology, Singapore General Hospital, Singapore, Singapore.,Laboratory of Applied Human Genetics, Division of Medical Sciences, National Cancer Centre Singapore, Singapore, Singapore.,SingHealth Duke-NUS Oncology Academic Clinical Program, Duke-NUS Medical School, Singapore, Singapore.,SingHealth Duke-NUS Surgery Academic Clinical Program, Duke-NUS Medical School, Singapore, Singapore.,Institute of Molecular and Cell Biology, A*STAR Research Entities, Singapore, Singapore
| | - Kiat Hon Lim
- Department of Anatomical Pathology, Singapore General Hospital, Singapore, Singapore
| | - Emile K W Tan
- Department of Colorectal Surgery, Singapore General Hospital, Singapore, Singapore
| | - Si-Lin Koo
- National Cancer Centre, Singapore, Singapore
| | - Wei Qiang Leow
- Department of Anatomical Pathology, Singapore General Hospital, Singapore, Singapore
| | - Sabine Tejpar
- Molecular Digestive Oncology, Department of Oncology, Katholieke Universiteit Leuven, Leuven, Belgium.
| | - Shyam Prabhakar
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.
| | - Iain Beehuat Tan
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore. .,National Cancer Centre, Singapore, Singapore. .,Duke-National University of Singapore Medical School, Singapore, Singapore.
| |
Collapse
|
29
|
Swoboda J, Mittelsdorf P, Chen Y, Weiskirchen R, Stallhofer J, Schüle S, Gassler N. Intestinal Wnt in the transition from physiology to oncology. World J Clin Oncol 2022; 13:168-185. [PMID: 35433295 PMCID: PMC8966512 DOI: 10.5306/wjco.v13.i3.168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 09/07/2021] [Accepted: 02/19/2022] [Indexed: 02/06/2023] Open
Abstract
Adult stem cells are necessary for self-renewal tissues and regeneration after damage. Especially in the intestine, which self-renews every few days, they play a key role in tissue homeostasis. Therefore, complex regulatory mechanisms are needed to prevent hyperproliferation, which can lead in the worst case to carcinogenesis or under-activation of stem cells, which can result in dysfunctional epithelial. One main regulatory signaling pathway is the Wnt/β-catenin signaling pathway. It is a highly conserved pathway, with β-catenin, a transcription factor, as target protein. Translocation of β-catenin from cytoplasm to nucleus activates the transcription of numerous genes involved in regulating stem cell pluripo-tency, proliferation, cell differentiation and regulation of cell death. This review presents a brief overview of the Wnt/β-catenin signaling pathway, the regulatory mechanism of this pathway and its role in intestinal homeostasis. Additionally, this review highlights the molecular mechanisms and the histomorphological features of Wnt hyperactivation. Furthermore, the central role of the Wnt signaling pathway in intestinal carcinogenesis as well as its clinical relevance in colorectal carcinoma are discussed.
Collapse
Affiliation(s)
- Julia Swoboda
- Section Pathology, Institute of Forensic Medicine, Jena University Hospital, Jena 07747, Germany
| | - Patrick Mittelsdorf
- Section Pathology, Institute of Forensic Medicine, Jena University Hospital, Jena 07747, Germany
| | - Yuan Chen
- Section Pathology, Institute of Forensic Medicine, Jena University Hospital, Jena 07747, Germany
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry, RWTH University Hospital Aachen, Aachen 52074, Germany
| | - Johannes Stallhofer
- Department of Internal Medicine IV (Gastroenterology, Hepatology, and Infectious Diseases), Jena University Hospital, Jena 07747, Germany
| | - Silke Schüle
- Department of General, Visceral and Vascular Surgery, Jena University Hospital, Jena 07747, Germany
| | - Nikolaus Gassler
- Section Pathology, Institute of Forensic Medicine, Jena University Hospital, Jena 07747, Germany
| |
Collapse
|
30
|
Yamamoto D, Oshima H, Wang D, Takeda H, Kita K, Lei X, Nakayama M, Murakami K, Ohama T, Takemura H, Toyota M, Suzuki H, Inaki N, Oshima M. Characterization of RNF43 frameshift mutations that drive Wnt ligand- and R-spondin-dependent colon cancer. J Pathol 2022; 257:39-52. [PMID: 35040131 PMCID: PMC9314865 DOI: 10.1002/path.5868] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 12/03/2021] [Accepted: 01/12/2022] [Indexed: 11/15/2022]
Abstract
Loss‐of‐function mutations in RNF43 induce activation of Wnt ligand‐dependent Wnt/β‐catenin signaling through stabilization of the Frizzled receptor, which is often found in microsatellite instability (MSI)‐type colorectal cancer (CRC) that develops from sessile serrated adenomas. However, the mechanism underlying how RNF43 mutations promote tumorigenesis remains poorly understood. In this study, we established nine human CRC‐derived organoids and found that three organoid lines carried RNF43 frameshift mutations associated with MSI‐high and BRAFV600E mutations, suggesting that these CRCs developed through the serrated pathway. RNF43 frameshift mutant organoids required both Wnt ligands and R‐spondin for proliferation, indicating that suppression of ZNRF3 and retained RNF43 function by R‐spondin are required to achieve an indispensable level of Wnt activation for tumorigenesis. However, active β‐catenin levels in RNF43‐mutant organoids were lower than those in APC two‐hit mutant CRC, suggesting a lower threshold for Wnt activation in CRC that developed through the serrated pathway. Interestingly, transplantation of RNF43‐mutant organoids with intestinal myofibroblasts accelerated the β‐catenin nuclear accumulation and proliferation of xenograft tumors, indicating a key role of stromal cells in the promotion of the malignant phenotype of RNF43‐mutant CRC cells. Sequencing of subcloned organoid cell‐expressed transcripts revealed that two organoid lines carried monoallelic RNF43 cis‐mutations, with two RNF43 frameshift mutations introduced in the same allele and the wild‐type RNF43 allele remaining, while the other organoid line carried two‐hit biallelic RNF43 trans‐mutations. These results suggest that heterozygous RNF43 frameshift mutations contribute to CRC development via the serrated pathway; however, a second‐hit RNF43 mutation may be advantageous in tumorigenesis compared with a single‐hit mutation through further activation of Wnt signaling. Finally, treatment with the PORCN inhibitor significantly suppressed RNF43‐mutant cell‐derived PDX tumor development. These results suggest a novel mechanism underlying RNF43 mutation‐associated CRC development and the therapeutic potential of Wnt ligand inhibition against RNF43‐mutant CRC. © 2022 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Daisuke Yamamoto
- Division of Genetics, Cancer Research Institute, Kanazawa University, Kanazawa, Japan.,Department of Thoracic, Cardiovascular and General Surgery, Kanazawa University, Kanazawa, Japan.,Department of Gastroenterological Surgery, Ishikawa Prefectural Central Hospital, Kanazawa, Japan
| | - Hiroko Oshima
- Division of Genetics, Cancer Research Institute, Kanazawa University, Kanazawa, Japan.,WPI Nano-Life Science Institute (Nano-LSI), Kanazawa University, Kanazawa, Japan
| | - Dong Wang
- Division of Genetics, Cancer Research Institute, Kanazawa University, Kanazawa, Japan.,WPI Nano-Life Science Institute (Nano-LSI), Kanazawa University, Kanazawa, Japan
| | - Haruna Takeda
- Laboratory of Molecular Genetics, National Cancer Center Research Institute, Tokyo, Japan
| | - Kenji Kita
- Central Research Resource Branch, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Xuelian Lei
- Division of Genetics, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Mizuho Nakayama
- Division of Genetics, Cancer Research Institute, Kanazawa University, Kanazawa, Japan.,WPI Nano-Life Science Institute (Nano-LSI), Kanazawa University, Kanazawa, Japan
| | - Kazuhiro Murakami
- Division of Stem Cell Biology, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Takashi Ohama
- Laboratory of Veterinary Pharmacology, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Hirofumi Takemura
- Department of Thoracic, Cardiovascular and General Surgery, Kanazawa University, Kanazawa, Japan
| | - Mutsumi Toyota
- Department of Molecular Biology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Hiromu Suzuki
- Department of Molecular Biology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Noriyuki Inaki
- Department of Gastrointestinal Surgery, Kanazawa University, Kanazawa, Japan
| | - Masanobu Oshima
- Division of Genetics, Cancer Research Institute, Kanazawa University, Kanazawa, Japan.,WPI Nano-Life Science Institute (Nano-LSI), Kanazawa University, Kanazawa, Japan
| |
Collapse
|
31
|
Molecular drivers of tumor progression in microsatellite stable APC mutation-negative colorectal cancers. Sci Rep 2021; 11:23507. [PMID: 34873211 PMCID: PMC8648784 DOI: 10.1038/s41598-021-02806-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 11/18/2021] [Indexed: 12/23/2022] Open
Abstract
The tumor suppressor gene adenomatous polyposis coli (APC) is the initiating mutation in approximately 80% of all colorectal cancers (CRC), underscoring the importance of aberrant regulation of intracellular WNT signaling in CRC development. Recent studies have found that early-onset CRC exhibits an increased proportion of tumors lacking an APC mutation. We set out to identify mechanisms underlying APC mutation-negative (APCmut-) CRCs. We analyzed data from The Cancer Genome Atlas to compare clinical phenotypes, somatic mutations, copy number variations, gene fusions, RNA expression, and DNA methylation profiles between APCmut- and APC mutation-positive (APCmut+) microsatellite stable CRCs. Transcriptionally, APCmut- CRCs clustered into two approximately equal groups. Cluster One was associated with enhanced mitochondrial activation. Cluster Two was strikingly associated with genetic inactivation or decreased RNA expression of the WNT antagonist RNF43, increased expression of the WNT agonist RSPO3, activating mutation of BRAF, or increased methylation and decreased expression of AXIN2. APCmut- CRCs exhibited evidence of increased immune cell infiltration, with significant correlation between M2 macrophages and RSPO3. APCmut- CRCs comprise two groups of tumors characterized by enhanced mitochondrial activation or increased sensitivity to extracellular WNT, suggesting that they could be respectively susceptible to inhibition of these pathways.
