1
|
Zhang Y, Xing Z, Dong H, Lu T, Deng Y, Li Z, Hu B, Tan A. SV2B is a crucial factor for early larval development in the silkworm, Bombyx mori. INSECT SCIENCE 2025. [PMID: 40369800 DOI: 10.1111/1744-7917.70070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 03/21/2025] [Accepted: 04/10/2025] [Indexed: 05/16/2025]
Abstract
Synaptic vesicle glycoprotein 2B (SV2B) gene plays a crucial role in neuromodulation and neurotransmission and is a key regulator of synaptotagmin trafficking. However, physiological functions of this gene in insects remain poorly understood. In this study, we investigated the function of the BmSV2B gene in growth and development of silkworms. Tissue expression profiling revealed that BmSV2B is highly expressed in head and midgut. A phylogenetic tree and sequence alignment demonstrated that this gene is highly conserved among lepidopteran insects. Knockout of BmSV2B using the clustered regularly interspaced small palindromic repeats (CRISPR) / CRISPR-associated nuclease 9 (Cas9) system resulted in smaller body size compared to the wild type (WT) strain. In the BmSV2B mutants, the levels of triacylglycerol were dramatically lower than that in WT. Furthermore, we found that deletion of BmSV2B extended the developmental time of larvae and led to early larval death. High-throughput RNA sequencing and quantitative real-time polymerase chain reaction analysis showed that the expression levels of juvenile hormone-degrading genes, digestive genes, 20-hydroxyecdysone -response genes and forkhead box O (FOXO) were significantly affected by the absence of BmSV2B. Taken together, BmSV2B is essential for early larval development in silkworms and could serve as a potential target for insecticides, offering a more effective approach to pest control management.
Collapse
Affiliation(s)
- Yuting Zhang
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu Province, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu Province, China
| | - Zhiping Xing
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu Province, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu Province, China
| | - Hui Dong
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu Province, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu Province, China
| | - Tao Lu
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu Province, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu Province, China
| | - Yuping Deng
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu Province, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu Province, China
| | - Zhipeng Li
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu Province, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu Province, China
| | - Bo Hu
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu Province, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu Province, China
| | - Anjiang Tan
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu Province, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu Province, China
| |
Collapse
|
2
|
Kemmerling LR, Darst AL, Adabag M, Koch NM, Snell-Rood EC. Lead (Pb) concentrations across 22 species of butterflies correlate with soil and air lead and decreased wing size in an urban field study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 969:178900. [PMID: 40024041 DOI: 10.1016/j.scitotenv.2025.178900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 02/16/2025] [Accepted: 02/16/2025] [Indexed: 03/04/2025]
Abstract
Pollution is a global issue contributing to biodiversity loss, climate change, and human health concerns. Lead (Pb) has long been recognized as a toxic heavy metal pollutant but few studies have investigated the impact and routes of exposure to lead in field conditions and across multiple species. We collected 22 common species of butterflies across a gradient of lead pollution in the Twin Cities metropolitan area (Minneapolis and St. Paul, MN, USA). We measured their thorax lead concentrations and their body condition including wing area, number of eggs, and brain mass. We quantified lead in the soil, host plant leaves, and air (through lichen bio-monitors) at sites where the butterflies were collected to investigate potential routes of exposure. We found a negative correlation between sublethal lead concentrations and butterfly wing size across all species. Contrary to expectations from previous literature, we did not find correlations between butterfly lead concentration and number of eggs or brain mass. Our data indicate that routes of lead exposure for butterflies are particularly pronounced through soil and air, relative to exposure through their host plants, as there were positive correlations between butterfly lead and lead in nearby soil and air, but not that of host plants. Such sublethal effects of lead, even at low levels of pollution, underline the importance of continuing to reduce emissions and impacts of pollutants to protect biodiversity.
Collapse
Affiliation(s)
- Lindsey R Kemmerling
- University of Minnesota, Department of Ecology, Evolution, and Behavior, St. Paul, MN, USA.
| | - Ashley L Darst
- University of Minnesota, Department of Ecology, Evolution, and Behavior, St. Paul, MN, USA; Michigan State University, Department of Integrative Biology, East Lansing, MI, USA; Michigan State University, W.K. Kellogg Biological Station, Hickory Corners, MI, USA
| | - Mina Adabag
- University of Minnesota, Department of Ecology, Evolution, and Behavior, St. Paul, MN, USA; University of California, Berkeley, Department of Environmental Science, Policy, and Management, Berkeley, CA, USA
| | - Natália M Koch
- University of Minnesota, Department of Ecology, Evolution, and Behavior, St. Paul, MN, USA
| | - Emilie C Snell-Rood
- University of Minnesota, Department of Ecology, Evolution, and Behavior, St. Paul, MN, USA
| |
Collapse
|
3
|
Zhang X, Lu J, Qu X, Chen X. An Evaluation of Morphometric Characteristics of Honey Bee ( Apis cerana) Populations in the Qinghai-Tibet Plateau in China. Life (Basel) 2025; 15:255. [PMID: 40003664 PMCID: PMC11856382 DOI: 10.3390/life15020255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 02/03/2025] [Accepted: 02/06/2025] [Indexed: 02/27/2025] Open
Abstract
Apis cerana, a native type of honey bee in China, adapts well to the Qinghai-Tibet Plateau (QTP) environments with high altitude, cold, low oxygen, and strong radiation. In this study, we detected 40 morphological characteristics from 100 colonies in 49 regions. We not only evaluated the morphometric characteristics of honey bee populations in the QTP but also found that the pigmentation of labrum and tergite 2 in A. cerana is significantly different from that in Apis mellifera. Moreover, most morphological characteristics were correlated with environmental factors. Tibet and Qinghai could be distinctly separated. The cluster analysis indicated that Xunhua and Danba were far apart and formed a single cluster. Honey bees from Danba and Linzhichayu were correctly judged into corresponding populations. There was large morphometric diversity within the selected sampling areas of the Sichuan, Yunnan, and Gansu populations. Overall, our findings offer insights into the conservation and sustainable utilization of A. cerana in the QTP.
Collapse
Affiliation(s)
- Xinru Zhang
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (X.Z.); (X.Q.)
- College of Bioscience and Resource Environment, Beijing University of Agriculture, Beijing 102206, China
| | - Jian Lu
- National Animal Husbandry Station, Beijing 100125, China;
| | - Xinying Qu
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (X.Z.); (X.Q.)
| | - Xiao Chen
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (X.Z.); (X.Q.)
| |
Collapse
|
4
|
Zhang M, Wen H, Sun Q, Zhang D, Li Y, Xi A, Zheng X, Wu Y, Cao J, Bouyer J, Xi Z. Early attainment of 20-hydroxyecdysone threshold shapes mosquito sexual dimorphism in developmental timing. Nat Commun 2025; 16:821. [PMID: 39827175 PMCID: PMC11743200 DOI: 10.1038/s41467-025-56224-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 01/13/2025] [Indexed: 01/22/2025] Open
Abstract
In holometabolous insects, critical weight (CW) attainment triggers pupation and metamorphosis, but its mechanism remains unclear in non-model organisms like mosquitoes. Here, we investigate the role of 20-hydroxyecdysone (20E) in CW assessment and pupation timing in Aedes albopictus and Ae. aegypti, vectors of arboviruses including dengue and Zika. Our results show that the attainment of CW is contingent upon surpassing a critical 20E threshold, which results in entrance into a constant 22 h interval and the subsequent 20E pulse responsible for larval-pupal ecdysis. Sexual dimorphism in pupation time arises from higher basal 20E levels in males, enabling earlier CW attainment. Administering 20E at 50% of L3/L4 molt, when most of males but not females pass the pulse, results in female-specific lethality. These findings highlight the pivotal role of 20E thresholds in CW, pupation timing, and sexual dimorphism, suggesting that manipulating 20E levels can skew populations male, offering a potential mosquito sex separation strategy.
Collapse
Affiliation(s)
- Meichun Zhang
- Department of Microbiology, Genetics, & Immunology, Michigan State University, East Lansing, MI, USA
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, China
| | - Han Wen
- Department of Microbiology, Genetics, & Immunology, Michigan State University, East Lansing, MI, USA
| | - Qiang Sun
- Department of Microbiology, Genetics, & Immunology, Michigan State University, East Lansing, MI, USA
| | - Dongjing Zhang
- Chinese Atomic Energy Agency Center of Excellence on Nuclear Technology Applications for Insect Control, Key Laboratory of Tropical Disease Control of the Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Yongjun Li
- Department of Pathogen Biology, School of Medicine, Jinan University, Guangzhou, China
| | - Andrew Xi
- Department of Microbiology, Genetics, & Immunology, Michigan State University, East Lansing, MI, USA
| | - Xiaoying Zheng
- Chinese Atomic Energy Agency Center of Excellence on Nuclear Technology Applications for Insect Control, Key Laboratory of Tropical Disease Control of the Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Yu Wu
- Chinese Atomic Energy Agency Center of Excellence on Nuclear Technology Applications for Insect Control, Key Laboratory of Tropical Disease Control of the Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Jun Cao
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, China
| | - Jeremy Bouyer
- Insect Pest Control Sub-programme, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, Vienna, Austria
- ASTRE, CIRAD, F34398, Montpellier, France
- ASTRE, Cirad, INRAE, Univ. Montpellier, Plateforme Technologique CYROI, Sainte-Clotilde, La Réunion, France
| | - Zhiyong Xi
- Department of Microbiology, Genetics, & Immunology, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
5
|
Masseroni A, Federico L, Villa S. Ecological fitness impairments induced by chronic exposure to polyvinyl chloride nanospheres in Daphnia magna. Heliyon 2024; 10:e40065. [PMID: 39669135 PMCID: PMC11636108 DOI: 10.1016/j.heliyon.2024.e40065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 10/31/2024] [Accepted: 10/31/2024] [Indexed: 12/14/2024] Open
Abstract
The aim of this study was to evaluate the effects of chronic exposure (21 days) to an environmentally relevant concentration (10 μg/L) of two different nanoplastic (NP) polymers on the aquatic model organism Daphnia magna. This study examined the impact of exposure to 200 nm polystyrene nanoplastics (PS-NPs) and polyvinyl chloride nanoplastics (PVC-NPs), which had an average size similar to that of PS-NPs (ranging from 50 nm to 350 nm). The effects of polymer exposure on morphometric parameters, number of molts, swimming behaviour, and reproductive outcomes were evaluated. The findings indicate that PVC exposure induced higher body dimensions, while both polymers resulted in an increase in molting behaviour. Moreover, exposure to PVC-NPs had a negative impact on the reproduction of D. magna, as evidenced by a delay in the day of the first brood, a reduction in the total number of offspring produced, and, consequently, a slower population growth rate. It is hypothesised that the ingestion of PVC-NPs by D. magna may have resulted in an impairment of ecdysone hormone functionality and that the increased moulting events potentially representing an adaptive response to the negative effects of PVC-NP adhesion to the organism's body surfaces. These two organisms' responses could concur to explain the observed effects. This study identified the fitness impairments caused by exposure to PVC-NPs, which can lead to relevant ecological consequences. The comparative analysis of the effects induced by two types of polymers has revealed the generation of disparate hazards to D. magna. Furthermore, the chemical composition appears to be a pivotal factor in the onset of these effects. It can therefore be stated that PS is not a suitable standard for representing the toxicity of all plastics.
Collapse
Affiliation(s)
- Andrea Masseroni
- Department of Earth and Environmental Sciences, DISAT, University of Milano-Bicocca, Piazza Della Scienza 1, 20126, Milan, Italy
| | - Lorenzo Federico
- Department of Earth and Environmental Sciences, DISAT, University of Milano-Bicocca, Piazza Della Scienza 1, 20126, Milan, Italy
| | - Sara Villa
- Department of Earth and Environmental Sciences, DISAT, University of Milano-Bicocca, Piazza Della Scienza 1, 20126, Milan, Italy
| |
Collapse
|
6
|
Wu MZ, Fan ST, Zhang YC, Tan JF, Zhu GH. Disrupting shadow in the prothoracic gland induced larval development arrest in the fall armyworm Spodoptera frugiperda. Front Physiol 2024; 15:1502753. [PMID: 39722728 PMCID: PMC11668756 DOI: 10.3389/fphys.2024.1502753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 10/30/2024] [Indexed: 12/28/2024] Open
Abstract
Introduction The juvenile hormone (JH) and 20-hydroxyecdysone (20E) are the central regulating hormones of insect development. The timing of their secretion usually leads to developmental transitions. Methods The developmental transitions were evaluated via the starvation treatment and the expressions of two key metamorphosis inducing factor in Spodoptera frugiperda. Then, the main endocrine organs, including the brain-corpora cardiacum-corpora allatum and prothoracic gland, were sampled from L4-24 h and L6-24 h larvae for the RNA-seq analysis. Additionally, the critical rate-limiting enzyme of 20E synthesis, shadow, was knocked down to mimic the downregulation of 20E synthesis in the late larval instar. Results The critical weight (CW), when JH titer declines for metamorphosis, was determined be approximately L6-24 h in S. frugiperda. However, the expression of the pupal specifier Broad-Complex and the potential "metamorphosis initiation factor" Myoglianin showed a stepwise increase between L4-24 h and L6-24 h, suggesting that the developmental transitions may occur earlier. The RNA-seq analysis revealed that both 20E and JH synthesis enzymes were downregulated at the CW. In addition, strong tendencies in the expression pattern were detected among the lists of transcripts. Further knockdown of shadow induced larval development arrest and subsequent mortality, indicating that disrupting 20E synthesis before the CW is lethal. Besides, JH synthesis enzyme was down-regulated. Conclusion The downregulation of 20E synthesis enzymes at the CW may represent a carefully regulated event, suggesting a deceleration of larval growth and the initiation of some underlying physiological changes to set the stage for metamorphosis.
