1
|
Mhawish R, Komarnytsky S. Small Phenolic Metabolites at the Nexus of Nutrient Transport and Energy Metabolism. Molecules 2025; 30:1026. [PMID: 40076251 PMCID: PMC11901895 DOI: 10.3390/molecules30051026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 02/17/2025] [Accepted: 02/20/2025] [Indexed: 03/14/2025] Open
Abstract
Over time, human metabolism evolved to accommodate the challenges and benefits of plant foods that contain high amounts of carbohydrates and polyphenols. The latter are typically metabolized into small phenolic metabolites, including phenolic acids and their endogenous and microbial derivatives, that influence interconnected metabolic pathways involved in nutrient transport, energy metabolism, and neurotransmitter balance. Unlike other natural products, their biological effects arise from weak interactions with multiple molecular pathways rather than a single high-affinity receptor, making them versatile regulators of metabolic health. These compounds also modulate glucose transporters and carbohydrate metabolism, playing a crucial role in postprandial glucose and insulin responses. This review addresses the critical role of phenolic metabolites in metabolic health, with a focus on glucose homeostasis, insulin sensitivity, and carbohydrate metabolism. Incorporating polyphenols and phenolic acids into dietary strategies offers significant potential for improving insulin sensitivity, reducing metabolic disorder risks, and promoting whole-body glucose homeostasis. Furthermore, understanding how phenolic metabolites interact with metabolic pathways is essential for developing future effective nutritional strategies to support metabolic health.
Collapse
Affiliation(s)
- Reham Mhawish
- Plants for Human Health Institute, North Carolina State University, 600 Laureate Way, Kannapolis, NC 28081, USA;
- Department of Food, Bioprocessing, and Nutrition Sciences, North Carolina State University, 400 Dan Allen Drive, Raleigh, NC 27695, USA
- Department of Nutrition and Food Technology, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan
| | - Slavko Komarnytsky
- Plants for Human Health Institute, North Carolina State University, 600 Laureate Way, Kannapolis, NC 28081, USA;
- Department of Food, Bioprocessing, and Nutrition Sciences, North Carolina State University, 400 Dan Allen Drive, Raleigh, NC 27695, USA
| |
Collapse
|
2
|
Wu J, Shen S, Cheng H, Pan H, Ye X, Chen S, Chen J. RG-I pectic polysaccharides and hesperidin synergistically modulate gut microbiota: An in vitro study targeting the proportional relationship. Food Chem 2025; 462:141010. [PMID: 39217745 DOI: 10.1016/j.foodchem.2024.141010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/29/2024] [Accepted: 08/25/2024] [Indexed: 09/04/2024]
Abstract
In this study, we investigated how different proportions blends of Rhamnogalacturonan-I pectic polysaccharides and hesperidin impact the gut microbiota and metabolites using an in vitro simulated digestion and fermentation model. The results indicated that both of them could modulate the gut microbiota and produce beneficial metabolites. However, their blends in particular proportions (such as 1:1) exhibited remarkable synergistic effects on modulating the intestinal microenvironment, surpassing the effects observed with individual components. Specifically, these blends could benefit the host by increasing short-chain fatty acids production (such as acetate), improving hesperidin bioavailability, producing more metabolites (such as hesperetin, phenolic acids), and promoting the growth of beneficial bacteria. This synergistic and additive effect was inseparable from the role of gut microbiota. Certain beneficial bacteria, such as Blautia, Faecalibacterium, and Prevotella, exhibited strong preferences for those blends, thereby contributing to host health through participating in carbohydrate and flavonoid metabolism.
Collapse
Affiliation(s)
- Jiaxiong Wu
- Ningbo Innovation Center, Zhejiang University, Ningbo 315100, China; College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058, China; Zhejiang University Zhongyuan Institute, Zhengzhou 450000, China
| | - Sihuan Shen
- Ningbo Innovation Center, Zhejiang University, Ningbo 315100, China; College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058, China; Zhejiang University Zhongyuan Institute, Zhengzhou 450000, China
| | - Huan Cheng
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058, China; Zhejiang University Zhongyuan Institute, Zhengzhou 450000, China
| | - Haibo Pan
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058, China; Zhejiang University Zhongyuan Institute, Zhengzhou 450000, China
| | - Xingqian Ye
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058, China; Zhejiang University Zhongyuan Institute, Zhengzhou 450000, China
| | - Shiguo Chen
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058, China; Zhejiang University Zhongyuan Institute, Zhengzhou 450000, China
| | - Jianle Chen
- Ningbo Innovation Center, Zhejiang University, Ningbo 315100, China; College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
3
|
Vannuchi N, Jamar G, de Rosso VV, Pisani LP. Dose-dependent effects of anthocyanin-rich extracts on obesity-induced inflammation and gut microbiota modulation. Biofactors 2025; 51:e2144. [PMID: 39593250 DOI: 10.1002/biof.2144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 11/01/2024] [Indexed: 11/28/2024]
Abstract
Obesity and its associated inflammatory state pose a significant health burden. Anthocyanins, bioactive compounds found in fruits and vegetables, have garnered interest in their potential to attenuate these conditions. Understanding the dose-dependent response of anthocyanins is essential for optimizing their therapeutic potential in preventing and managing obesity. This comprehensive review explores the current knowledge on the dose-dependent effects of anthocyanins on obesity in both human and animal models, analyzing the structure and mechanism of absorption of these compounds. The article also highlights the diverse mechanisms underlying anthocyanin action, the symbiosis between anthocyanins and gut microbiota impacting metabolite production, influencing diverse health outcomes, modulating cytokines, and activating anti-inflammatory pathways. Additionally, their impact on energy metabolism and lipid regulation is discussed, highlighting potential contributions to weight management through AMPK and PPARγ pathways. Despite promising results, dose-dependent effects are fundamental considerations, with some studies indicating less favorable outcomes at higher doses. Future research should focus on optimizing dosages, accounting for individual responses, and translating findings into effective clinical applications for obesity management.
