1
|
Jaudas F, Bartenschlager F, Shashikadze B, Santamaria G, Reichart D, Schnell A, Stöckl JB, Degroote RL, Cambra JM, Graeber SY, Bähr A, Kartmann H, Stefanska M, Liu H, Naumann-Bartsch N, Bruns H, Berges J, Hanselmann L, Stirm M, Krebs S, Deeg CA, Blum H, Schulz C, Zawada D, Janda M, Caballero-Posadas I, Kunzelmann K, Moretti A, Laugwitz KL, Kupatt C, Saalmüller A, Fröhlich T, Wolf E, Mall MA, Mundhenk L, Gerner W, Klymiuk N. Perinatal dysfunction of innate immunity in cystic fibrosis. Sci Transl Med 2025; 17:eadk9145. [PMID: 39841805 DOI: 10.1126/scitranslmed.adk9145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 07/13/2024] [Accepted: 12/22/2024] [Indexed: 01/24/2025]
Abstract
In patients with cystic fibrosis (CF), repeated cycles of infection and inflammation eventually lead to fatal lung damage. Although diminished mucus clearance can be restored by highly effective CFTR modulator therapy, inflammation and infection often persist. To elucidate the role of the innate immune system in CF etiology, we investigated a CF pig model and compared these results with those for preschool children with CF. In newborn CF pigs, we observed changes in lung immune cell composition before the onset of infection that were dominated by increased monocyte infiltration, whereas neutrophil numbers remained constant. Flow cytometric and transcriptomic profiling revealed that the infiltrating myeloid cells displayed a more immature status. Cells with comparably immature transcriptomic profiles were enriched in the blood of CF pigs at birth as well as in preschool children with CF. This pattern coincided with decreased CD16 expression in the myeloid cells of both pigs and humans, which translated into lower phagocytic activity and reduced production of reactive oxygen species in both species. These results were indicative of a congenital, translationally conserved, and functionally relevant aberration of the immune system in CF. In newborn wild-type pigs, CFTR transcription in immune cells, including lung-derived and circulating monocytes, isolated from the bone marrow, thymus, spleen, and blood was below the detection limits of highly sensitive assays, suggesting an indirect etiology of the observed effects. Our findings highlight the need for additional immunological treatments to target innate immune deficits in patients with CF.
Collapse
Affiliation(s)
- Florian Jaudas
- First Department of Medicine, Cardiology, TUM University Hospital, Technical University of Munich, School of Medicine and Health, Munich 81675, Germany
- Chair of Molecular Animal Breeding and Biotechnology, Gene Center, LMU Munich, Munich 81377, Germany
- Center of Innovative Medical Models (CiMM), LMU Munich, Oberschleissheim 85764, Germany
- Medizinische Klinik und Poliklinik I, LMU Munich, Munich 81377, Germany
| | | | - Bachuki Shashikadze
- Laboratory for Functional Genome Analysis, Gene Center, LMU Munich, Munich 81377, Germany
| | - Gianluca Santamaria
- First Department of Medicine, Cardiology, TUM University Hospital, Technical University of Munich, School of Medicine and Health, Munich 81675, Germany
- Department of Experimental and Clinical Medicine, University "Magna Graecia" of Catanzaro, Catanzaro 88100, Italy
| | - Daniel Reichart
- Medizinische Klinik und Poliklinik I, LMU Munich, Munich 81377, Germany
- German Center for Cardiovascular Research (DZHK), Munich Heart Alliance, Munich 80802, Germany
- Gene Center Munich, LMU Munich, Munich 81377, Germany
| | - Alexander Schnell
- Department for Pediatric and Adolescent Medicine, University Hospital Erlangen, Erlangen 91054, Germany
| | - Jan Bernd Stöckl
- Laboratory for Functional Genome Analysis, Gene Center, LMU Munich, Munich 81377, Germany
| | - Roxane L Degroote
- Chair of Physiology, Department of Veterinary Sciences, LMU Munich, Planegg 82152, Germany
| | - Josep M Cambra
- First Department of Medicine, Cardiology, TUM University Hospital, Technical University of Munich, School of Medicine and Health, Munich 81675, Germany
- Center of Innovative Medical Models (CiMM), LMU Munich, Oberschleissheim 85764, Germany
| | - Simon Y Graeber
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine and Cystic Fibrosis Center, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin 13353, Germany
- German Center for Lung Research (DZL), associated partner site, Berlin 13353, Germany
- German Center for Child and Adolescent Health (DZKJ), partner site, Berlin 13353, Germany
| | - Andrea Bähr
- First Department of Medicine, Cardiology, TUM University Hospital, Technical University of Munich, School of Medicine and Health, Munich 81675, Germany
- Center of Innovative Medical Models (CiMM), LMU Munich, Oberschleissheim 85764, Germany
| | - Heike Kartmann
- Medizinische Klinik und Poliklinik I, LMU Munich, Munich 81377, Germany
- Gene Center Munich, LMU Munich, Munich 81377, Germany
| | - Monika Stefanska
- Medizinische Klinik und Poliklinik I, LMU Munich, Munich 81377, Germany
| | - Huan Liu
- Medizinische Klinik und Poliklinik I, LMU Munich, Munich 81377, Germany
| | - Nora Naumann-Bartsch
- Department for Pediatric and Adolescent Medicine, University Hospital Erlangen, Erlangen 91054, Germany
| | - Heiko Bruns
- Department of Pediatrics and Adolescent Medicine, FAU Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen 91054, Germany
| | - Johannes Berges
- Department of Pediatrics and Adolescent Medicine, FAU Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen 91054, Germany
| | - Lea Hanselmann
- Institute of Veterinary Pathology, Freie Universität Berlin, Berlin 14163, Germany
| | - Michael Stirm
- Chair of Molecular Animal Breeding and Biotechnology, Gene Center, LMU Munich, Munich 81377, Germany
- Center of Innovative Medical Models (CiMM), LMU Munich, Oberschleissheim 85764, Germany
| | - Stefan Krebs
- Laboratory for Functional Genome Analysis, Gene Center, LMU Munich, Munich 81377, Germany
| | - Cornelia A Deeg
- Chair of Physiology, Department of Veterinary Sciences, LMU Munich, Planegg 82152, Germany
| | - Helmut Blum
- Laboratory for Functional Genome Analysis, Gene Center, LMU Munich, Munich 81377, Germany
| | - Christian Schulz
- Medizinische Klinik und Poliklinik I, LMU Munich, Munich 81377, Germany
- German Center for Cardiovascular Research (DZHK), Munich Heart Alliance, Munich 80802, Germany
- Department of Immunopharmacology, Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, Heidelberg University, Mannheim 68167, Germany
| | - Dorota Zawada
- First Department of Medicine, Cardiology, TUM University Hospital, Technical University of Munich, School of Medicine and Health, Munich 81675, Germany
| | - Melanie Janda
- Chair of Molecular Animal Breeding and Biotechnology, Gene Center, LMU Munich, Munich 81377, Germany
| | | | - Karl Kunzelmann
- Institut für Physiologie, Universität Regensburg, Regensburg 93053, Germany
| | - Alessandra Moretti
- First Department of Medicine, Cardiology, TUM University Hospital, Technical University of Munich, School of Medicine and Health, Munich 81675, Germany
- German Center for Cardiovascular Research (DZHK), Munich Heart Alliance, Munich 80802, Germany
- Chair of Regenerative Medicine in Cardiovascular Disease, TUM University Hospital, Technical University of Munich, School of Medicine and Health, Munich 81675, Germany
| | - Karl-Ludwig Laugwitz
- First Department of Medicine, Cardiology, TUM University Hospital, Technical University of Munich, School of Medicine and Health, Munich 81675, Germany
- German Center for Cardiovascular Research (DZHK), Munich Heart Alliance, Munich 80802, Germany
| | - Christian Kupatt
- First Department of Medicine, Cardiology, TUM University Hospital, Technical University of Munich, School of Medicine and Health, Munich 81675, Germany
- German Center for Cardiovascular Research (DZHK), Munich Heart Alliance, Munich 80802, Germany
| | - Armin Saalmüller
- Institute of Immunology, University of Veterinary Medicine, Vienna 1210, Austria
| | - Thomas Fröhlich
- Laboratory for Functional Genome Analysis, Gene Center, LMU Munich, Munich 81377, Germany
| | - Eckhard Wolf
- Chair of Molecular Animal Breeding and Biotechnology, Gene Center, LMU Munich, Munich 81377, Germany
- Center of Innovative Medical Models (CiMM), LMU Munich, Oberschleissheim 85764, Germany
- Gene Center Munich, LMU Munich, Munich 81377, Germany
| | - Marcus A Mall
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine and Cystic Fibrosis Center, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin 13353, Germany
- German Center for Lung Research (DZL), associated partner site, Berlin 13353, Germany
- German Center for Child and Adolescent Health (DZKJ), partner site, Berlin 13353, Germany
| | - Lars Mundhenk
- Institute of Veterinary Pathology, Freie Universität Berlin, Berlin 14163, Germany
| | - Wilhelm Gerner
- Institute of Immunology, University of Veterinary Medicine, Vienna 1210, Austria
| | - Nikolai Klymiuk
- First Department of Medicine, Cardiology, TUM University Hospital, Technical University of Munich, School of Medicine and Health, Munich 81675, Germany
- Center of Innovative Medical Models (CiMM), LMU Munich, Oberschleissheim 85764, Germany
| |
Collapse
|
2
|
Risha MA, Reddy KD, Nemani SSP, Jakwerth C, Schmidt-Weber C, Bahmer T, Hansen G, von Mutius E, Rabe KF, Dittrich AM, Grychtol R, Maison N, Schaub B, Kopp MV, Brinkmann F, Meiners S, Jappe U, Weckmann M. Epigenetic training of human bronchial epithelium cells by repeated rhinovirus infections. Allergy 2024; 79:3385-3400. [PMID: 39513674 DOI: 10.1111/all.16388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/20/2024] [Accepted: 10/10/2024] [Indexed: 11/15/2024]
Abstract
BACKGROUND Humans are subjected to various environmental stressors (bacteria, viruses, pollution) throughout life. As such, an inherent relationship exists between the effect of these exposures with age. The impact of these environmental stressors can manifest through DNA methylation (DNAm). However, whether these epigenetic effects selectively target genes, pathways, and biological regulatory mechanisms remains unclear. Due to the frequency of human rhinovirus (HRV) infections throughout life (particularly in early development), we propose the use of HRV under controlled conditions can model the effect of multiple exposures to environmental stressors. METHODS We generated a prediction model by combining transcriptome and DNAm datasets from human epithelial cells after repeated HRV infections. We applied a novel experimental statistical design and method to systematically explore the multifaceted experimental space (number of infections, multiplicity of infections and duration). Our model included 35 samples, each characterized by the three parameters defining their infection status. RESULTS Trainable genes were defined by a consistent linear directionality in DNAm and gene expression changes with successive infections. We identified 77 trainable genes which could be further explored in future studies. The identified methylation sites were tracked within a pediatric cohort to determine the relative changes in candidate-trained sites with disease status and age. CONCLUSIONS Repeated viral infections induce an immune training response in bronchial epithelial cells. Training-sensitive DNAm sites indicate alternate divergent associations in asthma compared to healthy individuals. Our novel model presents a robust tool for identifying trainable genes, providing a foundation for future studies.
Collapse
Affiliation(s)
- Marua Abu Risha
- Division of Clinical and Molecular Allergology, PA Chronic Lung Diseases, Research Center Borstel, Borstel, Germany
- German Center for Lung Research (DZL), Airway Research Center North (ARCN), Borstel, Germany
| | - Karosham D Reddy
- German Center for Lung Research (DZL), Airway Research Center North (ARCN), Borstel, Germany
- Department of Paediatric Pneumology & Allergology, University Clinic Schleswig-Holstein (UKSH), Lübeck, Germany
- Division of Epigenetics of Chronic Lung Diseases, Priority Area Chronic Lung Diseases, Research Center Borstel - Leibniz Lung Center, Borstel, Germany
| | - Sai Sneha Priya Nemani
- German Center for Lung Research (DZL), Airway Research Center North (ARCN), Borstel, Germany
- Department of Paediatric Pneumology & Allergology, University Clinic Schleswig-Holstein (UKSH), Lübeck, Germany
| | - Constanze Jakwerth
- Centre of Allergy and Environment (ZAUM), Technische Universität and Helmholtz Centre Munich, Munich, Germany
- Comprehensive Pneumology Centre Munich (CPC-M), Member of The German Centre for Lung Research (DZL), Munich, Germany
| | - Carsten Schmidt-Weber
- Centre of Allergy and Environment (ZAUM), Technische Universität and Helmholtz Centre Munich, Munich, Germany
- Comprehensive Pneumology Centre Munich (CPC-M), Member of The German Centre for Lung Research (DZL), Munich, Germany
| | - Thomas Bahmer
- German Center for Lung Research (DZL), Airway Research Center North (ARCN), Borstel, Germany
- Department of Pneumology, LungenClinic Grosshansdorf, Grosshansdorf, Germany
- University Hospital Schleswig-Holstein Campus Kiel, Department for Internal Medicine I, Kiel, Germany
| | - Gesine Hansen
- Department of Paediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
- Biomedical Research in End stage and Obstructive Lung Disease Hannover (BREATH), Member of the German Centre of Lung Research (DZL), Munich, Germany
| | - Erika von Mutius
- Comprehensive Pneumology Centre Munich (CPC-M), Member of The German Centre for Lung Research (DZL), Munich, Germany
- Institute for Asthma and Allergy Prevention, Helmholtz Centre Munich, German Research Centre for Environmental Health, Neuherberg, Germany
- Department of Pulmonary and Allergy, Dr von Hauner Children's Hospital, University Children's Hospital, Ludwig Maximilian's University, Munich, Germany
| | - Klaus F Rabe
- Centre of Allergy and Environment (ZAUM), Technische Universität and Helmholtz Centre Munich, Munich, Germany
- Comprehensive Pneumology Centre Munich (CPC-M), Member of The German Centre for Lung Research (DZL), Munich, Germany
| | - Anna-Maria Dittrich
- Department of Paediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
- Biomedical Research in End stage and Obstructive Lung Disease Hannover (BREATH), Member of the German Centre of Lung Research (DZL), Munich, Germany
| | - Ruth Grychtol
- Department of Paediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
- Biomedical Research in End stage and Obstructive Lung Disease Hannover (BREATH), Member of the German Centre of Lung Research (DZL), Munich, Germany
| | - Nicole Maison
- Comprehensive Pneumology Centre Munich (CPC-M), Member of The German Centre for Lung Research (DZL), Munich, Germany
- Institute for Asthma and Allergy Prevention, Helmholtz Centre Munich, German Research Centre for Environmental Health, Neuherberg, Germany
- Department of Pulmonary and Allergy, Dr von Hauner Children's Hospital, University Children's Hospital, Ludwig Maximilian's University, Munich, Germany
| | - Bianca Schaub
- Comprehensive Pneumology Centre Munich (CPC-M), Member of The German Centre for Lung Research (DZL), Munich, Germany
- Department of Pulmonary and Allergy, Dr von Hauner Children's Hospital, University Children's Hospital, Ludwig Maximilian's University, Munich, Germany
- German Center for Child and Adolescent Health (DZKJ), Dr von Hauner Children's Hospital, LMU Munich, Munich, Germany
| | - Matthias V Kopp
- Department of Paediatric Respiratory Medicine, Inselspital, University Children's Hospital of Bern, University of Bern, Bern, Switzerland
| | - Folke Brinkmann
- German Center for Lung Research (DZL), Airway Research Center North (ARCN), Borstel, Germany
- Department of Paediatric Pneumology & Allergology, University Clinic Schleswig-Holstein (UKSH), Lübeck, Germany
| | - Silke Meiners
- German Center for Lung Research (DZL), Airway Research Center North (ARCN), Borstel, Germany
- Immunology and Cell Biology, PA Chronic Lung Diseases, Research Center Borstel, Borstel, Germany
| | - Uta Jappe
- Division of Clinical and Molecular Allergology, PA Chronic Lung Diseases, Research Center Borstel, Borstel, Germany
- German Center for Lung Research (DZL), Airway Research Center North (ARCN), Borstel, Germany
- Interdisciplinary Allergy Outpatient Clinic, Department of Pneumology, University of Lübeck, Lübeck, Germany
| | - Markus Weckmann
- German Center for Lung Research (DZL), Airway Research Center North (ARCN), Borstel, Germany
- Department of Paediatric Pneumology & Allergology, University Clinic Schleswig-Holstein (UKSH), Lübeck, Germany
- Division of Epigenetics of Chronic Lung Diseases, Priority Area Chronic Lung Diseases, Research Center Borstel - Leibniz Lung Center, Borstel, Germany
| |
Collapse
|
3
|
Walrath T, Najarro KM, Giesy LE, Khair S, Orlicky DJ, McMahan RH, Kovacs EJ. Reducing the excessive inflammation after burn injury in aged mice by maintaining a healthier intestinal microbiome. FASEB J 2024; 38:e70065. [PMID: 39305117 PMCID: PMC11465428 DOI: 10.1096/fj.202401020r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/09/2024] [Accepted: 09/09/2024] [Indexed: 10/12/2024]
Abstract
One in six people are projected to be 65 years or older by 2050. As the population ages, better treatments for injuries that disproportionately impact the aged population will be needed. Clinical studies show that people aged 65 and older experience higher rates of morbidity and mortality after burn injury, including a greater incidence of pulmonary complications when compared to younger burn injured adults, which we and others believe is mediated, in part, by inflammation originating in the intestines. Herein, we use our clinically relevant model of scald burn injury in young and aged mice to determine whether cohousing aged mice with young mice or giving aged mice oral gavage of fecal material from young mice is sufficient to alter the microbiome of the aged mice and protect them from inflammation in the ileum and the lungs. Aged burn injured mice have less DNA expression of Bacteroidetes in the feces and an unhealthy Firmicutes/Bacteroidetes ratio. Both Bacteroidetes and the ratio of these two phyla are restored in aged burn injured by prior cohousing for a month with younger mice but not fecal transfer from young mice. This shift in the microbiome coincides with heightened expression of danger-associated molecular patterns (DAMP), and pro-inflammatory cytokine interleukin-6 (il6) in the ileum and lung of aged, burn injured mice, and heightened antimicrobial peptide camp in the lung. Cohousing reverses DAMP expression in the ileum and lung, and cathelicidin-related antimicrobial peptide protein (camp) in the lung, while fecal transfer heightened DAMPs while reducing camp in the lung, and also increased IL-6 protein in the lungs. These results highlight the importance of the intestinal microbiome in mediating inflammation within the gut-lung axis, giving insights into potential future treatments in the clinic.