Collapse
Affiliation(s)
- Mian-Zhi Wu
- School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- State Key Laboratory of Biocontrol, School of Agriculture and Biotechnology, Sun Yat-sen University, Shenzhen, China
| | - Shu-Ting Fan
- School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- State Key Laboratory of Biocontrol, School of Agriculture and Biotechnology, Sun Yat-sen University, Shenzhen, China
| | - Yuan-Chen Zhang
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, China
| | - Jin-Fang Tan
- School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- State Key Laboratory of Biocontrol, School of Agriculture and Biotechnology, Sun Yat-sen University, Shenzhen, China
| | - Guan-Heng Zhu
- School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- State Key Laboratory of Biocontrol, School of Agriculture and Biotechnology, Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
7
|
Ferrari A, Sturini M, De Felice B, Bonasoro F, Trisoglio CF, Parolini M, Ambrosini R, Canova L, Profumo A, Maraschi F, Polidori C, Costanzo A. From molecules to organisms: A multi-level approach shows negative effects of trace elements from sewage sludge used as soil improver on honeybees. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135497. [PMID: 39154472 DOI: 10.1016/j.jhazmat.2024.135497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/31/2024] [Accepted: 08/11/2024] [Indexed: 08/20/2024]
Abstract
The use of sewage sludge as a soil improver has been promoted in agroecosystems. However, sludges can contain toxic trace elements because of suboptimal wastewater treatment. Nonetheless, field studies investigating the negative effects of these practices on pollinators are lacking. We collected honeybees from an area where sewage sludge use is widespread, and one where it is precluded. Trace elements in soils and bees were quantified. Cadmium, chromium, lead, mercury, and nickel were investigated because they were the least correlated elements to each other and are known to be toxic. Their levels were related to oxidative stress and energy biomarkers, midgut epithelial health, body size and wing asymmetry of honeybees. We found increased carbohydrate content in sites with higher cadmium levels, increased histological damage to the midgut epithelium in the sewage sludge area, and the presence of dark spherites in the epithelium of bees collected from the sites with the highest lead levels. Finally, we found that honeybees with the highest lead content were smaller, and that wing fluctuating asymmetry increased in sites with increasing levels of mercury. To the best of our knowledge, this is the first comprehensive study of the concentration and effects on honeybees of trace elements potentially deriving from soil amendment practices.
Collapse
Affiliation(s)
- Andrea Ferrari
- Department of Environmental Science and Policy, University of Milan, 20133 Milan, Italy
| | - Michela Sturini
- Chemistry Department, University of Pavia, 27100 Pavia, Italy
| | - Beatrice De Felice
- Department of Environmental Science and Policy, University of Milan, 20133 Milan, Italy
| | - Francesco Bonasoro
- Department of Environmental Science and Policy, University of Milan, 20133 Milan, Italy
| | | | - Marco Parolini
- Department of Environmental Science and Policy, University of Milan, 20133 Milan, Italy
| | - Roberto Ambrosini
- Department of Environmental Science and Policy, University of Milan, 20133 Milan, Italy
| | - Luca Canova
- Chemistry Department, University of Pavia, 27100 Pavia, Italy
| | | | | | - Carlo Polidori
- Department of Environmental Science and Policy, University of Milan, 20133 Milan, Italy.
| | - Alessandra Costanzo
- Department of Environmental Science and Policy, University of Milan, 20133 Milan, Italy.
| |
Collapse
|
8
|
Shi JF, Cheng MH, Zhou W, Zeng MZ, Chen Y, Yang JX, Wu H, Ye QH, Tang H, Zhang Q, Fu KY, Guo WC. Crucial roles of specialized chitinases in elytral and hindwing cuticles construction in Leptinotarsa decemlineata. PEST MANAGEMENT SCIENCE 2024; 80:4437-4449. [PMID: 38656531 DOI: 10.1002/ps.8141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/25/2024] [Accepted: 04/24/2024] [Indexed: 04/26/2024]
Abstract
BACKGROUND The Colorado potato beetle (CPB), Leptinotarsa decemlineata, is a major potato (Solanum tuberosum) pest, infesting over 16 million km2 and causing substantial economic losses. The insect cuticle forms an apical extracellular matrix (ECM) envelope covering exposed organs to direct morphogenesis and confer structural protection. While select chitinase (Cht) genes have proven essential for larval development, their potential activities directing ECM remodeling underlying adult wing maturation remain undefined. RESULTS We investigated the expression patterns and performed an oral RNA interference (RNAi) screen targeting 19 LdChts in late-instar L. decemlineata larvae. Subsequently, we assessed their effects on adult eclosion and wing characteristics. Knockdown of LdCht5, LdCht7, LdCht10, LdIDGF2, and LdIDGF4, as well as others from Group IV (LdCht15, LdCht12, LdCht17, and LdCht13) and Groups VII-X (LdCht2, LdCht11, LdCht1, and LdCht3), resulting in shrunken, misshapen elytra with reduced areal density, as well as transverse wrinkling and impaired wing-tip folding in hindwings. Scanning electron micrographs revealed eroded elytral ridges alongside thinned, ruptured hindwing veins, indicative of mechanical fragility post-LdCht suppression. Spectroscopic analysis uncovered biomolecular alterations underlying the elytral anomalies, including decreases in peaks representing chitin, proteins, and lipids. This loss of essential ECM components provides evidence for the fragility, wrinkling, and shrinkage observed in the RNAi groups. CONCLUSION Our findings elucidate the crucial role of chitinases in the turnover of chitinous cuticles on beetle wings, offering insights into RNAi-based control strategies against this invasive pest. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ji-Feng Shi
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Chongqing, China
- College of Sericulture, Textile, and Biomass Sciences, Southwest University, Chongqing, China
| | - Man-Hong Cheng
- Chongqing College of Humanities, Science and Technology, Chongqing, China
| | - Wei Zhou
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Chongqing, China
- College of Sericulture, Textile, and Biomass Sciences, Southwest University, Chongqing, China
| | - Mu-Zi Zeng
- College of Sericulture, Textile, and Biomass Sciences, Southwest University, Chongqing, China
| | - Yu Chen
- College of Sericulture, Textile, and Biomass Sciences, Southwest University, Chongqing, China
| | - Jia-Xin Yang
- College of Sericulture, Textile, and Biomass Sciences, Southwest University, Chongqing, China
| | - Hao Wu
- College of Sericulture, Textile, and Biomass Sciences, Southwest University, Chongqing, China
| | - Qiu-Hong Ye
- College of Sericulture, Textile, and Biomass Sciences, Southwest University, Chongqing, China
| | - Hong Tang
- College of Sericulture, Textile, and Biomass Sciences, Southwest University, Chongqing, China
| | - Qing Zhang
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Chongqing, China
- College of Sericulture, Textile, and Biomass Sciences, Southwest University, Chongqing, China
| | - Kai-Yun Fu
- Ministry of Agriculture/Xinjiang Key Laboratory of Agricultural Biosafety, Institute of Plant Protection Xinjiang Academy of Agricultural Sciences/Key Laboratory of Integrated Pest Management on Crops in Northwestern Oasis, Urumqi, China
| | - Wen-Chao Guo
- Ministry of Agriculture/Xinjiang Key Laboratory of Agricultural Biosafety, Institute of Plant Protection Xinjiang Academy of Agricultural Sciences/Key Laboratory of Integrated Pest Management on Crops in Northwestern Oasis, Urumqi, China
| |
Collapse
|
9
|
Ren QQ, Long GY, Yang H, Zhou C, Yang XB, Yan Y, Yan X. Conserved microRNAs miR-8-3p and miR-2a-3 targeting chitin biosynthesis to regulate the molting process of Sogatella furcifera (Horváth)(Hemiptera: Delphacidae). JOURNAL OF ECONOMIC ENTOMOLOGY 2024:toae123. [PMID: 38894631 DOI: 10.1093/jee/toae123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/24/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024]
Abstract
Molting is a key solution to growth restriction in insects. The periodic synthesis and degradation of chitin, one of the major components of the insect epidermis, is necessary for insect growth. MicroRNA (miRNA) have been implicated in molting regulation, yet their involvement in the interplay interaction between the chitin synthesis pathway and 20-hydroxyecdysone signaling remains poorly understood. In this study, soluble trehalase (Tre1) and phosphoacetylglucosamine mutase (PAGM) were identified as targets of conserved miR-8-3p and miR-2a-3, respectively. The expression profiles of miR-8-3p-SfTre1 and miR-2a-3-SfPAGM exhibited an opposite pattern during the different developmental stages, indicating a negative regulatory relationship between them. This relationship was confirmed by an in vitro dual-luciferase reporter system. Overexpression of miR-8-3p and miR-2a-3 by injection of mimics inhibited the expression of their respective target genes and increased mortality, leading to death in the pre-molting, and molting death phenomena. They also caused a decrease in chitin content and expression levels of key genes in the chitin synthesis pathway (SfTre1, SfTre2, SfHK, SfG6PI, SfGFAT, SfGNA, SfPAGM, SfUAP, SfCHS1, SfCHS1a, and SfCHS1b). Conversely, the injection of miRNA inhibitors resulted in the upregulation of the expression levels of these genes. Following 20E treatment, the expression levels of miR-8-3p and miR-2a-3 decreased significantly, while their corresponding target genes increased significantly. These results indicate that miR-8-3p and miR-2a-3 play a regulatory role in the molting of Sogatella furcifera by targeting SfTre1 and SfPAGM, respectively. These findings provide new potential targets for the development of subsequent new control strategies.
Collapse
Affiliation(s)
- Qian-Qian Ren
- Provincial Key Laboratory for Agricultural Pest Management of Mountainous Region, Institute of Entomology, Guizhou University, Guiyang, China
| | - Gui-Yun Long
- School of Chinese Ethnic Medicine, Key Laboratory of Guizhou Ethnic Medicine Resource Development and Utilization in Guizhou Minzu, Guizhou Minzu University, Guiyang, 550025, China
| | - Hong Yang
- Provincial Key Laboratory for Agricultural Pest Management of Mountainous Region, Institute of Entomology, Guizhou University, Guiyang, China
| | - Cao Zhou
- Chongqing Key Laboratory of Vector Insects, Institute of Entomology and Molecular Biology, Chongqing Normal University, Chongqing, China
| | - Xi-Bin Yang
- Plant Protection and Quarantine Station, Department of Agriculture and Rural Affairs of Guizhou, Guiyang, 550001, China
| | - Yi Yan
- Provincial Key Laboratory for Agricultural Pest Management of Mountainous Region, Institute of Entomology, Guizhou University, Guiyang, China
| | - Xin Yan
- Provincial Key Laboratory for Agricultural Pest Management of Mountainous Region, Institute of Entomology, Guizhou University, Guiyang, China
| |
Collapse
|
10
|
Liu A, O’Connell J, Wall F, Carthew RW. Scaling between cell cycle duration and wing growth is regulated by Fat-Dachsous signaling in Drosophila. eLife 2024; 12:RP91572. [PMID: 38842917 PMCID: PMC11156469 DOI: 10.7554/elife.91572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024] Open
Abstract
The atypical cadherins Fat and Dachsous (Ds) signal through the Hippo pathway to regulate growth of numerous organs, including the Drosophila wing. Here, we find that Ds-Fat signaling tunes a unique feature of cell proliferation found to control the rate of wing growth during the third instar larval phase. The duration of the cell cycle increases in direct proportion to the size of the wing, leading to linear-like growth during the third instar. Ds-Fat signaling enhances the rate at which the cell cycle lengthens with wing size, thus diminishing the rate of wing growth. We show that this results in a complex but stereotyped relative scaling of wing growth with body growth in Drosophila. Finally, we examine the dynamics of Fat and Ds protein distribution in the wing, observing graded distributions that change during growth. However, the significance of these dynamics is unclear since perturbations in expression have negligible impact on wing growth.
Collapse
Affiliation(s)
- Andrew Liu
- Department of Molecular Biosciences, Northwestern UniversityEvanstonUnited States
- NSF-Simons Center for Quantitative Biology, Northwestern UniversityEvanstonUnited States
- NSF-Simons National Institute for Theory and Mathematics in BiologyChicagoUnited States
| | - Jessica O’Connell
- Department of Molecular Biosciences, Northwestern UniversityEvanstonUnited States
| | - Farley Wall
- Department of Molecular Biosciences, Northwestern UniversityEvanstonUnited States
| | - Richard W Carthew
- Department of Molecular Biosciences, Northwestern UniversityEvanstonUnited States
- NSF-Simons Center for Quantitative Biology, Northwestern UniversityEvanstonUnited States
- NSF-Simons National Institute for Theory and Mathematics in BiologyChicagoUnited States
| |
Collapse
|
11
|
Liu A, O’Connell J, Wall F, Carthew RW. Scaling between cell cycle duration and wing growth is regulated by Fat-Dachsous signaling in Drosophila. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.08.01.551465. [PMID: 38645118 PMCID: PMC11030236 DOI: 10.1101/2023.08.01.551465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
The atypical cadherins Fat and Dachsous (Ds) signal through the Hippo pathway to regulate growth of numerous organs, including the Drosophila wing. Here, we find that Ds-Fat signaling tunes a unique feature of cell proliferation found to control the rate of wing growth during the third instar larval phase. The duration of the cell cycle increases in direct proportion to the size of the wing, leading to linear-like growth during the third instar. Ds-Fat signaling enhances the rate at which the cell cycle lengthens with wing size, thus diminishing the rate of wing growth. We show that this results in a complex but stereotyped relative scaling of wing growth with body growth in Drosophila. Finally, we examine the dynamics of Fat and Ds protein distribution in the wing, observing graded distributions that change during growth. However, the significance of these dynamics is unclear since perturbations in expression have negligible impact on wing growth.
