1
|
Chen B, Zeng Y, Wang J, Lei M, Gan B, Wan Z, Wu L, Luo G, Cao S, An T, Zhang Q, Pan K, Jing B, Ni X, Zeng D. Targeted Screening of Fiber Degrading Bacteria with Probiotic Function in Herbivore Feces. Probiotics Antimicrob Proteins 2025; 17:1473-1497. [PMID: 38300451 DOI: 10.1007/s12602-024-10215-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/04/2024] [Indexed: 02/02/2024]
Abstract
Cellulolytic bacteria with probiotic functions play a crucial role in promoting the intestinal health in herbivores. In this study, we aimed to correlate the 16S rRNA gene amplicon sequencing and fiber-degrading enzyme activity data from six different herbivore feces samples. By utilizing the separation and screening steps of probiotics, we targeted and screened high-efficiency fiber-degrading bacteria with probiotic functions. The animals included Maiwa Yak (MY), Holstein cow (CC), Tibetan sheep (TS), Southern Sichuan black goat (SG), Sichuan white rex rabbit (CR), and New Zealand white rabbit (ZR). The results showed that the enzymes associated with fiber degradation were higher in goat and sheep feces compared to cattle and rabbit's feces. Correlation analysis revealed that Bacillus and Fibrobacter were positively correlated with five types of fiber-degrading related enzymes. Notably, the relative abundance of Bacillus in the feces of Tibetan sheep was significantly higher than that of other five herbivores. A strain TS5 with good cellulose decomposition ability from the feces of Tibetan sheep by Congored staining, filter paper decomposition test, and enzyme activity determination was isolated. The strain was identified as Bacillus velezensis by biological characteristics, biochemical analysis, and 16S rRNA gene sequencing. To test the probiotic properties of Bacillus velezensis TS5, we evaluated its tolerance to acid and bile salt, production of digestive enzymes, antioxidants, antibacterial activity, and adhesion ability. The results showed that the strain had good tolerance to pH 2.0 and 0.3% bile salts, as well as good potential to produce cellulase, protease, amylase, and lipase. This strain also had good antioxidant capacity and the ability to antagonistic Staphylococcus aureus BJ216, Salmonella SC06, Enterotoxigenic Escherichia coli CVCC196, and Escherichia coli ATCC25922. More importantly, the strain had good self-aggregation and Caco-2 cell adhesion rate. In addition, we tested the safety of Bacillus velezensis TS5 by hemolysis test, antimicrobial susceptibility test, and acute toxicity test in mice. The results showed that the strain had no hemolytic phenotype, did not develop resistance to 19 commonly used antibiotics, had no cytotoxicity to Caco-2, and did not have acute toxic harm to mice. In summary, this study targeted isolated and screened a strain of Bacillus velezensis TS5 with high fiber-degrading ability and probiotic potency. This strain can be used as a potential probiotic for feeding microbial preparations for ruminants.
Collapse
Affiliation(s)
- Benhao Chen
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yan Zeng
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Jie Wang
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Mingxia Lei
- Neijiang Center for Animal and Plant Epidemic Disease Prevention and Control and Agricultural Products Quality Inspection, Neijiang, China
| | - Baoxing Gan
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhiqiang Wan
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Liqian Wu
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Guangrong Luo
- Sichuan Longri Breeding Stock Farm, Aba Autonomous Prefecture, China
| | - Suizhong Cao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Tianwu An
- Sichuan Academy of Grassland Sciences, Chengdu, China
| | - Qibin Zhang
- Agricultural Comprehensive Service Center of Beimu Town, Neijiang, China
| | - Kangcheng Pan
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Bo Jing
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xueqin Ni
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.
| | - Dong Zeng
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.
| |
Collapse
|
2
|
Zhang J, Yang X, Qiu J, Zhang W, Yang J, Han J, Ni L. The Characterization, Biological Activities, and Potential Applications of the Antimicrobial Peptides Derived from Bacillus spp.: A Comprehensive Review. Probiotics Antimicrob Proteins 2025; 17:1624-1647. [PMID: 39739161 DOI: 10.1007/s12602-024-10447-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2024] [Indexed: 01/02/2025]
Abstract
This paper provides a comprehensive review of antimicrobial peptides (AMPs) derived from Bacillus spp. The classification and structure of Bacillus-derived AMPs encompass a diverse range. There are 89 documented Bacillus-derived AMPs, which exhibit varied sources, amino acid sequences, and molecular structures. These AMPs can be categorized into classes I, Ia, IIa, IIb, IIc, and IId. The synthesis pathway of the AMPs primarily involves either ribosomally synthesized or non-ribosomally synthesized approaches. Additionally, the antimicrobial activity of these AMPs is versatile, targeting bacteria, fungi, and viruses, through disrupting intracellular DNA and the cell wall and membrane, as well as modulating immune responses. Moreover, the Bacillus-derived AMPs demonstrate promising application in the pharmaceutical industry, environmental protection, food preservation, and bio-control in agriculture. The commonly employed strategies for enhancing the production of Bacillus-derived AMPs involve optimizing cultivation conditions, implementing systems metabolic engineering, employing genome shuffling techniques, optimizing promoters, and improving expression host optimization. This review can provide a valuable reference for comprehending the current research status on advancements and sustainable production of Bacillus-derived AMPs.
Collapse
Affiliation(s)
- Jiaqi Zhang
- Food Nutrition and Health Research Center, School of Advanced Manufacturing, Fuzhou University, Jinjiang, 362200, Fujian, China
| | - Xinmiao Yang
- Food Nutrition and Health Research Center, School of Advanced Manufacturing, Fuzhou University, Jinjiang, 362200, Fujian, China
| | - Jiajia Qiu
- Food Nutrition and Health Research Center, School of Advanced Manufacturing, Fuzhou University, Jinjiang, 362200, Fujian, China
| | - Wen Zhang
- Food Nutrition and Health Research Center, School of Advanced Manufacturing, Fuzhou University, Jinjiang, 362200, Fujian, China
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, Fujian, China
| | - Jie Yang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, 222005, Jiangsu, China
- Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, 222005, Jiangsu, China
| | - Jinzhi Han
- Food Nutrition and Health Research Center, School of Advanced Manufacturing, Fuzhou University, Jinjiang, 362200, Fujian, China.
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, Fujian, China.
| | - Li Ni
- Food Nutrition and Health Research Center, School of Advanced Manufacturing, Fuzhou University, Jinjiang, 362200, Fujian, China.
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, Fujian, China.
| |
Collapse
|
3
|
Negrelli JGD, de Britto Rafael MR, Gazola VD, Dos Santos MCBR, Pilau EJ, Polli AD, Golias HC, de Almeida TT, Polonio JC. Microbial consortium involving Pseudomonas and Bacillus: strain selection and the effect of co-cultivation on biocontrol activity against phytopathogens and the composition of metabolic extracts. Int Microbiol 2025:10.1007/s10123-025-00668-1. [PMID: 40338459 DOI: 10.1007/s10123-025-00668-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 04/18/2025] [Accepted: 04/30/2025] [Indexed: 05/09/2025]
Abstract
Agricultural sustainability is vital to meet the growing global demand for food; therefore, the search for more sustainable options to replace traditional chemical products has gained attention due to their benefits. The sector has applied innovative microbial consortium approaches as a niche for exploring new bioproducts and metabolic pathways through microbial interactions. Thus, this study sought to select two endophytic bacterial strains with biocontrol activity to study their metabolic interactions in culture. For this, co-cultivation and axenic culture assays were carried out to evaluate the inhibition of Corynespora cassiicola, Sclerotinia sclerotiorum, Moniliophthora perniciosa, and Colletotrichum truncatum. After the production of antiphytopathogenic compound tests, two strains were selected: P. putida MG36 and B. amyloliquefaciens SS14. These bacteria were cultivated under three distinct conditions: axenic cultivation of SS14, axenic cultivation of MG36, and co-cultivation. The metabolites were extracted and analyzed by liquid chromatography coupled with mass spectrometry (UHPLC-MS/MS). The results showed that both strains exhibited significant antifungal activity. B. amyloliquefaciens SS14 demonstrated 65% inhibition against C. truncatum, while P. putida MG36 showed 58% inhibition against S. sclerotiorum. Analysis of the chemical profiles revealed the presence of exclusive and shared metabolites, such as iturin A4 (antifungal lipopeptide) and macrolactin A (bioactive polyketide), under different culture conditions. In conclusion, P. putida MG36 and B. amyloliquefaciens SS14 show promise as biocontrol agents against phytopathogens, contributing to more sustainable agricultural practices.
Collapse
Affiliation(s)
- João Gabriel Dumont Negrelli
- Laboratory of Microbial Biotechnology, Department of Biotechnology, Genetics and Cell Biology, Maringá State University, Maringá, Paraná, 87020-900, Brazil
| | - Maira Rafaela de Britto Rafael
- Laboratory of Microbial Biotechnology, Department of Biotechnology, Genetics and Cell Biology, Maringá State University, Maringá, Paraná, 87020-900, Brazil
| | - Vitor Dib Gazola
- Laboratory of Microbial Biotechnology, Department of Biotechnology, Genetics and Cell Biology, Maringá State University, Maringá, Paraná, 87020-900, Brazil
| | - Marcus Cesar Bochi Reis Dos Santos
- Laboratory of Microbial Biotechnology, Department of Biotechnology, Genetics and Cell Biology, Maringá State University, Maringá, Paraná, 87020-900, Brazil
| | - Eduardo Jorge Pilau
- Department of Chemistry, Maringa State University, Maringá, Paraná, 87020-900, Brazil
| | - Andressa Domingos Polli
- Laboratory of Microbial Biotechnology, Department of Biotechnology, Genetics and Cell Biology, Maringá State University, Maringá, Paraná, 87020-900, Brazil
| | - Halison Correia Golias
- Laboratory of Microbial Biotechnology, Department of Biotechnology, Genetics and Cell Biology, Maringá State University, Maringá, Paraná, 87020-900, Brazil
| | - Tiago Tognolli de Almeida
- Laboratory of Microbial Biotechnology, Department of Biotechnology, Genetics and Cell Biology, Maringá State University, Maringá, Paraná, 87020-900, Brazil
| | - Julio Cesar Polonio
- Laboratory of Microbial Biotechnology, Department of Biotechnology, Genetics and Cell Biology, Maringá State University, Maringá, Paraná, 87020-900, Brazil.
| |
Collapse
|
4
|
Devkar HU, Juyal K, Thakur NL, Kaur P, Parmar K, Pullapanthula R, Narayanan S. Antimicrobial Potential of Marine Sponge-Associated Bacillus velezensis and Stutzerimonas stutzeri from the Indian Coast: A Genome Mining and Metabolite Profiling Approach. Curr Microbiol 2025; 82:280. [PMID: 40327113 DOI: 10.1007/s00284-025-04262-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Accepted: 04/25/2025] [Indexed: 05/07/2025]
Abstract
Antimicrobial resistance (AMR) is one of the leading health crises worldwide that demands new antimicrobials to enter the clinical pipeline. Marine sponges are a rich source of promising bioactive compounds. Due to their sessile nature and filter-feeding lifestyle, sponges are prone to attack by competitors, predators, and pathogens. To combat these threats, they produce a diverse array of bioactive compounds. Notably, the microbial communities residing within the sponges make many of these beneficial compounds. Twenty-one bacterial isolates from various marine sponges from the Indian coast were selected for this study. The bacterial isolates were fermented to obtain crude extracts, which were then screened against critical bacterial pathogens. Based on the MIC (minimum inhibitory concentration) results, two isolates, Bacillus velezensis NIO_002 and Stutzerimonas stutzeri NIO_003 showing good activity, were characterized by morphological, biochemical, and molecular methods. Genome mining predicted multiple antibiotic biosynthetic gene clusters, most of which showed a high degree of similarity to known gene clusters, and some with low or no similarity which may be indicative of novel gene clusters. LC-MS (liquid chromatography-mass spectrometry) data revealed the putative presence of certain antibacterial compounds previously reported in the literature. To our knowledge, this is the first study to report the antimicrobial activity of marine sponge-associated Bacillus velezensis and Stutzerimonas stutzeri strains characterized by whole genome sequencing, thereby indicating the novelty of our strains. This study emphasizes the potential of our bacterial isolates for further development as a source of promising antibiotics to address the escalating challenge of drug-resistant pathogens.
Collapse
Affiliation(s)
- Heena U Devkar
- CSIR- National Institute of Oceanography, Dona Paula, 403004, Goa, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Kartik Juyal
- CSIR- National Institute of Oceanography, Dona Paula, 403004, Goa, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Narsinh L Thakur
- CSIR- National Institute of Oceanography, Dona Paula, 403004, Goa, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| | - Parvinder Kaur
- Foundation for Neglected Disease Research, Bangalore, 561203, Karnataka, India
| | - Keyur Parmar
- National Institute of Pharmaceutical Education and Research, Guwahati, 781101, Assam, India
| | | | - Shridhar Narayanan
- Foundation for Neglected Disease Research, Bangalore, 561203, Karnataka, India
| |
Collapse
|
5
|
El-Naga MYA, Khan MA, Abu-Hussien SH, Mahdy SM, Al-Farga A, Hegazy AA. Optimizing lipase production by Bacillus subtilis on cheese whey and evaluating its antimicrobial, antibiofilm, anti virulence and biosafety properties. Sci Rep 2025; 15:11087. [PMID: 40169631 PMCID: PMC11961612 DOI: 10.1038/s41598-025-92181-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Accepted: 02/25/2025] [Indexed: 04/03/2025] Open
Abstract
This study optimized lipase production using cheese whey, biofilm inhibition, and antibacterial efficacy of Bacillus subtilis (DSM 1088)derived lipase against Staphylococcus aureus (ATCC 6538). Peak lipase activity, growth rate, and inhibitory potential were observed at 48 h and 30 °C. Using Plackett-Burman and Central Composite Designs (PBD and CCD), whey, peptone, and agitation speed were identified as significant factors, achieving optimal lipase activity of 1314 U/mL and an inhibitory zone diameter (IZD) of 48 mm against S. aureus. Partial purification through ammonium sulfate precipitation and dialysis increased partial purified lipase (PPL) activity by twofold and fivefold, respectively. PPL exhibited effective bactericidal properties with a minimum inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) of 1/8 and 1/16, confirming a bactericidal effect (MIC/MBC ratio ≤ 2). Biofilm inhibition assays demonstrated 95% biofilm reduction at 80 µg/mL PPL, with SEM imaging revealing significant biofilm matrix disruption. Time-kill assays showed concentration-dependent bactericidal action, while inhibition of hemolysin and protease activities (25-100%) indicated reduced S. aureus pathogenicity. Cytotoxicity assays on normal liver cells showed an IC50 > 300 µg/mL, indicating low toxicity. GC/MS analysis of oil waste before degradation identified predominantly oleic acid 3-hydroxypropyl ester and octadecane derivatives, while after degradation, it revealed enriched free fatty acids including myristic, palmitic, linoleic, and oleic acids, which could enhance antimicrobial efficacy. Molecular docking suggested that PPL inhibits essential bacterial enzymes (folic acid synthetase, RNA polymerase, DNA gyrase), potentially disrupting DNA synthesis and promoting cell death. These findings highlight B. subtilis-derived lipase as a promising bio-agent for combating biofilm-associated, drug-resistant pathogens with clinical and industrial applications.
Collapse
Affiliation(s)
- Mohamed Y Abo El-Naga
- Food Science Department, Faculty of Agriculture, Ain Shams University, Cairo, 11241, Egypt
| | - Muhammad A Khan
- Department of Biological Sciences, Faculty of Sciences, International Islamic University (IIU), Islamabad, Pakistan
| | - Samah H Abu-Hussien
- Agricultural Microbiology Department, Faculty of Agriculture, Ain Shams University, Cairo, 11241, Egypt.
| | - Samar M Mahdy
- Food Science Department, Faculty of Agriculture, Ain Shams University, Cairo, 11241, Egypt
| | - Ammar Al-Farga
- Department of Biochemistry, Faculty of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Aml A Hegazy
- Food Science Department, Faculty of Agriculture, Ain Shams University, Cairo, 11241, Egypt
| |
Collapse
|
6
|
Xu J, Hao J, Zhao M, Zhang X, Niu R, Li Y, Wang Z, Zhang S, Zhao S, Li S, Zhou H. Mechanism of N-Acetyl-D-alloisoleucine in Controlling Strawberry Black Root Rot. PLANTS (BASEL, SWITZERLAND) 2025; 14:829. [PMID: 40094826 PMCID: PMC11902167 DOI: 10.3390/plants14050829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/13/2025] [Accepted: 02/24/2025] [Indexed: 03/19/2025]
Abstract
China is the largest strawberry producer in the world. Strawberry black root rot is a novel disease that occurs in Hohhot, Inner Mongolia. In the present study, the inhibitory effects of Bacillus subtilis S-16 and its fermented form on strawberry black root rot caused by Fusarium asiaticum were tested. The inhibition rates were 56.31% and 65.95%, respectively. Furthermore, the metabolic substances were analysed using LC-MS/MS. A total of 68 substances were identified, including 18 amino acids, 7 of which have been reported to have pro-growth and antibacterial functions. Among these seven amino acids, N-acetyl-D-alloisoleucine (NAD) had the strongest inhibitory effect on F. asiaticum. In addition, NAD caused the mycelia of F. asiaticum to appear shrivelled and deformed under electron microscopy. Furthermore, the effect of NAD on F. asiaticum was tested. The results indicate that NAD had a better prevention effect when used with hymexazol. Finally, the fungal biomass of F. asiaticum in strawberry roots was measured at different times using two treatment methods: treating plant roots with NAD and a spore suspension of F. asiaticum concurrently and with F. asiaticum alone. The colonisation response of F. asiaticum in terms of the target gene EF-1α when treated with F. asiaticum alone at 72 hpi was significantly higher than that when treated with NAD and a spore suspension of F. asiaticum. The relative expression levels of defence-related genes in strawberry roots treated with NAD at 72 hpi were determined. The genes NPR1 and PDF1 were markedly upregulated compared with other genes, suggesting that the expression of genes related to disease resistance was activated by NAD, resulting in disease resistance in strawberries. Our results provide theoretical support for the biological control of strawberry black root rot.