Collapse
Affiliation(s)
- Nicholas Vannuchi
- Laboratório de Nutrição e Fisiologia Endócrina (LaNFE), Departamento de Biociências, Instituto de Saúde e Sociedade, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Giovana Jamar
- Laboratório de Nutrição e Fisiologia Endócrina (LaNFE), Departamento de Biociências, Instituto de Saúde e Sociedade, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Veridiana Vera de Rosso
- Nutrition and Food Service Research Center, Universidade Federal de São Paulo (UNIFESP), Santos, Brazil
| | - Luciana Pellegrini Pisani
- Laboratório de Nutrição e Fisiologia Endócrina (LaNFE), Departamento de Biociências, Instituto de Saúde e Sociedade, Universidade Federal de São Paulo, São Paulo, Brazil
| |
Collapse
|
4
|
Chen W, Zhang C, Xu M, Li T, Li X, Li P, Gong X, Qu Y, Zhou C, Mao X, Lin N, Liu W, Jiang Q, Xu H, Zhang Y. Yu-Xue-Bi capsule ameliorates aggressive synovitis and joint damage in rheumatoid arthritis via modulating the SUCNR1/HIF-1α/TRPV1 axis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 136:156354. [PMID: 39765037 DOI: 10.1016/j.phymed.2024.156354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 12/04/2024] [Accepted: 12/28/2024] [Indexed: 01/16/2025]
Abstract
BACKGROUND Specific treatment for rheumatoid arthritis (RA) is still an unmet need. Yu-Xue-Bi (YXB) capsule effectively treats RA with blood stasis syndrome (BS). However, its mechanism remains unclear. PURPOSE Exploring and elucidating the therapeutic effect and pharmacological mechanism of YXB capsule in treating RA. METHODS This study identified differentially expressed genes (DEGs) in patients with RA and BS compared to healthy controls using clinical transcriptomics data. Clinical symptoms of RA and BS, and the related genes were collected from the SoFDA and HPO databases. Candidate bioactive constituents in YXB were identified via UPLC-QTOF/MS and evaluated using ADMET rules. Putative targets were predicted, and a network linking disease-related DEGs and drug targets was constructed. Key targets were screened utilizing random walk-with-restart (RWR) algorithms and verified through experiments using rat models of collagen-induced arthritis with BS (CIA-BS model) in vivo. RESULTS We found 1220 DEGs along with 976 clinical symptom-related genes, as RA with BS-related genes. Chemical profiling identified 193 YXB constituents, with 98 meeting optimal ADMET criteria. We predicted 459 putative targets for these constituents. Network calculations screened 209 key targets, 129 RA with BS-related genes and 92 YXB targets involved in immune inflammation, blood stagnation, and hyperalgesia imbalance. Notably, the SUCNR1/HIF-1α/TRPV1 axis was enriched by YXB targets against RA with BS. Experimentally, YXB inhibited inflamed joint deterioration, including synovial inflammation, cartilage damage and bone erosion, relieving mechanical and cold allodynia hyperglasia. It reversed hemorrheology and vascular function in CIA-BS rats, restoring SDHB and eNOS expression, preventing SDHA, SUCNR1 and HIF-1α activation, reducing SUCN, TNF-α and IL-1β production, and TRPV1 and TRPA1 expression. CONCLUSION Our data support YXB's therapeutic effects on aggressive RA-BS by modulating the SUCNR1/HIF-1α/TRPV1 axis.
Collapse
Affiliation(s)
- Wenjia Chen
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Chu Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Mingzhu Xu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Tao Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Xin Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Peihao Li
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xun Gong
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Yang Qu
- Liaoning Good Nurse Pharmaceutical Co., Ltd., Liaoning 117201, China
| | - Chunling Zhou
- Liaoning Good Nurse Pharmaceutical Co., Ltd., Liaoning 117201, China
| | - Xia Mao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Na Lin
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Wei Liu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Quan Jiang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China.
