1
|
Bera S, Bhunia SK. Bright yellow fluorescent N-doped Ti 3C 2 MXene quantum dots as an "on/off/on" nanoprobe for selective As 3+ ion detection. NANOSCALE 2025; 17:7193-7201. [PMID: 39995351 DOI: 10.1039/d4nr04139a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/26/2025]
Abstract
Ti3C2 MXene quantum dots (MQDs) are considered to be an emerging nanomaterial in recent times, but the majority of MQDs exhibit limited emission properties in the blue-light region. Longer-wavelength emissive quantum dots are highly desirable in terms of various biological aspects including deep tissue penetration, superior signal-to-noise ratio, reduced radiation damage, etc. In this study, bright yellow fluorescent nitrogen-doped MQDs (N-MQDs) were successfully prepared using a one-pot hydrothermal method. The synthesized N-MQDs showed maximum emission at 570 nm upon excitation at a wavelength of 420 nm, with an optimum fluorescence quantum yield of 13.8%. Interestingly, the emission of the N-MQDs was significantly quenched upon the addition of As3+ ions. A mechanistic investigation revealed that static quenching was involved in the decrease in the fluorescence via the formation of a non-fluorescent complex due to the interaction of the functional groups of the N-MQDs and As3+. The quenched fluorescence was surprisingly recovered upon treatment of the complex with 2-amino-6-methoxybenzothiazole (MBTZ). The strong interaction of MBTZ with As3+ led to the detachment of the quencher from the N-MQDs, resulting in fluorescence recovery. The re-appearance of the functional groups of the N-MQDs after the addition of MBTZ was confirmed via spectroscopic study. Thus, the fluorescence "on/off/on" phenomenon of the N-MQDs nanoprobe was utilised for the instantaneous detection of As3+ and MBTZ. The limit of detection values were calculated to be 30 nM and 0.44 μM with a good linearity for As3+ and MBTZ, respectively. In addition, a solid sensor has been fabricated to recognize As3+ in wastewater, revealing its potential for on-site application in the near future.
Collapse
Affiliation(s)
- Santanu Bera
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632014, India.
| | - Susanta Kumar Bhunia
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632014, India.
| |
Collapse
|
2
|
Dutta A, Roy R, Pandey M, Chhetry S, Phukan BC, Roy A, Bhattacharya P, Borah A. Arsenic-induced mice model of Parkinson's disease: Revealing the neurotoxicity of arsenic through mitochondrial complexes inhibition and dopaminergic neurodegeneration in the substantia nigra region of brain. Brain Res 2025; 1851:149493. [PMID: 39909295 DOI: 10.1016/j.brainres.2025.149493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 12/05/2024] [Accepted: 02/02/2025] [Indexed: 02/07/2025]
Abstract
The role of environmental contaminants in causing Parkinson's disease (PD) is well known, with rotenone and paraquat being the notable neurotoxins. Traces of the metalloid arsenic are frequently found in drinking water which is considered a threat to the brain's health. Pre-clinical and epidemiological studies have associated arsenic with PD whereby behavioral and neurochemical alterations were observed. However, the impact of arsenic toxicity on the dopaminergic neurons of substantia nigra (SN), the hallmark region which degenerates in PD, has not been shown yet. In the present study, administration of 20 mg/kg b.w., arsenic for 28 days caused significant loss of dopaminergic neurons and their terminals respectively in the SN and striatum regions of mice brain. Moreover, the arsenic-fed rodents exhibited depleted striatal dopamine, prolonged latency to move and correct posture, and reduced exploratory behavior and neurological severity. Further, mitochondrial complexes II and IV were found to be inhibited in the SN, cortex, striatum, and hippocampus of arsenic-fed mice. Additionally, inflammatory marker glial fibrillary acidic protein (GFAP) and neuronal nitric oxide synthase (nNOS) expressed in glial cells and neurons respectively were enhanced in the nigrostriatal pathway of arsenic-fed animals. The present study for the first time reports that arsenic causes Parkinsonism by degenerating nigrostriatal dopaminergic neurons through mitochondrial complex inhibition and inflammatory stress. The study further puts forward validatory evidence for the potential of arsenic in causing PD and the reliability of the arsenic-induced PD model for exploring the disease pathogenesis and treatment.
Collapse
Affiliation(s)
- Ankumoni Dutta
- Department of Life Science and Bioinformatics, Assam University, Silchar 788011 Assam, India; Department of Zoology, Pandit Deendayal Upadhyaya Adarsha Mahavidyalaya (PDUAM), Behali, Biswanath 784184 Assam, India.
| | - Rubina Roy
- Department of Life Science and Bioinformatics, Assam University, Silchar 788011 Assam, India
| | - Mritunjay Pandey
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40506, United States
| | - Sushila Chhetry
- Department of Life Science and Bioinformatics, Assam University, Silchar 788011 Assam, India
| | | | - Abhideep Roy
- Department of Life Science and Bioinformatics, Assam University, Silchar 788011 Assam, India
| | - Pallab Bhattacharya
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad - 382355, Gandhinagar, Gujarat, India
| | - Anupom Borah
- Department of Life Science and Bioinformatics, Assam University, Silchar 788011 Assam, India.
| |
Collapse
|
3
|
Hartwell HJ, Shang B, Douillet C, Bousquet AG, Liu T, Zou F, Ideraabdullah F, Stýblo M, Fry RC. Heritable dysregulation of DNA methylation may underlie the diabetogenic effects of paternal preconception exposure to inorganic arsenic in C57BL/6J mice. Toxicol Appl Pharmacol 2025; 496:117242. [PMID: 39894169 PMCID: PMC11846692 DOI: 10.1016/j.taap.2025.117242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 01/14/2025] [Accepted: 01/22/2025] [Indexed: 02/04/2025]
Abstract
Chronic exposure to inorganic arsenic (iAs) has been linked with the development of diabetes mellitus (DM). We recently showed that parental exposure to iAs (200 ppb) prior to mating was associated with diabetic phenotypes in offspring and altered gene expression in parents and offspring. The goal of the present study was to determine if DNA methylation underlies the differential gene expression in the livers of offspring. DNA methylation was assessed in paternal (G0) sperm and livers of their offspring (G1) using a genome wide DNA methylation array. We found that iAs exposure significantly altered CpG methylation (p < 0.05) in 54.3 %, 49.4 %, and 63.7 % of the differentially expressed genes in G0 sperm, G1 female livers, and G1 male livers, respectively. Importantly, a subset of differentially methylated CpG sites were shared across generations. Sensitivity analyses (FDR < 0.1) of imprinted and DM-associated genes revealed differential methylation of 74 imprinted genes and 100 DM-associated genes in the livers of G1 males. These male-specific results are intriguing given the prior findings of diabetic phenotypes found exclusively in male offspring from parents exposed to iAs. In summary, these data demonstrate that heritable changes in DNA methylation through the paternal germline may underlie the diabetogenic effects of preconception iAs exposure.
Collapse
Affiliation(s)
- Hadley J Hartwell
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Bingzhen Shang
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Christelle Douillet
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Audrey G Bousquet
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Tianyi Liu
- Department of Biostatistics, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Fei Zou
- Department of Biostatistics, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Genetics, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Folami Ideraabdullah
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Genetics, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Miroslav Stýblo
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Rebecca C Fry
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
4
|
Wu X, Kreutz A, Dixon D, Tokar EJ. Engineering human cerebral organoids to explore mechanisms of arsenic-induced developmental neurotoxicity. Toxicol Appl Pharmacol 2025; 496:117230. [PMID: 39842615 PMCID: PMC11846691 DOI: 10.1016/j.taap.2025.117230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/26/2024] [Accepted: 01/13/2025] [Indexed: 01/24/2025]
Abstract
Modeling brain development and function is challenging due to complexity of the organ. Human pluripotent stem cell (PSC)-derived brain-like organoids provide new tools to study the human brain. Compared with traditional in vivo toxicological studies, these 3D models, together with 2D cellular assays, enhance our understanding of the mechanisms of developmental neurotoxicity (DNT) during the early stages of neurogenesis and offer numerous advantages including a rapid, cost-effective approach for understanding compound mechanisms and assessing chemical safety. Arsenic (As) exposure is associated with DNT, although the mechanisms involved are not well-defined. Here, we used 3D PSC-derived embryoid bodies (EBs) to recapitulate events involved in embryogenesis and neurogenesis before neural induction, and EB-derived cerebral organoids to mimic neural development in vivo. As (0.5 μM; 35 ppb) increased ectoderm differentiation within the EBs by upregulating genes (PAX6, SOX1) critical for embryonic development. Histological staining of EBs showed As disrupted neural rosette structures. qPCR and RNA-seq showed As inhibited expression of markers of mature neural cells (MAP2+/vGLUT2+) and astrocytes (GFAP+). In organoids, Ingenuity Pathway Analysis was used to identify the top 5 pathways affected by As exposure, and Gene Ontology enrichment analysis found several key signaling pathways to be inhibited by As exposure. These data provide insights into pathways contributing to As-induced inhibition of neurite outgrowth and disrupted neural rosette structures in the 2D neurite outgrowth assay and in organoids, respectively. Results herein show this multipronged 2D/3D approach can provide valuable insights into cellular events and molecular mechanisms of As-induced DNT.
Collapse
Affiliation(s)
- Xian Wu
- Mechanistic Toxicology Branch, Division of Translational Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, United States of America
| | - Anna Kreutz
- Mechanistic Toxicology Branch, Division of Translational Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, United States of America
| | - Darlene Dixon
- Mechanistic Toxicology Branch, Division of Translational Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, United States of America
| | - Erik J Tokar
- Mechanistic Toxicology Branch, Division of Translational Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, United States of America.
| |
Collapse
|
5
|
Balali-Mood M, Eizadi-Mood N, Hassanian-Moghaddam H, Etemad L, Moshiri M, Vahabzadeh M, Sadeghi M. Recent advances in the clinical management of intoxication by five heavy metals: Mercury, lead, chromium, cadmium and arsenic. Heliyon 2025; 11:e42696. [PMID: 40040983 PMCID: PMC11876891 DOI: 10.1016/j.heliyon.2025.e42696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 12/15/2024] [Accepted: 02/12/2025] [Indexed: 03/06/2025] Open
Abstract
Metals have been used for many centuries, but their nutritional and toxic effects have been investigated since the last century. The common toxic heavy metals (THM) include mercury, lead, chromium cadmium, and arsenic. As human exposure to THM increasingly causes systemic and organ complications, it seems required to review the recent advances of treatment of the toxic metals. Despite the current knowledge of the hazards of heavy metals, there is still high incidents of their poisonings particularly in developing countries. In this review, after an introduction, we briefly describe the routes of exposure, clinical features and prognosis of each metal poisoning. Then, review the different treatments for each metal with particular attention to recent advances in the treatment of both acute and chronic poisonings. The main antidotes for all THM are still chelating agents, but new agents were developed over the past decades and have been used successfully for the THM poisonings. Dimercaptosuccinic acid (DMSA) known as succimer has been prescribed as a safe oral chelator in lead poisoning. Similarly, dimercapto-propanesulfonic acid (DMPS) has also revealed fewer side effects than the old chelating agents. The two are currently gaining increased acceptance among clinical toxicologists. However, there is no specific antidote for mercury poisoning. Dimercaprol is almost no longer used as an antidote of choice in the treatment of chronic THM poisoning. Comparison of clinical management of intoxication by the five heavy metals reveals similar treatment strategies. On the other hand, some of them require specific interventions to reduce the toxicity. Because of drawbacks in the application of commonly known chelating agents, treatment with bioactive compounds which have antioxidant and anti-inflammatory properties has been the subject of much interest in recent research. However, despite the promising results observed in experimental animals, clinical trials on their clinical therapeutic benefits have not been yet successful and need further studies to determine their efficacy and safety in humans. Development of less toxic chelating agents are still under investigations. Moreover, the development of orally administrable chelating agents for home health care would likely be of great interest for future research.
Collapse
Affiliation(s)
- Mahdi Balali-Mood
- Medical Toxicology and Drug Abuse Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Nastaran Eizadi-Mood
- Department of Clinical Toxicology, School of Medicine, Isfahan Clinical Toxicology Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hossein Hassanian-Moghaddam
- Social Determinants of Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Royal Perth Bentley Group, Next Step Drug and Alcohol Services, Perth, Australia
| | - Leila Etemad
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmaceutical and Food Control, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Moshiri
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Vahabzadeh
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmood Sadeghi
- Medical Toxicology and Drug Abuse Research Center, Birjand University of Medical Sciences, Birjand, Iran
| |
Collapse
|
6
|
Farhadi R, Daniali M, Baeeri M, Khorasani R, Haghi-Aminjan H, Gholami M, Rahimifard M, Navaei-Nigjeh M, Abdollahi M. Molecular evidence of the inhibitory potential of melatonin against sodium arsenite toxicity. Heliyon 2025; 11:e42113. [PMID: 39916822 PMCID: PMC11799970 DOI: 10.1016/j.heliyon.2025.e42113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 01/13/2025] [Accepted: 01/17/2025] [Indexed: 02/09/2025] Open
Abstract
Introduction Sodium arsenite (SA), NaAsO2, is among the most hazardous toxicants, and wide use and presence of this toxicant leads to a severe environmental threat. Exposure to SA is associated with many health concerns, such as the prevalence of cancer and diabetes mellitus type 2 (DMT2). Many studies suggest that SA induces inflammation and biochemical impairments through different mechanisms, including increasing oxidative stress and altering vital genes such as biochemical and anti-inflammatory. Recent studies on melatonin (MLT), a harmless hormone secreted in the body generally for induction of sleepiness, find many beneficial and positive effects. Mitigating different harms and toxicities through different mechanisms, such as antioxidant properties, anti-inflammatory effects, and critical gene regulation, is essential. Due to these findings, this study aimed to evaluate the hypothesis that MLT may ameliorate pancreatic damage caused by exposure to SA. Methods Forty-eight adult healthy male wistar rats aged 7-8 weeks were divided into eight for this research. Group 1 did not receive any intervention. Group 2 received 10 mg/kg/day MLT through intraperitoneal (IP) injection. Groups 3, 4, and 5 received 1.5 (1/10 LD50), 5 (1/3 LD50), and 7.5 (1/2 LD50) mg/kg SA, respectively. Groups 6, 7, and 8 were given 1.5 (1/10 LD50), 5 (1/3 LD50), and 7.5 (1/2 LD50) mg/kg of SA along with 10 mg/kg/day MLT, respectively, during the last ten days of the experiment. After 28 days of the experiment, the blood and tissue samples of the pancreas were removed for biochemical and pathological examination. Results MLT attenuates SA toxicity by reducing oxidative stress biomarkers and inflammation markers. Moreover, MLT improves SA exposure's biochemical and functional damages by regulating related genes and pathways. Conclusion MLT poses protective and preventive effects on the pancreas against exposure to SA. However, MLT's therapeutic and beneficial impacts have great potential for further investigation.