Collapse
Affiliation(s)
- Jialu Xu
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot 010020, China; (J.X.); (J.H.); (M.Z.); (X.Z.); (R.N.); (S.Z.)
| | - Jianxiu Hao
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot 010020, China; (J.X.); (J.H.); (M.Z.); (X.Z.); (R.N.); (S.Z.)
| | - Mingmin Zhao
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot 010020, China; (J.X.); (J.H.); (M.Z.); (X.Z.); (R.N.); (S.Z.)
| | - Xiaoyu Zhang
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot 010020, China; (J.X.); (J.H.); (M.Z.); (X.Z.); (R.N.); (S.Z.)
| | - Ruixiang Niu
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot 010020, China; (J.X.); (J.H.); (M.Z.); (X.Z.); (R.N.); (S.Z.)
| | - Yiran Li
- Xilin Gol League Agricultural and Animal Husbandry Technology Extension Center of Inner Mongolia, Xilinhot 026000, China;
| | - Zhen Wang
- Ulanqab Agricultural and Forestry Science Research Institute of Inner Mongolia, Ulanqab 012209, China;
| | - Shuo Zhang
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot 010020, China; (J.X.); (J.H.); (M.Z.); (X.Z.); (R.N.); (S.Z.)
| | - Sumei Zhao
- Plant Protection and Quarantine Center of Inner Mongolia Autonomous Region, Hohhot 010010, China;
| | - Siran Li
- Xingan League Meteorological Bureau of Inner Mongolia, Ulanhot 137400, China;
| | - Hongyou Zhou
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot 010020, China; (J.X.); (J.H.); (M.Z.); (X.Z.); (R.N.); (S.Z.)
| |
Collapse
|
7
|
Zhao Y, Liu F, Lan X, Xu W, Dong W, Ke S, Wu H. Discovery, Characterization, and Application of Broad-Spectrum Antimicrobial Peptide AtR905 from Aspergillus terreus as a Biocontrol Agent. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:2793-2804. [PMID: 39729370 DOI: 10.1021/acs.jafc.4c09294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2024]
Abstract
This study investigates a novel antimicrobial peptide AtR905 derived from the endophytic fungus Aspergillus terreus, which was successfully expressed in Bacillus subtilis, purified, and characterized, and highlighted as a promising potential biocontrol agent against various plant pathogens. The results indicated AtR905 exhibited broad-spectrum antimicrobial activities against key pathogens such as Ralstonia solanacearum and Clavibacter michiganensis with very low minimal inhibitory concentrations (MICs). Stability tests confirmed that AtR905 retains its antimicrobial properties under varying thermal, pH, and UV conditions. The Oxford Cup test indicated that AtR905 showed obvious fungicidal activity against six plant pathogenic fungi, especially Rhizoctonia solani and Botrytis cinerea. Additionally, in vivo experimental demonstrated AtR905 could effectively control the B. cinerea on tobacco leaves and R. solanacearum on tomato plants. Scanning electron microscopy revealed significant membrane disruption in bacterial cells treated with AtR905. These findings suggest that AtR905 is a promising candidate for sustainable plant disease management, potentially reducing the reliance on chemical pesticides and mitigating the issue of antibiotic resistance in agricultural settings. Further research is needed to evaluate the long-term field applicability and ecological impacts of AtR905.
Collapse
Affiliation(s)
- Yang Zhao
- Key Laboratory of Microbial Pesticides (Ministry of Agriculture and Rural Affairs), National Biopesticide Engineering Research Centre, Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
- College of Plant Science and Technology, Huazhong Agricultural University, and Key Laboratory of Microbial Pesticides, Ministry of Agriculture and Rural Affairs, Wuhan 430070, China
| | - Fang Liu
- Key Laboratory of Microbial Pesticides (Ministry of Agriculture and Rural Affairs), National Biopesticide Engineering Research Centre, Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Xing Lan
- College of Plant Science and Technology, Huazhong Agricultural University, and Key Laboratory of Microbial Pesticides, Ministry of Agriculture and Rural Affairs, Wuhan 430070, China
| | - Wenxing Xu
- College of Plant Science and Technology, Huazhong Agricultural University, and Key Laboratory of Microbial Pesticides, Ministry of Agriculture and Rural Affairs, Wuhan 430070, China
| | - Wubei Dong
- College of Plant Science and Technology, Huazhong Agricultural University, and Key Laboratory of Microbial Pesticides, Ministry of Agriculture and Rural Affairs, Wuhan 430070, China
| | - Shaoyong Ke
- Key Laboratory of Microbial Pesticides (Ministry of Agriculture and Rural Affairs), National Biopesticide Engineering Research Centre, Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Hongqu Wu
- Key Laboratory of Microbial Pesticides (Ministry of Agriculture and Rural Affairs), National Biopesticide Engineering Research Centre, Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
- College of Plant Science and Technology, Huazhong Agricultural University, and Key Laboratory of Microbial Pesticides, Ministry of Agriculture and Rural Affairs, Wuhan 430070, China
| |
Collapse
|
8
|
Roy N, Moon S, Kim C, Kim JM, Lee KS, Shin Y, Shanmugam G, Choi K. Probiotic Potential of Bacillus Subtilis Strain I3: Antagonistic Activity Against Chalkbrood Pathogen and Pesticide Degradation for Enhancing Honeybee Health. Probiotics Antimicrob Proteins 2025; 17:51-61. [PMID: 38564169 DOI: 10.1007/s12602-024-10248-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/14/2024] [Indexed: 04/04/2024]
Abstract
To explore the potential of probiotic candidates beneficial for honeybee health through the modulation of the gut microbiome, bee gut microbes were isolated from bumblebee (Bombus terrestris) and honeybee (Apis mellifera) using diverse media and cultural conditions. A total of 77 bee gut bacteria, classified under the phyla Proteobacteria, Firmicutes, and Actinobacteria, were identified. The antagonistic activity of the isolates against Ascosphaera apis, a fungal pathogen responsible for chalkbrood disease in honeybee larvae, was investigated. The highest growth inhibition percentage against A. apis was demonstrated by Bacillus subtilis strain I3 among the bacterial strains. The presence of antimicrobial peptide genes in the I3 strain was detected using PCR amplification of gene fragments encoding surfactin and fengycin utilizing specific primers. The export of antimicrobial peptides by the I3 strain into growth medium was verified using liquid chromatography coupled with mass spectroscopy. Furthermore, the strain's capabilities for degrading pesticides, used for controlling varroa mites, and its spent growth medium antioxidant activity were substantiated. The survival rate of honeybees infected with (A) apis was investigated after feeding larvae with only medium (fructose + glucose + yeast extract + royal jelly), (B) subtilis I3 strain, A. apis with medium and I3 strain + A. apis with medium. Honeybees receiving the I3 strain + A. apis exhibited a 50% reduction in mortality rate due to I3 strain supplementation under experimental conditions, compared to the control group. In silico molecular docking revealed that fengycin hydrolase from I3 strain effectively interacted with tau-fluvalinate, suggesting its potential in bee health and environmental protection. Further studies are needed to confirm the effects of the I3 strain in different populations of honey bees across several regions to account for genetic and environmental variations.
Collapse
Affiliation(s)
- Nazish Roy
- Department of Applied Bioscience, Dong-A University, Busan, 49315, Republic of Korea
| | - Sunmi Moon
- Department of Applied Bioscience, Dong-A University, Busan, 49315, Republic of Korea
| | - Chaerin Kim
- Department of Applied Bioscience, Dong-A University, Busan, 49315, Republic of Korea
| | - Jin-Myung Kim
- Department of Applied Bioscience, Dong-A University, Busan, 49315, Republic of Korea
| | - Kwang-Sik Lee
- Department of Applied Bioscience, Dong-A University, Busan, 49315, Republic of Korea
| | - Yongho Shin
- Department of Applied Bioscience, Dong-A University, Busan, 49315, Republic of Korea
| | - Gnanendra Shanmugam
- Department of Biotechnology, Vivekanandha College of Arts and Sciences for Women (Autonomous), Tiruchengode, Tamilnadu, India
| | - Kihyuck Choi
- Department of Applied Bioscience, Dong-A University, Busan, 49315, Republic of Korea.
| |
Collapse
|
9
|
Abdallah-Ruiz A, Esteban-Perez C, White SB, Schilling W, Zhang X, Stafne ET, Rodríguez-Magaña A, Peña-Baracaldo F, Moreno-Ortiz CA, Silva JL. Baseline microbiota of blueberries, soil, and irrigation water from blueberry farms located in three geographical regions. Heliyon 2024; 10:e40762. [PMID: 39717570 PMCID: PMC11664272 DOI: 10.1016/j.heliyon.2024.e40762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 11/15/2024] [Accepted: 11/27/2024] [Indexed: 12/25/2024] Open
Abstract
Bacterial microbiota was determined in fruit, soil, and irrigation water from blueberry (Vaccinium spp.) farms located in Cundinamarca, Colombia; Mississippi, United States; and Jalisco, Mexico. Bacterial communities were studied using 16S ribosomal ribonucleic acid (rRNA) gene amplification by targeting the V3-V4 hypervariable region. The most abundant phylum in fruit was Proteobacteria in Colombia and the United States and Firmicutes in Mexico. The most abundant phylum in soil and water was Proteobacteria for all regions. The top three genera found in fruit were Heliorestis (9.2 %), Rhodanobacter (3.3 %), and Sphingomonas (2.8 %) for Colombia, Heliorestis (23.1 %), Thiomonas (8.5 %), and Methylobacterium (3.3 %) for the United States, and Heliorestis (47.4 %), Thiomonas (9.1 %), and Bacillus (4.6 %) for Mexico. Colombia reported the highest (Padj < 0.05) alpha diversity for blueberries, and United States and Mexico had similar (Padj > 0.05) results. Beta diversity revealed bacterial communities in fruit differed (P < 0.05) by region. Bacterial differences existed between Colombia, United States, and Mexico for soil and fruit (P = 0.021, 0.003, and 0.006, respectively) and water and fruit (P = 0.003, 0.003, and 0.033, respectively). Blueberries grown in the three different regions have unique microbiota. Fruit and fruit-environment microbial composition also differed by region. These results provide a more complete profile of the bacterial communities on blueberries and their agricultural environments and could contribute to better management and decision-making practices in terms of plant health, food quality, and food safety.
Collapse
Affiliation(s)
- Angelica Abdallah-Ruiz
- Department of Biochemistry, Nutrition, and Health Promotion, Mississippi State University, Mississippi State, MS, 39762, USA
| | | | - Shecoya B. White
- Department of Biochemistry, Nutrition, and Health Promotion, Mississippi State University, Mississippi State, MS, 39762, USA
| | - Wes Schilling
- Department of Biochemistry, Nutrition, and Health Promotion, Mississippi State University, Mississippi State, MS, 39762, USA
| | - Xue Zhang
- Department of Biochemistry, Nutrition, and Health Promotion, Mississippi State University, Mississippi State, MS, 39762, USA
| | - Eric T. Stafne
- South Branch Experiment Station, Coastal Research and Extension Center, Mississippi State University, Poplarville, MS, 39470, USA
| | - Alejandro Rodríguez-Magaña
- Facultad de Ciencias Económicas y Empresariales, Universidad Panamericana de Guadalajara, Guadalajara, 45010, Mexico
| | - Fernando Peña-Baracaldo
- Facultad de Ciencias Agropecuarias, Universidad de Ciencias Aplicadas y Ambientales U.D.C.A., Bogotá, 111166, Colombia
| | - Carlos A. Moreno-Ortiz
- Facultad de Ciencias Administrativas y Comerciales, Universidad de Ciencias Aplicadas y Ambientales U.D.C.A., Bogotá, 111166, Colombia
| | - Juan L. Silva
- Department of Biochemistry, Nutrition, and Health Promotion, Mississippi State University, Mississippi State, MS, 39762, USA
| |
Collapse
|
10
|
Wang J, Li P, Di X, Lu H, Wei H, Zhi S, Fewer DP, He S, Liu L. Phylogenomic analysis uncovers an unexpected capacity for the biosynthesis of secondary metabolites in Pseudoalteromonas. Eur J Med Chem 2024; 279:116840. [PMID: 39244863 DOI: 10.1016/j.ejmech.2024.116840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/07/2024] [Accepted: 08/24/2024] [Indexed: 09/10/2024]
Abstract
Pseudoalteromonas is a genus of marine bacteria and a promising source of natural products with antibacterial, antifungal, and antifouling bioactivities. To accelerate the exploration of new compounds from this genus, we applied the gene-first approach to study 632 public Pseudoalteromonas genomes. We identified 3968 biosynthetic gene clusters (BGCs) involved in the biosynthesis of secondary metabolites and classified them into 995 gene cluster families (GCFs). Surprisingly, only 9 GCFs (0.9 %) included an experimentally identified reference biosynthetic gene cluster from the Minimum Information about a Biosynthetic Gene cluster database (MIBiG), suggesting a striking novelty of secondary metabolites in Pseudoalteromonas. Bioinformatic analysis of the biosynthetic diversity encoded in the identified BGCs uncovered six dominant species of this genus, P. citrea, P. flavipulchra, P. luteoviolacea, P. maricaloris, P. piscicida, and P. rubra, that encoded more than 17 BGCs on average. Moreover, each species exhibited a species-specific distribution of BGC. However, a deep analysis revealed two BGCs conserved across five of the six dominant species. These BGCS encoded an unknown lanthipeptide and the siderophore myxochelin B implying an essential role of antibiotics for Pseudoalteromonas. We chemically profiled 11 strains from the 6 dominant species and identified four new antibiotics, korormicins L-O (1-4), from P. citrea WJX-3. Our results highlight the unexplored biosynthetic potential for bioactive compounds in Pseudoalteromonas and provide an important guideline for targeting exploration.
Collapse
Affiliation(s)
- Jingxuan Wang
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Health Science Center, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Peng Li
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Health Science Center, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Xue Di
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Health Science Center, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Hongmei Lu
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Health Science Center, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Huamao Wei
- College of Food Science and Engineering, Ningbo University, Ningbo, Zhejiang, 315832, China
| | - Shuai Zhi
- School of Public Health, Ningbo University, Ningbo, Zhejiang, 315000, China
| | - David P Fewer
- Department of Microbiology, University of Helsinki, Pienaari 9, FI-00014 Helsinki, Finland
| | - Shan He
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Health Science Center, Ningbo University, Ningbo, Zhejiang, 315211, China; Ningbo Institute of Marine Medicine, Peking University, Ningbo, Zhejiang 315800, China
| | - Liwei Liu
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Health Science Center, Ningbo University, Ningbo, Zhejiang, 315211, China.
| |
Collapse
|
11
|
Shehata AS, Samy MA, Sobhy SE, Farag AM, El-Sherbiny IM, Saleh AA, Hafez EE, Abdel-Mogib M, Aboul-Ela HM. Isolation and identification of antifungal, antibacterial and nematocide agents from marine bacillus gottheilii MSB1. BMC Biotechnol 2024; 24:92. [PMID: 39538293 PMCID: PMC11562594 DOI: 10.1186/s12896-024-00920-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024] Open
Abstract
Pathogenic fungi employ numerous strategies to colonize plants, infect them, reduce crop yield and quality, and cause significant losses in agricultural production. The increasing use of chemical pesticides has led to various ecological and environmental issues, including the emergence of resistant weeds, soil compaction, and water pollution, all negatively impacting agricultural sustainability. Additionally, the extensive development of synthetic fungicides has adverse effects on animal and human health, prompting the exploration of alternative approaches and green strategies for phytopathogen control. Microorganisms living in sponges represent a promising source of novel bioactive secondary metabolites, potentially useful in developing new nematicidal and antimicrobial agents. This study focuses on extracting bioactive compounds from endosymbiotic bacteria associated with the marine sponge Hyrtios erect sp. (collected from NIOF Station, Hurghada, Red Sea, Egypt) using various organic solvents. Bacillus sp. was isolated and identified through 16 S rRNA gene sequencing. The biocidal activity of Bacillus gotheilii MSB1 extracts was screened against plant pathogenic bacteria, fungi, and nematodes. The n-butanol extract showed significant potential as a biological fungicide against Alternaria alternata and Fusarium oxysporum. Both n-hexane and ethyl acetate extracts exhibited negative impacts against the plant pathogenic bacteria Erwinia carotovora and Ralstonia solanacearum, whereas the n-butanol extract had a positive effect. Regarding nematicidal activity, ethyl acetate and n-butanol extracts demonstrated in-vitro activity against the root-knot nematode Meloidogyne incognita, which causes serious vegetable crop diseases, but the n-hexane extract showed no positive effects. The findings suggest that bioactive compounds from endosymbiotic bacteria associated with marine sponges, particularly B. gotheilii MSB1, hold significant potential as alternative biological control agents against plant pathogens. The n-butanol extract, in particular, displayed promising biocidal activities against various plant pathogenic fungi, bacteria, and nematodes. These results support further exploration and development of such bioactive compounds as sustainable, environmentally friendly alternatives to synthetic pesticides and fungicides in agricultural practices.
