1
|
Zhang M, Qi L, Li J, Yuan N, Zhai Y, Hao M, Zhou D, Liu W, Jin Y, Wang A. SIRT2 inhibition enhances mitochondrial apoptosis in Brucella-infected bovine placental trophoblast cells. Vet Res 2025; 56:97. [PMID: 40317067 PMCID: PMC12049057 DOI: 10.1186/s13567-025-01518-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 02/11/2025] [Indexed: 05/04/2025] Open
Abstract
Brucella is a successful pathogen that employs a plethora of immune evasion mechanisms. This contributes to pathogenesis and persistence and limits the efficacy of available treatments. An increasing understanding of host‒pathogen interactions suggests that integrating host-directed strategies with existing anti-Brucella treatments could lead to more effective bacterial clearance and a reduction in drug-resistant strains. SIRT2 is a nicotinamide adenine dinucleotide (NAD+)-dependent deacetylase found in mammals. It can deacetylate various transcription factors and regulatory proteins, playing crucial roles in host‒pathogen interactions and pathogen infection-induced apoptosis. In this study, we investigated the role of SIRT2 in Brucella-induced cell apoptosis using bovine placental trophoblast cells. Our results indicate that B. abortus A19 infection upregulates SIRT2 protein expression and significantly induces mitochondrial apoptosis in these cells. Furthermore, inhibition of SIRT2 exacerbates B. abortus A19-induced mitochondrial apoptosis and markedly inhibits intracellular bacterial survival. These results prove the role of SIRT2 in Brucella pathogenesis and the mechanism of action.
Collapse
Affiliation(s)
- Mengyu Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling District, Xianyang, 712100, China
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling District, Xianyang, 712100, China
| | - Lin Qi
- College of Veterinary Medicine, Northwest A&F University, Yangling District, Xianyang, 712100, China
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling District, Xianyang, 712100, China
| | - Junmei Li
- College of Veterinary Medicine, Northwest A&F University, Yangling District, Xianyang, 712100, China
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling District, Xianyang, 712100, China
| | - NingQiu Yuan
- College of Veterinary Medicine, Northwest A&F University, Yangling District, Xianyang, 712100, China
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling District, Xianyang, 712100, China
| | - Yunyi Zhai
- College of Veterinary Medicine, Northwest A&F University, Yangling District, Xianyang, 712100, China
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling District, Xianyang, 712100, China
| | - Mingyue Hao
- College of Veterinary Medicine, Northwest A&F University, Yangling District, Xianyang, 712100, China
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling District, Xianyang, 712100, China
| | - Dong Zhou
- College of Veterinary Medicine, Northwest A&F University, Yangling District, Xianyang, 712100, China
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling District, Xianyang, 712100, China
| | - Wei Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling District, Xianyang, 712100, China
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling District, Xianyang, 712100, China
| | - Yaping Jin
- College of Veterinary Medicine, Northwest A&F University, Yangling District, Xianyang, 712100, China
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling District, Xianyang, 712100, China
| | - Aihua Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling District, Xianyang, 712100, China.
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling District, Xianyang, 712100, China.
| |
Collapse
|
2
|
Ma L, Yang H, Wang Y, Zhang H, Li C, Jiang F, Li Y. The application of the drug flushing covered stent grafts in endovascular repair of aortic aneurysms caused by brucellosis. BMC Infect Dis 2025; 25:357. [PMID: 40082823 PMCID: PMC11908042 DOI: 10.1186/s12879-025-10755-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 03/06/2025] [Indexed: 03/16/2025] Open
Abstract
OBJECTIVE Brucellosis-induced aortic aneurysm (BIA), as a rare yet highly life-threatening type of infectious aortic aneurysm, currently lacks standardized treatment protocols. The primary objective of this study is to thoroughly evaluate the safety and efficacy of endovascular therapy using a combination of covered stents and drug irrigation techniques for the treatment of BIA. This endeavor aims to provide a scientific basis for the clinical management of this disease. METHODS This study employed a retrospective analysis approach to systematically collect comprehensive clinical data from patients with infectious aortic aneurysms admitted to three independent campuses of the same hospital from January 2016 to January 2024. The analysis encompassed a wide range of aspects, including patients' epidemiological characteristics, diverse clinical manifestations, detailed laboratory test reports, computed tomography angiography imaging data of the thoracoabdominal aorta(CTATA), specific treatment strategies, and prognosis during follow-up. The aim of this study is to provide robust support for optimizing the treatment strategies of Brucella-induced aortic aneurysms through comprehensive and in-depth data mining. RESULTS Among the 27 confirmed cases of infectious aortic aneurysm, a striking 51.7% (n = 15) were unequivocally diagnosed as a consequence of brucellosis-induced aneurysmal formation. Direct confirmation of brucellosis via blood culture succeeded in merely 6 cases (40%), with the remainder being verified through the combination of the Rose Bengal plate agglutination and tube agglutination tests specific to Brucella. Gender distribution among these 15 patients was heavily skewed, with a significant majority being male (n = 13) contrasting with just 2 females. Their ages spanned a range from 47 to 75 years. Delving deeper, 11 patients had a documented history of contact with cattle, sheep, pigs, or their derivatives, whereas 4 did not present with such definitive exposure. The study exhibited diversity in aneurysm locations, including 6 cases of simple abdominal aortic aneurysms (AAAs), 2 in the iliac arteries, 4 involving both abdominal and iliac arteries, a unique abdominal aortic segment harboring two distinct pseudoaneurysms, a complex case where pseudoaneurysms impacted the thoracic, abdominal, and iliac arteries concurrently, and a solitary thoracic aortic aneurysm. All patients underwent successful endovascular aneurysm repair (EVAR) utilizing a stent-graft in conjunction with drug flushing techniques. Notably, 4 patients necessitated emergency surgical intervention due to impending rupture or aneurysmal rupture. No perioperative deaths were recorded. Postoperatively, all patients received comprehensive, long-term antibiotic therapy. One patient, three days following EVAR, underwent percutaneous endoscopic lumbar discectomy and drainage for brucellar spondylitis, subsequently being transferred to the orthopedics department for further care. Another case required inferior vena cava filter implantation due to pulmonary embolism and deep venous thrombosis of the lower extremities at admission, with the filter successfully removed three months later. Furthermore, one patient was readmitted six months post-discharge for acute myocardial infarction and underwent a successful percutaneous coronary intervention (PCI).During a two-year follow-up, a patient presented with enlargement of the original pseudoaneurysm in both abdominal and iliac arteries, which was effectively addressed through repeat EVAR with a stent-graft. CONCLUSION The diagnosis of Brucella-induced aortic aneurysm is prone to being overlooked, and some patients present with severe conditions at their initial diagnosis. Therefore, emphasizing early diagnosis and timely antibacterial treatment is crucial for containing disease progression. The application of endovascular repair with drug flushing covered stent grafts combined with long-term, regular antibiotic therapy has proven to be a safe, effective, and feasible treatment option for Brucella-induced aortic aneurysm, worthy of widespread promotion and application in clinical practice.
Collapse
Affiliation(s)
- Lilong Ma
- Department of Cardiac and Vascular Surgery, People'S Hospital of Ningxia Hui Autonomous Region, Ningxia Medical University, YinChuan, China
| | - Haibo Yang
- Department of Cardiac and Vascular Surgery, People'S Hospital of Ningxia Hui Autonomous Region, Ningxia Medical University, YinChuan, China
| | - Yaojie Wang
- Department of Cardiac and Vascular Surgery, People'S Hospital of Ningxia Hui Autonomous Region, Ningxia Medical University, YinChuan, China
| | - Hua Zhang
- Department of Cardiac and Vascular Surgery, People'S Hospital of Ningxia Hui Autonomous Region, Ningxia Medical University, YinChuan, China
| | - Chao Li
- Department of Cardiac and Vascular Surgery, People'S Hospital of Ningxia Hui Autonomous Region, Ningxia Medical University, YinChuan, China
| | - Fudong Jiang
- Department of Cardiac and Vascular Surgery, People'S Hospital of Ningxia Hui Autonomous Region, Ningxia Medical University, YinChuan, China
| | - Youjin Li
- Department of Cardiac and Vascular Surgery, People'S Hospital of Ningxia Hui Autonomous Region, Ningxia Medical University, YinChuan, China.
| |
Collapse
|
3
|
Li D, Xu W, Huang S, An W, Chao Z, Zhao F, Ai J, Yang J, Gao S, Li Y, Chen L, Xu G. Specific detection of Brucella spp. from slaughter-aged livestock using a dual priming oligonucleotide system. BMC Microbiol 2025; 25:110. [PMID: 40025433 PMCID: PMC11874655 DOI: 10.1186/s12866-025-03807-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 02/05/2025] [Indexed: 03/04/2025] Open
Abstract
BACKGROUND Brucella spp. are Gram-negative bacteria causing brucellosis, a major zoonotic disease affecting animals and humans. Annually, over 500,000 human cases are reported globally, with many undiagnosed due to nonspecific symptoms and diagnostic challenges. Current methods for Brucella detection, such as culture and serology, are time-consuming and lack specificity, hindering effective disease control. This study aims to develop a novel dual priming oligonucleotide (DPO) system-based PCR method for the specific detection of Brucella spp. in slaughter-aged livestock. This approach provides a rapid, sensitive, and field-deployable tool to improve early diagnosis and control of brucellosis. METHODS We developed a DPO system-based PCR assay for the specific detection of Brucella spp. in slaughter-aged livestock. The method utilizes two sets of primers designed to specifically target unique regions of the Brucella genome. The assay was validated for specificity using a panel of 15 non-target bacterial species commonly found in livestock, including Escherichia coli, Salmonella spp., and Campylobacter spp. Sensitivity was evaluated using DNA extracted from a range of Brucella strains, with detection limits assessed using serially diluted samples. The assay's performance was further tested on 500 samples from slaughter-aged sheep to assess its applicability in field conditions. RESULTS The DPO-based PCR assay demonstrated excellent specificity, with no cross-reactivity observed in any of the 15 non-target bacterial species tested. The assay was able to detect Brucella spp. at low DNA concentrations, with a sensitivity limit of approximately 5.3 × 101 CFU/mL of the Brucella per reaction. In the field validation, 500 samples from slaughter-aged sheep were tested, and the assay successfully identified Brucella infections in animals with no false positives or negatives. When compared to conventional PCR, the DPO-PCR method exhibited improved specificity and faster results, with a significantly reduced time to diagnosis. CONCLUSIONS The DPO-based PCR assay provides a highly specific, rapid, and cost-effective tool for the detection of Brucella spp. in slaughter-aged livestock. This method is suitable for routine surveillance in slaughterhouses, offering a promising solution for early detection and control of brucellosis in both livestock and public health contexts. The assay's simplicity and robustness make it an ideal candidate for field deployment, particularly in resource-limited settings where timely disease control is crucial. CLINICAL TRIAL NUMBER Not applicable.
Collapse
Affiliation(s)
- Dandan Li
- Animal & Plant Inspection and Quarantine technology center, Haikou Customs District, Haikou, China
| | - Wenxing Xu
- Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, China
| | | | - Wei An
- Technology Center of Chengdu Customs, Chengdu, China
| | - Zhe Chao
- Institute of Animal Science and Veterinary Medicine, Hainan Academy of Agricultural Sciences, Haikou, China
| | - Fang Zhao
- Technology Center of Shenzhen Customs District P.R.China, Shenzhen, China
| | - Jun Ai
- Kunming Customs District P.R.China, Kunming, China
| | - Junxing Yang
- Animal & Plant Inspection and Quarantine technology center, Shenzhen Customs District, Shenzhen, China
| | - Shenyang Gao
- College of Animal Husbandry & Veterinary Medicine, Jinzhou Medical University, Jinzhou, China
| | - Yuying Li
- Department of Respiratory Critical Care, The Affiliated Hospital of Southwest Medical University, Luzhou, China.
- Inflammation & Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou, China.
| | - Lijun Chen
- Technology Center of Nanning Customs, Nanning Customs District P.R.China, Nanning, China.
| | - Guofeng Xu
- Inflammation & Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou, China.
| |
Collapse
|
4
|
Sommer AJ, Deblois CL, Tu ADJ, Suen G, Coon KL. Opportunistic pathogens are prevalent across the culturable exogenous and endogenous microbiota of stable flies captured at a dairy facility. Vet Res 2025; 56:40. [PMID: 39934928 DOI: 10.1186/s13567-025-01458-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 12/03/2024] [Indexed: 02/13/2025] Open
Abstract
Stable flies in the genus Stomoxys are highly abundant, blood-feeding pests on dairy farms; however, their role in the carriage and potential transmission of pathogens is largely understudied. Here, we report on the frequency and distribution of culturable bacteria collected from Stomoxys flies captured in free stall barns and nearby calf hutches over a three-month period on a focal research farm in Wisconsin, USA. Mastitis-associated bacterial taxa, including Staphylococcus, Escherichia, Enterobacter, and Klebsiella spp., were frequently isolated from pooled samples of the internal or external portions of the flies. Conversely, selective enrichment protocols from these samples yielded only a single isolate of Salmonella and no enterohemorrhagic Escherichia coli O157. Neither trap location nor time of capture had a significant impact on the observed frequency of most bacterial genera isolated from the flies. Our results confirm that Stomoxys flies harbor both mastitis-associated bacterial taxa and bacterial taxa associated with opportunistic infections in humans. Further research into the transmission of fly-associated microbes could be important in the control of mastitis or other bacterial diseases on dairy farms.
Collapse
Affiliation(s)
- Andrew J Sommer
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Courtney L Deblois
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Andrew D J Tu
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Garret Suen
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Kerri L Coon
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, 53706, USA.
| |
Collapse
|
5
|
Li W, Zeng L, Yuan R, Qi T, Liao H, Cao Y, Huang S, Liu Z, Li Z. Genetic diversity atlas of Brucella melitensis strains from Sichuan Province, China. BMC Microbiol 2025; 25:21. [PMID: 39810148 PMCID: PMC11731553 DOI: 10.1186/s12866-024-03739-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 12/30/2024] [Indexed: 01/16/2025] Open
Abstract
Human brucellosis is a re-emerging disease in Sichuan Province, China. In this study, bacteriology, conventional bio-typing, multi-locus sequence typing (MLST), and multiple locus variable-number tandem repeat analysis (MLVA) were applied to preliminarily characterize the strains in terms of genetic diversity and epidemiological links. A total of 101 Brucella strains were isolated from 16 cities (autonomous prefectures) from 2014 to 2021, and all of the strains were identified as Brucella melitensis bv. 3, suggesting that surveillance should focus on ruminants. MLST analysis identified four STs, namely, ST8 (n = 93), ST39 (n = 6), ST101 (n = 1), and ST118 (n = 1). The latter were new STs, indicating that strains displayed high population diversity. Six MLVA-8, namely, 42, 43, 45, 63, 83, and 114, and eight MLVA-11, namely, 111, 115, 116, 125, 180, 291, 298, and 342, genotypes were identified, demonstrating that all of the strains were from the Eastern Mediterranean lineage, and these strains exhibited a high genotype diversity. MLVA-16 analysis revealed that there was a co-existing transmission pattern, where sporadic cases and multiple outbreak events had a common origin. The dominant STs and MLVA genotypes of strains were epidemic in Northern, China, and 36 MLVA-16 genotypes were shared among strains (n = 51, 50.4%, 51/101) from Sichuan and strains from 22 other provinces. The findings imply that infected animals were introduced from outside the province. The surveillance and control of the disease have become public health challenges. Animal quarantines should be strengthened to prevent the spread of B. melitensis species among adjacent regions.