Collapse
Affiliation(s)
- Andrew Liu
- Department of Molecular Biosciences, Northwestern University, Evanston IL
- NSF-Simons Center for Quantitative Biology, Northwestern University, Evanston IL
| | - Jessica O’Connell
- Department of Molecular Biosciences, Northwestern University, Evanston IL
| | - Farley Wall
- Department of Molecular Biosciences, Northwestern University, Evanston IL
| | - Richard W. Carthew
- Department of Molecular Biosciences, Northwestern University, Evanston IL
- NSF-Simons Center for Quantitative Biology, Northwestern University, Evanston IL
| |
Collapse
|
12
|
Liu F, Yu S, Chen N, Ren C, Li S. Nutrition- and hormone-controlled developmental plasticity in Blattodea. CURRENT OPINION IN INSECT SCIENCE 2023; 60:101128. [PMID: 37806339 DOI: 10.1016/j.cois.2023.101128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 09/12/2023] [Accepted: 10/02/2023] [Indexed: 10/10/2023]
Abstract
Blattodea, which includes cockroaches and termites, possesses high developmental plasticity that is mainly controlled by nutritional conditions and insect hormones. Insulin/insulin-like growth factor signaling (IIS), target of rapamycin complex 1 (TORC1), and adenosine monophosphate-activated protein complex are the three primary nutrition-responsive signals. Juvenile hormone (JH) and 20-hydroxyecdysone (20E) constitute the two most vital insect hormones that might interact with each other through the Met, Kr-h1, E93 (MEKRE93) pathway. Nutritional and hormonal signals interconnect to create a complex regulatory network. Here we summarize recent progress in our understanding of how nutritional and hormonal signals coordinately control the developmental plasticity of metamorphosis, reproduction, and appendage regeneration in cockroaches as well as caste differentiation in termites. We also highlight several perspectives that should be further emphasized in the studies of developmental plasticity in Blattodea. This review provides a general landscape in the field of nutrition- and hormone-controlled developmental plasticity in insects.
Collapse
Affiliation(s)
- Fangfang Liu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China; Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou 514779, China
| | - Shuxin Yu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Nan Chen
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Chonghua Ren
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Sheng Li
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China; Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou 514779, China.
| |
Collapse
|
13
|
Kang XL, Li YX, Dong DJ, Wang JX, Zhao XF. 20-Hydroxyecdysone counteracts insulin to promote programmed cell death by modifying phosphoglycerate kinase 1. BMC Biol 2023; 21:119. [PMID: 37226192 DOI: 10.1186/s12915-023-01621-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 05/09/2023] [Indexed: 05/26/2023] Open
Abstract
BACKGROUND The regulation of glycolysis and autophagy during feeding and metamorphosis in holometabolous insects is a complex process that is not yet fully understood. Insulin regulates glycolysis during the larval feeding stage, allowing the insects to grow and live. However, during metamorphosis, 20-hydroxyecdysone (20E) takes over and regulates programmed cell death (PCD) in larval tissues, leading to degradation and ultimately enabling the insects to transform into adults. The precise mechanism through which these seemingly contradictory processes are coordinated remains unclear and requires further research. To understand the coordination of glycolysis and autophagy during development, we focused our investigation on the role of 20E and insulin in the regulation of phosphoglycerate kinase 1 (PGK1). We examined the glycolytic substrates and products, PGK1 glycolytic activity, and the posttranslational modification of PGK1 during the development of Helicoverpa armigera from feeding to metamorphosis. RESULTS Our findings suggest that the coordination of glycolysis and autophagy during holometabolous insect development is regulated by a balance between 20E and insulin signaling pathways. Glycolysis and PGK1 expression levels were decreased during metamorphosis under the regulation of 20E. Insulin promoted glycolysis and cell proliferation via PGK1 phosphorylation, while 20E dephosphorylated PGK1 via phosphatase and tensin homolog (PTEN) to repress glycolysis. The phosphorylation of PGK1 at Y194 by insulin and its subsequent promotion of glycolysis and cell proliferation were important for tissue growth and differentiation during the feeding stage. However, during metamorphosis, the acetylation of PGK1 by 20E was key in initiating PCD. Knockdown of phosphorylated PGK1 by RNA interference (RNAi) at the feeding stage led to glycolysis suppression and small pupae. Insulin via histone deacetylase 3 (HDAC3) deacetylated PGK1, whereas 20E via acetyltransferase arrest-defective protein 1 (ARD1) induced PGK1 acetylation at K386 to stimulate PCD. Knockdown of acetylated-PGK1 by RNAi at the metamorphic stages led to PCD repression and delayed pupation. CONCLUSIONS The posttranslational modification of PGK1 determines its functions in cell proliferation and PCD. Insulin and 20E counteractively regulate PGK1 phosphorylation and acetylation to give it dual functions in cell proliferation and PCD.
Collapse
Affiliation(s)
- Xin-Le Kang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Yan-Xue Li
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Du-Juan Dong
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Jin-Xing Wang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Xiao-Fan Zhao
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, 266237, China.
| |
Collapse
|
14
|
Lu J, Zhang H, Wang Q, Huang X. Genome-Wide Identification and Expression Pattern of Cytochrome P450 Genes in the Social Aphid Pseudoregma bambucicola. INSECTS 2023; 14:212. [PMID: 36835781 PMCID: PMC9966863 DOI: 10.3390/insects14020212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/10/2023] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
Cytochrome P450 monooxygenases (P450s) have a variety of functions, including involvement in the metabolism of exogenous substances and the synthesis and degradation of endogenous substances, which are important for the growth and development of insects. Pseudoregma bambucicola is a social aphid that produces genetically identical but morphologically and behaviorally distinct first-instar soldiers and normal nymphs within colonies. In this study, we identified 43 P450 genes based on P. bambucicola genome data. Phylogenetic analysis showed that these genes were classified into 4 clans, 13 families, and 23 subfamilies. The CYP3 and CYP4 clans had a somewhat decreased number of genes. In addition, differential gene expression analysis based on transcriptome data showed that several P450 genes, including CYP18A1, CYP4G332, and CYP4G333, showed higher expression levels in soldiers compared to normal nymphs and adult aphids. These genes may be candidates for causing epidermal hardening and developmental arrest in soldiers. This study provides valuable data and lays the foundation for the study of functions of P450 genes in the social aphid P. bambucicola.
Collapse
Affiliation(s)
- Jianjun Lu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hui Zhang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Qing Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiaolei Huang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
15
|
Chakraborty A, Walter GM, Monro K, Alves AN, Mirth CK, Sgrò CM. Within-population variation in body size plasticity in response to combined nutritional and thermal stress is partially independent from variation in development time. J Evol Biol 2023; 36:264-279. [PMID: 36208146 PMCID: PMC10092444 DOI: 10.1111/jeb.14099] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 06/16/2022] [Accepted: 06/21/2022] [Indexed: 01/11/2023]
Abstract
Ongoing climate change has forced animals to face changing thermal and nutritional environments. Animals can adjust to such combinations of stressors via plasticity. Body size is a key trait influencing organismal fitness, and plasticity in this trait in response to nutritional and thermal conditions varies among genetically diverse, locally adapted populations. The standing genetic variation within a population can also influence the extent of body size plasticity. We generated near-isogenic lines from a newly collected population of Drosophila melanogaster at the mid-point of east coast Australia and assayed body size for all lines in combinations of thermal and nutritional stress. We found that isogenic lines showed distinct underlying patterns of body size plasticity in response to temperature and nutrition that were often different from the overall population response. We then tested whether plasticity in development time could explain, and therefore regulate, variation in body size to these combinations of environmental conditions. We selected five genotypes that showed the greatest variation in response to combined thermal and nutritional stress and assessed the correlation between response of developmental time and body size. While we found significant genetic variation in development time plasticity, it was a poor predictor of body size among genotypes. Our results therefore suggest that multiple developmental pathways could generate genetic variation in body size plasticity. Our study emphasizes the need to better understand genetic variation in plasticity within a population, which will help determine the potential for populations to adapt to ongoing environmental change.
Collapse
Affiliation(s)
| | - Greg M Walter
- School of Biological Sciences, Monash University, Melbourne, Victoria, Australia
| | - Keyne Monro
- School of Biological Sciences, Monash University, Melbourne, Victoria, Australia
| | - André N Alves
- School of Biological Sciences, Monash University, Melbourne, Victoria, Australia
| | - Christen K Mirth
- School of Biological Sciences, Monash University, Melbourne, Victoria, Australia
| | - Carla M Sgrò
- School of Biological Sciences, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
16
|
Samantsidis GR, Fotiadou M, Tzavellas S, Geibel S, Nauen R, Swevers L, Denecke S, Vontas J. Functional characterization of putative ecdysone transporters in lepidopteran pests. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2022; 151:103830. [PMID: 36064128 DOI: 10.1016/j.ibmb.2022.103830] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/26/2022] [Accepted: 08/27/2022] [Indexed: 06/15/2023]
Abstract
The insect steroid hormone ecdysone plays a critical role in insect development. Several recent studies have shown that ecdysone enters cells through Organic Anion Transporting Polypeptides (OATPs) in insects such as flies and mosquitoes. However, the conservation of this mechanism across other arthropods and the role of this transporter in canonical ecdysone pathways are less well studied. Herein we functionally characterized the putative ecdysone importer (EcI) from two major agricultural moth pests: Helicoverpa armigera (cotton bollworm) and Spodoptera frugiperda (fall armyworm). Phylogenetic analysis of OATP transporters across the superphylum Ecdysozoa revealed that EcI likely appeared only at the root of the arthropod lineage. Partial disruption of EcI in S. frugiperda decreased embryo hatching rate and larval survival, suggesting that this gene is essential for development in vivo. Depletion and re-expression of EcI in the lepidoptera cell line RP-HzGUT-AW1(MG) demonstrated this protein's ability to control ecdysone mediated signaling in gene regulation, its role in ecdysone mediated cell death, and its sensitivity to rifampicin, a well-known organic anion transporter inhibitor. Overall, this work sheds light on ecdysone uptake mechanisms across insect species and broadens our knowledge of the physiological roles of OATPs in the transportation of endogenous substrates.
Collapse
Affiliation(s)
- George-Rafael Samantsidis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece; Department of Biology, University of Crete, Vassilika Vouton, 71409, Heraklion, Crete, Greece
| | - Melina Fotiadou
- Department of Biology, University of Crete, Vassilika Vouton, 71409, Heraklion, Crete, Greece
| | - Savvas Tzavellas
- Department of Biology, University of Crete, Vassilika Vouton, 71409, Heraklion, Crete, Greece
| | - Sven Geibel
- R&D Pest Control, Bayer AG, Crop Science Division, Monheim, Germany
| | - Ralf Nauen
- R&D Pest Control, Bayer AG, Crop Science Division, Monheim, Germany
| | - Luc Swevers
- Insect Molecular Genetics and Biotechnology, National Centre for Scientific Research Demokritos, Institute of Biosciences and Applications, 15310, Athens, Greece
| | - Shane Denecke
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece; Department of Pathobiology, University of Pennsylvania, Philadelphia, United States.
| | - John Vontas
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece; Pesticide Science Lab, Department of Crop Science, Agricultural University of Athens, Greece.
| |
Collapse
|
17
|
Jiao Y, Palli SR. Mitochondria dysfunction impairs Tribolium castaneum wing development during metamorphosis. Commun Biol 2022; 5:1252. [PMID: 36380075 PMCID: PMC9666433 DOI: 10.1038/s42003-022-04185-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 10/28/2022] [Indexed: 11/16/2022] Open
Abstract
The disproportionate growth of insect appendages such as facultative growth of wings and exaggeration of beetle horns are examples of phenotypic plasticity. Insect metamorphosis is the critical stage for development of pupal and adult structures and degeneration of the larval cells. How the disproportionate growth of external appendages is regulated during tissue remodeling remains unanswered. Tribolium castaneum is used as a model to study the function of mitochondria in metamorphosis. Mitochondrial dysfunction is achieved by the knockdown of key mitochondrial regulators. Here we show that mitochondrial function is not required for metamorphosis except that severe mitochondrial dysfunction blocks ecdysis. Surprisingly, various abnormal wing growth, including short and wingless phenotypes, are induced after knocking down mitochondrial regulators. Mitochondrial activity is regulated by IIS (insulin/insulin-like growth factor signaling)/FOXO (forkhead box, sub-group O) pathway through TFAM (transcription factor A, mitochondrial). RNA sequencing and differential gene expression analysis show that wing-patterning and insect hormone response genes are downregulated, while programmed cell death and immune response genes are upregulated in insect wing discs with mitochondrial dysfunction. These studies reveal that mitochondria play critical roles in regulating insect wing growth by targeting wing development during metamorphosis, thus showing a novel molecular mechanism underlying developmental plasticity.
Collapse
Affiliation(s)
- Yaoyu Jiao
- grid.266539.d0000 0004 1936 8438Department of Entomology, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40546 USA
| | - Subba Reddy Palli
- grid.266539.d0000 0004 1936 8438Department of Entomology, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40546 USA
| |
Collapse
|
18
|
Li C, Zhang J, Du H, Yang L, Wang Y, Lu Y, Li B, Chen K. Lowfat functions downstream of Myo20 to regulate wing and leg morphogenesis in Tribolium castaneum. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2022; 148:103829. [PMID: 36028072 DOI: 10.1016/j.ibmb.2022.103829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 08/18/2022] [Accepted: 08/18/2022] [Indexed: 06/15/2023]
Abstract
Myosin Myo20 plays vital roles in the morphogenesis of wings and legs among insects, but the function and signalling of Myo20 remain unclear. We show that Myo20 regulates wing cell division, ecdysteroid and amino acid metabolism, and gene expression in Tribolium castaneum. By RNA-seq, we identified 582 differentially expressed genes (DEGs) between control and ds-Myo20 larvae of T. castaneum. Of these DEGs, silencing Myo20 significantly decreased the mRNA and protein levels of lowfat. During development, lowfat has the highest expression in early pupae and the lowest level in 1-day embryos. Tissue-specific analysis indicated that lowfat was abundantly expressed in the head, fat body and epidermis of late-stage larvae and in wings and legs of 1, 2 and 5-day pupae. Likewise, knockdown of lowfat affected wing and leg morphogenesis, ecdysteroid and amino acid metabolism, and gene expression in T. castaneum. Silencing Myo20 or lowfat activated CYP18A1 to degrade ecdysteroids, stimulated amino acids catabolism to increase the transcription of 4E-BP but reduce S6K and cycE expression. These results suggest that Lowfat works downstream of Myo20 to employ target of rapamycin (TOR) signalling for wing and leg morphogenesis in insects.