Collapse
Affiliation(s)
- Ahmed S Shehata
- Marine Biotechnology and Natural Product Lab., Environment Division, National Institute of Oceanography and Fisheries, NIOF, Alexandria City, Egypt
- Green Materials Technology Department, Environment and Natural Materials Research Institute (ENMRI), City of Scientific Research and Technological Applications (SRTA), New Borg El-Arab City, Alexandria, 21934, Egypt
| | - Marwa A Samy
- Plant Protection and Biomolecular Diagnosis Department, Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Applications, New Borg El-Arab City, Alexandria, 21934, Egypt
| | - Sherien E Sobhy
- Plant Protection and Biomolecular Diagnosis Department, Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Applications, New Borg El-Arab City, Alexandria, 21934, Egypt
| | - Aida M Farag
- Marine Biotechnology and Natural Product Lab., Environment Division, National Institute of Oceanography and Fisheries, NIOF, Alexandria City, Egypt
| | | | - Ahmed A Saleh
- Animal and Fish Production Department, Faculty of Agriculture (Al-Shatby), Alexandria University, Alexandria City, 11865, Egypt.
| | - Elsayed E Hafez
- Plant Protection and Biomolecular Diagnosis Department, Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Applications, New Borg El-Arab City, Alexandria, 21934, Egypt
| | - Mamdouh Abdel-Mogib
- Chemistry Department, Faculty of Science, Mansoura University, Mansoura, 35316, Egypt
| | - Haiam M Aboul-Ela
- College of Fisheries and Aquaculture Technology, Arab Academy for Science, Technology and Maritime Transport, Abu Qir, Alexandria, Egypt
| |
Collapse
|
12
|
Ajose DJ, Adekanmbi AO, Kamaruzzaman NF, Ateba CN, Saeed SI. Combating antibiotic resistance in a one health context: a plethora of frontiers. ONE HEALTH OUTLOOK 2024; 6:19. [PMID: 39487542 PMCID: PMC11531134 DOI: 10.1186/s42522-024-00115-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 08/20/2024] [Indexed: 11/04/2024]
Abstract
One of the most significant medical advancements of the 20th century was the discovery of antibiotics, which continue to play a vital tool in the treatment and prevention of diseases in humans and animals. However, the imprudent use of antibiotics in all fields of One-Health and concerns about antibiotic resistance among bacterial pathogens have raised interest in antibiotic use restrictions on a global scale. Despite the failure of conventional antimicrobial agents, only about 15 new antibiotics have been introduced clinically since year 2000 to date. Moreover, there has been reports of resistance to some of these new antibiotics. This has necessitated a need to search for alternative strategies to combat antimicrobial resistant pathogens. Thus, this review compiles and evaluates the approaches-natural compounds, phage treatment, and nanomaterials-that are being used and/or suggested as the potential substitutes for conventional antibiotics.
Collapse
Affiliation(s)
- Daniel Jesuwenu Ajose
- Antimicrobial Resistance and Phage Biocontrol Research Group (AREPHABREG), Department of Microbiology, School of Biological Sciences, Faculty of Natural and Agricultural Sciences, North-West University, Private Mail Bag X2046, Mmabatho, 2735, South Africa.
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho, 2735, South Africa.
| | - Abimbola Olumide Adekanmbi
- Environmental Microbiology and Biotechnology Laboratory, Department of Microbiology, University of Ibadan, Ibadan, Nigeria
| | - Nor Fadhilah Kamaruzzaman
- Nanotechnology Research Group Faculty of Veterinary Medicine, Universiti Malaysia Kelantan, Kota Bharu, Kelantan, 16100, Malaysia
| | - Collins Njie Ateba
- Antimicrobial Resistance and Phage Biocontrol Research Group (AREPHABREG), Department of Microbiology, School of Biological Sciences, Faculty of Natural and Agricultural Sciences, North-West University, Private Mail Bag X2046, Mmabatho, 2735, South Africa
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho, 2735, South Africa
| | - Shamsaldeen Ibrahim Saeed
- College of Veterinary Medicine, University of Juba, P.O. Box 82, Juba, Central Equatoria, South Sudan.
- Department of microbiology, Faculty of Veterinary Science, University of Nyala, P.O. Box 155, Nyala, Sudan.
- Nanotechnology Research Group Faculty of Veterinary Medicine, Universiti Malaysia Kelantan, Kota Bharu, Kelantan, 16100, Malaysia.
| |
Collapse
|
13
|
Jia J, Fu M, Ji W, Xiong N, Chen P, Lin J, Yang Q. Surfactin from Bacillus subtilis enhances immune response and contributes to the maintenance of intestinal microbial homeostasis. Microbiol Spectr 2024; 12:e0091824. [PMID: 39470280 PMCID: PMC11619528 DOI: 10.1128/spectrum.00918-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 10/09/2024] [Indexed: 10/30/2024] Open
Abstract
Surfactin, a lipopeptide biosurfactant produced by Bacillus spp., has emerged as a promising bioactive compound due to its potent inhibitory effects on bacterial and viral pathogens. This showcases its potential as a non-antibiotic strategy for managing infectious diseases. Our investigation reveals that surfactin administration significantly promotes weight gain and improves immune organ indices in mice, reflecting enhanced immunity and gut health. Surfactin augments phagocytic function in peritoneal macrophages and boosts proliferative responses in splenic lymphocytes post-chicken red blood cell immunization. Furthermore, it increases intestinal villi height, indicative of superior nutrient absorption. It elevates mucin secretion and expression of intestinal mucosal proteins, such as secretory IgA, Muc1, and Muc2, and tight junction proteins claudin-1, occludin, and Zo-1 in the jejunum and colon. Crucially, surfactin modifies the gut microbiota composition by reducing Escherichia coli populations and ameliorating cyclophosphamide-induced gut dysbiosis. Our data suggest that oral surfactin could be a valuable therapeutic modality to alleviate immune suppression and gut damage, proposing a new pathway for immunomodulatory treatment. IMPORTANCE The potential of surfactin as a microbial surfactant extends beyond its surfactant properties, impacting immune regulation and gut health. As the need for alternatives to traditional antibiotics continues to grow, surfactin's ability to enhance host defense mechanisms against common pathogens without directly targeting them with antibiotics offers a strategic advantage. Understanding how surfactin shapes the immune landscape and the gut microbiome can inform innovative interventions against immunosuppression and intestinal impairment, particularly in contexts such as cyclophosphamide-induced toxicity.
Collapse
Affiliation(s)
- Junpeng Jia
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Mei Fu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Wenxin Ji
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Ningna Xiong
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Peng Chen
- Beijing Enhalor International Tech Co., Ltd., Beijing, China
| | - Jian Lin
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Qian Yang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| |
Collapse
|
14
|
Meng Q, Huang R, Xun L, Wu X, Deng S, Yue D, Zhao W, Dong X, Gong X, Dong K. Endophytic bacteria in Camellia reticulata pedicels: isolation, screening and analysis of antagonistic activity against nectar yeasts. Front Microbiol 2024; 15:1459354. [PMID: 39498126 PMCID: PMC11533746 DOI: 10.3389/fmicb.2024.1459354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 10/07/2024] [Indexed: 11/07/2024] Open
Abstract
Camellia reticulata, an ancient plant species endemic to Yunnan Province, China, remains underexplored in terms of its endophytic bacterial communities. The plant tissue pedicel serves as the connection between the flower and the stem, not only delivers nutrients but also transmits metabolic substances from endophytic bacteria to the nectar during long-term microbial colonization and probably improves the antagonistic activity of nectar against yeast. Hence, 138 isolates of endophytic bacteria have been isolated in this study from the pedicels of 12- and 60-year-old C. reticulata. Comparative analysis revealed significantly higher density of endophytic bacteria in older trees. Among these isolates, 29 exhibited inhibitory effects against nectar yeasts. Most of the isolates displayed positive results for Gram staining, catalase reaction, gelatin liquefaction, and motility. Additionally, the isolates demonstrated the ability to utilize diverse substrates, such as glucose, nitrate, and starch. Based on 16S rRNA molecular biology analysis, these isolates were identified to be 11 different species of 6 genera, with the majority belonging to Bacillus genus. Notably, C1 isolate, identified as Bacillus spizizenii, exhibited strongest antagonistic effect against three yeasts, i.e., Metschnikowia reukaufii, Cryptococcus laurentii, and Rhodotorula glutinis, with minimum inhibitory concentration values below 250 μg/mL. Major metabolites of B. spizizenii were aminoglycosides, beta-lactams, and quinolones, which possess antimicrobial activities. Furthermore, KEGG enrichment pathways primarily included the synthesis of plant secondary metabolites, phenylpropanoids, amino acids, alkaloids, flavonoids, neomycin, kanamycin, and gentamicin. Therefore, antagonistic activity of B. spizizenii against yeasts could be attributed to these antibiotics. The findings highlight the diverse endophytic bacteria associated with C. reticulata, indicating their potential as a valuable resource of bioactive metabolites. Additionally, this study provides new insights into the role of endophytic bacteria of pedicels in enhancing nectar resistance against yeasts.
Collapse
Affiliation(s)
- Qingxin Meng
- Yunnan Provincial Engineering and Research Center for Sustainable Utilization of Honey Bee Resources, Eastern Bee Research Institute, College of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Rong Huang
- Yunnan Provincial Engineering and Research Center for Sustainable Utilization of Honey Bee Resources, Eastern Bee Research Institute, College of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Lijie Xun
- Yunnan Provincial Engineering and Research Center for Sustainable Utilization of Honey Bee Resources, Eastern Bee Research Institute, College of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
- Institute of Sericulture and Apiculture, Yunnan Academy of Agricultural Sciences, Mengzi, China
| | - Xiaoman Wu
- Yunnan Provincial Engineering and Research Center for Sustainable Utilization of Honey Bee Resources, Eastern Bee Research Institute, College of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Shangkao Deng
- Institute of Sericulture and Apiculture, Yunnan Academy of Agricultural Sciences, Mengzi, China
| | - Dan Yue
- Yunnan Provincial Engineering and Research Center for Sustainable Utilization of Honey Bee Resources, Eastern Bee Research Institute, College of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Wenzheng Zhao
- Yunnan Provincial Engineering and Research Center for Sustainable Utilization of Honey Bee Resources, Eastern Bee Research Institute, College of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Xia Dong
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Xueyang Gong
- Yunnan Provincial Engineering and Research Center for Sustainable Utilization of Honey Bee Resources, Eastern Bee Research Institute, College of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Kun Dong
- Yunnan Provincial Engineering and Research Center for Sustainable Utilization of Honey Bee Resources, Eastern Bee Research Institute, College of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
15
|
Bueno-Mancebo J, Barrena R, Artola A, Gea T, Altmajer-Vaz D. Surfactin as an ingredient in cosmetic industry: Benefits and trends. Int J Cosmet Sci 2024; 46:702-716. [PMID: 38481065 DOI: 10.1111/ics.12957] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 01/08/2024] [Accepted: 02/10/2024] [Indexed: 09/25/2024]
Abstract
Surfactin is a natural surfactant almost exclusively produced by Bacillus species with excellent physical-chemical, and biological properties. Among innovative applications, surfactin has been recently used as an ingredient in formulations. The antibacterial and anti-acne activities, as well as the anti-wrinkle, moisturizing, and cleansing features, are some of the reasons this lipopeptide is used in cosmetics. Considering the importance of biosurfactants in the world economy and sustainability, their potential properties for cosmetic and dermatological products, and the importance of patents for technological advancement in a circular bioeconomy system, the present study aims to review all patents involving surfactin as an ingredient in cosmetic formulas. This review was conducted through Espacenet, wherein patents containing the terms "cosmetic" and "surfactin" in their titles, abstracts, or claims were examined. Those patents that detailed a specific surfactin dosage within their formulations were selected for analysis. All patents, irrespective of their publication date, from October 1989 to December 2022, were considered. Additionally, a comprehensive search was performed in the MEDLINE and EMBASE databases, spanning from their inception until the year 2023. This complementary search aimed to enrich the understanding derived from patents, with a specific emphasis on surfactin, encompassing its associated advantages, efficacy, mechanisms of action on the skin, as well as aspects related to sustainability and its merits in cosmetic formulations. From the 105 patents analysed, 75% belong to Japan (54), China (14), and Korea (9). Most of them were submitted by Asian companies such as Showa Denko (15), Kaneka (11) and Kao Corporation (5). The formulations described are mainly emulsions, skincare, cleansing, and haircare, and the surfactin dose does not exceed 5%. Surfactin appears in different types of formulas worldwide and has a high tendency to be used. Surfactin and other biosurfactants are a promising alternative to chemical ingredients in cosmetic formulations, guaranteeing skin health benefits and minimizing the impact on the environment.
Collapse
Affiliation(s)
- Jose Bueno-Mancebo
- Composting Research Group, Departament d'Enginyeria Química, Biològica i Ambiental, Escola d'Enginyeria, Universitat Autònoma de Barcelona, Barcelona, Spain
- Chemical Engineering Department, Faculty of Science, University of Granada, Granada, Spain
| | - Raquel Barrena
- Composting Research Group, Departament d'Enginyeria Química, Biològica i Ambiental, Escola d'Enginyeria, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Adriana Artola
- Composting Research Group, Departament d'Enginyeria Química, Biològica i Ambiental, Escola d'Enginyeria, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Teresa Gea
- Composting Research Group, Departament d'Enginyeria Química, Biològica i Ambiental, Escola d'Enginyeria, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Deisi Altmajer-Vaz
- Chemical Engineering Department, Faculty of Science, University of Granada, Granada, Spain
| |
Collapse
|
16
|
Ta Y, Fu S, Liu H, Zhang C, He M, Yu H, Ren Y, Han Y, Hu W, Yan Z, Wang Y. Evaluation of Bacillus velezensis F9 for Cucumber Growth Promotion and Suppression of Fusarium wilt Disease. Microorganisms 2024; 12:1882. [PMID: 39338556 PMCID: PMC11434287 DOI: 10.3390/microorganisms12091882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 09/08/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
Cucumber wilt, caused by Fusarium oxysporum f. sp. cucumerinum (FOC), is a soilborne disease that poses a significant threat to cucumber production, resulting in substantial yield losses. This study aimed to evaluate the biocontrol and growth-promoting effects of Bacillus velezensis, a highly active bacterial strain. In vitro assays revealed that B. velezensis F9 exhibited broad-spectrum antifungal activity against eight plant pathogenic fungi, with inhibition ratio ranging from 62.66% to 88.18%. Additionally, the strain displayed the ability to produce IAA (5.97 ± 1.75 µg/mL), fix nitrogen, produce siderophores, and form biofilms. In vitro growth promotion assays demonstrated that different concentrations of B. velezensis F9 significantly promoted cucumber seedling growth. Furthermore, two pot experiments revealed that the strain exhibited biocontrol efficacy against cucumber wilt, with disease control rates ranging from 42.86% to 67.78%. Notably, the strain significantly increased the plant height, fresh weight, and dry weight, with increases ranging from 20.67% to 60.04%, 40.27% to 75.51%, and 22.07% to 52.54%, respectively. Two field trials confirmed the efficacy of B. velezensis F9 in controlling cucumber wilt, with disease control rates of 44.95% and 33.99%, respectively. The strain effectively alleviated the dwarfing and wilting symptoms caused by the pathogen. Compared with the FOC treatment, the F9 + FOC treatment significantly increased the plant height, fresh weight, and dry weight, with increases of 43.85% and 56.28%, 49.49% and 23.70%, and 36.25% and 73.63%, respectively. Enzyme activity assays indicated that inoculation significantly increased SOD activity in cucumber leaves and neutral phosphatase, sucrase, and urease activity in rhizosphere soil. Correlation analysis revealed a negative correlation between the disease index and plant height, fresh weight, dry weight, and peroxidase activity, with correlation coefficients of -0.53, -0.60, -0.38, and -0.45, respectively. These findings suggest that plant height, fresh weight, and dry weight are significantly negatively correlated with the cucumber disease index, highlighting their importance as indicators for evaluating the biocontrol efficacy of B. velezensis F9. In conclusion, B. velezensis F9 is a highly effective plant growth-promoting rhizobacterium with excellent biocontrol potential, showcasing promising applications in agricultural production.