Collapse
Affiliation(s)
- Wenbo Li
- Sichuan Provincial Center for Disease Control and Prevention, Chengdu, 610041, China
| | - Linzi Zeng
- Sichuan Provincial Center for Disease Control and Prevention, Chengdu, 610041, China
| | - Rongmei Yuan
- Sichuan Provincial Center for Disease Control and Prevention, Chengdu, 610041, China
| | - Teng Qi
- Sichuan Provincial Center for Disease Control and Prevention, Chengdu, 610041, China
| | - Hongyu Liao
- Sichuan Provincial Center for Disease Control and Prevention, Chengdu, 610041, China
| | - Yuhangxi Cao
- Sichuan Provincial Center for Disease Control and Prevention, Chengdu, 610041, China
| | - Shu Huang
- Sichuan Provincial Center for Disease Control and Prevention, Chengdu, 610041, China
| | - Zhiguo Liu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China.
| | - Zhenjun Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China.
| |
Collapse
|
6
|
Li J, Yuan N, Zhai Y, Wang M, Hao M, Liu X, Zhou D, Liu W, Jin Y, Wang A. Protein disulfide isomerase A4 binds to Brucella BtpB and mediates intracellular NAD +/NADH metabolism in RAW264.7 cells. Int Immunopharmacol 2024; 142:113046. [PMID: 39226825 DOI: 10.1016/j.intimp.2024.113046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 08/22/2024] [Accepted: 08/27/2024] [Indexed: 09/05/2024]
Abstract
The Toll/interleukin-1 receptor (TIR) signaling domain is distributed widely in mammalian Toll-like receptors and adaptors, plant nucleotide-binding leucine-rich repeat receptors, and specific bacterial virulence proteins. Proteins that possess TIR domain exhibit NADase activity which is distinct from the canonical signaling function of these domains. However, the effects of bacterial TIR domain proteins on host metabolic switches and the underlying mechanism of NADase activity in these proteins remain unclear. Here, we utilized Brucella TIR domain-containing type IV secretion system effector protein, BtpB, to explore the mechanism of NADase activity in host cells. We showed that using ectopic expression BtpB not only generates depletion of NAD+ but also loss of NADH and ATP in RAW264.7 macrophage cells. Moreover, immunoprecipitation-mass spectrometry, co-immunoprecipitation, and confocal microscope assays revealed that BtpB interacted with host protein disulfide isomerase A4 (PDIA4). The Brucella mutant strain deleted the gene for BtpB, significantly decreased PDIA4 expression. Furthermore, our data revealed that PDIA4 played an important role in regulating intracellular NAD+/NADH levels in macrophages, and PDIA4 overexpression restored the decline of intracellular NAD+ and NADH levels induced by Brucella BtpB. The results provide new insights into the metabolic regulatory activity of TIR domain proteins in the critical human and animal pathogen Brucella.
Collapse
Affiliation(s)
- Junmei Li
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China; Department of Veterinary Medicine, College of Coastal Agricultural Science, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Ningqiu Yuan
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Yunyi Zhai
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Minghui Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Mingyue Hao
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Xiaofang Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Dong Zhou
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Wei Liu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Yaping Jin
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling 712100, China
| | - Aihua Wang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling 712100, China; Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
7
|
Sibhat B, Adamu H, Asmare K, Lindahl JF, Magnusson U, Sisay Tessema T. Detection and Molecular Diversity of Brucella melitensis in Pastoral Livestock in North-Eastern Ethiopia. Pathogens 2024; 13:1063. [PMID: 39770323 PMCID: PMC11728775 DOI: 10.3390/pathogens13121063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 11/28/2024] [Accepted: 11/30/2024] [Indexed: 01/16/2025] Open
Abstract
Brucellosis is a neglected zoonotic disease affecting livestock and humans that remains endemic in Ethiopia. Despite its prevalence, only a few studies have identified Brucella species circulating in livestock in the country. This study aimed to determine the Brucella species responsible for infections in livestock in the Afar region of Ethiopia and characterize the isolates using whole-genome single nucleotide polymorphism (wgSNP) analysis and in silico multi-locus sequence typing (MLST). Comparisons were made between Ethiopian Brucella and regional and global isolates to determine their phylogenetic relationships. Surveys conducted in May and October-November 2022 in six villages of the Amibara district involved the collection of vaginal swabs (n = 231) and milk samples (n = 17) from 32 sheep and 199 goats kept by 143 pastoral households reporting recent abortions in the animals. Brucella melitensis was detected in three sheep and 32 goats, i.e., 15% (35/231) of animals across 20% (29/143) of households using bacterial culture and PCR-based methods (bcsp31, AMOS, and Bruce-ladder multiplex PCR). Of the 35 positive animals, B. melitensis was isolated from 24 swabs, while the remaining 11 were culture-negative and detected only by PCR. The genomic DNA of the 24 isolates was sequenced using Illumina Novaseq 6000 and assembled using the SPAdes pipeline. Nine- and 21-locus MLST identified 23 isolates as genotype ST12, while one isolate could not be typed. The wgSNP-based phylogenetic analysis revealed that the Ethiopian isolates clustered within the African clade and were closely related to isolates from Somalia. Several virulence factors responsible for adhesion, intracellular survival, and regulatory functions were detected in all isolates. No antimicrobial resistance genes associated with resistance to drugs commonly used for treating brucellosis were detected. Since B. melitensis is prevalent in sheep and goats, vaccination with the B. melitensis Rev-1 vaccine is the recommended strategy in these pastoral systems to protect animal and human health.
Collapse
Affiliation(s)
- Berhanu Sibhat
- Institute of Biotechnology, Addis Ababa University, Addis Ababa P.O. Box 1176, Ethiopia; (H.A.); (T.S.T.)
- College of Veterinary Medicine, Haramaya University, Dire Dawa P.O. Box 138, Ethiopia
- Division of Reproduction, Department of Clinical Sciences, Faculty of Veterinary Medicine and Animal Science, Swedish University of Agricultural Sciences, P.O. Box 7054, 750 07 Uppsala, Sweden; (J.F.L.); (U.M.)
| | - Haileeyesus Adamu
- Institute of Biotechnology, Addis Ababa University, Addis Ababa P.O. Box 1176, Ethiopia; (H.A.); (T.S.T.)
| | - Kassahun Asmare
- Faculty of Veterinary Medicine, Hawassa University, Hawassa P.O. Box 05, Ethiopia;
| | - Johanna F. Lindahl
- Division of Reproduction, Department of Clinical Sciences, Faculty of Veterinary Medicine and Animal Science, Swedish University of Agricultural Sciences, P.O. Box 7054, 750 07 Uppsala, Sweden; (J.F.L.); (U.M.)
- Department of Animal Health and Antibiotic Strategies, Swedish Veterinary Agency, 751 89 Uppsala, Sweden
| | - Ulf Magnusson
- Division of Reproduction, Department of Clinical Sciences, Faculty of Veterinary Medicine and Animal Science, Swedish University of Agricultural Sciences, P.O. Box 7054, 750 07 Uppsala, Sweden; (J.F.L.); (U.M.)
| | - Tesfaye Sisay Tessema
- Institute of Biotechnology, Addis Ababa University, Addis Ababa P.O. Box 1176, Ethiopia; (H.A.); (T.S.T.)
| |
Collapse
|
8
|
Zhi F, Liu K, Geng H, Su M, Xu J, Fu L, Ma K, Gao P, Yuan L, Chu Y. Copper sensing transcription factor ArsR2 regulates VjbR to sustain virulence in Brucella abortus. Emerg Microbes Infect 2024; 13:2406274. [PMID: 39295505 PMCID: PMC11425708 DOI: 10.1080/22221751.2024.2406274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 09/10/2024] [Accepted: 09/16/2024] [Indexed: 09/21/2024]
Abstract
Brucellosis, caused by the intracellular pathogen Brucella, is a major zoonotic infection that promotes reproductive disease in domestic animals and chronic debilitating conditions in humans. The ArsR family of transcriptional regulators plays key roles in diverse cellular processes, including metal ion homeostasis, responding to adverse conditions, and virulence. However, little is known about the function of ArsR family members in Brucella. Here, we identified ArsR2 as a nonclassical member of the family that lacks autoregulatory function, but which nevertheless plays a vital role in maintaining copper homeostasis in B. abortus. ArsR2 is a global regulator of 241 genes, including those involved in the VirB type IV secretion system (T4SS). Significantly, ArsR2 regulates T4SS production in B. abortus by targeting VjbR which encodes a LuxR-type family transcriptional regulator. Moreover, copper modulates transcriptional activity of ArsR2, but not of VjbR. Furthermore, deletion of arsR2 attenuated virulence in a mouse model. Collectively, these findings enhance understanding of the mechanism by which ArsR proteins regulate virulence gene expression in pathogenic Brucella species.
Collapse
Affiliation(s)
- Feijie Zhi
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou Veterinary Research Institute, Lanzhou University, Chinese Academy of Agricultural Sciences, Lanzhou, People’s Republic of China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, People’s Republic of China
- Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agricultural and Rural Affairs, Lanzhou, People’s Republic of China
| | - Kemeng Liu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou Veterinary Research Institute, Lanzhou University, Chinese Academy of Agricultural Sciences, Lanzhou, People’s Republic of China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, People’s Republic of China
- Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agricultural and Rural Affairs, Lanzhou, People’s Republic of China
| | - Hao Geng
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou Veterinary Research Institute, Lanzhou University, Chinese Academy of Agricultural Sciences, Lanzhou, People’s Republic of China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, People’s Republic of China
- Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agricultural and Rural Affairs, Lanzhou, People’s Republic of China
| | - Mengru Su
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou Veterinary Research Institute, Lanzhou University, Chinese Academy of Agricultural Sciences, Lanzhou, People’s Republic of China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, People’s Republic of China
- Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agricultural and Rural Affairs, Lanzhou, People’s Republic of China
| | - Jian Xu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou Veterinary Research Institute, Lanzhou University, Chinese Academy of Agricultural Sciences, Lanzhou, People’s Republic of China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, People’s Republic of China
- Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agricultural and Rural Affairs, Lanzhou, People’s Republic of China
| | - Lei Fu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou Veterinary Research Institute, Lanzhou University, Chinese Academy of Agricultural Sciences, Lanzhou, People’s Republic of China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, People’s Republic of China
- Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agricultural and Rural Affairs, Lanzhou, People’s Republic of China
| | - Ke Ma
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou Veterinary Research Institute, Lanzhou University, Chinese Academy of Agricultural Sciences, Lanzhou, People’s Republic of China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, People’s Republic of China
- Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agricultural and Rural Affairs, Lanzhou, People’s Republic of China
| | - Pengcheng Gao
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou Veterinary Research Institute, Lanzhou University, Chinese Academy of Agricultural Sciences, Lanzhou, People’s Republic of China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, People’s Republic of China
- Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agricultural and Rural Affairs, Lanzhou, People’s Republic of China
| | - Lvfeng Yuan
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou Veterinary Research Institute, Lanzhou University, Chinese Academy of Agricultural Sciences, Lanzhou, People’s Republic of China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, People’s Republic of China
- Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agricultural and Rural Affairs, Lanzhou, People’s Republic of China
| | - YueFeng Chu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou Veterinary Research Institute, Lanzhou University, Chinese Academy of Agricultural Sciences, Lanzhou, People’s Republic of China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, People’s Republic of China
- Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agricultural and Rural Affairs, Lanzhou, People’s Republic of China
| |
Collapse
|
9
|
Molina RE, Osorio A, Flores-Concha M, Gómez LA, Alvarado I, Ferrari I, Oñate A. Immunoinformatic design of a multivalent vaccine against Brucella abortus and its evaluation in a murine model using a DNA prime-protein boost strategy. Front Immunol 2024; 15:1456078. [PMID: 39640259 PMCID: PMC11617539 DOI: 10.3389/fimmu.2024.1456078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 10/28/2024] [Indexed: 12/07/2024] Open
Abstract
Introduction The development of effective vaccines against Brucella abortus is critical due to its significant impact on human and animal health. The objective of this study was to design and evaluate in silico and in vivo a multivalent vaccine based on the immunogenic potential of three selected open reading frames (ORFs) of Brucella. Methods The designed construct, named S22, was analyzed in silico to evaluate its physicochemical properties, antigenicity, allergenicity and toxicity. This construct was modeled and subjected to molecular dynamics analysis. Additionally, the antigenicity and protection induced by this construct was evaluated through In vivo assays immunizing BALB/c mice with protein (S22), DNA (pVS22) and combining both vaccine formats using a prime boost immunization strategy. Results All bioinformatics analyses showed safe and high quality structural features, revealing favorable interactions between S22 and the TLR4/MD2 complex. Moreover, results from in vivo assays indicated that the S22 protein induced robust levels of IgG1 and IgG2a, suggesting a balanced Th1 and Th2 immune response. The DNA construct (pVS22) elicited primarily a Th1 response, whereas the use of a prime boost strategy, which combines both formats resulted in a balanced immune response with significant induction of lymphoproliferation and elevated. Discussion Although our assays did not demonstrate the induction of a substantial protective response against B. abortus, this construct was capable of inducing immunogenicity. This study highlights the utility of in silico design for predicting and optimizing candidate vaccines and underscores the potential of using strategies such as prime boost, which incorporate antigens of different biological nature to modulate the immune response, while balancing parameters such as stability of the antigens and the cost of production.
Collapse
Affiliation(s)
- Raúl E. Molina
- Laboratory of Molecular Immunology, Department of Microbiology, Faculty of Biological Sciences, University of Concepción, Concepción, Chile
| | | | - Manuel Flores-Concha
- Laboratory of Molecular Immunology, Department of Microbiology, Faculty of Biological Sciences, University of Concepción, Concepción, Chile
| | - Leonardo A. Gómez
- Laboratory of Molecular Immunology, Department of Microbiology, Faculty of Biological Sciences, University of Concepción, Concepción, Chile
| | - Ilse Alvarado
- Laboratory of Molecular Immunology, Department of Microbiology, Faculty of Biological Sciences, University of Concepción, Concepción, Chile
| | - Italo Ferrari
- Laboratory of Molecular Immunology, Department of Microbiology, Faculty of Biological Sciences, University of Concepción, Concepción, Chile
| | - Angel Oñate
- Laboratory of Molecular Immunology, Department of Microbiology, Faculty of Biological Sciences, University of Concepción, Concepción, Chile
| |
Collapse
|
10
|
Wang J, Yan Z, Zhang W, Liu X, Wang J, Peng Q. Upregulation of TREM2 expression in M2 macrophages promotes Brucella abortus chronic infection. Front Immunol 2024; 15:1466520. [PMID: 39497817 PMCID: PMC11532147 DOI: 10.3389/fimmu.2024.1466520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 09/27/2024] [Indexed: 11/07/2024] Open
Abstract
Brucella abortus (B.abortus) is a zoonotic bacterial pathogen that causes chronic host infections. The eradication of brucellosis using antibiotic therapy is often incomplete or slow. In a mouse model, the predominance of alternatively activated macrophages (also known as M2) plays an essential role in sustaining chronic infection. The underlying functional mechanism by which M2 sustains chronic infection remains unclear. Here, we show that B. abortus can enter M2 via triggering receptor expressed on myeloid cells 2 (TREM2) and promotes the upregulation of TREM2 expression of M2 in a type IV secretion system (T4SS)-dependent manner. Increased TREM2 enhances B. abortus growth within M2 by suppressing intracellular ROS production, preventing M2 pyroptosis via suppression of mitochondrial ROS (mROS), and promoting M2 proliferation by increasing β-catenin expression. In line with these results, downregulation of TREM2 expression suppressed B. abortus intracellular growth and M2 proliferation and induced M2 pyroptosis. In our mouse model, upregulation of TREM2 expression sustained the accumulation of M2 and B. abortus chronic infection, whereas downregulation of TREM2 expression restricted M2 proliferation and chronic infection. Collectively, our results suggest that targeting TREM2 may be a potential adjunct to antibiotic therapy for the prevention of chronic Brucella infection.
Collapse
Affiliation(s)
- Jingyu Wang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Zhirong Yan
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Weiyu Zhang
- Institute of Microbiology Department, Jilin Provincial Center for Disease Control and Prevention, Changchun, China
| | - Xiaofeng Liu
- Tumor Hospital of Jilin Province, Changchun, China
| | - Jun Wang
- Shenzhen Center for Chronic Disease Control, Shenzhen, China
| | - Qisheng Peng
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| |
Collapse
|
11
|
Elizalde-Bielsa A, Lázaro-Antón L, de Miguel MJ, Muñoz PM, Conde-Álvarez R, Zúñiga-Ripa A. Disruption of Erythritol Catabolism via the Deletion of Fructose-Bisphosphate Aldolase (Fba) and Transaldolase (Tal) as a Strategy to Improve the Brucella Rev1 Vaccine. Int J Mol Sci 2024; 25:11230. [PMID: 39457012 PMCID: PMC11508834 DOI: 10.3390/ijms252011230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/27/2024] [Accepted: 10/01/2024] [Indexed: 10/28/2024] Open
Abstract
Brucellosis is a bacterial zoonosis caused by the genus Brucella, which mainly affects domestic animals. In these natural hosts, brucellae display a tropism towards the reproductive organs, such as the placenta, replicating in high numbers and leading to placentitis and abortion, an ability also exerted by the B. melitensis live-attenuated Rev1 strain, the only vaccine available for ovine brucellosis. It is broadly accepted that this tropism is mediated, at least in part, by the presence of certain preferred nutrients in the placenta, particularly erythritol, a polyol that is ultimately incorporated into the Brucella central carbon metabolism via two reactions dependent on transaldolase (Tal) or fructose-bisphosphate aldolase (Fba). In the light of these remarks, we propose that blocking the incorporation of erythritol into the central carbon metabolism of Rev1 by deleting the genes encoding Tal and Fba may impair the ability of the vaccine to proliferate massively in the placenta. Therefore, a Rev1ΔfbaΔtal double mutant was generated and confirmed to be unable to use erythritol. This mutant exhibited a reduced intracellular fitness both in BeWo trophoblasts and THP-1 macrophages. In the murine model, Rev1ΔfbaΔtal provided comparable protection to the Rev1 reference vaccine while inducing fewer adverse reproductive events in pregnant animals. Altogether, these results postulate the Rev1ΔfbaΔtal mutant as a reproductively safer Rev1-derived vaccine candidate to be studied in the natural host.