Collapse
Affiliation(s)
- Travis Walrath
- Department of Surgery, Division of GI, Trauma and Endocrine Surgery, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Kevin M. Najarro
- Department of Surgery, Division of GI, Trauma and Endocrine Surgery, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Lauren E. Giesy
- Department of Surgery, Division of GI, Trauma and Endocrine Surgery, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Shanawaj Khair
- Department of Surgery, Division of GI, Trauma and Endocrine Surgery, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - David J. Orlicky
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Rachel H. McMahan
- Department of Surgery, Division of GI, Trauma and Endocrine Surgery, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Elizabeth J. Kovacs
- Department of Surgery, Division of GI, Trauma and Endocrine Surgery, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Veterans Health Administration, Eastern Colorado Health Care System, Rocky Mountain Regional Veterans Affairs Medical Center (RMRVAMC), Aurora, Colorado, USA
| |
Collapse
|
4
|
Delrue C, Speeckaert R, Delanghe JR, Speeckaert MM. Breath of fresh air: Investigating the link between AGEs, sRAGE, and lung diseases. VITAMINS AND HORMONES 2024; 125:311-365. [PMID: 38997169 DOI: 10.1016/bs.vh.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2024]
Abstract
Advanced glycation end products (AGEs) are compounds formed via non-enzymatic reactions between reducing sugars and amino acids or proteins. AGEs can accumulate in various tissues and organs and have been implicated in the development and progression of various diseases, including lung diseases. The receptor of advanced glycation end products (RAGE) is a receptor that can bind to advanced AGEs and induce several cellular processes such as inflammation and oxidative stress. Several studies have shown that both AGEs and RAGE play a role in the pathogenesis of lung diseases, such as chronic obstructive pulmonary disease, asthma, idiopathic pulmonary fibrosis, cystic fibrosis, and acute lung injury. Moreover, the soluble form of the receptor for advanced glycation end products (sRAGE) has demonstrated its ability to function as a decoy receptor, possessing beneficial characteristics such as anti-inflammatory, antioxidant, and anti-fibrotic properties. These qualities make it an encouraging focus for therapeutic intervention in managing pulmonary disorders. This review highlights the current understanding of the roles of AGEs and (s)RAGE in pulmonary diseases and their potential as biomarkers and therapeutic targets for preventing and treating these pathologies.
Collapse
Affiliation(s)
- Charlotte Delrue
- Department of Nephrology, Ghent University Hospital, Ghent, Belgium
| | | | - Joris R Delanghe
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Marijn M Speeckaert
- Department of Nephrology, Ghent University Hospital, Ghent, Belgium; Research Foundation-Flanders (FWO), Brussels, Belgium.
| |
Collapse
|
5
|
Fraga-Silva TFDC, Boko MMM, Martins NS, Cetlin AA, Russo M, Vianna EO, Bonato VLD. Asthma-associated bacterial infections: Are they protective or deleterious? THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. GLOBAL 2023; 2:14-22. [PMID: 37780109 PMCID: PMC10510013 DOI: 10.1016/j.jacig.2022.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 08/04/2022] [Accepted: 08/09/2022] [Indexed: 10/03/2023]
Abstract
Eosinophilic, noneosinophilic, or mixed granulocytic inflammations are the hallmarks of asthma heterogeneity. Depending on the priming of lung immune and structural cells, subjects with asthma might generate immune responses that are TH2-prone or TH17-prone immune response. Bacterial infections caused by Haemophilus, Moraxella, or Streptococcus spp. induce the secretion of IL-17, which in turn recruit neutrophils into the airways. Clinical studies and experimental models of asthma indicated that neutrophil infiltration induces a specific phenotype of asthma, characterized by an impaired response to corticosteroid treatment. The understanding of pathways that regulate the TH17-neutrophils axis is critical to delineate and develop host-directed therapies that might control asthma and its exacerbation episodes that course with infectious comorbidities. In this review, we outline clinical and experimental studies on the role of airway epithelial cells, S100A9, and high mobility group box 1, which act in concert with the IL-17-neutrophil axis activated by bacterial infections, and are related with asthma that is difficult to treat. Furthermore, we report critically our view in the light of these findings in an attempt to stimulate further investigations and development of immunotherapies for the control of severe asthma.
Collapse
Affiliation(s)
| | - Mèdéton Mahoussi Michaël Boko
- Basic and Applied Immunology Program, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Núbia Sabrina Martins
- Basic and Applied Immunology Program, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Andrea Antunes Cetlin
- Pulmonary Division, Department of Medicine, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Momtchilo Russo
- Department of Immunology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Elcio Oliveira Vianna
- Pulmonary Division, Department of Medicine, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Vania Luiza Deperon Bonato
- Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
- Basic and Applied Immunology Program, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| |
Collapse
|
6
|
Fernandes ACF, Melo JB, Genova VM, Santana ÁL, Macedo G. Phytochemicals as Potential Inhibitors of Advanced Glycation End Products: Health Aspects and Patent Survey. RECENT ADVANCES IN FOOD, NUTRITION & AGRICULTURE 2022; 13:3-16. [PMID: 34053432 DOI: 10.2174/2212798412666210528130001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 02/17/2021] [Accepted: 03/06/2021] [Indexed: 12/29/2022]
Abstract
BACKGROUND The glycation of proteins and lipids synthesizes the advanced glycation end products (AGEs), i.e., substances that irreversibly damage macromolecules present in tissues and organs, which contribute to the impairment of biological functions. For instance, the accumulation of AGEs induces oxidative stress, the inflammatory responses, and consequently the on set/worsening of diseases, including obesity, asthma, cognitive impairment, and cancer. There is a current demand on natural and low-cost sources of anti-AGE agents. As a result, food phytochemicals presented promising results to inhibit glycation and consequently, the formation of AGEs. OBJECTIVE Here we describe how the AGEs are present in food via Maillard reaction and in organs via natural aging, as well as the effects of AGEs on the worsening of diseases. Also we described the methods used to detect AGEs in samples, and the current findings on the use of phytochemicals (phenolic compounds, phytosterols, carotenoids, terpenes and vitamins) as natural therapeuticals to inhibit health damages via inhibition of AGEs in vitro and in vivo. METHODS This manuscript reviewed publications available in the PubMed and Science Direct databases dated from the last 20 years on the uses of phytochemicals for the inhibition of AGEs. Recent patents on the use of anti-AGEs drugs were reviewed with the use of Google Advanced Patents database. RESULTS AND DISCUSSION There is no consensus about which concentration of AGEs in blood serum should not be hazardous to the health of individuals. Food phytochemicals derived from agroindustry wastes, including peanut skins, and the bagasses derived from citrus and grapes are promising anti-AGEs agents via scavenging of free radicals, metal ions, the suppression of metabolic pathways that induces inflammation, the activation of pathways that promote antioxidant defense, and the blocking of AGE connection with the receptor for advanced glycation endproducts (RAGE). CONCLUSION Phytochemicals derived from agroindustry are promising anti-AGEs, which can be included to replace synthetic drugs to inhibit AGE formation, and consequently to act as therapeutical strategy to prevent and treat diseases caused by AGEs, including diabetes, ovarian cancer, osteoporosis, and Alzheimer's disease.
Collapse
Affiliation(s)
- Annayara C F Fernandes
- Bioprocesses Laboratory, Food and Nutrition Department, School of Food Engineering, University of Campinas, UNICAMP, Campinas, SP, Brazil, Cidade Universitária "ZeferinoVaz", Rua Monteiro Lobato, 80, Campinas 13083-862, Brazil
| | - Jeane B Melo
- Bioprocesses Laboratory, Food and Nutrition Department, School of Food Engineering, University of Campinas, UNICAMP, Campinas, SP, Brazil, Cidade Universitária "ZeferinoVaz", Rua Monteiro Lobato, 80, Campinas 13083-862, Brazil
| | - Vanize M Genova
- Bioprocesses Laboratory, Food and Nutrition Department, School of Food Engineering, University of Campinas, UNICAMP, Campinas, SP, Brazil, Cidade Universitária "ZeferinoVaz", Rua Monteiro Lobato, 80, Campinas 13083-862, Brazil
| | - Ádina L Santana
- Bioprocesses Laboratory, Food and Nutrition Department, School of Food Engineering, University of Campinas, UNICAMP, Campinas, SP, Brazil, Cidade Universitária "ZeferinoVaz", Rua Monteiro Lobato, 80, Campinas 13083-862, Brazil.,264 Food Innovation Center, Nebraska Innovation Campus, University of Nebraska-Lincoln, 1901 N 21st street, Lincoln, NE, USA
| | - Gabriela Macedo
- Bioprocesses Laboratory, Food and Nutrition Department, School of Food Engineering, University of Campinas, UNICAMP, Campinas, SP, Brazil, Cidade Universitária "ZeferinoVaz", Rua Monteiro Lobato, 80, Campinas 13083-862, Brazil
| |
Collapse
|
7
|
Hemshekhar M, Mostafa DHD, Spicer V, Piyadasa H, Maestre-Batlle D, Bolling AK, Halayko AJ, Carlsten C, Mookherjee N. Sex Dimorphism of Allergen-Induced Secreted Proteins in Murine and Human Lungs. Front Immunol 2022; 13:923986. [PMID: 35837410 PMCID: PMC9273854 DOI: 10.3389/fimmu.2022.923986] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 06/03/2022] [Indexed: 11/15/2022] Open
Abstract
Biological sex influences disease severity, prevalence and response to therapy in allergic asthma. However, allergen-mediated sex-specific changes in lung protein biomarkers remain undefined. Here, we report sex-related differences in specific proteins secreted in the lungs of both mice and humans, in response to inhaled allergens. Female and male BALB/c mice (7-8 weeks) were intranasally challenged with the allergen house dust mite (HDM) for 2 weeks. Bronchoalveolar lavage fluid (BALF) was collected 24 hour after the last HDM challenge from allergen-naïve and HDM-challenged mice (N=10 per group, each sex). In a human study, adult participants were exposed to nebulized (2 min) allergens (based on individual sensitivity), BALF was obtained after 24 hour (N=5 each female and male). The BALF samples were examined in immunoblots for the abundance of 10 proteins shown to increase in response to allergen in both murine and human BALF, selected from proteomics studies. We showed significant sex-bias in allergen-driven increase in five out of the 10 selected proteins. Of these, increase in eosinophil peroxidase (EPX) was significantly higher in females compared to males, in both mice and human BALF. We also showed specific sex-related differences between murine and human samples. For example, allergen-driven increase in S100A8 and S100A9 was significantly higher in BALF of females compared to males in mice, but significantly higher in males compared to females in humans. Overall, this study provides sex-specific protein biomarkers that are enhanced in response to allergen in murine and human lungs, informing and motivating translational research in allergic asthma.
Collapse
Affiliation(s)
- Mahadevappa Hemshekhar
- Manitoba Centre for Proteomics and Systems Biology, Department of Internal Medicine, University of Manitoba, Winnipeg, MB, Canada
| | - Dina H. D. Mostafa
- Manitoba Centre for Proteomics and Systems Biology, Department of Internal Medicine, University of Manitoba, Winnipeg, MB, Canada
- Department of Immunology, University of Manitoba, Winnipeg, MB, Canada
| | - Victor Spicer
- Manitoba Centre for Proteomics and Systems Biology, Department of Internal Medicine, University of Manitoba, Winnipeg, MB, Canada
| | - Hadeesha Piyadasa
- Manitoba Centre for Proteomics and Systems Biology, Department of Internal Medicine, University of Manitoba, Winnipeg, MB, Canada
- Department of Immunology, University of Manitoba, Winnipeg, MB, Canada
- Department of Pathology, School of Medicine, Stanford University, Palo Alto, CA, United States
| | - Danay Maestre-Batlle
- Air Pollution Exposure Laboratory, Division of Respiratory Medicine, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Anette K. Bolling
- Air Pollution Exposure Laboratory, Division of Respiratory Medicine, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
- Department of Air Quality and Noise, Norwegian Institute of Public Health, Oslo, Norway
| | - Andrew J. Halayko
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB, Canada
- Biology of Breathing Group, The Children’s Hospital Research Institute of Manitoba, Winnipeg, MB, Canada
| | - Christopher Carlsten
- Air Pollution Exposure Laboratory, Division of Respiratory Medicine, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Neeloffer Mookherjee
- Manitoba Centre for Proteomics and Systems Biology, Department of Internal Medicine, University of Manitoba, Winnipeg, MB, Canada
- Department of Immunology, University of Manitoba, Winnipeg, MB, Canada
- Biology of Breathing Group, The Children’s Hospital Research Institute of Manitoba, Winnipeg, MB, Canada
- *Correspondence: Neeloffer Mookherjee,
| |
Collapse
|
8
|
Neutrophils and Asthma. Diagnostics (Basel) 2022; 12:diagnostics12051175. [PMID: 35626330 PMCID: PMC9140072 DOI: 10.3390/diagnostics12051175] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/04/2022] [Accepted: 05/05/2022] [Indexed: 02/04/2023] Open
Abstract
Although eosinophilic inflammation is characteristic of asthma pathogenesis, neutrophilic inflammation is also marked, and eosinophils and neutrophils can coexist in some cases. Based on the proportion of sputum cell differentiation, asthma is classified into eosinophilic asthma, neutrophilic asthma, neutrophilic and eosinophilic asthma, and paucigranulocytic asthma. Classification by bronchoalveolar lavage is also performed. Eosinophilic asthma accounts for most severe asthma cases, but neutrophilic asthma or a mixture of the two types can also present a severe phenotype. Biomarkers for the diagnosis of neutrophilic asthma include sputum neutrophils, blood neutrophils, chitinase-3-like protein, and hydrogen sulfide in sputum and serum. Thymic stromal lymphoprotein (TSLP)/T-helper 17 pathways, bacterial colonization/microbiome, neutrophil extracellular traps, and activation of nucleotide-binding oligomerization domain-like receptor family, pyrin domain-containing 3 pathways are involved in the pathophysiology of neutrophilic asthma and coexistence of obesity, gastroesophageal reflux disease, and habitual cigarette smoking have been associated with its pathogenesis. Thus, targeting neutrophilic asthma is important. Smoking cessation, neutrophil-targeting treatments, and biologics have been tested as treatments for severe asthma, but most clinical studies have not focused on neutrophilic asthma. Phosphodiesterase inhibitors, anti-TSLP antibodies, azithromycin, and anti-cholinergic agents are promising drugs for neutrophilic asthma. However, clinical research targeting neutrophilic inflammation is required to elucidate the optimal treatment.
Collapse
|
9
|
Pattaroni C, Macowan M, Chatzis R, Daunt C, Custovic A, Shields MD, Power UF, Grigg J, Roberts G, Ghazal P, Schwarze J, Gore M, Turner S, Bush A, Saglani S, Lloyd CM, Marsland BJ. Early life inter-kingdom interactions shape the immunological environment of the airways. MICROBIOME 2022; 10:34. [PMID: 35189979 PMCID: PMC8862481 DOI: 10.1186/s40168-021-01201-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 11/12/2021] [Indexed: 05/03/2023]
Abstract
BACKGROUND There is increasing evidence that the airway microbiome plays a key role in the establishment of respiratory health by interacting with the developing immune system early in life. While it has become clear that bacteria are involved in this process, there is a knowledge gap concerning the role of fungi. Moreover, the inter-kingdom interactions that influence immune development remain unknown. In this prospective exploratory human study, we aimed to determine early post-natal microbial and immunological features of the upper airways in 121 healthy newborns. RESULTS We found that the oropharynx and nasal cavity represent distinct ecological niches for bacteria and fungi. Breastfeeding correlated with changes in microbiota composition of oropharyngeal samples with the greatest impact upon the relative abundance of Streptococcus species and Candida. Host transcriptome profiling revealed that genes with the highest expression variation were immunological in nature. Multi-omics factor analysis of host and microbial data revealed unique co-variation patterns. CONCLUSION These data provide evidence of a diverse multi-kingdom microbiota linked with local immunological characteristics in the first week of life that could represent distinct trajectories for future respiratory health. TRIAL REGISTRATION NHS Health Research Authority, IRAS ID 199053. Registered 5 Oct 2016. https://www.hra.nhs.uk/planning-and-improving-research/application-summaries/research-summaries/breathing-together/ Video abstract.