Collapse
Affiliation(s)
- Yongquan Ta
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling 712100, China; (Y.T.); (S.F.); (H.L.); (C.Z.); (M.H.); (H.Y.); (Y.R.); (Y.H.); (W.H.); (Z.Y.)
- Provincial Center for Bio-Pesticide Engineering, Northwest A&F University, Yangling 712100, China
| | - Shaowei Fu
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling 712100, China; (Y.T.); (S.F.); (H.L.); (C.Z.); (M.H.); (H.Y.); (Y.R.); (Y.H.); (W.H.); (Z.Y.)
- Provincial Center for Bio-Pesticide Engineering, Northwest A&F University, Yangling 712100, China
| | - Hui Liu
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling 712100, China; (Y.T.); (S.F.); (H.L.); (C.Z.); (M.H.); (H.Y.); (Y.R.); (Y.H.); (W.H.); (Z.Y.)
- Provincial Center for Bio-Pesticide Engineering, Northwest A&F University, Yangling 712100, China
| | - Caiyun Zhang
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling 712100, China; (Y.T.); (S.F.); (H.L.); (C.Z.); (M.H.); (H.Y.); (Y.R.); (Y.H.); (W.H.); (Z.Y.)
- Provincial Center for Bio-Pesticide Engineering, Northwest A&F University, Yangling 712100, China
| | - Mengru He
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling 712100, China; (Y.T.); (S.F.); (H.L.); (C.Z.); (M.H.); (H.Y.); (Y.R.); (Y.H.); (W.H.); (Z.Y.)
- Provincial Center for Bio-Pesticide Engineering, Northwest A&F University, Yangling 712100, China
| | - Hang Yu
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling 712100, China; (Y.T.); (S.F.); (H.L.); (C.Z.); (M.H.); (H.Y.); (Y.R.); (Y.H.); (W.H.); (Z.Y.)
- Provincial Center for Bio-Pesticide Engineering, Northwest A&F University, Yangling 712100, China
| | - Yihua Ren
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling 712100, China; (Y.T.); (S.F.); (H.L.); (C.Z.); (M.H.); (H.Y.); (Y.R.); (Y.H.); (W.H.); (Z.Y.)
- Provincial Center for Bio-Pesticide Engineering, Northwest A&F University, Yangling 712100, China
| | - Yunfei Han
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling 712100, China; (Y.T.); (S.F.); (H.L.); (C.Z.); (M.H.); (H.Y.); (Y.R.); (Y.H.); (W.H.); (Z.Y.)
- Provincial Center for Bio-Pesticide Engineering, Northwest A&F University, Yangling 712100, China
| | - Wenqiong Hu
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling 712100, China; (Y.T.); (S.F.); (H.L.); (C.Z.); (M.H.); (H.Y.); (Y.R.); (Y.H.); (W.H.); (Z.Y.)
- Provincial Center for Bio-Pesticide Engineering, Northwest A&F University, Yangling 712100, China
| | - Zhiqiang Yan
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling 712100, China; (Y.T.); (S.F.); (H.L.); (C.Z.); (M.H.); (H.Y.); (Y.R.); (Y.H.); (W.H.); (Z.Y.)
- Provincial Center for Bio-Pesticide Engineering, Northwest A&F University, Yangling 712100, China
| | - Yonghong Wang
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling 712100, China; (Y.T.); (S.F.); (H.L.); (C.Z.); (M.H.); (H.Y.); (Y.R.); (Y.H.); (W.H.); (Z.Y.)
- Provincial Center for Bio-Pesticide Engineering, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
17
|
Li J, Cui H, Yao Y, Niu J, Zhang J, Zheng X, Cui M, Liu J, Cheng T, Gao Y, Guo Q, Yu S, Wang L, Huang Z, Huang J, Zhang K, Wang C, Meng G. Anti-influenza activity of CPAVM1 protease secreted by Bacillus subtilis LjM2. Antiviral Res 2024; 228:105919. [PMID: 38851592 DOI: 10.1016/j.antiviral.2024.105919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/12/2024] [Accepted: 05/24/2024] [Indexed: 06/10/2024]
Abstract
Bacillus spp. has been considered a promising source for identifying new antimicrobial substances, including anti-viral candidates. Here, we successfully isolated a number of bacteria strains from aged dry citrus peel (Chenpi). Of note, the culture supernatant of a new isolate named Bacillus subtilis LjM2 demonstrated strong inhibition of influenza A virus (IAV) infection in multiple experimental systems in vitro and in vivo. In addition, the anti-viral effect of LjM2 was attributed to its direct lysis of viral particles. Further analysis showed that a protease which we named CPAVM1 isolated from the culture supernatant of LjM2 was the key component responsible for its anti-viral function. Importantly, the therapeutic effect of CPAVM1 was still significant when applied 12 hours after IAV infection of experimental mice. Moreover, we found that the CPAVM1 protease cleaved multiple IAV proteins via targeting basic amino acid Arg or Lys. Furthermore, this study reveals the molecular structure and catalytic mechanism of CPAVM1 protease. During catalysis, Tyr75, Tyr77, and Tyr102 are important active sites. Therefore, the present work identified a special protease CPAVM1 secreted by a new strain of Bacillus subtilis LjM2 against influenza A virus infection via direct cleavage of critical viral proteins, thus facilitates future biotechnological applications of Bacillus subtilis LjM2 and the protease CPAVM1.
Collapse
Affiliation(s)
- Juan Li
- The Center for Microbes, Development and Health, Key Laboratory of Immune Response and Immunotherapy, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China; Nanjing Advanced Academy of Life and Health, Nanjing, Jiangsu, 211135, China
| | - Hong Cui
- The Center for Microbes, Development and Health, Key Laboratory of Immune Response and Immunotherapy, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China; Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215006, China
| | - Yujie Yao
- The Center for Microbes, Development and Health, Key Laboratory of Immune Response and Immunotherapy, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China; School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Junling Niu
- The Center for Microbes, Development and Health, Key Laboratory of Immune Response and Immunotherapy, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Jing Zhang
- The Center for Microbes, Development and Health, Key Laboratory of Immune Response and Immunotherapy, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Xu Zheng
- The Center for Microbes, Development and Health, Key Laboratory of Immune Response and Immunotherapy, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Mengmeng Cui
- The Center for Microbes, Development and Health, Key Laboratory of Immune Response and Immunotherapy, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Jia Liu
- The Center for Microbes, Development and Health, Key Laboratory of Immune Response and Immunotherapy, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Tong Cheng
- The Center for Microbes, Development and Health, Key Laboratory of Immune Response and Immunotherapy, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yuhui Gao
- The Center for Microbes, Development and Health, Key Laboratory of Immune Response and Immunotherapy, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Qiuhong Guo
- The Center for Microbes, Development and Health, Key Laboratory of Immune Response and Immunotherapy, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Shi Yu
- The Center for Microbes, Development and Health, Key Laboratory of Immune Response and Immunotherapy, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Lanfeng Wang
- The Center for Microbes, Development and Health, Key Laboratory of Immune Response and Immunotherapy, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Zhong Huang
- The Center for Microbes, Development and Health, Key Laboratory of Immune Response and Immunotherapy, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Jing Huang
- School of Life Science, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China
| | - Ke Zhang
- The Center for Microbes, Development and Health, Key Laboratory of Immune Response and Immunotherapy, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Chengyuan Wang
- The Center for Microbes, Development and Health, Key Laboratory of Immune Response and Immunotherapy, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Guangxun Meng
- The Center for Microbes, Development and Health, Key Laboratory of Immune Response and Immunotherapy, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China; Nanjing Advanced Academy of Life and Health, Nanjing, Jiangsu, 211135, China; Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215006, China; School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China.
| |
Collapse
|
18
|
Lin YT, Hung YC, Chen LH, Lee KT, Han YS. Effects of adding Bacillus subtilis natto NTU-18 in paste feed on growth, intestinal morphology, gastrointestinal microbiota diversity, immunity, and disease resistance of Anguilla japonica glass eels. FISH & SHELLFISH IMMUNOLOGY 2024; 149:109556. [PMID: 38608848 DOI: 10.1016/j.fsi.2024.109556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 04/06/2024] [Accepted: 04/09/2024] [Indexed: 04/14/2024]
Abstract
Japanese eel, Anguilla japonica, holds significant importance in Taiwanese aquaculture. With the intensification of eel farming, the impact of Edwardsiella tarda has become increasingly severe. Consequently, the abusive use of antibiotics has risen. Bacillus subtilis natto NTU-18, a strain of Bacillus with a high survival rate in feed processing, plays a crucial role in promoting intestinal health through competitive rejection, enhancing immune responses against bacterial pathogens, and improving intestinal health by modulating gastrointestinal microbiota to produce beneficial metabolites of mice and grass carp, Ctenopharyngodon idella. This study investigated the effects of different proportions (control, 0.25 %, 0.5 %, 1 %, and 2 %) of B. subtilis natto NTU-18 added to paste feed on the growth performance, intestinal morphology, and microbiota, expression of immune-related genes, and resistance to E. tarda in Japanese glass eel. The results indicated that the growth performance of all groups with B. subtilis natto NTU-18 added was significantly higher than that of the control group and did not impact the villi morphology. The expression of immune-related genes in the kidney, specifically HSP70 and SOD, was significantly higher from 0.5 % and above than the control; however, no significant differences were observed in CAT, POD, and HSP90. In the liver, significant differences were found in HSP70 and IgM above 0.25 % compared to the control group, with no significant differences in SOD, CAT, POD, and HSP90 among all groups. Additionally, intestinal microbiota analysis revealed that the 2 % additional group had significantly lower diversity than other groups, with Cetobacterium as the dominant species. The challenge test observed that the survival rates of the 0.5 % and 1 % groups were significantly higher. This research suggests that adding 0.5 % and 1 % of B. subtilis natto NTU-18 to the diet is beneficial for Japanese glass eel's immunity, growth performance, and disease resistance.
Collapse
Affiliation(s)
- Yen-Ting Lin
- Institute of Fisheries Science, College of Life Science, National Taiwan University, Taipei, 10617, Taiwan
| | - Yu-Chen Hung
- Institute of Fisheries Science, College of Life Science, National Taiwan University, Taipei, 10617, Taiwan
| | - Li-Han Chen
- Institute of Fisheries Science, College of Life Science, National Taiwan University, Taipei, 10617, Taiwan
| | - Kung-Ta Lee
- Department of Biochemical Science & Technology, College of Life Science, National Taiwan University, Taipei, 10617, Taiwan
| | - Yu-San Han
- Institute of Fisheries Science, College of Life Science, National Taiwan University, Taipei, 10617, Taiwan.
| |
Collapse
|
19
|
Guo Z, Sun J, Ma Q, Li M, Dou Y, Yang S, Gao X. Improving Surfactin Production in Bacillus subtilis 168 by Metabolic Engineering. Microorganisms 2024; 12:998. [PMID: 38792827 PMCID: PMC11124408 DOI: 10.3390/microorganisms12050998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 05/13/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
Surfactin is widely used in the petroleum extraction, cosmetics, biopharmaceuticals and agriculture industries. It possesses antibacterial and antiviral activities and can reduce interfacial tension. Bacillus are commonly used as production chassis, but wild-type Bacillus subtilis 168 cannot synthesise surfactin. In this study, the phosphopantetheinyl transferase (PPTase) gene sfp* (with a T base removed) was overexpressed and enzyme activity was restored, enabling B. subtilis 168 to synthesise surfactin with a yield of 747.5 ± 6.5 mg/L. Knocking out ppsD and yvkC did not enhance surfactin synthesis. Overexpression of predicted surfactin transporter gene yfiS increased its titre to 1060.7 ± 89.4 mg/L, while overexpression of yerP, ycxA and ycxA-efp had little or negative effects on surfactin synthesis, suggesting YfiS is involved in surfactin efflux. By replacing the native promoter of the srfA operon encoding surfactin synthase with three promoters, surfactin synthesis was significantly reduced. However, knockout of the global transcriptional regulator gene codY enhanced the surfactin titre to 1601.8 ± 91.9 mg/L. The highest surfactin titre reached 3.89 ± 0.07 g/L, with the yield of 0.63 ± 0.02 g/g DCW, after 36 h of fed-batch fermentation in 5 L fermenter. This study provides a reference for further understanding surfactin synthesis and constructing microbial cell factories.
Collapse
Affiliation(s)
| | | | | | | | | | - Shaomei Yang
- School of Life Sciences and Medicine, Shandong University of Technology, 266 Xincun West Road, Zibo 255049, China; (Z.G.); (J.S.); (Q.M.); (M.L.); (Y.D.)
| | - Xiuzhen Gao
- School of Life Sciences and Medicine, Shandong University of Technology, 266 Xincun West Road, Zibo 255049, China; (Z.G.); (J.S.); (Q.M.); (M.L.); (Y.D.)
| |
Collapse
|
20
|
Moussa AY. Endophytes: a uniquely tailored source of potential antibiotic adjuvants. Arch Microbiol 2024; 206:207. [PMID: 38581477 PMCID: PMC10998792 DOI: 10.1007/s00203-024-03891-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 02/06/2024] [Accepted: 02/08/2024] [Indexed: 04/08/2024]
Abstract
Multidrug microbial resistance is risking an annual loss of more than 10 million people' lives by 2050. Solutions include the rational use of antibiotics and the use of drugs that reduce resistance or completely obliterate them. Here endophytes come to play due to their high-yield production and inherent nature to produce antimicrobial molecules. Around 40%, 45% and 17% of antibacterial agents were obtained from fungi, actinomycetes, and bacteria, respectively, whose secondary metabolites revealed effectiveness against resistant microbes such as MRSA, MRSE, and Shigella flexneri. Endophyte's role was not confined to bactericidal effect but extended to other mechanisms against MDR microbes, among which was the adjuvant role or the "magic bullets". Scarce focus was given to antibiotic adjuvants, and many laboratories today just screen for the antimicrobial activity without considering combinations with traditional antibiotics, which means real loss of promising resistance combating molecules. While some examples of synthetic adjuvants were introduced in the last decade, the number is still far from covering the disused antibiotics and restoring them back to clinical use. The data compiled in this article demonstrated the significance of quorum sensing as a foreseen mechanism for adjuvants from endophytes secondary metabolites, which call for urgent in-depth studies of their molecular mechanisms. This review, comprehensively and for the first time, sheds light on the significance of endophytes secondary metabolites in solving AMR problem as AB adjuvants.
Collapse
Affiliation(s)
- Ashaimaa Y Moussa
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, African Union Organization Street, Abbassia, Cairo, 11566, Egypt.
| |
Collapse
|
21
|
Chen YA, Chiu WC, Wang TY, Wong HC, Tang CT. Isolation and characterization of an antimicrobial Bacillus subtilis strain O-741 against Vibrio parahaemolyticus. PLoS One 2024; 19:e0299015. [PMID: 38573920 PMCID: PMC10994408 DOI: 10.1371/journal.pone.0299015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 02/03/2024] [Indexed: 04/06/2024] Open
Abstract
Vibrio parahaemolyticus is a marine bacterium that can infect and cause the death of aquatic organisms. V. parahaemolyticus can also cause human foodborne infection via contaminated seafood, with clinical syndromes which include diarrhea, abdominal cramps, nausea and so on. Since controlling V. parahaemolyticus is important for aquaculture and human health, various strategies have been explored. This study investigates the application of antagonistic microorganisms to inhibit the growth of V. parahaemolyticus. We screened aquaculture environment samples and identified a Bacillus subtilis strain O-741 with potent antimicrobial activities. This strain showed a broad spectrum of antagonistic activities against V. parahaemolyticus and other Vibrio species. Application of the O-741 bacterium significantly increased the survival of Artemia nauplii which were infected with V. parahaemolyticus. Furthermore, the cell-free supernatant (CFS) of O-741 bacterium exhibited inhibitory ability against V. parahaemolyticus, and its activity was stable to heat, acidity, UV, enzymes, and organic solvents. Next, the O-741 CFS was extracted by ethyl acetate, and analyzed by ultra-performance liquid chromatography-mass-mass spectrometry (UPLC-MS/MS), and the functional faction was identified as an amicoumacin A compound. The organic extracts of CFS containing amicoumacin A had bactericidal effects on V. parahaemolyticus, and the treated V. parahaemolyticus cells showed disruption of the cell membrane and formation of cell cavities. These findings indicate that B. subtilis strain O-741 can inhibit the V. parahaemolyticus in vitro and in vivo, and has potential for use as a biocontrol agent for preventing V. parahaemolyticus infection.