Collapse
Affiliation(s)
- Aitor Elizalde-Bielsa
- Department of Microbiology and Parasitology, Instituto de Investigación Sanitaria de Navarra (IdiSNA), University of Navarra, 31008 Pamplona, Spain; (A.E.-B.); (L.L.-A.)
| | - Leticia Lázaro-Antón
- Department of Microbiology and Parasitology, Instituto de Investigación Sanitaria de Navarra (IdiSNA), University of Navarra, 31008 Pamplona, Spain; (A.E.-B.); (L.L.-A.)
- Department of Medical Microbiology and Immunology, University of California, Davis, CA 95616, USA
| | - María Jesús de Miguel
- Department of Animal Science, Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), 50059 Zaragoza, Spain; (M.J.d.M.); (P.M.M.)
- Instituto Agroalimentario de Aragón—IA2, CITA-Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - Pilar M. Muñoz
- Department of Animal Science, Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), 50059 Zaragoza, Spain; (M.J.d.M.); (P.M.M.)
- Instituto Agroalimentario de Aragón—IA2, CITA-Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - Raquel Conde-Álvarez
- Department of Microbiology and Parasitology, Instituto de Investigación Sanitaria de Navarra (IdiSNA), University of Navarra, 31008 Pamplona, Spain; (A.E.-B.); (L.L.-A.)
| | - Amaia Zúñiga-Ripa
- Department of Microbiology and Parasitology, Instituto de Investigación Sanitaria de Navarra (IdiSNA), University of Navarra, 31008 Pamplona, Spain; (A.E.-B.); (L.L.-A.)
| |
Collapse
|
12
|
Hao M, Zhao D, Liu W, Yuan N, Tang T, Wang M, Zhai Y, Shi Y, Yang Y, Liu X, Li J, Zhou D, Liu W, Jin Y, Wang A. Deletion of the alr gene in Brucella suis S2 attenuates virulence by enhancing TLR4-NF-κB-NLRP3- mediated host inflammatory responses. Int Immunopharmacol 2024; 137:112443. [PMID: 38897124 DOI: 10.1016/j.intimp.2024.112443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/11/2024] [Accepted: 06/05/2024] [Indexed: 06/21/2024]
Abstract
Brucella is an intracellular parasitic bacterium lacking typical virulence factors, and its pathogenicity primarily relies on replication within host cells. In this study, we observed a significant increase in spleen weight in mice immunized with a Brucella strain deleted of the gene for alanine racemase (Alr), the enzyme responsible for alanine racemization (Δalr). However, the bacterial load in the spleen markedly decreased in the mutant strain. Concurrently, the ratio of white pulp to red pulp in the spleen was increased, serum IgG levels were elevated, but no significant damage to other organs was observed. In addition, the inflammatory response was potentiated and the NF-κB-NLRP3 signaling pathway was activated in macrophages (RAW264.7 Cells and Bone Marrow-Derived Cells) infect ed with the Δalr mutant. Further investigation revealed that the Δalr mutant released substantial amounts of protein in a simulated intracellular environment which resulted in heightened inflammation and activation of the TLR4-NF-κB-NLRP3 pathway in macrophages. The consequent cytoplasmic exocytosis reduced intracellular Brucella survival. In summary, cytoplasmic exocytosis products resulting from infection with a Brucella strain deleted of the alr gene effectively activated the TLR4-NFκB-NLRP3 pathway, triggered a robust inflammatory response, and reduced bacterial survival within host cells. Moreover, the Δalr strain exhibits lower toxicity and stronger immunogenicity in mice.
Collapse
Affiliation(s)
- Mingyue Hao
- College of Veterinary Medicine, Northwest A &F University, Yangling, China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, China
| | - Danyu Zhao
- College of Veterinary Medicine, Northwest A &F University, Yangling, China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, China
| | - Wei Liu
- College of Veterinary Medicine, Northwest A &F University, Yangling, China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, China
| | - Ningqiu Yuan
- College of Veterinary Medicine, Northwest A &F University, Yangling, China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, China
| | - Ting Tang
- College of Veterinary Medicine, Northwest A &F University, Yangling, China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, China
| | - Minghui Wang
- College of Veterinary Medicine, Northwest A &F University, Yangling, China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, China
| | - Yunyi Zhai
- College of Veterinary Medicine, Northwest A &F University, Yangling, China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, China
| | - Yong Shi
- College of Veterinary Medicine, Northwest A &F University, Yangling, China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, China
| | - Yuanhao Yang
- College of Veterinary Medicine, Northwest A &F University, Yangling, China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, China
| | - Xiaofang Liu
- College of Veterinary Medicine, Northwest A &F University, Yangling, China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, China
| | - Junmei Li
- College of Veterinary Medicine, Northwest A &F University, Yangling, China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, China
| | - Dong Zhou
- College of Veterinary Medicine, Northwest A &F University, Yangling, China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, China
| | - Wei Liu
- College of Veterinary Medicine, Northwest A &F University, Yangling, China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, China
| | - Yaping Jin
- College of Veterinary Medicine, Northwest A &F University, Yangling, China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, China
| | - Aihua Wang
- College of Veterinary Medicine, Northwest A &F University, Yangling, China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, China.
| |
Collapse
|
13
|
Giménez A, Del Giudice MG, López PV, Guaimas F, Sámano-Sánchez H, Gibson TJ, Chemes LB, Arregui CO, Ugalde JE, Czibener C. Brucella NpeA is a secreted Type IV effector containing an N-WASP-binding short linear motif that promotes niche formation. mBio 2024; 15:e0072624. [PMID: 38847540 PMCID: PMC11253601 DOI: 10.1128/mbio.00726-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 05/01/2024] [Indexed: 07/18/2024] Open
Abstract
The modulation of actin polymerization is a common theme among microbial pathogens. Even though microorganisms show a wide repertoire of strategies to subvert the activity of actin, most of them converge in the ones that activate nucleating factors, such as the Arp2/3 complex. Brucella spp. are intracellular pathogens capable of establishing chronic infections in their hosts. The ability to subvert the host cell response is dependent on the capacity of the bacterium to attach, invade, avoid degradation in the phagocytic compartment, replicate in an endoplasmic reticulum-derived compartment and egress. Even though a significant number of mechanisms deployed by Brucella in these different phases have been identified and characterized, none of them have been described to target actin as a cellular component. In this manuscript, we describe the identification of a novel virulence factor (NpeA) that promotes niche formation. NpeA harbors a short linear motif (SLiM) present within an amphipathic alpha helix that has been described to bind the GTPase-binding domain (GBD) of N-WASP and stabilizes the autoinhibited state. Our results show that NpeA is secreted in a Type IV secretion system-dependent manner and that deletion of the gene diminishes the intracellular replication capacity of the bacterium. In vitro and ex vivo experiments demonstrate that NpeA binds N-WASP and that the short linear motif is required for the biological activity of the protein.IMPORTANCEThe modulation of actin-binding effectors that regulate the activity of this fundamental cellular protein is a common theme among bacterial pathogens. The neural Wiskott-Aldrich syndrome protein (N-WASP) is a protein that several pathogens target to hijack actin dynamics. The highly adapted intracellular bacterium Brucella has evolved a wide repertoire of virulence factors that modulate many activities of the host cell to establish successful intracellular replication niches, but, to date, no effector proteins have been implicated in the modulation of actin dynamics. We present here the identification of a virulence factor that harbors a short linear motif (SLiM) present within an amphipathic alpha helix that has been described to bind the GTPase-binding domain (GBD) of N-WASP stabilizing its autoinhibited state. We demonstrate that this protein is a Type IV secretion effector that targets N-WASP-promoting intracellular survival and niche formation.
Collapse
Affiliation(s)
- Agostina Giménez
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Escuela de Bio y Nanotecnologías (EByN), Universidad Nacional de San Martín, San Martín, Buenos Aires, Argentina
| | - Mariela G. Del Giudice
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Escuela de Bio y Nanotecnologías (EByN), Universidad Nacional de San Martín, San Martín, Buenos Aires, Argentina
| | - Paula V. López
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Escuela de Bio y Nanotecnologías (EByN), Universidad Nacional de San Martín, San Martín, Buenos Aires, Argentina
| | - Francisco Guaimas
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Escuela de Bio y Nanotecnologías (EByN), Universidad Nacional de San Martín, San Martín, Buenos Aires, Argentina
| | - Hugo Sámano-Sánchez
- Zhejiang University School of Medicine, International Campus, Zhejiang University, Haining, China
- Biomedical Sciences, Edinburgh Medical School, The University of Edinburgh, Edinburgh, United Kingdom
| | - Toby J. Gibson
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Lucía B. Chemes
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Escuela de Bio y Nanotecnologías (EByN), Universidad Nacional de San Martín, San Martín, Buenos Aires, Argentina
| | - Carlos O. Arregui
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Escuela de Bio y Nanotecnologías (EByN), Universidad Nacional de San Martín, San Martín, Buenos Aires, Argentina
| | - Juan E. Ugalde
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Escuela de Bio y Nanotecnologías (EByN), Universidad Nacional de San Martín, San Martín, Buenos Aires, Argentina
| | - Cecilia Czibener
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Escuela de Bio y Nanotecnologías (EByN), Universidad Nacional de San Martín, San Martín, Buenos Aires, Argentina
| |
Collapse
|
14
|
Elizalde-Bielsa A, Muñoz PM, Zúñiga-Ripa A, Conde-Álvarez R. A Review on the Methodology and Use of the Pregnant Mouse Model in the Study of Brucella Reproductive Pathogenesis and Its Abortifacient Effect. Microorganisms 2024; 12:866. [PMID: 38792696 PMCID: PMC11123383 DOI: 10.3390/microorganisms12050866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/15/2024] [Accepted: 04/20/2024] [Indexed: 05/26/2024] Open
Abstract
Brucellosis is one of the most common and widespread bacterial zoonoses and is caused by Gram-negative bacteria belonging to the genus Brucella. These organisms are able to infect and replicate within the placenta, resulting in abortion, one of the main clinical signs of brucellosis. Although the mouse model is widely used to study Brucella virulence and, more recently, to evaluate the protection of new vaccines, there is no clear consensus on the experimental conditions (e.g., mouse strains, doses, routes of inoculation, infection/pregnancy time) and the natural host reproducibility of the pregnant mouse model for reproductive brucellosis. This lack of consensus calls for a review that integrates the major findings regarding the effect of Brucella wild-type and vaccine strains infections on mouse pregnancy. We found sufficient evidence on the utility of the pregnant mouse model to study Brucella-induced placentitis and abortion and propose suitable experimental conditions (dose, time of infection) and pregnancy outcome readouts for B. abortus and B. melitensis studies. Finally, we discuss the utility and limitations of the pregnant mouse as a predictive model for the abortifacient effect of live Brucella vaccines.
Collapse
Affiliation(s)
- Aitor Elizalde-Bielsa
- Department of Microbiology and Parasitology, Instituto de Investigación Sanitaria de Navarra (IdiSNA), University of Navarra, 31008 Pamplona, Spain;
| | - Pilar M. Muñoz
- Department of Animal Science, Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), 50059 Zaragoza, Spain;
- Instituto Agroalimentario de Aragón—IA2, CITA-Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - Amaia Zúñiga-Ripa
- Department of Microbiology and Parasitology, Instituto de Investigación Sanitaria de Navarra (IdiSNA), University of Navarra, 31008 Pamplona, Spain;
| | - Raquel Conde-Álvarez
- Department of Microbiology and Parasitology, Instituto de Investigación Sanitaria de Navarra (IdiSNA), University of Navarra, 31008 Pamplona, Spain;
| |
Collapse
|
15
|
Miliotis G, Sengupta P, Hameed A, Chuvochina M, McDonagh F, Simpson AC, Parker CW, Singh NK, Rekha PD, Morris D, Raman K, Kyrpides NC, Hugenholtz P, Venkateswaran K. Novel spore-forming species exhibiting intrinsic resistance to third- and fourth-generation cephalosporins and description of Tigheibacillus jepli gen. nov., sp. nov. mBio 2024; 15:e0018124. [PMID: 38477597 PMCID: PMC11005411 DOI: 10.1128/mbio.00181-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 01/29/2024] [Indexed: 03/14/2024] Open
Abstract
A comprehensive microbial surveillance was conducted at NASA's Mars 2020 spacecraft assembly facility (SAF), where whole-genome sequencing (WGS) of 110 bacterial strains was performed. One isolate, designated 179-BFC-A-HST, exhibited less than 80% average nucleotide identity (ANI) to known species, suggesting a novel organism. This strain demonstrated high-level resistance [minimum inhibitory concentration (MIC) >256 mg/L] to third-generation cephalosporins, including ceftazidime, cefpodoxime, combination ceftazidime/avibactam, and the fourth-generation cephalosporin cefepime. The results of a comparative genomic analysis revealed that 179-BFC-A-HST is most closely related to Virgibacillus halophilus 5B73CT, sharing an ANI of 78.7% and a digital DNA-DNA hybridization (dDDH) value of 23.5%, while their 16S rRNA gene sequences shared 97.7% nucleotide identity. Based on these results and the recent recognition that the genus Virgibacillus is polyphyletic, strain 179-BFC-A-HST is proposed as a novel species of a novel genus, Tigheibacillus jepli gen. nov., sp. nov (type strain 179-BFC-A-HST = DSM 115946T = NRRL B-65666T), and its closest neighbor, V. halophilus, is proposed to be reassigned to this genus as Tigheibacillus halophilus comb. nov. (type strain 5B73CT = DSM 21623T = JCM 21758T = KCTC 13935T). It was also necessary to reclassify its second closest neighbor Virgibacillus soli, as a member of a novel genus Paracerasibacillus, reflecting its phylogenetic position relative to the genus Cerasibacillus, for which we propose Paracerasibacillus soli comb. nov. (type strain CC-YMP-6T = DSM 22952T = CCM 7714T). Within Amphibacillaceae (n = 64), P. soli exhibited 11 antibiotic resistance genes (ARG), while T. jepli encoded for 3, lacking any known β-lactamases, suggesting resistance from variant penicillin-binding proteins, disrupting cephalosporin efficacy. P. soli was highly resistant to azithromycin (MIC >64 mg/L) yet susceptible to cephalosporins and penicillins. IMPORTANCE The significance of this research extends to understanding microbial survival and adaptation in oligotrophic environments, such as those found in SAF. Whole-genome sequencing of several strains isolated from Mars 2020 mission assembly cleanroom facilities, including the discovery of the novel species Tigheibacillus jepli, highlights the resilience and antimicrobial resistance (AMR) in clinically relevant antibiotic classes of microbes in nutrient-scarce settings. The study also redefines the taxonomic classifications within the Amphibacillaceae family, aligning genetic identities with phylogenetic data. Investigating ARG and virulence factors (VF) across these strains illuminates the microbial capability for resistance under resource-limited conditions while emphasizing the role of human-associated VF in microbial survival, informing sterilization practices and microbial management in similar oligotrophic settings beyond spacecraft assembly cleanrooms such as pharmaceutical and medical industry cleanrooms.