Collapse
Affiliation(s)
- Ramtin Farhadi
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences (TUMS), Tehran, Iran
- Toxicology and Diseases Specialty Group, Pharmaceutical Sciences Research Center (PSRC), Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Marzieh Daniali
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences (TUMS), Tehran, Iran
- Toxicology and Diseases Specialty Group, Pharmaceutical Sciences Research Center (PSRC), Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Maryam Baeeri
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences (TUMS), Tehran, Iran
- Toxicology and Diseases Specialty Group, Pharmaceutical Sciences Research Center (PSRC), Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Reza Khorasani
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences (TUMS), Tehran, Iran
- Toxicology and Diseases Specialty Group, Pharmaceutical Sciences Research Center (PSRC), Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Hamed Haghi-Aminjan
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences (TUMS), Tehran, Iran
- Toxicology and Diseases Specialty Group, Pharmaceutical Sciences Research Center (PSRC), Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Mahdi Gholami
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences (TUMS), Tehran, Iran
- Toxicology and Diseases Specialty Group, Pharmaceutical Sciences Research Center (PSRC), Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Mahban Rahimifard
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences (TUMS), Tehran, Iran
- Toxicology and Diseases Specialty Group, Pharmaceutical Sciences Research Center (PSRC), Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Mona Navaei-Nigjeh
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences (TUMS), Tehran, Iran
- Toxicology and Diseases Specialty Group, Pharmaceutical Sciences Research Center (PSRC), Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Mohammad Abdollahi
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences (TUMS), Tehran, Iran
- Toxicology and Diseases Specialty Group, Pharmaceutical Sciences Research Center (PSRC), Tehran University of Medical Sciences (TUMS), Tehran, Iran
| |
Collapse
|
7
|
López Porras G, Allard P. Making waves: Public health risks from arsenic in Mexico's water extraction practices. WATER RESEARCH X 2025; 26:100283. [PMID: 39655312 PMCID: PMC11626062 DOI: 10.1016/j.wroa.2024.100283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 11/14/2024] [Accepted: 11/18/2024] [Indexed: 12/12/2024]
Abstract
In response to water scarcity in Mexico´s urban areas, authorities have implemented significant measures to increase water access, primarily by overexploiting groundwater resources. However, this approach has unintentionally worsened human exposure to groundwater arsenic consumption, which is part of a broader phenomenon known as environmental problem shifting. This paper examines the public health implications of arsenic contamination in Mexico's groundwater. We particularly focus our analysis on urban areas to demonstrate the policy gap that leaves the issue of arsenic contamination caused by over-pumping, and its associated widespread health risks, largely unaddressed. We draw on evidence from Mexico, but also Bangladesh, to define and describe the issue of such problem-shifting and how it underlies the urgent need to develop integrative water management strategies that balance the demands of water access with the necessity of maintaining water quality. By analysing water data from Mexico, the paper calls for a reconsideration of water policies to prevent further health crises.
Collapse
Affiliation(s)
- Gabriel López Porras
- Facultad de Zootecnia y Ecología, Universidad Autónoma de Chihuahua, Chihuahua, México
| | - Patrick Allard
- Institute for Society and Genetics, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| |
Collapse
|
8
|
Guo YS, Gong S, Xie SM, Chen AZ, Jin HY, Liu J, Wang Q, Kang S, Li P, Wei F, Zuo TT, Ma SC. Mass Spectrometry-Based Metabolomics Investigation on Two Different Seaweeds Under Arsenic Exposure. Foods 2024; 13:4055. [PMID: 39766997 PMCID: PMC11675553 DOI: 10.3390/foods13244055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 12/02/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025] Open
Abstract
Arsenic is a common toxic heavy metal contaminant that is widely present in the ocean, and seaweeds have a strong ability to concentrate arsenic, posing a potential risk to human health. This study first analyzed the arsenic content in two different seaweeds and then used an innovative method to categorize the seaweeds into low-arsenic and high-arsenic groups based on their arsenic exposure levels. Finally, a non-targeted metabolomic analysis based on mass spectrometry was conducted on seaweed from different arsenic exposure groups. The results indicated that as the arsenic concentration increased in the seaweeds, linolenic acid, tyrosine, pheophorbide a, riboflavin, and phenylalanine were upregulated, while arachidonic acid, eicosapentaenoic acid (EPA), betaine, and oleamide were downregulated. The following four key metabolic pathways involving unsaturated fatty acids and amino acids were identified: isoquinoline alkaloid biosynthesis, tyrosine metabolism, phenylalanine metabolism, and riboflavin metabolism. The identification of biomarkers and the characterization of key metabolic pathways will aid in the selection and breeding of low-arsenic-accumulating seaweed varieties, providing insights into the metabolic and detoxification mechanisms of arsenic in seaweeds.
Collapse
Affiliation(s)
- Yuan-sheng Guo
- National Institutes for Food and Drug Control, State Key Laboratory of Drug Regulatory Science, Beijing 100050, China; (Y.-s.G.); (H.-y.J.); (J.L.); (Q.W.); (S.K.); (F.W.)
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China;
| | - Shuo Gong
- School of Integrative Medicine, Anhui University of Chinese Medicine, Hefei 230012, China;
| | - Si-min Xie
- Guangzhou Institute for Drug Control, Key Laboratory for Quality Evaluation of Chinese Patent Medicine, National Medical Products Administration, Guangzhou 510160, China;
| | - An-zhen Chen
- Qingdao Institute for Food and Drug Control, NMPA Key Laboratory for Quality Research and Evaluation of Traditional Marine Chinese Medicine, Qingdao 266073, China;
| | - Hong-yu Jin
- National Institutes for Food and Drug Control, State Key Laboratory of Drug Regulatory Science, Beijing 100050, China; (Y.-s.G.); (H.-y.J.); (J.L.); (Q.W.); (S.K.); (F.W.)
| | - Jing Liu
- National Institutes for Food and Drug Control, State Key Laboratory of Drug Regulatory Science, Beijing 100050, China; (Y.-s.G.); (H.-y.J.); (J.L.); (Q.W.); (S.K.); (F.W.)
| | - Qi Wang
- National Institutes for Food and Drug Control, State Key Laboratory of Drug Regulatory Science, Beijing 100050, China; (Y.-s.G.); (H.-y.J.); (J.L.); (Q.W.); (S.K.); (F.W.)
| | - Shuai Kang
- National Institutes for Food and Drug Control, State Key Laboratory of Drug Regulatory Science, Beijing 100050, China; (Y.-s.G.); (H.-y.J.); (J.L.); (Q.W.); (S.K.); (F.W.)
| | - Ping Li
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China;
| | - Feng Wei
- National Institutes for Food and Drug Control, State Key Laboratory of Drug Regulatory Science, Beijing 100050, China; (Y.-s.G.); (H.-y.J.); (J.L.); (Q.W.); (S.K.); (F.W.)
| | - Tian-tian Zuo
- National Institutes for Food and Drug Control, State Key Laboratory of Drug Regulatory Science, Beijing 100050, China; (Y.-s.G.); (H.-y.J.); (J.L.); (Q.W.); (S.K.); (F.W.)
| | - Shuang-cheng Ma
- National Institutes for Food and Drug Control, State Key Laboratory of Drug Regulatory Science, Beijing 100050, China; (Y.-s.G.); (H.-y.J.); (J.L.); (Q.W.); (S.K.); (F.W.)
- Chinese Pharmacopoeia Commission, Beijing 100061, China
| |
Collapse
|
9
|
Wang C, Wang B, Wei Y, Li S, Ren J, Dai Y, Liu G. Effect of Gentianella acuta (Michx.) Hulten against the arsenic-induced development hindrance of mouse oocytes. Biometals 2024; 37:1411-1430. [PMID: 38814492 DOI: 10.1007/s10534-024-00613-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 05/18/2024] [Indexed: 05/31/2024]
Abstract
The current study was designed to investigate the alleviative effect of Gentianella acuta (Michx.) Hulten (G. acuta) against the sodium arsenite (NaAsO2)-induced development hindrance of mouse oocytes. For this purpose, the in vitro maturation (IVM) of mouse cumulus-oocyte complexes (COCs) was conducted in the presence of NaAsO2 and G. acuta, followed by the assessments of IVM efficiency including oocyte maturation, spindle organization, chromosome alignment, cytoskeleton assembly, cortical granule (CGs) dynamics, redox regulation, epigenetic modification, DNA damage, and apoptosis. Subsequently, the alleviative effect of G. acuta intervention on the fertilization impairments of NaAsO2-exposed oocytes was confirmed by the assessment of in vitro fertilization (IVF). The results showed that the G. acuta intervention effectively ameliorated the decreased maturation potentials and fertilization deficiency of NaAsO2-exposed oocytes but also significantly inhibited the DNA damages, apoptosis, and altered H3K27me3 expression level in the NaAsO2-exposed oocytes. The effective effects of G. acuta intervention against redox dysregulation including mitochondrial dysfunctions, accumulated reactive oxygen species (ROS) generation, glutathione (GSH) deficiency, and decreased adenosine triphosphate (ATP) further confirmed that the ameliorative effects of G. acuta intervention against the development hindrance of mouse oocytes were positively related to the antioxidant capacity of G. acuta. Evidenced by these abovementioned results, the present study provided fundamental bases for the ameliorative effect of G. acuta intervention against the meiotic defects caused by the NaAsO2 exposure, benefiting the future application potentials of G. acuta intervention in these nutritional and therapeutic research for attenuating the outcomes of arseniasis.
Collapse
Affiliation(s)
- Chunyu Wang
- Key Laboratory of Medical Cell Biology, Clinical Medicine Research Center, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010030, Inner Mongolia, China
- Department of Environmental Science and Engineering, Inner Mongolia University of Technology, Hohhot, 010051, Inner Mongolia, China
| | - Biao Wang
- Animal Husbandry Institute, Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot, 010031, Inner Mongolia, China
| | - Ying Wei
- Key Laboratory of Medical Cell Biology, Clinical Medicine Research Center, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010030, Inner Mongolia, China
| | - Shubin Li
- Department of Geriatric Medical Center, Inner Mongolia People's Hospital, Hohhot, 010010, Inner Mongolia, China
| | - Jingyu Ren
- College of Life Science, Inner Mongolia University, Hohhot, 010070, Inner Mongolia, China
| | - Yanfeng Dai
- College of Life Science, Inner Mongolia University, Hohhot, 010070, Inner Mongolia, China
| | - Gang Liu
- Key Laboratory of Medical Cell Biology, Clinical Medicine Research Center, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010030, Inner Mongolia, China.
| |
Collapse
|
10
|
Han Y, Yu Z, Chen Y, Guo X, Liu Y, Zhang H, Li Z, Chen L. PM2.5 induces developmental neurotoxicity in cortical organoids. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 361:124913. [PMID: 39245199 DOI: 10.1016/j.envpol.2024.124913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 09/04/2024] [Accepted: 09/05/2024] [Indexed: 09/10/2024]
Abstract
There is mounting evidence implicating the potential neurotoxic effects of PM2.5 during brain development, as it has been observed to traverse both the placental barrier and the fetal blood-brain barrier. However, the current utilization of 2D cell culture and animal models falls short in providing an accurate representation of human brain development. Consequently, the precise mechanisms underlying PM2.5-induced developmental neurotoxicity in humans remain obscure. To address this research gap, we constructed three-dimensional (3D) cortical organoids that faithfully recapitulate the initial stages of human cerebral cortex development. Our goal is to investigate the mechanisms of PM2.5-induced neurotoxicity using 3D brain organoids that express cortical layer proteins. Our findings demonstrate that exposure to PM2.5 concentrations of 5 μg/mL and 50 μg/mL induces neuronal apoptosis and disrupts normal neural differentiation, thereby suggesting a detrimental impact on neurodevelopment. Furthermore, transcriptomic analysis revealed PM2.5 exposure induced aberrations in mitochondrial complex I functionality, which is reminiscent of Parkinson's syndrome, potentially mediated by misguided axon guidance and compromised synaptic maintenance. This study is a pioneering assessment of the neurotoxicity of PM2.5 pollution on human brain tissues based on 3D cortical organoids, and the results are of great significance in guiding the formulation of the next air pollution prevention and control policies in China to achieve the sustainable improvement of air quality and to formulate pollution abatement strategies that can maximize the benefits to public health.
Collapse
Affiliation(s)
- Yuqing Han
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300384, China.
| | - Zhenjie Yu
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300384, China.
| | - Yue Chen
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology, Tianjin, 300211, China.
| | - Xiaoyu Guo
- Academy of Medical Engineering and Translational Medicine, Department of Medicine, Tianjin University, Tianjin, 300072, China.
| | - Yeming Liu
- Academy of Medical Engineering and Translational Medicine, Department of Medicine, Tianjin University, Tianjin, 300072, China.
| | - Hao Zhang
- Shanxi Meijin Coal Coking Co. Ltd., Shanxi, 030400, China.
| | - Zhiqing Li
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300384, China.
| | - Liqun Chen
- Academy of Medical Engineering and Translational Medicine, Department of Medicine, Tianjin University, Tianjin, 300072, China.
| |
Collapse
|
11
|
Sardar MB, Raza M, Fayyaz A, Nadir MA, Nadeem ZA, Babar M. Environmental Heavy Metal Exposure and Associated Cardiovascular Diseases in Light of the Triglyceride Glucose Index. Cardiovasc Toxicol 2024; 24:1301-1309. [PMID: 39212843 DOI: 10.1007/s12012-024-09913-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 08/11/2024] [Indexed: 09/04/2024]
Abstract
Cardiovascular diseases (CVD), primarily ischemic heart disease and stroke, remain leading global health burdens. Environmental risk factors have a major role in the development of CVD, particularly exposure to heavy metals. The Triglyceride Glucose Index (TyG), a measure of insulin resistance and CVD risk, is the primary focus of this study, which summarizes the most recent findings on the effects of lead (Pb), arsenic (As), and cadmium (Cd) on CVD risk. A higher risk of CVD is correlated with an elevated TyG index, which has been linked to insulin resistance. Exposure to Cd is associated with disturbance of lipid metabolism and oxidative stress, which increases the risk of CVD and TyG. Exposure reduces insulin secretion and signaling, which raises the TyG index and causes dyslipidemia. Pb exposure increases the risk of CVD and TyG index via causing oxidative stress and pancreatic β-cell destruction. These results highlight the need of reducing heavy metal exposure by lifestyle and environmental modifications in order to lower the risk of CVD. To comprehend the mechanisms and create practical management plans for health hazards associated with heavy metals, more study is required.
Collapse
Affiliation(s)
- Muhammad Bilal Sardar
- Department of Medicine, Allama Iqbal Medical College, Allama Shabbir Ahmed Usmani Road, Lahore, 54700, Pakistan.
| | - Mohsin Raza
- Department of Medicine, Allama Iqbal Medical College, Allama Shabbir Ahmed Usmani Road, Lahore, 54700, Pakistan
| | - Ammara Fayyaz
- Department of Medicine, Central Park Medical College, Lahore, Pakistan
| | - Muhammad Asfandyar Nadir
- Department of Medicine, Allama Iqbal Medical College, Allama Shabbir Ahmed Usmani Road, Lahore, 54700, Pakistan
| | - Zain Ali Nadeem
- Department of Medicine, Allama Iqbal Medical College, Allama Shabbir Ahmed Usmani Road, Lahore, 54700, Pakistan
| | - Muhammad Babar
- Department of Medicine, Social Security Hospital, Faisalabad, Pakistan
| |
Collapse
|
12
|
Fatema K, Haidar Z, Tanim MTH, Nath SD, Sajib AA. Unveiling the link between arsenic toxicity and diabetes: an in silico exploration into the role of transcription factors. Toxicol Res 2024; 40:653-672. [PMID: 39345741 PMCID: PMC11436564 DOI: 10.1007/s43188-024-00255-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 04/10/2024] [Accepted: 07/10/2024] [Indexed: 10/01/2024] Open
Abstract
Arsenic-induced diabetes, despite being a relatively newer finding, is now a growing area of interest, owing to its multifaceted nature of development and the diversity of metabolic conditions that result from it, on top of the already complicated manifestation of arsenic toxicity. Identification and characterization of the common and differentially affected cellular metabolic pathways and their regulatory components among various arsenic and diabetes-associated complications may aid in understanding the core molecular mechanism of arsenic-induced diabetes. This study, therefore, explores the effects of arsenic on human cell lines through 14 transcriptomic datasets containing 160 individual samples using in silico tools to take a systematic, deeper look into the pathways and genes that are being altered. Among these, we especially focused on the role of transcription factors due to their diverse and multifaceted roles in biological processes, aiming to comprehensively investigate the underlying mechanism of arsenic-induced diabetes as well as associated health risks. We present a potential mechanism heavily implying the involvement of the TGF-β/SMAD3 signaling pathway leading to cell cycle alterations and the NF-κB/TNF-α, MAPK, and Ca2+ signaling pathways underlying the pathogenesis of arsenic-induced diabetes. This study also presents novel findings by suggesting potential associations of four transcription factors (NCOA3, PHF20, TFDP1, and TFDP2) with both arsenic toxicity and diabetes; five transcription factors (E2F5, ETS2, EGR1, JDP2, and TFE3) with arsenic toxicity; and one transcription factor (GATA2) with diabetes. The novel association of the transcription factors and proposed mechanism in this study may serve as a take-off point for more experimental evidence needed to understand the in vivo cellular-level diabetogenic effects of arsenic. Supplementary Information The online version contains supplementary material available at 10.1007/s43188-024-00255-y.