Collapse
|
32
|
Ariyannur PS, Joy RA, Menon V, Paulose RR, Pavithran K, Vasudevan DM. Pilot Nanostring PanCancer pathway analysis of colon adenocarcinoma in a tertiary healthcare centre in Kerala, India. Ecancermedicalscience 2021; 15:1302. [PMID: 34824625 PMCID: PMC8580724 DOI: 10.3332/ecancer.2021.1302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Indexed: 11/26/2022] Open
Abstract
The prevalence of microsatellite instability and deoxyribonucleic acid mismatch repair deficiency in colorectal adenocarcinoma (CRC) cases is higher in India compared to western populations. No major study on the molecular pathogenesis is currently available in the Indian population. We conducted a pilot study to explore the differences in molecular pathogenesis of microsatellite stable (MSS) and microsatellite unstable CRC from a tertiary care centre in Kerala, South India. Using Nanostring PanCancer panel assay in Stage II colorectal adenocarcinoma, tumour tissues (n = 11) were compared against normal colon tissues (n = 4). Differentially expressed (DE) genes were identified and super-imposed onto colon adenocarcinoma cohort of The Cancer Genome Atlas (TCGA) data (TCGA Colon Adenocarcinoma (TCGA COAD)), from the Genome Expression Profiling Interactive Analysis and Tumor Immune Estimation Resource (TIMER) to compare the gene associations. Significant DE genes were 59 out of 730 (false discovery rate adj. p-value < 0.05), 18 of which had a fold-change |FC(log2)| ≥ 2. On superimposition to TCGA COAD, 33 genes were significant in both TCGA and current study. ETV4 was expressed significantly higher in MSS with no immune cell infiltration. Other significant DE genes with high FC(log2), unique to the study were INHBA, COL1A1, COL11A1, COMP, SFRP4 and SPP1, which were clustered in STRING network analysis and correlated with tumour-infiltrating immune cells in TIMER, suggesting a specific interaction pathway. The preliminary study suggests a distinct pathogenesis of MSS CRC involving ETV4 in the Indian population and warrants further clinically extensive and high-dimensional expression studies.
Collapse
Affiliation(s)
- Prasanth S Ariyannur
- Department of Biochemistry and Molecular Biology, Amrita School of Medicine, Amrita Institute of Medical Sciences and Research Center, Amrita Vishwa Vidyapeetham, Kochi 682041, India
| | - Reenu Anne Joy
- Department of Biochemistry and Molecular Biology, Amrita School of Medicine, Amrita Institute of Medical Sciences and Research Center, Amrita Vishwa Vidyapeetham, Kochi 682041, India
| | - Veena Menon
- Department of Molecular Biology, Amrita Institute of Medical Sciences and Research Center, Amrita Vishwa Vidyapeetham, Kochi 682041, India
| | - Roopa Rachel Paulose
- Department of Pathology, Amrita Institute of Medical Sciences and Research Center, Amrita Vishwa Vidyapeetham, Kochi 682041, India
| | - Keechilat Pavithran
- Department of Medical Oncology, Amrita Institute of Medical Sciences and Research Center, Amrita Vishwa Vidyapeetham, Kochi 682041, India
| | - Damodaran M Vasudevan
- Department of Biochemistry and Molecular Biology, Amrita School of Medicine, Amrita Institute of Medical Sciences and Research Center, Amrita Vishwa Vidyapeetham, Kochi 682041, India.,Department of Health Sciences Research, Amrita Institute of Medical Sciences and Research Center, Amrita Vishwa Vidyapeetham, Kochi 682041, India
| |
Collapse
|
33
|
Heino S, Fang S, Lähde M, Högström J, Nassiri S, Campbell A, Flanagan D, Raven A, Hodder M, Nasreddin N, Xue HH, Delorenzi M, Leedham S, Petrova TV, Sansom O, Alitalo K. Lef1 restricts ectopic crypt formation and tumor cell growth in intestinal adenomas. SCIENCE ADVANCES 2021; 7:eabj0512. [PMID: 34788095 PMCID: PMC8598008 DOI: 10.1126/sciadv.abj0512] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 09/28/2021] [Indexed: 06/13/2023]
Abstract
Somatic mutations in APC or CTNNB1 genes lead to aberrant Wnt signaling and colorectal cancer (CRC) initiation and progression via-catenin–T cell factor/lymphoid enhancer binding factor TCF/LEF transcription factors. We found that Lef1 was expressed exclusively in Apc-mutant, Wnt ligand–independent tumors, but not in ligand-dependent, serrated tumors. To analyze Lef1 function in tumor development, we conditionally deleted Lef1 in intestinal stem cells of Apcfl/fl mice or broadly from the entire intestinal epithelium of Apcfl/fl or ApcMin/+ mice. Loss of Lef1 markedly increased tumor initiation and tumor cell proliferation, reduced the expression of several Wnt antagonists, and increased Myc proto-oncogene expression and formation of ectopic crypts in Apc-mutant adenomas. Our results uncover a previously unknown negative feedback mechanism in CRC, in which ectopic Lef1 expression suppresses intestinal tumorigenesis by restricting adenoma cell dedifferentiation to a crypt-progenitor phenotype and by reducing the formation of cancer stem cell niches.