| | - Haiyu Xu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Yanqiong Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| |
Collapse
|
5
|
Meng X, Xia C, Wu H, Gu Q, Li P. Metabolism of quercitrin in the colon and its beneficial regulatory effects on gut microbiota. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:9255-9264. [PMID: 39043159 DOI: 10.1002/jsfa.13747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/11/2024] [Accepted: 06/30/2024] [Indexed: 07/25/2024]
Abstract
BACKGROUND Quercitrin is a dietary flavonoid widely found in plants with various physiological activities. However, whether quercitrin alters gut microbiota in vivo is not well understood. The aim of this study was to investigate metabolism of quercitrin in the colon and its regulation on gut microbiota in mice. RESULTS Herein, 22 flavonoids related to quercitrin metabolism were identified based on ultra-performance liquid chromatography-electrospray ionization-tandem mass spectrometry (UPLC-ESI-MS/MS). Gas chromatography and 16S rDNA gene sequencing were used to investigate short-chain fatty acid (SCFA) content and diversity of composition of gut microbiota, respectively. The results showed that quercitrin significantly alters the beta-diversity of the gut microbiota, probiotics such as Akkermansia and Lactococcus were significantly increased, and the production of propanoate, isovalerate and hexanoate of the quercitrin group were enhanced significantly. The Spearman's association analysis provided evidence that Gardnerella and Akkermansia have obvious correlations with most of quercitrin metabolites and SCFAs. CONCLUSION Quercitrin and its metabolites in the colon altered the structure of the mice gut microbiota and increased the content of SCFAs. Our experiments provide valuable insights into quercitrin research and application. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xia Meng
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Chenlan Xia
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Hongchen Wu
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Qing Gu
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Ping Li
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| |
Collapse
|
6
|
Teets C, Ghanem N, Ma G, Minj J, Perkins-Veazie P, Johnson SA, Etter AJ, Carbonero FG, Solverson PM. A One-Week Elderberry Juice Intervention Augments the Fecal Microbiota and Suggests Improvement in Glucose Tolerance and Fat Oxidation in a Randomized Controlled Trial. Nutrients 2024; 16:3555. [PMID: 39458549 PMCID: PMC11510622 DOI: 10.3390/nu16203555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 10/15/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
Obesity is a costly and ongoing health complication in the United States and globally. Bioactive-rich foods, especially those providing polyphenols, represent an emerging and attractive strategy to address this issue. Berry-derived anthocyanins and their metabolites are of particular interest for their bioactive effects, including weight maintenance and protection from metabolic aberrations. Earlier findings from small clinical trials suggest modulation of substrate oxidation and glucose tolerance with mediation of prospective benefits attributable to the gut microbiota, but mixed results suggest appropriate anthocyanin dosing poses a challenge. The objective of this randomized, placebo-controlled study was to determine if anthocyanin-dense elderberry juice (EBJ) reproduces glucoregulatory and substrate oxidation effects observed with other berries and if this is mediated by the gut microbiota. Overweight or obese adults (BMI > 25 kg/m2) without chronic illnesses were randomized to a 5-week crossover study protocol with two 1-week periods of twice-daily EBJ or placebo (PL) separated by a washout period. Each treatment period included 4 days of controlled feeding with a 40% fat diet to allow for comparison of measurements in fecal microbiota, meal tolerance testing (MTT), and indirect calorimetry between test beverages. Eighteen study volunteers completed the study. At the phylum level, EBJ significantly increased Firmicutes and Actinobacteria, and decreased Bacteroidetes. At the genus level, EBJ increased Faecalibacterium, Ruminococcaceae, and Bifidobacterium and decreased Bacteroides and lactic acid-producing bacteria, indicating a positive response to EBJ. Supporting the changes to the microbiota, the EBJ treatment significantly reduced blood glucose following the MTT. Fat oxidation also increased significantly both during the MTT and 30 min of moderate physical activity with the EBJ treatment. Our findings confirm the bioactivity of EBJ-sourced anthocyanins on outcomes related to gut health and obesity. Follow-up investigation is needed to confirm our findings and to test for longer durations.
Collapse
Affiliation(s)
- Christy Teets
- Department of Nutrition and Exercise Physiology, Elson S Floyd College of Medicine, Washington State University, Spokane, WA 99202, USA; (C.T.); (J.M.); (F.G.C.)
| | - Nancy Ghanem
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, CO 80523, USA; (N.G.); (S.A.J.)
| | - Guoying Ma
- Plants for Human Health Institute, Department of Horticultural Science, North Carolina State University, Kannapolis, NC 28081, USA; (G.M.); (P.P.-V.)
| | - Jagrani Minj
- Department of Nutrition and Exercise Physiology, Elson S Floyd College of Medicine, Washington State University, Spokane, WA 99202, USA; (C.T.); (J.M.); (F.G.C.)
| | - Penelope Perkins-Veazie
- Plants for Human Health Institute, Department of Horticultural Science, North Carolina State University, Kannapolis, NC 28081, USA; (G.M.); (P.P.-V.)
| | - Sarah A. Johnson
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, CO 80523, USA; (N.G.); (S.A.J.)
| | - Andrea J. Etter
- Department of Nutrition and Food Science, University of Vermont, Burlington, VT 05405, USA;
| | - Franck G. Carbonero
- Department of Nutrition and Exercise Physiology, Elson S Floyd College of Medicine, Washington State University, Spokane, WA 99202, USA; (C.T.); (J.M.); (F.G.C.)
| | - Patrick M. Solverson
- Department of Nutrition and Exercise Physiology, Elson S Floyd College of Medicine, Washington State University, Spokane, WA 99202, USA; (C.T.); (J.M.); (F.G.C.)