Collapse
Affiliation(s)
- Georgios Miliotis
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, University of Galway, Galway, Ireland
- Centre for One Health, Ryan Institute, University of Galway, Galway, Ireland
| | - Pratyay Sengupta
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India
- Center for Integrative Biology and Systems mEdicine (IBSE), Indian Institute of Technology Madras, Chennai, Tamil Nadu, India
- Robert Bosch Centre for Data Science and Artificial Intelligence (RBCDSAI), Indian Institute of Technology Madras, Chennai, Tamil Nadu, India
| | - Asif Hameed
- Division of Microbiology and Biotechnology, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka, India
| | - Maria Chuvochina
- The University of Queensland, School of Chemistry and Molecular Biosciences, Australian Centre for Ecogenomics, Brisbane, Australia
| | - Francesca McDonagh
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, University of Galway, Galway, Ireland
| | - Anna C. Simpson
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - Ceth W. Parker
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - Nitin K. Singh
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - Punchappady D. Rekha
- Division of Microbiology and Biotechnology, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka, India
| | - Dearbháile Morris
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, University of Galway, Galway, Ireland
- Centre for One Health, Ryan Institute, University of Galway, Galway, Ireland
| | - Karthik Raman
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India
- Center for Integrative Biology and Systems mEdicine (IBSE), Indian Institute of Technology Madras, Chennai, Tamil Nadu, India
- Robert Bosch Centre for Data Science and Artificial Intelligence (RBCDSAI), Indian Institute of Technology Madras, Chennai, Tamil Nadu, India
| | - Nikos C. Kyrpides
- US Department of Energy Joint Genome Institute, Berkeley, California, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Philip Hugenholtz
- The University of Queensland, School of Chemistry and Molecular Biosciences, Australian Centre for Ecogenomics, Brisbane, Australia
| | - Kasthuri Venkateswaran
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| |
Collapse
|
16
|
Shi QN, Qin HJ, Lu QS, Li S, Tao ZF, Fan MG, Aishan MH, Kou ZQ, Chen QL, Yin WW, Zhang YP. Incidence and warning signs for complications of human brucellosis: a multi-center observational study from China. Infect Dis Poverty 2024; 13:18. [PMID: 38374211 PMCID: PMC10877768 DOI: 10.1186/s40249-024-01186-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 02/01/2024] [Indexed: 02/21/2024] Open
Abstract
BACKGROUND Brucellosis is a severe zoonotic disease that is often overlooked, particularly in impoverished countries. Timely identification of focal complications in brucellosis is crucial for improving treatment outcomes. However, there is currently a lack of established indicators or biomarkers for diagnosing these complications. Therefore, this study aimed to investigate potential warning signs of focal complications in human brucellosis, with the goal of providing practical parameters for clinicians to aid in the diagnosis and management of patients. METHODS A multi-center cross-sectional study was conducted in China from December 2019 to August 2021. The study aimed to investigate the clinical characteristics and complications of patients with brucellosis using a questionnaire survey and medical record system. The presence of warning signs for complications was assessed using univariate and multivariate logistic regression models. Receiver operating characteristic (ROC) curves and the area under the curve (AUC) were used for variable screening and model evaluation. RESULTS A total of 880 participants diagnosed with human brucellosis were enrolled. The median age of the patients was 50 years [interquartile range (IQR): 41.5-58.0], and 54.8% had complications. The most common organ system affected by complications was the osteoarticular system (43.1%), with peripheral arthritis (30.0%), spondylitis (16.6%), paravertebral abscess (5.0%), and sacroiliitis (2.7%) being the most prevalent. Complications in other organ systems included the genitourinary system (4.7%), respiratory system (4.7%), and hematologic system (4.6%). Several factors were found to be associated with focal brucellosis. These factors included a long delay in diagnosis [odds ratio (OR) = 3.963, 95% confidence interval (CI) 1.906-8.238 for > 90 days], the presence of underlying disease (OR = 1.675, 95% CI 1.176-2.384), arthralgia (OR = 3.197, 95% CI 1.986-5.148), eye bulging pain (OR = 3.482, 95% CI 1.349-8.988), C-reactive protein (CRP) > 10 mg/L (OR = 1.910, 95% CI 1.310-2.784) and erythrocyte sedimentation rate (ESR) elevation (OR = 1.663, 95% CI 1.145-2.415). The optimal cutoff value in ROC analysis was > 5.4 mg/L for CRP (sensitivity 73.4% and specificity 51.9%) and > 25 mm/h for ESR (sensitivity 47.9% and specificity 71.1%). CONCLUSIONS More than 50% of patients with brucellosis experienced complications. Factors such as diagnostic delay, underlying disease, arthralgia, eye pain, and elevated levels of CRP and ESR were identified as significant markers for the development of complications. Therefore, patients presenting with these conditions should be closely monitored for potential complications, regardless of their culture results and standard tube agglutination test titers.
Collapse
Affiliation(s)
- Qing-Nan Shi
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Chinese Center for Disease Control and Prevention, Changbai Road, Changping District, Beijing, 102206, China
| | - Hui-Jie Qin
- School of Public Health, Guangxi Medical University, Nanning, China
| | - Qiao-Shan Lu
- School of Public Health, Guangxi Medical University, Nanning, China
| | - Shu Li
- Nanning Center for Disease Control and Prevention, Nanning, China
| | - Zhong-Fa Tao
- Guizhou Center for Disease Control and Prevention, Guiyang, China
| | - Meng-Guang Fan
- Inner Mongolia Center for Disease Control and Prevention, Hohhot, China
| | - Mu-Heta Aishan
- Xinjiang Uighur Autonomous Region Center for Disease Control and Prevention, Urumqi, China
| | - Zeng-Qiang Kou
- Shandong Center for Disease Control and Prevention, Jinan, China
| | - Qiu-Lan Chen
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Chinese Center for Disease Control and Prevention, Changbai Road, Changping District, Beijing, 102206, China.
| | - Wen-Wu Yin
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Chinese Center for Disease Control and Prevention, Changbai Road, Changping District, Beijing, 102206, China.
| | - Yan-Ping Zhang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Chinese Center for Disease Control and Prevention, Changbai Road, Changping District, Beijing, 102206, China
| |
Collapse
|
17
|
Yang X, Goodwin ZI, Bhagyaraj E, Hoffman C, Pascual DW. Parenteral Vaccination with a Live Brucella melitensis Mutant Protects against Wild-Type B. melitensis 16M Challenge. Microorganisms 2024; 12:169. [PMID: 38257995 PMCID: PMC10820470 DOI: 10.3390/microorganisms12010169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/04/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
Susceptibility to brucellosis remains prevalent, even in herds vaccinated with conventional vaccines. Efforts are underway to develop an improved brucellosis vaccine, and possibly a universal vaccine, given that Brucella species are highly homologous. To this end, two B. melitensis mutants were developed, znBM-lacZ (znBMZ) and znBM-mCherry (znBM-mC), and were tested for their ability to confer systemic immunity against virulent B. melitensis challenge. To assess the extent of their attenuation, bone-marrow-derived macrophages and human TF-1 myeloid cells were infected with both mutants, and the inability to replicate within these cells was noted. Mice infected with varying doses of znBM-mC cleared the brucellae within 6-10 weeks. To test for efficacy against systemic disease, groups of mice were vaccinated once by the intraperitoneal route with either znBMZ or B. abortus S19 vaccine. Relative to the PBS-dosed mice, znBMZ vaccination greatly reduced splenic brucellae colonization by ~25,000-fold compared to 700-fold for S19-vaccinated mice. Not surprisingly, both znBMZ and S19 strains induced IFN-γ+ CD4+ T cells, yet only znBMZ induced IFN-γ+ CD8+ T cells. While both strains induced CD4+ effector memory T cells (Tems), only znBMZ induced CD8+ Tems. Thus, these results show that the described znBM mutants are safe, able to elicit CD4+ and CD8+ T cell immunity without a boost, and highly effective, rendering them promising vaccine candidates for livestock.
Collapse
Affiliation(s)
| | | | | | | | - David W. Pascual
- Department of Infectious Diseases & Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA; (X.Y.); (Z.I.G.); (E.B.); (C.H.)
| |
Collapse
|
18
|
Ta N, Zuo KM, Gao J, Guan N, Song LT, Wen YJ, Yu RP. Origin tracking of Brucella strain B. melitensics bv.3 ARQ-070 using biochemical and genomic studies. FEMS Microbiol Lett 2024; 371:fnae085. [PMID: 39537199 DOI: 10.1093/femsle/fnae085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 08/01/2024] [Accepted: 11/12/2024] [Indexed: 11/16/2024] Open
Abstract
To conduct an origin tracking and genomic study of the Brucella strain B. melitensis bv.3 ARQ-070, with the aim of addressing the challenges posed by the highly conserved genome of Brucella to conventional typing methods and to gain an understanding of the geographic distribution and interspecies transmission of this pathogen in China. Differentiation and genotyping were established via biochemical profiles and polymerase chain reaction. Illumina MiSeq® was applied to sequence the Brucella isolates. Using multilocus sequence typing and Fisher's exact test was used for the KEGG enrichment analysis of differential genes. Differential gene protein-protein interaction (PPI) network analysis was conducted using the STRING database and visualization was performed using. According to the final identification results of an A/M serum agglutination test. ARQ-070 was identified as the No. 3 white spirulina biological variety, and mM was identified as the No. 1 white Spirulina biological variety. The genetic information of this strain is very close to that of the M5 vaccine strain, suggesting possible vaccine-escape infection. In the comparative genomics analysis with B. melitensis bv.1 16 M, the main differences between the B. melitensis strains were found to be concentrated in the genes related to amino acid metabolism and environmental perception. A base mutation was found in the Brucella gene virB9, which is associated with the key virulence factor of the type IV secretion system, but this mutation did not lead to changes in the protein's tertiary structure, and the strain did not lose its infectivity. The study discovered a base mutation in the virB9 gene of Brucella, which is linked to T4SS but does not affect the protein's structure or the strain's infectivity. This mutation could influence public health approaches to detecting and preventing Brucella transmission. Future research aims to analyse a wider range of Brucella strains for a deeper understanding of their epidemiology.
Collapse
Affiliation(s)
- Na Ta
- School of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010010, China
- Inner Mongolia Center for Disease Control and Research, Hohhot 010051, China
| | - Ke-Ming Zuo
- School of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010010, China
| | - Jing Gao
- School of Public Health, Baotou Medical College, Baotou City 014040, China
| | - Na Guan
- School of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010010, China
| | - Li-Tao Song
- Inner Mongolia Center for Disease Control and Research, Hohhot 010051, China
| | - Yong-Jun Wen
- School of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010010, China
| | - Rui-Ping Yu
- Inner Mongolia Center for Disease Control and Research, Hohhot 010051, China
| |
Collapse
|
19
|
Qureshi KA, Parvez A, Fahmy NA, Abdel Hady BH, Kumar S, Ganguly A, Atiya A, Elhassan GO, Alfadly SO, Parkkila S, Aspatwar A. Brucellosis: epidemiology, pathogenesis, diagnosis and treatment-a comprehensive review. Ann Med 2024; 55:2295398. [PMID: 38165919 PMCID: PMC10769134 DOI: 10.1080/07853890.2023.2295398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 12/12/2023] [Indexed: 01/04/2024] Open
Abstract
Background: Brucellosis is a pervasive zoonotic disease caused by various Brucella species. It mainly affects livestock and wildlife and poses significant public health threats, especially in regions with suboptimal hygiene, food safety, and veterinary care standards. Human contractions occur by consuming contaminated animal products or interacting with infected animals. Objective: This study aims to provide an updated understanding of brucellosis, from its epidemiology and pathogenesis to diagnosis and treatment strategies. It emphasizes the importance of ongoing research, knowledge exchange, and interdisciplinary collaboration for effective disease control and prevention, highlighting its global health implications. Methods: Pathogenesis involves intricate interactions between bacteria and the host immune system, resulting in chronic infections characterized by diverse clinical manifestations. The diagnostic process is arduous owing to non-specific symptomatology and sampling challenges, necessitating a fusion of clinical and laboratory evaluations, including blood cultures, serological assays, and molecular methods. Management typically entails multiple antibiotics, although the rise in antibiotic-resistant Brucella strains poses a problem. Animal vaccination is a potential strategy to curb the spread of infection, particularly within livestock populations. Results: The study provides insights into the complex pathogenesis of brucellosis, the challenges in its diagnosis, and the management strategies involving antibiotic therapy and animal vaccination. It also highlights the emerging issue of antibiotic-resistant Brucella strains. Conclusions: In conclusion, brucellosis is a significant zoonotic disease with implications for public health. Efforts should be directed towards improved diagnostic methods, antibiotic stewardship to combat antibiotic resistance, and developing and implementing effective animal vaccination programs. Interdisciplinary collaboration and ongoing research are crucial for addressing the global health implications of brucellosis.
Collapse
Affiliation(s)
- Kamal A. Qureshi
- Department of Pharmaceutics, Unaizah College of Pharmacy, Qassim University, Unaizah, Saudi Arabia
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Adil Parvez
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard University, New Delhi, India
| | - Nada A. Fahmy
- Center for Microbiology and Phage Therapy, Biomedical Sciences, Zewail City of Science and Technology, Giza, Egypt
- Faculty of Applied Health Science, Galala University, Suez, Egypt
| | - Bassant H. Abdel Hady
- Center for Microbiology and Phage Therapy, Biomedical Sciences, Zewail City of Science and Technology, Giza, Egypt
| | - Shweta Kumar
- Department of General Medicine, All India Institute of Medical Sciences, Bhopal, India
| | - Anusmita Ganguly
- Department of Biotechnology, Pondicherry University, Puducherry, India
| | - Akhtar Atiya
- Department of Pharmacognosy, College of Pharmacy, King Khalid University (KKU), Abha, Saudi Arabia
| | - Gamal O. Elhassan
- Department of Pharmaceutics, Unaizah College of Pharmacy, Qassim University, Unaizah, Saudi Arabia
| | - Saeed O. Alfadly
- Department of Pharmacy Practice, Unaizah College of Pharmacy, Qassim University, Unaizah, Saudi Arabia
| | - Seppo Parkkila
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Department of Pharmacy Practice, Unaizah College of Pharmacy, Qassim University, Unaizah, Saudi Arabia
- Fimlab Ltd., Tampere University Hospital, Tampere, Finland
| | - Ashok Aspatwar
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Department of Pharmacy Practice, Unaizah College of Pharmacy, Qassim University, Unaizah, Saudi Arabia
| |
Collapse
|
20
|
Barton IS, Ren Z, Cribb CB, Pitzer JE, Baglivo I, Martin DW, Wang X, Roop RM. Brucella MucR acts as an H-NS-like protein to silence virulence genes and structure the nucleoid. mBio 2023; 14:e0220123. [PMID: 37847580 PMCID: PMC10746212 DOI: 10.1128/mbio.02201-23] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 08/21/2023] [Indexed: 10/19/2023] Open
Abstract
IMPORTANCE Histone-like nucleoid structuring (H-NS) and H-NS-like proteins coordinate host-associated behaviors in many pathogenic bacteria, often through forming silencer/counter-silencer pairs with signal-responsive transcriptional activators to tightly control gene expression. Brucella and related bacteria do not encode H-NS or homologs of known H-NS-like proteins, and it is unclear if they have other proteins that perform analogous functions during pathogenesis. In this work, we provide compelling evidence for the role of MucR as a novel H-NS-like protein in Brucella. We show that MucR possesses many of the known functions attributed to H-NS and H-NS-like proteins, including the formation of silencer/counter-silencer pairs to control virulence gene expression and global structuring of the nucleoid. These results uncover a new role for MucR as a nucleoid structuring protein and support the importance of temporal control of gene expression in Brucella and related bacteria.
Collapse
Affiliation(s)
- Ian S. Barton
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, USA
| | - Zhongqing Ren
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| | - Connor B. Cribb
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, USA
| | - Joshua E. Pitzer
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, USA
| | - Ilaria Baglivo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Caserta, Italy
| | - Daniel W. Martin
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, USA
| | - Xindan Wang
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| | - R. Martin Roop
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, USA
| |
Collapse
|
21
|
Wu A, Wang Y, Ali A, Xu Z, Zhang D, Zhumanov K, Sheng J, Yi J. Design of a multi-epitope vaccine against brucellosis fused to IgG-fc by an immunoinformatics approach. Front Vet Sci 2023; 10:1238634. [PMID: 37937155 PMCID: PMC10625910 DOI: 10.3389/fvets.2023.1238634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 09/27/2023] [Indexed: 11/09/2023] Open
Abstract
Introduction Brucella, a type of intracellular Gram-negative bacterium, has unique features and acts as a zoonotic pathogen. It can lead to abortion and infertility in animals. Eliminating brucellosis becomes very challenging once it spreads among both humans and animals, putting a heavy burden on livestock and people worldwide. Given the increasing spread of brucellosis, it is crucial to develop improved vaccines for susceptible animals to reduce the disease's impact. Methods In this study, we effectively used an immunoinformatics approach with advanced computer software to carefully identify and analyze important antigenic parts of Brucella abortus. Subsequently, we skillfully designed chimeric peptides to enhance the vaccine's strength and effectiveness. We used computer programs to find four important parts of the Brucella bacteria that our immune system recognizes. Then, we carefully looked for eight parts that are recognized by a type of white blood cell called cytotoxic T cells, six parts recognized by T helper cells, and four parts recognized by B cells. We connected these parts together using a special link, creating a strong new vaccine. To make the vaccine even better, we added some extra parts called molecular adjuvants. These included something called human β-defensins 3 (hBD-3) that we found in a database, and another part that helps the immune system called PADRE. We attached these extra parts to the beginning of the vaccine. In a new and clever way, we made the vaccine even stronger by attaching a part from a mouse's immune system to the end of it. This created a new kind of vaccine called MEV-Fc. We used advanced computer methods to study how well the MEV-Fc vaccine interacts with certain receptors in the body (TLR-2 and TLR-4). Results In the end, Immunosimulation predictions showed that the MEV-Fc vaccine can make the immune system respond strongly, both in terms of cells and antibodies. Discussion In summary, our results provide novel insights for the development of Brucella vaccines. Although further laboratory experiments are required to assess its protective effect.