Collapse
Affiliation(s)
- Sarika Heino
- Translational Cancer Medicine Program (CAN-PRO), iCAN Digital Precision Cancer Medicine Flagship and Wihuri Research Institute, Faculty of Medicine, HiLIFE-Helsinki Institute of Life Science, Biomedicum Helsinki, University of Helsinki, 00014 Helsinki, Finland
| | - Shentong Fang
- Translational Cancer Medicine Program (CAN-PRO), iCAN Digital Precision Cancer Medicine Flagship and Wihuri Research Institute, Faculty of Medicine, HiLIFE-Helsinki Institute of Life Science, Biomedicum Helsinki, University of Helsinki, 00014 Helsinki, Finland
- School of Biopharmacy, China Pharmaceutical University, Nanjing 211198, P.R. China
| | - Marianne Lähde
- Translational Cancer Medicine Program (CAN-PRO), iCAN Digital Precision Cancer Medicine Flagship and Wihuri Research Institute, Faculty of Medicine, HiLIFE-Helsinki Institute of Life Science, Biomedicum Helsinki, University of Helsinki, 00014 Helsinki, Finland
| | - Jenny Högström
- Translational Cancer Medicine Program (CAN-PRO), iCAN Digital Precision Cancer Medicine Flagship and Wihuri Research Institute, Faculty of Medicine, HiLIFE-Helsinki Institute of Life Science, Biomedicum Helsinki, University of Helsinki, 00014 Helsinki, Finland
| | - Sina Nassiri
- Bioinformatics Core Facility, SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Andrew Campbell
- Cancer Research UK Beatson Institute, Garscube Estate, Glasgow G61 1BD, UK
- Institute of Cancer Sciences, Garscube Estate, Glasgow G61 1QH, UK
| | - Dustin Flanagan
- Cancer Research UK Beatson Institute, Garscube Estate, Glasgow G61 1BD, UK
- Institute of Cancer Sciences, Garscube Estate, Glasgow G61 1QH, UK
| | - Alexander Raven
- Cancer Research UK Beatson Institute, Garscube Estate, Glasgow G61 1BD, UK
- Institute of Cancer Sciences, Garscube Estate, Glasgow G61 1QH, UK
| | - Michael Hodder
- Cancer Research UK Beatson Institute, Garscube Estate, Glasgow G61 1BD, UK
- Institute of Cancer Sciences, Garscube Estate, Glasgow G61 1QH, UK
| | - Nadia Nasreddin
- Intestinal Stem Cell Biology Laboratory, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Hai-Hui Xue
- Center for Discovery and Innovation, Hackensack University Medical Center, Nutley, NJ 07110, USA
| | - Mauro Delorenzi
- Bioinformatics Core Facility, SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
- Department of Oncology, University of Lausanne and CHUV, Epalinges, Switzerland
- Ludwig Institute for Cancer Research Lausanne, Epalinges, Switzerland
| | - Simon Leedham
- Intestinal Stem Cell Biology Laboratory, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Tatiana V. Petrova
- Department of Oncology, University of Lausanne and CHUV, Epalinges, Switzerland
- Ludwig Institute for Cancer Research Lausanne, Epalinges, Switzerland
| | - Owen Sansom
- Cancer Research UK Beatson Institute, Garscube Estate, Glasgow G61 1BD, UK
- Institute of Cancer Sciences, Garscube Estate, Glasgow G61 1QH, UK
| | - Kari Alitalo
- Translational Cancer Medicine Program (CAN-PRO), iCAN Digital Precision Cancer Medicine Flagship and Wihuri Research Institute, Faculty of Medicine, HiLIFE-Helsinki Institute of Life Science, Biomedicum Helsinki, University of Helsinki, 00014 Helsinki, Finland
| |
Collapse
|
34
|
Spitzner M, Emons G, Schütz KB, Wolff HA, Rieken S, Ghadimi BM, Schneider G, Grade M. Inhibition of Wnt/β-Catenin Signaling Sensitizes Esophageal Cancer Cells to Chemoradiotherapy. Int J Mol Sci 2021; 22:ijms221910301. [PMID: 34638639 PMCID: PMC8509072 DOI: 10.3390/ijms221910301] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/18/2021] [Accepted: 09/22/2021] [Indexed: 12/26/2022] Open
Abstract
The standard treatment of locally advanced esophageal cancer comprises multimodal treatment concepts including preoperative chemoradiotherapy (CRT) followed by radical surgical resection. However, despite intensified treatment approaches, 5-year survival rates are still low. Therefore, new strategies are required to overcome treatment resistance, and to improve patients’ outcome. In this study, we investigated the impact of Wnt/β-catenin signaling on CRT resistance in esophageal cancer cells. Experiments were conducted in adenocarcinoma and squamous cell carcinoma cell lines with varying expression levels of Wnt proteins and Wnt/β-catenin signaling activities. To investigate the effect of Wnt/β-catenin signaling on CRT responsiveness, we genetically or pharmacologically inhibited Wnt/β-catenin signaling. Our experiments revealed that inhibition of Wnt/β-catenin signaling sensitizes cell lines with robust pathway activity to CRT. In conclusion, Wnt/β-catenin activity may guide precision therapies in esophageal carcinoma patients.
Collapse
Affiliation(s)
- Melanie Spitzner
- Department of General, Visceral and Pediatric Surgery, University Medical Center Goettingen, 37075 Goettingen, Germany; (M.S.); (G.E.); (K.B.S.); (B.M.G.); (G.S.)
| | - Georg Emons
- Department of General, Visceral and Pediatric Surgery, University Medical Center Goettingen, 37075 Goettingen, Germany; (M.S.); (G.E.); (K.B.S.); (B.M.G.); (G.S.)
| | - Karl Burkhard Schütz
- Department of General, Visceral and Pediatric Surgery, University Medical Center Goettingen, 37075 Goettingen, Germany; (M.S.); (G.E.); (K.B.S.); (B.M.G.); (G.S.)
- Department of Urology and Andrology, Sankt Georg Medical Centre and Hospital, 04129 Leipzig, Germany
| | - Hendrik A. Wolff
- Department of Radiotherapy and Radiooncology, University Medical Center Goettingen, 37075 Goettingen, Germany; (H.A.W.); (S.R.)
- Department of Radiology, Nuclear Medicine and Radiotherapy, Radiology Munich, 80331 Munich, Germany
| | - Stefan Rieken
- Department of Radiotherapy and Radiooncology, University Medical Center Goettingen, 37075 Goettingen, Germany; (H.A.W.); (S.R.)
| | - B. Michael Ghadimi
- Department of General, Visceral and Pediatric Surgery, University Medical Center Goettingen, 37075 Goettingen, Germany; (M.S.); (G.E.); (K.B.S.); (B.M.G.); (G.S.)
| | - Günter Schneider
- Department of General, Visceral and Pediatric Surgery, University Medical Center Goettingen, 37075 Goettingen, Germany; (M.S.); (G.E.); (K.B.S.); (B.M.G.); (G.S.)
| | - Marian Grade
- Department of General, Visceral and Pediatric Surgery, University Medical Center Goettingen, 37075 Goettingen, Germany; (M.S.); (G.E.); (K.B.S.); (B.M.G.); (G.S.)
- Correspondence: ; Tel.: +49-551-39-67809
| |
Collapse
|
35
|
Yu F, Yu C, Li F, Zuo Y, Wang Y, Yao L, Wu C, Wang C, Ye L. Wnt/β-catenin signaling in cancers and targeted therapies. Signal Transduct Target Ther 2021; 6:307. [PMID: 34456337 PMCID: PMC8403677 DOI: 10.1038/s41392-021-00701-5] [Citation(s) in RCA: 378] [Impact Index Per Article: 94.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 06/19/2021] [Accepted: 06/28/2021] [Indexed: 02/07/2023] Open
Abstract
Wnt/β-catenin signaling has been broadly implicated in human cancers and experimental cancer models of animals. Aberrant activation of Wnt/β-catenin signaling is tightly linked with the increment of prevalence, advancement of malignant progression, development of poor prognostics, and even ascendence of the cancer-associated mortality. Early experimental investigations have proposed the theoretical potential that efficient repression of this signaling might provide promising therapeutic choices in managing various types of cancers. Up to date, many therapies targeting Wnt/β-catenin signaling in cancers have been developed, which is assumed to endow clinicians with new opportunities of developing more satisfactory and precise remedies for cancer patients with aberrant Wnt/β-catenin signaling. However, current facts indicate that the clinical translations of Wnt/β-catenin signaling-dependent targeted therapies have faced un-neglectable crises and challenges. Therefore, in this study, we systematically reviewed the most updated knowledge of Wnt/β-catenin signaling in cancers and relatively targeted therapies to generate a clearer and more accurate awareness of both the developmental stage and underlying limitations of Wnt/β-catenin-targeted therapies in cancers. Insights of this study will help readers better understand the roles of Wnt/β-catenin signaling in cancers and provide insights to acknowledge the current opportunities and challenges of targeting this signaling in cancers.