Collapse
Affiliation(s)
- Céline Pattaroni
- Department of Immunology and Pathology, Monash University, Melbourne, Australia
| | - Matthew Macowan
- Department of Immunology and Pathology, Monash University, Melbourne, Australia
| | - Roxanne Chatzis
- Department of Immunology and Pathology, Monash University, Melbourne, Australia
| | - Carmel Daunt
- Department of Immunology and Pathology, Monash University, Melbourne, Australia
| | - Adnan Custovic
- Imperial Centre for Paediatrics and Child Health, Imperial College London, London, UK
| | - Michael D. Shields
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Belfast, UK
| | - Ultan F. Power
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Belfast, UK
| | - Jonathan Grigg
- Centre for Child Health, Blizard Institute, Queen Mary University of London, London, UK
| | - Graham Roberts
- Human Development in Health School, University of Southampton Faculty of Medicine, Southampton, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK
- David Hide Asthma and Allergy Research Centre, St Mary’s Hospital, Newport, Isle of Wight UK
| | - Peter Ghazal
- School of Medicine, Systems Immunity Research Institute, Cardiff University, Cardiff, UK
| | - Jürgen Schwarze
- Centre for Inflammation Research, Child Life and Health, The University of Edinburgh, Edinburgh, UK
| | - Mindy Gore
- Imperial Centre for Paediatrics and Child Health, Imperial College London, London, UK
| | - Steve Turner
- Child Health, University of Aberdeen, Aberdeen, UK
- NHS Grampian, Aberdeen, UK
| | - Andrew Bush
- Imperial Centre for Paediatrics and Child Health, Imperial College London, London, UK
- Royal Brompton Hospital, London, UK
- National Heart & Lung Institute, Imperial College London, London, UK
| | - Sejal Saglani
- Imperial Centre for Paediatrics and Child Health, Imperial College London, London, UK
- Royal Brompton Hospital, London, UK
- National Heart & Lung Institute, Imperial College London, London, UK
| | - Clare M. Lloyd
- National Heart & Lung Institute, Imperial College London, London, UK
| | | |
Collapse
|
10
|
Lan Y, Zeng X, Xiao J, Hu L, Tan L, Liang M, Wang X, Lu S, Long F, Peng T. New advances in quantitative proteomics research and current applications in asthma. Expert Rev Proteomics 2021; 18:1045-1057. [PMID: 34890515 DOI: 10.1080/14789450.2021.2017777] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Asthma is the most common chronic respiratory disease and has been declared a global public health problem by the World Health Organization. Due to the high heterogeneity and complexity, asthma can be classified into different 'phenotypes' and it is still difficult to assess the phenotypes and stages of asthma by traditional methods. In recent years, mass spectrometry-based proteomics studies have made significant progress in sensitivity and accuracy of protein identification and quantitation, and are able to obtain differences in protein expression across samples, which provides new insights into the mechanisms and classification of asthma. AREAS COVERED In this article, we summarize research strategies in quantitative proteomics, including labeled, label-free and targeted quantification, and highlight the advantages and disadvantages of each. In addition, new applications of quantitative proteomics and the current status of research in asthma have also been discussed. In this study, online resources such as PubMed and Google Scholar were used for literature retrieval. EXPERT OPINION The application of quantitative proteomics in asthma has an important role in identifying asthma subphenotypes, revealing potential pathogenesis and therapeutic targets. But the proteomic studies on asthma are not sufficient, as most of them are in the phase of biomarker discovery.
Collapse
Affiliation(s)
- Yanting Lan
- Sino-French Hoffmann Institute of Immunology, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, College of Basic-Medical Science, Guangzhou Medical University, Guangzhou, China
| | - Xiaoyin Zeng
- Sino-French Hoffmann Institute of Immunology, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, College of Basic-Medical Science, Guangzhou Medical University, Guangzhou, China
| | - Jing Xiao
- Sino-French Hoffmann Institute of Immunology, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, College of Basic-Medical Science, Guangzhou Medical University, Guangzhou, China
| | - Longbo Hu
- Sino-French Hoffmann Institute of Immunology, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, College of Basic-Medical Science, Guangzhou Medical University, Guangzhou, China
| | - Long Tan
- Sino-French Hoffmann Institute of Immunology, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, College of Basic-Medical Science, Guangzhou Medical University, Guangzhou, China
| | - Mengdi Liang
- Sino-French Hoffmann Institute of Immunology, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, College of Basic-Medical Science, Guangzhou Medical University, Guangzhou, China
| | - Xufei Wang
- Sino-French Hoffmann Institute of Immunology, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, College of Basic-Medical Science, Guangzhou Medical University, Guangzhou, China
| | - Shaohua Lu
- Sino-French Hoffmann Institute of Immunology, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, College of Basic-Medical Science, Guangzhou Medical University, Guangzhou, China
| | - Fei Long
- Sino-French Hoffmann Institute of Immunology, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, College of Basic-Medical Science, Guangzhou Medical University, Guangzhou, China
| | - Tao Peng
- Sino-French Hoffmann Institute of Immunology, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, College of Basic-Medical Science, Guangzhou Medical University, Guangzhou, China.,Guangdong South China Vaccine Co. Ltd, Guangzhou, China
| |
Collapse
|
11
|
Quoc QL, Choi Y, Thi Bich TC, Yang EM, Shin YS, Park HS. S100A9 in adult asthmatic patients: a biomarker for neutrophilic asthma. Exp Mol Med 2021; 53:1170-1179. [PMID: 34285336 PMCID: PMC8333352 DOI: 10.1038/s12276-021-00652-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 06/07/2021] [Accepted: 06/09/2021] [Indexed: 02/07/2023] Open
Abstract
The biomarkers and therapeutic targets of neutrophilic asthma (NA) are poorly understood. Although S100 calcium-binding protein A9 (S100A9) has been shown to correlate with neutrophil activation, its role in asthma pathogenesis has not been clarified. This study investigated the mechanism by which S100A9 is involved in neutrophil activation, neutrophil extracellular trap (NET)-induced airway inflammation, and macrophage polarization in NA. The S100A9 levels (by ELISA) in sera/culture supernatant of peripheral blood neutrophils (PBNs) and M0 macrophages from asthmatic patients were measured and compared to those of healthy controls (HCs). The function of S100A9 was evaluated using airway epithelial cells (AECs) and PBNs/M0 macrophages from asthmatic patients, as well as a mouse asthma model. The serum levels of S100A9 were higher in NA patients than in non-NA patients, and there was a positive correlation between serum S100A9 levels and sputum neutrophil counts (r = 0.340, P = 0.005). Asthmatic patients with higher S100A9 levels had lower PC20 methacholine values and a higher prevalence of severe asthma (SA) (P < .050). PBNs/M0 macrophages from SA released more S100A9 than those from non-SA patients. PBNs from asthmatic patients induced S100A9 production by AECs, which further activated AECs via the extracellular signal-regulated kinase (ERK) pathway, stimulated NET formation, and induced M1 macrophage polarization. Higher S100A9 levels in sera, bronchoalveolar lavage fluid, and lung tissues were observed in the mouse model of NA but not in the other mouse models. These results suggest that S100A9 is a potential serum biomarker and therapeutic target for NA.
Collapse
Affiliation(s)
- Quang Luu Quoc
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, South Korea
- Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, South Korea
| | - Youngwoo Choi
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, South Korea
| | - Tra Cao Thi Bich
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, South Korea
- Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, South Korea
| | - Eun-Mi Yang
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, South Korea
| | - Yoo Seob Shin
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, South Korea
- Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, South Korea
| | - Hae-Sim Park
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, South Korea.
- Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, South Korea.
| |
Collapse
|
12
|
Nucera F, Lo Bello F, Shen SS, Ruggeri P, Coppolino I, Di Stefano A, Stellato C, Casolaro V, Hansbro PM, Adcock IM, Caramori G. Role of Atypical Chemokines and Chemokine Receptors Pathways in the Pathogenesis of COPD. Curr Med Chem 2021; 28:2577-2653. [PMID: 32819230 DOI: 10.2174/0929867327999200819145327] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 06/11/2020] [Accepted: 06/18/2020] [Indexed: 11/22/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) represents a heightened inflammatory response in the lung generally resulting from tobacco smoking-induced recruitment and activation of inflammatory cells and/or activation of lower airway structural cells. Several mediators can modulate activation and recruitment of these cells, particularly those belonging to the chemokines (conventional and atypical) family. There is emerging evidence for complex roles of atypical chemokines and their receptors (such as high mobility group box 1 (HMGB1), antimicrobial peptides, receptor for advanced glycosylation end products (RAGE) or toll-like receptors (TLRs)) in the pathogenesis of COPD, both in the stable disease and during exacerbations. Modulators of these pathways represent potential novel therapies for COPD and many are now in preclinical development. Inhibition of only a single atypical chemokine or receptor may not block inflammatory processes because there is redundancy in this network. However, there are many animal studies that encourage studies for modulating the atypical chemokine network in COPD. Thus, few pharmaceutical companies maintain a significant interest in developing agents that target these molecules as potential antiinflammatory drugs. Antibody-based (biological) and small molecule drug (SMD)-based therapies targeting atypical chemokines and/or their receptors are mostly at the preclinical stage and their progression to clinical trials is eagerly awaited. These agents will most likely enhance our knowledge about the role of atypical chemokines in COPD pathophysiology and thereby improve COPD management.
Collapse
Affiliation(s)
- Francesco Nucera
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences (BIOMORF), University of Messina, Pugliatti Square 1, 98122 Messina, Italy
| | - Federica Lo Bello
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences (BIOMORF), University of Messina, Pugliatti Square 1, 98122 Messina, Italy
| | - Sj S Shen
- Faculty of Science, Centre for Inflammation, Centenary Institute, University of Technology, Ultimo, Sydney, Australia
| | - Paolo Ruggeri
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences (BIOMORF), University of Messina, Pugliatti Square 1, 98122 Messina, Italy
| | - Irene Coppolino
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences (BIOMORF), University of Messina, Pugliatti Square 1, 98122 Messina, Italy
| | - Antonino Di Stefano
- Division of Pneumology, Cyto- Immunopathology Laboratory of the Cardio-Respiratory System, Clinical Scientific Institutes Maugeri IRCCS, Veruno, Italy
| | - Cristiana Stellato
- Department of Medicine, Surgery and Dentistry, Salerno Medical School, University of Salerno, Salerno, Italy
| | - Vincenzo Casolaro
- Department of Medicine, Surgery and Dentistry, Salerno Medical School, University of Salerno, Salerno, Italy
| | - Phil M Hansbro
- Faculty of Science, Centre for Inflammation, Centenary Institute, University of Technology, Ultimo, Sydney, Australia
| | - Ian M Adcock
- Airway Disease Section, National Heart and Lung Institute, Imperial College, London, United Kingdom
| | - Gaetano Caramori
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences (BIOMORF), University of Messina, Pugliatti Square 1, 98122 Messina, Italy
| |
Collapse
|
13
|
Gu X, Shu D, Ying S, Dai Y, Zhang Q, Chen X, Chen H, Dai W. Roxithromycin attenuates inflammation via modulation of RAGE-influenced calprotectin expression in a neutrophilic asthma model. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:494. [PMID: 33850891 PMCID: PMC8039670 DOI: 10.21037/atm-21-859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Background Roxithromycin (RXM), a macrolide antibiotic, exhibits anti-asthmatic effects, but its specific mechanism of action remains elusive. We evaluated the effects of RXM on airway inflammation, the expression of calprotectin, and the activity of the receptor of advanced glycation end products (RAGE) to determine whether RXM alleviates inflammation by regulating RAGE activation, and thereby calprotectin expression, in neutrophilic asthma. Methods Male Brown Norway rats were sensitized with ovalbumin (OVA) and Freund’s complete adjuvant (FCA) mixture, followed by OVA challenge to induce neutrophilic asthma. RXM (30 mg/kg) or FPS-ZM1 (RAGE inhibitor, 1.5 mg/kg) was administered 30 min prior to each challenge. The infiltration of airway inflammatory cells and cytokines, as well as the expression of calprotectin and RAGE, was assessed. Results The expression of airway inflammatory cells and cytokines was found to be significantly elevated in OVA + FCA-induced rats. Increased expression of both calprotectin and RAGE was also detected in OVA + FCA-induced asthma [bronchoalveolar lavage fluid (BALF) calprotectin: 15.07±1.79 vs. 3.86±0.69 ng/mL; serum calprotectin: 20.47±1.64 vs. 9.29±1.31 ng/mL; lung tissue homogenates calprotectin: 28.82±1.01 vs. 12.02±1.38 ng/mg; BALF RAGE: 762.93±36.47 vs. 294.25±45.92 ng/mL; serum RAGE: 906.43±58.95 vs. 505.60±30.16 ng/mL; lung tissue homogenates RAGE: 1,585.24±177.59 vs. 461.53±63.40 ng/mg; all P<0.001]. However, all of these changes were interrupted by RXM and FPS-ZM1. Conclusions RXM exerted similar effects as the RAGE inhibitor FPS-ZM1 in terms of reducing airway inflammation and downregulating the expression of calprotectin and RAGE in a neutrophilic asthma model. Our findings provide novel insights into the mechanisms underlying the effect of RXM pretreatment on neutrophilic asthma. Furthermore, FPS-ZM1 may be useful as an intervention specific to the neutrophilic asthma phenotype.
Collapse
Affiliation(s)
- Xiaofei Gu
- Department of Neurology Rehabilitation, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Department of Respiratory and Critical Care Medicine, Yuhang First People's Hospital, Hangzhou, China.,Department of Respiratory Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Danni Shu
- Department of Respiratory Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Songmin Ying
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuanrong Dai
- Department of Respiratory Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qi Zhang
- Department of Respiratory Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xinmiao Chen
- Department of Respiratory Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Huijun Chen
- Department of Respiratory Medicine, Jinhua Municipal Central Hospital, Jinhua, China
| | - Wei Dai
- Department of Neurology Rehabilitation, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
14
|
Zhu Q, Wang J, Ma J, Sheng X, Li F. Changes in inflammatory factors in the Brown Norway rat model of food allergy. BMC Immunol 2021; 22:8. [PMID: 33499808 PMCID: PMC7839196 DOI: 10.1186/s12865-021-00398-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 01/05/2021] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND The role of serum S100A8/A9 in intestinal inflammation has been confirmed, and its role in food allergy is currently being investigated. OBJECTIVE To explore the levels of S100A8/A9 and inflammatory factors, including Toll-like receptors 4 (TLR4), Nuclear transcription factors (NF-κB) and Tumor necrosis factor α (TNF-α), in mild food allergies. METHODS Eighty 3-week-old male Brown Norway rats were used. Forty rats were randomly assigned to the ovalbumin-sensitized experimental group, while 40 rats were assigned to the normal saline sham-sensitized control group. Body weight and length and the levels of serum ovalbumin-specific IgE (OVA-IgE), histamine, Th1-associated and Th2-associated factors, S100A8/A9 and inflammation-associated cytokines were compared. RESULTS Through the evaluation of OVA-IgE level and Th1/Th2 balance in the experimental group, a successful IgE-mediated food allergy model was constructed. Compared with the control group, the experimental group had higher serum S100A8/A9 levels on days 21, 28, 35 and 42 (all P < 0.05); higher TLR4 levels on days 28, 35 and 42 (all P < 0.05); higher TNF-α levels on days 28, 35 and 42 (all P < 0.05); higher NF-κB levels on days 35 and 42 (all P < 0.05); and higher IL-1β and IL-6 levels on days 7 to 42 (all P < 0.05). Moreover, positive correlations were found between the serum levels of S100A8/A9 and inflammation-associated cytokines [TNF-α: r = 0.378, P = 0.039; IL-1β: r = 0.679, P = 0.000; IL-6: r = 0.590, P = 0.001]. CONCLUSION S100A8/A9 and inflammatory-related factors, including TLR4, NF-κB, TNF-α, IL-6 and IL-1β, is closely related to food allergies. Moreover, immune and inflammatory factors interact with each other in food allergies, which may provide insight into food allergy causes and treatments.
Collapse
Affiliation(s)
- Qingling Zhu
- Department of Child and Adolescent Healthcare, MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 1665 Kongjiang Road, Yangpu Shanghai, 200092, China.,Department of Children Healthcare, Quanzhou Women's and Children's Hospital, Quanzhou, 362000, Fujian, China
| | - Junli Wang
- Department of Child and Adolescent Healthcare, MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 1665 Kongjiang Road, Yangpu Shanghai, 200092, China
| | - Jingqiu Ma
- Department of Child and Adolescent Healthcare, MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 1665 Kongjiang Road, Yangpu Shanghai, 200092, China
| | - Xiaoyang Sheng
- Department of Child and Adolescent Healthcare, MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 1665 Kongjiang Road, Yangpu Shanghai, 200092, China.
| | - Feng Li
- Department of Child and Adolescent Healthcare, MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 1665 Kongjiang Road, Yangpu Shanghai, 200092, China.
| |
Collapse
|
15
|
Chen Y, Zheng Y, Yu Y, Wang Y, Huang Q, Qian F, Sun L, Song Z, Chen Z, Feng J, An Y, Yang J, Su Z, Sun S, Dai F, Chen Q, Lu Q, Li P, Ling Y, Yang Z, Tang H, Shi L, Jin L, Holmes EC, Ding C, Zhu T, Zhang Y. Blood molecular markers associated with COVID-19 immunopathology and multi-organ damage. EMBO J 2020; 39:e105896. [PMID: 33140861 PMCID: PMC7737620 DOI: 10.15252/embj.2020105896] [Citation(s) in RCA: 123] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 10/23/2020] [Accepted: 10/27/2020] [Indexed: 01/08/2023] Open
Abstract
COVID-19 is characterized by dysregulated immune responses, metabolic dysfunction and adverse effects on the function of multiple organs. To understand host responses to COVID-19 pathophysiology, we combined transcriptomics, proteomics, and metabolomics to identify molecular markers in peripheral blood and plasma samples of 66 COVID-19-infected patients experiencing a range of disease severities and 17 healthy controls. A large number of expressed genes, proteins, metabolites, and extracellular RNAs (exRNAs) exhibit strong associations with various clinical parameters. Multiple sets of tissue-specific proteins and exRNAs varied significantly in both mild and severe patients suggesting a potential impact on tissue function. Chronic activation of neutrophils, IFN-I signaling, and a high level of inflammatory cytokines were observed in patients with severe disease progression. In contrast, COVID-19-infected patients experiencing milder disease symptoms showed robust T-cell responses. Finally, we identified genes, proteins, and exRNAs as potential biomarkers that might assist in predicting the prognosis of SARS-CoV-2 infection. These data refine our understanding of the pathophysiology and clinical progress of COVID-19.