Collapse
Affiliation(s)
- Chengjun Li
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, China.
| | - Jiangyan Zhang
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, China.
| | - Huanyu Du
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, China.
| | - Liu Yang
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, China.
| | - Youwei Wang
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, China.
| | - Yaoyao Lu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China.
| | - Bin Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China.
| | - Keping Chen
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, China.
| |
Collapse
|
19
|
Fiad FG, Cardozo M, Rodríguez CS, Hernández ML, Crocco LB, Gorla DE. Ecomorphological variation of the Triatoma guasayana wing shape in semi-arid Chaco region. Acta Trop 2022; 232:106488. [PMID: 35533712 DOI: 10.1016/j.actatropica.2022.106488] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 04/19/2022] [Accepted: 04/24/2022] [Indexed: 11/25/2022]
Abstract
Triatoma guasayana (Hemiptera, Reduviidae), considered a secondary vector of Chagas disease, invades rural dwellings through flight dispersal during the warm season in semi-arid Chaco of Argentina. The objective of this study was to define and compare morphometrics features in the relative body size and wing shape of T. guasayana related to temperature and rainfall between spring, summer and end of summer. A total of 188 adults were collected in rural communities in the northwest of the province of Córdoba (central Argentina). Relative body size [body length (mm) / wing length (mm)] and 11 landmarks on the right wing were recorded. The temperature ( °C) and precipitation (mm) data were extracted from the MODIS sensor and Terra Climate dataset, respectively. Correlations between climatic variables and morphological variation were analyzed using Partial Least Square (PLS). Males at the end of summer were smaller than those at spring or summer (F = 4.48; df = 2; p = 0.01), whereas females were similar in relative body size at all seasons (F = 0.76; df = 2; p = 0.47). The PLS in males showed a correlation between wing shape and temperature (r = 0.48; p = 0.03) and precipitation (r = 0.50; p = 0.02) while in females only the temperature was the correlation significant (r = 0.35; p = 0.03). Triatoma guasayana has elongated and thin wings in spring that become short and wide at the end of summer. The morphotype of early summer could allow sustained long-duration flights, while the morphotype of end of summer would be related to short flights, correlated with the dispersive behavior of the species. The results in this study suggest that wing morphology of T. guasayana has phenotypic plasticity, and that temperature and rainfall could be considered modulator factors during the developmental stage.
Collapse
|
20
|
Fudlosid S, Ritchie MW, Muzzatti MJ, Allison JE, Provencher J, MacMillan HA. Ingestion of Microplastic Fibres, But Not Microplastic Beads, Impacts Growth Rates in the Tropical House Cricket Gryllodes Sigillatus. Front Physiol 2022; 13:871149. [PMID: 35634147 PMCID: PMC9132090 DOI: 10.3389/fphys.2022.871149] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 03/29/2022] [Indexed: 11/19/2022] Open
Abstract
Microplastic is a growing concern as an environmental contaminant as it is ubiquitous in our ecosystems. Microplastics are present in terrestrial environments, yet the majority of studies have focused on the adverse effects of microplastics on aquatic biota. We hypothesized that microplastic ingestion by a terrestrial insect would have localized effects on gut health and nutrient absorption, such that prolonged dietary microplastic exposure would impact growth rate and adult body size. We further hypothesized that plastic form (fibres vs. beads) would influence these effects because of the nature of gut-plastic interactions. Freshly hatched tropical house crickets (Gryllodes sigillatus) were fed a standard diet containing different concentrations of either fluorescent polyethylene microplastic beads (75–105 μm), or untreated polyethylene terephthalate microfibers (< 5 mm) until they died or reached adulthood (approximately 8 weeks). Weight and body length were measured weekly and microplastic ingestion was confirmed through fluorescence microscopy and visual inspection of the frass. While, to our surprise, we found no effect of polyethylene bead ingestion on growth rate or final body size of G. sigillatus, females experienced a reduction in size and weight when fed high concentrations of polyethylene terephthalate microfibers. These results suggest that high concentrations of polyethylene beads of the 100 μm size range can pass through the cricket gut without a substantial negative effect on their growth and development time, but high concentrations of polyethylene terephthalate microfibers cannot. Although we report the negative effects of microplastic ingestion on the growth of G. sigillatus, it remains uncertain what threats microplastics pose to terrestrial insects.
Collapse
Affiliation(s)
- Serita Fudlosid
- Department of Biology, Carleton University, Ottawa, ON, Canada
- *Correspondence: Serita Fudlosid,
| | | | | | - Jane E. Allison
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | - Jennifer Provencher
- Department of Biology, Carleton University, Ottawa, ON, Canada
- Environment and Climate Change Canada, Ottawa, ON, Canada
| | | |
Collapse
|
21
|
Moen C, Johnson JC, Hackney Price J. Ecdysteroid responses to urban heat island conditions during development of the western black widow spider (Latrodectus hesperus). PLoS One 2022; 17:e0267398. [PMID: 35482802 PMCID: PMC9049550 DOI: 10.1371/journal.pone.0267398] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 04/07/2022] [Indexed: 11/18/2022] Open
Abstract
The steroid hormone 20-hydroxyecdysone (20E) controls molting in arthropods. The timing of 20E production, and subsequent developmental transitions, is influenced by a variety of environmental factors including nutrition, photoperiod, and temperature, which is particularly relevant in the face of climate change. Environmental changes, combined with rapid urbanization, and the increasing prevalence of urban heat islands (UHI) have contributed to an overall decrease in biodiversity making it critical to understand how organisms respond to elevating global temperatures. Some arthropods, such as the Western black widow spider, Latrodectus hesperus, appear to thrive under UHI conditions, but the physiological mechanism underlying their success has not been explored. Here we examine the relationship between hemolymph 20E titers and spiderling development under non-urban desert (27°C), intermediate (30°C), and urban (33°C) temperatures. We found that a presumptive molt-inducing 20E peak observed in spiders at non-urban desert temperatures was reduced and delayed at higher temperatures. Intermolt 20E titers were also significantly altered in spiders reared under UHI temperatures. Despite the apparent success of black widows in urban environments, we noted that, coincident with the effects on 20E, there were numerous negative effects of elevated temperatures on spiderling development. The differential effects of temperature on pre-molt and intermolt 20E titers suggest distinct hormonal mechanisms underlying the physiological, developmental, and behavioral response to heat, allowing spiders to better cope with urban environments.
Collapse
Affiliation(s)
- Claire Moen
- School of Math & Natural Sciences, Arizona State University—West Campus, Glendale, AZ, United States of America
| | - J. Chadwick Johnson
- School of Math & Natural Sciences, Arizona State University—West Campus, Glendale, AZ, United States of America
| | - Jennifer Hackney Price
- School of Math & Natural Sciences, Arizona State University—West Campus, Glendale, AZ, United States of America
- * E-mail:
| |
Collapse
|
22
|
Li C, Yang L, Wang Y, Du H, Zhang J, Lu Y, Li B, Chen K. Functional analysis of zona pellucida domain protein Dusky in Tribolium castaneum. INSECT SCIENCE 2022; 29:388-398. [PMID: 34237197 DOI: 10.1111/1744-7917.12938] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/20/2021] [Accepted: 05/07/2021] [Indexed: 06/13/2023]
Abstract
The zona pellucida domain protein Dusky (Dy) plays a vital role in wing morphogenesis in insects, but little information on its function has been reported. In this study, we found that dy regulated wing cell size, larval and pupal duration, and the metabolism of amino acid and 20-hydroxyecdysone in Tribolium castaneum. Using RNA-seq, 413 differentially expressed genes were identified between physiological buffer-injected and dy-double-stranded RNA-treated larvae, including 88 downregulated genes and 325 upregulated genes. Among these genes, dy knockdown increased CYP18A1 expression to elevate the 26-hydroxylation of 20-hydroxyecdysone, which ultimately led to growth defects in wing cells. Silencing of dy upregulated the transcription of genes encoding tyrosine aminotransferase, 4-hydroxyphenylpyruvate dioxygenase, homogentisate 1, 2-dioxygenase, and Pale to promote the catabolism of tyrosine and phenylalanine, which eventually reduced amino acid content. Furthermore, dy knockdown upregulated 4E-BP expression, and 4E-BP silencing partially phenocopied dy RNA interference-mediated wing morphogenesis. These results suggest that Dy controls 20-hydroxyecdysone and amino acid metabolism to regulate wing morphogenesis in the insect.
Collapse
Affiliation(s)
- Chengjun Li
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, 212013, China
| | - Liu Yang
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, 212013, China
| | - Youwei Wang
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, 212013, China
| | - Huanyu Du
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, 212013, China
| | - Jiangyan Zhang
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, 212013, China
| | - Yaoyao Lu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Bin Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Keping Chen
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, 212013, China
| |
Collapse
|
23
|
Gao Y, Liu S, Jia Q, Wu L, Yuan D, Li EY, Feng Q, Wang G, Palli SR, Wang J, Li S. Juvenile hormone membrane signaling phosphorylates USP and thus potentiates 20-hydroxyecdysone action in Drosophila. Sci Bull (Beijing) 2022; 67:186-197. [PMID: 36546012 DOI: 10.1016/j.scib.2021.06.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/10/2021] [Accepted: 06/15/2021] [Indexed: 01/06/2023]
Abstract
Juvenile hormone (JH) and 20-hydroxyecdysone (20E) coordinately regulate development and metamorphosis in insects. Two JH intracellular receptors, methoprene-tolerant (Met) and germ-cell expressed (Gce), have been identified in the fruit fly Drosophila melanogaster. To investigate JH membrane signaling pathway without the interference from JH intracellular signaling, we characterized phosphoproteome profiles of the Met gce double mutant in the absence or presence of JH in both chronic and acute phases. Functioning through a potential receptor tyrosine kinase and phospholipase C pathway, JH membrane signaling activated protein kinase C (PKC) which phosphorylated ultraspiracle (USP) at Ser35, the PKC phosphorylation site required for the maximal action of 20E through its nuclear receptor complex EcR-USP. The uspS35A mutant, in which Ser was replaced with Ala at position 35 by genome editing, showed decreased expression of Halloween genes that are responsible for ecdysone biosynthesis and thus attenuated 20E signaling that delayed developmental timing. The uspS35A mutant also showed lower Yorkie activity that reduced body size. Altogether, JH membrane signaling phosphorylates USP at Ser35 and thus potentiates 20E action that regulates the normal fly development. This study helps better understand the complex JH signaling network.
Collapse
Affiliation(s)
- Yue Gao
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou 510631, China; Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou 514779, China
| | - Suning Liu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Qiangqiang Jia
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Lixian Wu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Dongwei Yuan
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Emma Y Li
- International Department, The Affiliated High School of South China Normal University, Guangzhou 510631, China
| | - Qili Feng
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Guirong Wang
- Lingnan Guangdong Laboratory of Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Subba R Palli
- Department of Entomology, College of Agriculture, Food and Environment, University of Kentucky, Lexington 40546, USA
| | - Jian Wang
- Department of Entomology, University of Maryland, College Park 20742, USA.
| | - Sheng Li
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou 510631, China; Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou 514779, China.
| |
Collapse
|
24
|
Parisot N, Vargas-Chávez C, Goubert C, Baa-Puyoulet P, Balmand S, Beranger L, Blanc C, Bonnamour A, Boulesteix M, Burlet N, Calevro F, Callaerts P, Chancy T, Charles H, Colella S, Da Silva Barbosa A, Dell'Aglio E, Di Genova A, Febvay G, Gabaldón T, Galvão Ferrarini M, Gerber A, Gillet B, Hubley R, Hughes S, Jacquin-Joly E, Maire J, Marcet-Houben M, Masson F, Meslin C, Montagné N, Moya A, Ribeiro de Vasconcelos AT, Richard G, Rosen J, Sagot MF, Smit AFA, Storer JM, Vincent-Monegat C, Vallier A, Vigneron A, Zaidman-Rémy A, Zamoum W, Vieira C, Rebollo R, Latorre A, Heddi A. The transposable element-rich genome of the cereal pest Sitophilus oryzae. BMC Biol 2021; 19:241. [PMID: 34749730 PMCID: PMC8576890 DOI: 10.1186/s12915-021-01158-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 09/27/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The rice weevil Sitophilus oryzae is one of the most important agricultural pests, causing extensive damage to cereal in fields and to stored grains. S. oryzae has an intracellular symbiotic relationship (endosymbiosis) with the Gram-negative bacterium Sodalis pierantonius and is a valuable model to decipher host-symbiont molecular interactions. RESULTS We sequenced the Sitophilus oryzae genome using a combination of short and long reads to produce the best assembly for a Curculionidae species to date. We show that S. oryzae has undergone successive bursts of transposable element (TE) amplification, representing 72% of the genome. In addition, we show that many TE families are transcriptionally active, and changes in their expression are associated with insect endosymbiotic state. S. oryzae has undergone a high gene expansion rate, when compared to other beetles. Reconstruction of host-symbiont metabolic networks revealed that, despite its recent association with cereal weevils (30 kyear), S. pierantonius relies on the host for several amino acids and nucleotides to survive and to produce vitamins and essential amino acids required for insect development and cuticle biosynthesis. CONCLUSIONS Here we present the genome of an agricultural pest beetle, which may act as a foundation for pest control. In addition, S. oryzae may be a useful model for endosymbiosis, and studying TE evolution and regulation, along with the impact of TEs on eukaryotic genomes.