Collapse
Affiliation(s)
- Fanyuan Yu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Endodontics, West China Stomatology Hospital, Sichuan University, Chengdu, China
| | - Changhao Yu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Endodontics, West China Stomatology Hospital, Sichuan University, Chengdu, China
| | - Feifei Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yanqin Zuo
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Endodontics, West China Stomatology Hospital, Sichuan University, Chengdu, China
| | - Yitian Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Lin Yao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Endodontics, West China Stomatology Hospital, Sichuan University, Chengdu, China
| | - Chenzhou Wu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Chenglin Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Endodontics, West China Stomatology Hospital, Sichuan University, Chengdu, China
| | - Ling Ye
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
- Department of Endodontics, West China Stomatology Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
36
|
Jordan AM. Molecularly profiled trials: toward a framework of actions for the "nil actionables". Br J Cancer 2021; 125:473-478. [PMID: 34040178 PMCID: PMC8150144 DOI: 10.1038/s41416-021-01423-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 04/13/2021] [Accepted: 04/21/2021] [Indexed: 02/02/2023] Open
Abstract
The sequencing of tumour or blood samples is increasingly used to stratify patients into clinical trials of molecularly targeted agents, and this approach has frequently demonstrated clinical benefit for those who are deemed eligible. But what of those who have no clear and evident molecular driver? What of those deemed to have "nil actionable" mutations? How might we deliver better therapeutic opportunities for those left behind in the clamour toward stratified therapeutics? And what significant learnings lie hidden in the data we amass but do not interrogate and understand? This Perspective article suggests a holistic approach to the future treatment of such patients, and sets a framework through which significant additional patient benefit might be achieved. In order to deliver upon this framework, it encourages and invites the clinical community to engage more enthusiastically and share learnings with colleagues in the early drug discovery community, in order to deliver a step change in patient care.
Collapse
|
37
|
Abstract
Wnt signaling has multiple functions beyond the transcriptional effects of β-catenin stabilization. We review recent investigations that uncover new cell physiological effects through the regulation of Wnt receptor endocytosis, Wnt-induced stabilization of proteins (Wnt-STOP), macropinocytosis, increase in lysosomal activity, and metabolic changes. Many of these growth-promoting effects of canonical Wnt occur within minutes and are independent of new protein synthesis. A key element is the sequestration of glycogen synthase kinase 3 (GSK3) inside multivesicular bodies and lysosomes. Twenty percent of human proteins contain consecutive GSK3 phosphorylation motifs, which in the absence of Wnt can form phosphodegrons for polyubiquitination and proteasomal degradation. Wnt signaling by either the pharmacological inhibition of GSK3 or the loss of tumor-suppressor proteins, such as adenomatous polyposis coli (APC) and Axin1, increases lysosomal acidification, anabolic metabolites, and macropinocytosis, which is normally repressed by the GSK3-Axin1-APC destruction complex. The combination of these cell physiological effects drives cell growth. Expected final online publication date for the Annual Review of Cell and Developmental Biology, Volume 37 is October 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Lauren V Albrecht
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, California 90095-1662, USA;
| | - Nydia Tejeda-Muñoz
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, California 90095-1662, USA;
| | - Edward M De Robertis
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, California 90095-1662, USA;
| |
Collapse
|
38
|
Jones HJS, Cunningham C, Askautrud HA, Danielsen HE, Kerr DJ, Domingo E, Maughan T, Leedham SJ, Koelzer VH. Stromal composition predicts recurrence of early rectal cancer after local excision. Histopathology 2021; 79:947-956. [PMID: 34174109 PMCID: PMC8845517 DOI: 10.1111/his.14438] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/28/2021] [Accepted: 06/24/2021] [Indexed: 11/30/2022]
Abstract
AIMS After local excision of early rectal cancer, definitive lymph node status is not available. An alternative means for accurate assessment of recurrence risk is required to determine the most appropriate subsequent management. Currently used measures are suboptimal. We assess three measures of tumour stromal content to determine their predictive value after local excision in a well-characterised cohort of rectal cancer patients without prior radiotherapy. METHODS AND RESULTS A total of 143 patients were included. Haematoxylin and eosin (H&E) sections were scanned for (i) deep neural network (DNN, a machine-learning algorithm) tumour segmentation into compartments including desmoplastic stroma and inflamed stroma; and (ii) digital assessment of tumour stromal fraction (TSR) and optical DNA ploidy analysis. 3' mRNA sequencing was performed to obtain gene expression data from which stromal and immune scores were calculated using the ESTIMATE method. Full results were available for 139 samples and compared with disease-free survival. All three methods were prognostic. Most strongly predictive was a DNN-determined ratio of desmoplastic to inflamed stroma >5.41 (P < 0.0001). A ratio of ESTIMATE stromal to immune score <1.19 was also predictive of disease-free survival (P = 0.00051), as was stromal fraction >36.5% (P = 0.037). CONCLUSIONS The DNN-determined ratio of desmoplastic to inflamed ratio is a novel and powerful predictor of disease recurrence in locally excised early rectal cancer. It can be assessed on a single H&E section, so could be applied in routine clinical practice to improve the prognostic information available to patients and clinicians to inform the decision concerning further management.
Collapse
Affiliation(s)
- Helen J S Jones
- Department of Colorectal Surgery, Oxford University Hospitals NHS Trust, Oxford, UK
| | - Chris Cunningham
- Department of Colorectal Surgery, Oxford University Hospitals NHS Trust, Oxford, UK
| | - Hanne A Askautrud
- Institute for Cancer Genetics and Informatics, Oslo University Hospital, Oslo, Norway
| | - Håvard E Danielsen
- Institute for Cancer Genetics and Informatics, Oslo University Hospital, Oslo, Norway.,Department of Informatics, University of Oslo, Oslo, Norway.,Nuffield Division of Clinical Laboratory Sciences, University of Oxford, Oxford, UK
| | - David J Kerr
- Nuffield Division of Clinical Laboratory Sciences, University of Oxford, Oxford, UK
| | - Enric Domingo
- Department of Oncology, MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford, UK
| | - Tim Maughan
- Department of Oncology, MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford, UK
| | - Simon J Leedham
- Intestinal Stem Cell Biology Laboratory, Nuffield Department of Medicine, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Viktor H Koelzer
- Department of Pathology and Molecular Pathology, University and University Hospital Zürich, Zürich, Switzerland.,Department of Oncology and Nuffield Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
39
|
Moretto R, Giordano M, Poma AM, Passardi A, Boccaccino A, Pietrantonio F, Tomasello G, Aprile G, Lonardi S, Conca V, Granetto C, Frassoldati A, Clavarezza M, Bertolini AS, Germani MM, Ugolini C, Fontanini G, Masi G, Falcone A, Cremolini C. Exploring clinical and gene expression markers of benefit from FOLFOXIRI/bevacizumab in patients with BRAF-mutated metastatic colorectal cancer: Subgroup analyses of the TRIBE2 study. Eur J Cancer 2021; 153:16-26. [PMID: 34126333 DOI: 10.1016/j.ejca.2021.04.039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/19/2021] [Accepted: 04/24/2021] [Indexed: 11/25/2022]
Abstract
BACKGROUND Recent data from the TRIBE2 study have failed to suggest a higher magnitude of benefit from upfront FOLFOXIRI/bevacizumab in patients with BRAF-mutant metastatic colorectal cancer (mCRC) as previously reported in the TRIBE study. PATIENTS AND METHODS Clinical characteristics and gene expression signatures of patients with BRAF-mutant mCRC enrolled in the TRIBE2 study were evaluated with the aim of understanding that patients may derive benefit from the intensification of the upfront chemotherapy. RESULTS Of 46 BRAF-mutant tumour samples analysed, 24 (52%) and 22 (48%) were classified as BM1 and BM2, respectively, and 27 (59%) and 19 (41%) were assigned to ligand-independent (LI) and ligand-dependent (LD) Wnt pathway subgroups, respectively. No prognostic impact was shown for both BM1/BM2 and LI/LD subtypes. No interaction was evident between BM1/BM2 or LI/LD signatures and the benefit provided by FOLFOXIRI/bevacizumab. Significant interaction effect was evident in terms of progression-free survival between treatment arm and primary tumour sidedness (P = 0.05) and Eastern Cooperative Oncology Group performance status (ECOG-PS; P < 0.001). CONCLUSIONS Gene expression analysis failed to identify patients with BRAF-mutant mCRC candidate to upfront FOLFOXIRI/bevacizumab. ECOG-PS >0 and left-sidedness seem associated with no benefit from the intensified treatment.