Collapse
Affiliation(s)
- Aodi Wu
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang, China
| | - Yueli Wang
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang, China
| | - Adnan Ali
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang, China
| | - Zhenyu Xu
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang, China
| | - Dongsheng Zhang
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang, China
| | - Kairat Zhumanov
- College of Veterinary Medicine, Kazakhstan Kazakh State Agricultural University, Almaty, Kazakhstan
| | - Jinliang Sheng
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang, China
| | - Jihai Yi
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang, China
| |
Collapse
|
22
|
Yin Y, Fang T, Lian Z, Zuo D, Hu H, Zhang G, Ding C, Tian M, Yu S. Erythronate utilization activates VdtR regulating its metabolism to promote Brucella proliferation, inducing abortion in mice. Microbiol Spectr 2023; 11:e0207423. [PMID: 37671873 PMCID: PMC10580937 DOI: 10.1128/spectrum.02074-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/08/2023] [Indexed: 09/07/2023] Open
Abstract
Brucella is a facultative intracellular pathogen that preferentially colonizes reproductive organs and utilizes erythritol as a preferred carbon source for its survival and proliferation. In this study, we identified a virulence-related DeoR-family transcriptional regulator (VdtR) and an erythronate metabolic pathway responsible for four-carbon acid sugar metabolism of D-erythronate and L-threonate in Brucella. We found that VdtR plays an important role in Brucella intracellular survival and trafficking to the endoplasmic reticulum in RAW 264.7 macrophages and in virulence in a mouse model. More importantly, we found that VdtR negatively regulates the erythronate metabolic pathway to promote extracellular proliferation of Brucella, depending on utilization of D-erythronate, an oxidative product of erythritol in the host. In a pregnant mouse model, the erythronate metabolic pathway was shown to cooperate with erythritol metabolism and play a crucial role in Brucella proliferation in the placenta, inducing placentitis and finally resulting in abortion or stillbirth. Our results demonstrate that, in addition to erythritol, erythronate is a preferred carbon source for Brucella utilization to promote its extracellular proliferation. This discovery updates the information on the preferential colonization of reproductive organs by Brucella and provides a novel insight into the Brucella-associated induction of abortion in pregnant animals. IMPORTANCE Brucella is an intracellular parasitic bacterium causing zoonosis, which is distributed worldwide and mainly characterized by reproductive disorders. Erythritol is found in allantoic fluid, chorion, and placenta of aborted animals, preferentially utilized by Brucella to cause infertility and abortion. However, the erythritol metabolism-defected mutant was unable to function as a vaccine strain due to its residual virulence. Here, we found that erythronate, an oxidative product of erythritol in the host, was also preferentially utilized by Brucella relying on the function of a deoxyribonucleoside regulator-family transcriptional regulator VdtR. Erythronate utilization activates VdtR regulation of the erythronate metabolic pathway to promote Brucella extracellular proliferation, inducing placentitis/abortion in mice. Double mutations on Brucella erythritol and D-erythronate metabolisms significantly reduced bacterial virulence. This study revealed a novel mechanism of Brucella infection-induced abortion, thus providing a new clue for the study of safer Brucella attenuated vaccines.
Collapse
Affiliation(s)
- Yi Yin
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Shanghai, China
| | - Tian Fang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Shanghai, China
| | - Zhengmin Lian
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Shanghai, China
| | - Dong Zuo
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Shanghai, China
| | - Hai Hu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Shanghai, China
| | - Guangdong Zhang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Shanghai, China
| | - Chan Ding
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Shanghai, China
| | - Mingxing Tian
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Shanghai, China
| | - Shengqing Yu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Shanghai, China
- Veterinary Bio-Pharmaceutical, Jiangsu Agri-Animal Husbandry Vocational College, Jiangsu Key Laboratory for High-Tech Research and Development of Veterinary Biopharmaceuticals, Taizhou, Jiangsu, China
| |
Collapse
|
23
|
Li P, Ding J, Xin T, Yu S, Banai M. Editorial: Veterinary Bacterial Zoonoses, volume II. Front Vet Sci 2023; 10:1245623. [PMID: 37520004 PMCID: PMC10374339 DOI: 10.3389/fvets.2023.1245623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 07/03/2023] [Indexed: 08/01/2023] Open
Affiliation(s)
- Peng Li
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jiabo Ding
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ting Xin
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shengqing Yu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Menachem Banai
- Department of Bacteriology, Kimron Veterinary Institute, Bet Dagan, Israel
| |
Collapse
|
24
|
Wang H, Clapp B, Hoffman C, Yang X, Pascual DW. A Single Nasal Dose Vaccination with a Brucella abortus Mutant Potently Protects against Pulmonary Infection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:1576-1588. [PMID: 37036290 PMCID: PMC10159994 DOI: 10.4049/jimmunol.2300071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 03/14/2023] [Indexed: 04/11/2023]
Abstract
The Brucella abortus double-mutant (ΔznuA ΔnorD Brucella abortus-lacZ [znBAZ]) was assessed for its protective efficacy after vaccination with a single nasal dose. Superior protection was achieved in znBAZ-vaccinated mice against pulmonary, wild-type B. abortus 2308 challenge when compared with conventional livestock Brucella abortus vaccines, the smooth S19 (smooth B. abortus strain 19 vaccine) and rough RB51 (rough mutant vaccine strain of B. abortus) strains. Nasal znBAZ vaccination reduced splenic and lung colonization by wild-type brucellae by >3-4 logs. In contrast, S19 reduced lung colonization by only 32-fold, and RB51 failed to reduce colonization. One profound attribute of znBAZ vaccination was the >3-fold increase in pulmonary CD8+ T cells when compared with other vaccinated groups. S19 vaccination increased only CD4+ T cells. All vaccines induced IFN-γ and TNF-α production by CD4+ T cells, but only znBAZ vaccination enhanced the recruitment of polyfunctional CD8+ T cells, by >100-fold. IL-17 by both CD4+ and CD8+ T cells was also induced by subsequent znBAZ vaccination. These results demonstrate that, in addition to achieving protective immunity by CD4+ T cells, CD8+ T cells, specifically resident memory T cells, also confer protection against brucellosis. The protection obtained by znBAZ vaccination was attributed to IFN-γ-producing CD8+ T cells, because depletion of CD8+ T cells throughout vaccination and challenge phases abrogated protection. The stimulation of only CD4+ T cells by RB51- and S19-vaccinated mice proved insufficient in protecting against pulmonary B. abortus 2308 challenge. Thus, nasal znBAZ vaccination offers an alternative means to elicit protection against brucellosis.
Collapse
Affiliation(s)
- Hongbin Wang
- Department of Infectious Diseases and Immunology, University of Florida, Gainesville, FL
| | - Beata Clapp
- Department of Infectious Diseases and Immunology, University of Florida, Gainesville, FL
| | - Carol Hoffman
- Department of Infectious Diseases and Immunology, University of Florida, Gainesville, FL
| | - Xinghong Yang
- Department of Infectious Diseases and Immunology, University of Florida, Gainesville, FL
| | - David W. Pascual
- Department of Infectious Diseases and Immunology, University of Florida, Gainesville, FL
| |
Collapse
|
25
|
Bányász B, Antal J, Dénes B. False Positives in Brucellosis Serology: Wrong Bait and Wrong Pond? Trop Med Infect Dis 2023; 8:tropicalmed8050274. [PMID: 37235322 DOI: 10.3390/tropicalmed8050274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/07/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
This review summarizes the status of resolving the problem of false positive serologic results (FPSR) in Brucella serology, compiles our knowledge on the molecular background of the problem, and highlights some prospects for its resolution. The molecular basis of the FPSRs is reviewed through analyzing the components of the cell wall of Gram-negative bacteria, especially the surface lipopolysaccharide (LPS) with details related to brucellae. After evaluating the efforts that have been made to solve target specificity problems of serologic tests, the following conclusions can be drawn: (i) resolving the FPSR problem requires a deeper understanding than we currently possess, both of Brucella immunology and of the current serology tests; (ii) the practical solutions will be as expensive as the related research; and (iii) the root cause of FPSRs is the application of the same type of antigen (S-type LPS) in the currently approved tests. Thus, new approaches are necessary to resolve the problems stemming from FPSR. Such approaches suggested by this paper are: (i) the application of antigens from R-type bacteria; or (ii) the further development of specific brucellin-based skin tests; or (iii) the application of microbial cell-free DNA as analyte, whose approach is detailed in this paper.
Collapse
Affiliation(s)
- Borbála Bányász
- Department of Microbiology and Infectious Diseases, University of Veterinary Medicine Budapest, 1143 Budapest, Hungary
- Laboratory of Immunology, Veterinary Diagnostic Directorate, National Food Chain Safety Office, 1143 Budapest, Hungary
| | - József Antal
- Omixon Biocomputing Ltd., 1117 Budapest, Hungary
| | - Béla Dénes
- Department of Microbiology and Infectious Diseases, University of Veterinary Medicine Budapest, 1143 Budapest, Hungary
| |
Collapse
|
26
|
Czibener C, Rey Serantes DA, Romani AM, Bruno L, Pasquevich KA, Cassataro J, Comerci DJ, Ugalde JE. Bm Delta-pgm, a vaccine for the control of Brucella melitensis with cross-species protective properties. Vaccine 2023; 41:3534-3543. [PMID: 37149444 DOI: 10.1016/j.vaccine.2023.04.076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 04/26/2023] [Accepted: 04/27/2023] [Indexed: 05/08/2023]
Abstract
Brucellosis remains one of the most worldwide distributed zoonosis inflicting serious economical and human health problems in many areas of the world. The disease is caused by different species of the genus Brucella that have different tropisms towards different mammals being the most relevant for human health Brucella abortus, Brucella melitensis and Brucella suis that infect cows, goats/sheep, and swine respectively. For B. melitensis, considered the species with more zoonotic potential and highly aggressive for animals, only one vaccine is available to date in the market: Rev 1. This attenuated strain has the disadvantage that is has a very high residual virulence for animals and humans and, for this reason, it is applied by ocular instillation which is technically challenging in many productive settings. For this reason, the search for new vaccines for caprine and ovine brucellosis is an active topic of research. We describe here the construction of a novel highly attenuated vaccine strain (Bm Delta-pgm) that confers excellent levels of protection against B. melitensis in the mouse model of infection. This strain is a clean deletion of the phosphoglucomutase (pgm) gene that codes for a protein that catalyzes the conversion of glucose-6-P to glucose-1-P, which is used as a precursor for the biosynthesis of many polysaccharides, including the O-antigen of the lipopolysaccharide and cyclic beta glucans. Our results indicate that vaccination with Bm Delta-pgm induces a robust memory cellular immune response but no antibody production against the O-antigen. Cross protection experiments show that this new vaccine protects against B. abortus and B. suis raising the possibility that Bm Delta-pgm could be used as a universal vaccine for the most important Brucella species.
Collapse
Affiliation(s)
- Cecilia Czibener
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Escuela de Bio y Nanotecnologías (EByN), Universidad Nacional de San Martín, San Martín, Buenos Aires, Argentina
| | - Diego Armando Rey Serantes
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Escuela de Bio y Nanotecnologías (EByN), Universidad Nacional de San Martín, San Martín, Buenos Aires, Argentina
| | - Alexis Mariano Romani
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Escuela de Bio y Nanotecnologías (EByN), Universidad Nacional de San Martín, San Martín, Buenos Aires, Argentina
| | - Laura Bruno
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Escuela de Bio y Nanotecnologías (EByN), Universidad Nacional de San Martín, San Martín, Buenos Aires, Argentina
| | - Karina Alejandra Pasquevich
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Escuela de Bio y Nanotecnologías (EByN), Universidad Nacional de San Martín, San Martín, Buenos Aires, Argentina
| | - Juliana Cassataro
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Escuela de Bio y Nanotecnologías (EByN), Universidad Nacional de San Martín, San Martín, Buenos Aires, Argentina
| | - Diego José Comerci
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Escuela de Bio y Nanotecnologías (EByN), Universidad Nacional de San Martín, San Martín, Buenos Aires, Argentina.
| | - Juan Esteban Ugalde
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Escuela de Bio y Nanotecnologías (EByN), Universidad Nacional de San Martín, San Martín, Buenos Aires, Argentina.
| |
Collapse
|
27
|
Sadeghi Z, Fasihi-Ramandi M, Davoudi Z, Bouzari S. Multi-Epitope Vaccine Candidates Associated with Mannosylated Chitosan and LPS Conjugated Chitosan Nanoparticles Against Brucella Infection. J Pharm Sci 2023; 112:991-999. [PMID: 36623693 DOI: 10.1016/j.xphs.2022.12.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 12/24/2022] [Accepted: 12/25/2022] [Indexed: 01/09/2023]
Abstract
One promising approach to increase protection against infectious diseases is to use adjuvants that can selectively stimulate the immune responses. In this study, multi-epitope antigens associated with LPS loaded chitosan (LLC) as toll-like receptor agonist or mannosylated chitosan nanoparticle (MCN) as vaccine delivery system were evaluated for their ability to stimulate immune responses to Brucella infection in mice model. Our results indicated that the addition of MCN to our vaccine formulations significantly elicited IFN-γ and IL-2 cytokines and antibody titers, in comparison with the non-adjuvanted vaccine candidates. The present results indicated that multi-epitopes and their administration with LLC or MCN induced Th1 immune response. In addition, vaccine candidates containing MCN provided high percentage of protection against B. melitensis and B. abortus infection. Our results provided support to previous reports indicating that MCNs are attractive adjuvants and addition of this adjuvant to multi-epitopes antigens play an important role in the development of vaccine against Brucella.
Collapse
Affiliation(s)
- Zohre Sadeghi
- Department of Molecular Biology, Pasteur Institute of Iran, Tehran, Iran
| | - Mahdi Fasihi-Ramandi
- Molecular Biology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Zahra Davoudi
- Department of Medical Biotechnology, Zanjan University of Medical Science, Zanjan, Iran
| | - Saeid Bouzari
- Department of Molecular Biology, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
28
|
De la Rosa-Ramos MA, Arellano-Reynoso B, Hernández-Badillo E, Guerra-Infante FM, Mancilla-Herrera I, Chaki SP, Ficht TA, Suárez-Güemes F. Evaluation of the goat cellular immune response to rBtuB-Hia-FlgK peptides from Brucella melitensis. Comp Immunol Microbiol Infect Dis 2023; 94:101944. [PMID: 36638645 DOI: 10.1016/j.cimid.2023.101944] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 12/17/2022] [Accepted: 01/02/2023] [Indexed: 01/06/2023]
Abstract
Brucellosis is a zoonosis caused by Brucella; B. melitensis is the most prevalent species in goats and humans. Previously, three B. melitensis peptides, rBtuB-Hia-FlgK showed antigen-specific immune responses in rodent models. The goal of this study was to evaluate the goat Th1/Th2 immune response to B. melitensis peptides. Twenty-eight animals were separated into four groups and were immunized with the rBtuB-Hia-FlgK peptides cocktail, adjuvant, PBS and Rev-1 vaccine, respectively. Peripheral blood samples were collected on days 0, 15, and 80 post-inoculation. The CD4+ and CD8+ T cells proliferation, and cytokine production of the Th-1 (IL-2, IL-12, TNF-α, and IFN-γ) and Th-2 profiles (IL-4, IL-5, and IL-10) were evaluated. An increase of CD4+/CD8+ at 15 days post-vaccination was observed and continued until the 80th. In addition, the IFN-γ, TNF-α, and IL-2 mRNA expression were typically induced by the 15th day, but only IFN-γ levels were observed at day 80 post-immunization. Brucella pathogenesis is distinguished by the presence of a large amount of Th-1 cytokines. Although a reduced amount of IFN-γ in the culture supernatant was accurately detected compared with Rev-1 after 15 days, it could be influenced by the sampling schedule, as a higher cytokine production might be induced as early as the first-week post-vaccination. The results indicate that rBtuB-Hia-FlgK induced an immune response similar to the Rev-1 vaccine. The possible use of inert molecules with the unique ability to typically induce cellular response similar to attenuated vaccine represents an attractive option that should not be ruled out.