Collapse
Affiliation(s)
- Kaniz Fatema
- Department of Genetic Engineering & Biotechnology, University of Dhaka, Dhaka, 1000 Bangladesh
| | - Zinia Haidar
- Department of Genetic Engineering & Biotechnology, University of Dhaka, Dhaka, 1000 Bangladesh
| | - Md Tamzid Hossain Tanim
- Department of Genetic Engineering & Biotechnology, University of Dhaka, Dhaka, 1000 Bangladesh
| | - Sudipta Deb Nath
- Department of Genetic Engineering & Biotechnology, University of Dhaka, Dhaka, 1000 Bangladesh
| | - Abu Ashfaqur Sajib
- Department of Genetic Engineering & Biotechnology, University of Dhaka, Dhaka, 1000 Bangladesh
| |
Collapse
|
13
|
Ran X, Yan X, Ma G, Liang Z, Zhuang H, Tang X, Chen X, Cao X, Liu X, Huang Y, Wang Y, Zhang X, Luo P, Shen L. Integration of proteomics and metabolomics analysis investigate mechanism of As-induced immune injury in rat spleen. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 284:116913. [PMID: 39208582 DOI: 10.1016/j.ecoenv.2024.116913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 08/12/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
Arsenic (As) is a widespread metalloid and human carcinogen found in the natural environment, and multiple toxic effects have been shown to be associated with As exposure. As can be accumulated in the spleen, the largest peripheral lymphatic organ, and long-term exposure to As can lead to splenic injury. In this study, a Sprague-Dawley (SD) rat model of As-poisoned was established, aiming to explore the molecular mechanism of As-induced immune injury through the combined analysis of proteomics and metabolomics of rats' spleen. After feeding the rats with As diet (50 mg/kg) for 90 days, the spleen tissue of the rats in the As-poisoned group was damaged, the level of As was significantly higher than that of the control group (P < 0.001), and the level of inflammatory cytokine interleukin-6 (IL-6) was decreased (P < 0.01). Proteomics and metabolomics results showed that a total of 134 differentially expressed proteins (DEPs) (P < 0.05 and fold change > 1.2) and 182 differentially expressed metabolites (DEMs) (VIP >1 and P < 0.05) were identified in the spleens of the As poisoned group compared to the control group (As/Ctrl). The proteomic results highlight the role of hypoxia-inducible factors (HIF), natural killer cell mediated cytotoxicity, and ribosomes. The major pathways of metabolic disruption included arachidonic acid (AA) metabolism, glycerophospholipid metabolism and folate single-carbon pool. The integrated analysis of these two omics suggested that Hmox1, Stat3, arachidonic acid, phosphatidylcholine and leukotriene B4 may play key roles in the mechanism of immune injury to the spleen by As exposure. The results indicate that As exposure can cause spleen damage in rats. Through proteomic and metabolomic analysis, the key proteins and metabolites and their associated mechanisms were obtained, which provided a basis for further understanding of the molecular mechanism of spleen immune damage caused by As exposure.
Collapse
Affiliation(s)
- Xiaoqian Ran
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, PR China
| | - Xi Yan
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, PR China
| | - Guanwei Ma
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, PR China
| | - Zhiyuan Liang
- College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, PR China
| | - Hongbin Zhuang
- College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, PR China
| | - Xiaoxiao Tang
- College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, PR China
| | - Xiaolu Chen
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, PR China
| | - Xueshan Cao
- College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, PR China
| | - Xukun Liu
- College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, PR China
| | - Yuhan Huang
- College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, PR China
| | - Yi Wang
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, PR China
| | - Xinglai Zhang
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, PR China
| | - Peng Luo
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, PR China; Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-constructed by the Province and Ministry, Guizhou Medical University, Guiyang 561113, China; Guizhou Ecological Food Innovation Engineering Research Center, Guiyang 561113, China; State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China.
| | - Liming Shen
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, PR China; College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, PR China.
| |
Collapse
|
14
|
Zsarnovszky A, Alymbaeva D, Jocsak G, Szabo C, Mária Schilling-Tóth B, Sandor Kiss D. Endocrine disrupting effects on morphological synaptic plasticity. Front Neuroendocrinol 2024; 75:101157. [PMID: 39393417 DOI: 10.1016/j.yfrne.2024.101157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 10/03/2024] [Accepted: 10/05/2024] [Indexed: 10/13/2024]
Abstract
Neural regulation of the homeostasis depends on healthy synaptic function. Adaptation of synaptic functions to physiological needs manifests in various forms of synaptic plasticity (SP), regulated by the normal hormonal regulatory circuits. During the past several decades, the hormonal regulation of animal and human organisms have become targets of thousands of chemicals that have the potential to act as agonists or antagonists of the endogenous hormones. As the action mechanism of these endocrine disrupting chemicals (EDCs) came into the focus of research, a growing number of studies suggest that one of the regulatory avenues of hormones, the morphological form of SP, may well be a neural mechanism affected by EDCs. The present review discusses known and potential effects of some of the best known EDCs on morphological synaptic plasticity (MSP). We highlight molecular mechanisms altered by EDCs and indicate the growing need for more research in this area of neuroendocrinology.
Collapse
Affiliation(s)
- Attila Zsarnovszky
- Department of Physiology and Biochemistry, University of Veterinary Medicine, Budapest, Hungary; Department of Physiology and Animal Health, Agrobiotechnology and Precision Breeding for Food Security National Laboratory, Institute of Physiology and Nutrition, Hungarian University of Agriculture and Life Sciences, H-7400 Kaposvár, Hungary.
| | - Daiana Alymbaeva
- Department of Physiology and Biochemistry, University of Veterinary Medicine, Budapest, Hungary.
| | - Gergely Jocsak
- Department of Physiology and Biochemistry, University of Veterinary Medicine, Budapest, Hungary.
| | - Csaba Szabo
- Department of Physiology and Animal Health, Agrobiotechnology and Precision Breeding for Food Security National Laboratory, Institute of Physiology and Nutrition, Hungarian University of Agriculture and Life Sciences, H-7400 Kaposvár, Hungary
| | | | - David Sandor Kiss
- Department of Physiology and Biochemistry, University of Veterinary Medicine, Budapest, Hungary.
| |
Collapse
|
15
|
Rachappanavar V, Gupta SK, Jayaprakash GK, Abbas M. Silicon mediated heavy metal stress amelioration in fruit crops. Heliyon 2024; 10:e37425. [PMID: 39315184 PMCID: PMC11417240 DOI: 10.1016/j.heliyon.2024.e37425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 09/03/2024] [Accepted: 09/03/2024] [Indexed: 09/25/2024] Open
Abstract
Fruit crops are essential for human nutrition and health, yet high level of heavy metal levels in soils can degrade fruit quality. These metals accumulate in plant roots and tissues due to factors like excessive fertilizer and pesticide use, poor waste management, and unscientific agricultural practices. Such accumulation can adversely affect plant growth, physiology, and yield. Consuming fruits contaminated with toxic metals poses significant health risks, including nervous system disorders and cancer. Various strategies, such as organic manuring, biomaterials, and modified cultivation practices have been widely researched to reduce heavy metal accumulation. Recently, silicon (Si) application has emerged as a promising and cost-effective solution for addressing biological and environmental challenges in food crops. Si, which can be applied to the soil, through foliar application or a combination of both, helps reduce toxic metal concentrations in soil and plants. Despite its potential, there is currently no comprehensive review that details Si's role in mitigating heavy metal stress in fruit crops. This review aims to explore the potential of Si in reducing heavy metal-induced damage in fruit crops while enhancing growth by alleviating heavy metal toxicity.
Collapse
Affiliation(s)
- Vinaykumar Rachappanavar
- MS Swaminathan School of Agriculture, Shoolini University of Biotechnlogy and Management, Solan, Himachal Pradesh, 173230, India
| | - Satish K. Gupta
- MS Swaminathan School of Agriculture, Shoolini University of Biotechnlogy and Management, Solan, Himachal Pradesh, 173230, India
| | | | - Mohamed Abbas
- Electrical Engineering Department, King Khalid University, Abha, 61421, Saudi Arabia
| |
Collapse
|
16
|
Vonberg FW, Blain PG. Neurotoxicology: a clinical systems-based review. Pract Neurol 2024; 24:357-368. [PMID: 38849205 DOI: 10.1136/pn-2023-003983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/12/2024] [Indexed: 06/09/2024]
Abstract
Neurological disease caused by toxins is widespread but under-recognised. Despite increasing public interest and a growing number of novel potential neurotoxins, diagnosis of neurotoxic disease is often delayed or missed, resulting in poorer patient outcomes. This article discusses neurotoxic syndromes using a systems-based approach, focusing on environmental and occupational agents. We do not discuss recreational drugs, pharmaceutical agents or developmental neurotoxins in detail. We aim to provide neurologists with a working understanding of the scenarios in which a clinical presentation may be due to a neurotoxin and how to approach confirmation of the diagnosis.
Collapse
Affiliation(s)
| | - Peter G Blain
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
17
|
Tripathi S, Parmar D, Raval S, Mishra R, Singh G. Attenuation of chromium (VI) and arsenic (III)-induced oxidative stress and hepatic apoptosis by phloretin, biochanin-A, and coenzyme Q10 via activation of SIRT1/Nrf2/HO-1/NQO1 signaling. J Biochem Mol Toxicol 2024; 38:e23817. [PMID: 39177155 DOI: 10.1002/jbt.23817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 06/21/2024] [Accepted: 08/13/2024] [Indexed: 08/24/2024]
Abstract
Heavy metal contamination is an alarming concern on a global scale, as drinking tainted water significantly increases human susceptibility to heavy metals. In a realistic scenario, humans are often exposed to a combination of harmful chemicals rather than a single toxicant. Phloretin (PHL), biochanin-A (BCA), and coenzyme Q10 (CoQ10) are bioactive compounds owning plentiful pharmacological properties. Henceforth, the current research explored the putative energizing effects of selected nutraceuticals in combined chromium (Cr) and arsenic (As) intoxicated Swiss albino mice. Potassium dichromate (75 ppm) and sodium meta-arsenite (100 ppm) were given in the drinking water to induce hepatotoxicity, conjugated with PHL and BCA (50 mg/kg each), and CoQ10 (10 mg/kg) intraperitoneally for 2 weeks. After the statistical evaluation, it was observed that the hepato-somatic index, metal load, and antioxidant activity (lipid peroxidation and protein carbonyl content) increased along with the concomitant decrease in the antioxidants (catalase, glutathione-S-transferase, superoxide dismutase, reduced glutathione, and total thiol) in the Cr and As intoxicated mice. Additionally, light microscopy observations, DNA breakages, decreased silent information regulator 1 (SIRT1), nuclear factor (erythroid-derived 2)-like 2 (Nrf2), heme oxygenase (HO-1), and NAD(P)H quinone dehydrogenase 1 (NQO1) gene expressions, together with stimulated apoptotic cell death manifested by the increased expressions of caspase 8 and caspase 3, thus, proved consistency with the aforementioned outcomes. Importantly, the treatment with nutraceuticals not only restored the antioxidant activity but also favorably altered the expressions of SIRT1, Nrf2, HO-1, and NQO1 signaling and apoptosis markers. These findings highlight the crucial role of the PHL, BCA, and CoQ10 combination in reducing Cr and As-induced hepatotoxicity in mice. By averting the triggered apoptosis in conjunction with oxidative stress, this combination increases the SIRT1, Nrf2, HO-1, and NQO1 signaling, thereby reassuringly maintaining the cellular equilibrium.
Collapse
Affiliation(s)
- Swapnil Tripathi
- Toxicology Department, ICMR-National Institute of Occupational Health, Ahmedabad, Gujarat, India
- Department of Biochemistry & Forensic Science, Gujarat University, Ahmedabad, Gujarat, India
| | - Dharati Parmar
- Toxicology Department, ICMR-National Institute of Occupational Health, Ahmedabad, Gujarat, India
| | - Samir Raval
- College of Veterinary Science and Animal Husbandry, Kamdhenu University, Sardarkrushinagar, Gujarat, India
| | - Rajeev Mishra
- Department of Life Sciences & Biotechnology, Chhatrapati Shahu Ji Maharaj University, Kanpur, Uttar Pradesh, India
| | - Gyanendra Singh
- Toxicology Department, ICMR-National Institute of Occupational Health, Ahmedabad, Gujarat, India
| |
Collapse
|
18
|
Chandel M, Sharma AK, Thakur K, Sharma D, Brar B, Mahajan D, Kumari H, Pankaj PP, Kumar R. Poison in the water: Arsenic's silent assault on fish health. J Appl Toxicol 2024; 44:1282-1301. [PMID: 38262619 DOI: 10.1002/jat.4581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/09/2023] [Accepted: 08/25/2023] [Indexed: 01/25/2024]
Abstract
Arsenic occurs across the world in freshwater and marine environments, menacing the survival of aquatic organisms. Organic and inorganic forms of this substance can be found, in which the inorganic form is more hazardous than the organic form. Most aquatic bodies contain inorganic arsenic species, but organic species are believed to be the dominant form of arsenic in the majority of fish. Natural and anthropogenic both are the sources of water contamination with arsenic. Its bioaccumulation and transfer from one trophic level to another in the aquatic food chain make arsenic a vital environmental issue. Continuous exposure to low concentrations of arsenic in aquatic organisms including fish leads to its bioaccumulation, which may affect organisms of higher trophic levels including large fishes or humans. Humans can be exposed to arsenic through the consumption of fish contaminated with arsenic. Hence, the present review facilitates our understanding about sources of arsenic, its bioaccumulation, food chain transfer, and its effect on the fish health. Also, "Poison in the Water: Arsenic's Silent Assault on Fish Health" serves as a wake-up call to recognize the pressing need to address arsenic contamination in water bodies. By understanding its devastating impact on fish health, we can strive to implement sustainable practices and policies that safeguard our precious aquatic environments and ensure the well-being of both wildlife and human communities that depend on them.