Collapse
Affiliation(s)
- Yan‐Mei Chen
- Shanghai Public Health Clinical CenterState Key Laboratory of Genetic EngineeringSchool of Life Sciences and Human Phenome InstituteFudan UniversityShanghaiChina
| | - Yuanting Zheng
- Shanghai Public Health Clinical CenterState Key Laboratory of Genetic EngineeringSchool of Life Sciences and Human Phenome InstituteFudan UniversityShanghaiChina
| | - Ying Yu
- Shanghai Public Health Clinical CenterState Key Laboratory of Genetic EngineeringSchool of Life Sciences and Human Phenome InstituteFudan UniversityShanghaiChina
| | - Yunzhi Wang
- Shanghai Public Health Clinical CenterState Key Laboratory of Genetic EngineeringSchool of Life Sciences and Human Phenome InstituteFudan UniversityShanghaiChina
| | - Qingxia Huang
- Shanghai Public Health Clinical CenterState Key Laboratory of Genetic EngineeringSchool of Life Sciences and Human Phenome InstituteFudan UniversityShanghaiChina
| | - Feng Qian
- Shanghai Public Health Clinical CenterState Key Laboratory of Genetic EngineeringSchool of Life Sciences and Human Phenome InstituteFudan UniversityShanghaiChina
| | - Lei Sun
- Shanghai Public Health Clinical CenterState Key Laboratory of Genetic EngineeringSchool of Life Sciences and Human Phenome InstituteFudan UniversityShanghaiChina
| | - Zhi‐Gang Song
- Shanghai Public Health Clinical CenterState Key Laboratory of Genetic EngineeringSchool of Life Sciences and Human Phenome InstituteFudan UniversityShanghaiChina
| | - Ziyin Chen
- Shanghai Public Health Clinical CenterState Key Laboratory of Genetic EngineeringSchool of Life Sciences and Human Phenome InstituteFudan UniversityShanghaiChina
| | - Jinwen Feng
- Shanghai Public Health Clinical CenterState Key Laboratory of Genetic EngineeringSchool of Life Sciences and Human Phenome InstituteFudan UniversityShanghaiChina
| | - Yanpeng An
- Shanghai Public Health Clinical CenterState Key Laboratory of Genetic EngineeringSchool of Life Sciences and Human Phenome InstituteFudan UniversityShanghaiChina
| | - Jingcheng Yang
- Shanghai Public Health Clinical CenterState Key Laboratory of Genetic EngineeringSchool of Life Sciences and Human Phenome InstituteFudan UniversityShanghaiChina
| | - Zhenqiang Su
- Shanghai Public Health Clinical CenterState Key Laboratory of Genetic EngineeringSchool of Life Sciences and Human Phenome InstituteFudan UniversityShanghaiChina
| | - Shanyue Sun
- Shanghai Public Health Clinical CenterState Key Laboratory of Genetic EngineeringSchool of Life Sciences and Human Phenome InstituteFudan UniversityShanghaiChina
| | - Fahui Dai
- Shanghai Public Health Clinical CenterState Key Laboratory of Genetic EngineeringSchool of Life Sciences and Human Phenome InstituteFudan UniversityShanghaiChina
| | - Qinsheng Chen
- Shanghai Public Health Clinical CenterState Key Laboratory of Genetic EngineeringSchool of Life Sciences and Human Phenome InstituteFudan UniversityShanghaiChina
| | - Qinwei Lu
- Shanghai Public Health Clinical CenterState Key Laboratory of Genetic EngineeringSchool of Life Sciences and Human Phenome InstituteFudan UniversityShanghaiChina
| | - Pengcheng Li
- Shanghai Public Health Clinical CenterState Key Laboratory of Genetic EngineeringSchool of Life Sciences and Human Phenome InstituteFudan UniversityShanghaiChina
| | - Yun Ling
- Shanghai Public Health Clinical CenterState Key Laboratory of Genetic EngineeringSchool of Life Sciences and Human Phenome InstituteFudan UniversityShanghaiChina
| | - Zhong Yang
- Shanghai Public Health Clinical CenterState Key Laboratory of Genetic EngineeringSchool of Life Sciences and Human Phenome InstituteFudan UniversityShanghaiChina
| | - Huiru Tang
- Shanghai Public Health Clinical CenterState Key Laboratory of Genetic EngineeringSchool of Life Sciences and Human Phenome InstituteFudan UniversityShanghaiChina
| | - Leming Shi
- Shanghai Public Health Clinical CenterState Key Laboratory of Genetic EngineeringSchool of Life Sciences and Human Phenome InstituteFudan UniversityShanghaiChina
| | - Li Jin
- Shanghai Public Health Clinical CenterState Key Laboratory of Genetic EngineeringSchool of Life Sciences and Human Phenome InstituteFudan UniversityShanghaiChina
| | - Edward C Holmes
- Marie Bashir Institute for Infectious Diseases and BiosecuritySchool of Life and Environmental Sciences and School of Medical SciencesThe University of SydneySydneyNSWAustralia
| | - Chen Ding
- Shanghai Public Health Clinical CenterState Key Laboratory of Genetic EngineeringSchool of Life Sciences and Human Phenome InstituteFudan UniversityShanghaiChina
| | - Tong‐Yu Zhu
- Shanghai Public Health Clinical CenterState Key Laboratory of Genetic EngineeringSchool of Life Sciences and Human Phenome InstituteFudan UniversityShanghaiChina
| | - Yong‐Zhen Zhang
- Shanghai Public Health Clinical CenterState Key Laboratory of Genetic EngineeringSchool of Life Sciences and Human Phenome InstituteFudan UniversityShanghaiChina
| |
Collapse
|
16
|
Poachanukoon O, Roytrakul S, Koontongkaew S. A shotgun proteomic approach reveals novel potential salivary protein biomarkers for asthma. J Asthma 2020; 59:243-254. [PMID: 33211619 DOI: 10.1080/02770903.2020.1850773] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
OBJECTIVE The aim of this study was to determine if there is an association between the salivary protein profile and disease control in asthma. METHODS Thirty asthmatic patients (17 adults and 13 children) participated in this study. Saliva samples were collected from healthy subjects, controlled and uncontrolled asthmatics. Individual samples from each group were combined to form a pooled sample, from which proteomic analysis was performed using gel-based quantitative proteomics. RESULTS Fourteen out of thirty asthmatics were classified to be controlled asthma. Most of asthmatics received inhaled corticosteroids as the controller medications. SDS-PAGE showed predominant bands at high molecular weight in asthmatic saliva compared to that of the controls. Shotgun proteomic analyses indicated that 193 salivary proteins were expressed in both controlled and uncontrolled asthmatics. They were predicted to associate with proteins involved in pathogenesis of asthma including IL-5, IL-6, MCP-1, VEGF, and periostin and asthma medicines (Cromolyn, Nedocromil, and Theophylline). Nucleoside diphosphate kinase (NME1-NME2) only expressed in controlled asthmatics whereas polycystic kidney and hepatic disease 1 (PKHD1)/fibrocystin, zinc finger protein 263 (ZNF263), uncharacterized LOC101060047 (ENSG00000268865), desmoglein 2 (DSG2) and S100 calcium binding protein A2 (S100A2) were only found in uncontrolled asthma. Therefore, the six proteins were associated with disease control in children and adults with asthma. CONCLUSION Our findings suggest that NME1-NME2, PKHD1, ZNF 263, uncharacterized LOC101060047, DSG 2 and S100 A2 in saliva are associated with disease control in asthma.
Collapse
Affiliation(s)
- Orapan Poachanukoon
- Department of Pediatrics, Faculty of Medicine, Thammasat University, Klong Luang, Prathumthani, Thailand.,Center of Excellence for Allergy, Asthma and Pulmonary Diseases, Thammasat University Hospital, Klong Luang, Pathumtani, Thailand
| | - Sittiruk Roytrakul
- Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology, Klong Luang, Pathumthani, Thailand
| | - Sittichai Koontongkaew
- Department of Oral Biology, Faculty of Dentistry, Thammasat University (Rangsit Campus), Klong Luang, Prathumthani, Thailand.,International College of Dentistry, Walailak University, Bangkok, Thailand
| |
Collapse
|
17
|
Patregnani JT, Brooks BA, Chorvinsky E, Pillai DK. High BAL sRAGE is Associated with Low Serum Eosinophils and IgE in Children with Asthma. CHILDREN (BASEL, SWITZERLAND) 2020; 7:E110. [PMID: 32846877 PMCID: PMC7552609 DOI: 10.3390/children7090110] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/17/2020] [Accepted: 08/19/2020] [Indexed: 12/12/2022]
Abstract
Asthma remains the most common chronic lung disease in childhood in the United States. The receptor for advanced glycation end products (RAGE) has been recognized as both a marker of and participant in pulmonary pathophysiology. While membrane-bound RAGE (mRAGE) perpetuates the type 2 immune response, the soluble form (sRAGE) may act as a decoy receptor for pro-inflammatory ligands. Bronchoalveolar samples from 45 pediatric patients with asthma were obtained. Patients were divided into high and low BAL sRAGE groups using median sRAGE. Descriptive statistical analysis and non-parametric testing were applied. Children in the "high" sRAGE group had a lower median serum eosinophil (0.27 [SE ± 0.04] vs. 0.57 [± 0.06] K/mcl, adjusted p = 0.003) and lower serum IgE level (194.4 [± 60.7] vs. 676.2 ± 140.5) IU/mL, adjusted p = 0.004) as compared to the "low" sRAGE group. When controlling for age and body mass index percentile, absolute eosinophil count (p = 0.03) and serum IgE (p = 0.043) remained significantly lower in the "high" sRAGE group. Children with asthma and high levels of BAL sRAGE have lower serum eosinophil and IgE levels. These findings are consistent with the hypothesis that sRAGE may act as a decoy receptor by binding ligands that normally interact with mRAGE.
Collapse
Affiliation(s)
- Jason T. Patregnani
- Division of Cardiac Critical Care Medicine, Children’s National Hospital, Washington, DC 20010, USA
- Department of Genomics and Precision Medicine, The George Washington University, Washington, DC 20052, USA; (E.C.); (D.K.P.)
| | - Bonnie A. Brooks
- Division of Critical Care Medicine, Children’s National Hospital, Washington, DC 20010, USA;
| | - Elizabeth Chorvinsky
- Department of Genomics and Precision Medicine, The George Washington University, Washington, DC 20052, USA; (E.C.); (D.K.P.)
| | - Dinesh K. Pillai
- Department of Genomics and Precision Medicine, The George Washington University, Washington, DC 20052, USA; (E.C.); (D.K.P.)
- Division of Pulmonology, Children’s National Hospital, Washington, DC 20010, USA
| |
Collapse
|
18
|
Becerra-Diaz M, Song M, Heller N. Androgen and Androgen Receptors as Regulators of Monocyte and Macrophage Biology in the Healthy and Diseased Lung. Front Immunol 2020; 11:1698. [PMID: 32849595 PMCID: PMC7426504 DOI: 10.3389/fimmu.2020.01698] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 06/25/2020] [Indexed: 12/14/2022] Open
Abstract
Androgens, the predominant male sex hormones, drive the development and maintenance of male characteristics by binding to androgen receptor (AR). As androgens are systemically distributed throughout the whole organism, they affect many tissues and cell types in addition to those in male sexual organs. It is now clear that the immune system is a target of androgen action. In the lungs, many immune cells express ARs and are responsive to androgens. In this review, we describe the effects of androgens and ARs on lung myeloid immune cells-monocytes and macrophages-as they relate to health and disease. In particular, we highlight the effect of androgens on lung diseases, such as asthma, chronic obstructive pulmonary disease and lung fibrosis. We also discuss the therapeutic use of androgens and how circulating androgens correlate with lung disease. In addition to human studies, we also discuss how mouse models have helped to uncover the effect of androgens on monocytes and macrophages in lung disease. Although the role of estrogen and other female hormones has been broadly analyzed in the literature, we focus on the new perspectives of androgens as modulators of the immune system that target myeloid cells during lung inflammation.
Collapse
Affiliation(s)
| | | | - Nicola Heller
- Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
19
|
Hur GY, Ye YM, Yang E, Park HS. Serum potential biomarkers according to sputum inflammatory cell profiles in adult asthmatics. Korean J Intern Med 2020; 35:988-997. [PMID: 31722514 PMCID: PMC7373983 DOI: 10.3904/kjim.2019.083] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Accepted: 05/31/2019] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND/AIMS Asthma is not a single disease but, rather, a heterogeneous inf lammatory disorder with various pathogenic mechanisms. We analyzed the associations between the cellular profile of sputum and the serum levels of inflammatory mediators/cytokines in a cohort of adult asthmatics. METHODS We recruited 421 adult asthmatic patients. All subjects were classified into four groups according to their sputum cellular profiles: G1, eosinophilic; G2, mixed granulocytic; G3, neutrophilic; and G4, paucigranulocytic. Serum levels of cytokines and mediators including periostin, eosinophil-derived neurotoxin (EDN), S100A9, and folliculin were quantified. RESULTS Among 421 patients, G1 accounted for 149 (35.4%), G2 for 71 (16.9%), G3 for 155 (36.8%), and G4 for 46 (10.9%). Serum periostin and EDN levels were significantly higher in G1 (p = 0.004, and p = 0.031) than in the others. Serum S100A9 levels were elevated in G2 and G3 (p = 0.008). Serum folliculin levels differed significantly among the four groups, with the highest level in G4 (p = 0.042). To identify G1 from G1 plus G2 groups, the optimal serum cut-off levels were 1.71 ng/mL for periostin, and 1.61 ng/mL for EDN. When these two parameters were combined, the sensitivity was 76.0% and the specificity was 64.3% (area under the curve, 0.701; p = 0.004). CONCLUSION The serum periostin and EDN levels may be used as predictors to discriminate the eosinophilic asthma group from patients having eosinophilic or mixed granulocytic asthma, and the serum folliculin level is significantly elevated in patients with paucigranulocytic asthma compared to those with different inflammatory cell profile.
Collapse
Affiliation(s)
- Gyu-Young Hur
- Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea
| | - Young-Min Ye
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Korea
| | - Eunmi Yang
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Korea
| | - Hae-Sim Park
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Korea
- Correspondence to Hae-Sim Park, M.D. Department of Allergy and Clinical Immunology, Ajou University School of Medicine, 164 World cup-ro, Yeongtong-gu, Suwon 16499, Korea Tel: +82-31-219-5196 Fax: +82-31-219-4265 E-mail:
| |
Collapse
|
20
|
Zhu Y, Yun Y, Jin M, Li G, Li H, Miao P, Ding X, Feng X, Xu L, Sun B. Identification of novel biomarkers for neonatal hypoxic-ischemic encephalopathy using iTRAQ. Ital J Pediatr 2020; 46:67. [PMID: 32448169 PMCID: PMC7245890 DOI: 10.1186/s13052-020-00822-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 04/27/2020] [Indexed: 02/07/2023] Open
Abstract
Background A prompt diagnosis of HIE remains a challenge clinically. This study aimed to identify potential biomarkers of neonatal hypoxic-ischemic encephalopathy (HIE) via a novel proteomic approach, the isobaric tags for absolute and relative quantification (iTRAQ) method. Methods Blood samples were collected from neonates with mild (n = 4), moderate (n = 4), or severe (n = 4) HIE who were admitted to the neonatal intensive care unit of Children’s Hospital of Soochow University between Oct 2015 and Oct 2017. iTRAQ was performed in HIE patients and healthy controls (n = 4). Bioinformatics analyses including Gene Ontology and KEGG pathway enrichment analysis were performed to evaluate the potential features and capabilities of the identified differentially expressed proteins. Results A total of 51 commonly differentially expressed proteins were identified among the comparisons between mild, moderate, and severe HIE as well as healthy controls. Haptoglobin (HP) and S100A8 were most significantly up-regulated in patients with HIE and further validated via real-time PCR and western blotting. The differentially expressed proteins represented multiple biological processes, cellular components and molecular functions and were markedly enriched in complement and coagulation cascades. Conclusions HP and S100A8 may serve as a potential biomarker for neonatal HIE and reflects the severity of HIE. The complement and coagulation cascades play crucial roles in the development of neonatal HIE.
Collapse
Affiliation(s)
- Yuanyuan Zhu
- Department of Neonatology, Children's Hospital of Soochow University, Suzhou, China
| | - Yajing Yun
- Department of Neonatology, Children's Hospital of Soochow University, Suzhou, China
| | - Meifang Jin
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China
| | - Gen Li
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China
| | - Hong Li
- Department of Neonatology, Children's Hospital of Soochow University, Suzhou, China
| | - Po Miao
- Department of Neonatology, Children's Hospital of Soochow University, Suzhou, China
| | - Xin Ding
- Department of Neonatology, Children's Hospital of Soochow University, Suzhou, China
| | - Xing Feng
- Department of Neonatology, Children's Hospital of Soochow University, Suzhou, China
| | - Lixiao Xu
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China.
| | - Bin Sun
- Department of Neonatology, Children's Hospital of Soochow University, Suzhou, China.
| |
Collapse
|
21
|
Wu Y, Zhang W, Gunst SJ. S100A4 is secreted by airway smooth muscle tissues and activates inflammatory signaling pathways via receptors for advanced glycation end products. Am J Physiol Lung Cell Mol Physiol 2020; 319:L185-L195. [PMID: 32432920 DOI: 10.1152/ajplung.00347.2019] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
S100A4 is a low-molecular-mass (12 kDa) EF-hand Ca2+-binding S100 protein that is expressed in a broad range of normal tissue and cell types. S100A4 can be secreted from some cells to act in an autocrine or paracrine fashion on target cells and tissues. S100A4 has been reported in the extracellular fluids of subjects with several inflammatory diseases, including asthma. Airway smooth muscle plays a critical role in airway inflammation by synthesizing and secreting inflammatory cytokines. We hypothesized that S100A4 may play an immunomodulatory role in airway smooth muscle. Trachealis smooth muscle tissues were stimulated with recombinant His-S100A4, and the effects on inflammatory responses were evaluated. S100A4 induced the activation of Akt and NF-κB and stimulated eotaxin secretion. It also increased the expression of RAGE and endogenous S100A4 in airway tissues. Stimulation of airway smooth muscle tissues with IL-13 or TNF-α induced the secretion of S100A4 from the tissues and promoted the expression of endogenous receptors for advanced glycation end products (RAGE) and S100A4. The role of RAGE in mediating the responses to S100A4A was evaluated by expressing a mutant nonfunctional RAGE (RAGEΔcyto) in tracheal muscle tissues and by treating tissues with a RAGE inhibitor. S100A4 did not activate NF-κB or Akt in tissues that were expressing RAGEΔcyto or treated with a RAGE inhibitor, indicating that S100A4 mediates its effects by acting on RAGE. Our results demonstrate that inflammatory mediators stimulate the synthesis and secretion of S100A4 in airway smooth muscle tissues and that extracellular S100A4 acts via RAGE to mediate airway smooth muscle inflammation.