Collapse
Affiliation(s)
- Nicolas Parisot
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621 Villeurbanne, France
| | - Carlos Vargas-Chávez
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621 Villeurbanne, France
- Institute for Integrative Systems Biology (I2SySBio), Universitat de València and Spanish Research Council (CSIC), València, Spain
- Present Address: Institute of Evolutionary Biology (IBE), CSIC-Universitat Pompeu Fabra, Barcelona, Spain
| | - Clément Goubert
- Laboratoire de Biométrie et Biologie Evolutive, UMR5558, Université Lyon 1, Université Lyon, Villeurbanne, France
- Department of Molecular Biology and Genetics, Cornell University, 526 Campus Rd, Ithaca, New York, 14853, USA
- Present Address: Human Genetics, McGill University, Montreal, QC, Canada
| | | | - Séverine Balmand
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621 Villeurbanne, France
| | - Louis Beranger
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621 Villeurbanne, France
| | - Caroline Blanc
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621 Villeurbanne, France
| | - Aymeric Bonnamour
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621 Villeurbanne, France
| | - Matthieu Boulesteix
- Laboratoire de Biométrie et Biologie Evolutive, UMR5558, Université Lyon 1, Université Lyon, Villeurbanne, France
| | - Nelly Burlet
- Laboratoire de Biométrie et Biologie Evolutive, UMR5558, Université Lyon 1, Université Lyon, Villeurbanne, France
| | - Federica Calevro
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621 Villeurbanne, France
| | - Patrick Callaerts
- Department of Human Genetics, Laboratory of Behavioral and Developmental Genetics, KU Leuven, University of Leuven, B-3000, Leuven, Belgium
| | - Théo Chancy
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621 Villeurbanne, France
| | - Hubert Charles
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621 Villeurbanne, France
- ERABLE European Team, INRIA, Rhône-Alpes, France
| | - Stefano Colella
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621 Villeurbanne, France
- Present Address: LSTM, Laboratoire des Symbioses Tropicales et Méditerranéennes, IRD, CIRAD, INRAE, SupAgro, Univ Montpellier, Montpellier, France
| | - André Da Silva Barbosa
- INRAE, Sorbonne Université, CNRS, IRD, UPEC, Université de Paris, Institute of Ecology and Environmental Sciences of Paris, Versailles, France
| | - Elisa Dell'Aglio
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621 Villeurbanne, France
| | - Alex Di Genova
- Laboratoire de Biométrie et Biologie Evolutive, UMR5558, Université Lyon 1, Université Lyon, Villeurbanne, France
- ERABLE European Team, INRIA, Rhône-Alpes, France
- Instituto de Ciencias de la Ingeniería, Universidad de O'Higgins, Rancagua, Chile
| | - Gérard Febvay
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621 Villeurbanne, France
| | - Toni Gabaldón
- Life Sciences, Barcelona Supercomputing Centre (BSC-CNS), Barcelona, Spain
- Mechanisms of Disease, Institute for Research in Biomedicine (IRB), Barcelona, Spain
- Institut Catalan de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | | | - Alexandra Gerber
- Laboratório de Bioinformática, Laboratório Nacional de Computação Científica, Petrópolis, Brazil
| | - Benjamin Gillet
- Institut de Génomique Fonctionnelle de Lyon (IGFL), Université de Lyon, Ecole Normale Supérieure de Lyon, CNRS UMR 5242, Lyon, France
| | | | - Sandrine Hughes
- Institut de Génomique Fonctionnelle de Lyon (IGFL), Université de Lyon, Ecole Normale Supérieure de Lyon, CNRS UMR 5242, Lyon, France
| | - Emmanuelle Jacquin-Joly
- INRAE, Sorbonne Université, CNRS, IRD, UPEC, Université de Paris, Institute of Ecology and Environmental Sciences of Paris, Versailles, France
| | - Justin Maire
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621 Villeurbanne, France
- Present Address: School of BioSciences, The University of Melbourne, Parkville, VIC, 3010, Australia
| | | | - Florent Masson
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621 Villeurbanne, France
- Present Address: Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Camille Meslin
- INRAE, Sorbonne Université, CNRS, IRD, UPEC, Université de Paris, Institute of Ecology and Environmental Sciences of Paris, Versailles, France
| | - Nicolas Montagné
- INRAE, Sorbonne Université, CNRS, IRD, UPEC, Université de Paris, Institute of Ecology and Environmental Sciences of Paris, Versailles, France
| | - Andrés Moya
- Institute for Integrative Systems Biology (I2SySBio), Universitat de València and Spanish Research Council (CSIC), València, Spain
- Foundation for the Promotion of Sanitary and Biomedical Research of Valencian Community (FISABIO), València, Spain
| | | | - Gautier Richard
- IGEPP, INRAE, Institut Agro, Université de Rennes, Domaine de la Motte, 35653, Le Rheu, France
| | - Jeb Rosen
- Institute for Systems Biology, Seattle, WA, USA
| | - Marie-France Sagot
- Laboratoire de Biométrie et Biologie Evolutive, UMR5558, Université Lyon 1, Université Lyon, Villeurbanne, France
- ERABLE European Team, INRIA, Rhône-Alpes, France
| | | | | | | | - Agnès Vallier
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621 Villeurbanne, France
| | - Aurélien Vigneron
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621 Villeurbanne, France
- Present Address: Department of Evolutionary Ecology, Institute for Organismic and Molecular Evolution, Johannes Gutenberg University, 55128, Mainz, Germany
| | - Anna Zaidman-Rémy
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621 Villeurbanne, France
| | - Waël Zamoum
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621 Villeurbanne, France
| | - Cristina Vieira
- Laboratoire de Biométrie et Biologie Evolutive, UMR5558, Université Lyon 1, Université Lyon, Villeurbanne, France.
- ERABLE European Team, INRIA, Rhône-Alpes, France.
| | - Rita Rebollo
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621 Villeurbanne, France.
| | - Amparo Latorre
- Institute for Integrative Systems Biology (I2SySBio), Universitat de València and Spanish Research Council (CSIC), València, Spain.
- Foundation for the Promotion of Sanitary and Biomedical Research of Valencian Community (FISABIO), València, Spain.
| | - Abdelaziz Heddi
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621 Villeurbanne, France.
| |
Collapse
|
25
|
Mielczarek A, Mielczarek Ł, Wojciechowicz-Żytko E. The influence of heavy metals on the shape and asymmetry of wings of female Polistes nimpha (Hymenoptera, Vespidae) living on contaminated sites. ECOTOXICOLOGY (LONDON, ENGLAND) 2021; 30:1854-1861. [PMID: 34259965 PMCID: PMC8556199 DOI: 10.1007/s10646-021-02449-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 06/29/2021] [Indexed: 06/13/2023]
Abstract
The aim of the present study was to determine the fluctuating asymmetry of the first pair of wings in females Polistes nimpha (Christ, 1791) living in an environment contaminated with heavy metals. The average concentration of Zn, Cd and Pb in the bodies of the insects varied depending on the distance from the source of contamination, reaching the highest values on the site closest to the source of contamination and the lowest at the most distant site. As a result of the morphometric analyses, significant differences were found in the asymmetry values of the first pair of wings depending on the level of Zn, Cd, Pb accumulated by the wasps. In the case of shape asymmetry, differences were found for all the effects studied (year of capture and site). Significant differences were also found in the size of wings between individuals captured on Sites 1 and 2 and those caught on Site 3. Specimens caught on site characterized by the lowest concentration of heavy metals in the topsoil, proved to be significantly larger than the insects collected on the other sites. There were no differences in the size of individuals between the different years of capture. Based on the results obtained by us, it can be assumed that the wings of P. nimpha females may become a useful object in studying the impact of environmental stress of Zn, Cd and Pb pollution on the symmetry of their wings.
Collapse
Affiliation(s)
- Anna Mielczarek
- University of Agriculture in Krakow, Faculty of Biotechnology and Horticulture, Department of Biology, Physiology and Plant Protection, Al. 29 Listopada 54, 31-425, Krakow, Poland
| | - Łukasz Mielczarek
- Krakow Municipal Greenspace Authority, Reymonta 20, 30-059, Krakow, Poland
| | - Elżbieta Wojciechowicz-Żytko
- University of Agriculture in Krakow, Faculty of Biotechnology and Horticulture, Department of Biology, Physiology and Plant Protection, Al. 29 Listopada 54, 31-425, Krakow, Poland.
| |
Collapse
|
26
|
Tiwari P, Rengarajan H, Saunders TE. Scaling of internal organs during Drosophila embryonic development. Biophys J 2021; 120:4264-4276. [PMID: 34087212 PMCID: PMC8516638 DOI: 10.1016/j.bpj.2021.05.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 05/04/2021] [Accepted: 05/27/2021] [Indexed: 11/20/2022] Open
Abstract
Many species show a diverse range of sizes; for example, domestic dogs have large variation in body mass. Yet, the internal structure of the organism remains similar, i.e., the system scales to organism size. Drosophila melanogaster has been a powerful model system for exploring scaling mechanisms. In the early embryo, gene expression boundaries scale very precisely to embryo length. Later in development, the adult wings grow with remarkable symmetry and scale well with animal size. Yet, our knowledge of whether internal organs initially scale to embryo size remains largely unknown. Here, we utilize artificially small Drosophila embryos to explore how three critical internal organs-the heart, hindgut, and ventral nerve cord (VNC)-adapt to changes in embryo morphology. We find that the heart scales precisely with embryo length. Intriguingly, reduction in cardiac cell length, rather than number, appears to be important in controlling heart length. The hindgut, which is the first chiral organ to form, displays scaling with embryo size under large-scale changes in the artificially smaller embryos but shows few hallmarks of scaling within wild-type size variation. Finally, the VNC only displays weak scaling behavior; even large changes in embryo geometry result in only small shifts in VNC length. This suggests that the VNC may have an intrinsic minimal length that is largely independent of embryo length. Overall, our work shows that internal organs can adapt to embryo size changes in Drosophila, but the extent to which they scale varies significantly between organs.
Collapse
Affiliation(s)
- Prabhat Tiwari
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
| | | | - Timothy E Saunders
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore; Department of Biological Sciences, National University of Singapore, Singapore, Singapore; Institute of Molecular and Cell Biology, A(∗)Star, Singapore, Singapore; Warwick Medical School, University of Warwick, Coventry, United Kingdom.
| |
Collapse
|
27
|
Common LK, Sumasgutner P, Dudaniec RY, Colombelli-Négrel D, Kleindorfer S. Avian vampire fly (Philornis downsi) mortality differs across Darwin's finch host species. Sci Rep 2021; 11:15832. [PMID: 34349147 PMCID: PMC8338931 DOI: 10.1038/s41598-021-94996-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 07/19/2021] [Indexed: 12/03/2022] Open
Abstract
In invasive parasites, generalism is considered advantageous during the initial phase of introduction. Thereafter, fitness costs to parasites, such as host-specific mortality, can drive parasites towards specialism to avoid costly hosts. It is important to determine changes in host specificity of invasive populations to understand host-parasite dynamics and their effects on vulnerable host populations. We examined changes in mortality in the introduced avian vampire fly (Philornis downsi) (Diptera: Muscidae), a generalist myasis-causing ectoparasite, between 2004 and 2020 on Floreana Island (Galápagos). Mortality was measured as the proportion of immature larvae found upon host nest termination. Over the time period, the avian vampire fly was most abundant and had low mortality in nests of the critically endangered medium tree finch (Camarhynchus pauper) and had the highest mortality in nests of hybrid tree finches (Camarhynchus spp.). Low larval mortality was also found in small tree (Camarhynchus parvulus) and small ground finch (Geospiza fuliginosa) nests. Selection could favour avian vampire flies that select medium tree finch nests and/or avoid hybrid nests. Overall, the finding of differences in avian vampire fly survival across host species is parsimonious with the idea that the introduced fly may be evolving towards host specialisation.
Collapse
Affiliation(s)
- Lauren K Common
- College of Science and Engineering, Flinders University, Bedford Park, SA, 5001, Australia
| | - Petra Sumasgutner
- Department of Behavioral and Cognitive Biology, Konrad Lorenz Research Center, Core Facility for Behavior and Cognition, University of Vienna, Vienna, Austria
| | - Rachael Y Dudaniec
- Department of Biological Sciences, Macquarie University, Sydney, NSW , 2109, Australia
| | | | - Sonia Kleindorfer
- College of Science and Engineering, Flinders University, Bedford Park, SA, 5001, Australia. .,Department of Behavioral and Cognitive Biology, Konrad Lorenz Research Center, Core Facility for Behavior and Cognition, University of Vienna, Vienna, Austria.
| |
Collapse
|
28
|
Grula CC, Rinehart JP, Greenlee KJ, Bowsher JH. Body size allometry impacts flight-related morphology and metabolic rates in the solitary bee Megachile rotundata. JOURNAL OF INSECT PHYSIOLOGY 2021; 133:104275. [PMID: 34217739 DOI: 10.1016/j.jinsphys.2021.104275] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 06/25/2021] [Accepted: 06/28/2021] [Indexed: 06/13/2023]
Abstract
Body size is related to many aspects of life history, including foraging distance and pollination efficiency. In solitary bees, manipulating the amount of larval diet produces intraspecific differences in adult body size. The goal of this study was to determine how body size impacts metabolic rates, allometry, and flight-related morphometrics in the alfalfa leafcutting bee, Megachile rotundata. By restricting or providing excess food, we produced a range of body sizes, which allowed us to test the effect of body size on allometry, the power required for flight, and amount of energy produced, as measured indirectly through CO2 emission. The power required during flight was predicted using the flight biomechanical formulas for wing loading and excess power index. We found larger bees had higher absolute metabolic rates at rest and during flight, but smaller bees had higher mass-specific metabolic rates at rest. During flight, bees did not have size-related differences in mass-specific metabolic rate. As bees increase in size, their thorax and abdomens become disproportionately larger, while their wings (area, and length) become disproportionately smaller. Smaller bees had more power available during flight as demonstrated by flight biomechanical formulas. Smaller body size was advantageous because of a reduced power requirement for flight with no metabolic cost.