Collapse
Affiliation(s)
- Miguel A De la Rosa-Ramos
- Facultad de Medicina Veterinaria y Zootecnia (FMVZ), Universidad Nacional Autónoma de México (UNAM), Ciudad de México 04510, Mexico
| | - B Arellano-Reynoso
- Facultad de Medicina Veterinaria y Zootecnia (FMVZ), Universidad Nacional Autónoma de México (UNAM), Ciudad de México 04510, Mexico
| | - E Hernández-Badillo
- Facultad de Medicina Veterinaria y Zootecnia (FMVZ), Universidad Nacional Autónoma de México (UNAM), Ciudad de México 04510, Mexico
| | - Fernando M Guerra-Infante
- Departamento de Infectología e Inmunología, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes (INPerIER), Ciudad de México 11000, Mexico
| | - I Mancilla-Herrera
- Departamento de Infectología e Inmunología, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes (INPerIER), Ciudad de México 11000, Mexico
| | - S P Chaki
- Texas A&M University, Veterinary Pathobiology, TAMUs 4467, College Station, TX 77843, USA
| | - T A Ficht
- Texas A&M University, Veterinary Pathobiology, TAMUs 4467, College Station, TX 77843, USA
| | - F Suárez-Güemes
- Facultad de Medicina Veterinaria y Zootecnia (FMVZ), Universidad Nacional Autónoma de México (UNAM), Ciudad de México 04510, Mexico.
| |
Collapse
|
29
|
Abstract
Host cell egress is a critical step in the life cycle of intracellular pathogens, especially in microbes capable of establishing chronic infections. The Gram-negative bacterium Brucella belongs to such a group of pathogens. Even though much has been done to understand how Brucella avoids killing and multiplies in its intracellular niche, the mechanism that this bacterium deploys to egress from the cell to complete its cycle has been poorly studied. In the manuscript, we quantify the kinetics of bacterial egress and show that Brucella exploits multivesicular bodies to exit host cells. For the first time, we visualized the process of egress in real time by live video microscopy and showed that a population of intracellular bacteria exit from host cells in vacuoles containing multivesicular body-like features. We observed the colocalization of Brucella with two multivesicular markers, namely, CD63 and LBPA, both during the final stages of the intracellular life cycle and in egressed bacteria. Moreover, drugs that either promote or inhibit multivesicular bodies either increased or decreased the number of extracellular bacteria, respectively. Our results strongly suggest that Brucella hijacks multivesicular bodies to exit the host cells to initiate new infection events. IMPORTANCE How intracellular bacterial pathogens egress from host cells has been poorly studied. This is particularly important because this stage of the infectious cycle can have a strong impact on how the host resolves the infection. Brucella is an intracellular pathogen that infects mammals, including humans, and causes a chronic debilitating illness. The bacterium has evolved a plethora of mechanisms to invade host cells, avoid degradation in the endocytic pathway, and actively multiply within a specialized intracellular compartment. However, how this pathogen exits from infected cells to produce reinfection and complete its life cycle is poorly understood. In the manuscript, we shed some light on the mechanisms that are exploited by Brucella to egress from host cells. We observed for the first time the egress of Brucella from infected cells by time-lapse video microscopy, and we found that the bacterium exits in vesicles containing multivesicular bodies (MVBs) features. Moreover, the drug manipulation of MVBs resulted in the alteration of bacterial egress efficiency. Our results indicate that Brucella hijacks MVBs to exit host cells and that this strongly contributes to the reinfection cycle.
Collapse
|
30
|
Elizalde-Bielsa A, Aragón-Aranda B, Loperena-Barber M, Salvador-Bescós M, Moriyón I, Zúñiga-Ripa A, Conde-Álvarez R. Development and evaluation of the Galleria mellonella (greater wax moth) infection model to study Brucella host-pathogen interaction. Microb Pathog 2023; 174:105930. [PMID: 36496059 DOI: 10.1016/j.micpath.2022.105930] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/02/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022]
Abstract
Brucellosis is a zoonotic disease caused by Gram-negative bacteria of the genus Brucella. These pathogens cause long-lasting infections, a process in which Brucella modifications in the lipopolysaccharide (LPS) and envelope lipids reduce pathogen-associated molecular pattern (PAMP) recognition, thus hampering innate immunity activation. In vivo models are essential to investigate bacterial virulence, mice being the most used model. However, ethical and practical considerations impede their use in high-throughput screening studies. Although lacking the complexity of the mammalian immune system, insects share key-aspects of innate immunity with mammals, and Galleria mellonella has been used increasingly as a model. G. mellonella larvae have been shown useful in virulence analyses, including Gram-negative pathogens like Klebsiella pneumoniae and Legionella pneumophila. To assess its potential to study Brucella virulence, we first evaluated larva survival upon infection with representative Brucella species (i.e.B. abortus 2308W, B. microti CCM4915 and B. suis biovar 2) and mutants in the VirB type-IV secretion system (T4SS) or in the LPS-O-polysaccharide (O-PS). As compared to K.pneumoniae, the Brucella spp. tested induced a delayed and less severe mortality profile consistent with an escape of innate immunity detection. Brucella replication within larvae was affected by the lack of O-PS, which is reminiscent of their attenuation in natural hosts. On the contrary, replication was not affected by T4SS dysfunction and the mutant induced only slightly less mortality (not statistically significant) than its parental strain. We also evaluated G. mellonella to efficiently recognise Brucella and their LPS by quantification of the pro-phenoloxidase system and melanisation activation, using Pseudomonas LPS as a positive control. Among the brucellae, only B. microti LPS triggered an early-melanisation response consistent with the slightly increased endotoxicity of this species in mice. Therefore, G. mellonella represents a tool to screen for potential Brucella factors modulating innate immunity, but its usefulness to investigate other mechanisms relevant in Brucella intracellular life is limited.
Collapse
Affiliation(s)
- Aitor Elizalde-Bielsa
- Instituto de Salud Tropical (ISTUN), Instituto de Investigación Sanitaria de Navarra (IdiSNA) and Departamento de Microbiología y Parasitología, Universidad de Navarra, Spain
| | - Beatriz Aragón-Aranda
- Instituto de Salud Tropical (ISTUN), Instituto de Investigación Sanitaria de Navarra (IdiSNA) and Departamento de Microbiología y Parasitología, Universidad de Navarra, Spain
| | - Maite Loperena-Barber
- Instituto de Salud Tropical (ISTUN), Instituto de Investigación Sanitaria de Navarra (IdiSNA) and Departamento de Microbiología y Parasitología, Universidad de Navarra, Spain
| | - Miriam Salvador-Bescós
- Instituto de Salud Tropical (ISTUN), Instituto de Investigación Sanitaria de Navarra (IdiSNA) and Departamento de Microbiología y Parasitología, Universidad de Navarra, Spain
| | - Ignacio Moriyón
- Instituto de Salud Tropical (ISTUN), Instituto de Investigación Sanitaria de Navarra (IdiSNA) and Departamento de Microbiología y Parasitología, Universidad de Navarra, Spain
| | - Amaia Zúñiga-Ripa
- Instituto de Salud Tropical (ISTUN), Instituto de Investigación Sanitaria de Navarra (IdiSNA) and Departamento de Microbiología y Parasitología, Universidad de Navarra, Spain
| | - Raquel Conde-Álvarez
- Instituto de Salud Tropical (ISTUN), Instituto de Investigación Sanitaria de Navarra (IdiSNA) and Departamento de Microbiología y Parasitología, Universidad de Navarra, Spain.
| |
Collapse
|
31
|
Pascual DW, Goodwin ZI, Bhagyaraj E, Hoffman C, Yang X. Activation of mucosal immunity as a novel therapeutic strategy for combating brucellosis. Front Microbiol 2022; 13:1018165. [PMID: 36620020 PMCID: PMC9814167 DOI: 10.3389/fmicb.2022.1018165] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 11/29/2022] [Indexed: 12/24/2022] Open
Abstract
Brucellosis is a disease of livestock that is commonly asymptomatic until an abortion occurs. Disease in humans results from contact of infected livestock or consumption of contaminated milk or meat. Brucella zoonosis is primarily caused by one of three species that infect livestock, Bacillus abortus in cattle, B. melitensis in goats and sheep, and B. suis in pigs. To aid in disease prophylaxis, livestock vaccines are available, but are only 70% effective; hence, improved vaccines are needed to mitigate disease, particularly in countries where disease remains pervasive. The absence of knowing which proteins confer complete protection limits development of subunit vaccines. Instead, efforts are focused on developing new and improved live, attenuated Brucella vaccines, since these mimic attributes of wild-type Brucella, and stimulate host immune, particularly T helper 1-type responses, required for protection. In considering their development, the new mutants must address Brucella's defense mechanisms normally active to circumvent host immune detection. Vaccination approaches should also consider mode and route of delivery since disease transmission among livestock and humans is believed to occur via the naso-oropharyngeal tissues. By arming the host's mucosal immune defenses with resident memory T cells (TRMs) and by expanding the sources of IFN-γ, brucellae dissemination from the site of infection to systemic tissues can be prevented. In this review, points of discussion focus on understanding the various immune mechanisms involved in disease progression and which immune players are important in fighting disease.
Collapse
|
32
|
Guan X, Hu H, Tian M, Zhuang H, Ding C, Yu S. Differentially expressed long noncoding RNAs in RAW264.7 macrophages during Brucella infection and functional analysis on the bacterial intracellular replication. Sci Rep 2022; 12:21320. [PMID: 36494502 PMCID: PMC9734652 DOI: 10.1038/s41598-022-25932-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) are a group of functional RNA molecules without protein-coding potential and play vital roles in majority of biological processes. To date, the expression profiles of lncRNAs and their influence on Brucella replication in RAW264.7 cells are poorly understood. In this study, we performed high-throughput transcriptome analysis to investigate the differentially expressed lncRNAs associated with Brucella abortus S2308 infection. Of these, 8, 6, 130 and 94 cellular lncRNAs were differentially expressed at 4, 8, 24 and 48 h post-infection, respectively. Moreover, 1918 protein-coding genes are predicted as potential cis target genes of differentially expressed lncRNAs by searching protein-coding genes located at upstream and downstream of lncRNA loci on the chromosome DNA of Mus musculus. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses indicated that majority of lncRNA target genes were associated with B. abortus infection. Fourteen lncRNAs from transcriptome data were selected for qRT-PCR verification, confirming 13 were differentially expressed. Animal experiments revealed three were differentially expressed in vivo by qRT-PCR analysis. Furthermore, knockdown of LNC_000428 by CRISPR/dCas9 inhibition or Locked Nucleic Acids transfection downregulated Tnfrsf8 expression at mRNA level and increased Brucella intracellular replication. Thus, we provide a novel evidence that lncRNAs induced by Brucella-infection function on Brucella intracellular replication.
Collapse
Affiliation(s)
- Xiang Guan
- grid.410727.70000 0001 0526 1937Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), 518 Ziyue Road, Minhang District, Shanghai, 200241 China
| | - Hai Hu
- grid.410727.70000 0001 0526 1937Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), 518 Ziyue Road, Minhang District, Shanghai, 200241 China
| | - Minxing Tian
- grid.410727.70000 0001 0526 1937Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), 518 Ziyue Road, Minhang District, Shanghai, 200241 China
| | - Hongxu Zhuang
- grid.410727.70000 0001 0526 1937Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), 518 Ziyue Road, Minhang District, Shanghai, 200241 China
| | - Chan Ding
- grid.410727.70000 0001 0526 1937Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), 518 Ziyue Road, Minhang District, Shanghai, 200241 China
| | - Shengqing Yu
- grid.410727.70000 0001 0526 1937Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), 518 Ziyue Road, Minhang District, Shanghai, 200241 China
| |
Collapse
|
33
|
Xiao Y, Li M, Guo X, Zeng H, Shuai X, Guo J, Huang Q, Chu Y, Zhou B, Wen J, Liu J, Jiao H. Inflammatory Mechanism of Brucella Infection in Placental Trophoblast Cells. Int J Mol Sci 2022; 23:13417. [PMID: 36362199 PMCID: PMC9657658 DOI: 10.3390/ijms232113417] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/24/2022] [Accepted: 10/27/2022] [Indexed: 01/03/2024] Open
Abstract
Brucellosis is a severe zoonotic infectious disease caused by the infection of the Brucella, which is widespread and causes considerable economic losses in underdeveloped areas. Brucella is a facultative intracellular bacteria whose main target cells for infection are macrophages, placental trophoblast cells and dendritic cells. The main clinical signs of Brucella infection in livestock are reproductive disorders and abortion. At present, the pathogenesis of placentitis or abortion caused by Brucella in livestock is not fully understood, and further research on the effect of Brucella on placental development is still necessary. This review will mainly introduce the research progress of Brucella infection of placental trophoblast cells as well as the inflammatory response caused by it, explaining the molecular regulation mechanism of Brucella leading to reproductive system disorders and abortion, and also to provide the scientific basis for revealing the pathogenesis and infection mechanism of Brucella.
Collapse
Affiliation(s)
- Yu Xiao
- The College of Veterinary Medicine, Southwest University, Chongqing 400715, China
| | - Mengjuan Li
- The College of Veterinary Medicine, Southwest University, Chongqing 400715, China
| | - Xiaoyi Guo
- The College of Veterinary Medicine, Southwest University, Chongqing 400715, China
| | - Hui Zeng
- The College of Veterinary Medicine, Southwest University, Chongqing 400715, China
| | - Xuehong Shuai
- The College of Veterinary Medicine, Southwest University, Chongqing 400715, China
| | - Jianhua Guo
- The College of Veterinary Medicine, Southwest University, Chongqing 400715, China
| | - Qingzhou Huang
- The College of Veterinary Medicine, Southwest University, Chongqing 400715, China
| | - Yuefeng Chu
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
| | - Bo Zhou
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Yujinxiang Street 573, Changchun 130102, China
| | - Jake Wen
- Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| | - Jun Liu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Yujinxiang Street 573, Changchun 130102, China
| | - Hanwei Jiao
- The College of Veterinary Medicine, Southwest University, Chongqing 400715, China
- The Immunology Research Center, Medical Research Institute, Southwest University, Chongqing 400715, China
| |
Collapse
|
34
|
Establishment of loop-mediated isothermal amplification for Brucella detection using a warmer pad as a heating source. Biotechniques 2022; 73:142-150. [PMID: 35997071 DOI: 10.2144/btn-2021-0043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The study sought to establish a sensitive and specific on-site loop-mediated isothermal amplification (LAMP) for Brucella heated using a warmer pad. LAMP primers specific to the conserved BvrR gene were designed, and the LAMP reaction was optimized. The heating characteristics of the warmer pad were investigated. The detection validity (specificity, sensitivity) of clinical samples by warmer-pad LAMP (WP-LAMP) was compared with that of qPCR. The WP-LAMP method displayed high specificity and sensitivity for five Brucella gene copies. The detection of 104 clinical samples was 97.1% concordant with quantitative polymerase chain reaction. The results showed the success of the WP-LAMP for on-site detection. The method requires no special equipment and is conducive to the prevention and control of brucellosis.
Collapse
|
35
|
Mir MA, Mir B, Kumawat M, Alkhanani M, Jan U. Manipulation and exploitation of host immune system by pathogenic Mycobacterium tuberculosis for its advantage. Future Microbiol 2022; 17:1171-1198. [PMID: 35924958 DOI: 10.2217/fmb-2022-0026] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) can become a long-term infection by evading the host immune response. Coevolution of Mtb with humans has resulted in its ability to hijack the host's immune systems in a variety of ways. So far, every Mtb defense strategy is essentially dependent on a subtle balance that, if shifted, can promote Mtb proliferation in the host, resulting in disease progression. In this review, the authors summarize many important and previously unknown mechanisms by which Mtb evades the host immune response. Besides recently found strategies by which Mtb manipulates the host molecular regulatory machinery of innate and adaptive immunity, including the intranuclear regulatory machinery, costimulatory molecules, the ubiquitin system and cellular intrinsic immune components will be discussed. A holistic understanding of these immune-evasion mechanisms is of foremost importance for the prevention, diagnosis and treatment of tuberculosis and will lead to new insights into tuberculosis pathogenesis and the development of more effective vaccines and treatment regimens.