| |
Collapse
|
7
|
Wang Z, Xie C, Wu Y, Liu H, Zhang X, Du H, Li X, Zhang C. Integrated Metabolomics and Transcriptomics Analyses Reveal the Regulatory Mechanisms of Anthocyanin and Carotenoid Accumulation in the Peel of Coffea arabica. Int J Mol Sci 2024; 25:10754. [PMID: 39409088 PMCID: PMC11477210 DOI: 10.3390/ijms251910754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 09/30/2024] [Accepted: 10/04/2024] [Indexed: 10/20/2024] Open
Abstract
The color of coffee fruits is influenced by several factors, including cultivar, ripening stage, and metabolite composition. However, the metabolic accumulation of pigments and the molecular mechanisms underlying peel coloration during the ripening process of Coffea arabica L. remain relatively understudied. In this study, UPLC-MS/MS-based metabolomics and RNA sequencing (RNA-seq)-based transcriptomics were integrated to investigate the accumulation of anthocyanins and carotenoids in the peel of Coffea arabica at different ripening stages: green peel (GP), green-yellow peel (GYRP), red peel (RP), and red-purple peel (RPP). This integration aimed at elucidating the molecular mechanisms associated with these changes. A total of ten anthocyanins, six carotenoids, and thirty-five xanthophylls were identified throughout the ripening process. The results demonstrated a gradual decrease in the total carotenoid content in the peel with fruit maturation, while anthocyanin content increased significantly. Notably, the accumulation of specific anthocyanins was closely associated with the transition of peel colors from green to red. Integrated metabolomics and transcriptomics analyses identified the GYRP stage as critical for this color transition. A weighted gene co-expression network analysis (WGCNA) revealed that enzyme-coding genes such as 3AT, BZ1, and lcyE, along with transcription factors including MYB, NAC, and bHLH, which interact with PHD and SET TR, may regulate the biosynthesis of anthocyanins and carotenoids, thereby influencing peel pigmentation. These findings provide valuable insights into the molecular mechanisms underlying the accumulation of anthocyanins and carotenoids in Coffea arabica peel during fruit maturation.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xuejun Li
- College of Tropical Crops, Yunnan Agricultural University, Pu’er 665000, China; (Z.W.); (C.X.); (Y.W.); (H.L.); (X.Z.); (H.D.)
| | - Chuanli Zhang
- College of Tropical Crops, Yunnan Agricultural University, Pu’er 665000, China; (Z.W.); (C.X.); (Y.W.); (H.L.); (X.Z.); (H.D.)
| |
Collapse
|
8
|
Ma X, Xu Y, Li Y, Gibson R, Williams C, Lawrence AJ, Nosarti C, Dazzan P, Rodriguez-Mateos A. Association between Higher Intake of Flavonols and Lignans and Better Mood: Evidence from Dietary and Biomarker Evaluation in Healthy Individuals. Mol Nutr Food Res 2024; 68:e2400112. [PMID: 39344525 DOI: 10.1002/mnfr.202400112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 08/17/2024] [Indexed: 10/01/2024]
Abstract
SCOPE The aim of this study is to investigate associations between (poly)phenol consumption, circulating (poly)phenol metabolites, and mood states in healthy individuals. METHODS AND RESULTS The study included 333 healthy individuals. Mood state was assessed with the Positive and Negative Affect Schedule questionnaire. Dietary (poly)phenol intake was estimated matching food consumption data collected using a Food Frequency Questionnaire(FFQ) with a comprehensive in-house (poly)phenol database. A total of 102 (poly)phenol metabolites were quantified in fasting plasma and 24 h urine samples by Liquid Chromatography-Mass Spectrometry using a validated method. A higher intake of lignans, flavanones, and flavonols estimated from FFQs was associated with positive mood after adjusting for age and sex (β: 0.118 to 0.134). A total of 11 urinary (poly)phenol metabolites, including lignan and flavonol metabolites were associated with less negative mood (β: -0.387 to -0.205). No association was found between mood and plasma (poly)phenols. CONCLUSION A higher consumption of lignans flavanones and flavonols is associated with a better mood, while certain urinary metabolites are associated with less negative mood. The lack of associations between fasting plasma (poly)phenols and mood may be due to their transient nature incirculation compared with 24 h urinary metabolites, which reflect longer-term exposure.
Collapse
Affiliation(s)
- Xuemei Ma
- Department of Psychological Medicine, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, SE5 8AF, UK
| | - Yifan Xu
- Department of Nutritional Sciences, School of Life Course and Population Sciences, Faculty of Life Sciences and Medicine, King's College London, London, SE1 9NH, UK
| | - Yong Li
- Department of Nutritional Sciences, School of Life Course and Population Sciences, Faculty of Life Sciences and Medicine, King's College London, London, SE1 9NH, UK
| | - Rachel Gibson
- Department of Nutritional Sciences, School of Life Course and Population Sciences, Faculty of Life Sciences and Medicine, King's College London, London, SE1 9NH, UK
| | - Claire Williams
- School of Psychology and Clinical Language Sciences, University of Reading, Reading, RG6 6ET, UK
| | - Andrew J Lawrence
- Department of Psychological Medicine, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, SE5 8AF, UK
- National Institute for Health Research (NIHR) Mental Health Biomedical Research Centre at South London and Maudsley NHS Foundation Trust and King's College London, London, SE5 8AF, UK
| | - Chiara Nosarti
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, SE5 8AB, UK
- Centre for the Developing Brain, Department of Perinatal Imaging & Health, School of Biomedical Engineering & Imaging Sciences, King's College London, London, SE1 7EH, UK
| | - Paola Dazzan
- Department of Psychological Medicine, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, SE5 8AF, UK