Collapse
Affiliation(s)
- Meenakshi Chandel
- Department of Animal Sciences, School of Life Sciences, Central University of Himachal Pradesh, Kangra, India
| | - Amit Kumar Sharma
- Department of Animal Sciences, School of Life Sciences, Central University of Himachal Pradesh, Kangra, India
| | - Kushal Thakur
- Department of Animal Sciences, School of Life Sciences, Central University of Himachal Pradesh, Kangra, India
| | - Dixit Sharma
- Department of Animal Sciences, School of Life Sciences, Central University of Himachal Pradesh, Kangra, India
| | - Bhavna Brar
- Department of Animal Sciences, School of Life Sciences, Central University of Himachal Pradesh, Kangra, India
| | - Danish Mahajan
- Department of Animal Sciences, School of Life Sciences, Central University of Himachal Pradesh, Kangra, India
| | - Hishani Kumari
- Department of Animal Sciences, School of Life Sciences, Central University of Himachal Pradesh, Kangra, India
| | - Pranay Punj Pankaj
- Department of Animal Sciences, School of Life Sciences, Central University of Himachal Pradesh, Kangra, India
| | - Rakesh Kumar
- Department of Animal Sciences, School of Life Sciences, Central University of Himachal Pradesh, Kangra, India
| |
Collapse
|
19
|
Cellini A, Salvalaggio A, Velasco R, Arnan M, Cacciavillani M, Riva M, Trentin L, Pomares H, Lessi F, Briani C. Arsenic trioxide-induced peripheral neuropathy: prospective clinical and neurophysiological evaluation in a cohort of patients with acute promyelocytic leukemia. Leuk Lymphoma 2024:1-4. [PMID: 39138968 DOI: 10.1080/10428194.2024.2391899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/07/2024] [Accepted: 08/08/2024] [Indexed: 08/15/2024]
Affiliation(s)
- Alessandro Cellini
- Hematology and Clinical Immunology Unit, Department of Medicine, University of Padova, Padova, Italy
| | | | - Roser Velasco
- Unit of Neuro-Oncology, Neurology Department, Catalan Institute of Oncology (ICO) L'Hospitalet-University Hospital of Bellvitge, IDIBELL, Barcelona, Spain
| | - Montserrat Arnan
- Hematology Department, Catalan Institute of Oncology (ICO)- L Hospitalet, IDIBELL Hospitalet de Llobregat, Barcelona, Spain
| | | | - Marcello Riva
- Cell Therapy and Hematology, San Bortolo Hospital, Vicenza, Italy
| | - Livio Trentin
- Hematology and Clinical Immunology Unit, Department of Medicine, University of Padova, Padova, Italy
| | - Helena Pomares
- Hematology Department, Catalan Institute of Oncology (ICO)- L Hospitalet, IDIBELL Hospitalet de Llobregat, Barcelona, Spain
| | - Federica Lessi
- Hematology and Clinical Immunology Unit, Department of Medicine, University of Padova, Padova, Italy
| | - Chiara Briani
- Neurology Unit, Department of Neuroscience, University of Padova, Padova, Italy
| |
Collapse
|
20
|
Ratnitsai V, Wongjaikham W, Wongsawaeng D, Kohmun K, Santibenchakul S, Narkpiban K. Synthesis of amidoxime adsorbent prepared by radiation grafting on upcycled low-density polyethylene sheet for removal of heavy metals from wastewater. Sci Rep 2024; 14:18594. [PMID: 39127783 PMCID: PMC11316828 DOI: 10.1038/s41598-024-69320-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024] Open
Abstract
The issue of discharging waste, especially heavy metals from industrial activities into the environment, not only adversely impacts environmental quality but also has impacts on communities and human health. Removal and reduction of heavy metal contamination in rivers and wastewater are, therefore, critical initiatives that require significant attention. This work studied the removal of heavy metals, including Zn(II), Cu(II), As(III), and Pb(II) by utilizing an upcycled amidoxime low-density polyethylene sheet (AO-sheet). The synthesized AO-sheet was analyzed for various physical properties, including scanning electron microscope, energy-dispersive x-ray spectroscopy, Fourier transform infrared spectroscopy, and thermogravimetric analysis. For the batch adsorption experiment, parameters affecting adsorption capacity were studied: initial concentration, submerging time, and pH. Adsorption isotherms were also studied. The results of the heavy metal adsorption study showed that the initial concentration was the most significant parameter; the higher the initial concentration, the greater the adsorption capacity. The adsorption capacity of Zn(II) and Pb(II) increased with submersion time, which achieved 21.07 and 0.855 mg/g-adsorbent, respectively, after four weeks of submersion under the highest initial concentration studied. The adsorption capacity of Cu(II) was 7.98 mg/g-adsorbent after two weeks of optimal adsorption duration under the highest initial concentration studied. The adsorption capacity of As(II) was 1.07 mg/g-adsorbent after one week of optimal submersion time under the highest initial concentration studied. Moreover, the appropriate pH range for effective adsorption of Zn(II), Cu(II), and Pb(II) was identified as 8-9, while for As(III), it was 6-8, with an adsorption duration of 0.43 weeks (3 days). From the Langmuir isotherm, it was found that the adsorption of this work was characterized by monolayer adsorption. The results demonstrate that the AO-sheet can be effectively used to remove heavy metals from wastewater. Its potential for reusability was up to 8 cycles, with the Zn(II) adsorption capacity being reduced to about 20.37%.
Collapse
Affiliation(s)
- Vareeporn Ratnitsai
- Department of Science and Mathematics, Faculty of Science and Technology, Rajamangala University of Technology Tawan-Ok, Chonburi, 20110, Thailand
| | - Wijittra Wongjaikham
- Research Unit On Plasma Technology for High-Performance Materials Development, Department of Nuclear Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Doonyapong Wongsawaeng
- Research Unit On Plasma Technology for High-Performance Materials Development, Department of Nuclear Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand.
- Department of Nuclear Engineering, Faculty of Engineering, Chulalongkorn University, 254 Phayathai Road, Pathumwan, Bangkok, 10330, Thailand.
| | - Kanokporn Kohmun
- Department of Science and Mathematics, Faculty of Science and Technology, Rajamangala University of Technology Tawan-Ok, Chonburi, 20110, Thailand
| | - Somtop Santibenchakul
- Department of Science and Mathematics, Faculty of Science and Technology, Rajamangala University of Technology Tawan-Ok, Chonburi, 20110, Thailand
| | - Koranat Narkpiban
- Department of Innovation for Health and Beauty, Faculty of Science and Technology, Rajamangala University of Technology Tawan-Ok, Chonburi, 20110, Thailand
| |
Collapse
|
21
|
Unsal V, Cicek M, Aktepe N, Oner E. Morin attenuates arsenic-induced toxicity in 3T3 embryonic fibroblast cells by suppressing oxidative stress, inflammation, and apoptosis: In vitro and silico evaluations. Toxicol Res (Camb) 2024; 13:tfae113. [PMID: 39036522 PMCID: PMC11260228 DOI: 10.1093/toxres/tfae113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 06/13/2024] [Accepted: 07/12/2024] [Indexed: 07/23/2024] Open
Abstract
This study aims to investigate the curative effects of Morin, a flavonoid, against arsenic toxicity in 3T3 embryonic fibroblast cells and its effect on the molecular mechanisms of cells. The cytotoxicity and viability of the cells were measured by MTT and LDH tests. Arsenic (0.74 μM) was used to trigger toxicity and Morin (50 μM) was used for treatment. The levels of oxidative stress biomarkers and the activities of antioxidant enzymes were measured by spectrophotometric method, and inflammatory markers were measured by ELISA method. While mRNA expression levels of Bax, Bcl-2 levels, and Caspase-3 activity were measured by qRT-PCR technique, TUNEL staining was performed to detect DNA breaks and DAPI staining to visualize nuclear changes. Protein structures were retrieved from the protein data bank. OpenBabel and Autodock programs were used for the molecular docking study. Morin rescued the 3T3 embryonic fibroblast cells exposed to arsenic. However, Arsenic decreased the activities of antioxidant enzymes in cells and significantly increased oxidative stress, inflammation, and apoptosis. Morin treatment reduced oxidative damage and TNF-α and IL-1β levels. Arsenic-induced Caspase-3 mRNA expression level and Bax protein mRNA expression level were significantly increased, while Bcl-2 mRNA expression level was significantly decreased. While Caspase-3 mRNA expression level and Bax protein mRNA expression level decreased with morin treatment, Bcl-2 mRNA expression level increased significantly. Molecular docking study results showed good binding affinity of morin in SOD, GSH-Px, Bax, Bcl-2, Caspase-3, TNF-α, and IL-1β structures. Morin showed antioxidant, anti-inflammatory, and anti-apoptotic effects against Arsenic-induced cellular toxicity.
Collapse
Affiliation(s)
- Velid Unsal
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Mardin Artuklu University, Mardin, 47200, Türkiye
| | - Mustafa Cicek
- Department of Medical Biology, Faculty of Medicine, Kahramanmaras Sütcü Imam University, Kahramanmaras, 46050, Türkiye
| | - Necmettin Aktepe
- Department of Nursing, Faculty of Health Sciences Mardin Artuklu University, Mardin, 47200, Türkiye
| | - Erkan Oner
- Department of Biochemistry, Faculty of Pharmacy, Adıyaman University, Adıyaman, 02000, Türkiye
| |
Collapse
|
22
|
Mahadevia HJ, Al-Obaidi A, Cossor F. Visual Hallucinations With Arsenic Trioxide Therapy in Acute Promyelocytic Leukemia. Cureus 2024; 16:e66672. [PMID: 39262537 PMCID: PMC11390141 DOI: 10.7759/cureus.66672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/12/2024] [Indexed: 09/13/2024] Open
Abstract
A 68-year-old male with a history of diabetes and hypertension was diagnosed with acute promyelocytic leukemia (APML). He underwent induction therapy with all-trans retinoic acid (ATRA) and arsenic trioxide. He had a complete hematologic response and was initiated on consolidation therapy with arsenic trioxide (0.15 mg/kg/day intravenous (IV)) and ATRA (45 mg/per meter square of body surface area/day IV). He developed blurred vision and floaters after a few days. Soon after, he felt that his diabetic neuropathy had suddenly worsened. The floaters and flashing lights worsened and morphed into visual hallucinations. He reported seeing figures watching him from the corner of the room. He was admitted and head imaging was unremarkable. Routine labs did not show anything unusual. Arsenic trioxide therapy was held. The hallucinations gradually started decreasing and eventually subsided after around eight weeks. ATRA was continued but arsenic was permanently discontinued. Arsenic is known to cause poisoning if exposed in significant amounts. The arsenic dose used for APML is substantially low (0.15 mg/kg/day IV). We delineate this unanticipated case of arsenic toxicity leading to severe neurological symptoms like visual hallucinations which has not been previously reported in the literature. It is imperative to closely monitor patients who are on arsenic therapy and inform them about possible rare toxicities.
Collapse
Affiliation(s)
- Himil J Mahadevia
- Internal Medicine, University of Missouri Kansas City School of Medicine, Kansas City, USA
| | - Ammar Al-Obaidi
- Hematology/Oncology, University of Missouri Kansas City School of Medicine, Kansas City, USA
| | - Furha Cossor
- Hematology, Saint Luke's Hospital, Kansas City, USA
| |
Collapse
|
23
|
DeLoughery EP, Hendrickson RG. Heavy Metal Contamination of Consumer Products: An Analysis of New York City Health Department Data. J Occup Environ Med 2024; 66:e373-e374. [PMID: 38688474 DOI: 10.1097/jom.0000000000003129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
|
24
|
González-Martínez F, Johnson-Restrepo B, Quiñones LA. Arsenic inorganic exposure, metabolism, genetic biomarkers and its impact on human health: A mini-review. Toxicol Lett 2024; 398:105-117. [PMID: 38901734 DOI: 10.1016/j.toxlet.2024.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 04/14/2024] [Accepted: 06/17/2024] [Indexed: 06/22/2024]
Abstract
Inorganic arsenic species exist in the environment as a result of both natural sources, such as volcanic and geothermal activities, and geological formations, as well as anthropogenic activities, including smelting, exploration of fossil fuels, coal burning, mining, and the use of pesticides. These species deposit in water, rocks, soil, sediments, and the atmosphere. Arsenic-contaminated drinking water is a global public health issue because of its natural prevalence and toxicity. Therefore, chronic exposure to arsenic can have deleterious effect on humans, including cancer and other diseases. This work describes the mechanisms of environmental exposure to arsenic, molecular regulatory factors involved in its metabolism, genetic polymorphisms affecting individual susceptibility and the toxic effects of arsenic on human health (oxidative stress, DNA damage and cancer). We conclude that the role of single nucleotide variants affecting urinary excretion of arsenic metabolites are highly relevant and can be used as biomarkers of the intracellular retention rates of arsenic, showing new avenues of research in this field.
Collapse
Affiliation(s)
- Farith González-Martínez
- Faculty of Dentistry and Faculty of Exact Sciences, University of Cartagena, Colombia; Public Health Research Group, University of Cartagena, Colombia; Latin American Network for Implementation and Validation of Clinical Pharmacogenomics Guidelines (RELIVAF-CYTED), Santiago, Chile.
| | | | - Luis A Quiñones
- Latin American Network for Implementation and Validation of Clinical Pharmacogenomics Guidelines (RELIVAF-CYTED), Santiago, Chile; Laboratory of Chemical Carcinogenesis and Pharmacogenetics (CQF), Department of Basic-Clinical Oncology (DOBC), Faculty of Medicine, University of Chile, Chile; Department of Pharmaceutical Science and Technology, School of Chemical and Pharmaceutical Sciences, University of Chile, Chile.
| |
Collapse
|
25
|
Dong Q, Fu H, Jiang H. The role of exosome-shuttled miRNAs in heavy metal-induced peripheral tissues and neuroinflammation in Alzheimer's disease. Biomed Pharmacother 2024; 176:116880. [PMID: 38850652 DOI: 10.1016/j.biopha.2024.116880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 05/11/2024] [Accepted: 06/03/2024] [Indexed: 06/10/2024] Open
Abstract
Heavy metal-induced neuroinflammation is a significant pathophysiologic mechanism in Alzheimer's disease (AD). Microglia-mediated neuroinflammation plays a crucial role in the pathogenesis of AD. Multiple miRNAs are differentially expressed in peripheral tissues after heavy metal exposure, and increasing evidence suggests that they are involved in AD progression by regulating microglial homeostasis. Exosomes, which are capable of loading miRNAs and crossing the bloodbrain barrier, serve as mediators of communication between peripheral tissues and the brain. In this review, we summarize the current evidence on the link between miRNAs in peripheral tissues and neuroinflammation in AD after heavy metal exposure and propose a role for miRNAs in the microglial neurodegenerative phenotype (MGnD) of AD. This study will help to elucidate the link between peripheral tissue damage and MGnD-mediated neuroinflammation in AD after heavy metal exposure. Additionally, we summarize the regulatory effects of natural compounds on peripheral tissue-derived miRNAs, which could be potential therapeutic targets for natural compounds to regulate peripheral tissue-derived exosomal miRNAs to ameliorate heavy metal-induced MGnD-mediated neuroinflammation in patients with AD after heavy metal exposure.