Collapse
Affiliation(s)
- Yidi Wu
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Wenwu Zhang
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Susan J Gunst
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, Indiana
| |
Collapse
|
22
|
Mandell E, Ryan S, Seedorf GJ, Gonzalez T, Abman SH, Fleet JC. Maternal vitamin D deficiency induces transcriptomic changes in newborn rat lungs. J Steroid Biochem Mol Biol 2020; 199:105613. [PMID: 32007564 DOI: 10.1016/j.jsbmb.2020.105613] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 12/14/2019] [Accepted: 01/29/2020] [Indexed: 12/24/2022]
Abstract
Vitamin D deficiency (VDD) during pregnancy is common and related to several maternal and fetal morbidities. Vitamin D (VD) plays a role in normal lung development and VDD causes abnormal airway, alveolar, and vascular growth in newborn rats. Here we use an unbiased transcriptomic approach to identify pathways altered in the lungs of offspring from VDD dams. The lungs of newborn offspring from VD replete and VDD dams were removed and RNA from these samples were analyzed using Affymetrix microarrays. Data were RMA normalized, differential gene expression was determined using Significance Analysis of Microarrays (5 % FDR) and pathway enrichment analysis was assessed. There were 2233 differentially expressed transcripts between the VDD and control lungs (1889 up, 344 down). Consistent with the suppression of lung growth in the VDD group, there were significant suppression of signal transduction pathways related to vascular biology and anabolic signaling pathways, e.g. the insulin-like growth factor-1 receptor (IGF-1R), fibroblast growth factor (FGF), cell cycle control. A major, enriched functional category was upregulation of pathways related to the innate immune system, including pathways for granulocyte and macrophage development, chemotaxis, and activation of cytokine signaling through Jak/Stat (e.g. resulting in higher IL1 α and β). We conclude that VDD during fetal development alters multiple pathways beyond the predicted angiogeneic alterations. These changes either contribute to, or reflect, the abnormal airway, alveolar, and vascular growth seen in the neonatal lung resulting from maternal VDD. The pattern also suggests abnormal lung development caused by maternal VDD creates a proinflammatory milieu that could contribute to the suppression of lung growth and development.
Collapse
Affiliation(s)
- Erica Mandell
- Pediatric Heart Lung Center, Department of Pediatrics, University of Colorado, Denver Anschutz Medical Center, Aurora, CO, USA.
| | - Sharon Ryan
- Pediatric Heart Lung Center, Department of Pediatrics, University of Colorado, Denver Anschutz Medical Center, Aurora, CO, USA
| | - Gregory J Seedorf
- Pediatric Heart Lung Center, Department of Pediatrics, University of Colorado, Denver Anschutz Medical Center, Aurora, CO, USA
| | - Tania Gonzalez
- Pediatric Heart Lung Center, Department of Pediatrics, University of Colorado, Denver Anschutz Medical Center, Aurora, CO, USA
| | - Steven H Abman
- Pediatric Heart Lung Center, Department of Pediatrics, University of Colorado, Denver Anschutz Medical Center, Aurora, CO, USA
| | - James C Fleet
- Department of Nutrition Science, Purdue University Center for Cancer Research, West Lafayette, IN USA
| |
Collapse
|
23
|
Makino Y, Munakata S, Ueyama T, Honjo K, Kawano S, Takahashi M, Kojima Y, Tomiki Y, Sakamoto K. Effects of Receptor for Advanced Glycation End-Products (RAGE) Signaling on Intestinal Ischemic Damage in Mice. Eur Surg Res 2020; 60:239-247. [PMID: 31914449 DOI: 10.1159/000504751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 11/13/2019] [Indexed: 11/19/2022]
Abstract
OBJECTIVE Superior mesenteric artery ischemia and nonocclusive mesenteric ischemia are representative diseases of the vascular emergency known as irreversible transmural intestinal necrosis (ITIN). The receptor for advanced glycation end-products (RAGE) belongs to the immunoglobulin superfamily of extracellular ligands, which also includes high-mobility group box 1 (HMGB-1) and proteins of the S100 family. The HMGB-1 ligands have been implicated in the pathogenesis of various inflammatory disorders. This study was designed to investigate the relation between RAGE and ITIN in a murine acute intestinal ischemic model. MATERIALS AND METHODS ITIN was induced by clipping the cranial mesenteric artery and the peripheral blood vessels. Mucosal and blood samples were collected and analyzed by reverse-transcription PCR and immunohistochemistry for mucosal inflammation and levels of RAGE-related proteins. The influence of RAGE signaling on intestinal cell reproduction was investigated using the cell scratch test, an in vitro wound-healing assay. Finally, RAGE-related proteins and their respective inhibitors were administered intraperitoneally to ITIN model mice to determine their effects. RESULTS RAGE-expressing cells were located at the base of the intestinal crypts at day 0. As ITIN progressed, most of the damaged intestinal cells expressed RAGE, and ligands of RAGE such as HMGB-1, S100 A8/A9, and S100β were present in the crypt cells from the bottom to the top. The quantities of S100 A8/A9 and S100β were particularly high, above the levels found in other diseases. When S100 A8/A9 and S100β were applied to small intestinal epithelial cells in vitro, regeneration was significantly impeded. Inflammatory Gr1+ neutrophils and F4/80+ macrophages are involved in tissue ischemia. S100 A8/A9 enhances inflammatory myeloid cell influx. CONCLUSIONS RAGE-related proteins are elevated in ITIN model mice and impede intestinal regeneration in vitro. RAGE-related proteins may be a new therapeutic target or a new marker for ITIN.
Collapse
Affiliation(s)
- Yurika Makino
- Department of Coloproctological Surgery, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Shinya Munakata
- Department of Coloproctological Surgery, Juntendo University Faculty of Medicine, Tokyo, Japan,
| | - Takae Ueyama
- Department of Coloproctological Surgery, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Kumpei Honjo
- Department of Coloproctological Surgery, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Shingo Kawano
- Department of Coloproctological Surgery, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Makoto Takahashi
- Department of Coloproctological Surgery, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Yutaka Kojima
- Department of Coloproctological Surgery, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Yuichi Tomiki
- Department of Coloproctological Surgery, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Kazuhiro Sakamoto
- Department of Coloproctological Surgery, Juntendo University Faculty of Medicine, Tokyo, Japan
| |
Collapse
|
24
|
Sepehri Z, Kiani Z, Kohan F, Ghavami S. Toll-Like Receptor 4 as an Immune Receptor Against Mycobacterium tuberculosis: A Systematic Review. Lab Med 2019; 50:117-129. [PMID: 30124945 DOI: 10.1093/labmed/lmy047] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
OBJECTIVE To review the main Mycobacterium tuberculosis (Mtb) pathogen-associated molecular patterns (PAMPs) and the roles played by toll-like receptor (TLR)4 in determination of Mtb infection outcome. METHODS Several scientific databases, including Scopus, PubMed, and Google Scholar, were used for searching appropriate research articles from the literature for information on our topic. RESULTS TLR4 plays positive roles in induction of immune responses against Mtb and participates in eradication of the infection. Some limited investigations approved the roles of TLR4 in induction of apoptosis in macrophages during tuberculosis (TB) and attenuation of immune responses in some situations. CONCLUSIONS TB outcome appears to be dependent on TLR4/Mtb interaction and several factors, including bacterial load and immune or nonimmune cells, as hosts. Also, other TLR/Mtb interactions can affect TLR4 responses.
Collapse
Affiliation(s)
- Zahra Sepehri
- Department of Internal Medicine, Zabol University of Medical Sciences, Zabol, Iran
| | - Zohre Kiani
- Zabol Medicinal Plant Research Center, Zabol University of Medical Sciences, Zabol, Iran and Kerman University of Medical Sciences, Kerman, Iran
| | - Farhad Kohan
- Zabol University of Medical Sciences, Zabol, Iran
| | - Saeid Ghavami
- Department of Human Anatomy and Cell Sciences, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| |
Collapse
|
25
|
Khaket TP, Kang SC, Mukherjee TK. The Potential of Receptor for Advanced Glycation End Products (RAGE) as a Therapeutic Target for Lung Associated Diseases. Curr Drug Targets 2019; 20:679-689. [DOI: 10.2174/1389450120666181120102159] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 10/17/2018] [Accepted: 11/02/2018] [Indexed: 12/27/2022]
Abstract
The receptor for advanced glycation end products (RAGE) is a multi-ligand pattern recognition
receptor that is highly expressed in lung epithelial cells. It helps alveolar epithelial cells to
maintain their morphology and specific architecture. However, in various pathophysiological conditions,
pulmonary tissues express a supraphysiological level of RAGE and its ligands including advanced
glycation end products, high mobility group box 1 proteins, and S100 proteins. On interaction
with RAGE, these ligands stimulate downstream signaling that generates inflammation and oxidative
stress leading to asthma, chronic obstructive pulmonary disease, lung cancers, idiopathic pulmonary
fibrosis, acute lung injury, pneumonia, bronchopulmonary dysplasia, cystic fibrosis, and sepsis. Thus,
pharmacological agents that can either suppress the production of RAGE or block its biological activity
would offer promising therapeutic value against pathogenesis of the aforementioned lungassociated
diseases. This review presents a comprehensive overview of the recent progress made in
defining the functions of RAGE in lung-associated diseases.
Collapse
Affiliation(s)
| | - Sun Chul Kang
- Department of Biotechnology, Daegu University, Gyeongsan, Gyeongbuk, Korea
| | - Tapan Kumar Mukherjee
- Department of Biotechnology, Maharishi Markandeshwar University, Mullana, Haryana, India
| |
Collapse
|
26
|
MTOR-Mediated Autophagy Is Involved in the Protective Effect of Ketamine on Allergic Airway Inflammation. J Immunol Res 2019; 2019:5879714. [PMID: 30729138 PMCID: PMC6343142 DOI: 10.1155/2019/5879714] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 10/29/2018] [Accepted: 11/11/2018] [Indexed: 12/19/2022] Open
Abstract
Unresolved inflammation underpins the pathogenesis of allergic airway diseases, such as asthma. Ketamine, accepted as a promising therapy for resistant asthma, has been demonstrated to attenuate allergic airway inflammation. However, the anti-inflammatory mechanism by ketamine in this setting is largely unknown. We aimed to investigate whether autophagy was involved in the protective effect of ketamine on allergic airway inflammation. Female C57BL/6 mice were sensitized to ovalbumin (OVA) and treated with ketamine at 25, 50, or 100 mg/kg prior to OVA challenge. In this model, the pulmonary morphological findings and airway inflammation were significantly inhibited at 50 mg/kg but not at 25 or 100 mg/kg. Moreover, 50 mg/kg ketamine abrogated the increased concentrations of inflammatory cytokines in bronchoalveolar lavage fluid (BALF) of allergic mice, as well as activated the expression of phosphorylated mammalian target of rapamycin (p-MTOR) and inhibited autophagy in allergic mice. To confirm whether the effect of 50 mg/kg ketamine on asthma was mediated by inhibiting autophagy, rapamycin was administered to mice sensitized to OVA and exposed to 50 mg/kg ketamine. All of the effect of 50 mg/kg ketamine was reversed by rapamycin treatment, including increased p-MTOR and decreased autophagy. Taken together, the present study demonstrates that 50 mg/kg ketamine inhibits allergic airway inflammation by suppressed autophagy, and this effect is mediated by the activation of MTOR in the lungs of allergic mice.
Collapse
|
27
|
Perkins TN, Oczypok EA, Milutinovic PS, Dutz RE, Oury TD. RAGE-dependent VCAM-1 expression in the lung endothelium mediates IL-33-induced allergic airway inflammation. Allergy 2019; 74:89-99. [PMID: 29900561 DOI: 10.1111/all.13500] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/23/2018] [Indexed: 02/06/2023]
Abstract
BACKGROUND The receptor for advanced glycation endproducts (RAGE) has been implicated as a critical molecule in the pathogenesis of experimental asthma/allergic airway inflammation (AAI). It has been previously shown that RAGE acts both upstream of interleukin-33 (IL-33) release and downstream of IL-33 release via RAGE-dependent IL-33-induced accumulation of type 2 innate lymphoid cells (ILC2s) in the lungs, which perpetuate type 2 inflammation and mucus metaplasia. However, the mechanism by which RAGE mediates downstream IL-33-induced type 2 inflammatory responses is unknown. OBJECTIVE This study tested the hypothesis that ILC2s are recruited to the lungs via RAGE-dependent vascular cell adhesion molecule 1 (VCAM-1) expression on lung endothelial cells. METHODS House dust mite extract, Alternaria alternata extract, or rIL-33 was used to induce AAI/VCAM-1 expression in wild-type (WT) and RAGE-knockout (RAGE-KO) mice. Intravenous (i.v.) anti-VCAM-1 or intraperitoneal (i.p.) β7 blocking antibody administration was used to determine the role of VCAM-1 in IL-33-induced AAI. RESULTS Enhanced VCAM-1 expression in the lungs by HDM, AA, or rIL-33 exposure was found to be RAGE-dependent. In addition, stimulation of primary mouse lung endothelial cells with IL-33 induced VCAM-1 expression in WT, but not RAGE-KO cells. Administration of VCAM-1 and β7-integrin blocking antibodies reduced IL-33-induced eosinophilic inflammation, mucus metaplasia, and type 2 inflammatory responses. CONCLUSION This study demonstrates that allergen- and cytokine-induced VCAM-1 expression is RAGE-dependent and contributes to lung ILC2 accumulation and downstream eosinophilic inflammation, mucus metaplasia, and type 2 inflammatory responses.
Collapse
Affiliation(s)
- T. N. Perkins
- Department of Pathology University of Pittsburgh School of Medicine University of Pittsburgh Medical Center Pittsburgh PA USA
- Department of Pediatrics Division of Pulmonary, Allergy, and Clinical Immunology Children's Hospital of Pittsburgh of UPMC Pittsburgh PA USA
| | - E. A. Oczypok
- Department of Pathology University of Pittsburgh School of Medicine University of Pittsburgh Medical Center Pittsburgh PA USA
| | - P. S. Milutinovic
- Department of Pediatrics Duke University Medical Center Durham NC USA
- Department of Medicine Duke University Medical Center Durham NC USA
| | - R. E. Dutz
- Department of Pathology University of Pittsburgh School of Medicine University of Pittsburgh Medical Center Pittsburgh PA USA
| | - T. D. Oury
- Department of Pathology University of Pittsburgh School of Medicine University of Pittsburgh Medical Center Pittsburgh PA USA
| |
Collapse
|
28
|
Zhu Q, Li F, Wang J, Ma J, Sheng X. Upregulation of calprotectin in mild IgE-mediated ovalbumin hypersensitivity. Oncotarget 2018; 8:37342-37354. [PMID: 28454097 PMCID: PMC5514913 DOI: 10.18632/oncotarget.16954] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 03/27/2017] [Indexed: 12/14/2022] Open
Abstract
Calprotectin, also known as S100A8/A9, has been linked to gut inflammation caused by IgE-mediated food hypersensitivities, but the pathophysiologic abnormalities it causes remain to be determined. We created a mild food hypersensitivity model through oral gavage of ovalbumin in Norway brown rats without using immune adjuvant. Changes in the levels of calprotectin and inflammation-associated cytokines were then observed over time. We found that fecal calprotectin as well as jejunal and liver TLR4, TNF-α, NF-κB, IL-1β, and IL-6 were upregulated in hypersensitive rats. Additionally, the influence of calprotectin on CD4+ T and dendritic cells was observed by co-culturing CD4+ T cells with dendritic cells, which revealed a shift toward increased Th2 T cells in calprotectin-treated cultures. These results suggest that calprotectin, along with other inflammatory factors, promotes the inflammation seen in mild food allergy.