Collapse
Affiliation(s)
- Roberto Moretto
- Unit of Medical Oncology 2, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| | - Mirella Giordano
- Department of Translational Research and New Technology in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Anello M Poma
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, Italy
| | - Alessandro Passardi
- Department of Medical Oncology, IRCCS Istituto Romagnolo per Lo Studio Dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Alessandra Boccaccino
- Unit of Medical Oncology 2, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy; Department of Translational Research and New Technology in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Filippo Pietrantonio
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy; Oncology and Hemato-oncology Department, University of Milan, Milan, Italy
| | - Gianluca Tomasello
- Oncology Unit, Oncology Department, ASST of Cremona, Cremona, Italy; UOC Medical Oncology, IRCCS Foundation Ca' Granda Maggiore Hospital Policlinic, Milan, Italy
| | - Giuseppe Aprile
- Department of Oncology, University and General Hospital, Udine, Italy; Department of Oncology, San Bortolo General Hospital, Vicenza, Italy
| | - Sara Lonardi
- Early Phase Clinical Trial Unit, Department of Oncology, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy; Medical Oncology Unit 1, Department of Oncology, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Veronica Conca
- Unit of Medical Oncology 2, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy; Department of Translational Research and New Technology in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Cristina Granetto
- Medical Oncology, Azienda Ospedaliera S., Croce e Carle Ospedale di Insegnamento, Cuneo, Italy
| | - Antonio Frassoldati
- Clinical Oncology, Oncology Department, Azienda Ospedaliero Universitaria di Ferrara, Ferrara, Italy
| | | | | | - Marco M Germani
- Unit of Medical Oncology 2, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy; Department of Translational Research and New Technology in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Clara Ugolini
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, Italy
| | - Gabriella Fontanini
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, Italy
| | - Gianluca Masi
- Unit of Medical Oncology 2, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy; Department of Translational Research and New Technology in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Alfredo Falcone
- Unit of Medical Oncology 2, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy; Department of Translational Research and New Technology in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Chiara Cremolini
- Unit of Medical Oncology 2, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy; Department of Translational Research and New Technology in Medicine and Surgery, University of Pisa, Pisa, Italy.
| |
Collapse
|
40
|
Leach JDG, Vlahov N, Tsantoulis P, Ridgway RA, Flanagan DJ, Gilroy K, Sphyris N, Vázquez EG, Vincent DF, Faller WJ, Hodder MC, Raven A, Fey S, Najumudeen AK, Strathdee D, Nixon C, Hughes M, Clark W, Shaw R, van Hooff SR, Huels DJ, Medema JP, Barry ST, Frame MC, Unciti-Broceta A, Leedham SJ, Inman GJ, Jackstadt R, Thompson BJ, Campbell AD, Tejpar S, Sansom OJ. Oncogenic BRAF, unrestrained by TGFβ-receptor signalling, drives right-sided colonic tumorigenesis. Nat Commun 2021. [PMID: 34103493 DOI: 10.1038/s41467‐021‐23717‐5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Right-sided (proximal) colorectal cancer (CRC) has a poor prognosis and a distinct mutational profile, characterized by oncogenic BRAF mutations and aberrations in mismatch repair and TGFβ signalling. Here, we describe a mouse model of right-sided colon cancer driven by oncogenic BRAF and loss of epithelial TGFβ-receptor signalling. The proximal colonic tumours that develop in this model exhibit a foetal-like progenitor phenotype (Ly6a/Sca1+) and, importantly, lack expression of Lgr5 and its associated intestinal stem cell signature. These features are recapitulated in human BRAF-mutant, right-sided CRCs and represent fundamental differences between left- and right-sided disease. Microbial-driven inflammation supports the initiation and progression of these tumours with foetal-like characteristics, consistent with their predilection for the microbe-rich right colon and their antibiotic sensitivity. While MAPK-pathway activating mutations drive this foetal-like signature via ERK-dependent activation of the transcriptional coactivator YAP, the same foetal-like transcriptional programs are also initiated by inflammation in a MAPK-independent manner. Importantly, in both contexts, epithelial TGFβ-receptor signalling is instrumental in suppressing the tumorigenic potential of these foetal-like progenitor cells.
Collapse
Affiliation(s)
- Joshua D G Leach
- Cancer Research UK Beatson Institute, Glasgow, UK.,Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | | | - Petros Tsantoulis
- Department of Medical Specialties, Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Department of Oncology, Hôpitaux Universitaires de Genève, Geneva, Switzerland
| | | | | | | | | | - Ester G Vázquez
- Gastrointestinal Stem Cell Biology Lab, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | | | - William J Faller
- Division of Oncogenomics, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Michael C Hodder
- Cancer Research UK Beatson Institute, Glasgow, UK.,Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | | | - Sigrid Fey
- Cancer Research UK Beatson Institute, Glasgow, UK.,Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | | | | | - Colin Nixon
- Cancer Research UK Beatson Institute, Glasgow, UK
| | - Mark Hughes
- Cancer Research UK Beatson Institute, Glasgow, UK
| | | | - Robin Shaw
- Cancer Research UK Beatson Institute, Glasgow, UK
| | | | - Sander R van Hooff
- Laboratory for Experimental Oncology and Radiobiology (LEXOR), Center for Experimental Molecular Medicine (CEMM) and Cancer Center Amsterdam, Academic Medical Center, Amsterdam, The Netherlands.,Oncode Institute, Academic Medical Center, Amsterdam, The Netherlands
| | - David J Huels
- Laboratory for Experimental Oncology and Radiobiology (LEXOR), Center for Experimental Molecular Medicine (CEMM) and Cancer Center Amsterdam, Academic Medical Center, Amsterdam, The Netherlands.,Oncode Institute, Academic Medical Center, Amsterdam, The Netherlands
| | - Jan Paul Medema
- Laboratory for Experimental Oncology and Radiobiology (LEXOR), Center for Experimental Molecular Medicine (CEMM) and Cancer Center Amsterdam, Academic Medical Center, Amsterdam, The Netherlands.,Oncode Institute, Academic Medical Center, Amsterdam, The Netherlands
| | - Simon T Barry
- Bioscience, Early Oncology, AstraZeneca, Cambridge, UK
| | - Margaret C Frame
- Cancer Research UK Edinburgh Centre, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Asier Unciti-Broceta
- Cancer Research UK Edinburgh Centre, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Simon J Leedham
- Gastrointestinal Stem Cell Biology Lab, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Gareth J Inman
- Cancer Research UK Beatson Institute, Glasgow, UK.,Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | | | - Barry J Thompson
- EMBL Australia, John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | | | - Sabine Tejpar
- Molecular Digestive Oncology, Department of Oncology, University of Leuven, Leuven, Belgium
| | - Owen J Sansom
- Cancer Research UK Beatson Institute, Glasgow, UK. .,Institute of Cancer Sciences, University of Glasgow, Glasgow, UK.