- National Institute for Health Research (NIHR) Mental Health Biomedical Research Centre at South London and Maudsley NHS Foundation Trust and King's College London, London, SE5 8AF, UK
| | - Ana Rodriguez-Mateos
- Department of Nutritional Sciences, School of Life Course and Population Sciences, Faculty of Life Sciences and Medicine, King's College London, London, SE1 9NH, UK
| |
Collapse
|
9
|
Lu J, Chen J, Li SY, Pan GJ, Ou Y, Yuan LF, Jiang JP, Zeng LH, Zhao J. Naringin and Naringenin: Potential Multi-Target Agents for Alzheimer's Disease. Curr Med Sci 2024; 44:867-882. [PMID: 39347923 DOI: 10.1007/s11596-024-2921-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 07/15/2024] [Indexed: 10/01/2024]
Abstract
Alzheimer's disease (AD) is one of the most common forms of neurodegenerative dementia. The etiology of AD is multifactorial, and its complex pathophysiology involves tau and amyloid-β deposition, increased oxidative stress, neuroinflammation, metabolic disorders, and massive neuronal loss. Due to its complex pathology, no effective cure for AD has been found to date. Therefore, there is an unmet clinical need for the development of new drugs against AD. Natural products are known to be good sources of compounds with pharmacological activity and have potential for the development of new therapeutic agents. Naringin, a naturally occurring flavanone glycoside, is predominantly found in citrus fruits and Chinese medicinal herbs. Mounting evidence shows that naringin and its aglycone, naringenin, have direct neuroprotective effects on AD, such as anti-amyloidogenic, antioxidant, anti-acetylcholinesterase, and anti-neuroinflammatory effects, as well as metal chelation. Furthermore, they are known to improve disordered glucose/lipid metabolism, which is a high risk factor for AD. In this review, we summarize the latest data on the impact of naringin and naringenin on the molecular mechanisms involved in AD pathophysiology. Additionally, we provide an overview of the current clinical applications of naringin and naringenin. The novel delivery systems for naringin and naringenin, which can address their widespread pharmacokinetic limitations, are also discussed. The literature indicates that naringin and naringenin could be multilevel, multitargeted, and multifaceted for preventing and treating AD.
Collapse
Affiliation(s)
- Jing Lu
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, 310015, China
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310015, China
| | - Jie Chen
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, 310015, China
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310015, China
| | - Shu-Yue Li
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, 310015, China
| | - Guang-Jie Pan
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, 310015, China
| | - Yi Ou
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, 310015, China
| | - Li-Fu Yuan
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, 310015, China
| | - Jian-Ping Jiang
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, 310015, China.
- Affiliated Hospital, Hangzhou City University School of Medicine, Hangzhou, 310015, China.
| | - Ling-Hui Zeng
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, 310015, China.
| | - Jie Zhao
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, 310015, China.
| |
Collapse
|
10
|
Suzauddula M, Kobayashi K, Park S, Sun XS, Wang W. Bioengineered Anthocyanin-Enriched Tomatoes: A Novel Approach to Colorectal Cancer Prevention. Foods 2024; 13:2991. [PMID: 39335919 PMCID: PMC11430996 DOI: 10.3390/foods13182991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 09/11/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
Colorectal cancer (CRC) remains a significant global health challenge, with barriers to effective prevention and treatment including tumor recurrence, chemoresistance, and limited overall survival rates. Anthocyanins, known for their strong anti-cancer properties, have shown promise in preventing and suppressing various cancers, including CRC. However, natural sources of anthocyanins often fail to provide sufficient quantities needed for therapeutic effects. Bioengineered crops, particularly anthocyanin-enriched tomatoes, offer a viable solution to enhance anthocyanin content. Given its large-scale production and consumption, tomatoes present an ideal target for bioengineering efforts aimed at increasing dietary anthocyanin intake. This review provides an overview of anthocyanins and their health benefits, elucidating the mechanisms by which anthocyanins modulate the transcription factors involved in CRC development. It also examines case studies demonstrating the successful bioengineering of tomatoes to boost anthocyanin levels. Furthermore, the review discusses the effects of anthocyanin extracts from bioengineered tomatoes on CRC prevention, highlighting their role in altering metabolic pathways and reducing tumor-related inflammation. Finally, this review addresses the challenges associated with bioengineering tomatoes and proposes future research directions to optimize anthocyanin enrichment in tomatoes.
Collapse
Affiliation(s)
- Md Suzauddula
- Department of Food Nutrition Dietetics and Health, Kansas State University, Manhattan, KS 66506, USA; (M.S.); (K.K.)
| | - Kaori Kobayashi
- Department of Food Nutrition Dietetics and Health, Kansas State University, Manhattan, KS 66506, USA; (M.S.); (K.K.)
| | - Sunghun Park
- Department of Horticulture and Nature Resources, Kansas State University, Manhattan, KS 66506, USA;
| | - Xiuzhi Susan Sun
- Department of Grain Science and Industry, Kansas State University, Manhattan, KS 66506, USA;
| | - Weiqun Wang
- Department of Food Nutrition Dietetics and Health, Kansas State University, Manhattan, KS 66506, USA; (M.S.); (K.K.)