Collapse
Affiliation(s)
- Yi-An Chen
- Department of Microbiology, Soochow University, Taipei, Taiwan, Republic of China
| | - Wen-Chin Chiu
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung, Taiwan, Republic of China
| | - Tzu-Yun Wang
- Department of Microbiology, Soochow University, Taipei, Taiwan, Republic of China
| | - Hin-chung Wong
- Department of Microbiology, Soochow University, Taipei, Taiwan, Republic of China
| | - Chung-Tao Tang
- School of Medicine for International Students, College of Medicine, I-Shou University, Kaohsiung, Taiwan, Republic of China
| |
Collapse
|
22
|
Sreelakshmi KP, Madhuri M, Swetha R, Rangarajan V, Roy U. Microbial lipopeptides: their pharmaceutical and biotechnological potential, applications, and way forward. World J Microbiol Biotechnol 2024; 40:135. [PMID: 38489053 DOI: 10.1007/s11274-024-03908-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 01/24/2024] [Indexed: 03/17/2024]
Abstract
As lead molecules, cyclic lipopeptides with antibacterial, antifungal, and antiviral properties have garnered a lot of attention in recent years. Because of their potential, cyclic lipopeptides have earned recognition as a significant class of antimicrobial compounds with applications in pharmacology and biotechnology. These lipopeptides, often with biosurfactant properties, are amphiphilic, consisting of a hydrophilic moiety, like a carboxyl group, peptide backbone, or carbohydrates, and a hydrophobic moiety, mostly a fatty acid. Besides, several lipopeptides also have cationic groups that play an important role in biological activities. Antimicrobial lipopeptides can be considered as possible substitutes for antibiotics that are conventional to address the current drug-resistant issues as pharmaceutical industries modify the parent antibiotic molecules to render them more effective against antibiotic-resistant bacteria and fungi, leading to the development of more resistant microbial strains. Bacillus species produce lipopeptides, which are secondary metabolites that are amphiphilic and are typically synthesized by non-ribosomal peptide synthetases (NRPSs). They have been identified as potential biocontrol agents as they exhibit a broad spectrum of antimicrobial activity. A further benefit of lipopeptides is that they can be produced and purified biotechnologically or biochemically in a sustainable manner using readily available, affordable, renewable sources without harming the environment. In this review, we discuss the biochemical and functional characterization of antifungal lipopeptides, as well as their various modes of action, method of production and purification (in brief), and potential applications as novel antibiotic agents.
Collapse
Affiliation(s)
- K P Sreelakshmi
- Department of Biological Sciences, Birla Institute of Technology and Science-KK Birla Goa Campus Goa, NH 17 B Bypass Rd., Goa, 403726, India
| | - M Madhuri
- Department of Biological Sciences, Birla Institute of Technology and Science-KK Birla Goa Campus Goa, NH 17 B Bypass Rd., Goa, 403726, India
| | - R Swetha
- Department of Biological Sciences, Birla Institute of Technology and Science-KK Birla Goa Campus Goa, NH 17 B Bypass Rd., Goa, 403726, India
| | - Vivek Rangarajan
- Department of Chemical Engineering, Birla Institute of Technology and Science-KK Birla Goa Campus Goa, NH 17 B Bypass Rd., Goa, 403726, India
| | - Utpal Roy
- Department of Biological Sciences, Birla Institute of Technology and Science-KK Birla Goa Campus Goa, NH 17 B Bypass Rd., Goa, 403726, India.
| |
Collapse
|
23
|
Nazarian-Firouzabadi F, Torres MDT, de la Fuente-Nunez C. Recombinant production of antimicrobial peptides in plants. Biotechnol Adv 2024; 71:108296. [PMID: 38042311 PMCID: PMC11537283 DOI: 10.1016/j.biotechadv.2023.108296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/10/2023] [Accepted: 11/26/2023] [Indexed: 12/04/2023]
Abstract
Classical plant breeding methods are limited in their ability to confer disease resistance on plants. However, in recent years, advancements in molecular breeding and biotechnological have provided new approaches to overcome these limitations and protect plants from disease. Antimicrobial peptides (AMPs) constitute promising agents that may be able to protect against infectious agents. Recently, peptides have been recombinantly produced in plants at scale and low cost. Because AMPs are less likely than conventional antimicrobials to elicit resistance of pathogenic bacteria, they open up exciting new avenues for agricultural applications. Here, we review recent advances in the design and production of bioactive recombinant AMPs that can effectively protect crop plants from diseases.
Collapse
Affiliation(s)
- Farhad Nazarian-Firouzabadi
- Production Engineering and Plant Genetics Department, Faculty of Agriculture, Lorestan University, P.O. Box, 465, Khorramabad, Iran.
| | - Marcelo Der Torossian Torres
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America; Departments of Bioengineering and Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, United States of America; Penn Institute for Computational Science, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Cesar de la Fuente-Nunez
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America; Departments of Bioengineering and Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, United States of America; Penn Institute for Computational Science, University of Pennsylvania, Philadelphia, PA, United States of America.
| |
Collapse
|
24
|
Wang Z, Zhang W, Wang Z, Zhang Z, Liu Y, Liu S, Wu Q, Saiding E, Han J, Zhou J, Xu J, Yi X, Zhang Z, Wang R, Su X. Analysis of antimicrobial biological activity of a marine Bacillus velezensis NDB. Arch Microbiol 2024; 206:131. [PMID: 38421449 DOI: 10.1007/s00203-024-03861-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/19/2024] [Accepted: 01/22/2024] [Indexed: 03/02/2024]
Abstract
A new strain of Bacillus velezensis NDB was isolated from Xiangshan Harbor and antibacterial test revealed antibacterial activity of this strain against 12 major pathogenic bacteria. The whole genome of the bacterium was sequenced and found to consist of a 4,214,838 bp circular chromosome and a 7410 bp circular plasmid. Furthermore, it was predicted by AntiSMASH and BAGEL4 to have 12 clusters of secondary metabolism genes for the synthesis of the inhibitors, fengycin, bacillomycin, macrolactin H, bacillaene, and difficidin, and there were also five clusters encoding potentially novel antimicrobial substances, as well as three bacteriocin biosynthesis gene clusters of amylocyclicin, ComX1, and LCI. qRT-PCR revealed significant up-regulation of antimicrobial secondary metabolite synthesis genes after 24 h of antagonism with pathogenic bacteria. Furthermore, MALDI-TOF mass spectrometry revealed that it can secrete surfactin non-ribosomal peptide synthase and polyketide synthase to exert antibacterial effects. GC-MS was used to analyze methanol extract of B. velezensis NDB, a total of 68 compounds were identified and these metabolites include 16 amino acids, 17 acids, 3 amines, 11 sugars, 11 alcohols, 1 ester, and 9 other compounds which can inhibit pathogenic bacteria by initiating the antibiotic secretion pathway. A comparative genomic analysis of gene families showed that the specificity of B. velezensis NDB was mainly reflected in environmental adaptability. Overall, this research on B. velezensis NDB provides the basis for elucidating its biocontrol effect and promotes its future application as a probiotic.
Collapse
Affiliation(s)
- Ze Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, 169 Qixing South Road, Ningbo, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, 169 Qixing South Road, Ningbo, China
- School of Marine Science, Ningbo University, 169 Qixing South Road, Ningbo, China
| | - Wenwen Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, 169 Qixing South Road, Ningbo, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, 169 Qixing South Road, Ningbo, China
- School of Marine Science, Ningbo University, 169 Qixing South Road, Ningbo, China
| | - Ziyan Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, 169 Qixing South Road, Ningbo, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, 169 Qixing South Road, Ningbo, China
- School of Marine Science, Ningbo University, 169 Qixing South Road, Ningbo, China
| | - Zhixuan Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, 169 Qixing South Road, Ningbo, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, 169 Qixing South Road, Ningbo, China
- School of Marine Science, Ningbo University, 169 Qixing South Road, Ningbo, China
| | - Yan Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, 169 Qixing South Road, Ningbo, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, 169 Qixing South Road, Ningbo, China
- School of Marine Science, Ningbo University, 169 Qixing South Road, Ningbo, China
| | - Songyi Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, 169 Qixing South Road, Ningbo, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, 169 Qixing South Road, Ningbo, China
- School of Marine Science, Ningbo University, 169 Qixing South Road, Ningbo, China
| | - Qiaoli Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, 169 Qixing South Road, Ningbo, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, 169 Qixing South Road, Ningbo, China
- School of Marine Science, Ningbo University, 169 Qixing South Road, Ningbo, China
| | - Emilaguli Saiding
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, 169 Qixing South Road, Ningbo, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, 169 Qixing South Road, Ningbo, China
- School of Marine Science, Ningbo University, 169 Qixing South Road, Ningbo, China
| | - Jiaojiao Han
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, 169 Qixing South Road, Ningbo, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, 169 Qixing South Road, Ningbo, China
- School of Marine Science, Ningbo University, 169 Qixing South Road, Ningbo, China
| | - Jun Zhou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, 169 Qixing South Road, Ningbo, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, 169 Qixing South Road, Ningbo, China
- School of Marine Science, Ningbo University, 169 Qixing South Road, Ningbo, China
| | - Jiajie Xu
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, 169 Qixing South Road, Ningbo, China
- School of Marine Science, Ningbo University, 169 Qixing South Road, Ningbo, China
| | - Xianghua Yi
- Xiangshan Lanshang Marine Technology Co., Ltd, Ningbo, China
| | - Zhen Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, 169 Qixing South Road, Ningbo, China.
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, 169 Qixing South Road, Ningbo, China.
- School of Marine Science, Ningbo University, 169 Qixing South Road, Ningbo, China.
| | - Rixin Wang
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, 169 Qixing South Road, Ningbo, China.
- School of Marine Science, Ningbo University, 169 Qixing South Road, Ningbo, China.
| | - Xiurong Su
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, 169 Qixing South Road, Ningbo, China.
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, 169 Qixing South Road, Ningbo, China.
- School of Marine Science, Ningbo University, 169 Qixing South Road, Ningbo, China.
| |
Collapse
|
25
|
Nihorimbere G, Korangi Alleluya V, Nimbeshaho F, Nihorimbere V, Legrève A, Ongena M. Bacillus-based biocontrol beyond chemical control in central Africa: the challenge of turning myth into reality. FRONTIERS IN PLANT SCIENCE 2024; 15:1349357. [PMID: 38379944 PMCID: PMC10877027 DOI: 10.3389/fpls.2024.1349357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 01/08/2024] [Indexed: 02/22/2024]
Abstract
Agricultural productivity in the Great Lakes Countries of Central Africa, including Burundi, Rwanda, and the Democratic Republic of Congo, is affected by a wide range of diseases and pests which are mainly controlled by chemical pesticides. However, more than 30% of the pesticides used in the region are banned in European Union due to their high toxicity. Globally available safe and eco-friendly biological alternatives to chemicals are virtually non-existent in the region. Bacillus PGPR-based biocontrol products are the most dominant in the market and have proven their efficacy in controlling major plant diseases reported in the region. With this review, we present the current situation of disease and pest management and urge the need to utilize Bacillus-based control as a possible sustainable alternative to chemical pesticides. A repertoire of strains from the Bacillus subtilis group that have shown great potential to antagonize local pathogens is provided, and efforts to promote their use, as well as the search for indigenous and more adapted Bacillus strains to local agro-ecological conditions, should be undertaken to make sustainable agriculture a reality in the region.
Collapse
Affiliation(s)
- Gaspard Nihorimbere
- Phytopathology- Applied Microbiology, Earth, and Life Institute, UCLouvain, Louvain-la-neuve, Belgium
- Unité de défense des végétaux, Institut des Sciences Agronomiques du Burundi, Bujumbura, Burundi
| | - Virginie Korangi Alleluya
- Microbial Processes and Interactions, TERRA Teaching and Research Center, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
- Chemical and Agricultural Industries, Faculty of Agricultural Sciences, University of Kinshasa, Kinshasa, Democratic Republic of Congo
| | - François Nimbeshaho
- Microbial Processes and Interactions, TERRA Teaching and Research Center, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
- Laboratoire de Nutrition-Phytochimie, d’Ecologie et d’Environnement Appliquée, Centre Universitaire de Recherche et de Pédagogie Appliquées aux Sciences, Institut de Pédagogie Appliquée, Université du Burundi, Bujumbura, Burundi
| | - Venant Nihorimbere
- Département des Sciences et Technologie des Aliments, Faculté de Bio-Ingénierie, Université du Burundi, Bujumbura, Burundi
| | - Anne Legrève
- Phytopathology- Applied Microbiology, Earth, and Life Institute, UCLouvain, Louvain-la-neuve, Belgium
| | - Marc Ongena
- Microbial Processes and Interactions, TERRA Teaching and Research Center, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| |
Collapse
|
26
|
Moradi Pour M, Hassanisaadi M, Kennedy JF, Saberi Riseh R. A novel biopolymer technique for encapsulation of Bacillus velezensis BV9 into double coating biopolymer made by in alginate and natural gums to biocontrol of wheat take-all disease. Int J Biol Macromol 2024; 257:128526. [PMID: 38172030 DOI: 10.1016/j.ijbiomac.2023.128526] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 11/17/2023] [Accepted: 11/28/2023] [Indexed: 01/05/2024]
Abstract
Bacillus velezensis has been known for its high potential in controlling agricultural diseases. Technological advances have opened new perspectives for producing effective formulations by reducing some of the obstacles to their use, such as instability and loss of activity due to exposure to adverse environmental conditions. Encapsulation is one of the new approaches in agricultural science. This research describes discoveries related to processes for the microencapsulation of B. velezensis with natural gums. The efficiency, survival, and controlled release of B. velesensis BV9 encapsulated with alginate mixed with zedo gum, mastic gum, and tragacanth gum were evaluated for this aim. Furthermore, under greenhouse conditions, the encapsulated cells were assessed to control Gaeumannomyces graminis var. tritici in wheat. The results indicated that all tested microcapsules protected >60 % of the bacterial cells. The Alginate-Zedo Gum (Alg-ZG) microcapsules showed a better-controlled release over two months. The greenhouse study indicated that treating wheat plants with Alg-ZG microcapsules was the most efficient treatment, suppressing 100 % of the pathogen. The results indicated that Alg-ZG is the most promising mixture to improve the survivability of B. velezensis BV9. Also, using natural gums and great potential of this formulation provides an effective and affordable fertilizers for agriculture.
Collapse
Affiliation(s)
- Mojde Moradi Pour
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Rafsanjan 7718897111, Iran
| | - Mohadeseh Hassanisaadi
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Rafsanjan 7718897111, Iran
| | - John F Kennedy
- Chembiotech Laboratories Ltd, WRI5 8FF Tenbury Well, United Kingdom
| | - Roohallah Saberi Riseh
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Rafsanjan 7718897111, Iran.
| |
Collapse
|
27
|
Verma H, Mihooliya KN, Nandal J, Sahoo DK. Studies on a new antimicrobial peptide from Vibrio proteolyticus MT110. Prep Biochem Biotechnol 2024; 54:193-206. [PMID: 37184469 DOI: 10.1080/10826068.2023.2209892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The marine environment is known for its vast diversity of the microbial population; however, less explored for bioactive compounds. In this study, an AMP produced by a new marine isolate, Vibrio proteolyticus MT110, showed broad-spectrum antimicrobial activity against Gram-positive and Gram-negative bacteria. The AMP was purified to homogeneity using ethyl acetate extraction followed by RP-HPLC, and LC-MS analysis showed its molecular weight as 980 Da. The MIC of AMP (peptide-MT110) was obtained in the 7.81-31.25 µg/mL range against different indicator strains. Peptide-MT110 showed stability of its antimicrobial activity at 15-121 °C and pH 4-10 and in the presence of various hydrolytic enzymes. The peaks at 1536 cm-1 and 1712 cm-1 wavenumbers in FTIR spectra confirmed the peptidic nature of AMP, and its amino acid analysis confirmed the presence of tyrosine and isoleucine. The antibacterial activity of peptide-MT110 is confirmed by PI assay and TEM. The optimization of peptide-MT110 production using statistical methods resulted in a 2.64-fold higher production. The physicochemical properties and stability in wide pH and temperature ranges showed the potential of peptide-MT110 for its development as a drug candidate. This is believed to be the first report on an AMP from Vibrio proteolyticus.