Collapse
Affiliation(s)
- Courtney C Grula
- Department of Biological Sciences, North Dakota State University, 1340 Bolley Drive 218 Stevens Hall, Fargo, ND 58102, United States.
| | - Joseph P Rinehart
- Insect Genetics and Biochemistry Edward T. Schafer Research Center, U.S. Department of Agriculture/Agricultural Research Center, 1616 Albrecht Boulevard, Fargo, ND 58102, United States.
| | - Kendra J Greenlee
- Department of Biological Sciences, North Dakota State University, 1340 Bolley Drive 218 Stevens Hall, Fargo, ND 58102, United States.
| | - Julia H Bowsher
- Department of Biological Sciences, North Dakota State University, 1340 Bolley Drive 218 Stevens Hall, Fargo, ND 58102, United States.
| |
Collapse
|
29
|
Li P, Li X, Wang W, Tan X, Wang X, Yang X. Transcriptional identification of differentially expressed genes during the prepupal-pupal transition in the oriental armyworm, Mythimna separata (Walker) (Lepidoptera: Noctuidae). BULLETIN OF ENTOMOLOGICAL RESEARCH 2021; 111:485-498. [PMID: 33745467 DOI: 10.1017/s0007485321000171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The oriental armyworm, Mythimna separata (Walker) is a serious pest of agriculture that does particular damage to Gramineae crops in Asia, Europe, and Oceania. Metamorphosis is a key developmental stage in insects, although the genes underlying the metamorphic transition in M. separata remain largely unknown. Here, we sequenced the transcriptomes of five stages; mature larvae (ML), wandering (W), and pupation (1, 5, and 10 days after pupation, designated P1, P5, and P10) to identify transition-associated genes. Four libraries were generated, with 22,884, 23,534, 26,643, and 33,238 differentially expressed genes (DEGs) for the ML-vs-W, W-vs-P1, P1-vs-P5, and P5-vs-P10, respectively. Gene ontology enrichment analysis of DEGs showed that genes regulating the biosynthesis of the membrane and integral components of the membrane, which includes the cuticular protein (CP), 20-hydroxyecdysone (20E), and juvenile hormone (JH) biosynthesis, were enriched. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis indicated that DEGs were enriched in the metabolic pathways. Of these DEGs, thirty CP, seventeen 20E, and seven JH genes were differentially expressed across the developmental stages. For transcriptome validation, ten CP, 20E, and JH-related genes were selected and verified by real-time PCR quantitative. Collectively, our results provided a basis for further studies of the molecular mechanism of metamorphosis in M. separata.
Collapse
Affiliation(s)
- Peirong Li
- College of Plant Protection, Shenyang Agricultural University, Shenyang110866, Liaoning, China
- Key Laboratory of Economical and Applied Entomology of Liaoning Province, Shenyang110866, Liaoning, China
| | - Xinru Li
- College of Plant Protection, Shenyang Agricultural University, Shenyang110866, Liaoning, China
- Key Laboratory of Economical and Applied Entomology of Liaoning Province, Shenyang110866, Liaoning, China
| | - Wei Wang
- College of Plant Protection, Shenyang Agricultural University, Shenyang110866, Liaoning, China
- Key Laboratory of Economical and Applied Entomology of Liaoning Province, Shenyang110866, Liaoning, China
| | - Xiaoling Tan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing100193, China
| | - Xiaoqi Wang
- College of Plant Protection, Shenyang Agricultural University, Shenyang110866, Liaoning, China
- Key Laboratory of Economical and Applied Entomology of Liaoning Province, Shenyang110866, Liaoning, China
| | - Xueqing Yang
- College of Plant Protection, Shenyang Agricultural University, Shenyang110866, Liaoning, China
- Key Laboratory of Economical and Applied Entomology of Liaoning Province, Shenyang110866, Liaoning, China
| |
Collapse
|
30
|
Helm BR, Baldwin MA, Rinehart JP, Yocum GD, Greenlee KJ, Bowsher JH. Body and Wing Allometries Reveal Flight-Fecundity Tradeoff in Response to Larval Provisioning in Osmia lignaria (Hymenoptera: Megachilidae). JOURNAL OF INSECT SCIENCE (ONLINE) 2021; 21:6296186. [PMID: 34113998 PMCID: PMC8192885 DOI: 10.1093/jisesa/ieab035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Indexed: 06/10/2023]
Abstract
Variation in body size has important implications for physical performance and fitness. For insects, adult size and morphology are determined by larval growth and metamorphosis. Female blue orchard bees, Osmia lignaria, (Say) provision a finite quantity of food to their offspring. In this study, we asked how provision-dependent variation in size changes adult morphology. We performed a diet manipulation in which some larvae were starved in the final instar and some were given unlimited food. We examined the consequences on adult morphology in two ways. First, allometric relationships between major body regions (head, thorax, abdomen) and total body mass were measured to determine relative growth of these structures. Second, morphometrics that are critical for flight (wing area, wing loading, and extra flight power index) were quantified. Head and thorax mass had hyperallometric relationships with body size, indicating these parts become disproportionately large in adults when larvae are given copious provisions. However, abdominal mass and wing area increased hypoallometrically with body size. Thus, large adults had disproportionately lighter abdomens and smaller wing areas than smaller adults. Though both males and females followed these general patterns, allometric patterns were affected by sex. For flight metrics, small adults had reduced wing loading and an increased extra flight power index. These results suggest that diet quantity alters development in ways that affect the morphometric trait relationships in adult O. lignaria and may lead to functional differences in performance.
Collapse
Affiliation(s)
- Bryan R Helm
- Department of Biological Sciences, North Dakota State University, Fargo, ND, 58102USA
| | - Maxwell A Baldwin
- Department of Biological Sciences, North Dakota State University, Fargo, ND, 58102USA
| | - Joseph P Rinehart
- Insect Genetics and Biochemistry, Edward T. Schafer Agricultural Research Center, USDA-ARS, Fargo, ND, 58102USA
| | - George D Yocum
- Insect Genetics and Biochemistry, Edward T. Schafer Agricultural Research Center, USDA-ARS, Fargo, ND, 58102USA
| | - Kendra J Greenlee
- Department of Biological Sciences, North Dakota State University, Fargo, ND, 58102USA
| | - Julia H Bowsher
- Department of Biological Sciences, North Dakota State University, Fargo, ND, 58102USA
| |
Collapse
|
31
|
Di YQ, Zhao YM, Jin KY, Zhao XF. Subunit P60 of phosphatidylinositol 3-kinase promotes cell proliferation or apoptosis depending on its phosphorylation status. PLoS Genet 2021; 17:e1009514. [PMID: 33901186 PMCID: PMC8075199 DOI: 10.1371/journal.pgen.1009514] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 03/28/2021] [Indexed: 11/25/2022] Open
Abstract
The regulatory subunits (P60 in insects, P85 in mammals) determine the activation of the catalytic subunits P110 in phosphatidylinositol 3-kinases (PI3Ks) in the insulin pathway for cell proliferation and body growth. However, the regulatory subunits also promote apoptosis via an unclear regulatory mechanism. Using Helicoverpa armigera, an agricultural pest, we showed that H. armigera P60 (HaP60) was phosphorylated under insulin-like peptides (ILPs) regulation at larval growth stages and played roles in the insulin/ insulin-like growth factor (IGF) signaling (IIS) to determine HaP110 phosphorylation and cell membrane translocation; whereas, HaP60 was dephosphorylated and its expression increased under steroid hormone 20-hydroxyecdysone (20E) regulation during metamorphosis. Protein tyrosine phosphatase non-receptor type 6 (HaPTPN6, also named tyrosine-protein phosphatase corkscrew-like isoform X1 in the genome) was upregulated by 20E to dephosphorylate HaP60 and HaP110. 20E blocked HaP60 and HaP110 translocation to the cell membrane and reduced their interaction. The phosphorylated HaP60 mediated a cascade of protein phosphorylation and forkhead box protein O (HaFOXO) cytosol localization in the IIS to promote cell proliferation. However, 20E, via G protein-coupled-receptor-, ecdysone receptor-, and HaFOXO signaling axis, upregulated HaP60 expression, and the non-phosphorylated HaP60 interacted with phosphatase and tensin homolog (HaPTEN) to induce apoptosis. RNA interference-mediated knockdown of HaP60 and HaP110 in larvae repressed larval growth and apoptosis. Thus, HaP60 plays dual functions to promote cell proliferation and apoptosis by changing its phosphorylation status under ILPs and 20E regulation, respectively. The regulatory subunits of phosphatidylinositol 3-kinases (PI3Ks) play very important roles in various pathways by promoting cell proliferation or apoptosis. However, the upstream regulatory mechanism of their opposite functions is unclear. Using a seriously agricultural pest Helicoverpa armigera as a model, we show that ILPs induce HaP60 phosphorylation to increase HaP110 phosphorylation and cell membrane location to promote cell proliferation. 20E promotes HaP60 and HaP110 dephosphorylation that resulted in the cytosol localization and inhibition of PI3K activity. Moreover, 20E elevates HaP60 expression to promote apoptosis. Our study revealed that HaP60 plays dual functions to regulate cell proliferation and apoptosis by changing its phosphorylated status.
Collapse
Affiliation(s)
- Yu-Qin Di
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Yu-Meng Zhao
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Ke-Yan Jin
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Xiao-Fan Zhao
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
- * E-mail: .
| |
Collapse
|
32
|
Yang YM, Sun Q, Xiu JF, Yang M. Comparisons of Respiratory Pupal Gill Development in Black Flies (Diptera: Simuliidae) Shed Light on the Origin of Dipteran Prothoracic Dorsal Appendages. JOURNAL OF MEDICAL ENTOMOLOGY 2021; 58:588-598. [PMID: 33073846 DOI: 10.1093/jme/tjaa208] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Indexed: 06/11/2023]
Abstract
During the transformation of immature aquatic dipteran insects to terrestrial adults, the prothoracic pupal respiratory organ enables pupae to cope with flood-drought alternating environments. Despite its obvious importance, the biology of the organ, including its development, is poorly understood. In this study, the developing gills of several Simulium Latreille (Diptera: Simuliidae) spp. were observed using serial histological sections and compared with data on those of other dipteran families published previously. The formation of some enigmatic features that made the Simulium gill unique is detailed. Through comparisons between taxa, we describe a common developmental pattern in which the prothoracic dorsal disc cells not only morph into the protruding respiratory organ, which is partially or entirely covered with a cuticle layer of plastron, but also invaginate to form a multipart internal chamber that in part gives rise to the anterior spiracle of adult flies. The gill disc resembles wing and leg discs and undergoes cell proliferation, axial outgrowth, and cuticle sheath formation. The overall appendage-like characteristics of the dipteran pupal respiratory organ suggest an ancestral form that gave rise to its current forms, which added more dimensions to the ways that arthropods evolved through appendage adaptation. Our observations provide important background from which further studies into the evolution of the respiratory organ across Diptera can be carried out.
Collapse
Affiliation(s)
- Yao Ming Yang
- Department of Biology and Key Laboratory of Medical Entomology, Guizhou Medical University, Guiyang, Guizhou, China
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Qian Sun
- Department of Biology and Key Laboratory of Medical Entomology, Guizhou Medical University, Guiyang, Guizhou, China
| | - Jiang-Fan Xiu
- Department of Biology and Key Laboratory of Medical Entomology, Guizhou Medical University, Guiyang, Guizhou, China
| | - Ming Yang
- Department of Biology and Key Laboratory of Medical Entomology, Guizhou Medical University, Guiyang, Guizhou, China
| |
Collapse
|
33
|
Muñoz-Muñoz F, Pagès N, Durao AF, England M, Werner D, Talavera S. Narrow versus broad: sexual dimorphism in the wing form of western European species of the subgenus Avaritia (Culicoides, Ceratopogonidae). Integr Zool 2021; 16:769-784. [PMID: 33433938 DOI: 10.1111/1749-4877.12516] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
While wing form is known to differ between males and females of the genus Culicoides, detailed studies of sexual dimorphism are lacking. In this study, we analyze sex-specific differences in the wing form of 5 species of the subgenus Avaritia, using geometric morphometrics and comparative phylogenetic methods. Our results confirm the existence of marked sexual dimorphism in the wing form of the studied species and reveal for the first time that while there is a shared general pattern of sexual shape dimorphism within the subgenus, sexual size dimorphism, and particular features of sexual shape dimorphism differ among species. Sexual shape dimorphism was found to be poorly associated to size and the evolutionary history of the species. The tight association of sexual shape dimorphism with aspect ratio suggests that the shape of the wing is optimized for the type of flight of each sex, that is, dispersal flight in females versus aerobatic flight in males. Moreover, the fact that interspecific shape differences are greater and more strongly associated to aspect ratio in males than in females might be indicating that in males the selective pressures affecting flight performance characteristics are more heterogeneous and/or stronger than in females among the studied species.
Collapse
Affiliation(s)
- Francesc Muñoz-Muñoz
- Departament de Biologia Animal, de Biologia Vegetal i d'Ecologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Nonito Pagès
- Centre de Recerca en Sanitat Animal (CReSA), UAB-IRTA, Campus de la Universitat Autònoma de Barcelona, Barcelona, Spain.,CIRAD, UMR ASTRE, Guadeloupe, France.,ASTRE, CIRAD, INRAe, Université de Montpellier, Montpellier, France
| | - Ana F Durao
- Departament de Biologia Animal, de Biologia Vegetal i d'Ecologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Barcelona, Spain
| | | | - Doreen Werner
- Leibniz-Centre for Agricultural Landscape Research, Müncheberg, Germany
| | - Sandra Talavera
- Centre de Recerca en Sanitat Animal (CReSA), UAB-IRTA, Campus de la Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
34
|
Fusco G, Rigato E, Springolo A. Size and shape regulation during larval growth in the lepidopteran Pieris brassicae. Evol Dev 2020; 23:46-60. [PMID: 33300666 DOI: 10.1111/ede.12362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 10/06/2020] [Accepted: 11/17/2020] [Indexed: 01/07/2023]
Abstract
By adopting a longitudinal study design and through geometric morphometrics methods, we investigated size and shape regulation in the head capsule during the larval development of the cabbage butterfly Pieris brassicae under laboratory conditions. We found evidence of size regulation by compensatory growth, although not equally effective in all larval stages. Size compensation is not attained through the regulation of developmental timing, but rather through the modulation of per-time growth rate. As for the shape, neither the variance of the symmetric component of shape, nor the level of fluctuating asymmetry show any evidence of increase across stages, either at the population or individual level, which is interpreted as a mark of ontogenetic shape regulation. In addition, also the geometry of individual asymmetry is basically conserved across stages. While providing specific documentation on the ontogeny of size and shape variation in this insect, this study may contribute to a more general understanding of developmental regulation and its influence on phenotypic evolution.
Collapse
Affiliation(s)
- Giuseppe Fusco
- Department of Biology, University of Padova, Padua, Italy
| | | | | |
Collapse
|
35
|
Abstract
Abstract
Background
Organisms show an incredibly diverse array of body and organ shapes that are both unique to their taxon and important for adapting to their environment. Achieving these specific shapes involves coordinating the many processes that transform single cells into complex organs, and regulating their growth so that they can function within a fully-formed body.