| |
Collapse
|
11
|
Xu S, Kang A, Tian Y, Li X, Qin S, Yang R, Guo Y. Plant Flavonoids with Antimicrobial Activity against Methicillin-Resistant Staphylococcus aureus (MRSA). ACS Infect Dis 2024; 10:3086-3097. [PMID: 38833551 DOI: 10.1021/acsinfecdis.4c00292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) has become a serious threat to human public health and global economic development, and there is an urgent need to develop new antimicrobial agents. Flavonoids are the largest group of plant secondary metabolites, and the anti-S. aureus and anti-MRSA activities of flavonoids have now been widely reported. The aim of this Review is to describe plant-derived flavonoid active ingredients and their effects and mechanisms of inhibitory activity against MRSA in order to provide insights for screening novel antimicrobial agents. Here, 85 plant-derived flavonoids (14 flavones, 21 flavonols, 26 flavanones, 9 isoflavones, 12 chalcones, and 3 other classes) with anti-MRSA activity are reviewed. Among these flavonoids, flavones and isoflavones generally showed the most significant anti-MRSA activity (MICs: 1-8 μg/mL). The results of the present Review display that most of the flavonoids with excellent anti-MRSA activity were derived from Morus alba L. and Paulownia tomentosa (Thunb.) Steud. The antibacterial mechanism of flavonoids against MRSA is mainly achieved by disruption of membrane structures, inhibition of efflux pumps, and inhibition of β-lactamases and bacterial virulence factors. We hope this Review can provide insights into the development of novel antimicrobials based on natural products for treating MRSA infections.
Collapse
Affiliation(s)
- Shengnan Xu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, Hunan Province, China
| | - Ayue Kang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Yue Tian
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Xinhui Li
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Shangshang Qin
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Ruige Yang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, Hunan Province, China
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Yong Guo
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, Hunan Province, China
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| |
Collapse
|
12
|
Charoenwoodhipong P, Zuelch ML, Keen CL, Hackman RM, Holt RR. Strawberry (Fragaria x Ananassa) intake on human health and disease outcomes: a comprehensive literature review. Crit Rev Food Sci Nutr 2024:1-31. [PMID: 39262175 DOI: 10.1080/10408398.2024.2398634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Strawberries provide a number of potential health promoting phytonutrients to include phenolics, polyphenols, fiber, micronutrients and vitamins. The objective of this review is to provide a comprehensive summary of recent human studies pertaining to the intake of strawberry and strawberry phytonutrients on human health. A literature search conducted through PubMed and Cochrane databases consolidated studies focusing on the effects of strawberry intake on human health. Articles were reviewed considering pre-determined inclusion and exclusion criteria, including experimental or observational studies that focused on health outcomes, and utilized whole strawberries or freeze-dried strawberry powder (FDSP), published between 2000-2023. Of the 60 articles included in this review, 47 were clinical trials, while 13 were observational studies. A majority of these studies reported on the influence of strawberry intake on cardiometabolic outcomes. Study designs included those examining the influence of strawberry intake during the postprandial period, short-term trials randomized with a control, or a single arm intake period controlling with a low polyphenolic diet or no strawberry intake. A smaller proportion of studies included in this review examined the influence of strawberry intake on additional outcomes of aging including bone and brain health, and cancer risk. Data support that the inclusion of strawberries into the diet can have positive impacts during the postprandial period, with daily intake improving outcomes of lipid metabolism and inflammation in those at increased cardiovascular risk.
Collapse
Affiliation(s)
- Prae Charoenwoodhipong
- Department of Nutrition, University of California Davis, Davis, California, USA
- Division of Food Science and Nutrition, Faculty of Agricultural Product Innovation and Technology, Srinakharinwirot University, Nakhon Nayok, Thailand
| | - Michelle L Zuelch
- Department of Nutrition, University of California Davis, Davis, California, USA
| | - Carl L Keen
- Department of Nutrition, University of California Davis, Davis, California, USA
| | - Robert M Hackman
- Department of Nutrition, University of California Davis, Davis, California, USA
| | - Roberta R Holt
- Department of Nutrition, University of California Davis, Davis, California, USA
| |
Collapse
|
13
|
Cui W, Chen F, Sun Z, Cui C, Xu B, Shen W, Wan F, Cheng A. Catabolism of phenolics from grape peel and its effects on gut microbiota during in vitro colonic fermentation. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:7182-7193. [PMID: 38624038 DOI: 10.1002/jsfa.13540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/19/2024] [Accepted: 04/11/2024] [Indexed: 04/17/2024]
Abstract
BACKGROUND Grape peels, the main by-products of wine processing, are rich in bioactive ingredients of phenolics, including proanthocyanidins, flavonoids and anthocyanins. Phenolics have the function of regulating intestinal microbiota and promoting intestinal health. From the perspective of the dietary nutrition of grape peel phenolics (GPP), the present study aimed to investigate the influence of GPP on the composition and metabolism of human gut microbiota during in vitro fermentation. RESULTS The results indicated that GPP could decrease pH and promote the production of short-chain fatty acids. ACE and Chao1 indices in GPP group were lower than that of the Blank group. GPP enhanced the levels of Lachnospiraceae UCG-004, Bacteroidetes and Roseburia, but reduced the Firmicutes/Bacteroidetes ratio. Kyoto Encyclopedia of Proteins and Genome enrichment pathways related to phenolic acid metabolism mainly included flavonoid, anthocyanin, flavone and flavonol biosynthesis. Gut microbiota could accelerate the release and breakdown of phenolic compounds, resulting in a decrease in the content of hesperetin-7-O-glucoside, delphinidin-3-O-glucoside and cyanidin-3-rutinoside etc. In vitro antibacterial test found that GPP increased the diameters of the inhibition zones of Escherichia coli and Staphylococcus aureus in a dose-dependent manner. CONCLUSION The results of the present study revealed that GPP might be a potential prebiotic-like to prevent diseases by improving gut health. The findings could provide a theoretical basis for the potential to exploit GPP as dietary nutrition to maintain intestinal function. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Wenyu Cui