Collapse
Affiliation(s)
- Manzoor A Mir
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar, 190006, India
| | - Bilkees Mir
- Department of Biochemistry & Biochemical Engineering, SHUATS, Allahabad, UP, India
| | - Manoj Kumawat
- Department of Microbiology, Indian Council of Medical Research (ICMR)-NIREH, Bhopal, MP, India
| | - Mustfa Alkhanani
- Biology Department, College of Sciences, University of Hafr Al Batin, P. O. Box 1803, Hafar Al Batin, Saudi Arabia
| | - Ulfat Jan
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar, 190006, India
| |
Collapse
|
36
|
Pellegrini JM, Gorvel JP, Mémet S. Immunosuppressive Mechanisms in Brucellosis in Light of Chronic Bacterial Diseases. Microorganisms 2022; 10:1260. [PMID: 35888979 PMCID: PMC9324529 DOI: 10.3390/microorganisms10071260] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/15/2022] [Accepted: 06/16/2022] [Indexed: 01/27/2023] Open
Abstract
Brucellosis is considered one of the major zoonoses worldwide, constituting a critical livestock and human health concern with a huge socio-economic burden. Brucella genus, its etiologic agent, is composed of intracellular bacteria that have evolved a prodigious ability to elude and shape host immunity to establish chronic infection. Brucella's intracellular lifestyle and pathogen-associated molecular patterns, such as its specific lipopolysaccharide (LPS), are key factors for hiding and hampering recognition by the immune system. Here, we will review the current knowledge of evading and immunosuppressive mechanisms elicited by Brucella species to persist stealthily in their hosts, such as those triggered by their LPS and cyclic β-1,2-d-glucan or involved in neutrophil and monocyte avoidance, antigen presentation impairment, the modulation of T cell responses and immunometabolism. Attractive strategies exploited by other successful chronic pathogenic bacteria, including Mycobacteria, Salmonella, and Chlamydia, will be also discussed, with a special emphasis on the mechanisms operating in brucellosis, such as granuloma formation, pyroptosis, and manipulation of type I and III IFNs, B cells, innate lymphoid cells, and host lipids. A better understanding of these stratagems is essential to fighting bacterial chronic infections and designing innovative treatments and vaccines.
Collapse
|
37
|
Wang J, Zhang Q. Early diagnosis and treatment of acute brucellosis knee arthritis complicated by acute osteomyelitis: two cases report. BMC Infect Dis 2022; 22:430. [PMID: 35509042 PMCID: PMC9066799 DOI: 10.1186/s12879-022-07392-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 04/18/2022] [Indexed: 11/10/2022] Open
Abstract
Background Brucellosis is an endemic systemic infectious disease, the most common complication is bone and joint involvement. Sacroiliac joint and spinal joint are the most frequently involved sites in adults, but knee joint infection is rare, and acute infectious knee arthritis complicated by acute osteomyelitis is even extremely uncommon in adults. Here, we report two cases of acute septic knee arthritis complicated by acute osteomyelitis caused by Brucella melitensis (B. melitensis). Case presentation Both patients had a history of traveling in animal husbandry areas within three months. On clinical examination, their right knee joint was tender, swollen, had limited movement and an effusion was present. Imaging examination showed effusion and synovial thickening of the right knee joint, as well as subchondral bone edema of the distal femur and proximal tibia. Laboratory examination showed that the serum agglutination test (SAT) in both patients were positive (1: 640 and 1: 320) without leukocytosis, although the proportion of lymphocytes, erythrocyte sedimentation rate (ESR) and C-reactive protein (CRP) significantly increased. Both patients underwent knee joint aspiration. Real-time polymerase chain reaction (Real-time PCR) analysis of synovial fluid showed that there was B. melitensis, and blood bacterial culture was negative. We determined that two patients had acute brucellosis knee arthritis complicated by acute osteomyelitis. Antibiotic treatment was given during hospitalization consisting of doxycycline (0.1 g po bid) and rifampicin (0.6 g po qd) for six weeks, and the changes of inflammatory indexes were closely monitored. At discharge, the symptoms had completely resolved, imaging abnormalities disappeared, and inflammatory indexes returned to normal. There was no recurrence of the disease at 1-year follow-up. Conclusion Acute brucellosis knee arthritis complicated by acute osteomyelitis is a rare but serious complication of brucellosis in adults. There is no obvious specificity of clinical manifestation and imaging examination. Early diagnosis and treatment can prevent the occurrence of knee joint deformity and even pathological fracture. Clinicians should fully consider the possibility of brucellosis where the travel or occupational history is suggestive.
Collapse
Affiliation(s)
- Jie Wang
- Department of Orthopedics, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China
| | - Qiang Zhang
- Department of Orthopedics, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China.
| |
Collapse
|
38
|
Li J, Zhang G, Zhi F, Zhai Y, Zhou D, Chen H, Lin P, Tang K, Liu W, Jin Y, Wang A. BtpB inhibits innate inflammatory responses in goat alveolar macrophages through the TLR/NF-κB pathway and NLRP3 inflammasome during Brucella infection. Microb Pathog 2022; 166:105536. [DOI: 10.1016/j.micpath.2022.105536] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 03/15/2022] [Accepted: 04/10/2022] [Indexed: 01/19/2023]
|
39
|
Tumor Necrosis Factor Alpha Contributes to Inflammatory Pathology in the Placenta during Brucella abortus Infection. Infect Immun 2022; 90:e0001322. [PMID: 35100011 PMCID: PMC8929372 DOI: 10.1128/iai.00013-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Research on Brucella pathogenesis has focused primarily on its ability to cause persistent intracellular infection of the mononuclear phagocyte system. At these sites, Brucella abortus evades innate immunity, which results in low-level inflammation and chronic infection of phagocytes. In contrast, the host response in the placenta during infection is characterized by severe inflammation and extensive extracellular replication of B. abortus. Despite the importance of reproductive disease caused by Brucella infection, our knowledge of the mechanisms involved in placental inflammation and abortion is limited. To understand the immune responses specifically driving placental pathology, we modeled placental B. abortus infection in pregnant mice. B. abortus infection caused an increase in the production of tumor necrosis factor alpha (TNF-α), specifically in the placenta. We found that placental expression levels of Tnfa and circulating TNF-α were dependent on the induction of endoplasmic reticulum stress and the B. abortus type IV secretion system (T4SS) effector protein VceC. Blockade of TNF-α reduced placental inflammation and improved fetal viability in mice. This work sheds light on a tissue-specific response of the placenta to B. abortus infection that may be important for bacterial transmission via abortion in the natural host species.
Collapse
|
40
|
Zhi F, Fang J, Zheng W, Li J, Zhang G, Zhou D, Jin Y, Wang A. A Brucella Omp16 Conditional Deletion Strain Is Attenuated in BALB/c Mice. J Microbiol Biotechnol 2022; 32:6-14. [PMID: 34675138 PMCID: PMC9628832 DOI: 10.4014/jmb.2107.07016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/26/2021] [Accepted: 10/18/2021] [Indexed: 01/18/2023]
Abstract
Brucella spp. are facultative intracellular pathogens that invade, survive and proliferate in numerous phagocytic and non-phagocytic cell types, thereby leading to human and animal brucellosis. Outer membrane proteins (Omps) are major immunogenic and protective antigens that are implicated in Brucella virulence. A strain deleted of the omp16 gene has not been obtained which suggests that the Omp16 protein is vital for Brucella survival. Nevertheless, we previously constructed an omp16 conditional deletion strain of Brucella, ΔOmp16. Here, the virulence and immune response elicted by this strain were assessed in a mouse model of infection. Splenomegaly was significantly reduced at two weeks post-infection in ΔOmp16-infected mice compared to infection with the parental strain. The bacterial load in the spleen also was significantly decreased at this post-infection time point in ΔOmp16-infected mice. Histopathological changes in the spleen were observed via hematoxylineosin staining and microscopic examination which showed that infection with the ΔOmp16 strain alleviated spleen histopathological alterations compared to mice infected with the parental strain. Moreover, the levels of humoral and cellular immunity were similar in both ΔOmp16-infected mice and parental strain-infected mice. The results overall show that the virulence of ΔOmp16 is attenuated markedly, but that the immune responses mediated by the deletion and parental strains in mice are indistinguishable. The data provide important insights that illuminate the pathogenic strategies adopted by Brucella.
Collapse
Affiliation(s)
- Feijie Zhi
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, P.R. China
| | - Jiaoyang Fang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, P.R. China
| | - Weifang Zheng
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, P.R. China
| | - Junmei Li
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, P.R. China
| | - Guangdong Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, P.R. China
| | - Dong Zhou
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, P.R. China,Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling 712100, P.R. China
| | - Yaping Jin
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, P.R. China,Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling 712100, P.R. China
| | - Aihua Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, P.R. China,Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling 712100, P.R. China,Corresponding author Phone: +862987082869 E-mail:
| |
Collapse
|
41
|
Al-Mariri A, Al-Hallab L, Alabras R, Kherbik H, Khawajkiah M. Protection against virulent Brucella spp. by gamma-irradiated B. ovis in BALB/c mice model. Clin Exp Vaccine Res 2022; 11:53-62. [PMID: 35223665 PMCID: PMC8844668 DOI: 10.7774/cevr.2022.11.1.53] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 12/20/2021] [Indexed: 01/18/2023] Open
Abstract
Purpose Brucella spp. is a zoonosis that causes undulant fever in humans and abortion in livestock worldwide. Lately, it was conveyed that vaccines developed by irradiation have induced a strong cellular and humoral immune response which have made these types of vaccines highly effective. Materials and Methods In this study, we aimed to use the gamma-irradiated B. ovis as a vaccine and to study the humoral immune response and cytokines production in order to evaluate it for protecting mice against B. abortus 544, B. melitensis 16M, and B. ovis. Results The humoral immune response in immunized mice with gamma-irradiated B. ovis showed a lasting for 8 weeks after immunization. Moreover, immunoglobulin G (IgG), IgG1, IgG2a, and IgG2b isotypes antibodies against B. ovis were observed after 4 and 8 weeks of the last immunization. It was noticed that the production of tumor necrosis factor-α, interferon-γ, and interleukin (IL)-10 continued after 4 and 8 weeks by splenocytes from immunized BALB/c mice, while no production of IL-4 or IL-5 was observed. Conclusion Our results indicate that the protection of BALB/c mice against B. melitensis 16M, B. abortus 544, and B. ovis was induced and the developed vaccine at our laboratory could stimulate similar protection to those induced by the traditional vaccine.
Collapse
Affiliation(s)
- Ayman Al-Mariri
- Department of Molecular Biology and Biotechnology, Atomic Energy Commission of Syria, Damascus, Syria
| | - Laila Al-Hallab
- Department of Molecular Biology and Biotechnology, Atomic Energy Commission of Syria, Damascus, Syria
| | - Rasha Alabras
- Department of Molecular Biology and Biotechnology, Atomic Energy Commission of Syria, Damascus, Syria
| | - Heba Kherbik
- Department of Molecular Biology and Biotechnology, Atomic Energy Commission of Syria, Damascus, Syria
| | - Marwa Khawajkiah
- Department of Molecular Biology and Biotechnology, Atomic Energy Commission of Syria, Damascus, Syria
| |
Collapse
|
42
|
Zhao B, Gong QL, Feng HF, Wang Q, Shi JF, Song YH, Liu F, Shi K, Zong Y, Du R, Li JM. Brucellosis prevalence in yaks in China in 1980-2019: A systematic review and meta-analysis. Prev Vet Med 2021; 198:105532. [PMID: 34844124 DOI: 10.1016/j.prevetmed.2021.105532] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 11/01/2021] [Accepted: 11/02/2021] [Indexed: 11/24/2022]
Abstract
In the Qinghai-Tibet Plateau of China, the yak is an animal of particular economic interest, which provides protein and income for herders in daily life. Brucellosis is a bacterial disease that can infect humans and animals, including yaks. It can damage the yak reproductive system, causing miscarriage and orchitis. At the same time, brucellosis threatens the health of herders. We performed this meta-analysis using R software to explore the combined prevalence and risk factors of brucellosis in yak in China. Variability was assessed by the I2 statistic and Cochran Q statistic. We identified 52 publications of related research from four databases (Wanfang Data, VIP Chinese Journal Database, China National Knowledge Infrastructure, and of PubMed). The pooled prevalence of yak brucellosis was 8.39 %. Prevalence was highest in Southwestern China (11.1 %). The point estimate of brucellosis in yak from 2012 to 2016 was the highest (11.47 %). The point estimate of age ≤ 12 months (1.44 %) was lower than that of age > 12 months (15.6 %). This study shows that yak brucellosis is serious, and its incidence is higher than before 2012. We recommend carrying out large-scale yak brucellosis investigations in Western China and conducting comprehensive testing planning. The detection of brucellosis in adult animals should be strengthened to reduce the economic loss caused by brucellosis to herders and to improve public health.
Collapse
Affiliation(s)
- Bo Zhao
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin Province 130118, PR China; College of Chinese Medicine Materials, Jilin Agricultural University, Changchun, Jilin Province 130118, PR China
| | - Qing-Long Gong
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin Province 130118, PR China
| | - Hai-Feng Feng
- Animal Health Supervision Institute of Jilin Province, Changchun, Jilin Province 130061, PR China
| | - Qi Wang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin Province 130118, PR China
| | - Jun-Feng Shi
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin Province 130118, PR China
| | - Yu-Hao Song
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin Province 130118, PR China
| | - Fei Liu
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin Province 130118, PR China
| | - Kun Shi
- College of Chinese Medicine Materials, Jilin Agricultural University, Changchun, Jilin Province 130118, PR China
| | - Ying Zong
- College of Chinese Medicine Materials, Jilin Agricultural University, Changchun, Jilin Province 130118, PR China
| | - Rui Du
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin Province 130118, PR China.
| | - Jian-Ming Li
- College of Chinese Medicine Materials, Jilin Agricultural University, Changchun, Jilin Province 130118, PR China.
| |
Collapse
|
43
|
Sadeghi Z, Fasihi-Ramandi M, Bouzari S. Brucella antigens (BhuA, 7α-HSDH, FliC) in poly I:C adjuvant as potential vaccine candidates against brucellosis. J Immunol Methods 2021; 500:113172. [PMID: 34673003 DOI: 10.1016/j.jim.2021.113172] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 08/11/2021] [Accepted: 10/14/2021] [Indexed: 11/29/2022]
Abstract
A promising strategy for controlling animal brucellosis is vaccination with commercial vaccine strains (Brucella melitensis Rev.1 and Brucella abortus RB51). Owing to safety concerns associated with these vaccines, developing a more effective and safe vaccine is essential. In this study, we examined the capacity of BhuA, 7α-HSDH or FliC antigens in the presence or absence of adjuvant in eliciting immune responses against brucellosis. After cloning, expression and purification, these proteins were used to examine immunologic responses. All immunized mice induced a vigorous IgG, with a predominant IgG2a response. Moreover, splenocytes of immunized mice proliferated and produced IL-2 and IFN-γ, suggesting the induction of cellular immunity. The high IgG2a/IgG1 ratio and IL-2 and IFN-γ indicated a Th1-oriented immune response in test groups. BhuA-, 7α-HSDH- or FliC- poly I:C formulations were the most effective at inducing Th1 immune response compared to groups immunized with naked proteins. Immunization with proteins protected mice against B. melitensis 16M and B. abortus 544. The proteins in adjuvant induced higher levels of protection than proteins only and exhibited similar degree of protection to live attenuated vaccines. Our results, for first time, introduced five potential candidates for subunit vaccine development against B. melitensis and B. abortus infection.