Collapse
Affiliation(s)
- Himanshu Verma
- Biochemical Engineering Research and Process Development Centre, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Kanti N Mihooliya
- Biochemical Engineering Research and Process Development Centre, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Jitender Nandal
- Biochemical Engineering Research and Process Development Centre, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Debendra K Sahoo
- Biochemical Engineering Research and Process Development Centre, CSIR-Institute of Microbial Technology, Chandigarh, India
- Accademy of Scientific and Innovative Research, New Delhi, India
| |
Collapse
|
28
|
Del'Duca A, de Paiva Oliveira GF, de Andrade Faustino M, Borges LA, Sixel ES, Miranda CAS, Rodrigues EM, Medeiros JD, de Sá Guimarães A, Mendonça LC, Cesar DE. Biocontrol capacity of bacteria isolated from sawdust of the dairy cattle production environment. Res Vet Sci 2024; 166:105103. [PMID: 38061143 DOI: 10.1016/j.rvsc.2023.105103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/29/2023] [Accepted: 12/01/2023] [Indexed: 01/01/2024]
Abstract
This research paper aimed to find endemic bacteria from the cattle production system to control the growth of mastitis pathogens. Bacteria were isolated from compost barn sawdust of two dairy cattle systems and later tested to verify their ability to control the growth of Staphylococcus aureus isolates obtained from cattle with mastitis. Bacterial isolates from these systems were tested to verify biocontrol capacity using the double-layer method. A total of 189 isolates were obtained from all samples by considering the morphology of the different bacterial colonies, with 30 isolates showing positive results for the growth control of at least one S. aureus strain and 19 isolates showing the ability to control more than one pathogen strain. The ability to control more than one pathogen and present a significant halo of inhibition in our isolates represents positive traits in the search for cattle mastitis biocontrol microorganisms. Thus, the results obtained represent the range of bacteria capable of controlling the pathogens without the use of antibiotics.
Collapse
|
29
|
Chen HW, Yu YH. Effects of cyclic antimicrobial lipopeptides from Bacillus subtilis on growth performance, intestinal morphology, and cecal gene expression and microbiota community in broilers. Anim Sci J 2024; 95:e13971. [PMID: 38899765 DOI: 10.1111/asj.13971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/09/2024] [Accepted: 05/31/2024] [Indexed: 06/21/2024]
Abstract
This study investigated the effects of cyclic antimicrobial lipopeptides (CLPs) from Bacillus subtilis on the growth performance, gut morphology, and cecal gene expression and microbiota in broilers; 120 1-day-old unsexed Arbor Acres chicks were randomly divided into four groups, with six replicates in each group and five broilers per cage. These groups were fed a basal diet (C), basal diet plus 10-mg enramycin/kg (E), and basal diet plus 51-mg CLPs/kg (L) or 102-mg CLPs/kg (H). The results indicated that CLP supplementation linearly increased the body weight compared with the C group at 35 days of age. Between 15 and 35 days and 1 and 35 days of age, CLP supplementation linearly increased the average daily gain compared with the C group. The duodenal villus height was significantly increased in the H group compared with the C and E groups. In the cecum, CLP supplementation linearly increased SOD and ZO-1 mRNA expression compared with the C group. β diversity of microbiota indicated distinct clusters between the groups. CLP supplementation linearly increased the abundance of the genus Lactobacillus in the cecal digesta compared with the C group. These results demonstrate that B. subtilis-produced CLPs dose-dependently increase broilers' growth performance, improve their gut morphology, and modulate their gut microbiota.
Collapse
Affiliation(s)
- Hsiu-Wei Chen
- Department of Biotechnology and Animal Science, National Ilan University, Yilan City, Taiwan
| | - Yu-Hsiang Yu
- Department of Biotechnology and Animal Science, National Ilan University, Yilan City, Taiwan
| |
Collapse
|
30
|
Guleria J, Khan MA. Mechanistic Insight into the Role of Peptides Secreted from Bacillus clausii and Future Opportunities. Curr Rev Clin Exp Pharmacol 2024; 19:379-386. [PMID: 38375835 DOI: 10.2174/0127724328273252240201071756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/16/2024] [Accepted: 01/19/2024] [Indexed: 02/21/2024]
Abstract
Bacillus clausii is a commercial spore probiotic known to treat multiple diseases. An increased interest in exploring the nutraceutical and probiotic properties of various microorganisms has made researchers explore more about these bacteria. The current trends in the healthcare industry are majorly focused on devising new therapies to avoid drug and pathogen resistance in patients. Antimicrobial peptides have been considered a source of antibiotics for a long time. Still, getting new therapies into the market is a big challenge. Members of the genus Bacillus have been reported to have a broad spectrum of antimicrobial peptides. One of the least explored species under this genus is Bacillus clausii, concerning peptide drug therapy. The applications of Bacillus clausii in treating or preventing gut dysbiosis and respiratory infections have been largely supported in the past two decades. Yet research is lacking in explaining the pathways at molecular levels in targeting pathogens. In this mini-review, we are going to summarise the research that has been reported so far about peptide extraction from Bacillus clausii, their mode of action and advantages to mankind, and the challenges lying in the isolation of peptides.
Collapse
Affiliation(s)
- Jyoti Guleria
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, 144411, India
| | - Minhaj Ahmad Khan
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, 144411, India
| |
Collapse
|
31
|
Ramesh S, Roy U, Roy S. The elucidation of the multimodal action of the investigational anti- Candida lipopeptide (AF 4) lead from Bacillus subtilis. Front Mol Biosci 2023; 10:1248444. [PMID: 38131013 PMCID: PMC10736182 DOI: 10.3389/fmolb.2023.1248444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 09/11/2023] [Indexed: 12/23/2023] Open
Abstract
Background: Candida species are the main etiological agents for candidiasis, and Candida albicans are the most common infectious species. Candida species' growing resistance to conventional therapies necessitates more research into novel antifungal agents. Antifungal peptides isolated from microorganisms have potential applications as novel therapeutics. AF4 a Bacillus-derived lipopeptide demonstrating broad-spectrum antifungal activity has been investigated for its ability to cause cell death in Candida species via membrane damage and oxidative stress. Methods: Using biophysical techniques, the secondary structure of the AF4 lipopeptide was identified. Scanning electron microscopy and confocal microscopy with fluorescent dyes were performed to visualise the effect of the lipopeptide. The membrane disruption and permeabilization were assessed using the 1,6-diphenyl hexatriene (DPH) fluorescence assay and flow cytometric (FC) assessment of propidium iodide (PI) uptake, respectively. The reactive oxygen species levels were estimated using the FC assessment. The induction of apoptosis and DNA damage were studied using Annexin V-FITC/PI and DAPI. Results: Bacillus-derived antifungal variant AF4 was found to have structural features typical of lipopeptides. Microscopy imaging revealed that AF4 damages the surface of treated cells and results in membrane permeabilization, facilitating the uptake of the fluorescent dyes. A loss of membrane integrity was observed in cells treated with AF4 due to a decrease in DPH fluorescence and a dose-dependent increase in PI uptake. Cell damage was also determined from the log reduction of viable cells treated with AF4. AF4 treatment also caused elevated ROS levels, induced phosphatidylserine externalisation, late-stage apoptosis, and alterations to nuclear morphology revealed by DAPI fluorescence. Conclusion: Collectively, the mode of action studies revealed that AF4 acts primarily on the cell membrane of C. albicans and has the potential to act as an antifungal drug candidate.
Collapse
Affiliation(s)
- Swetha Ramesh
- Department of Biological Sciences, Birla Institute of Technology and Science, K.K. Birla Goa Campus, Goa, India
| | - Utpal Roy
- Department of Chemistry, Birla Institute of Technology and Science, K.K. Birla Goa Campus, Goa, India
| | - Subhashis Roy
- Department of Chemistry, Birla Institute of Technology and Science, K.K. Birla Goa Campus, Goa, India
| |
Collapse
|
32
|
Hwang SH, Maung CEH, Noh JS, Cho JY, Kim KY. Butyl succinate-mediated control of Bacillus velezensis ce 100 for apple anthracnose caused by Colletotrichum gloeosporioides. J Appl Microbiol 2023; 134:lxad247. [PMID: 37903743 DOI: 10.1093/jambio/lxad247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 10/16/2023] [Accepted: 10/28/2023] [Indexed: 11/01/2023]
Abstract
AIMS Microbial biocontrol agents have become an effective option to mitigate the harmfulness of chemical pesticides in recent years. This study demonstrates the control efficacy of Bacillus velezensis CE 100 on the anthracnose causal agent, Colletotrichum gloeosporioides. METHODS AND RESULTS In vitro antifungal assays revealed that the culture filtrate and volatile organic compounds of B. velezensis CE 100 strongly restricted the mycelial development of C. gloeosporioides. Moreover, a bioactive compound, butyl succinate, was isolated from the n-butanol crude extract of B. velezensis CE 100 (bce), and identified by liquid chromatography-electrospray ionization hybrid ion-trap and time-of-flight mass spectrometry (LC-ESI-QTOF-MS) and one-dimensional (1D) and two-dimensional (2D) nuclear magnetic resonance (NMR). Treatment with purified butyl succinate at a concentration of 300 μg mL-1 strongly controlled conidial germination of C. gloeosporioides with an inhibition rate of 98.66%, whereas butyl succinate at a concentration of 400 μg mL-1 showed weak antifungal action on the mycelial growth of C. gloeosporioides with an inhibition rate of 31.25%. Scanning electron microscopy revealed that the morphologies of butyl succinate-treated hyphae and conidia of C. gloeosporioides were severely deformed with shriveled and wrinkled surfaces. Furthermore, butyl succinate was able to control carbendazim-resistant C. gloeosporioides, demonstrating that it could be a promising agent for the suppression of other carbendazim-resistant fungal pathogens. An in vivo biocontrol assay demonstrated that the strain ce 100 broth culture and butyl succinate showed higher control efficacy on apple anthracnose than bce. CONCLUSIONS Our findings provide insight into the antifungal potential of B. velezensis ce 100 and its butyl succinate for efficient control of phytopathogenic fungi, such as C. gloeosporiodes, in plant disease protection. This is the first study to demonstrate the antifungal potential of bacteria-derived butyl succinate for control of C. gloeosporioides.
Collapse
Affiliation(s)
- Seo Hyun Hwang
- Department of Agricultural Chemistry, Environmentally-Friendly Agricultural Research Center, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Chaw Ei Htwe Maung
- Department of Agricultural and Biological Chemistry, Environmentally-Friendly Agricultural Research Center, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Jun Su Noh
- Department of Agricultural Chemistry, Environmentally-Friendly Agricultural Research Center, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Jeong-Yong Cho
- Department of Food Science and Technology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Kil Yong Kim
- Department of Agricultural and Biological Chemistry, Environmentally-Friendly Agricultural Research Center, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Republic of Korea
| |
Collapse
|
33
|
Jang S, Choi SK, Zhang H, Zhang S, Ryu CM, Kloepper JW. History of a model plant growth-promoting rhizobacterium, Bacillus velezensis GB03: from isolation to commercialization. FRONTIERS IN PLANT SCIENCE 2023; 14:1279896. [PMID: 37885658 PMCID: PMC10598611 DOI: 10.3389/fpls.2023.1279896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 09/26/2023] [Indexed: 10/28/2023]
Abstract
Bacillus velezensis strain GB03 is a Gram-positive rhizosphere bacterium known for its ability to promote plant growth and immunity. This review provides a comprehensive overview of the research on GB03 from its initial discovery in Australian wheat fields in 1971 to its current applications. Recognized as a model plant growth-promoting rhizobacterium (PGPR), GB03 has exhibited outstanding performance in enhancing the growth and protection of many crop plants including cucumber, pepper, wheat, barley, soybean, and cotton. Notably, GB03 has been reported to elicit plant immune response, referred to as induced systemic resistance (ISR), against above-ground pathogens and insect pests. Moreover, a pivotal finding in GB03 was the first-ever identification of its bacterial volatile compounds, which are known to boost plant growth and activate ISR. Research conducted over the past five decades has clearly demonstrated the potential of GB03 as an eco-friendly substitute for conventional pesticides and fertilizers. Validating its safety, the U.S. Environmental Protection Agency endorsed GB03 for commercial use as Kodiak® in 1998. Subsequently, other compounds, such as BioYield™, were released as a biological control agent against soil-borne pathogens and as a biofertilizer, utilizing a durable spore formulation. More recently, GB03 has been utilized as a keystone modulator for engineering the rhizosphere microbiome and for eliciting microbe-induced plant volatiles. These extensive studies on GB03 underscore its significant role in sustainable agriculture, positioning it as a safe and environmentally-friendly solution for crop protection.
Collapse
Affiliation(s)
- Seonghan Jang
- Infectious Disease Research Center, Research Institute of Bioscience and Biotechnology (KRIBB), Yuseong-gu, Daejeon, Republic of Korea
| | - Soo-Keun Choi
- Infectious Disease Research Center, Research Institute of Bioscience and Biotechnology (KRIBB), Yuseong-gu, Daejeon, Republic of Korea
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, Korea University of Science and Technology (UST), Yuseong-gu, Daejeon, Republic of Korea
| | - Huiming Zhang
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Shouan Zhang
- Tropical Research and Education Center, Department of Plant Pathology, University of Florida-IFAS, Homestead, FL, United States
| | - Choong-Min Ryu
- Infectious Disease Research Center, Research Institute of Bioscience and Biotechnology (KRIBB), Yuseong-gu, Daejeon, Republic of Korea
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, Korea University of Science and Technology (UST), Yuseong-gu, Daejeon, Republic of Korea
| | - Joseph W. Kloepper
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, United States
| |
Collapse
|
34
|
Alippi AM, Lamelza F, Torres Tejerizo GA, Abrahamovich E, López AC. Identification, phylogenetic analysis, and genome mining of the tetracycline-resistant Bacillus thuringiensis strain m401 reveal its potential for biotechnological and biocontrol applications. Rev Argent Microbiol 2023; 55:317-331. [PMID: 37400312 DOI: 10.1016/j.ram.2023.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 04/03/2023] [Accepted: 05/22/2023] [Indexed: 07/05/2023] Open
Abstract
Bacillus thuringiensis is an entomopathogen belonging to the Bacillus cereus clade. We isolated a tetracycline-resistant strain called m401, recovered it from honey, and identified it as Bacillus thuringiensis sv. kumamotoensis based on the average nucleotide identity calculations (ANIb) comparison and the analysis of the gyrB gene sequences of different B. thuringiensis serovars. Sequences with homology to virulence factors [cytK, nheA, nheB, nheC, hblA, hblB, hblC, hblD, entFM, and inhA] and tetracycline resistance genes [tet(45), tet(V), and tet(M)/tet(W)/tet(O)/tet(S) family] were identified in the bacterial chromosome. The prediction of plasmid-coding regions revealed homolog sequences to the MarR and TetR/AcrR family of transcriptional regulators, toxins, and lantipeptides. The genome mining analysis revealed 12 regions of biosynthetic gene clusters responsible for synthesizing secondary metabolites. We identified biosynthetic gene clusters coding for bacteriocins, siderophores, ribosomally synthesized post-translationally modified peptide products, and non-ribosomal peptide synthetase clusters that provide evidence for the possible use of Bt m401 as a biocontrol agent. Furthermore, Bt m401 showed high inhibition against all Paenibacillus larvae genotypes tested in vitro. In conclusion, Bt m401 owns various genes involved in different biological processes, such as transductional regulators associated with antibiotic resistance, toxins, and antimicrobial peptides with potential biotechnological and biocontrol applications.
Collapse
Affiliation(s)
- Adriana M Alippi
- Unidad de Bacteriología, Centro de Investigaciones de Fitopatología (CIDEFI), Facultad de Ciencias Agrarias y Forestales, Universidad Nacional de La Plata, cc 31, calle 60 y 119, S/N, 1900 La Plata, Argentina; Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CICBA), Argentina.
| | - Florencia Lamelza
- Unidad de Bacteriología, Centro de Investigaciones de Fitopatología (CIDEFI), Facultad de Ciencias Agrarias y Forestales, Universidad Nacional de La Plata, cc 31, calle 60 y 119, S/N, 1900 La Plata, Argentina
| | - Gonzalo A Torres Tejerizo
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET-CCT La Plata), Argentina; IBBM (Instituto de Biotecnología y Biología Molecular), Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, UNLP, Calles 49 y 115 S/N, 1900 La Plata, Argentina
| | - Eliana Abrahamovich
- YPF Tecnología (Y-Tec), Av. del Petróleo S/N entre 129 y 143, 1923 Berisso, Argentina
| | - Ana C López
- Unidad de Bacteriología, Centro de Investigaciones de Fitopatología (CIDEFI), Facultad de Ciencias Agrarias y Forestales, Universidad Nacional de La Plata, cc 31, calle 60 y 119, S/N, 1900 La Plata, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET-CCT La Plata), Argentina
| |
Collapse
|
35
|
Santos-Lima D, de Castro Spadari C, de Morais Barroso V, Carvalho JCS, de Almeida LC, Alcalde FSC, Ferreira MJP, Sannomiya M, Ishida K. Lipopeptides from an isolate of Bacillus subtilis complex have inhibitory and antibiofilm effects on Fusarium solani. Appl Microbiol Biotechnol 2023; 107:6103-6120. [PMID: 37561179 DOI: 10.1007/s00253-023-12712-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/10/2023] [Accepted: 07/25/2023] [Indexed: 08/11/2023]
Abstract
Bacillus subtilis species complex is known as lipopeptide-producer with biotechnological potential for pharmaceutical developments. This study aimed to identify lipopeptides from a bacterial isolate and evaluate their antifungal effects. Here, we isolated and identified a lipopeptide-producing bacterium as a species of Bacillus subtilis complex (strain UL-1). Twenty lipopeptides (six iturins, six fengycins, and eight surfactins) were identified in the crude extract (CE) and fractions (F1, F2, F3, and F4), and the highest content of total lipopeptides was observed in CE and F2. The chemical quantification data corroborate with the hemolytic and antifungal activities that CE and F2 were the most hemolytic and inhibited the fungal growth at lower concentrations against Fusarium spp. In addition, they caused morphological changes such as shortening and/or atypical branching of hyphae and induction of chlamydospore-like structure formation, especially in Fusarium solani. CE was the most effective in inhibiting the biofilm formation and in disrupting the mature biofilm of F. solani reducing the total biomass and the metabolic activity at concentrations ≥ 2 µg/mL. Moreover, CE significantly inhibited the adherence of F. solani conidia on contact lenses and nails as well as disrupted the pre-formed biofilms on nails. CE at 100 mg/kg was nontoxic on Galleria mellonella larvae, and it reduced the fungal burden in larvae previously infected by F. solani. Taken together, the lipopeptides obtained from strain UL-1 demonstrated a potent anti-Fusarium effect inducing morphological alterations and antibiofilm activities. Our data open further studies for the biotechnological application of these lipopeptides as potential antifungal agents. KEY POINTS: • Lipopeptides inhibit Fusarium growth and induce chlamydospore-like structures. • Lipopeptides hamper the adherence of conidia and biofilms of Fusarium solani. • Iturins, fengycins, and surfactins were associated with antifungal effects.