Collapse
Affiliation(s)
- Qingling Zhu
- Department of Child and Adolescent Healthcare, MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 200092, Shanghai, China
| | - Feng Li
- Department of Child and Adolescent Healthcare, MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 200092, Shanghai, China
| | - Junli Wang
- Department of Child and Adolescent Healthcare, MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 200092, Shanghai, China
| | - Jingqiu Ma
- Department of Child and Adolescent Healthcare, MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 200092, Shanghai, China
| | - Xiaoyang Sheng
- Department of Child and Adolescent Healthcare, MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 200092, Shanghai, China
| |
Collapse
|
29
|
Panahi Y, Abdolghaffari AH, Sahebkar A. A review on symptoms, treatments protocols, and proteomic profile in sulfur mustard‐exposed victims. J Cell Biochem 2017; 119:197-206. [DOI: 10.1002/jcb.26247] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Accepted: 06/26/2017] [Indexed: 01/11/2023]
Affiliation(s)
- Yunes Panahi
- Chemical Injuries Research CentreBaqiyatallah University of Medical SciencesTehranIran
| | - Amir H. Abdolghaffari
- Medicinal Plants Research CenterInstitute of Medicinal Plants, ACECRKarajIran
- Gastrointestinal Pharmacology Interest Group (GPIG)Universal Scientific Education and Research Network (USERN)TehranIran
| | | |
Collapse
|
30
|
Shalaby KH, Al Heialy S, Tsuchiya K, Farahnak S, McGovern TK, Risse PA, Suh WK, Qureshi ST, Martin JG. The TLR4-TRIF pathway can protect against the development of experimental allergic asthma. Immunology 2017; 152:138-149. [PMID: 28502093 DOI: 10.1111/imm.12755] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 04/25/2017] [Accepted: 05/03/2017] [Indexed: 12/17/2022] Open
Abstract
The Toll-like receptor (TLR) adaptor proteins myeloid differentiating factor 88 (MyD88) and Toll, interleukin-1 receptor and resistance protein (TIR) domain-containing adaptor inducing interferon-β (TRIF) comprise the two principal limbs of the TLR signalling network. We studied the role of these adaptors in the TLR4-dependent inhibition of allergic airway disease and induction of CD4+ ICOS+ T cells by nasal application of Protollin™, a mucosal adjuvant composed of TLR2 and TLR4 agonists. Wild-type (WT), Trif-/- or Myd88-/- mice were sensitized to birch pollen extract (BPEx), then received intranasal Protollin followed by consecutive BPEx challenges. Protollin's protection against allergic airway disease was TRIF-dependent and MyD88-independent. TRIF deficiency diminished the CD4+ ICOS+ T-cell subsets in the lymph nodes draining the nasal mucosa, as well as their recruitment to the lungs. Overall, TRIF deficiency reduced the proportion of cervical lymph node and lung CD4+ ICOS+ Foxp3- cells, in particular. Adoptive transfer of cervical lymph node cells supported a role for Protollin-induced CD4+ ICOS+ cells in the TRIF-dependent inhibition of airway hyper-responsiveness. Hence, our data demonstrate that stimulation of the TLR4-TRIF pathway can protect against the development of allergic airway disease and that a TRIF-dependent adjuvant effect on CD4+ ICOS+ T-cell responses may be a contributing mechanism.
Collapse
Affiliation(s)
- Karim H Shalaby
- Department of Medicine, Meakins-Christie Laboratories, McGill University Health Centre Research Institute, McGill University, Montréal, QC, Canada
| | - Saba Al Heialy
- Department of Medicine, Meakins-Christie Laboratories, McGill University Health Centre Research Institute, McGill University, Montréal, QC, Canada
| | - Kimitake Tsuchiya
- Department of Medicine, Meakins-Christie Laboratories, McGill University Health Centre Research Institute, McGill University, Montréal, QC, Canada
| | - Soroor Farahnak
- Department of Medicine, Meakins-Christie Laboratories, McGill University Health Centre Research Institute, McGill University, Montréal, QC, Canada
| | - Toby K McGovern
- Department of Medicine, Meakins-Christie Laboratories, McGill University Health Centre Research Institute, McGill University, Montréal, QC, Canada
| | - Paul-Andre Risse
- Department of Medicine, Meakins-Christie Laboratories, McGill University Health Centre Research Institute, McGill University, Montréal, QC, Canada
| | - Woong-Kyung Suh
- Institut de Recherches Cliniques de Montréal, Montréal, QC, Canada
| | - Salman T Qureshi
- Department of Medicine, Meakins-Christie Laboratories, McGill University Health Centre Research Institute, McGill University, Montréal, QC, Canada
| | - James G Martin
- Department of Medicine, Meakins-Christie Laboratories, McGill University Health Centre Research Institute, McGill University, Montréal, QC, Canada
| |
Collapse
|
31
|
Oczypok EA, Perkins TN, Oury TD. All the "RAGE" in lung disease: The receptor for advanced glycation endproducts (RAGE) is a major mediator of pulmonary inflammatory responses. Paediatr Respir Rev 2017; 23:40-49. [PMID: 28416135 PMCID: PMC5509466 DOI: 10.1016/j.prrv.2017.03.012] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 03/10/2017] [Indexed: 02/07/2023]
Abstract
The receptor for advanced glycation endproducts (RAGE) is a pro-inflammatory pattern recognition receptor (PRR) that has been implicated in the pathogenesis of numerous inflammatory diseases. It was discovered in 1992 on endothelial cells and was named for its ability to bind advanced glycation endproducts and promote vascular inflammation in the vessels of patients with diabetes. Further studies revealed that RAGE is most highly expressed in lung tissue and spurred numerous explorations into RAGE's role in the lung. These studies have found that RAGE is an important mediator in allergic airway inflammation (AAI) and asthma, pulmonary fibrosis, lung cancer, chronic obstructive pulmonary disease (COPD), acute lung injury, pneumonia, cystic fibrosis, and bronchopulmonary dysplasia. RAGE has not yet been targeted in the lungs of paediatric or adult clinical populations, but the development of new ways to inhibit RAGE is setting the stage for the emergence of novel therapeutic agents for patients suffering from these pulmonary conditions.
Collapse
Affiliation(s)
| | | | - Tim D. Oury
- Corresponding author. Tel.: +1 412 648 9659; Fax: +1 412 648 9527
| |
Collapse
|
32
|
Min HJ, Kim KS, Yoon JH, Kim CH, Cho HJ. T-helper 2 cytokine-induced heat shock protein 70 secretion and its potential association with allergic rhinitis. Int Forum Allergy Rhinol 2017; 7:530-535. [PMID: 28054753 DOI: 10.1002/alr.21905] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 10/18/2016] [Accepted: 12/06/2016] [Indexed: 11/06/2022]
Abstract
BACKGROUND Various inflammatory mediators have been found to be involved in the pathogenesis of allergic disease (AR). The role of heat shock proteins in AR has not been studied. The aim of this study was to investigate the levels of heat shock protein 70 (Hsp70) in the nasal lavage fluids of AR patients and controls to elucidate the role of Hsp70 in the pathogenesis of AR. METHODS Using an enzyme-linked immunosorbent assay, the levels of Hsp70, Hsp90, interleukin (IL)-4, IL-13, and IL-8 in nasal lavage fluid from patients were measured and statistically analyzed. Primary human nasal epithelial cells were cultured in vitro and T-helper 2 (Th2) cytokines (IL-4, IL-13) were added to the culture medium. We evaluated the mRNA and protein expression levels of Hsp70 using real-time polymerase chain reaction and western blot assay. RESULTS Hsp70 was easily detected in nasal lavage fluid and the levels of Hsp70 were higher in AR patients than in healthy controls. Other clinical characteristics of subjects were not significantly associated with Hsp70 levels. Furthermore, we found that treatment with IL-4 and IL-13 induced the secretion of Hsp70 in human nasal epithelial cells. CONCLUSION We found that Hsp70 was abundant and positively detected in nasal lavage fluid samples from all subjects, and that Hsp70 levels were significantly higher in AR patients. We demonstrated, both in vivo and in vitro, that Hsp70 could play an important role in the pathogenesis of AR, and we suggest that Hsp70 can be used as a disease marker for AR.
Collapse
Affiliation(s)
- Hyun Jin Min
- Department of Otorhinolaryngology-Head and Neck Surgery, Chung-Ang University College of Medicine, Seoul, Korea
| | - Kyung Soo Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Chung-Ang University College of Medicine, Seoul, Korea
| | - Joo-Heon Yoon
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, Korea.,The Airway Mucus Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Chang-Hoon Kim
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, Korea.,The Airway Mucus Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Hyung-Ju Cho
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, Korea.,The Airway Mucus Institute, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
33
|
Decreased S100A9 Expression Promoted Rat Airway Smooth Muscle Cell Proliferation by Stimulating ROS Generation and Inhibiting p38 MAPK. Can Respir J 2016; 2016:1462563. [PMID: 28050155 PMCID: PMC5165165 DOI: 10.1155/2016/1462563] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 11/07/2016] [Accepted: 11/15/2016] [Indexed: 01/16/2023] Open
Abstract
Background. Asthma is a disease with a core abnormality in airway smooth muscle function, and the proliferation of airway smooth muscle cells (ASMCs) plays a pivotal role in asthma airway remodeling. Our previous study showed that S100A9 (S100 calcium-binding protein A9; 400 and 800 ng/mL) significantly inhibited rat ASMCs proliferation at 48 h, and 50–800 ng/mL S100A9 (50, 100, 200, 400, and 800 ng/mL) also induced a lasting effect by significantly inhibiting rat ASMCs proliferation at 72 h in a dose-dependent manner. However, the intracellular effects of S100A9 on ASMCs proliferation remain unknown. Methods. Rat ASMCs with stable S100A9 knockdown were generated using short hairpin RNA. The effects of decreased S100A9 expression on cellular proliferation, the production of reactive oxygen species (ROS), and p38 MAPK pathway protein expression were examined. Results. Decreased intracellular S100A9 expression significantly promoted platelet-derived growth factor-induced rat ASMCs proliferation and increased ROS production. The antioxidative agent N-acetylcysteine significantly inhibited rat ASMCs proliferation. Western blot results showed that the decreased intracellular S100A9 expression significantly inhibited p38 MAPK phosphorylation. Conclusion. Decreased S100A9 expression promoted rat ASMCs proliferation by stimulating ROS generation and inhibiting p38 MAPK. Our study may provide novel insights into the regulation of asthma airway remodeling.
Collapse
|
34
|
Lee NR, Park BS, Kim SY, Gu A, Kim DH, Lee JS, Kim IS. Cytokine secreted by S100A9 via TLR4 in monocytes delays neutrophil apoptosis by inhibition of caspase 9/3 pathway. Cytokine 2016; 86:53-63. [PMID: 27459393 DOI: 10.1016/j.cyto.2016.07.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 07/05/2016] [Accepted: 07/08/2016] [Indexed: 02/08/2023]
Abstract
Dysregulation of neutrophil apoptosis causes pathogenesis and aggravation of allergy. S100A9 exists as one of the proteins in the neutrophils, triggering inflammatory responses by activating the immune cells. In this study, we investigated whether S100A9 affects constitutive neutrophil apoptosis by activating the monocytes in normal and allergic subjects. Supernatant from human monocytic THP-1 cells after treatment with S100A9 suppressed normal neutrophil apoptosis by inhibiting the activations of caspase 9 and caspase 3. S100A9 upregulated the release of MCP-1, IL-6, and IL-8 in THP-1 cells. An increase in cytokine was suppressed by CLI-095, a Toll-like receptor (TLR) 4 inhibitor, PP2, a Src inhibitor, rottlerin, a PKCδ inhibitor, MAP kinase inhibitors, including PD98059, SB202190, and SP600125, and BAY-11-7085, an NF-κB inhibitor. Src, PKCδ, ERK1/2, p38 MAPK, and JNK were phosphorylated by S100A9. The phosphorylation of Src and PKCδ was suppressed by CLI-095, and the activation of ERK1/2, p38 MAPK, and JNK was inhibited by CLI-095, PP2, and rottlerin. S100A9 induced NF-κB activity, and the activation was suppressed by CLI-095, PP2, rottlerin, and MAPK kinase inhibitors. In normal and allergic subjects, supernatant from normal and allergic monocytes after stimulation with S100A9 suppressed normal and allergic neutrophil apoptosis, respectively; MCP-1, IL-6, and IL-8 in the supernatant was increased by S100A9. The cytokine secretion induced by S100A9 is related to TLR4, Src, PKCδ, ERK1/2, p38 MAPK, JNK, and NF-κB. Taken together, S100A9 induces anti-apoptotic effect on normal and allergic neutrophils by increasing cytokine secretion of monocytes. These findings may help us to better understand neutrophil apoptosis regulated by S100A9 and pathogenesis of allergic diseases.
Collapse
Affiliation(s)
- Na Rae Lee
- Department of Biomedical Laboratory Science, School of Medicine, Eulji University, Daejeon 34824, Republic of Korea
| | - Beom Seok Park
- Department of Biomedical Laboratory Science, College of Health Science, Eulji University, Seongnam 13135, Republic of Korea; Department of Senior Healthcare, BK21 Plus Program, Graduate School, Eulji University, Daejeon 34824, Republic of Korea
| | - Seong Yeol Kim
- Department of Senior Healthcare, BK21 Plus Program, Graduate School, Eulji University, Daejeon 34824, Republic of Korea
| | - Ayoung Gu
- Department of Senior Healthcare, BK21 Plus Program, Graduate School, Eulji University, Daejeon 34824, Republic of Korea
| | - Da Hye Kim
- Department of Senior Healthcare, BK21 Plus Program, Graduate School, Eulji University, Daejeon 34824, Republic of Korea
| | - Ji-Sook Lee
- Department of Clinical Laboratory Science, Wonkwang Health Science University, Iksan 54538, Republic of Korea.
| | - In Sik Kim
- Department of Biomedical Laboratory Science, School of Medicine, Eulji University, Daejeon 34824, Republic of Korea; Department of Senior Healthcare, BK21 Plus Program, Graduate School, Eulji University, Daejeon 34824, Republic of Korea.
| |
Collapse
|
35
|
Identification of an S100A8 Receptor Neuroplastin-β and its Heterodimer Formation with EMMPRIN. J Invest Dermatol 2016; 136:2240-2250. [PMID: 27388991 DOI: 10.1016/j.jid.2016.06.617] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 06/17/2016] [Accepted: 06/28/2016] [Indexed: 01/12/2023]
Abstract
We previously reported a positive feedback loop between S100A8/A9 and proinflammatory cytokines mediated by extracellular matrix metalloproteinase inducer, an S100A9 receptor. Here, we identify neuroplastin-β as an unreported S100A8 receptor. Neuroplastin-β and extracellular matrix metalloproteinase inducer form homodimers and a heterodimer, and they are co-localized on the surface of cultured normal human keratinocytes. Knockdown of both receptors suppressed cell proliferation and proinflammatory cytokine induction. Upon stimulation with S100A8, neuroplastin-β recruited GRB2 and activated extracellular signal-regulated kinase, resulting in keratinocyte proliferation. Keratinocyte proliferation in response to inflammatory stimuli was accelerated in involucrin promoter-driven S100A8 transgenic mice. Further, S100A8 and S100A9 were strongly up-regulated and co-localized in lesional skin of atopic dermatitis patients. Our results indicate that neuroplastin-β and extracellular matrix metalloproteinase inducer form a functional heterodimeric receptor for S100A8/A9 heterodimer, followed by recruitment of specific adaptor molecules GRB2 and TRAF2, and this signaling pathway is involved in activation of both keratinocyte proliferation and skin inflammation in atopic skin. Suppression of this pathway might have potential for treatment of skin diseases associated with chronic inflammation such as atopic dermatitis.
Collapse
|
36
|
Xu YD, Wei Y, Wang Y, Yin LM, Park GH, Liu YY, Yang YQ. Exogenous S100A8 protein inhibits PDGF-induced migration of airway smooth muscle cells in a RAGE-dependent manner. Biochem Biophys Res Commun 2016; 472:243-9. [PMID: 26920052 DOI: 10.1016/j.bbrc.2016.02.098] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Accepted: 02/22/2016] [Indexed: 11/16/2022]
Abstract
S100A8 is an important member of the S100 protein family, which is involved in intracellular and extracellular regulatory activities. We previously reported that the S100A8 protein was differentially expressed in the asthmatic respiratory tracts. To understand the potential role of S100A8 in asthma, we investigated the effect of recombinant S100A8 protein on the platelet-derived growth factor (PDGF)-induced migration of airway smooth muscle cells (ASMCs) and the underlying molecular mechanism by using multiple methods, such as impedance-based xCELLigence migration assay, transwell migration assays and wound-healing assays. We found that exogenous S100A8 protein significantly inhibited PDGF-induced ASMC migration. Furthermore, the migration inhibition effect of S100A8 was blocked by neutralizing antibody against the receptor for advanced glycation end-products (RAGE), a potential receptor for the S100A8 protein. These findings provide direct evidence that exogenous S100A8 protein inhibits the PDGF-induced migration of ASMCs through the membrane receptor RAGE. Our study highlights a novel role of S100A8 as a potential means of counteracting airway remodeling in chronic airway diseases.
Collapse
Affiliation(s)
- Yu-Dong Xu
- Shanghai Research Institute of Acupuncture and Meridian, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ying Wei
- Shanghai Research Institute of Acupuncture and Meridian, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yu Wang
- Shanghai Research Institute of Acupuncture and Meridian, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lei-Miao Yin
- Shanghai Research Institute of Acupuncture and Meridian, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Gyoung-Hee Park
- Shanghai Research Institute of Acupuncture and Meridian, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yan-Yan Liu
- Shanghai Research Institute of Acupuncture and Meridian, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yong-Qing Yang
- Shanghai Research Institute of Acupuncture and Meridian, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
37
|
Pham DL, Yoon MG, Ban GY, Kim SH, Kim MA, Ye YM, Shin YS, Park HS. Serum S100A8 and S100A9 Enhance Innate Immune Responses in the Pathogenesis of Baker's Asthma. Int Arch Allergy Immunol 2016; 168:138-46. [PMID: 26745257 DOI: 10.1159/000441678] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 10/12/2015] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND S100A8 and S100A9 can be produced by lipopolysaccharide-stimulated granulocytes and provoke an innate immune-mediated airway inflammation. Involvement of S100A8 and S100A9 has been implicated in asthma. To further understand the role of S100A8 and S100A9 during innate immune responses in baker's asthma, we investigated the associations of serum S100A8 and S100A9 with exposure to bakery allergens and polymorphisms of the Toll-like receptor 4 (TLR4) gene. METHODS Totally, 381 bakery workers and 100 unexposed healthy controls were recruited. Skin prick tests for bakery allergens were performed. Serum levels of S100A8, S100A9, myeloperoxidase (MPO), tumor necrosis factor (TNF)-α, and interleukin (IL)-8 were measured using ELISA. Predictive values of serum S100A8 and S100A9 in bakery workers were evaluated by receiver-operating characteristic (ROC) curves. Polymorphisms of TLR4 -2027Ax2192;G and -1608Tx2192;C were genotyped. RESULTS Higher serum levels of S100A8 and S100A9 were noted in bakery workers compared to the normal controls (p < 0.001); however, no significant differences were noted according to work-related symptoms. The area under the ROC curve of serum S100A8 was 0.886 for occupational exposure (p < 0.001). The TLR4 -1608CC genotype was significantly associated with a higher serum S100A8 level (p = 0.025). Serum S100A8 and S100A9 levels were correlated with serum levels of MPO (r = 0.396 and 0.189, respectively), TNF-α (r = 0.536 and 0.280, respectively), and IL-8 (r = 0.540 and 0.205, respectively; p < 0.001 for all). CONCLUSION S100A8 and S100A9 are involved in innate immune responses under the regulation of TLR4 polymorphisms in baker's asthma pathogenesis. Serum S100A8 could be a potential biomarker for predicting occupational exposure to wheat flour in bakery workers.