| |
Collapse
|
41
|
Leach JDG, Vlahov N, Tsantoulis P, Ridgway RA, Flanagan DJ, Gilroy K, Sphyris N, Vázquez EG, Vincent DF, Faller WJ, Hodder MC, Raven A, Fey S, Najumudeen AK, Strathdee D, Nixon C, Hughes M, Clark W, Shaw R, van Hooff SR, Huels DJ, Medema JP, Barry ST, Frame MC, Unciti-Broceta A, Leedham SJ, Inman GJ, Jackstadt R, Thompson BJ, Campbell AD, Tejpar S, Sansom OJ. Oncogenic BRAF, unrestrained by TGFβ-receptor signalling, drives right-sided colonic tumorigenesis. Nat Commun 2021; 12:3464. [PMID: 34103493 PMCID: PMC8187652 DOI: 10.1038/s41467-021-23717-5] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 05/11/2021] [Indexed: 02/08/2023] Open
Abstract
Right-sided (proximal) colorectal cancer (CRC) has a poor prognosis and a distinct mutational profile, characterized by oncogenic BRAF mutations and aberrations in mismatch repair and TGFβ signalling. Here, we describe a mouse model of right-sided colon cancer driven by oncogenic BRAF and loss of epithelial TGFβ-receptor signalling. The proximal colonic tumours that develop in this model exhibit a foetal-like progenitor phenotype (Ly6a/Sca1+) and, importantly, lack expression of Lgr5 and its associated intestinal stem cell signature. These features are recapitulated in human BRAF-mutant, right-sided CRCs and represent fundamental differences between left- and right-sided disease. Microbial-driven inflammation supports the initiation and progression of these tumours with foetal-like characteristics, consistent with their predilection for the microbe-rich right colon and their antibiotic sensitivity. While MAPK-pathway activating mutations drive this foetal-like signature via ERK-dependent activation of the transcriptional coactivator YAP, the same foetal-like transcriptional programs are also initiated by inflammation in a MAPK-independent manner. Importantly, in both contexts, epithelial TGFβ-receptor signalling is instrumental in suppressing the tumorigenic potential of these foetal-like progenitor cells.
Collapse
Affiliation(s)
- Joshua D G Leach
- Cancer Research UK Beatson Institute, Glasgow, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | | | - Petros Tsantoulis
- Department of Medical Specialties, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Department of Oncology, Hôpitaux Universitaires de Genève, Geneva, Switzerland
| | | | | | | | | | - Ester G Vázquez
- Gastrointestinal Stem Cell Biology Lab, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | | | - William J Faller
- Division of Oncogenomics, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Michael C Hodder
- Cancer Research UK Beatson Institute, Glasgow, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | | | - Sigrid Fey
- Cancer Research UK Beatson Institute, Glasgow, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | | | | | - Colin Nixon
- Cancer Research UK Beatson Institute, Glasgow, UK
| | - Mark Hughes
- Cancer Research UK Beatson Institute, Glasgow, UK
| | | | - Robin Shaw
- Cancer Research UK Beatson Institute, Glasgow, UK
| | - Sander R van Hooff
- Laboratory for Experimental Oncology and Radiobiology (LEXOR), Center for Experimental Molecular Medicine (CEMM) and Cancer Center Amsterdam, Academic Medical Center, Amsterdam, The Netherlands
- Oncode Institute, Academic Medical Center, Amsterdam, The Netherlands
| | - David J Huels
- Laboratory for Experimental Oncology and Radiobiology (LEXOR), Center for Experimental Molecular Medicine (CEMM) and Cancer Center Amsterdam, Academic Medical Center, Amsterdam, The Netherlands
- Oncode Institute, Academic Medical Center, Amsterdam, The Netherlands
| | - Jan Paul Medema
- Laboratory for Experimental Oncology and Radiobiology (LEXOR), Center for Experimental Molecular Medicine (CEMM) and Cancer Center Amsterdam, Academic Medical Center, Amsterdam, The Netherlands
- Oncode Institute, Academic Medical Center, Amsterdam, The Netherlands
| | - Simon T Barry
- Bioscience, Early Oncology, AstraZeneca, Cambridge, UK
| | - Margaret C Frame
- Cancer Research UK Edinburgh Centre, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Asier Unciti-Broceta
- Cancer Research UK Edinburgh Centre, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Simon J Leedham
- Gastrointestinal Stem Cell Biology Lab, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Gareth J Inman
- Cancer Research UK Beatson Institute, Glasgow, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | | | - Barry J Thompson
- EMBL Australia, John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | | | - Sabine Tejpar
- Molecular Digestive Oncology, Department of Oncology, University of Leuven, Leuven, Belgium
| | - Owen J Sansom
- Cancer Research UK Beatson Institute, Glasgow, UK.
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK.
| |
Collapse
|
42
|
Lorzadeh A, Romero-Wolf M, Goel A, Jadhav U. Epigenetic Regulation of Intestinal Stem Cells and Disease: A Balancing Act of DNA and Histone Methylation. Gastroenterology 2021; 160:2267-2282. [PMID: 33775639 PMCID: PMC8169626 DOI: 10.1053/j.gastro.2021.03.036] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 03/10/2021] [Accepted: 03/23/2021] [Indexed: 02/08/2023]
Abstract
Genetic mutations or regulatory failures underlie cellular malfunction in many diseases, including colorectal cancer and inflammatory bowel diseases. However, mutational defects alone fail to explain the complexity of such disorders. Epigenetic regulation-control of gene action through chemical and structural changes of chromatin-provides a platform to integrate multiple extracellular inputs and prepares the cellular genome for appropriate gene expression responses. Coregulation by polycomb repressive complex 2-mediated trimethylation of lysine 27 on histone 3 and DNA methylation has emerged as one of the most influential epigenetic controls in colorectal cancer and many other diseases, but molecular details remain inadequate. Here we review the molecular interplay of these epigenetic features in relation to gastrointestinal development, homeostasis, and disease biology. We discuss other epigenetic mechanisms pertinent to the balance of trimethylation of lysine 27 on histone 3 and DNA methylation and their actions in gastrointestinal cancers. We also review the current molecular understanding of chromatin control in the pathogenesis of inflammatory bowel diseases.
Collapse
Affiliation(s)
- Alireza Lorzadeh
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Maile Romero-Wolf
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Ajay Goel
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Unmesh Jadhav
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California; Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California.
| |
Collapse
|
43
|
Abstract
Colorectal cancer has served as a genetic and biological paradigm for the evolution of solid tumors, and these insights have illuminated early detection, risk stratification, prevention, and treatment principles. Employing the hallmarks of cancer framework, we provide a conceptual framework to understand how genetic alterations in colorectal cancer drive cancer cell biology properties and shape the heterotypic interactions across cells in the tumor microenvironment. This review details research advances pertaining to the genetics and biology of colorectal cancer, emerging concepts gleaned from immune and single-cell profiling, and critical advances and remaining knowledge gaps influencing the development of effective therapies for this cancer that remains a major public health burden.
Collapse
Affiliation(s)
- Jiexi Li
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Xingdi Ma
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Deepavali Chakravarti
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Shabnam Shalapour
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Ronald A DePinho
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| |
Collapse
|
44
|
Flanagan DJ, Pentinmikko N, Luopajärvi K, Willis NJ, Gilroy K, Raven AP, Mcgarry L, Englund JI, Webb AT, Scharaw S, Nasreddin N, Hodder MC, Ridgway RA, Minnee E, Sphyris N, Gilchrist E, Najumudeen AK, Romagnolo B, Perret C, Williams AC, Clevers H, Nummela P, Lähde M, Alitalo K, Hietakangas V, Hedley A, Clark W, Nixon C, Kirschner K, Jones EY, Ristimäki A, Leedham SJ, Fish PV, Vincent JP, Katajisto P, Sansom OJ. NOTUM from Apc-mutant cells biases clonal competition to initiate cancer. Nature 2021; 594:430-435. [PMID: 34079124 PMCID: PMC7615049 DOI: 10.1038/s41586-021-03525-z] [Citation(s) in RCA: 132] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 04/07/2021] [Indexed: 02/06/2023]
Abstract
The tumour suppressor APC is the most commonly mutated gene in colorectal cancer. Loss of Apc in intestinal stem cells drives the formation of adenomas in mice via increased WNT signalling1, but reduced secretion of WNT ligands increases the ability of Apc-mutant intestinal stem cells to colonize a crypt (known as fixation)2. Here we investigated how Apc-mutant cells gain a clonal advantage over wild-type counterparts to achieve fixation. We found that Apc-mutant cells are enriched for transcripts that encode several secreted WNT antagonists, with Notum being the most highly expressed. Conditioned medium from Apc-mutant cells suppressed the growth of wild-type organoids in a NOTUM-dependent manner. Furthermore, NOTUM-secreting Apc-mutant clones actively inhibited the proliferation of surrounding wild-type crypt cells and drove their differentiation, thereby outcompeting crypt cells from the niche. Genetic or pharmacological inhibition of NOTUM abrogated the ability of Apc-mutant cells to expand and form intestinal adenomas. We identify NOTUM as a key mediator during the early stages of mutation fixation that can be targeted to restore wild-type cell competitiveness and provide preventative strategies for people at a high risk of developing colorectal cancer.