- College of Food Science and Technology, Hunan Agricultural University, Changsha, China
| | - Fuchun Chen
- College of Food Science and Technology, Hunan Agricultural University, Changsha, China
| | - Zhaoyue Sun
- College of Food Science and Technology, Hunan Agricultural University, Changsha, China
| | - Caifang Cui
- College of Food Science and Technology, Hunan Agricultural University, Changsha, China
| | - Ben Xu
- College of Food Science and Technology, Hunan Agricultural University, Changsha, China
| | - Weijun Shen
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Fachun Wan
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Anwei Cheng
- College of Food Science and Technology, Hunan Agricultural University, Changsha, China
| |
Collapse
|
14
|
Chamberlin ML, Peach JT, Wilson SM, Miller ZT, Bothner B, Walk ST, Yeoman CJ, Miles MP. Polyphenol-Rich Aronia melanocarpa Fruit Beneficially Impact Cholesterol, Glucose, and Serum and Gut Metabolites: A Randomized Clinical Trial. Foods 2024; 13:2768. [PMID: 39272533 PMCID: PMC11395532 DOI: 10.3390/foods13172768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/23/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024] Open
Abstract
Polyphenol-rich Aronia fruits have great potential as a functional food with anti-inflammatory, hypolipidemic, and hypoglycemic biologic activities. However, clinical intervention trials investigating the impact of Aronia fruit consumption on human health are limited. A randomized, controlled, double-blinded, parallel intervention trial was conducted using 14 human subjects who ingested either 0 mL or 100 mL of Aronia juice daily for 30 days. Anthropometric measurements, fasting, and postprandial measures of glucose and lipid metabolism and inflammation, 16S rRNA fecal microbial composition data, and mass spectrometry-acquired serum and fecal metabolomic data were collected before and after the intervention period. Data were analyzed using general linear models, ANOVA, and t-tests. Daily consumption of Aronia prevented a rise in cholesterol levels (β = -0.50, p = 0.03) and reduced postprandial glucose (β = -3.03, p < 0.01). No difference in microbial community composition by condition was identified at any taxonomic level, but a decrease (β = -18.2, p = 0.04) in microbial richness with Aronia was detected. Serum and fecal metabolomic profiles indicated shifts associated with central carbon and lipid metabolism and decreases in pro-inflammatory metabolites. Our study further informs the development of polyphenol-based dietary strategies to lower metabolic disease risk.
Collapse
Affiliation(s)
- Morgan L. Chamberlin
- Department of Food Systems, Nutrition, and Kinesiology, Montana State University, Bozeman, MT 59717, USA; (M.L.C.)
| | - Jesse T. Peach
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
| | - Stephanie M.G. Wilson
- Department of Food Systems, Nutrition, and Kinesiology, Montana State University, Bozeman, MT 59717, USA; (M.L.C.)
- United States Department of Agriculture, Agricultural Research Service Western Human Nutrition Research Center, Davis, CA 95616, USA
- Institute for Advancing Health through Agriculture, Texas A&M, College Station, TX 77845, USA
| | - Zachary T. Miller
- Department of Research Centers, Montana State University, Bozeman, MT 59717, USA
| | - Brian Bothner
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA
| | - Seth T. Walk
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA
| | - Carl J. Yeoman
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA
- Department of Animal and Range Sciences, Montana State University, Bozeman, MT 59717, USA
| | - Mary P. Miles
- Department of Food Systems, Nutrition, and Kinesiology, Montana State University, Bozeman, MT 59717, USA; (M.L.C.)
| |
Collapse
|
15
|
He Q, Liang S, Luo J, Yin X, Sun J, Bai W. Stabilization effect and interaction mechanism of mannoprotein on anthocyanins in mulberry juice. Int J Biol Macromol 2024; 273:133133. [PMID: 38876233 DOI: 10.1016/j.ijbiomac.2024.133133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/29/2024] [Accepted: 06/11/2024] [Indexed: 06/16/2024]
Abstract
This study aimed to investigate the problem of color instability in mulberry juice, examine the effect of mannoprotein (MP) dosage on improving the stability of anthocyanins in mulberry juice, and explore the molecular binding mechanism between them. As the mass ratio of anthocyanins to MP of 1.07 × 10-3: 1-1.65 × 10-3: 1, the retention rates of anthocyanins in mulberry juice and simulated system were significantly improved in the photostability experiment, with the highest increase of 128.89 % and 24.11 %, respectively. In the thermal stability experiment, it increased by 7.96 % and 18.49 %, respectively. The synergistic effect of combining MP with anthocyanins has been demonstrated to greatly enhance their antioxidant capacity, as measured by ABTS, FRAP, and potassium ferricyanide reduction method. Furthermore, MP stabilized more anthocyanins to reach the intestine in simulated in vitro digestion. MP and cyanidin-3-glucoside (C3G) interacted with each other through hydrogen bonding and hydrophobic interactions. Specific amino acid residues involved of MP in binding process were identified as threonine (THR), isoleucine (ILE) and arginine (ARG). The identification of the effective mass concentration ratio range and binding sites of MP and anthocyanins provided valuable insights for the application of MP in mulberry juice.