Main text
Conceptually, body and organ shape can be separated in two categories, although in practice these categories need not be mutually exclusive. Body shape results from the extent to which organs, or parts of organs, grow relative to each other. The patterns of relative organ size are characterized using allometry. Organ shape, on the other hand, is defined as the geometric features of an organ’s component parts excluding its size. Characterization of organ shape is frequently described by the relative position of homologous features, known as landmarks, distributed throughout the organ. These descriptions fall into the domain of geometric morphometrics.
Conclusion
In this review, we discuss the methods of characterizing body and organ shape, the developmental programs thought to underlie each, highlight when and how the mechanisms regulating body and organ shape might overlap, and provide our perspective on future avenues of research.
Collapse
|
36
|
BmFoxO Gene Regulation of the Cell Cycle Induced by 20-Hydroxyecdysone in BmN-SWU1 Cells. INSECTS 2020; 11:insects11100700. [PMID: 33066376 PMCID: PMC7602224 DOI: 10.3390/insects11100700] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/11/2020] [Accepted: 10/12/2020] [Indexed: 02/06/2023]
Abstract
Simple Summary Ecdysteroid titer determines the state of the cell cycle in silkworm (Bombyx mori) metamorphosis. However, the mechanism of this process is unclear. In this study, we reported that 20-Hydroxyecdysone (20E) can promote BmFoxO (Bombyx mori Forkhead box protein O) gene expression and induce BmFoxO nuclear translocation in BmN-SWU1 cells. Overexpression of the BmFoxO gene affects cell cycle progression, which results in cell cycle arrest in the G0/G1 phase as well as inhibition of DNA replication. Further investigations showed that the effect of 20E was attenuated after BmFoxO gene knockdown. The findings of this study confirmed that BmFoxO is a key mediator in the cell cycle regulation pathway induced by 20E. This suggests a novel pathway for ecdysteroid-induced cell cycle regulation in the process of silkworm metamorphosis, and it is likely to be conserved between Lepidoptera insects. Abstract Ecdysteroid titer determines the state of the cell cycle in silkworm (Bombyxmori) metamorphosis. However, the mechanism of this process is unclear. In this study, we demonstrated that the BmFoxO gene participates in the regulation of the cell cycle induced by 20-Hydroxyecdysone (20E) in BmN-SWU1 cells. The 20E blocks the cell cycle in the G2/M phase through the ecdysone receptor (EcR) and inhibits DNA replication. The 20E can promote BmFoxO gene expression. Immunofluorescence and Western blot results indicated that 20E can induce BmFoxO nuclear translocation in BmN-SWU1 cells. Overexpression of the BmFoxO gene affects cell cycle progression, which results in cell cycle arrest in the G0/G1 phase as well as inhibition of DNA replication. Knockdown of the BmFoxO gene led to cell accumulation at the G2/M phase. The effect of 20E was attenuated after BmFoxO gene knockdown. These findings increase our understanding of the function of 20E in the regulation of the cell cycle in B. mori.
Collapse
|
37
|
Abstract
The evolution of insect metamorphosis is one of the most important sagas in animal history, transforming small, obscure soil arthropods into a dominant terrestrial group that has profoundly shaped the evolution of terrestrial life. The evolution of flight initiated the trajectory towards metamorphosis, favoring enhanced differences between juvenile and adult stages. The initial step modified postembryonic development, resulting in the nymph-adult differences characteristic of hemimetabolous species. The second step was to complete metamorphosis, holometaboly, and occurred by profoundly altering embryogenesis to produce a larval stage, the nymph becoming the pupa to accommodate the deferred development needed to make the adult. These changing life history patterns were intimately linked to two hormonal systems, the ecdysteroids and the juvenile hormones (JH), which function in both embryonic and postembryonic domains and control the stage-specifying genes Krüppel homolog 1 (Kr-h1), broad and E93. The ecdysteroids induce and direct molting through the ecdysone receptor (EcR), a nuclear hormone receptor with numerous targets including a conserved transcription factor network, the 'Ashburner cascade', which translates features of the ecdysteroid peak into the different phases of the molt. With the evolution of metamorphosis, ecdysteroids acquired a metamorphic function that exploited the repressor capacity of the unliganded EcR, making it a hormone-controlled gateway for the tissue development preceding metamorphosis. JH directs ecdysteroid action, controlling Kr-h1 expression which in turn regulates the other stage-specifying genes. JH appears in basal insect groups as their embryos shift from growth and patterning to differentiation. As a major portion of embryogenesis was deferred to postembryonic life with the evolution of holometaboly, JH also acquired a potent role in regulating postembryonic growth and development. Details of its involvement in broad expression and E93 suppression have been modified as life cycles became more complex and likely underlie some of the changes seen in the shift from incomplete to complete metamorphosis.
Collapse
Affiliation(s)
- James W Truman
- Department of Biology and Friday Harbor Laboratories, University of Washington, 620 University Road, Friday Harbor, WA 98250, USA.
| |
Collapse
|
38
|
Riddiford LM. Revealing the mysteries of insect metamorphosis. Curr Biol 2020. [DOI: 10.1016/j.cub.2020.07.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
39
|
Chafino S, Ureña E, Casanova J, Casacuberta E, Franch-Marro X, Martín D. Upregulation of E93 Gene Expression Acts as the Trigger for Metamorphosis Independently of the Threshold Size in the Beetle Tribolium castaneum. Cell Rep 2020; 27:1039-1049.e2. [PMID: 31018122 DOI: 10.1016/j.celrep.2019.03.094] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 02/25/2019] [Accepted: 03/25/2019] [Indexed: 11/19/2022] Open
Abstract
Body size in holometabolous insects is determined by the size at which the juvenile larva undergoes metamorphosis to the pupal stage. To undergo larva-pupa transition, larva must reach a critical developmental checkpoint, the threshold size (TS); however, the molecular mechanisms through which the TS cues this transition remain to be fully characterized. Here, we use the flour beetle Tribolium castaneum to characterize the molecular mechanisms underlying entry into metamorphosis. We found that T. castaneum reaches a TS at the beginning of the last larval instar, which is associated with the downregulation of TcKr-h1 and the upregulation of TcE93 and TcBr-C. Unexpectedly, we found that while there is an association between TS and TcE93 upregulation, it is the latter that constitutes the molecular trigger for metamorphosis initiation. In light of our results, we evaluate the interactions that control the larva-pupa transition and suggest alternative models.
Collapse
Affiliation(s)
- Silvia Chafino
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37-49, 08003 Barcelona, Spain
| | - Enric Ureña
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37-49, 08003 Barcelona, Spain
| | - Jordi Casanova
- Institut de Biologia Molecular de Barcelona (CSIC), Baldiri Reixac, 4, 08028 Barcelona, Spain; Institut de Recerca Biomèdica de Barcelona, (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Baldiri Reixac, 10, 08028 Barcelona, Spain
| | - Elena Casacuberta
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37-49, 08003 Barcelona, Spain
| | - Xavier Franch-Marro
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37-49, 08003 Barcelona, Spain.
| | - David Martín
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37-49, 08003 Barcelona, Spain.
| |
Collapse
|
40
|
Yuan D, Zhou S, Liu S, Li K, Zhao H, Long S, Liu H, Xie Y, Su Y, Yu F, Li S. The AMPK-PP2A axis in insect fat body is activated by 20-hydroxyecdysone to antagonize insulin/IGF signaling and restrict growth rate. Proc Natl Acad Sci U S A 2020; 117:9292-9301. [PMID: 32277029 PMCID: PMC7196814 DOI: 10.1073/pnas.2000963117] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
In insects, 20-hydroxyecdysone (20E) limits the growth period by triggering developmental transitions; 20E also modulates the growth rate by antagonizing insulin/insulin-like growth factor signaling (IIS). Previous work has shown that 20E cross-talks with IIS, but the underlying molecular mechanisms are not fully understood. Here we found that, in both the silkworm Bombyx mori and the fruit fly Drosophila melanogaster, 20E antagonized IIS through the AMP-activated protein kinase (AMPK)-protein phosphatase 2A (PP2A) axis in the fat body and suppressed the growth rate. During Bombyx larval molt or Drosophila pupariation, high levels of 20E activate AMPK, a molecular sensor that maintains energy homeostasis in the insect fat body. In turn, AMPK activates PP2A, which further dephosphorylates insulin receptor and protein kinase B (AKT), thus inhibiting IIS. Activation of the AMPK-PP2A axis and inhibition of IIS in the Drosophila fat body reduced food consumption, resulting in the restriction of growth rate and body weight. Overall, our study revealed an important mechanism by which 20E antagonizes IIS in the insect fat body to restrict the larval growth rate, thereby expanding our understanding of the comprehensive regulatory mechanisms of final body size in animals.
Collapse
Affiliation(s)
- Dongwei Yuan
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, 510631 Guangzhou, China
- Key Laboratory of Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 200032 Shanghai, China
- University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Shun Zhou
- Key Laboratory of Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 200032 Shanghai, China
- University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Suning Liu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, 510631 Guangzhou, China
| | - Kang Li
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, 510631 Guangzhou, China
| | - Haigang Zhao
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, 510631 Guangzhou, China
- Key Laboratory of Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 200032 Shanghai, China
- University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Shihui Long
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, 510631 Guangzhou, China
| | - Hanhan Liu
- Key Laboratory of Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 200032 Shanghai, China
- University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Yongfang Xie
- Bioinformatic College, Chongqing University of Posts and Telecommunications, 400065 Chongqing, China
| | - Yunlin Su
- Key laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Science, 510650 Guangzhou, China
| | - Fengwei Yu
- Temasek Life Sciences Laboratory and Department of Biological Sciences, Research Link, National University of Singapore, 117604, Singapore
| | - Sheng Li
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, 510631 Guangzhou, China;
- Key Laboratory of Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 200032 Shanghai, China
| |
Collapse
|
41
|
Common LK, O'Connor JA, Dudaniec RY, Peters KJ, Kleindorfer S. Evidence for rapid downward fecundity selection in an ectoparasite (Philornis downsi) with earlier host mortality in Darwin's finches. J Evol Biol 2020; 33:524-533. [PMID: 31961983 PMCID: PMC7217188 DOI: 10.1111/jeb.13588] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 01/09/2020] [Accepted: 01/15/2020] [Indexed: 01/05/2023]
Abstract
Fecundity selection is a critical component of fitness and a major driver of adaptive evolution. Trade‐offs between parasite mortality and host resources are likely to impose a selection pressure on parasite fecundity, but this is little studied in natural systems. The ‘fecundity advantage hypothesis’ predicts female‐biased sexual size dimorphism whereby larger females produce more offspring. Parasitic insects are useful for exploring the interplay between host resource availability and parasite fecundity, because female body size is a reliable proxy for fecundity in insects. Here we explore temporal changes in body size in the myiasis‐causing parasite Philornis downsi (Diptera: Muscidae) on the Galápagos Islands under conditions of earlier in‐nest host mortality. We aim to investigate the effects of decreasing host resources on parasite body size and fecundity. Across a 12‐year period, we observed a mean of c. 17% P. downsi mortality in host nests with 55 ± 6.2% host mortality and a trend of c. 66% higher host mortality throughout the study period. Using specimens from 116 Darwin's finch nests (Passeriformes: Thraupidae) and 114 traps, we found that over time, P. downsi pupae mass decreased by c. 32%, and male (c. 6%) and female adult size (c. 11%) decreased. Notably, females had c. 26% smaller abdomens in later years, and female abdomen size was correlated with number of eggs. Our findings imply natural selection for faster P. downsi pupation and consequently smaller body size and lower parasite fecundity in this newly evolving host–parasite system.
Collapse
Affiliation(s)
- Lauren K Common
- College of Science and Engineering, Flinders University, Adelaide, SA, Australia
| | - Jody A O'Connor
- College of Science and Engineering, Flinders University, Adelaide, SA, Australia.,Department for Environment and Water, Government of South Australia, Adelaide, SA, Australia
| | - Rachael Y Dudaniec
- Department of Biological Sciences, Macquarie University, Sydney, NSW, Australia
| | - Katharina J Peters
- College of Science and Engineering, Flinders University, Adelaide, SA, Australia
| | - Sonia Kleindorfer
- College of Science and Engineering, Flinders University, Adelaide, SA, Australia.,Konrad Lorenz Research Center for Behaviour and Cognition and Department of Behavioural and Cognitive Biology, University of Vienna, Vienna, Austria
| |
Collapse
|
42
|
Moss-Taylor L, Upadhyay A, Pan X, Kim MJ, O'Connor MB. Body Size and Tissue-Scaling Is Regulated by Motoneuron-Derived Activinß in Drosophila melanogaster. Genetics 2019; 213:1447-1464. [PMID: 31585954 PMCID: PMC6893369 DOI: 10.1534/genetics.119.302394] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 09/29/2019] [Indexed: 01/17/2023] Open
Abstract
Correct scaling of body and organ size is crucial for proper development, and the survival of all organisms. Perturbations in circulating hormones, including insulins and steroids, are largely responsible for changing body size in response to both genetic and environmental factors. Such perturbations typically produce adults whose organs and appendages scale proportionately with final size. The identity of additional factors that might contribute to scaling of organs and appendages with body size is unknown. Here, we report that loss-of-function mutations in DrosophilaActivinβ (Actβ), a member of the TGF-β superfamily, lead to the production of small larvae/pupae and undersized rare adult escapers. Morphometric measurements of escaper adult appendage size (wings and legs), as well as heads, thoraxes, and abdomens, reveal a disproportional reduction in abdominal size compared to other tissues. Similar size measurements of selected Actβ mutant larval tissues demonstrate that somatic muscle size is disproportionately smaller when compared to the fat body, salivary glands, prothoracic glands, imaginal discs, and brain. We also show that Actβ control of body size is dependent on canonical signaling through the transcription-factor dSmad2 and that it modulates the growth rate, but not feeding behavior, during the third-instar period. Tissue- and cell-specific knockdown, and overexpression studies, reveal that motoneuron-derived Actβ is essential for regulating proper body size and tissue scaling. These studies suggest that, unlike in vertebrates, where Myostatin and certain other Activin-like factors act as systemic negative regulators of muscle mass, in Drosophila, Actβ is a positive regulator of muscle mass that is directly delivered to muscles by motoneurons. We discuss the importance of these findings in coordinating proportional scaling of insect muscle mass to appendage size.