Collapse
Affiliation(s)
- Qing Dong
- Department of Health Laboratory Technology, School of Public Health, China Medical University, Shenyang, Liaoning 110122, China.
| | - Huanyong Fu
- Department of Health Laboratory Technology, School of Public Health, China Medical University, Shenyang, Liaoning 110122, China.
| | - Hong Jiang
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education, China Medical University, Shenyang, Liaoning 110122, China; The Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic, Shenyang, Liaoning 110122, China; Department of Health Laboratory Technology, School of Public Health, China Medical University, Shenyang, Liaoning 110122, China.
| |
Collapse
|
26
|
Dayan AD, Hesse E, Dayan J. The arsenic eaters of Styria, the toxicophagi. Clin Toxicol (Phila) 2024; 62:468-471. [PMID: 38966917 DOI: 10.1080/15563650.2024.2371514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 06/18/2024] [Indexed: 07/06/2024]
Abstract
INTRODUCTION From at least the fifteenth to late nineteenth centuries, peasants in the Austrian province of Styria ate up to several hundred milligrams of arsenic trioxide or sulfide daily or weekly for periods up to a number of years. Taking these doses of arsenic was believed to increase muscular power and enhance the beauty and sexual attractiveness of peasant girls. There do not appear to be contemporaneous records of the known consequences of chronic arsenic exposure. The historical records of arsenic eating there are reviewed and appear to be valid. The benefits are subjective judgements by arsenic eaters. The lack of objective reports of the anticipated external and internal clinical and pathological effects of arsenic poisoning depends on a smaller number of clinical accounts and autopsy reports and the general medical literature of those times, so it is weaker, but it is consistent. CAN THE CLAIMED BENEFITS OF ARSENIC EATING AND THE APPARENT ABSENCE OF HARMFUL TOXIC EFFECTS BE TRUE? Why the arsenic eaters did not show the well-known consequences of prolonged exposure to high doses of arsenic is not known. Possible explanations include increases in detoxifying metabolism in the consumers due to induced genomic changes and selection in people and in the gut microbiome, as shown in other populations. Whether these effects would suffice to protect people against their high doses of arsenic has not been explored. CONCLUSION Although the nature and mechanisms of arsenic toxicity have been extensively described, much still remains to be discovered.
Collapse
|
27
|
Nayek U, Shenoy TN, Abdul Salam AA. Data mining of arsenic-based small molecules geometrics present in Cambridge structural database. CHEMOSPHERE 2024; 360:142349. [PMID: 38763400 DOI: 10.1016/j.chemosphere.2024.142349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 04/27/2024] [Accepted: 05/14/2024] [Indexed: 05/21/2024]
Abstract
Arsenic, ubiquitous in various industrial processes and consumer products, presents both essential functions and considerable toxicity risks, driving extensive research into safer applications. Our investigation, drawing from 7182 arsenic-containing molecules in the Cambridge Structural Database (CSD), outlines their diverse bonding patterns. Notably, 51% of these molecules exhibit cyclic connections, while 49% display acyclic ones. Arsenic forms eight distinct bonding types with other elements, with significant interactions observed, particularly with phenyl rings, O3 and F6 moieties. Top interactions involve carbon, nitrogen, oxygen, fluorine, sulfur, and arsenic itself. We meticulously evaluated average bond lengths under three conditions: without an R-factor cut-off, with R-factor ≤0.075, and with R-factor ≤0.05, supporting the credibility of our results. Comparative analysis with existing literature data enriches our understanding of arsenic's bonding behaviour. Our findings illuminate the structural attributes, molecular coordination, geometry, and bond lengths of arsenic with 68 diverse atoms, enriching our comprehension of arsenic chemistry. These revelations not only offer a pathway for crafting innovative and safer arsenic-based compounds but also foster the evolution of arsenic detoxification mechanisms, tackling pivotal health and environmental challenges linked to arsenic exposure across different contexts.
Collapse
Affiliation(s)
- Upendra Nayek
- Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal, 576 104, Karnataka, India
| | - Thripthi Nagesh Shenoy
- Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal, 576 104, Karnataka, India
| | - Abdul Ajees Abdul Salam
- Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal, 576 104, Karnataka, India.
| |
Collapse
|
28
|
Ayoubi M, Khodeiry MM, Jiang H, Lee RK. Toxic Optic Neuropathy Due to Chronic Arsenic Exposure. J Neuroophthalmol 2024:00041327-990000000-00669. [PMID: 38913978 DOI: 10.1097/wno.0000000000002198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Affiliation(s)
- Mohammad Ayoubi
- Bascom Palmer Eye Institute (MA, MMK, HJ, RKL), University of Miami Miller School of Medicine, Miami, Florida; and Department of Ophthalmology and Visual Sciences (MMK), University of Kentucky College of Medicine, Lexington, Kentucky
| | | | | | | |
Collapse
|
29
|
Hodgson S, Abouchedid R, Cleary K, Tile N, Wong A. Acute arsenic exposure secondary to deliberate self-poisoning with sheep dip. Am J Emerg Med 2024; 80:226.e1-226.e3. [PMID: 38702220 DOI: 10.1016/j.ajem.2024.04.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 05/06/2024] Open
Abstract
A 53-year-old male patient presented to a regional hospital Emergency Department approximately 2 h post an intentional ingestion of Coopers Instant Wetting Powder Sheep Dip (66% arsenic trioxide, 23% sulphur and 0.42% rotenone), mixed in 600 mL water, as a suicide attempt. On arrival to the Emergency Department, the patient had nausea, vomiting and diarrhoea. Seven hours post ingestion, hypotension developed (BP 90/60 mmHg) and intravenous fluids were commenced. He later developed QTc prolongation. He was treated with 2,3-Dimercapto-1-propanesulfonic acid (DMPS) and N-acetylcysteine and improved without development of neurology. Further investigation of NAC efficacy in humans in the setting of acute arsenic poisoning is required and the optimal duration of treatment and dosing needs to be established. This case highlights an uncommon poisoning which presented to the Emergency Department, the acute symptoms of arsenic toxicity and considerations for management.
Collapse
Affiliation(s)
| | | | | | | | - Anselm Wong
- Austin Health, Victoria, Australia; Department of Medicine, School of Clinical Sciences at Monash Health, Victoria, Australia; Department of Critical Care, University of Melbourne, Victoria, Australia
| |
Collapse
|
30
|
Ćirović A, Buha Đorđević A, Ćirović A, Jevtić J, Tasić D, Janković S, Antonijević B, Petrović Z, Orisakwe OE, Tasić N. Trace Element Concentrations in Autopsied Heart Tissues from Patients with Secondary Cardiomyopathy. Biol Trace Elem Res 2024; 202:2442-2449. [PMID: 37747654 DOI: 10.1007/s12011-023-03857-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 09/10/2023] [Indexed: 09/26/2023]
Abstract
Cardiomyopathies (CMP) represent a significant health problem as they have a poor long-term prognosis and often require transplantation. Heavy metals are known to have cardiotoxic effects and some of them, such as cadmium (Cd), are found to be elevated in the urine and blood of individuals with heart diseases; nevertheless, direct measurement of metals (e.g. zinc (Zn) which is necessary for normal heart function), in the myocardium of individuals with CMP has not been performed. Here, we aimed to analyze the levels of a group of metals in the myocardium of the left ventricle in individuals with CMP. At the Institute of Pathology, we collected 52 samples of left ventricle post-mortem, out of which 19 subjects had been diagnosed with CMP (mean age: 72 y ± 10), and 33 subjects had not suffered from any heart disease (mean age: 67 y ± 15). We found out that individuals with CMP had a significantly higher concentrations of lead, nickel, manganese and copper than non-CMP subjects (p = 0.002, p < 0.001, p = 0.011, and p = 0.002). Interestingly, zinc was significantly lower in CMP subjects than in n-CMP individuals (p = 0.017). Our results indicated the involvement of an increased lead, nickel, copper and manganese heart load in individuals with CMP coupled with lower concentrations of zinc.
Collapse
Affiliation(s)
- Ana Ćirović
- Faculty of Medicine, Institute of Anatomy, University of Belgrade, Dr Subotica 4/2, 11000, Belgrade, Serbia
| | - Aleksandra Buha Đorđević
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221, Belgrade, Serbia
- Center for Toxicological Risk Assessment, University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221, Belgrade, Serbia
| | - Aleksandar Ćirović
- Faculty of Medicine, Institute of Anatomy, University of Belgrade, Dr Subotica 4/2, 11000, Belgrade, Serbia.
| | - Jovan Jevtić
- Faculty of Medicine, Institute of Pathology, University of Belgrade, Dr Subotica 1, 11000, Belgrade, Serbia
| | - Danijela Tasić
- Institute for Cardiovascular Diseases Dedinje, 5 Heroja Milana Tepica Street, 11000, Belgrade, Serbia
- Faculty of Medicine, University of Banja Luka, Banja Luka, RS, Bosnia and Herzegovina
| | - Saša Janković
- Institute of Meat Hygiene and Technology, Kacanskog 13, 11040, Belgrade, Serbia
| | - Biljana Antonijević
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221, Belgrade, Serbia
| | - Zoran Petrović
- Institute of Meat Hygiene and Technology, Kacanskog 13, 11040, Belgrade, Serbia
| | - Orish E Orisakwe
- African Centre of Excellence for Public Health and Toxicological Research (ACE-PUTOR), University of Port Harcourt, PMB, Port Harcourt, Choba, 5323, Nigeria
| | - Nebojša Tasić
- Institute for Cardiovascular Diseases Dedinje, 5 Heroja Milana Tepica Street, 11000, Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, Dr Subotica 8, 11000, Belgrade, Serbia
| |
Collapse
|
31
|
Liu Y, Tong X, Zhao S, Yu Z, Zhang J, Ma L, Shi Q, Zhou Y. Four cases of fatal acute arsenic poisoning: histopathology, toxicology, and new trends. Forensic Sci Med Pathol 2024; 20:681-689. [PMID: 37222905 DOI: 10.1007/s12024-023-00654-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/14/2023] [Indexed: 05/25/2023]
Abstract
Arsenic is a valuable component in tumor treatment and traditional Chinese medicine and has seen widespread use in processing, manufacturing, and agriculture. Although rare, arsenic poisoning can occur in forensic practice. Elusive pathological changes, as well as obscure clinical signs, may cause arsenic poisoning to go unrecognized. Here, we report four cases of fatal acute arsenic poisoning, with careful observation of pathological changes and collection of postmortem specimens for arsenic concentration analysis. Additionally, we reviewed six cases of fatal arsenic poisoning in the past 20 years. In the present study, microvesicular steatosis in the peripheral areas of the hepatic lobules and acute splenitis were observed, which are rare findings in acute arsenic poisoning. This study summarizes the histopathological features of arsenic poisoning and presents data on arsenic distribution. Arsenic concentrations in the liver and kidneys can increase the reliability of identifying arsenic poisoning. Furthermore, in traditional Chinese medicine-related deaths, arsenic poisoning needs more attention.
Collapse
Affiliation(s)
- Yu Liu
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, No. 13 Hangkong Road, Wuhan, 430030, People's Republic of China
| | - Xin Tong
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, No. 13 Hangkong Road, Wuhan, 430030, People's Republic of China
| | - Shuquan Zhao
- Department of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-Sen University, No. 74 2Nd Zhongshan Road, Guangzhou, 510080, People's Republic of China
| | - Zhonghao Yu
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, No. 13 Hangkong Road, Wuhan, 430030, People's Republic of China
| | - Jiaxin Zhang
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, No. 13 Hangkong Road, Wuhan, 430030, People's Republic of China
| | - Longda Ma
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, No. 13 Hangkong Road, Wuhan, 430030, People's Republic of China
| | - Qing Shi
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, No. 13 Hangkong Road, Wuhan, 430030, People's Republic of China
| | - Yiwu Zhou
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, No. 13 Hangkong Road, Wuhan, 430030, People's Republic of China.
| |
Collapse
|
32
|
Huang Y, Zhang N, Ge Z, Lv C, Zhu L, Ding C, Liu C, Peng P, Wu T, Wang Y. Determining soil conservation strategies: Ecological risk thresholds of arsenic and the influence of soil properties. ECO-ENVIRONMENT & HEALTH 2024; 3:238-246. [PMID: 38693960 PMCID: PMC11061221 DOI: 10.1016/j.eehl.2024.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/18/2024] [Accepted: 02/03/2024] [Indexed: 05/03/2024]
Abstract
The establishment of ecological risk thresholds for arsenic (As) plays a pivotal role in developing soil conservation strategies. However, despite many studies regarding the toxicological profile of As, such thresholds varying by diverse soil properties have rarely been established. This study aims to address this gap by compiling and critically examining an extensive dataset of As toxicity data sourced from existing literature. Furthermore, to augment the existing information, experimental studies on As toxicity focusing on barley-root elongation were carried out across various soil types. The As concentrations varied from 12.01 to 437.25 mg/kg for the effective concentrations that inhibited 10% of barley-root growth (EC10). The present study applied a machine-learning approach to investigate the complex associations between the toxicity thresholds of As and diverse soil properties. The results revealed that Mn-/Fe-ox and clay content emerged as the most influential factors in predicting the EC10 contribution. Additionally, by using a species sensitivity distribution model and toxicity data from 21 different species, the hazardous concentration for x% of species (HCx) was calculated for four representative soil scenarios. The HC5 values for acidic, neutral, alkaline, and alkaline calcareous soils were 80, 47, 40, and 28 mg/kg, respectively. This study establishes an evidence-based methodology for deriving soil-specific guidance concerning As toxicity thresholds.
Collapse
Affiliation(s)
- Yihang Huang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Naichi Zhang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zixuan Ge
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225009, China
| | - Chen Lv
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225009, China
| | - Linfang Zhu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Changfeng Ding
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Cun Liu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Peiqin Peng
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Tongliang Wu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Yujun Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
33
|
Yang Y, Hong Y, Han J, Yang Z, Huang N, Xu B, Wang Q. D-Limonene Alleviates Oxidative Stress Injury of the Testis Induced by Arsenic in Rat. Biol Trace Elem Res 2024; 202:2776-2785. [PMID: 37773484 DOI: 10.1007/s12011-023-03881-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 09/22/2023] [Indexed: 10/01/2023]
Abstract
Long-term exposure to arsenic can lead to testicular damage and lower sperm quality in males, which is mediated by increased arsenic-induced oxidative stress and other damage mechanisms. D-Limonene, which is rich in oranges, lemons, oranges, grapes and other natural fruits, can relieve doxorubicin (DOX)-induced kidney injury and CCL4-induced cardiac toxicity by inhibiting oxidative stress and inflammatory response. The antioxidant and anti-inflammatory properties of D-limonene motivate us to further explore whether it can reduce arsenic-induced testicular injury. To verify this scientific hypothesis, testicular pathology, testicular oxidative stress levels and sperm motility were determined after intervention with D-limonene in rats chronically exposed to arsenic. As expected, long-term arsenic exposure caused testicular tissue structure disturbances, increased levels of oxidative stress, and decreased sperm activation, all of which were significantly inhibited due to treatment with D-limonene. In conclusion, our data reveal a previously unproven beneficial effect of D-limonene, namely that D-limonene can inhibit arsenic-induced testicular injury, and also provide theoretical and experimental basis for the application of D-limonene in the treatment of arsenic-induced testicular injury.