Collapse
Affiliation(s)
- Zohre Sadeghi
- Department of Molecular Biology, Pasteur Institute of Iran, Tehran, Iran
| | - Mahdi Fasihi-Ramandi
- Molecular Biology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Saeid Bouzari
- Department of Molecular Biology, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
44
|
An ArsR Transcriptional Regulator Facilitates Brucella sp. Survival via Regulating Self and Outer Membrane Protein. Int J Mol Sci 2021; 22:ijms221910860. [PMID: 34639201 PMCID: PMC8509827 DOI: 10.3390/ijms221910860] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/21/2021] [Accepted: 09/26/2021] [Indexed: 12/30/2022] Open
Abstract
The arsenic acid-resistant (ArsR) family transcriptional regulators are widely distributed in microorganisms, including in the facultative intracellular pathogen Brucella spp. ArsR proteins are implicated in numerous biological processes. However, the specific roles of ArsR family members in Brucella remain obscure. Here, we show that ArsR6 (BSS2_RS07325) is required for Brucella survival both under heat, oxidative, and osmotic stress and in a murine infection model in vivo. RNA-seq and ChIP-seq reveal that 34 potential target genes for ArsR6 protein were identified, among which eight genes were up-regulated and 26 genes were down-regulated, including outer membrane protein 25D (Omp25D). ArsR6 autoregulates its own expression to maintain bacterial intracellular Cu/Ni homeostasis to benefit bacterial survival in hostile environments. Moreover, ArsR6 also regulates the production of virulence factor Omp25D, which is important for the survival of Brucella under stress conditions. Significantly, Omp25D deletion strain attenuated in a murine infection model in vivo. Altogether, our findings reveal a unique mechanism in which the ArsR family member ArsR6 autoregulates its expression and also modulates Omp25D expression to maintain metal ion homeostasis and virulence in Brucella.
Collapse
|
45
|
Vakili S, Samare-Najaf M, Dehghanian A, Tajbakhsh A, Askari H, Tabrizi R, Iravani Saadi M, Movahedpour A, Alizadeh M, Samareh A, Taghizadeh S, Noroozi S. Gold Nanobiosensor Based on the Localized Surface Plasmon Resonance is Able to Diagnose Human Brucellosis, Introducing a Rapid and Affordable Method. NANOSCALE RESEARCH LETTERS 2021; 16:144. [PMID: 34529188 PMCID: PMC8446120 DOI: 10.1186/s11671-021-03600-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 09/04/2021] [Indexed: 05/03/2023]
Abstract
Brucellosis is considered as the most common bacterial zoonosis in the world. Although the laboratory findings are the most reliable diagnosis today, the current laboratory methods have many limitations. This research aimed to design and evaluate the performance of a novel technique based on the localized surface plasmon resonance (LSPR) to eliminate or reduce existing shortcomings. For this purpose, smooth lipopolysaccharides were extracted from Brucella melitensis and Brucella abortus and fixed on the surface of the gold nanoparticles through covalent interactions. After some optimizing processes, dynamic light scattering was used to characterize the probe. The detection of captured anti-Brucella antibody was performed by measuring the redshift on LSPR peak followed by the determination of cutoff value, which indicated a significant difference between controls and true positive patients (P value < 0.01). Furthermore, 40 sera from true negative samples and positive patients were used to evaluate the performance of this method by comparing its outcomes with the gold standard (culture), standard tube agglutination test, and anti-brucellosis IgM and IgG levels (ELISA). The sensitivity, specificity, positive predictive value, and negative predictive value showed an appropriate performance of the LSPR-based method (85%, 100%, 100%, and 86%, respectively). The current research results provide a promising fast, convenient, and inexpensive method for detecting the anti-Brucella antibodies in human sera, which can be widely used in medical laboratories to diagnose brucellosis quickly and effectively.
Collapse
Affiliation(s)
- Sina Vakili
- Infertility Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Samare-Najaf
- Biochemistry Department, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amirreza Dehghanian
- Trauma Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Molecular Pathology and Cytogenetics Division, Department of Pathology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Tajbakhsh
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hassan Askari
- Gastroenterohepatology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Tabrizi
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
- Health Policy Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Ahmad Movahedpour
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Marzieh Alizadeh
- Laboratory of Basic Sciences, Mohammad Rasul Allah Research Tower, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Samareh
- Department of Clinical Biochemistry, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Saeed Taghizadeh
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Saam Noroozi
- Department of Biochemistry, Fasa University of Medical Sciences, Fasa, Iran.
| |
Collapse
|
46
|
Zhou Y, Bu Z, Qian J, Cheng Y, Qiao L, Yang S, Cheng S, Wang X, Ren L, Yang Y. Brucella melitensis UGPase inhibits the activation of NF-κB by modulating the ubiquitination of NEMO. BMC Vet Res 2021; 17:289. [PMID: 34461896 PMCID: PMC8404259 DOI: 10.1186/s12917-021-02993-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 08/11/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND UTP-glucose-1-phosphoryl transferase (UGPase) catalyzes the synthesis of UDP-glucose, which is essential for generating the glycogen needed for the synthesis of bacterial lipopolysaccharide (LPS) and capsular polysaccharide, which play important roles in bacterial virulence. However, the molecular function of UGPase in Brucella is still unknown. RESULTS In this study, the ubiquitination modification of host immune-related protein in cells infected with UGPase-deleted or wild-type Brucella was analyzed using ubiquitination proteomics technology. The ubiquitination modification level and type of NF-κB Essential Modulator (NEMO or Ikbkg), a molecule necessary for NF-κB signal activation, was evaluated using Coimmunoprecipitation, Western blot, and dual-Luciferase Assay. We found 80 ubiquitin proteins were upregulated and 203 ubiquitin proteins were downregulated in cells infected with B. melitensis 16 M compared with those of B. melitensis UGPase-deleted strain (16 M-UGPase-). Moreover, the ubiquitin-modified proteins were mostly enriched in the categories of regulation of kinase/NF-κB signaling and response to a bacterium, suggesting Brucella UGPase inhibits ubiquitin modification of related proteins in the host NF-κB signaling pathway. Further analysis showed that the ubiquitination levels of NEMO K63 (K63-Ub) and Met1 (Met1-Ub) were significantly increased in the 16 M-UGPase--infected cells compared with that of the 16 M-infected cells, further confirming that the ubiquitination levels of NF-κB signaling-related proteins were regulated by the bacterial UGPase. Besides, the expression level of IκBα was decreased, but the level of p-P65 was significantly increased in the 16 M-UGPase--infected cells compared with that of the 16 M- and mock-infected cells, demonstrating that B. melitensis UGPase can significantly inhibit the degradation of IκBα and the phosphorylation of p65, and thus suppressing the NF-κB pathway. CONCLUSIONS The results of this study showed that Brucella melitensis UGPase inhibits the activation of NF-κB by modulating the ubiquitination of NEMO, which will provide a new scientific basis for the study of immune mechanisms induced by Brucella.
Collapse
Affiliation(s)
- Yucheng Zhou
- State Key Laboratory for Molecular Biology of Special Economic Animals, Institute of Special Wild Economic Animals and Plants, Chinese Academy of Agricultural Sciences, 130112, Changchun, China
| | - Zhaoyang Bu
- Military Veterinary Institute, Academy of Military Medical Sciences, 130112, Changchun, China
| | - Jing Qian
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, 210014, Nanjing, China
| | - Yuening Cheng
- State Key Laboratory for Molecular Biology of Special Economic Animals, Institute of Special Wild Economic Animals and Plants, Chinese Academy of Agricultural Sciences, 130112, Changchun, China
| | - Lianjiang Qiao
- State Key Laboratory for Molecular Biology of Special Economic Animals, Institute of Special Wild Economic Animals and Plants, Chinese Academy of Agricultural Sciences, 130112, Changchun, China
| | - Sen Yang
- State Key Laboratory for Molecular Biology of Special Economic Animals, Institute of Special Wild Economic Animals and Plants, Chinese Academy of Agricultural Sciences, 130112, Changchun, China
| | - Shipeng Cheng
- State Key Laboratory for Molecular Biology of Special Economic Animals, Institute of Special Wild Economic Animals and Plants, Chinese Academy of Agricultural Sciences, 130112, Changchun, China
| | - Xinglong Wang
- Military Veterinary Institute, Academy of Military Medical Sciences, 130112, Changchun, China
| | - Linzhu Ren
- College of Animal Sciences, Jilin University, 130062, Changchun, China.
| | - Yanling Yang
- State Key Laboratory for Molecular Biology of Special Economic Animals, Institute of Special Wild Economic Animals and Plants, Chinese Academy of Agricultural Sciences, 130112, Changchun, China.
| |
Collapse
|
47
|
Ren J, Hou H, Zhao W, Wang J, Peng Q. Administration of Exogenous Progesterone Protects Against Brucella abortus Infection-Induced Inflammation in Pregnant Mice. J Infect Dis 2021; 224:532-543. [PMID: 33216902 DOI: 10.1093/infdis/jiaa722] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 11/14/2020] [Indexed: 11/13/2022] Open
Abstract
Progesterone has been recognized as essential for the establishment and maintenance of pregnancy, and is typically known as an immunosuppressive agent. However, its effects on mediating Brucella infection-induced inflammation have not been evaluated. Here we demonstrated that Brucella abortus infection inhibits progesterone levels in the pregnant mouse by suppressing the production of progesterone by placenta. Progesterone treatment significantly reduced the secretion of inflammatory cytokines in serum, macrophages, and trophoblasts of B. abortus-infected mice, leading to decreased placentitis and enhancing the pup viability. Mechanistically, this decreased inflammatory response results from inhibition of NF-kB activation by progesterone. Moreover, progesterone treatment suppresses B. abortus growth within trophoblasts associated with an inability of bacteria to escape the late endosome compartment in vitro. Collectively, our data illustrate that progesterone treatment might be useful therapeutically in protection against placentitis or abortion caused by B. abortus infection.
Collapse
Affiliation(s)
- Jingjing Ren
- Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, Jilin University, Changchun, China
| | - Huanhuan Hou
- Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, Jilin University, Changchun, China
| | - Weizheng Zhao
- Clinical Medical College, Jilin University, Changchun, China
| | - Jun Wang
- Shenzhen Center for Chronic Disease Control, Shenzhen, China
| | - Qisheng Peng
- Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, Jilin University, Changchun, China
| |
Collapse
|
48
|
Kaman A, Öz FN, Sahin G, Metin Akcan Ö. Vitamin D Receptor Gene Polymorphisms in Childhood Brucellosis in Turkish Children. J PEDIAT INF DIS-GER 2021. [DOI: 10.1055/s-0041-1732471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Abstract
Objective The vitamin D receptor gene (VDR) polymorphisms and the risk of various infections have been studied. An association with brucellosis and vitamin D levels has been investigated but not yet with VDR gene polymorphisms. We aimed to examine the association between VDR gene polymorphisms and susceptibility to childhood brucellosis.
Methods This case–control study included patients with brucellosis and healthy controls. After extracting genomic DNA using a Qiagen blood DNA isolation kit, five VDR single nucleotide polymorphisms (SNPs), including Cdx-2, FokI, BsmI, ApaI, and TaqI gene, were amplified. Genetic distribution of these SNPs of VDR gene in patient and control groups were compared.
Results A total of 38 patients with brucellosis and 89 healthy controls were evaluated. The genotype distribution of Cdx2, FokI, BsmI, and ApaI polymorphisms were similar between patients and healthy controls. However, the CC homozygous genotype for VDR gene TaqI was significantly overexpressed in patients compared with controls (23.7 vs. 7.9%; p = 0.042). The frequency of the C allele of the TaqI genotype was significantly different between patients and controls (p = 0.018). On the other hand, presence of the A allele in the BsmI was associated considerably with an increased risk of brucellosis (p = 0.037). VDR polymorphism distribution was similar according to age, presence of complicated disease, and presence of bacteremia. The heterozygote TaqI polymorphism was more common in patients presented as subacute and chronic symptoms (p = 0.036).
Conclusion Our results indicated the possible role in TaqI polymorphism of the VDR gene for the risk of brucellosis at the time of exposure to infection.
Collapse
Affiliation(s)
- Ayse Kaman
- Division of Pediatric Infectious Diseases, Dr Sami Ulus Maternity and Children's Research and Training Hospital, Ankara, Turkey
| | - Fatma Nur Öz
- Division of Pediatric Infectious Diseases, Dr Sami Ulus Maternity and Children's Research and Training Hospital, Ankara, Turkey
| | - Gülseren Sahin
- Division of Pediatric Gastroenterology, Dr Sami Ulus Maternity and Children's Research and Training Hospital, Ankara, Turkey
| | - Özge Metin Akcan
- Division of Pediatric Infectious Diseases, Necmettin Erbakan University School of Medicine, Konya, Turkey
| |
Collapse
|
49
|
Helms AB, Balogh O, Franklin-Guild R, Lahmers K, Caswell CC, Cecere JT. Presumptive Identification of Smooth Brucella Strain Antibodies in Canines. Front Vet Sci 2021; 8:697479. [PMID: 34307536 PMCID: PMC8295921 DOI: 10.3389/fvets.2021.697479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 06/10/2021] [Indexed: 11/17/2022] Open
Abstract
Brucellosis is a zoonotic disease caused by a Gram-negative coccobacillus. There are four Brucella strains of zoonotic importance in our domestic species, subdivided by their culture phenotypes: Brucella abortus (B. abortus), B. melitensis, B. suis (smooth strains) and B. canis (rough strain). Dogs can serve as hosts for all four of the zoonotic strains; however, routine serologic testing in dogs has been limited to the identification of B. canis antibodies. The aim of our study was to identify smooth Brucella strain antibodies in canines. We hypothesize that the Brucella abortus Fluorescence Polarization Assay would be successful in identifying smooth Brucella strain antibodies in canines. Ninety-five dogs, including forty-five hog hunting dogs were screened for circulating antibodies to any of the four zoonotic strains of the bacteria utilizing a combination of Canine Brucella Slide Agglutination Test (CBSA), Brucella canis Agar Gel Immunodiffusion II test (AGIDII), Brucella abortus Card Agglutination Test (BCA), and the Brucella abortus Fluorescence Polarization Assay (FPA). Test interpretation results yielded a 0% (0/95) smooth Brucella strain seropositivity rate, with 2% (2/95) of dogs yielding inconclusive rough Brucella strain serology results (0–2% rough strain seropositivity rate). Additionally, a retrospective portion of the study was performed to identify sera containing circulating antibodies to any of the smooth strains of Brucella by testing previously banked canine serum samples stored at Cornell's Veterinary Diagnostic Laboratory from 2018 to 2019 via Brucella abortus FPA. Of the 769 serum samples tested, 13/769 (1.7%) yielded an inconclusive result, 725/769 (94.2%) were negative, 30/769 (4%) yielded a positive FPA test result, and 1/769 (0.1%) had to be excluded due to insufficient sample remaining to perform the diagnostic test. Of the 30 FPA positive canine serum samples, 97% (29/30) also tested positive on the CBSA test. Additionally, there was a statistically significant (p < 0.0001) likelihood of altered (spayed/neutered) and mixed breed dogs to be FPA positive when compared to intact, purebred dogs, respectively.
Collapse
Affiliation(s)
- Alyssa B Helms
- Department of Small Animal Clinical Sciences, Virginia-Maryland College of Veterinary Medicine, , Blacksburg, VA, United States
| | - Orsolya Balogh
- Department of Small Animal Clinical Sciences, Virginia-Maryland College of Veterinary Medicine, , Blacksburg, VA, United States
| | - Rebecca Franklin-Guild
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Kevin Lahmers
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA, United States
| | - Clayton C Caswell
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA, United States
| | - Julie T Cecere
- Department of Small Animal Clinical Sciences, Virginia-Maryland College of Veterinary Medicine, , Blacksburg, VA, United States
| |
Collapse
|
50
|
Seroprevalence of Brucella canis in canines from a dog shelter in Bogotá, Colombia. ACTA ACUST UNITED AC 2021; 41:260-270. [PMID: 34214267 PMCID: PMC8375667 DOI: 10.7705/biomedica.5409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Indexed: 01/18/2023]
Abstract
Introduction: The risk of Brucella canis infection in humans and dogs has increased due to the permanent exposure to asymptomatic carrier dogs. In Colombia, there is evidence of B. canis infection in humans living with dogs. In the case of Bogotá, an additional concern is the lack of updated information related to the prevalence of the infection in dogs.
Objective: To determine the seroprevalence of infection by B. canis in dogs intended for adoption programs in Bogotá.
Materials and methods: By means of a descriptive cross-sectional study carried out in a dog shelter in Bogotá, anti-B. canis IgG antibodies were detected in the serum from 51 dogs 28 females and 23 males) using a lateral-flow immunochromatographic test. Additionally, seropositive animals were analyzed with PCR to detect Brucella spp DNA.
Results: Brucella canis seroprevalence was 1.96% (1/51). The seropositive dog was an asymptomatic three-year-old she-dog in which no bacteria DNA was detected in the blood through PCR.
Conclusions: The seroprevalence determined in this study represented by a single dog with anti-B. canis IgG can be considered a potential risk both for canine and human populations since this single dog could have a persistent infection capable of spreading the bacteria.
Collapse
|