Collapse
Affiliation(s)
- Daniélle Santos-Lima
- Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | | | | | | | | | | | | | - Miriam Sannomiya
- School of Arts, Sciences and Humanities, University of São Paulo, Arlindo Béttio St. 1000, São Paulo, SP, 03828-000, Brazil.
| | - Kelly Ishida
- Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil.
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, Prof. Lineu Prestes Ave. 1374, São Paulo, SP, 05508-000, Brazil.
| |
Collapse
|
36
|
Proespraiwong P, Mavichak R, Imaizumi K, Hirono I, Unajak S. Evaluation of Bacillus spp. as Potent Probiotics with Reduction in AHPND-Related Mortality and Facilitating Growth Performance of Pacific White Shrimp ( Litopenaeus vannamei) Farms. Microorganisms 2023; 11:2176. [PMID: 37764020 PMCID: PMC10537061 DOI: 10.3390/microorganisms11092176] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/04/2023] [Accepted: 08/10/2023] [Indexed: 09/29/2023] Open
Abstract
Acute hepatopancreatic necrosis disease (AHPND) is a serious bacterial disease affecting shrimp aquaculture worldwide. In this study, natural microbes were used in disease prevention and control. Probiotics derived from Bacillus spp. were isolated from the stomachs of AHPND-surviving Pacific white shrimp Litopenaeus vannamei (22 isolates) and mangrove forest soil near the shrimp farms (10 isolates). Bacillus spp. were genetically identified and characterized based on the availability of antimicrobial peptide (AMP)-related genes. The phenotypic characterization of all Bacillus spp. was determined based on their capability to inhibit AHPND-causing strains of Vibrio parahaemolyticus (VPAHPND). The results showed that Bacillus spp. without AMP-related genes were incapable of inhibiting VPAHPND in vitro, while other Bacillus spp. harboring at least two AMP-related genes exhibited diverse inhibition activities. Interestingly, K3 [B. subtilis (srfAA+ and bacA+)], isolated from shrimp, exerted remarkable inhibition against VPAHPND (80% survival) in Pacific white shrimp and maintained a reduction in shrimp mortality within different ranges of salinity (75-95% survival). Moreover, with different strains of VPAHPND, B. subtilis (K3) showed outstanding protection, and the survival rate of shrimp remained stable among the tested groups (80-95% survival). Thus, B. subtilis (K3) was further used to determine its efficiency in shrimp farms in different locations of Vietnam. Lower disease occurrences (2 ponds out of 30 ponds) and greater production efficiency were noticeable in the B. subtilis (K3)-treated farms. Taking the results of this study together, the heat-shock isolation and genotypic-phenotypic characterization of Bacillus spp. enable the selection of probiotics that control AHPND in Pacific white shrimp. Consequently, greater disease prevention and growth performance were affirmed to be beneficial in the use of these probiotics in shrimp cultivation, which will sustain shrimp aquaculture and be environmentally friendly.
Collapse
Affiliation(s)
- Porranee Proespraiwong
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand; (P.P.); (K.I.)
- Kasetsart Vaccines and Bio-Product Innovation Centre, Kasetsart University, Bangkok 10900, Thailand
| | - Rapeepat Mavichak
- Charoen Pokphand Foods Public Co., Ltd., Aquatic Animal Health Research Center, Samut Sakhon 74000, Thailand;
| | - Kentaro Imaizumi
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand; (P.P.); (K.I.)
- Kasetsart Vaccines and Bio-Product Innovation Centre, Kasetsart University, Bangkok 10900, Thailand
| | - Ikuo Hirono
- Graduate School of Marine Science and Technology, Tokyo University of Marine Science and Technology, Konan 4-5-7, Minato-Ku, Tokyo 108-8477, Japan;
| | - Sasimanas Unajak
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand; (P.P.); (K.I.)
- Kasetsart Vaccines and Bio-Product Innovation Centre, Kasetsart University, Bangkok 10900, Thailand
| |
Collapse
|
37
|
Alqahtani O, Stapleton P, Gibbons S. Production of antibacterial compounds using Bacillus spp. isolated from thermal springs in Saudi Arabia. Saudi Pharm J 2023; 31:1237-1243. [PMID: 37284417 PMCID: PMC10239688 DOI: 10.1016/j.jsps.2023.05.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 05/12/2023] [Indexed: 06/08/2023] Open
Abstract
Seventeen water samples were collected from four different thermal springs in Saudi Arabia. Microbiological assays were used to assess the antibacterial activities of bacterial colonies against antibiotic-resistant and susceptible-bacterial strains, and 16S rRNA gene sequencing was used to identify the genus and species of these antibiotic-producing bacteria. Chromatography and spectroscopy were used to separate the active compounds and help figuring out what their structures were. Four compounds were isolated using bacteria: N-acetyltryptamine (1), isovaleric acid (2), ethyl-4-ethoxybenzoate (3) and phenylacetic acid (4). Compounds 1, 2 and 4 were produced from Bacillus pumilus and 3 was from Bacillus licheniformis (AH-E1). The outcomes of the minimum inhibitory concentrations (MICs) showed that all pure compounds produced in this work had antibacterial activities against Gram-positive pathogens (between 128 mg/L and 512 mg/L compared to the control) and compound 2 had activity against E. coli.
Collapse
Affiliation(s)
- Omaish Alqahtani
- Department of Pharmacognosy, College of Pharmacy, Najran University, Najran, Saudi Arabia
- Research Department of Pharmaceutical and Biological Chemistry, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Paul Stapleton
- Research Department of Pharmaceutical and Biological Chemistry, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Simon Gibbons
- Centre for Natural Products Discovery (CNPD), Liverpool John Moores University, Liverpool L3 3AF, England, UK
| |
Collapse
|
38
|
Danilova IV, Vasileva IA, Gilmutdinova AI, Dyadkina IV, Khusnullina LK, Khasanov DI, Rudakova NL, Sharipova MR. Characterization of Bacillus pumilus Strains with Targeted Gene Editing for Antimicrobial Peptides and Sporulation Factor. Microorganisms 2023; 11:1508. [PMID: 37375011 DOI: 10.3390/microorganisms11061508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 05/25/2023] [Accepted: 06/04/2023] [Indexed: 06/29/2023] Open
Abstract
Due to their capacity to produce antimicrobial peptides that can prevent the growth of diseases, many Bacillus spp. are beneficial to plants. In this study, we looked into the antagonistic activity of the B. pumilus 3-19 strain and its derivatives following targeted genome editing. Two peptide genes with antibacterial action, bacilysin (bac) and bacteriocin (bact), and the sigF gene, which encodes the sigma factor of sporulation, were specifically inactivated using the CRISPR-Cas9 system in the genome of B. pumilus 3-19. Antibacterial activity against B. cereus and Pantoea brenneri decreased as a result of the inactivation of target genes in the B. pumilus 3-19 genome, with a noticeable effect against bacilysin. The growth dynamics of the culture changed when the bac, bact, and sigF genes were inactivated, and the altered strains had less proteolytic activity. An asporogenic mutant of B. pumilus 3-19 was obtained by inactivating the sigF gene. It has been proven that bacilysin plays a unique part in the development of B. pumilus 3-19's antagonistic action against soil microorganisms.
Collapse
Affiliation(s)
- Iuliia V Danilova
- Research Laboratory "Agrobioengineering", Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008 Kazan, Russia
| | - Iuliia A Vasileva
- Research Laboratory "Agrobioengineering", Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008 Kazan, Russia
| | - Ajgul I Gilmutdinova
- Research Laboratory "Agrobioengineering", Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008 Kazan, Russia
| | - Ilona V Dyadkina
- Research Laboratory "Agrobioengineering", Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008 Kazan, Russia
| | - Liya K Khusnullina
- Research Laboratory "Agrobioengineering", Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008 Kazan, Russia
| | - Damir I Khasanov
- Research Laboratory "Agrobioengineering", Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008 Kazan, Russia
| | - Natalia L Rudakova
- Research Laboratory "Agrobioengineering", Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008 Kazan, Russia
| | - Margarita R Sharipova
- Research Laboratory "Agrobioengineering", Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008 Kazan, Russia
| |
Collapse
|
39
|
Wu G, Zhou J, Zheng J, Abdalmegeed D, Tian J, Wang M, Sun S, Sedjoah RCAA, Shao Y, Sun S, Xin Z. Construction of lipopeptide mono-producing Bacillus strains and comparison of their antimicrobial activity. FOOD BIOSCI 2023; 53:102813. [DOI: 10.1016/j.fbio.2023.102813] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
|
40
|
Lazar V, Oprea E, Ditu LM. Resistance, Tolerance, Virulence and Bacterial Pathogen Fitness-Current State and Envisioned Solutions for the Near Future. Pathogens 2023; 12:pathogens12050746. [PMID: 37242416 DOI: 10.3390/pathogens12050746] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/16/2023] [Accepted: 05/19/2023] [Indexed: 05/28/2023] Open
Abstract
The current antibiotic crisis and the global phenomena of bacterial resistance, inherited and non-inherited, and tolerance-associated with biofilm formation-are prompting dire predictions of a post-antibiotic era in the near future. These predictions refer to increases in morbidity and mortality rates as a consequence of infections with multidrug-resistant or pandrug-resistant microbial strains. In this context, we aimed to highlight the current status of the antibiotic resistance phenomenon and the significance of bacterial virulence properties/fitness for human health and to review the main strategies alternative or complementary to antibiotic therapy, some of them being already clinically applied or in clinical trials, others only foreseen and in the research phase.
Collapse
Affiliation(s)
- Veronica Lazar
- Department of Botany and Microbiology, Faculty of Biology, University of Bucharest, 1-3 Portocalelor Street, 060101 Bucharest, Romania
| | - Eliza Oprea
- Department of Botany and Microbiology, Faculty of Biology, University of Bucharest, 1-3 Portocalelor Street, 060101 Bucharest, Romania
| | - Lia-Mara Ditu
- Department of Botany and Microbiology, Faculty of Biology, University of Bucharest, 1-3 Portocalelor Street, 060101 Bucharest, Romania
| |
Collapse
|
41
|
Ham SL, Lee TH, Kim KJ, Kim JH, Hwang SJ, Lee SH, Yu JS, Kim KH, Lee HJ, Lee W, Kim CS. Discovery and Biosynthesis of Imidazolium Antibiotics from the Probiotic Bacillus licheniformis. JOURNAL OF NATURAL PRODUCTS 2023; 86:850-859. [PMID: 36921254 DOI: 10.1021/acs.jnatprod.2c01032] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Antibiotic resistance is one of the world's most urgent public health problems, and novel antibiotics to kill drug-resistant bacteria are needed. Natural product-derived small molecules have been the major source of new antibiotics. Here we describe a family of antibacterial metabolites isolated from a probiotic bacterium, Bacillus licheniformis. A cross-streaking assay followed by activity-guided isolation yielded a novel antibacterial metabolite, bacillimidazole G, which possesses a rare imidazolium ring in the structure, showing MIC values of 0.7-2.6 μg/mL against human pathogenic Gram-positive and Gram-negative bacteria including methicillin-resistant Staphylococcus aureus (MRSA) and a lipopolysaccharide (LPS)-lacking Acinetobacter baumannii ΔlpxC. Bacillimidazole G also lowered MICs of colistin, a Gram-negative antibiotic, up to 8-fold against wild-type Escherichia coli MG1655 and A. baumannii. We propose a biosynthetic pathway to the characterized metabolites based on precursor-feeding studies, a chemical biological approach, biomimetic total synthesis, and a biosynthetic gene knockout method.
Collapse
Affiliation(s)
- Song Lim Ham
- Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Tae Hyun Lee
- Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Kyung Jun Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jung Ha Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Su Jung Hwang
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Sun Ho Lee
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jae Sik Yu
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Department of Integrative Biological Sciences and Industry, Sejong University, Seoul 05006, Republic of Korea
| | - Ki Hyun Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Hyo-Jong Lee
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Wonsik Lee
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Chung Sub Kim
- Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
42
|
Ma X, Gao Y, Li H, Wang D, Li J, Hu X, Huang X, Lin M, Tang Y, Liu Z. Identification and characterization of biocontrol agent Lysinibacillus boronitolerans P42 against Cerrena unicolor that causes root rot of arecanut palm. Arch Microbiol 2023; 205:157. [PMID: 37004578 DOI: 10.1007/s00203-023-03433-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 01/18/2023] [Accepted: 02/02/2023] [Indexed: 04/04/2023]
Abstract
The arecanut palm is one of the most important industrial crops in tropical area around the world. The root rot of arecanut palm, which is caused by Cerrena unicolor, has led to heavy economic losses and restricted greatly the development of arecanut industry, especially in Hainan province of China. The common use of chemical agents has worsened the problems of the emergence of resistant pathogens and the pollution of agricultural environment. This study aims to screen and identify a more effective and environment friendly biocontrol method for the prevention and treatment of root rot of arecanut palm. The mycelium growth rate is investigated to select antagonistic bacteria from tropical crop rotation fields which show improved resistance against soil-borne pathogens, and the strain P42 is revealed with the strongest antagonistic effects (82.18%). Based on 16 s rDNA sequence analysis, the strain P42 is identified as Lysinibacillus boronitolerans. In vitro antimicrobial activity shows that the strain P42 exhibits broad-spectrum antagonistic activity against a wide variety of tropical agricultural fungal pathogens, including Cerrena unicolor, Magnaporthe oryzea, Botryodiplodia theobromae, Neoscytalidium dimidiatum, Thanatephorus cucumeris, Fusarium oxysporum, and Botrytis cinerea Per.. The antagonistic activity of the culture of P42 is tolerant to common proteases, longer storage time, and temperature range of 40-121 °C; and is significantly influenced by alkaline (7-9) and acidic (1-2) pH, as well as by ultraviolet ray treatment for more than 30 min. The investigation on the antagonistic activity of the crude extract of fermentation filtrate indicates that the active compounds might be lipopeptides, polyketones, or proteins. To our knowledge, this is the first report of L. boronitolerans as potential bio-reagents for controlling root rot of arecanut palm caused by Cerrena unicolor.
Collapse
Affiliation(s)
- Xiang Ma
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Life Sciences, Hainan University, Haikou, 570228, China
| | - Yuxiao Gao
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Life Sciences, Hainan University, Haikou, 570228, China
| | - Hong Li
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Life Sciences, Hainan University, Haikou, 570228, China
| | - Dan Wang
- School of Tropical Crops, Hainan University, Haikou, 570228, China
| | - Juanjuan Li
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Life Sciences, Hainan University, Haikou, 570228, China
| | - Xinwen Hu
- School of Tropical Crops, Hainan University, Haikou, 570228, China
| | - Xi Huang
- School of Tropical Crops, Hainan University, Haikou, 570228, China
| | - Min Lin
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yanqiong Tang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Life Sciences, Hainan University, Haikou, 570228, China.
| | - Zhu Liu
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Life Sciences, Hainan University, Haikou, 570228, China.
| |
Collapse
|
43
|
Chioma Mgbodile F, Nwagu TNT. Probiotic therapy, African fermented foods and food-derived bioactive peptides in the management of SARS-CoV-2 cases and other viral infections. BIOTECHNOLOGY REPORTS 2023; 38:e00795. [PMID: 37041970 PMCID: PMC10066861 DOI: 10.1016/j.btre.2023.e00795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 03/20/2023] [Accepted: 03/27/2023] [Indexed: 04/04/2023]
Abstract
The current paper focuses on the impact of probiotics, African fermented foods and bioactive peptides on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection severity and related viral infections. Using probiotics or bioactive peptides as therapeutic adjuncts appears superior to standard care alone. Probiotics play critical roles in innate and adaptive immune modulation by balancing the gut microbiota to combat viral infections, secondary bacterial infections and microbial dysbiosis. African fermented foods contain abundant potential probiotic microorganisms such as the lactic acid bacteria (LAB), Saccharomyces, and Bacillus. More so, fermented food-derived bioactive peptides play vital roles in preventing cardiovascular diseases, hypertension, lung injury, diabetes, and other COVID-19 comorbidities. Regularly incorporating potential probiotics and bioactive peptides into diets should enable a build-up of the benefits in the body system that may result in a better prognosis, especially in COVID-19 patients with underlying complexities. Despite the reported therapeutic potentials of probiotics and fermented foods, numerous setbacks exist regarding their application in disease management. These shortfalls underscore an evident need for more studies to evaluate the specific potentials of probiotics and traditional fermented foods in ameliorating SARS-CoV-2 and other viral infections.