Collapse
Affiliation(s)
- Yanping Yang
- Department of Histology and Embryology, School of Basic Medicine, Guizhou Medical University, Guiyang, 550025, Guizhou, China
| | - Yan Hong
- Department of Histology and Embryology, School of Basic Medicine, Guizhou Medical University, Guiyang, 550025, Guizhou, China
| | - Jing Han
- Department of Histology and Embryology, School of Basic Medicine, Guizhou Medical University, Guiyang, 550025, Guizhou, China
| | - Zhe Yang
- Department of Histology and Embryology, School of Basic Medicine, Guizhou Medical University, Guiyang, 550025, Guizhou, China
| | - Nanmin Huang
- Department of Histology and Embryology, School of Basic Medicine, Guizhou Medical University, Guiyang, 550025, Guizhou, China
| | - Binwei Xu
- Department of Histology and Embryology, School of Basic Medicine, Guizhou Medical University, Guiyang, 550025, Guizhou, China
| | - Qi Wang
- Department of Histology and Embryology, School of Basic Medicine, Guizhou Medical University, Guiyang, 550025, Guizhou, China.
| |
Collapse
|
34
|
Demissie S, Mekonen S, Awoke T, Mengistie B. Assessing Acute and Chronic Risks of Human Exposure to Arsenic: A Cross-Sectional Study in Ethiopia Employing Body Biomarkers. ENVIRONMENTAL HEALTH INSIGHTS 2024; 18:11786302241257365. [PMID: 38828044 PMCID: PMC11141224 DOI: 10.1177/11786302241257365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 05/09/2024] [Indexed: 06/05/2024]
Abstract
Background Arsenic, a widely recognized and highly toxic carcinogen, is regarded as one of the most hazardous metalloids globally. However, the precise assessment of acute and chronic human exposure to arsenic and its contributing factors remains unclear in Ethiopia. Objective The primary goal of this study was to assess the levels of acute and chronic arsenic exposure, as well as the contributing factors, using urine and nail biomarkers. Methods A community-based analytical cross-sectional study design was employed for this study. Agilent 7900 series inductively coupled plasma mass spectrometry was used to measure the concentrations of arsenic in urine and nail samples. We performed a multiple linear regression analysis to assess the relationships between multiple predictors and outcome variables. Results The concentration of arsenic in the urine samples ranged from undetectable (<0.01) to 126.13, with a mean and median concentration of 16.02 and 13.5 μg/L, respectively. However, the mean and median concentration of arsenic in the nails was 1.01, ranging from undetectable (<0.01 μg/g) to 2.54 μg/g. Furthermore, Pearson's correlation coefficient analysis showed a significant positive correlation between arsenic concentrations in urine and nail samples (r = 0.432, P < .001). Also, a positive correlation was observed between urinary (r = 0.21, P = .007) and nail (r = 0.14, P = .044) arsenic concentrations and the arsenic concentration in groundwater. Groundwater sources and smoking cigarettes were significantly associated with acute arsenic exposure. In contrast, groundwater sources, cigarette smoking, and the frequency of showers were significantly associated with chronic arsenic exposure. Conclusions The study's findings unveiled the widespread occurrence of both acute and chronic arsenic exposure in the study area. Consequently, it is crucial to prioritize the residents in the study area and take further measures to prevent both acute and chronic arsenic exposure.
Collapse
Affiliation(s)
- Solomon Demissie
- Department of Water and Public Health, Ethiopian Institute of Water Resources, Addis Ababa University, Addis Abeba, Ethiopia
| | - Seblework Mekonen
- Department of Water and Public Health, Ethiopian Institute of Water Resources, Addis Ababa University, Addis Abeba, Ethiopia
| | - Tadesse Awoke
- Department of Epidemiology and Biostatistics, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Bezatu Mengistie
- Department of Water and Public Health, Ethiopian Institute of Water Resources, Addis Ababa University, Addis Abeba, Ethiopia
| |
Collapse
|
35
|
Rizzo M, Bordignon M, Bertoli P, Biasiol G, Crosera M, Magnano GC, Marussi G, Negro C, Larese Filon F. Exposure to gallium arsenide nanoparticles in a research facility: a case study using molecular beam epitaxy. Nanotoxicology 2024; 18:259-271. [PMID: 38647006 DOI: 10.1080/17435390.2024.2341893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 04/05/2024] [Indexed: 04/25/2024]
Abstract
We evaluated GaAs nanoparticle-concentrations in the air and on skin and surfaces in a research facility that produces thin films, and to monitored As in the urine of exposed worker. The survey was over a working week using a multi-level approach. Airborne personal monitoring was implemented using a miniature diffusion size classifier (DiSCMini) and IOM sampler. Environmental monitoring was conducted using the SKC Sioutas Cascade Impactor to evaluate dimensions and nature of particles collected. Surfaces contamination were assessed analyzing As and Ga in ghost wipes. Skin contamination was monitored using tape strips. As and Ga were analyzed in urines collected every day at the beginning and end of the shift. The greatest airborne exposure occurred during the cutting operations of the GaAs Sample (88883 np/cm3). The highest levels of contamination were found inside the hood (As max = 1418 ng/cm2) and on the laboratory floor (As max = 251 ng/cm2). The average concentration on the worker's skin at the end of the work shift (3.36 ng/cm2) was more than 14 times higher than before the start of the shift. In weekly urinary biomonitoring an average As concentration of 19.5 µg/L, which was above the Società Italiana Valori di Riferimento (SIVR) reference limit for the non-occupational population (2.0 - 15 µg/L), but below the ACGIH limit (30 µg/L). Overall, airborne monitoring, surface sampling, skin sampling, and biomonitoring of worker confirmed the exposure to As of workers. Systematic cleaning operations, hood implementation and correct PPE management are needed to improve worker protection.
Collapse
Affiliation(s)
- Marco Rizzo
- Inter-University Degree Course in Prevention Techniques in the Environment and Workplaces, University of Udine and Trieste, Trieste, Italy
| | - Michele Bordignon
- Inter-University Degree Course in Prevention Techniques in the Environment and Workplaces, University of Udine and Trieste, Trieste, Italy
| | - Paolo Bertoli
- Clinical Operational Unit of Occupational Medicine, University of Trieste, Trieste, Italy
| | | | - Matteo Crosera
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, Italy
| | - Greta Camilla Magnano
- Clinical Operational Unit of Occupational Medicine, University of Trieste, Trieste, Italy
| | - Giovanna Marussi
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, Italy
| | - Corrado Negro
- Clinical Operational Unit of Occupational Medicine, University of Trieste, Trieste, Italy
| | - Francesca Larese Filon
- Clinical Operational Unit of Occupational Medicine, University of Trieste, Trieste, Italy
| |
Collapse
|
36
|
Khandelwal R, Keelka S, Jain N, Jain P, Kumar Sharma M, Kaushik P. Biosorption of arsenic (III) from aqueous solution using calcium alginate immobilized dead biomass of Acinetobacter sp. strain Sp2b. Sci Rep 2024; 14:9972. [PMID: 38693342 PMCID: PMC11063054 DOI: 10.1038/s41598-024-60329-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 04/22/2024] [Indexed: 05/03/2024] Open
Abstract
This study presents a novel biosorbent developed by immobilizing dead Sp2b bacterial biomass into calcium alginate (CASp2b) to efficiently remove arsenic (AsIII) from contaminated water. The bacterium Sp2b was isolated from arsenic-contaminated industrial soil of Punjab, a state in India. The strain was designated Acinetobacter sp. strain Sp2b as per the 16S rDNA sequencing, GenBank accession number -OP010048.The CASp2b was used for the biosorption studies after an initial screening for the biosorption capacity of Sp2b biomass with immobilized biomass in both live and dead states. The optimum biosorption conditions were examined in batch experimentations with contact time, pH, biomass, temperature, and AsIII concentration variables. The maximum biosorption capacity (qmax = 20.1 ± 0.76 mg/g of CA Sp2b) was obtained at pH9, 35 ̊ C, 20 min contact time, and 120 rpm agitation speed. The isotherm, kinetic and thermodynamic modeling of the experimental data favored Freundlich isotherm (R2 = 0.941) and pseudo-2nd-order kinetics (R2 = 0.968) with endothermic nature (ΔH° = 27.42) and high randomness (ΔS° = 58.1).The scanning electron microscopy with energy dispersive X-ray (SEM-EDX) analysis indicated the As surface binding. The reusability study revealed the reasonable usage of beads up to 5 cycles. In conclusion, CASp2b is a promising, efficient, eco-friendly biosorbent for AsIII removal from contaminated water.
Collapse
Affiliation(s)
- Renu Khandelwal
- Centre for Advanced Studies, Department of Zoology, University of Rajasthan, Jaipur, Rajasthan, 302004, India
| | - Sneha Keelka
- Centre for Advanced Studies, Department of Zoology, University of Rajasthan, Jaipur, Rajasthan, 302004, India
| | - Neha Jain
- Centre for Advanced Studies, Department of Zoology, University of Rajasthan, Jaipur, Rajasthan, 302004, India
| | - Prachi Jain
- Centre for Advanced Studies, Department of Zoology, University of Rajasthan, Jaipur, Rajasthan, 302004, India
| | - Mukesh Kumar Sharma
- Department of Zoology, SPC Government College, Ajmer, Rajasthan, 305001, India
| | - Pallavi Kaushik
- Centre for Advanced Studies, Department of Zoology, University of Rajasthan, Jaipur, Rajasthan, 302004, India.
| |
Collapse
|
37
|
Zbieralski K, Staszewski J, Konczak J, Lazarewicz N, Nowicka-Kazmierczak M, Wawrzycka D, Maciaszczyk-Dziubinska E. Multilevel Regulation of Membrane Proteins in Response to Metal and Metalloid Stress: A Lesson from Yeast. Int J Mol Sci 2024; 25:4450. [PMID: 38674035 PMCID: PMC11050377 DOI: 10.3390/ijms25084450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/06/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
In the face of flourishing industrialization and global trade, heavy metal and metalloid contamination of the environment is a growing concern throughout the world. The widespread presence of highly toxic compounds of arsenic, antimony, and cadmium in nature poses a particular threat to human health. Prolonged exposure to these toxins has been associated with severe human diseases, including cancer, diabetes, and neurodegenerative disorders. These toxins are known to induce analogous cellular stresses, such as DNA damage, disturbance of redox homeostasis, and proteotoxicity. To overcome these threats and improve or devise treatment methods, it is crucial to understand the mechanisms of cellular detoxification in metal and metalloid stress. Membrane proteins are key cellular components involved in the uptake, vacuolar/lysosomal sequestration, and efflux of these compounds; thus, deciphering the multilevel regulation of these proteins is of the utmost importance. In this review, we summarize data on the mechanisms of arsenic, antimony, and cadmium detoxification in the context of membrane proteome. We used yeast Saccharomyces cerevisiae as a eukaryotic model to elucidate the complex mechanisms of the production, regulation, and degradation of selected membrane transporters under metal(loid)-induced stress conditions. Additionally, we present data on orthologues membrane proteins involved in metal(loid)-associated diseases in humans.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ewa Maciaszczyk-Dziubinska
- Department of Genetics and Cell Physiology, Faculty of Biological Sciences, University of Wroclaw, 50-328 Wroclaw, Poland; (K.Z.); (J.S.); (J.K.); (N.L.); (M.N.-K.); (D.W.)
| |
Collapse
|
38
|
Jin Y, Song Q, He R, Diao H, Gaoyang H, Wang L, Fan L, Wang D. Nod-like receptor protein 3 inflammasome-mediated pyroptosis contributes to chronic NaAsO 2 exposure-induced fibrotic changes and dysfunction in the liver of SD rats. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 275:116282. [PMID: 38564859 DOI: 10.1016/j.ecoenv.2024.116282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 03/25/2024] [Accepted: 03/30/2024] [Indexed: 04/04/2024]
Abstract
The metalloid arsenic, known for its toxic properties, is widespread presence in the environment. Our previous research has confirmed that prolonged exposure to arsenic can lead to liver fibrosis injury in rats, while the precise pathogenic mechanism still requires further investigation. In the past few years, the Nod-like receptor protein 3 (NLRP3) inflammasome has been found to play a pivotal role in the occurrence and development of liver injury. In this study, we administered varying doses of sodium arsenite (NaAsO2) and 10 mg/kg.bw MCC950 (a particular tiny molecular inhibitor targeting NLRP3) to Sprague-Dawley (SD) rats for 36 weeks to explore the involvement of NLRP3 inflammasome in NaAsO2-induced liver injury. The findings suggested that prolonged exposure to NaAsO2 resulted in pyroptosis in liver tissue of SD rats, accompanied by the fibrotic injury, extracellular matrix (ECM) deposition and liver dysfunction. Moreover, long-term NaAsO2 exposure activated NLRP3 inflammasome, leading to the release of pro-inflammatory cytokines in liver tissue. After treatment with MCC950, the induction of NLRP3-mediated pyroptosis and release of pro-inflammatory cytokines were significantly attenuated, leading to a decrease in the severity of liver fibrosis and an improvement in liver function. To summarize, those results clearly indicate that hepatic fibrosis and liver dysfunction induced by NaAsO2 occur through the activation of NLRP3 inflammasome-mediated pyroptosis, shedding new light on the potential mechanisms underlying arsenic-induced liver damage.
Collapse
Affiliation(s)
- Ying Jin
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, School of Public Health, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 550025, PR China
| | - Qian Song
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, School of Public Health, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 550025, PR China
| | - Rui He
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, School of Public Health, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 550025, PR China
| | - Heng Diao
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, School of Public Health, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 550025, PR China
| | - Huijie Gaoyang
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, School of Public Health, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 550025, PR China
| | - Lei Wang
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, School of Public Health, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 550025, PR China
| | - Lili Fan
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, School of Public Health, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 550025, PR China.
| | - Dapeng Wang
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, School of Public Health, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 550025, PR China; Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-constructed by the Province and Ministry, Guizhou Medical University, Guiyang, Guizhou 550025, PR China.
| |
Collapse
|
39
|
Vannas C, Escobar M, Österlund T, Andersson D, Mouhanna P, Soomägi A, Molin C, Wennergren D, Fagman H, Ståhlberg A. Treatment Monitoring of a Patient with Synchronous Metastatic Angiosarcoma and Breast Cancer Using ctDNA. Int J Mol Sci 2024; 25:4023. [PMID: 38612833 PMCID: PMC11012383 DOI: 10.3390/ijms25074023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 03/29/2024] [Accepted: 04/02/2024] [Indexed: 04/14/2024] Open
Abstract
Angiosarcoma is a rare and aggressive type of soft-tissue sarcoma with high propensity to metastasize. For patients with metastatic angiosarcoma, prognosis is dismal and treatment options are limited. To improve the outcomes, identifying patients with poor treatment response at an earlier stage is imperative, enabling alternative therapy. Consequently, there is a need for improved methods and biomarkers for treatment monitoring. Quantification of circulating tumor-DNA (ctDNA) is a promising approach for patient-specific monitoring of treatment response. In this case report, we demonstrate that quantification of ctDNA using SiMSen-Seq was successfully utilized to monitor a patient with metastatic angiosarcoma. By quantifying ctDNA levels using 25 patient-specific mutations in blood plasma throughout surgery and palliative chemotherapy, we predicted the outcome and monitored the clinical response to treatment. This was accomplished despite the additional complexity of the patient having a synchronous breast cancer. The levels of ctDNA showed a superior correlation to the clinical outcome compared with the radiological evaluations. Our data propose a promising approach for personalized biomarker analysis to monitor treatment in angiosarcomas, with potential applicability to other cancers and for patients with synchronous malignancies.
Collapse
Affiliation(s)
- Christoffer Vannas
- Sahlgrenska Center for Cancer Research, Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden; (M.E.); (T.Ö.); (D.A.); (P.M.); (A.S.); (H.F.)
- Department of Oncology, Sahlgrenska University Hospital, Region Västra Götaland, 41345 Gothenburg, Sweden;
| | - Mandy Escobar
- Sahlgrenska Center for Cancer Research, Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden; (M.E.); (T.Ö.); (D.A.); (P.M.); (A.S.); (H.F.)
| | - Tobias Österlund
- Sahlgrenska Center for Cancer Research, Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden; (M.E.); (T.Ö.); (D.A.); (P.M.); (A.S.); (H.F.)