Collapse
Affiliation(s)
- Duy Le Pham
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Ojo OO, Ryu MH, Jha A, Unruh H, Halayko AJ. High-mobility group box 1 promotes extracellular matrix synthesis and wound repair in human bronchial epithelial cells. Am J Physiol Lung Cell Mol Physiol 2015; 309:L1354-66. [PMID: 26432865 DOI: 10.1152/ajplung.00054.2015] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 09/15/2015] [Indexed: 12/12/2022] Open
Abstract
High mobility group box 1 (HMGB1) is a damage-associated molecular pattern (DAMP) protein that binds Toll-like receptors (e.g., TLR4) and the receptor for advanced glycated end products (RAGE). The direct effects of HMGB1 on airway structural cells are not fully known. As epithelial cell responses are fundamental drivers of asthma, including abnormal repair-restitution linked to changes in extracellular matrix (ECM) synthesis, we tested the hypothesis that HMGB1 promotes bronchial epithelial cell wound repair via TLR4 and/or RAGE signaling that regulates ECM (fibronectin and the γ2-chain of laminin-5) and integrin protein abundance. To assess impact of HMGB1 we used molecular and pharmacological inhibitors of RAGE or TLR4 signaling in scratch wound, immunofluorescence, and immunoblotting assays to assess wound repair, ECM synthesis, and phosphorylation of intracellular signaling. HMGB1 increased wound closure, and this effect was attenuated by blocking RAGE and TLR4 signaling. HMGB1-induced fibronectin and laminin-5 (γ2 chain) was diminished by blocking RAGE and/or blunting TLR4 signaling. Similarly, induction of α3-integrin receptor for fibronectin and laminin-5 was also diminished by blocking TLR4 signaling and RAGE. Lastly, rapid and/or sustained phosphorylation of SMAD2, ERK1/2, and JNK signaling modulated HMGB1-induced wound closure. Our findings suggest a role for HMGB1 in human airway epithelial cell repair and restitution via multiple pathways mediated by TLR4 and RAGE that underpin increased ECM synthesis and modulation of cell-matrix adhesion.
Collapse
Affiliation(s)
- Oluwaseun O Ojo
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Manitoba, Canada; Biology of Breathing Group, Manitoba Institute of Child Health, Winnipeg, Manitoba, Canada
| | - Min Hyung Ryu
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Manitoba, Canada; Biology of Breathing Group, Manitoba Institute of Child Health, Winnipeg, Manitoba, Canada
| | - Aruni Jha
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Manitoba, Canada; Biology of Breathing Group, Manitoba Institute of Child Health, Winnipeg, Manitoba, Canada
| | - Helmut Unruh
- Department of Internal Medicine,University of Manitoba, Winnipeg, Manitoba, Canada; Section of Thoracic Surgery, University of Manitoba, Winnipeg, Manitoba, Canada; and
| | - Andrew J Halayko
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Manitoba, Canada; Department of Internal Medicine,University of Manitoba, Winnipeg, Manitoba, Canada; Biology of Breathing Group, Manitoba Institute of Child Health, Winnipeg, Manitoba, Canada
| |
Collapse
|
39
|
Tsai SY, Segovia JA, Chang TH, Shil NK, Pokharel SM, Kannan TR, Baseman JB, Defrêne J, Pagé N, Cesaro A, Tessier PA, Bose S. Regulation of TLR3 Activation by S100A9. THE JOURNAL OF IMMUNOLOGY 2015; 195:4426-37. [PMID: 26385519 DOI: 10.4049/jimmunol.1500378] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 08/18/2015] [Indexed: 12/18/2022]
Abstract
Recognition of viral dsRNA by endosomal TLR3 activates innate immune response during virus infection. Trafficking of TLR3 to the endolysosomal compartment arising from fusion of late endosome (LE) with lysosome is required for recognition and detection of pathogen associated molecular patterns, which results in activation of the TLR3-dependent signaling cascade. Existing knowledge about the mechanism(s) and cellular factor(s) governing TLR3 trafficking is limited. In the current study, we identified intracellular S100A9 protein as a critical regulator of TLR3 trafficking. S100A9 was required for maturation of TLR3 containing early endosome (EE) into LE, the compartment that fuses with lysosome to form the endolysosomal compartment. A drastic reduction in cytokine production was observed in S100A9-knockout (KO) primary macrophages following RNA virus infection and treatment of cells with polyinosinic-polycytidylic acid (polyIC; a dsRNA mimetic that acts as a TLR3 agonist). Mechanistic studies revealed colocalization and interaction of S100A9 with TLR3 following polyIC treatment. S100A9-TLR3 interaction was critical for maturation of TLR3 containing EE into LE because TLR3 could not be detected in the LE of polyIC-treated S100A9-KO macrophages. Subsequently, TLR3 failed to colocalize with its agonist (i.e., biotin-labeled polyIC) in S100A9-deficient macrophages. The in vivo physiological role of S100A9 was evident from loss of cytokine production in polyIC-treated S100A9-KO mice. Thus, we identified intracellular S100A9 as a regulator of TLR3 signaling and demonstrated that S100A9 functions during pre-TLR3 activation stages by facilitating maturation of TLR3 containing EE into LE.
Collapse
Affiliation(s)
- Su-Yu Tsai
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA 99164; Department of Microbiology and Immunology, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229
| | - Jesus A Segovia
- Department of Microbiology and Immunology, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229
| | - Te-Hung Chang
- Department of Microbiology and Immunology, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229
| | - Niraj K Shil
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA 99164
| | - Swechha M Pokharel
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA 99164
| | - T R Kannan
- Department of Microbiology and Immunology, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229
| | - Joel B Baseman
- Department of Microbiology and Immunology, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229
| | - Joan Defrêne
- Axe Maladies Infectieuses et Immunitaires, Centre de Recherche du Centre Hospitalier Universitaire de Québec, Faculté de Médecine, Université Laval, Quebec, Quebec G1V 4G2, Canada; and
| | - Nathalie Pagé
- Axe Maladies Infectieuses et Immunitaires, Centre de Recherche du Centre Hospitalier Universitaire de Québec, Faculté de Médecine, Université Laval, Quebec, Quebec G1V 4G2, Canada; and
| | - Annabelle Cesaro
- Axe Maladies Infectieuses et Immunitaires, Centre de Recherche du Centre Hospitalier Universitaire de Québec, Faculté de Médecine, Université Laval, Quebec, Quebec G1V 4G2, Canada; and Collegium Sciences et Techniques, Université d'Orléans, 45100 Orléans, France
| | - Philippe A Tessier
- Axe Maladies Infectieuses et Immunitaires, Centre de Recherche du Centre Hospitalier Universitaire de Québec, Faculté de Médecine, Université Laval, Quebec, Quebec G1V 4G2, Canada; and
| | - Santanu Bose
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA 99164;
| |
Collapse
|
40
|
Ménoret A, Crocker SJ, Rodriguez A, Rathinam VA, Clark RB, Vella AT. Transition from identity to bioactivity-guided proteomics for biomarker discovery with focus on the PF2D platform. Proteomics Clin Appl 2015. [PMID: 26201056 DOI: 10.1002/prca.201500029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Proteomic strategies provide a valuable tool kit to identify proteins involved in diseases. With recent progress in MS technology, high throughput proteomics has accelerated protein identification for potential biomarkers. Numerous biomarker candidates have been identified in several diseases, and many are common among pathologies. An overall strategy that could complement and strengthen the search for biomarkers is combining protein identity with biological outcomes. This review describes an emerging framework of bridging bioactivity to protein identity, exploring the possibility that some biomarkers will have a mechanistic role in the disease process. A review of pulmonary, cardiovascular, and CNS biomarkers will be discussed to demonstrate the utility of combining bioactivity with identification as a means to not only find meaningful biomarkers, but also to uncover functional mediators of disease.
Collapse
Affiliation(s)
- Antoine Ménoret
- Department of Immunology, University of Connecticut Health Center, Farmington, CT, USA
| | - Stephen J Crocker
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT, USA
| | - Annabelle Rodriguez
- Department of Cell Biology, University of Connecticut Health Center, Farmington, CT, USA
| | - Vijay A Rathinam
- Department of Immunology, University of Connecticut Health Center, Farmington, CT, USA
| | - Robert B Clark
- Department of Immunology, University of Connecticut Health Center, Farmington, CT, USA
| | - Anthony T Vella
- Department of Immunology, University of Connecticut Health Center, Farmington, CT, USA
| |
Collapse
|
41
|
Oczypok EA, Milutinovic PS, Alcorn JF, Khare A, Crum LT, Manni ML, Epperly MW, Pawluk AM, Ray A, Oury TD. Pulmonary receptor for advanced glycation end-products promotes asthma pathogenesis through IL-33 and accumulation of group 2 innate lymphoid cells. J Allergy Clin Immunol 2015; 136:747-756.e4. [PMID: 25930197 PMCID: PMC4562894 DOI: 10.1016/j.jaci.2015.03.011] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 03/04/2015] [Accepted: 03/06/2015] [Indexed: 12/12/2022]
Abstract
BACKGROUND Single nucleotide polymorphisms in the human gene for the receptor for advanced glycation end-products (RAGE) are associated with an increased incidence of asthma. RAGE is highly expressed in the lung and has been reported to play a vital role in the pathogenesis of murine models of asthma/allergic airway inflammation (AAI) by promoting expression of the type 2 cytokines IL-5 and IL-13. IL-5 and IL-13 are prominently secreted by group 2 innate lymphoid cells (ILC2s), which are stimulated by the proallergic cytokine IL-33. OBJECTIVE We sought to test the hypothesis that pulmonary RAGE is necessary for allergen-induced ILC2 accumulation in the lung. METHODS AAI was induced in wild-type and RAGE knockout mice by using IL-33, house dust mite extract, or Alternaria alternata extract. RAGE's lung-specific role in type 2 responses was explored with bone marrow chimeras and induction of gastrointestinal type 2 immune responses. RESULTS RAGE was found to drive AAI by promoting IL-33 expression in response to allergen and by coordinating the inflammatory response downstream of IL-33. Absence of RAGE impedes pulmonary accumulation of ILC2s in models of AAI. Bone marrow chimera studies suggest that pulmonary parenchymal, but not hematopoietic, RAGE has a central role in promoting AAI. In contrast to the lung, the absence of RAGE does not affect IL-33-induced ILC2 influx in the spleen, type 2 cytokine production in the peritoneum, or mucus hypersecretion in the gastrointestinal tract. CONCLUSIONS For the first time, this study demonstrates that a parenchymal factor, RAGE, mediates lung-specific accumulation of ILC2s.
Collapse
Affiliation(s)
- Elizabeth A Oczypok
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pa
| | - Pavle S Milutinovic
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pa
| | - John F Alcorn
- Department of Pediatrics, Children's Hospital of Pittsburgh, Pittsburgh, Pa
| | - Anupriya Khare
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pa
| | - Lauren T Crum
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pa
| | - Michelle L Manni
- Department of Pediatrics, Children's Hospital of Pittsburgh, Pittsburgh, Pa
| | - Michael W Epperly
- Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, Pa
| | - Adriane M Pawluk
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pa
| | - Anuradha Ray
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pa
| | - Tim D Oury
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pa.
| |
Collapse
|
42
|
Kim DH, Choi E, Lee JS, Lee NR, Baek SY, Gu A, Kim DH, Kim IS. House Dust Mite Allergen Regulates Constitutive Apoptosis of Normal and Asthmatic Neutrophils via Toll-Like Receptor 4. PLoS One 2015; 10:e0125983. [PMID: 25973752 PMCID: PMC4431853 DOI: 10.1371/journal.pone.0125983] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2014] [Accepted: 03/27/2015] [Indexed: 12/11/2022] Open
Abstract
House dust mites (HDMs) induce allergic diseases such as asthma. Neutrophil apoptosis is an important process of innate immunity, and its dysregulation is associated with asthma. In this study, we examined the effects of HDM on constitutive apoptosis of normal and asthmatic neutrophils. Extract of Dermatophagoides pteronissinus (DP) inhibited neutrophil apoptosis, but Dermatophagoides farinae extract had no effect. Anti-apoptotic signaling mediated by DP involves in TLR4, Lyn, PI3K, Akt, ERK, and NF-κB in normal neutrophils. DP delayed cleavage of procaspase 9 and procaspase 3 and the decrease in Mcl-1 expression. Supernatant collected from DP-treated normal neutrophils inhibited the constitutive apoptosis of normal neutrophils, and S100A8 and S100A9 were identified as anti-apoptotic proteins in the supernatant. S100A8 and S100A9 transduced the anti-apoptotic signal via TLR4, Lyn, PI3K, Akt, ERK, and NF-κB. DP also suppressed asthmatic neutrophil apoptosis and induced secretion of S100A8 and S100A9, which delayed the constitutive apoptosis. The anti-apoptotic effects of DP, S100A8 and S100A9 in asthmatic neutrophils are associated with TLR4, Lyn, PI3K, Akt, ERK, and NF-κB. The concentrations of S100A8 and S100A9 were significantly elevated in asthmatic bronchoalveolar lavage fluid (BALF) when compared to normal BALF (p<0.01), but not in serum. S100A8 concentration in BALF was positively correlated with the number of BALF neutrophils and negatively correlated with FEV1(%). These findings improve our understanding of the role of HDM in regulation of neutrophil apoptosis in normal individuals and asthmatics and will enable elucidation of asthma pathogenesis.
Collapse
Affiliation(s)
- Do Hyung Kim
- Department of Biomedical Laboratory Science, School of Medicine, Eulji University, Daejeon 301–768, Republic of Korea
| | - Eugene Choi
- Department of Respiratory Internal Medicine, College of Medicine, Konyang University, Daejeon, 302–718, Republic of Korea
| | - Ji-Sook Lee
- Department of Clinical Laboratory Science, Wonkwang Health Science University, Iksan, 570–750, Republic of Korea
| | - Na Rae Lee
- Department of Biomedical Laboratory Science, School of Medicine, Eulji University, Daejeon 301–768, Republic of Korea
| | - Seung Yeop Baek
- Department of Senior Healthcare, BK21 plus program, Graduate School, Eulji University, Daejeon 301–746, Republic of Korea
| | - Ayoung Gu
- Department of Senior Healthcare, BK21 plus program, Graduate School, Eulji University, Daejeon 301–746, Republic of Korea
| | - Da Hye Kim
- Department of Senior Healthcare, BK21 plus program, Graduate School, Eulji University, Daejeon 301–746, Republic of Korea
| | - In Sik Kim
- Department of Biomedical Laboratory Science, School of Medicine, Eulji University, Daejeon 301–768, Republic of Korea
- Department of Senior Healthcare, BK21 plus program, Graduate School, Eulji University, Daejeon 301–746, Republic of Korea
- * E-mail:
| |
Collapse
|
43
|
Medapati MR, Dahlmann M, Ghavami S, Pathak KA, Lucman L, Klonisch T, Hoang-Vu C, Stein U, Hombach-Klonisch S. RAGE Mediates the Pro-Migratory Response of Extracellular S100A4 in Human Thyroid Cancer Cells. Thyroid 2015; 25:514-27. [PMID: 25744544 DOI: 10.1089/thy.2014.0257] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Expression of the small calcium-binding protein S100A4 is associated with poor prognosis in patients with thyroid cancer (TC). The authors have previously shown that S100A4 is a target for relaxin and insulin-like peptide 3 signaling in TC cells and that S100A4 is secreted from human TC cells. Although the pro-migratory role of intracellular S100A4 in binding to non-muscle myosin is well known, this study investigated here whether extracellular S100A4 contributes to TC migration. METHODS Human cell lines of follicular, papillary, and undifferentiated thyroid cancer, primary patient TC cells, and TC tissues were utilized to discover the presence of the receptor of advanced glycation end products (RAGE) in TC cells and TC tissues. Fluorescence imaging, protein pull-down assays, Western blot, siRNA protein silencing, small GTPase inhibitors, cell proliferation, and cell migration assays were used to investigate the interaction of extracellular S100A4 with RAGE in promoting a TC migratory response. RESULTS It was demonstrated that RAGE served as receptor for extracellular S100A4 mediating cell migration in TC cells. The RAGE-mediated increase in cell migration was dependent on the intracellular RAGE signaling partner diaphanous-1 (Dia-1) and involved the activation of the small GTPases Cdc42 and RhoA. Although extracellular S100A4 consistently activated ERK signaling in TC cells, it was shown that ERK signaling was not mediated by RAGE and not essential for the migratory response in TC cells. CONCLUSION The data have identified the RAGE/Dia-1 signaling system as a mediator for the pro-migratory response of extracellular S100A4 in human TC. Thus, therapeutic targeting of the RAGE/Dia-1/small GTPases signaling may successfully reduce local invasion and metastasis in TC.