Collapse
Affiliation(s)
| | - Nalle Pentinmikko
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
- Molecular and Integrative Bioscience Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Kalle Luopajärvi
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
- Molecular and Integrative Bioscience Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Nicky J Willis
- Alzheimer's Research UK UCL Drug Discovery Institute, University College London, London, UK
| | - Kathryn Gilroy
- Cancer Research UK Beatson Institute, Glasgow, UK
- SpecifiCancer CRUK Grand Challenge Team (C7932/A29055), Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Alexander P Raven
- Cancer Research UK Beatson Institute, Glasgow, UK
- SpecifiCancer CRUK Grand Challenge Team (C7932/A29055), Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Lynn Mcgarry
- Cancer Research UK Beatson Institute, Glasgow, UK
| | - Johanna I Englund
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
- Molecular and Integrative Bioscience Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Anna T Webb
- Department of Cell and Molecular Biology (CMB), Karolinska Institutet, Stockholm, Sweden
| | - Sandra Scharaw
- Department of Cell and Molecular Biology (CMB), Karolinska Institutet, Stockholm, Sweden
| | - Nadia Nasreddin
- Intestinal Stem Cell Biology Lab, Wellcome Trust Centre Human Genetics, University of Oxford, Oxford, UK
| | - Michael C Hodder
- Cancer Research UK Beatson Institute, Glasgow, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | | | - Emma Minnee
- Cancer Research UK Beatson Institute, Glasgow, UK
- Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | | | - Ella Gilchrist
- Cancer Research UK Beatson Institute, Glasgow, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | | | | | - Christine Perret
- Université de Paris, Institut Cochin, INSERM, CNRS, Paris, France
| | - Ann C Williams
- Colorectal Tumour Biology Group, School of Cellular and Molecular Medicine, Faculty of Life Sciences, University of Bristol, Bristol, UK
| | - Hans Clevers
- SpecifiCancer CRUK Grand Challenge Team (C7932/A29055), Department of Genetics, Harvard Medical School, Boston, MA, USA
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences, Utrecht, The Netherlands
| | - Pirjo Nummela
- Department of Pathology, Applied Tumor Genomics, Research Programs Unit and HUSLAB, HUS Diagnostic Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Marianne Lähde
- Translational Cancer Medicine Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Wihuri Research Institute, University of Helsinki, Helsinki, Finland
| | - Kari Alitalo
- Translational Cancer Medicine Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Wihuri Research Institute, University of Helsinki, Helsinki, Finland
| | - Ville Hietakangas
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
- Molecular and Integrative Bioscience Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Ann Hedley
- Cancer Research UK Beatson Institute, Glasgow, UK
| | | | - Colin Nixon
- Cancer Research UK Beatson Institute, Glasgow, UK
| | | | - E Yvonne Jones
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Ari Ristimäki
- Department of Pathology, Applied Tumor Genomics, Research Programs Unit and HUSLAB, HUS Diagnostic Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Simon J Leedham
- Intestinal Stem Cell Biology Lab, Wellcome Trust Centre Human Genetics, University of Oxford, Oxford, UK
| | - Paul V Fish
- Alzheimer's Research UK UCL Drug Discovery Institute, University College London, London, UK
- The Francis Crick Institute, London, UK
| | | | - Pekka Katajisto
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland.
- Molecular and Integrative Bioscience Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland.
- Department of Cell and Molecular Biology (CMB), Karolinska Institutet, Stockholm, Sweden.
| | - Owen J Sansom
- Cancer Research UK Beatson Institute, Glasgow, UK.
- SpecifiCancer CRUK Grand Challenge Team (C7932/A29055), Department of Genetics, Harvard Medical School, Boston, MA, USA.
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK.
| |
Collapse
|
45
|
Sphyris N, Hodder MC, Sansom OJ. Subversion of Niche-Signalling Pathways in Colorectal Cancer: What Makes and Breaks the Intestinal Stem Cell. Cancers (Basel) 2021; 13:1000. [PMID: 33673710 PMCID: PMC7957493 DOI: 10.3390/cancers13051000] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/15/2021] [Accepted: 02/17/2021] [Indexed: 12/12/2022] Open
Abstract
The intestinal epithelium fulfils pleiotropic functions in nutrient uptake, waste elimination, and immune surveillance while also forming a barrier against luminal toxins and gut-resident microbiota. Incessantly barraged by extraneous stresses, the intestine must continuously replenish its epithelial lining and regenerate the full gamut of specialized cell types that underpin its functions. Homeostatic remodelling is orchestrated by the intestinal stem cell (ISC) niche: a convergence of epithelial- and stromal-derived cues, which maintains ISCs in a multipotent state. Following demise of homeostatic ISCs post injury, plasticity is pervasive among multiple populations of reserve stem-like cells, lineage-committed progenitors, and/or fully differentiated cell types, all of which can contribute to regeneration and repair. Failure to restore the epithelial barrier risks seepage of toxic luminal contents, resulting in inflammation and likely predisposing to tumour formation. Here, we explore how homeostatic niche-signalling pathways are subverted in tumorigenesis, enabling ISCs to gain autonomy from niche restraints ("ISC emancipation") and transform into cancer stem cells capable of driving tumour initiation, progression, and therapy resistance. We further consider the implications of the pervasive plasticity of the intestinal epithelium for the trajectory of colorectal cancer, the emergence of distinct molecular subtypes, the propensity to metastasize, and the development of effective therapeutic strategies.
Collapse
Affiliation(s)
- Nathalie Sphyris
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK; (N.S.); (M.C.H.)
| | - Michael C. Hodder
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK; (N.S.); (M.C.H.)
- Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow G61 1QH, UK
| | - Owen J. Sansom
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK; (N.S.); (M.C.H.)
- Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow G61 1QH, UK
| |
Collapse
|
46
|
Activation of WNT7b autocrine eases metastasis of colorectal cancer via epithelial to mesenchymal transition and predicts poor prognosis. BMC Cancer 2021; 21:180. [PMID: 33607955 PMCID: PMC7893751 DOI: 10.1186/s12885-021-07898-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 02/10/2021] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Aberrant activation of the Wnt/β-catenin signaling pathway is one of the most frequent abnormalities in human cancer, including colorectal cancer (CRC). Previous studies revealed pivotal functions of WNT family members in colorectal cancer, as well as their prognostic values. Nevertheless, the prognostic role and mechanisms underlying WNT7b in colorectal cancer development remains unclear. METHODS In this study, WNT7b expression was measured by immunohistochemical staining of 100 cases of surgically resected human colorectal cancerous tissues as well as matched adjacent normal tissues constructed as tissue microarrays. In vitro studies, we attempted to substantiate the WNT7b expressional pattern previously found in immunohistochemistry staining. We used the colorectal cancer cell-line HCT116 and normal colorectal cell-line FHC for immunofluorescence staining and nuclear/cytoplasmic separated western blotting. We measured epithelial-mesenchymal transition (EMT) markers and migration capacity of HCT116 in the context of WNT7b knocked-down using short interfering RNA. Finally, clinical and prognostic values of WNT7b activation levels were examined. RESULTS WNT7b was expressed in the nucleus in adjacent normal tissues. In CRC tissues, nuclear expression of WNT7b was similar; however, membrane and cytoplasmic expression was strikingly enhanced. Consistently, in vitro analysis confirmed the same expression pattern of WNT7b. Compared with FHC cells, HCT116 cells displayed higher levels of WNT7b membrane and cytoplasmic enrichment, as well as higher migration capacity with a sensitized EMT process. Either partial knockdown of WNT7b or blockade of the Wnt/β-catenin signaling pathway reversed EMT process and inhibited the migration of HCT116 cells. Finally, elevated secretion levels of WNT7b were significantly associated with lymphatic and remote metastasis and predicted worse prognosis in the CRC cohort. CONCLUSION In summary, we demonstrated that the activation of WNT7b autocrine probably contributes to CRC metastasis by triggering EMT process through the Wnt/β-catenin signaling pathway. High levels of WNT7b autocrine secretion predicts poor outcome in patients with CRC. This molecule is a promising candidate for clinical CRC treatments.