Collapse
|
44
|
Chen YW, Yu YH. Differential effects of Bacillus subtilis- and Bacillus licheniformis-fermented products on growth performance, intestinal morphology, intestinal antioxidant and barrier function gene expression, cecal microbiota community, and microbial carbohydrate-active enzyme composition in broilers. Poult Sci 2023; 102:102670. [PMID: 37068351 PMCID: PMC10130491 DOI: 10.1016/j.psj.2023.102670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 03/18/2023] [Accepted: 03/20/2023] [Indexed: 04/19/2023] Open
Abstract
This study investigated the differential effects of Bacillus subtilis-fermented products (SFPs) and Bacillus licheniformis-fermented products (LFPs) on the growth performance, intestinal morphology, intestinal gene expression, cecal microbiota community, and microbial carbohydrate-active enzyme composition of broilers. In total, 160 one-day-old unsexed Arbor Acres broiler chicks were randomly allocated to 4 treatment groups (with 8 replicates per group and 5 chicks per replicate): control (CON), enramycin (ENM), SFP, and LFP groups, which were fed a basal diet, basal diet supplemented with 10 mg/kg ENM, basal diet supplemented with 108 colony-forming units (CFU) of B. subtilis spores per gram of feed, and basal diet supplemented with 108 CFU of B. licheniformis spores per gram of feed, respectively. LFP treatment resulted in a higher (P < 0.01) body weight at the age of 35 d and higher average daily gain over 15 to 35 (P < 0.05) and 1 to 35 (P < 0.05) d of age than did the CON and SFP treatments. The average villus heights in the jejunum were longer (P < 0.05) in the LFP group than those in the SFP group. Moreover, the LFP group exhibited a higher jejunal barrier function gene expression (mucin 2, zonula occludens-1, and occludin) and cecal antioxidant gene expression (superoxide dismutase) than did the CON group (P < 0.05). A principal coordinate analysis of cecal microbiota and carbohydrate-active enzyme composition demonstrated distinct clustering among the groups. Lactobacillus crispatus abundance in the cecal digesta was higher (P < 0.01) in the SFP group than in the CON and LFP groups. Finally, microbial glycosyltransferase 2 gene expression in the cecal digesta was higher in the LFP group than in the CON and ENM groups. In conclusion, LFPs can improve the growth performance, increase intestinal barrier function and antioxidant gene expression, and modulate cecal microflora composition and carbohydrate-active enzyme composition of broilers. The overall effect of LFPs on growth promotion in broilers was superior to that of SFPs.
Collapse
Affiliation(s)
- Yu-Wei Chen
- Department of Biotechnology and Animal Science, National Ilan University, Yilan, Taiwan
| | - Yu-Hsiang Yu
- Department of Biotechnology and Animal Science, National Ilan University, Yilan, Taiwan.
| |
Collapse
|
45
|
Pramanik S, Venkatraman S, Vaidyanathan VK. Development of engineered probiotics with tailored functional properties and their application in food science. Food Sci Biotechnol 2023; 32:453-470. [PMID: 36911322 PMCID: PMC9992677 DOI: 10.1007/s10068-023-01252-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 02/27/2023] Open
Abstract
The potential health benefits of probiotics may not be cognized because of the substantial curtailment in their viability during food storage and passage through the gastrointestinal system. Intestinal flora composition, and resistance against pathogens are among the health benefits associated with probiotic consumption. In the gastric environment, pH 2.0, probiotics dramatically lose their viability during the transit through the gastrointestinal system. The challenge remains to maintain cell viability until it reaches the large intestine. In extreme conditions, such as a decrease in pH or an increase in temperature, encapsulation technology can enhance the viability of probiotics. Probiotic bacterial strains can be encapsulated in a variety of ways. The methods are broadly systematized into two categories, liquid and solid delivery systems. This review emphasizes the technology used in the research and commercial sectors to encapsulate probiotic cells while keeping them alive and the food matrix used to deliver these cells to consumers. Graphical abstract
Collapse
Affiliation(s)
- Shreyasi Pramanik
- Integrated Bioprocessing Laboratory, School of Bioengineering, Department of Biotechnology, SRM Institute of Science and Technology (SRM IST), Tamil Nadu 603 203 Kattankulathur, India
| | - Swethaa Venkatraman
- Integrated Bioprocessing Laboratory, School of Bioengineering, Department of Biotechnology, SRM Institute of Science and Technology (SRM IST), Tamil Nadu 603 203 Kattankulathur, India
| | - Vinoth Kumar Vaidyanathan
- Integrated Bioprocessing Laboratory, School of Bioengineering, Department of Biotechnology, SRM Institute of Science and Technology (SRM IST), Tamil Nadu 603 203 Kattankulathur, India
| |
Collapse
|
46
|
Purification, structure and characterization of the novel antimicrobial lipopeptides produced by Paenibacillus ehimensis HD. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
|
47
|
Iqbal S, Begum F, Rabaan AA, Aljeldah M, Al Shammari BR, Alawfi A, Alshengeti A, Sulaiman T, Khan A. Classification and Multifaceted Potential of Secondary Metabolites Produced by Bacillus subtilis Group: A Comprehensive Review. Molecules 2023; 28:molecules28030927. [PMID: 36770594 PMCID: PMC9919246 DOI: 10.3390/molecules28030927] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 12/31/2022] [Accepted: 01/04/2023] [Indexed: 01/19/2023] Open
Abstract
Despite their remarkable biosynthetic potential, Bacillus subtilis have been widely overlooked. However, their capability to withstand harsh conditions (extreme temperature, Ultraviolet (UV) and γ-radiation, and dehydration) and the promiscuous metabolites they synthesize have created increased commercial interest in them as a therapeutic agent, a food preservative, and a plant-pathogen control agent. Nevertheless, the commercial-scale availability of these metabolites is constrained due to challenges in their accessibility via synthesis and low fermentation yields. In the context of this rising in interest, we comprehensively visualized the antimicrobial peptides produced by B. subtilis and highlighted their prospective applications in various industries. Moreover, we proposed and classified these metabolites produced by the B. subtilis group based on their biosynthetic pathways and chemical structures. The biosynthetic pathway, bioactivity, and chemical structure are discussed in detail for each class. We believe that this review will spark a renewed interest in the often disregarded B. subtilis and its remarkable biosynthetic capabilities.
Collapse
Affiliation(s)
- Sajid Iqbal
- Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan
- Correspondence: or
| | - Farida Begum
- Department of Biochemistry, Abdul Wali Khan University Mardan (AWKUM), Mardan 23200, Pakistan
| | - Ali A. Rabaan
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran 31311, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
- Department of Public Health and Nutrition, The University of Haripur, Haripur 22610, Pakistan
| | - Mohammed Aljeldah
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Hafr Al Batin, Hafr Al Batin 39831, Saudi Arabia
| | - Basim R. Al Shammari
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Hafr Al Batin, Hafr Al Batin 39831, Saudi Arabia
| | - Abdulsalam Alawfi
- Department of Pediatrics, College of Medicine, Taibah University, Al-Madinah 41491, Saudi Arabia
| | - Amer Alshengeti
- Department of Pediatrics, College of Medicine, Taibah University, Al-Madinah 41491, Saudi Arabia
- Department of Infection Prevention and Control, Prince Mohammad Bin Abdulaziz Hospital, National Guard Health Affairs, Al-Madinah 41491, Saudi Arabia
| | - Tarek Sulaiman
- Infectious Diseases Section, Medical Specialties Department, King Fahad Medical City, Riyadh 12231, Saudi Arabia
| | - Alam Khan
- Department of Life Sciences, Abasyn University Islamabad Campus, Islamabad 44000, Pakistan
| |
Collapse
|
48
|
Citizen Contribution for Searching for Alternative Antimicrobial Activity Substances in Soil. Antibiotics (Basel) 2022; 12:antibiotics12010057. [PMID: 36671258 PMCID: PMC9854653 DOI: 10.3390/antibiotics12010057] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 12/31/2022] Open
Abstract
Antimicrobial resistance (AMR) is problematic worldwide, and due to the loss of efficiency of many antibiotics, the pressure to discover alternative antimicrobial molecules has increased. Soil harbors a great biodiversity and biomass of microorganisms, and many antibiotics are produced by soil microbiota. Therefore, soil is a promising reservoir to find new antimicrobial agents. In this respect, novel pedagogical strategies regarding the AMR global crisis have recently been developed in different countries worldwide. Highlighted is the service-learning project "MicroMundo" integrated in a global Citizen Science project called "Tiny Earth". Hence, the present work aimed at determining the antimicrobial activity of soil bacteria, the biodiversity of the selected isolates as putative antimicrobial producers, and their antibiotic resistance profile. Moreover, through the MicroMundo project, we tried to illustrate the relevant link between science and education and the benefits of implementing service-learning methodologies to raise awareness of the AMR problem and to contribute to the search for new alternatives. A total of 16 teachers, 25 university students and 300 secondary school students participated in the search for antimicrobial activity on a collection of 2600 isolates obtained from a total of 130 soil samples analysed. In total, 132 isolates (5% of total tested) were selected as potential antimicrobial producers when two indicator bacteria were used (Escherichia coli and Staphylococcus epidermidis); the most frequent genus among these isolates was Bacillus, followed by Pseudomonas, Paenibacillus and Serratia. The antimicrobial activity (AA) of the 132 potential antimicrobial producers was studied in a second step against 15 indicator bacteria (of six genera and thirteen species, including relevant pathogens). Of the 132 potentially producing bacteria, 32 were selected for further characterization. In this respect, 18 isolates showed low AA, 12 isolates were considered as medium producers, and 2 highly antimicrobial-producing isolates were found (Brevibacillus laterosporus X7262 and Staphylococcus hominis X7276) showing AA against 80% of the 15 indicators tested. Moreover, 48% of the antimicrobial-producing bacteria were susceptible to all antibiotics tested. Due to citizen science, antimicrobial-producing bacteria of great interest have been isolated, managing to raise awareness about the problem of AMR.
Collapse
|
49
|
Vaca J, Ortiz A, Sansinenea E. A study of bacteriocin like substances comparison produced by different species of Bacillus related to B. cereus group with specific antibacterial activity against foodborne pathogens. Arch Microbiol 2022; 205:13. [PMID: 36463345 DOI: 10.1007/s00203-022-03356-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/08/2022] [Accepted: 11/25/2022] [Indexed: 12/07/2022]
Abstract
The antibiotic-resistant bacteria are emerging as a great threat worldwide. For this reason it is important to develop new antibiotic substances. Bacillus is considered as a factory of a wide range of chemical compounds with a variety of activities. Among these substances are bacteriocins which are small peptides showing stability in a wide range of pH and temperatures and having a potent antibacterial activity. Bacillus species can be grouped into families such as B. cereus group based on their genetic similarity. It can be helpful to study the bacteriocins presented in these related species identifying the differences and similarities between them to relate the presence of a given bacteriocin with the producer specie. The aim of this study was to isolate the bacteriocins from three related species of B. cereus group such as B. mycoides, B. weihenstephanensis and B. toyonensis and compare among them and with the bacteriocins isolated from B. velezensis. Besides it was analyzed the bactericidal activity of each isolated bacteriocin. Five different bacteriocins of similar molecular mass and specific against foodborne pathogens were isolated from three Bacillus species related to B. cereus group, that were quite different both in molecular mass and bactericidal activity from that was isolated from B. velezensis. The results indicated that bacteriocins can be distinguished according to Bacillus specie from it has been isolated.
Collapse
Affiliation(s)
- Jessica Vaca
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, CP, 72590, Puebla, Puebla, México
| | - Aurelio Ortiz
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, CP, 72590, Puebla, Puebla, México
| | - Estibaliz Sansinenea
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, CP, 72590, Puebla, Puebla, México.
| |
Collapse
|
50
|
Chen T, Zhang Z, Li W, Chen J, Chen X, Wang B, Ma J, Dai Y, Ding H, Wang W, Long Y. Biocontrol potential of Bacillus subtilis CTXW 7-6-2 against kiwifruit soft rot pathogens revealed by whole-genome sequencing and biochemical characterisation. Front Microbiol 2022; 13:1069109. [PMID: 36532498 PMCID: PMC9751376 DOI: 10.3389/fmicb.2022.1069109] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 11/14/2022] [Indexed: 09/05/2023] Open
Abstract
Soft rot causes significant economic losses in the kiwifruit industry. This study isolated strain CTXW 7-6-2 from healthy kiwifruit tissue; this was a gram-positive bacterium that produced the red pigment pulcherrimin. The phylogenetic tree based on 16S ribosomal RNA, gyrA, rpoB, and purH gene sequences identified CTXW 7-6-2 as a strain of Bacillus subtilis. CTXW 7-6-2 inhibited hyphal growth of pathogenic fungi that cause kiwifruit soft rot, namely, Botryosphaeria dothidea, Phomopsis sp., and Alternaria alternata, by 81.76, 69.80, and 32.03%, respectively. CTXW 7-6-2 caused the hyphal surface to become swollen and deformed. Volatile compounds (VOC) produced by the strain inhibited the growth of A. alternata and Phomopsis sp. by 65.74 and 54.78%, respectively. Whole-genome sequencing revealed that CTXW 7-6-2 possessed a single circular chromosome of 4,221,676 bp that contained 4,428 protein-coding genes, with a guanine and cytosine (GC) content of 43.41%. Gene functions were annotated using the National Center for Biotechnology Information (NCBI) non-redundant protein, Swiss-Prot, Kyoto Encyclopedia of Genes and Genomes, Clusters of Orthologous Groups of proteins, Gene Ontology, Pathogen-Host Interactions, Carbohydrate-Active enZYmes, and Rapid Annotations using Subsystem Technology databases, revealing non-ribosomal pathways associated with antifungal mechanisms, biofilm formation, chemotactic motility, VOC 3-hydroxy-2-butanone, cell wall-associated enzymes, and synthesis of various secondary metabolites. antiSMASH analysis predicted that CTXW 7-6-2 can produce the active substances bacillaene, bacillibactin, subtilosin A, bacilysin, and luminmide and has four gene clusters of unknown function. Quantitative real-time PCR (qRT-PCR) analysis verified that yvmC and cypX, key genes involved in the production of pulcherrimin, were highly expressed in CTXW 7-6-2. This study elucidates the mechanism by which B. subtilis strain CTXW 7-6-2 inhibits pathogenic fungi that cause kiwifruit soft rot, suggesting the benefit of further studying its antifungal active substances.
Collapse
Affiliation(s)
- Tingting Chen
- Research Center for Engineering Technology of Kiwifruit, College of Agriculture, Institute of Crop Protection, Guizhou University, Guiyang, China
| | - Zhuzhu Zhang
- Research Center for Engineering Technology of Kiwifruit, College of Agriculture, Institute of Crop Protection, Guizhou University, Guiyang, China
| | - Wenzhi Li
- Research Center for Engineering Technology of Kiwifruit, College of Agriculture, Institute of Crop Protection, Guizhou University, Guiyang, China
| | - Jia Chen
- Research Center for Engineering Technology of Kiwifruit, College of Agriculture, Institute of Crop Protection, Guizhou University, Guiyang, China
| | - Xuetang Chen
- Research Center for Engineering Technology of Kiwifruit, College of Agriculture, Institute of Crop Protection, Guizhou University, Guiyang, China
| | - Bince Wang
- Research Center for Engineering Technology of Kiwifruit, College of Agriculture, Institute of Crop Protection, Guizhou University, Guiyang, China
| | - Jiling Ma
- Research Center for Engineering Technology of Kiwifruit, College of Agriculture, Institute of Crop Protection, Guizhou University, Guiyang, China
| | - Yunyun Dai
- Research Center for Engineering Technology of Kiwifruit, College of Agriculture, Institute of Crop Protection, Guizhou University, Guiyang, China
| | - Haixia Ding
- Research Center for Engineering Technology of Kiwifruit, College of Agriculture, Institute of Crop Protection, Guizhou University, Guiyang, China
- Department of Plant Pathology, Guizhou University, Guiyang, China
| | - Weizhen Wang
- Research Center for Engineering Technology of Kiwifruit, College of Agriculture, Institute of Crop Protection, Guizhou University, Guiyang, China
| | - Youhua Long
- Research Center for Engineering Technology of Kiwifruit, College of Agriculture, Institute of Crop Protection, Guizhou University, Guiyang, China
- Teaching Experimental Factory, Guizhou University, Guiyang, China
| |
Collapse
|