- Department of Clinical Genetics and Genomics, Sahlgrenska University Hospital, Region Västra Götaland, 41345 Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, 40530 Gothenburg, Sweden
| | - Daniel Andersson
- Sahlgrenska Center for Cancer Research, Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden; (M.E.); (T.Ö.); (D.A.); (P.M.); (A.S.); (H.F.)
| | - Pia Mouhanna
- Sahlgrenska Center for Cancer Research, Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden; (M.E.); (T.Ö.); (D.A.); (P.M.); (A.S.); (H.F.)
- Department of Oncology, Ryhov County Hospital, 55185 Jönköping, Sweden
| | - Amanda Soomägi
- Sahlgrenska Center for Cancer Research, Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden; (M.E.); (T.Ö.); (D.A.); (P.M.); (A.S.); (H.F.)
| | - Claes Molin
- Department of Oncology, Sahlgrenska University Hospital, Region Västra Götaland, 41345 Gothenburg, Sweden;
| | - David Wennergren
- Department of Orthopaedics, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden;
| | - Henrik Fagman
- Sahlgrenska Center for Cancer Research, Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden; (M.E.); (T.Ö.); (D.A.); (P.M.); (A.S.); (H.F.)
- Department of Clinical Pathology, Sahlgrenska University Hospital, Region Västra Götaland, 41345 Gothenburg, Sweden
| | - Anders Ståhlberg
- Sahlgrenska Center for Cancer Research, Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden; (M.E.); (T.Ö.); (D.A.); (P.M.); (A.S.); (H.F.)
- Department of Clinical Genetics and Genomics, Sahlgrenska University Hospital, Region Västra Götaland, 41345 Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, 40530 Gothenburg, Sweden
| |
Collapse
|
40
|
de Queiroz Eskuarek Melo NM, Comar JF, de Sá-Nakanishi AB, Peralta RM, Bracht L, Bracht A. Short-term effects of sodium arsenite (AsIII) and sodium arsenate (AsV) on carbohydrate metabolism in the perfused rat liver. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 107:104397. [PMID: 38401815 DOI: 10.1016/j.etap.2024.104397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 02/04/2024] [Accepted: 02/21/2024] [Indexed: 02/26/2024]
Abstract
The actions of arsenite and arsenate on carbohydrate metabolism in the once-through perfused rat liver were investigated. The compound inhibited lactate gluconeogenesis with an IC50 of 25 µM. It also increased glycolysis and fructolysis at concentrations between 10 and 100 µM. This effect was paralleled by strong inhibition of pyruvate carboxylation (IC50 = 4.25 µM) and by a relatively moderate diminution in the ATP levels. The inhibitory action of arsenate on pyruvate carboxylation and lactate gluconeogenesis was 103 times less effective than that of arsenite. For realistic doses and concentrations («1 mM), impairment of metabolism by arsenate can be expected to occur solely after its reduction to arsenite. Arsenite, on the other hand, can be regarded as a strong short-term modifier of lactate gluconeogenesis and other pathways. The main cause of the former is inhibition of pyruvate carboxylation, a hitherto unknown effect of arsenic compounds.
Collapse
Affiliation(s)
| | | | | | | | - Lívia Bracht
- Department of Biochemistry, State University of Maringá, Maringá, PR, Brazil
| | - Adelar Bracht
- Department of Biochemistry, State University of Maringá, Maringá, PR, Brazil.
| |
Collapse
|
41
|
Tsai MH, Lin YT. Density Functional Theory Calculation May Confirm Arsenic-Thiol Adhesion as the Primary Mechanism of Arsenical Toxicity. ACS OMEGA 2024; 9:13975-13981. [PMID: 38559941 PMCID: PMC10976359 DOI: 10.1021/acsomega.3c09269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/23/2024] [Accepted: 02/28/2024] [Indexed: 04/04/2024]
Abstract
Previously, it was believed that methylation was the body's primary method to detoxify inorganic arsenic. However, recent research has shown that the metabolized intermediate known as MMAIII is more toxic than arsenite and arsenate, contradicting a previous understanding. Another important question arises: is arsenical toxicity truly caused by arsenic binding to proteins through arsenic thiol adhesion? Based on the toxicity order of the experiment, with MMAIII being the most toxic, followed by arsenite, arsenate, DMAV, and MMAV, density functional theory (DFT) calculations can provide a straightforward assessment of this issue. Our practice captures all the transition states associated with a specific imaginary-frequency vibration mode, including proton transfer and simultaneous departure of leaving group. We have obtained the energy barriers for five arsenicals reacting with thiol, alcohol, and amine separately. In addition to energetic favorability, the following are the energy barriers for arsenic's reaction with thiol ranked from low to high: MMAIII (25.4 kcal/mol), arsenite (27.7 kcal/mol), arsenate (32.8 kcal/mol), DMAV (36.2 kcal/mol), and MMAV (38.3 kcal/mol). Results show that the toxicity of arsenicals is mainly caused by their reaction with thiol rather than with alcohol or amine, as supported by the trend of decreasing toxicity and increasing energy barriers. Thus, this DFT calculation may confirm the paradigm that arsenic-thiol adhesion is the primary cause of arsenic toxicity in the body.
Collapse
Affiliation(s)
- Meng-Han Tsai
- Department
of Biotechnology, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Ying-Ting Lin
- Department
of Biotechnology, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Drug
Development & Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
42
|
Hu C, Liu Y, Fang X, Zhou Z, Yu Y, Sun Y, Shui B. Assessing heavy metal pollution in sediments from the northern margin of Chinese mangrove areas: Sources, ecological risks, and health impacts. MARINE POLLUTION BULLETIN 2024; 200:116069. [PMID: 38335629 DOI: 10.1016/j.marpolbul.2024.116069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 01/19/2024] [Accepted: 01/19/2024] [Indexed: 02/12/2024]
Abstract
With the rapid economic development of coastal cities, the discharge of substantial amounts of heavy metal pollutants poses a serious hazard to mangroves; however, the potential sources of heavy metals and the resulting health risks are not fully understood. In this study, we analyzed the contents, sources, and ecological and health risks of heavy metal contamination in mangrove sediments from the northern margin of China. The accumulation of heavy metals in mangroves was primarily driven by five potential sources, namely agricultural (33.5 %), natural sources (21.3 %), industrial (19.1 %), aquaculture (14.3 %), and traffic (11.8 %). The assessment of health risks using a probabilistic approach demonstrated that noncarcinogenic risks were within acceptable limits for all populations. It was worth noting that both noncarcinogenic and carcinogenic risks were greater in children than in adults. Analysis of source-oriented health risks revealed that agricultural sources and As and Cd were priority sources and elements of pollution requiring attention.
Collapse
Affiliation(s)
- Chengye Hu
- Fisheries College, Zhejiang Ocean University, Zhoushan 316022, China
| | - Yongtian Liu
- Fisheries College, Zhejiang Ocean University, Zhoushan 316022, China
| | - Xuehe Fang
- Fisheries College, Zhejiang Ocean University, Zhoushan 316022, China
| | - Zeyu Zhou
- Fisheries College, Zhejiang Ocean University, Zhoushan 316022, China
| | - Yang Yu
- Fisheries College, Zhejiang Ocean University, Zhoushan 316022, China
| | - Yiyi Sun
- Fisheries College, Zhejiang Ocean University, Zhoushan 316022, China
| | - Bonian Shui
- Fisheries College, Zhejiang Ocean University, Zhoushan 316022, China.
| |
Collapse
|
43
|
Suo A, Wang Y, Niu H, Yang X. Arsenic Poisoning-Induced Sensorineural Hearing Loss: A Case Report. J Int Adv Otol 2024; 20:182-185. [PMID: 39128108 PMCID: PMC11114162 DOI: 10.5152/iao.2024.231201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 10/26/2023] [Indexed: 08/13/2024] Open
Abstract
Arsenic is frequently used in alternative medicine, and it is critical to promptly identify and treat suspected arsenic toxicity in patients. In a case study, a female patient presented with several symptoms, including nausea, vomiting, bilateral tinnitus, hearing loss, vertigo, and other associated complaints. After admission, the patient showed lethargy, and topical application of Chinese herbal medicine was found on her left breast, along with visible pigmentation on her torso. Examination revealed severe bilateral sensorineural deafness, liver and kidney injury, and pancytopenia. Due to the presence of broken skin, toxicological analysis detected elevated levels of arsenic in both blood (113 ng/mL) and urine (865.4 ng/mL). The patient was diagnosed with arsenic poisoning and received symptomatic treatment, including detoxification. Unfortunately, the patient died due to long-term exposure to arsenic. Therefore, early identification of the etiology is crucial for managing cases of arsenic poisoning.
Collapse
Affiliation(s)
- Anqi Suo
- Jining Medical College, School of Clinical Medicine,Jining,China
| | - Yan Wang
- Department of Emergency, Affiliated Hospital of Jining Medical College, Jining, China
| | - Hongyan Niu
- Department of Otolaryngology, Head and Neck Surgery, Affiliated Hospital of Jining Medical College, Jining, China
| | - Xinxin Yang
- Department of Otolaryngology, Head and Neck Surgery, Affiliated Hospital of Jining Medical College, Jining, China
| |
Collapse
|
44
|
Jhuang JR, Lee CH, Chiang CJ, Chen CJ, Lee WC. Reduced burden of Arsenic-Related cancers after water mitigation in Taiwan. ENVIRONMENT INTERNATIONAL 2024; 185:108542. [PMID: 38461779 DOI: 10.1016/j.envint.2024.108542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 01/31/2024] [Accepted: 02/28/2024] [Indexed: 03/12/2024]
Abstract
BACKGROUND Epidemiological evidence has demonstrated an association between arsenic in drinking water and increased cancer incidence. This population-based study investigates the impact of a tap water supply system installation in Blackfoot disease-endemic regions of Taiwan on cancer incidence. METHODS By using the Taiwan Cancer Registry dataset, we enrolled patients aged 40-84 diagnosed with arsenic-related cancers, including hepatocellular carcinoma, small and squamous cell lung cancer, Bowen's disease, basal and squamous cell skin cancer, urothelial bladder cancer, and upper tract urothelial carcinoma between 1995 and 2019. Random-effects age-period-cohort models were used to estimate the cancer incidence data, and a stabilized kriging method was employed to interpolate incidence rates to more precise spatiotemporal units. RESULTS The results showed that the age-standardized incidence rates of all six types of studied cancers were consistently higher in Blackfoot disease-endemic areas than those in other areas from 1995 to 2019. However, the gap in incidence rates between Blackfoot disease-endemic areas and the remaining regions began to narrow approximately after the 1960 birth cohort when the tap water supply system installation commenced. For small and squamous cell lung cancer, Bowen's disease, and urothelial bladder cancer, the excess incidence rates sharply declined to null for those born after the year of arsenic mitigation. For upper tract urothelial carcinoma, the excess incidence rates decreased more gradually for those born after the year of arsenic mitigation. For hepatocellular carcinoma and basal and squamous cell skin cancer, the excess incidence rates remained constant. Spatiotemporal clusters of high incidence rates were identified in the core townships of Blackfoot disease-endemic areas. These clusters began to dissipate mainly after the 1960 birth cohort. CONCLUSION Arsenic mitigation from drinking water in Taiwan is associated with a reduced burden of small and squamous cell lung cancers, Bowen's disease, urothelial bladder cancer, and upper tract urothelial carcinoma.
Collapse
Affiliation(s)
- Jing-Rong Jhuang
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan; Taiwan Cancer Registry, Taipei, Taiwan
| | - Chih-Hung Lee
- Department of Dermatology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chun-Ju Chiang
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan; Taiwan Cancer Registry, Taipei, Taiwan
| | - Chien-Jen Chen
- Genomics Research Center, Academia Sinica, Taipei, Taiwan; College of Medicine, Fu-Jen Catholic University, New Taipei, Taiwan
| | - Wen-Chung Lee
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan; Taiwan Cancer Registry, Taipei, Taiwan; Institute of Health Data Analytics and Statistics, College of Public Health, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
45
|
Huang JH, Wu Y, He W, Wang JX, Fu L, Chen X. Association between blood arsenic concentration and dyslipidemia: Mediating effect of lipid peroxidation in the elderly. J Trace Elem Med Biol 2024; 82:127366. [PMID: 38103515 DOI: 10.1016/j.jtemb.2023.127366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/11/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
Abstract
BACKGROUND The earlier investigations have revealed heavy metals exposure is implicated in the pathogenesis of dyslipidemia. The goal was to evaluated the relationship of blood arsenic (As) concentration with dyslipidemia in the elderly through a cross-sectional study. METHODS The entire 360 elderly population were selected. Fasting blood specimens, demographic information, and clinical characteristics were obtained. The concentration of blood As was detected using ICP-MS. Serum 8-iso-PGF2α, a biomarker of lipid peroxidation, was measured by ELISA. RESULTS Pearson correlative analysis hinted there were strong relationships of blood As with liver function indices in the elderly. Besides, blood As was positively associated with total cholesterol (TC), triglyceride (TG), low density lipoprotein (LDL-C), and apolipoprotein A-I (ApoA I). Further multivariate linear and logistic regression suggested that the incidences of TC and LDL-C elevation were upregulated with the rising tertiles of blood As. Blood As was positively related with the prevalence of dyslipidemia (OR=3.609; 95%CI: 1.353, 6.961). Additionally, serum 8-iso-PGF2α was dramatically and positively linked to the levels of blood As and lipid profiles. Mediation analyses verified that 8-iso-PGF2α partially mediated the correlations between blood As with TC (36.63%) and LDL-C (34.03%). CONCLUSION Blood As concentration is positively related to lipid profiles in the elderly. Higher blood As concentration elevates the prevalence of dyslipidemia. Lipid peroxidation partially mediates the correlation of As exposure with dyslipidemia.
Collapse
Affiliation(s)
- Jia-Hui Huang
- Department of Gastroenterology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230032, China; Department of Gastroenterology, Anhui No.2 Provincial People's Hospital, Hefei, Anhui, 230601, China
| | - Yi Wu
- Department of Gastroenterology, Anhui No.2 Provincial People's Hospital, Hefei, Anhui, 230601, China
| | - Wei He
- Department of Gastroenterology, Anhui No.2 Provincial People's Hospital, Hefei, Anhui, 230601, China
| | - Jun-Xian Wang
- Department of Gastroenterology, Anhui No.2 Provincial People's Hospital, Hefei, Anhui, 230601, China
| | - Lin Fu
- Department of Respiratory and Critical Care Medicine, the Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230601, China.
| | - Xi Chen
- Department of Gastroenterology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230032, China.
| |
Collapse
|
46
|
Ahmad I, Singh AK, Mohd S, Katari SK, Nalamolu RM, Ahmad A, Baothman OA, Hosawi SA, Altayeb H, Nadeem MS, Ahmad V. In Silico Insights into the Arsenic Binding Mechanism Deploying Application of Computational Biology-Based Toolsets. ACS OMEGA 2024; 9:7529-7544. [PMID: 38405466 PMCID: PMC10882604 DOI: 10.1021/acsomega.3c06313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 01/16/2024] [Accepted: 01/22/2024] [Indexed: 02/27/2024]
Abstract
An assortment of environmental matrices includes arsenic (As) in its different oxidation states, which is often linked to concerns that pose a threat to public health worldwide. The current difficulty lies in addressing toxicological concerns and achieving sustained detoxification of As. Multiple conventional degradation methods are accessible; however, they are indeed labor-intensive, expensive, and reliant on prolonged laboratory evaluations. Molecular interaction and atomic level degradation mechanisms for enzyme-As exploration are, however, underexplored in those approaches. A feasible approach in this case for tackling this accompanying concern of As might be to cope with undertaking multivalent computational methodologies and tools. This work aimed to provide molecular-level insight into the enzyme-aided As degradation mechanism. AutoDock Vina, CABS-flex 2.0, and Desmond high-performance molecular dynamics simulation (MDS) were utilized in the current investigation to simulate multivalent molecular processes on two protein sets: arsenate reductase (ArsC) and laccase (LAC) corresponding arsenate (ART) and arsenite (AST), which served as model ligands to comprehend binding, conformational, and energy attributes. The structural configurations of both proteins exhibited variability in flexibility and structure framework within the range of 3.5-4.5 Å. The LAC-ART complex exhibited the lowest calculated binding affinity, measuring -5.82 ± 0.01 kcal/mol. Meanwhile, active site residues ILE-200 and HIS-206 were demonstrated to engage in H-bonding with the ART ligand. In contrast to ArsC, the ligand binding affinity of this bound complex was considerably greater. Additional validation of docked complexes was carried out by deploying Desmond MDS of 100 ns to capture protein and ligand conformation behavior. The system achieved stability during the 100 ns simulation run, as confirmed by the average P-L RMSD, which was ∼1 Å. As a preliminary test of the enzyme's ability to catalyze As species, corresponding computational insights might be advantageous for bridging gaps and regulatory consideration.