Collapse
|
47
|
Marra G. An "expressionistic" look at serrated precancerous colorectal lesions. Diagn Pathol 2021; 16:4. [PMID: 33423702 PMCID: PMC7797135 DOI: 10.1186/s13000-020-01064-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 12/27/2020] [Indexed: 01/10/2023] Open
Abstract
Background Approximately 60% of colorectal cancer (CRC) precursor lesions are the genuinely-dysplastic conventional adenomas (cADNs). The others include hyperplastic polyps (HPs), sessile serrated lesions (SSL), and traditional serrated adenomas (TSAs), subtypes of a class of lesions collectively referred to as “serrated.” Endoscopic and histologic differentiation between cADNs and serrated lesions, and between serrated lesion subtypes can be difficult. Methods We used in situ hybridization to verify the expression patterns in CRC precursors of 21 RNA molecules that appear to be promising differentiation markers on the basis of previous RNA sequencing studies. Results SSLs could be clearly differentiated from cADNs by the expression patterns of 9 of the 12 RNAs tested for this purpose (VSIG1, ANXA10, ACHE, SEMG1, AQP5, LINC00520, ZIC5/2, FOXD1, NKD1). Expression patterns of all 9 in HPs were similar to those in SSLs. Nine putatively HP-specific RNAs were also investigated, but none could be confirmed as such: most (e.g., HOXD13 and HOXB13), proved instead to be markers of the normal mucosa in the distal colon and rectum, where most HPs arise. TSAs displayed mixed staining patterns reflecting the presence of serrated and dysplastic glands in the same lesion. Conclusions Using a robust in situ hybridization protocol, we identified promising tissue-staining markers that, if validated in larger series of lesions, could facilitate more precise histologic classification of CRC precursors and, consequently, more tailored clinical follow-up of their carriers. Our findings should also fuel functional studies on the pathogenic significance of specific gene expression alterations in the initiation and evolution of CRC precursor subtypes. Supplementary Information The online version contains supplementary material available at 10.1186/s13000-020-01064-1.
Collapse
Affiliation(s)
- Giancarlo Marra
- Institute of Molecular Cancer Research, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.
| |
Collapse
|
48
|
Bugter JM, Fenderico N, Maurice MM. Mutations and mechanisms of WNT pathway tumour suppressors in cancer. Nat Rev Cancer 2021; 21:5-21. [PMID: 33097916 DOI: 10.1038/s41568-020-00307-z] [Citation(s) in RCA: 278] [Impact Index Per Article: 69.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/15/2020] [Indexed: 12/21/2022]
Abstract
Mutation-induced activation of WNT-β-catenin signalling is a frequent driver event in human cancer. Sustained WNT-β-catenin pathway activation endows cancer cells with sustained self-renewing growth properties and is associated with therapy resistance. In healthy adult stem cells, WNT pathway activity is carefully controlled by core pathway tumour suppressors as well as negative feedback regulators. Gene inactivation experiments in mouse models unequivocally demonstrated the relevance of WNT tumour suppressor loss-of-function mutations for cancer growth. However, in human cancer, a far more complex picture has emerged in which missense or truncating mutations mediate stable expression of mutant proteins, with distinct functional and phenotypic ramifications. Herein, we review recent advances and challenges in our understanding of how different mutational subsets of WNT tumour suppressor genes link to distinct cancer types, clinical outcomes and treatment strategies.
Collapse
Affiliation(s)
- Jeroen M Bugter
- Oncode Institute and Department of Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, Netherlands
| | - Nicola Fenderico
- Oncode Institute and Department of Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, Netherlands
| | - Madelon M Maurice
- Oncode Institute and Department of Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, Netherlands.
| |
Collapse
|
49
|
Zhong ZA, Michalski MN, Stevens PD, Sall EA, Williams BO. Regulation of Wnt receptor activity: Implications for therapeutic development in colon cancer. J Biol Chem 2021; 296:100782. [PMID: 34000297 PMCID: PMC8214085 DOI: 10.1016/j.jbc.2021.100782] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 05/05/2021] [Accepted: 05/10/2021] [Indexed: 12/13/2022] Open
Abstract
Hyperactivation of Wnt/β-catenin (canonical) signaling in colorectal cancers (CRCs) was identified in the 1990s. Most CRC patients have mutations in genes that encode components of the Wnt pathway. Inactivating mutations in the adenomatous polyposis coli (APC) gene, which encodes a protein necessary for β-catenin degradation, are by far the most prevalent. Other Wnt signaling components are mutated in a smaller proportion of CRCs; these include a FZD-specific ubiquitin E3 ligase known as ring finger protein 43 that removes FZDs from the cell membrane. Our understanding of the genetic and epigenetic landscape of CRC has grown exponentially because of contributions from high-throughput sequencing projects such as The Cancer Genome Atlas. Despite this, no Wnt modulators have been successfully developed for CRC-targeted therapies. In this review, we will focus on the Wnt receptor complex, and speculate on recent discoveries about ring finger protein 43regulating Wnt receptors in CRCs. We then review the current debate on a new APC-Wnt receptor interaction model with therapeutic implications.
Collapse
Affiliation(s)
- Zhendong A Zhong
- Department of Cell Biology, Van Andel Institute, Grand Rapids, Michigan, USA
| | - Megan N Michalski
- Department of Cell Biology, Van Andel Institute, Grand Rapids, Michigan, USA
| | - Payton D Stevens
- Department of Cell Biology, Van Andel Institute, Grand Rapids, Michigan, USA
| | - Emily A Sall
- Department of Cell Biology, Van Andel Institute, Grand Rapids, Michigan, USA
| | - Bart O Williams
- Department of Cell Biology, Van Andel Institute, Grand Rapids, Michigan, USA.
| |
Collapse
|
50
|
Kleeman SO, Leedham SJ. Not All Wnt Activation Is Equal: Ligand-Dependent versus Ligand-Independent Wnt Activation in Colorectal Cancer. Cancers (Basel) 2020; 12:E3355. [PMID: 33202731 PMCID: PMC7697568 DOI: 10.3390/cancers12113355] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/11/2020] [Accepted: 11/12/2020] [Indexed: 02/08/2023] Open
Abstract
Wnt signaling is ubiquitously activated in colorectal tumors and driver mutations are identified in genes such as APC, CTNNB1, RNF43 and R-spondin (RSPO2/3). Adenomatous polyposis coli (APC) and CTNNB1 mutations lead to downstream constitutive activation (ligand-independent), while RNF43 and RSPO mutations require exogenous Wnt ligand to activate signaling (ligand-dependent). Here, we present evidence that these mutations are not equivalent and that ligand-dependent and ligand-independent tumors differ in terms of underlying Wnt biology, molecular pathogenesis, morphology and prognosis. These non-overlapping characteristics can be harnessed to develop biomarkers and targeted treatments for ligand-dependent tumors, including porcupine inhibitors, anti-RSPO3 antibodies and asparaginase. There is emerging evidence that these therapies may synergize with immunotherapy in ligand-dependent tumors. In summary, we propose that ligand-dependent tumors are an underappreciated separate disease entity in colorectal cancer.
Collapse
Affiliation(s)
- Sam O. Kleeman
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA;
- Intestinal Stem Cell Biology Lab, Wellcome Trust Centre Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Simon J. Leedham
- Intestinal Stem Cell Biology Lab, Wellcome Trust Centre Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| |
Collapse
|