Collapse
Affiliation(s)
- Manoj Reddy Medapati
- 1 Department of Human Anatomy and Cell Science, University of Manitoba , Winnipeg, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Kang JH, Hwang SM, Chung IY. S100A8, S100A9 and S100A12 activate airway epithelial cells to produce MUC5AC via extracellular signal-regulated kinase and nuclear factor-κB pathways. Immunology 2015; 144:79-90. [PMID: 24975020 DOI: 10.1111/imm.12352] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 05/29/2014] [Accepted: 06/25/2014] [Indexed: 01/15/2023] Open
Abstract
Airway mucus hyperproduction is a common feature of chronic airway diseases such as severe asthma, chronic obstructive pulmonary disease and cystic fibrosis, which are closely associated with neutrophilic airway inflammation. S100A8, S100A9 and S100A12 are highly abundant proteins released by neutrophils and have been identified as important biomarkers in many inflammatory diseases. Herein, we report a new role for S100A8, S100A9 and S100A12 for producing MUC5AC, a major mucin protein in the respiratory tract. All three S100 proteins induced MUC5AC mRNA and the protein in normal human bronchial epithelial cells as well as NCI-H292 lung carcinoma cells in a dose-dependent manner. A Toll-like receptor 4 (TLR4) inhibitor almost completely abolished MUC5AC expression by all three S100 proteins, while neutralization of the receptor for advanced glycation end-products (RAGE) inhibited only S100A12-mediated production of MUC5AC. The S100 protein-mediated production of MUC5AC was inhibited by the pharmacological agents that block prominent signalling molecules for MUC5AC expression, such as mitogen-activated protein kinases, nuclear factor-κB (NF-κB) and epidermal growth factor receptor. S100A8, S100A9 and S100A12 equally elicited both phosphorylation of extracellular signal-regulated kinase (ERK) and nuclear translocation of NF-κB/degradation of cytosolic IκB with similar kinetics through TLR4. In contrast, S100A12 preferentially activated the ERK pathway rather than the NF-κB pathway through RAGE. Collectively, these data reveal the capacity of these three S100 proteins to induce MUC5AC production in airway epithelial cells, suggesting that they all serve as key mediators linking neutrophil-dominant airway inflammation to mucin hyperproduction.
Collapse
Affiliation(s)
- Jin Hyun Kang
- Department of Molecular and Life Sciences, College of Science and Technology, Hanyang University, Ansan, South Korea
| | | | | |
Collapse
|
45
|
Gross SR, Sin CGT, Barraclough R, Rudland PS. Joining S100 proteins and migration: for better or for worse, in sickness and in health. Cell Mol Life Sci 2014; 71:1551-79. [PMID: 23811936 PMCID: PMC11113901 DOI: 10.1007/s00018-013-1400-7] [Citation(s) in RCA: 118] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 06/04/2013] [Accepted: 06/06/2013] [Indexed: 12/12/2022]
Abstract
The vast diversity of S100 proteins has demonstrated a multitude of biological correlations with cell growth, cell differentiation and cell survival in numerous physiological and pathological conditions in all cells of the body. This review summarises some of the reported regulatory functions of S100 proteins (namely S100A1, S100A2, S100A4, S100A6, S100A7, S100A8/S100A9, S100A10, S100A11, S100A12, S100B and S100P) on cellular migration and invasion, established in both culture and animal model systems and the possible mechanisms that have been proposed to be responsible. These mechanisms involve intracellular events and components of the cytoskeletal organisation (actin/myosin filaments, intermediate filaments and microtubules) as well as extracellular signalling at different cell surface receptors (RAGE and integrins). Finally, we shall attempt to demonstrate how aberrant expression of the S100 proteins may lead to pathological events and human disorders and furthermore provide a rationale to possibly explain why the expression of some of the S100 proteins (mainly S100A4 and S100P) has led to conflicting results on motility, depending on the cells used.
Collapse
Affiliation(s)
- Stephane R. Gross
- School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham, B4 7ET UK
| | - Connie Goh Then Sin
- School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham, B4 7ET UK
| | - Roger Barraclough
- Institute of Integrative Biology, University of Liverpool, Biosciences Building, Crown Street, Liverpool, L69 7ZB UK
| | - Philip S. Rudland
- Institute of Integrative Biology, University of Liverpool, Biosciences Building, Crown Street, Liverpool, L69 7ZB UK
| |
Collapse
|
46
|
Moser B, Janik S, Schiefer AI, Müllauer L, Bekos C, Scharrer A, Mildner M, Rényi-Vámos F, Klepetko W, Ankersmit HJ. Expression of RAGE and HMGB1 in thymic epithelial tumors, thymic hyperplasia and regular thymic morphology. PLoS One 2014; 9:e94118. [PMID: 24705787 PMCID: PMC3976415 DOI: 10.1371/journal.pone.0094118] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 03/13/2014] [Indexed: 02/07/2023] Open
Abstract
Recently, a role of the receptor for advanced glycation endproducts (RAGE) in myasthenia gravis was described. RAGE and its ligand high mobility group box 1 (HMGB1) play key roles in autoimmunity and cancer. To test whether these molecules are involved in patients with thymic abnormalities we applied immunohistochemical analysis in 33 cases of thymic epithelial tumors, comprising 27 thymomas and 6 thymic carcinomas, and 21 nonneoplastic thymuses. Both molecules were detected in neoplastic epithelial cells: RAGE staining was most intense in WHO type B2 thymomas and thymic carcinomas (p<0.001). HMGB1 nuclear staining was strongest in A and AB, and gradually less in B1 = B2>B3>thymic carcinoma (p<0.001). Conversely, HMGB1 cytoplasmic staining intensities were as follows: A and AB (none), B1 (strong), B2 (moderate), B3 and thymic carcinoma (weak); (p<0.001). Fetal thymic tissue showed a distinct expression of RAGE and HMGB1 in subcapsular cortical epithelial cells which was found in 50% of myasthenic patients. Furthermore RAGE and HMGB1 were expressed in thymocytes, macrophages, Hassall's corpuscles, thymic medulla, and germinal center cells in myasthenic patients. Immunohistochemistry results were complemented by systemic measurements (immunosorbent assay): serum levels of soluble RAGE were significantly reduced in patients with epithelial tumors (p = 0.008); and in invasive tumors (p = 0.008). Whereas RAGE was equally reduced in thymic hyperplasia and epithelial tumors (p = 0.003), HMGB1 was only elevated in malignancies (p = 0.036). Results were most pronounced in thymic carcinomas. Thus, RAGE and HMGB1 are involved in the (patho-)physiology of thymus, as evidenced by differentiated thymic and systemic expression patterns that may act as diagnostic or therapeutic targets in autoimmune disease and cancer.
Collapse
Affiliation(s)
- Bernhard Moser
- Department of Thoracic Surgery, Division of Surgery, Medical University Vienna, Vienna, Austria
- * E-mail:
| | - Stefan Janik
- Department of Thoracic Surgery, Division of Surgery, Medical University Vienna, Vienna, Austria
| | | | | | - Christine Bekos
- Department of Thoracic Surgery, Division of Surgery, Medical University Vienna, Vienna, Austria
- Christian Doppler Laboratory for the Diagnosis and Regeneration of Cardiac and Thoracic Diseases, Medical University Vienna, Vienna, Austria
| | - Anke Scharrer
- Department of Pathology, Medical University Vienna, Vienna, Austria
| | - Michael Mildner
- Department of Dermatology, Medical University Vienna, Vienna, Austria
| | - Ferenc Rényi-Vámos
- Department of General and Thoracic Surgery, National Institute of Oncology, Budapest, Hungary
| | - Walter Klepetko
- Department of Thoracic Surgery, Division of Surgery, Medical University Vienna, Vienna, Austria
| | - Hendrik Jan Ankersmit
- Department of Thoracic Surgery, Division of Surgery, Medical University Vienna, Vienna, Austria
- Christian Doppler Laboratory for the Diagnosis and Regeneration of Cardiac and Thoracic Diseases, Medical University Vienna, Vienna, Austria
| |
Collapse
|
47
|
Tsai SY, Segovia JA, Chang TH, Morris IR, Berton MT, Tessier PA, Tardif MR, Cesaro A, Bose S. DAMP molecule S100A9 acts as a molecular pattern to enhance inflammation during influenza A virus infection: role of DDX21-TRIF-TLR4-MyD88 pathway. PLoS Pathog 2014; 10:e1003848. [PMID: 24391503 PMCID: PMC3879357 DOI: 10.1371/journal.ppat.1003848] [Citation(s) in RCA: 154] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Accepted: 11/08/2013] [Indexed: 12/13/2022] Open
Abstract
Pathogen-associated molecular patterns (PAMPs) trigger host immune response by activating pattern recognition receptors like toll-like receptors (TLRs). However, the mechanism whereby several pathogens, including viruses, activate TLRs via a non-PAMP mechanism is unclear. Endogenous “inflammatory mediators” called damage-associated molecular patterns (DAMPs) have been implicated in regulating immune response and inflammation. However, the role of DAMPs in inflammation/immunity during virus infection has not been studied. We have identified a DAMP molecule, S100A9 (also known as Calgranulin B or MRP-14), as an endogenous non-PAMP activator of TLR signaling during influenza A virus (IAV) infection. S100A9 was released from undamaged IAV-infected cells and extracellular S100A9 acted as a critical host-derived molecular pattern to regulate inflammatory response outcome and disease during infection by exaggerating pro-inflammatory response, cell-death and virus pathogenesis. Genetic studies showed that the DDX21-TRIF signaling pathway is required for S100A9 gene expression/production during infection. Furthermore, the inflammatory activity of extracellular S100A9 was mediated by activation of the TLR4-MyD88 pathway. Our studies have thus, underscored the role of a DAMP molecule (i.e. extracellular S100A9) in regulating virus-associated inflammation and uncovered a previously unknown function of the DDX21-TRIF-S100A9-TLR4-MyD88 signaling network in regulating inflammation during infection. The lung disease severity following influenza A virus (IAV) infection is dependent on the extent of inflammation in the respiratory tract. Severe inflammation in the lung manifests in development of pneumonia. Therefore, it is very critical to identify cellular factors and dissect the molecular/cellular mechanism controlling inflammation in the respiratory tract during IAV infection. Knowledge derived from these studies will be instrumental in development of therapeutics to combat the lung disease associated with IAV infection. Towards that end, in the current study we have identified a cellular factor S100A9 which is responsible for enhanced inflammation during IAV infection. In addition, we have characterized a signal transduction pathway involving various cellular receptors and signaling adaptors that are involved in mediating S100A9-dependent inflammatory response. Thus, our studies have illuminated a cellular/molecular mechanism that can be intervened by therapeutics to reduce and control IAV-associated lung inflammatory disease like pneumonia.
Collapse
Affiliation(s)
- Su-Yu Tsai
- Department of Microbiology and Immunology, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Jesus A. Segovia
- Department of Microbiology and Immunology, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Te-Hung Chang
- Department of Microbiology and Immunology, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Ian R. Morris
- Department of Microbiology and Immunology, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Michael T. Berton
- Department of Microbiology and Immunology, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Philippe A. Tessier
- Axe Maladies Infectieuses et Immunitaires, Centre de Recherche du CHU de Québec, and Faculté de Médecine, Université Laval, Quebec, Canada
| | - Mélanie R. Tardif
- Axe Maladies Infectieuses et Immunitaires, Centre de Recherche du CHU de Québec, and Faculté de Médecine, Université Laval, Quebec, Canada
| | - Annabelle Cesaro
- Axe Maladies Infectieuses et Immunitaires, Centre de Recherche du CHU de Québec, and Faculté de Médecine, Université Laval, Quebec, Canada
| | - Santanu Bose
- Department of Microbiology and Immunology, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
- * E-mail:
| |
Collapse
|
48
|
Fornander L, Graff P, Wåhlén K, Ydreborg K, Flodin U, Leanderson P, Lindahl M, Ghafouri B. Airway symptoms and biological markers in nasal lavage fluid in subjects exposed to metalworking fluids. PLoS One 2013; 8:e83089. [PMID: 24391738 PMCID: PMC3877012 DOI: 10.1371/journal.pone.0083089] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 11/08/2013] [Indexed: 11/18/2022] Open
Abstract
BACKGROUNDS Occurrence of airway irritation among industrial metal workers was investigated. The aims were to study the association between exposures from water-based metal working fluids (MWF) and the health outcome among the personnel, to assess potential effects on the proteome in nasal mucous membranes, and evaluate preventive actions. METHODS The prevalence of airway symptoms related to work were examined among 271 metalworkers exposed to MWF and 24 metal workers not exposed to MWF at the same factory. At the same time, air levels of potentially harmful substances (oil mist, morpholine, monoethanolamine, formaldehyde) generated from MWF was measured. Nasal lavage fluid was collected from 13 workers and 15 controls and protein profiles were determined by a proteomic approach. RESULTS Airway symptoms were reported in 39% of the workers exposed to MWF although the measured levels of MWF substances in the work place air were low. Highest prevalence was found among workers handling the MWF machines but also those working in the same hall were affected. Improvement of the ventilation to reduce MWF exposure lowered the prevalence of airway problems. Protein profiling showed significantly higher levels of S100-A9 and lower levels of SPLUNC1, cystatin SN, Ig J and β2-microglobulin among workers with airway symptoms. CONCLUSIONS This study confirms that upper airway symptoms among metal workers are a common problem and despite low levels of MWF-generated substances, effects on airway immune proteins are found. Further studies to clarify the role of specific MWF components in connection to airway inflammation and the identified biological markers are warranted.
Collapse
Affiliation(s)
- Louise Fornander
- Occupational and Environmental Medicine, Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping University, Linköping, Sweden
| | - Pål Graff
- Occupational and Environmental Medicine, Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping University, Linköping, Sweden
- Centre of Occupational and Environmental Medicine, County Council of Östergötland, Linköping, Sweden
| | - Karin Wåhlén
- Occupational and Environmental Medicine, Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping University, Linköping, Sweden
| | - Kjell Ydreborg
- Clinic of Otorhinolaryngology, County Hospital Ryhov, Jönköping, Sweden
| | - Ulf Flodin
- Occupational and Environmental Medicine, Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping University, Linköping, Sweden
- Centre of Occupational and Environmental Medicine, County Council of Östergötland, Linköping, Sweden
| | - Per Leanderson
- Occupational and Environmental Medicine, Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping University, Linköping, Sweden
- Centre of Occupational and Environmental Medicine, County Council of Östergötland, Linköping, Sweden
| | - Mats Lindahl
- Occupational and Environmental Medicine, Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping University, Linköping, Sweden
| | - Bijar Ghafouri
- Occupational and Environmental Medicine, Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping University, Linköping, Sweden
- Centre of Occupational and Environmental Medicine, County Council of Östergötland, Linköping, Sweden
- Rehabilitation Medicine, Department of Medical and Health Sciences, Faculty of Health Sciences, Linköping University, Pain and Rehabilitation Centre, County Council of Östergötland, Linköping, Sweden
- * E-mail:
| |
Collapse
|
49
|
Lee TH, Jang AS, Park JS, Kim TH, Choi YS, Shin HR, Park SW, Uh ST, Choi JS, Kim YH, Kim Y, Kim S, Chung IY, Jeong SH, Park CS. Elevation of S100 calcium binding protein A9 in sputum of neutrophilic inflammation in severe uncontrolled asthma. Ann Allergy Asthma Immunol 2013; 111:268-275.e1. [DOI: 10.1016/j.anai.2013.06.028] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 06/20/2013] [Accepted: 06/23/2013] [Indexed: 11/16/2022]
|
50
|
Yeganeh B, Hashemi M, de Serres FJ, Los MJ, Ghavami S. Different faces of hepatocellular carcinoma as a health threat in 21st century. HEPATITIS MONTHLY 2013; 13:e9308. [PMID: 23613688 PMCID: PMC3632001 DOI: 10.5812/hepatmon.9308] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Accepted: 12/01/2012] [Indexed: 12/11/2022]
Affiliation(s)
- Behzad Yeganeh
- Department of Physiology, University of Manitoba, Winnipeg, Canada
| | - Mohammad Hashemi
- Cellular and Molecular Research Center, Zahedan University of Medical Sciences, Zahedan, IR Iran
- Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, IR Iran
| | - Fredrick J. de Serres
- Center for Evaluation of Risks to Human Reproduction, National Institute of Environmental Health Sciences, Research Triangle Park, Chapel Hill, USA
| | - Marek J. Los
- Division of Cell Biology, Department of Clinical and Experimental Medicine, Integrative Regenerative Medicine Center (IGEN), Linköping University, Linköping, Sweden
- Corresponding authors: Marek J. Los, Division of Cell Biology, Deptartment of Clinical and Experimental Medicine, Integrative Regenerative Medicine Center (IGEN), Linköping University, Linköping, Sweden, Tel.: +46-101032787, E-mail: ; Saeid Ghavami, Department of Physiology, Manitoba Institute of Child Health, St. Boniface Research Centre, University of Manitoba, Winnipeg, Canada, Tel.: +1(204)4801328, Fax: +1(204)7894915, E-mail:
| | - Saeid Ghavami
- Department of Physiology, University of Manitoba, Winnipeg, Canada
- Manitoba Institute of Child Health, Winnipeg, Canada
- St. Boniface Research Centre, University of Manitoba, Winnipeg, Canada
- Corresponding authors: Marek J. Los, Division of Cell Biology, Deptartment of Clinical and Experimental Medicine, Integrative Regenerative Medicine Center (IGEN), Linköping University, Linköping, Sweden, Tel.: +46-101032787, E-mail: ; Saeid Ghavami, Department of Physiology, Manitoba Institute of Child Health, St. Boniface Research Centre, University of Manitoba, Winnipeg, Canada, Tel.: +1(204)4801328, Fax: +1(204)7894915, E-mail:
| |
Collapse
|