Collapse
Affiliation(s)
- Imran Ahmad
- Department
of Biochemistry, King George’s Medical
University, Lucknow, Uttar Pradesh 226003, India
- Environmental
Toxicology Group, CSIR-Indian Institute
of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh 226001, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Anil Kumar Singh
- Environmental
Toxicology Group, CSIR-Indian Institute
of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh 226001, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Shayan Mohd
- Department
of Bioengineering, Faculty of Engineering, Integral University, Dasauli, Kursi Road, Lucknow 226026, India
| | - Sudheer Kumar Katari
- Department
of Biotechnology, Vignan’s Foundation
for Science, Technology & Research, Vadlamudi, Andhra Pradesh 522213, India
| | - Ravina Madhulitha Nalamolu
- Department
of Biotechnology, Vignan’s Foundation
for Science, Technology & Research, Vadlamudi, Andhra Pradesh 522213, India
| | - Abrar Ahmad
- Department
of Biochemistry, Faculty of Sciences, King
Abdulaziz University, Jeddah 21589, Kingdom
of Saudi Arabia
| | - Othman A. Baothman
- Department
of Biochemistry, Faculty of Sciences, King
Abdulaziz University, Jeddah 21589, Kingdom
of Saudi Arabia
| | - Salman A. Hosawi
- Department
of Biochemistry, Faculty of Sciences, King
Abdulaziz University, Jeddah 21589, Kingdom
of Saudi Arabia
| | - Hisham Altayeb
- Department
of Biochemistry, Faculty of Sciences, King
Abdulaziz University, Jeddah 21589, Kingdom
of Saudi Arabia
| | - Muhammad Shahid Nadeem
- Department
of Biochemistry, Faculty of Sciences, King
Abdulaziz University, Jeddah 21589, Kingdom
of Saudi Arabia
| | - Varish Ahmad
- Department
of Health Information Technology, Faculty of Applied Studies, King Abdulaziz University, Jeddah 21589, Kingdom of Saudi Arabia
| |
Collapse
|
47
|
Anwar MS, Khan A, Ahmad L, Khan A, Mateen A, Jahan S, Ullah U, AlMasoud N, Alomar TS, Rauf A, Khan FU, Ain Nawaz NU. Quantification of toxic heavy metals, trace elements and essential minerals contents in traditional herbal medicines commonly utilized in Khyber Pakhtunkhwa, Pakistan. Heliyon 2024; 10:e25384. [PMID: 38352791 PMCID: PMC10861986 DOI: 10.1016/j.heliyon.2024.e25384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 02/16/2024] Open
Abstract
Traditional herbal medicines and health supplements have been empirically used to treat various disorders but most of them are not standardized and have not been experimentally validated for safety and efficacy. In the present study, various dosage forms of traditional herbal medicines prescribed for specific diseases were collected from local practitioners at different districts of Khyber Pakhtunkhwa, Pakistan. The collected samples were analyzed for heavy metal, trace elements, and minerals using atomic absorption spectroscopy. All the tested samples contained heavy metals, trace elements and minerals in different concentrations. All the samples were tested positive for the presence of toxic heavy metals such as arsenic (As), cadmium (Cd) and lead (Pb). The trace elements like cobalt (Co), iron (Fe), zinc (Zn) and chromium (Cr) were also detected in acceptable range. Similarly, the samples analyzed were rich in some of the essential minerals such as sodium (Na), magnesium (Mg) and calcium (Ca) which are necessary for the proper functioning of the body. The hazard quotient (HQ) values were measured for toxic heavy metals to determine their safe ranges for human body. The HQ values were above the permissible range for arsenic (As) in all detected samples while for cadmium (Cd) and lead (Pb), the values ware above in 50 % of the analyzed samples. The detection of toxic metals and their HQ values beyond the permissible limits in different dosage forms raised questions about their quality. This study suggests that evaluation of traditional herbal remedies for the metals contents and their standardization are strongly recommended for quality assurance and protection of public health.
Collapse
Affiliation(s)
- Muhammad Sohail Anwar
- Department of Pharmacy, University of Swabi, Swabi-23561, Khyber Pakhtunkhwa, Pakistan
| | - Abad Khan
- Department of Pharmacy, University of Swabi, Swabi-23561, Khyber Pakhtunkhwa, Pakistan
| | - Lateef Ahmad
- Department of Pharmacy, University of Swabi, Swabi-23561, Khyber Pakhtunkhwa, Pakistan
| | - Amjad Khan
- Department of Pharmacy, Kohat University of Science and Technology, Kohat-26000, Pakistan
| | - Abdul Mateen
- Department of Pharmacy, University of Swabi, Swabi-23561, Khyber Pakhtunkhwa, Pakistan
| | - Saqib Jahan
- Department of Pharmacy, University of Swabi, Swabi-23561, Khyber Pakhtunkhwa, Pakistan
| | - Ubaid Ullah
- Department of Pharmacy, University of Swabi, Swabi-23561, Khyber Pakhtunkhwa, Pakistan
| | - Najla AlMasoud
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Taghrid S. Alomar
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Swabi-23561, Khyber Pakhtunkhwa, Pakistan
| | - Faheem Ullah Khan
- Department of Pharmacy, City University of Science and Information Technology, Peshawar, Pakistan
| | - Noor Ul Ain Nawaz
- Department of Pharmacy, City University of Science and Information Technology, Peshawar, Pakistan
| |
Collapse
|
48
|
Ozoani H, Ezejiofor AN, Okolo KO, Orish CN, Cirovic A, Cirovic A, Orisakwe OE. Ameliorative Effects of Zn and Se Supplementation on Heavy Metal Mixture Burden via Increased Renal Metal Excretion and Restoration of Redoxo-Inflammatory Alterations. Biol Trace Elem Res 2024; 202:643-658. [PMID: 37231320 DOI: 10.1007/s12011-023-03709-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 05/16/2023] [Indexed: 05/27/2023]
Abstract
Heavy metals (HM)in the environment have provoked global attention because of its deleterious effects. This study evaluated the protection offered by Zn or Se or both against HMM-induced alterations in the kidney. Male Sprague Dawley rats were distributed into 5 groups of 7 rats each. Group I served as normal control with unrestricted access to food and water. Group II received Cd, Pb, and As (HMM) per oral daily for 60 days while groups III and IV received HMM in addition to Zn and Se respectively for 60 days. Group V received both Zn and Se in addition to HMM for 60 days. Metal accumulation in feces was assayed at days 0, 30, and 60 while accumulation in the kidney and kidney weight were measured at day 60. Kidney function tests, NO, MDA, SOD, catalase, GSH, GPx, NO, IL-6, NF-Κb, TNFα, caspase 3, and histology were assessed. There is a significant increase in urea, creatinine, and bicarbonate ions while potassium ions decreased. There was significant increase in renal function biomarkers, MDA, NO, NF-Κb, TNFα, caspase 3, and IL-6 while SOD, catalase, GSH, and GPx decrease. Administration of HMM distorted the integrity of the rat kidney, and co-treatment with Zn or Se or both offered reasonable protection suggesting that Zn or Se could be used as an antidot against the deleterious effects of these metals.
Collapse
Affiliation(s)
- Harrison Ozoani
- African Centre of Excellence for Public Health and Toxicological Research (ACE-PUTOR), University of Port Harcourt, Port Harcourt, Choba, PMB, 5323, Nigeria
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Enugu State, University of Science & Technology, Enugu, Nigeria
| | - Anthonet N Ezejiofor
- African Centre of Excellence for Public Health and Toxicological Research (ACE-PUTOR), University of Port Harcourt, Port Harcourt, Choba, PMB, 5323, Nigeria
| | - Kenneth O Okolo
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Enugu State, University of Science & Technology, Enugu, Nigeria
| | - Chinna N Orish
- Department of Anatomy, Faculty of Basic Medical Sciences, College of Health Sciences, University of Port Harcourt, Port Harcourt, Choba, PMB, 5323, Nigeria
| | - Ana Cirovic
- University of Belgrade, Faculty of Medicine, Institute of Anatomy, Belgrade, Serbia
| | - Aleksandar Cirovic
- University of Belgrade, Faculty of Medicine, Institute of Anatomy, Belgrade, Serbia
| | - Orish E Orisakwe
- African Centre of Excellence for Public Health and Toxicological Research (ACE-PUTOR), University of Port Harcourt, Port Harcourt, Choba, PMB, 5323, Nigeria.
| |
Collapse
|
49
|
Barman PD, Maurya AK, Madaan M, Kumar B, Roy A, Ghosh S. Determination and speciation of arsenic in drinking water samples by X-ray spectrometry technique. ANAL SCI 2024; 40:309-317. [PMID: 37980326 DOI: 10.1007/s44211-023-00461-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 10/25/2023] [Indexed: 11/20/2023]
Abstract
Arsenic is ranked as the first compound in the Substance Priority List 2023 by the Agency for Toxic Substances and Disease Registry (ATSDR). The most prominent entrance to the human body is through drinking water wherein the predominant species are arsenite and arsenate. The more toxic As(III) has rigorously threatened human health worldwide; hence, speciation and separation are the need of the hour. In this article, we have reported a simple method of arsenic speciation by wavelength dispersive X-ray fluorescence (WD-XRF) spectrometer. Valence to core (VtC) electronic transitions, i.e., AsKβ2,5 fluorescence lines were used for arsenic speciation. This speciation study by WD-XRF entails direct measurement of activated alumina pellets containing arsenate and arsenite species adsorbed from water sample without separation of the trivalent and pentavalent species. This is the first report wherein the X-ray technique has been explored for speciation analysis of arsenic and the biggest advantage of the method lies in its applicability to direct analysis of synthesized nanotubes or other solid-phase extraction sorbents entrapping both the arsenic species. For determination of total arsenic using activated alumina as adsorbent, the most intense AsKα1,2 analytical lines were used and the instrumental limit of detection and the lower limit of quantification were 0.23 μg/L and 0.89 μg/L, respectively. For speciation, these limits were calculated to be 50 μg/L and 200 μg/L, respectively.
Collapse
Affiliation(s)
- Piyali Deb Barman
- Geological Survey of India, Eastern Region, Salt Lake Sector-2, Kolkata, 700091, India
| | - Ashok Kumar Maurya
- Geological Survey of India, Eastern Region, Salt Lake Sector-2, Kolkata, 700091, India.
- Geological Survey of India, Northern Region, Aliganj Sector-E, Lucknow, 226024, India.
| | - Mukul Madaan
- Geological Survey of India, Eastern Region, Salt Lake Sector-2, Kolkata, 700091, India
| | - Brijendra Kumar
- Geological Survey of India, Eastern Region, Salt Lake Sector-2, Kolkata, 700091, India
| | - Ankit Roy
- Geological Survey of India, Eastern Region, Salt Lake Sector-2, Kolkata, 700091, India
| | - Subhendu Ghosh
- Geological Survey of India, Eastern Region, Salt Lake Sector-2, Kolkata, 700091, India
| |
Collapse
|
50
|
Yoon KN, Lee SJ, Keum GB, Song KY, Park JH, Song BS, Yu SY, Cho JH, Kim ES, Doo H, Kwak J, Kim S, Eun JB, Lee JH, Kim HB, Lee JH, Kim JK. Characteristics of Lactococcus petauri GB97 lysate isolated from porcine feces and its in vitro and in vivo effects on inflammation, intestinal barrier function, and gut microbiota composition in mice. Microbiol Spectr 2024; 12:e0133423. [PMID: 38019021 PMCID: PMC10782967 DOI: 10.1128/spectrum.01334-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 10/06/2023] [Indexed: 11/30/2023] Open
Abstract
IMPORTANCE Weaning is a crucial step in piglet management to improve pork production. During the weaning phase, disruption of epithelial barrier function and intestinal inflammation can lead to decreased absorption of nutrients and diarrhea. Therefore, maintaining a healthy intestine, epithelial barrier function, and gut microbiota composition in this crucial phase is strategic for optimal weaning in pigs. We isolated a lysate of Lactococcus petauri GB97 (LPL97) from healthy porcine feces and evaluated its anti-inflammatory activities, barrier integrity, and gut microbial changes in LPS-induced murine macrophages and DSS-induced colitis mice. We found that LPL97 regulated the immune response by downregulating the TLR4/NF-κB/MAPK signaling pathway both in vitro and in vivo. Furthermore, LPL97 alleviated the disruption of intestinal epithelial integrity and gut microbiota dysbiosis in colitis mice. This study indicates that LPL97 has the potential to be developed as an alternative feed additive to antibiotics for the swine industry.
Collapse
Affiliation(s)
- Ki-Nam Yoon
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si, South Korea
- Department of Food Science and Technology, Graduate School of Chonnam National University, Gwangju, South Korea
| | - Soo-Jeong Lee
- Department of Food and Animal Biotechnology, Seoul National University, Seoul, South Korea
- Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
- Center for Food and Bioconvergence, Seoul National University, Seoul, South Korea
| | - Gi Beom Keum
- Department of Animal Resources Science, Dankook University, Cheonan, South Korea
| | - Ki-Young Song
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si, South Korea
| | - Jong-Heum Park
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si, South Korea
| | - Beom-Seok Song
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si, South Korea
| | - Seung Yeob Yu
- Korean Collection for Type Cultures, Korea Research Institute of Bioscience and Biotechnology, Jeongeup-si, South Korea
| | - Jae Hyoung Cho
- Department of Animal Resources Science, Dankook University, Cheonan, South Korea
| | - Eun Sol Kim
- Department of Animal Resources Science, Dankook University, Cheonan, South Korea
| | - Hyunok Doo
- Department of Animal Resources Science, Dankook University, Cheonan, South Korea
| | - Jinok Kwak
- Department of Animal Resources Science, Dankook University, Cheonan, South Korea
| | - Sheena Kim
- Department of Animal Resources Science, Dankook University, Cheonan, South Korea
| | - Jong-Bang Eun
- Department of Food Science and Technology, Graduate School of Chonnam National University, Gwangju, South Korea
| | - Ju Huck Lee
- Korean Collection for Type Cultures, Korea Research Institute of Bioscience and Biotechnology, Jeongeup-si, South Korea
| | - Hyeun Bum Kim
- Department of Animal Resources Science, Dankook University, Cheonan, South Korea
| | - Ju-Hoon Lee
- Department of Food and Animal Biotechnology, Seoul National University, Seoul, South Korea
- Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
- Center for Food and Bioconvergence, Seoul National University, Seoul, South Korea
| | - Jae-Kyung Kim
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si, South Korea
| |
Collapse
|