Collapse
Affiliation(s)
- Lindsay Moss-Taylor
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota 55455
| | - Ambuj Upadhyay
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota 55455
| | - Xueyang Pan
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota 55455
| | - Myung-Jun Kim
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota 55455
| | - Michael B O'Connor
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota 55455
| |
Collapse
|
43
|
Truman JW, Riddiford LM. The evolution of insect metamorphosis: a developmental and endocrine view. Philos Trans R Soc Lond B Biol Sci 2019; 374:20190070. [PMID: 31438820 PMCID: PMC6711285 DOI: 10.1098/rstb.2019.0070] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Developmental, genetic and endocrine data from diverse taxa provide insight into the evolution of insect metamorphosis. We equate the larva–pupa–adult of the Holometabola to the pronymph–nymph–adult of hemimetabolous insects. The hemimetabolous pronymph is a cryptic embryonic stage with unique endocrinology and behavioural modifications that probably served as preadaptations for the larva. It develops in the absence of juvenile hormone (JH) as embryonic primordia undergo patterning and morphogenesis, the processes that were arrested for the evolution of the larva. Embryonic JH then drives tissue differentiation and nymph formation. Experimental treatment of pronymphs with JH terminates patterning and induces differentiation, mimicking the processes that occurred during the evolution of the larva. Unpatterned portions of primordia persist in the larva, becoming imaginal discs that form pupal and adult structures. Key transcription factors are associated with the holometabolous life stages: Krüppel-homolog 1 (Kr-h1) in the larva, broad in the pupa and E93 in the adult. Kr-h1 mediates JH action and is found whenever JH acts, while the other two genes direct the formation of their corresponding stages. In hemimetabolous forms, the pronymph has low Broad expression, followed by Broad expression through the nymphal moults, then a switch to E93 to form the adult. This article is part of the theme issue ‘The evolution of complete metamorphosis’.
Collapse
Affiliation(s)
- James W Truman
- Department of Biology, Friday Harbor Laboratories, University of Washington, Friday Harbor, WA 98250, USA
| | - Lynn M Riddiford
- Department of Biology, Friday Harbor Laboratories, University of Washington, Friday Harbor, WA 98250, USA
| |
Collapse
|
44
|
Chanchay P, Vongsangnak W, Thancharoen A, Sriboonlert A. Reconstruction of insect hormone pathways in an aquatic firefly, Sclerotia aquatilis (Coleoptera: Lampyridae), using RNA-seq. PeerJ 2019; 7:e7428. [PMID: 31396456 PMCID: PMC6681800 DOI: 10.7717/peerj.7428] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Accepted: 07/07/2019] [Indexed: 01/19/2023] Open
Abstract
Insect hormones: ecdysteroids and juvenile hormones have crucial functions during the regulation of different developmental pathways in insects. Insect metamorphosis is one of the primary pathways regulated by these hormones. The insect hormone biosynthetic pathway is conserved among arthropods, including insects, with some variations in the form of hormones used among each group of insects. In this study, the candidate genes involved in the insect hormone pathways and their functional roles were assessed in an aquatic firefly, Sclerotia aquatilis using a high-throughput RNA sequencing technique. Illumina next-generation sequencing (NGS) was used to generate transcriptome data for the different developmental stages (i.e., larva, pupa, and adult) of S. aquatilis. A total of 82,022 unigenes were generated across all different developmental stages. Functional annotation was performed for each gene, based on multiple biological databases, generating 46,230 unigenes. These unigenes were subsequently mapped using KEGG pathways. Accordingly, 221 protein-encoding genes involved in the insect hormone pathways were identified, including, JHAMT, CYP15A1, JHE, and Halloween family genes. Twenty potential gene candidates associated with the biosynthetic and degradation pathways for insect hormones were subjected to real-time PCR, reverse transcriptase PCR (RT-PCR) and sequencing analyses. The real-time PCR results showed similar expression patterns as those observed for transcriptome expression profiles for most of the examined genes. RT-PCR and Sanger sequencing confirmed the expressed coding sequences of these gene candidates. This study is the first to examine firefly insect hormone pathways, facilitating a better understanding of firefly growth and development.
Collapse
Affiliation(s)
- Pornchanan Chanchay
- Department of Genetics, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | - Wanwipa Vongsangnak
- Department of Zoology, Faculty of Science, Kasetsart University, Bangkok, Thailand.,Omics Center for Agriculture, Bioresources, Food, and Health, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | - Anchana Thancharoen
- Department of Entomology, Faculty of Agriculture, Kasetsart University, Bangkok, Thailand
| | | |
Collapse
|
45
|
Sato K, Miyata K, Ozawa S, Hasegawa K. Systemic RNAi of V-ATPase subunit B causes molting defect and developmental abnormalities in Periplaneta fuliginosa. INSECT SCIENCE 2019; 26:721-731. [PMID: 29285882 DOI: 10.1111/1744-7917.12565] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 11/13/2017] [Accepted: 12/05/2017] [Indexed: 06/07/2023]
Abstract
The vacuolar (H+ )-ATPases (V-ATPases) are ATP-driven proton pumps with multiple functions in many organisms. In this study, we performed structural and functional analysis of vha55 gene that encodes V-ATPase subunit B in the smokybrown cockroach Periplaneta fuliginosa (Blattodea). We observed a high homology score of the deduced amino acid sequences between 10 species in seven orders. RNAi of the vha55 gene in P. fuliginosa caused nymphal/nymphal molting defects with incomplete shedding of old cuticles, growth inhibition, as well as bent and wrinkled cuticles of thoraxes and abdominal segments. Since growth inhibition caused by vha55 RNAi did not interfere in the commencement of cockroach molting, molting timing and body growth might be controlled by independent mechanism. Our study suggested V-ATPases might be a good candidate molecule for evolutionary and developmental studies of insect molting.
Collapse
Affiliation(s)
- Kazuki Sato
- Laboratory of Nematology, Department of Applied Biological Sciences, Saga University, Honjo 1, Saga, Japan
- The United Graduate School of Agricultural Sciences, Kagoshima University, Korimoto 1-21-24, Kagoshima, Japan
| | - Keita Miyata
- Department of Biomedical Sciences, College of Life and Health Sciences, Chubu University, Kasugai, Aichi, Japan
| | - Sota Ozawa
- Department of Environmental Biology, College of Bioscience & Biotechnology, Chubu University, Kasugai, Aichi, Japan
| | - Koichi Hasegawa
- Department of Environmental Biology, College of Bioscience & Biotechnology, Chubu University, Kasugai, Aichi, Japan
| |
Collapse
|
46
|
Drosophila Acquires a Long-Lasting Body-Size Memory from Visual Feedback. Curr Biol 2019; 29:1833-1841.e3. [PMID: 31104933 DOI: 10.1016/j.cub.2019.04.037] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 03/11/2019] [Accepted: 04/12/2019] [Indexed: 11/23/2022]
Abstract
Grasping an object or crossing a trench requires the integration of information on the operating distance of our limbs with precise distance estimation. The reach of our hands and step size of our legs are learned by the visual feedback we get during our actions. This implicit knowledge of our peripersonal space is first acquired during infancy but will be continuously updated throughout our whole life [1]. In contrast, body size of holometabolous insects does not change after metamorphosis; nevertheless, they do have to learn their body reaches at least once. The body size of Drosophila imagines can vary by about 15% depending on environmental factors like food quality and temperature [2]. To investigate how flies acquire knowledge about and memorize their body size, we studied their decisions to either refrain from or initiate climbing over gaps exceeding their body size [3]. Naive (dark-reared) flies overestimate their size and have to learn it from the parallax motion of the retinal images of objects in their environment while walking. Naive flies can be trained in a striped arena and manipulated to underestimate their size, but once consolidated, this memory seems to last for a lifetime. Consolidation of this memory is stress sensitive only in the first 2 h after training but cannot be retrieved for the next 12 h. We have identified a set of intrinsic, lateral neurons of the protocerebral bridge of the central complex [4, 5] that depend on dCREB2 transcriptional activity for long-term memory consolidation and maintenance.
Collapse
|
47
|
Hasan J, Roy A, Chatterjee K, Yarlagadda PKDV. Mimicking Insect Wings: The Roadmap to Bioinspiration. ACS Biomater Sci Eng 2019; 5:3139-3160. [DOI: 10.1021/acsbiomaterials.9b00217] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Jafar Hasan
- Science and Engineering Faculty, Queensland University of Technology, 2 George Street, Brisbane, QLD 4001, Australia
| | - Anindo Roy
- Department of Materials Engineering, Indian Institute of Science, C. V. Raman Avenue, Bangalore 560 012, India
| | - Kaushik Chatterjee
- Department of Materials Engineering, Indian Institute of Science, C. V. Raman Avenue, Bangalore 560 012, India
| | - Prasad K. D. V. Yarlagadda
- Science and Engineering Faculty, Queensland University of Technology, 2 George Street, Brisbane, QLD 4001, Australia
| |
Collapse
|
48
|
Wang Y, Maier A, Gehring N, Moussian B. Inhibition of fatty acid desaturation impairs cuticle differentiation in Drosophila melanogaster. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2019; 100:e21535. [PMID: 30672604 DOI: 10.1002/arch.21535] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 12/20/2018] [Accepted: 12/25/2018] [Indexed: 06/09/2023]
Abstract
Previously, we showed that inhibition of the activity of fatty acid desaturases (Desat) perturbs signalling of the developmental timing hormone ecdysone in the fruit fly Drosophila melanogaster. To understand the impact of this effect on cuticle differentiation, a process regulated by ecdysone, we analysed the cuticle of D. melanogaster larvae fed with the Desat inhibitor CA10556. In these larvae, the expression of most of the key cuticle genes is normal or slightly elevated at day one of CA10556 feeding. As an exception, expression of twdlM coding for a yet uncharacterised cuticle protein is completely suppressed. The cuticle of these larvae appears to be normal at the morphological level. However, these animals are sensitive to desiccation, a trait that according to our data, among others, may be associated with reduced TwdlM amounts. At day two of CA10556 feeding, expression of most of the cuticle genes tested including twdlM is suppressed. Expression of cpr47Eb coding for a chitin-binding protein is, by contrast, highly elevated suggesting that Cpr47Eb participates at a specific compensation program. Overall, the cuticle of these larvae is thinner than the cuticle of control larvae. Taken together, lipid desaturation is necessary for a coordinated deployment of a normal cuticle differentiation program.
Collapse
Affiliation(s)
- Yiwen Wang
- University of Tübingen, Interfaculty Institute of Cell Biology, Section Animal Genetics, Tübingen, Germany
| | - Annette Maier
- University of Tübingen, Interfaculty Institute of Cell Biology, Section Animal Genetics, Tübingen, Germany
| | - Nicole Gehring
- University of Tübingen, Interfaculty Institute of Cell Biology, Section Animal Genetics, Tübingen, Germany
| | - Bernard Moussian
- Université Côte d'Azur, CNRS, Inserm, Institute of Biology Valrose, Nice, France
| |
Collapse
|
49
|
Schwab DB, Casasa S, Moczek AP. On the Reciprocally Causal and Constructive Nature of Developmental Plasticity and Robustness. Front Genet 2019; 9:735. [PMID: 30687394 PMCID: PMC6335315 DOI: 10.3389/fgene.2018.00735] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 12/22/2018] [Indexed: 01/29/2023] Open
Abstract
Exposure to environmental variation is a characteristic feature of normal development, one that organisms can respond to during their lifetimes by actively adjusting or maintaining their phenotype in order to maximize fitness. Plasticity and robustness have historically been studied by evolutionary biologists through quantitative genetic and reaction norm approaches, while more recent efforts emerging from evolutionary developmental biology have begun to characterize the molecular and developmental genetic underpinnings of both plastic and robust trait formation. In this review, we explore how our growing mechanistic understanding of plasticity and robustness is beginning to force a revision of our perception of both phenomena, away from our conventional view of plasticity and robustness as opposites along a continuum and toward a framework that emphasizes their reciprocal, constructive, and integrative nature. We do so in three sections. Following an introduction, the first section looks inward and reviews the genetic, epigenetic, and developmental mechanisms that enable organisms to sense and respond to environmental conditions, maintaining and adjusting trait formation in the process. In the second section, we change perspective and look outward, exploring the ways in which organisms reciprocally shape their environments in ways that influence trait formation, and do so through the lens of behavioral plasticity, niche construction, and host-microbiota interactions. In the final section, we revisit established plasticity and robustness concepts in light of these findings, and highlight research opportunities to further advance our understanding of the causes, mechanisms, and consequences of these ubiquitous, and interrelated, phenomena.
Collapse
|
50
|
Abstract
The insect fat body is analogous to vertebrate adipose tissue and liver. In this review, the new and exciting advancements made in fat body biology in the last decade are summarized. Controlled by hormonal and nutritional signals, insect fat body cells undergo mitosis during embryogenesis, endoreplication during the larval stages, and remodeling during metamorphosis and regulate reproduction in adults. Fat body tissues are major sites for nutrient storage, energy metabolism, innate immunity, and detoxification. Recent studies have revealed that the fat body plays a central role in the integration of hormonal and nutritional signals to regulate larval growth, body size, circadian clock, pupal diapause, longevity, feeding behavior, and courtship behavior, partially by releasing fat body signals to remotely control the brain. In addition, the fat body has emerged as a fascinating model for studying metabolic disorders and immune diseases. Potential future directions for fat body biology are also proposed herein.
Collapse
Affiliation(s)
- Sheng Li
- Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, Guangdong 510631, China; , ,
| | - Xiaoqiang Yu
- Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, Guangdong 510631, China; , ,
| | - Qili Feng
- Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, Guangdong 510631, China; , ,
| |
Collapse
|