Collapse
Affiliation(s)
- Qianqian He
- School of Chemical Engineering and Light Industry, Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangdong University of Technology, Guangzhou 510006, Guangdong, PR China
| | - Shuyan Liang
- School of Chemical Engineering and Light Industry, Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangdong University of Technology, Guangzhou 510006, Guangdong, PR China
| | - Jielin Luo
- School of Chemical Engineering and Light Industry, Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangdong University of Technology, Guangzhou 510006, Guangdong, PR China
| | - Xiang Yin
- School of Chemical Engineering and Light Industry, Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangdong University of Technology, Guangzhou 510006, Guangdong, PR China
| | - Jianxia Sun
- School of Chemical Engineering and Light Industry, Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangdong University of Technology, Guangzhou 510006, Guangdong, PR China.
| | - Weibin Bai
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, PR China.
| |
Collapse
|
16
|
Gao H, Chen F, Wang S. Hesperidin reduces systolic blood pressure in diabetic patients and has no effect on blood pressure in healthy individuals: A systematic review and meta-analysis. Phytother Res 2024; 38:3706-3719. [PMID: 38772688 DOI: 10.1002/ptr.8231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 04/19/2024] [Accepted: 04/20/2024] [Indexed: 05/23/2024]
Abstract
In recent years, there have been a number of studies where hesperidin was administered to modify arterial blood pressure, but the conclusions of each study are contradictory. In order to investigate the effect of hesperidin on blood pressure, we searched the CNKI, Wanfang Database, the VIP database, Sinomed database, Pubmed, Embase and The Cochrane Library databases, and searched the literature on hesperidin and blood pressure published in Chinese and English journals, mainly focusing on patients' systolic blood pressure and diastolic blood pressure. The search time frame was from the inception of the databases until December 2023. The Grading of Recommendations Assessment, Development, and Evaluation (GRADE) approach was used to assess the overall quality and used Cohen's kappa coefficient (κ) to measure agreement. We did preliminary screening of the retrieved literature through Notexpress, 14 articles with a total of 656 patients were included. Cochrance data conversion tool was used for data conversion, and RevMan 5.3 was used for meta-analysis, and finally Stata was used to make the Egger's test for the included study. The results of total population blood pressure showed that hesperidin had no antihypertensive effect on the population, but the conclusions changed when the population was divided into groups. The results of different populations showed that hesperidin had no effect on systolic blood pressure (weighted mean difference [WMD] = -0.50, 95% CI: -3.25 ~ 2.26, Z = 0.35, p = 0.72) and diastolic blood pressure (WMD = -0.51, 95% CI: -2.53 ~ 1.51, Z = 0.50, p = 0.62) in healthy individuals. However, hesperidin reduced systolic blood pressure in patients with type 2 diabetes (WMD = -4.32, 95% CI: - 7.77 ~ - 0.87, Z = 2.45, p = 0.01), and had a tendency to reduce diastolic blood pressure in diabetic patients (WMD = -3.72, 95% CI: -7.63 ~ 0.18, Z = 1.87, p = 0.06). The results in patients with type 2 diabetes needed to be further supported by future research focusing on individuals with diabetes.
Collapse
Affiliation(s)
- Haifeng Gao
- School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, Shandong, China
| | - Fang Chen
- School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, Shandong, China
| | - Shuo Wang
- School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, Shandong, China
| |
Collapse
|
17
|
Minj J, Riordan J, Teets C, Fernholz-Hartman H, Tanggono A, Lee Y, Chauvin T, Carbonero F, Solverson P. Diet-Induced Rodent Obesity Is Prevented and the Fecal Microbiome Is Improved with Elderberry ( Sambucus nigra ssp. canadensis) Juice Powder. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:12555-12565. [PMID: 38776153 DOI: 10.1021/acs.jafc.4c01211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2024]
Abstract
Anthocyanin-rich edible berries protect against diet-induced obesity in animal models. Prevention is mediated through the bidirectional relationship with the fecal microbiome, and gut-derived phenolic metabolite absorption increases with physical activity, which may influence bioactivity. The objective of this study was to test elderberry juice powder on the development of diet-induced obesity and its influence on the fecal microbiome alone or in combination with physical activity. Male C57BL/6J mice were assigned to one of four treatments, including (1) high-fat diet without wheel access; (2) high-fat diet with unlimited wheel access; (3) high-fat diet supplemented with 10% elderberry juice powder without wheel access; and (4) high-fat diet supplemented with 10% elderberry juice powder with unlimited wheel access. Body weight gain, fat pads, and whole-body fat content in mice fed elderberry juice were significantly less than in mice fed the control diet independent of wheel access. At the end of the study, active mice fed elderberry juice ate significantly more than active mice fed a control diet. There was no difference in the physical activity between active groups. Elderberry juice increasedBifidobacterium, promotedAkkermansia and Anaeroplasma, and prevented the growth of Desulfovibrio. Elderberry juice is a potent inhibitor of diet-induced obesity with action mediated by the gut microbiota.
Collapse
Affiliation(s)
- Jagrani Minj
- Department of Nutrition and Exercise Physiology, Washington State University, Spokane, Washington 99202, United States
| | - Joseph Riordan
- Department of Nutrition and Exercise Physiology, Washington State University, Spokane, Washington 99202, United States
| | - Christy Teets
- Department of Nutrition and Exercise Physiology, Washington State University, Spokane, Washington 99202, United States
| | - Hadyn Fernholz-Hartman
- Department of Nutrition and Exercise Physiology, Washington State University, Spokane, Washington 99202, United States
| | - Alfian Tanggono
- Department of Translational Medicine and Physiology, Washington State University, Spokane, Washington 99202, United States
| | - Yool Lee
- Department of Translational Medicine and Physiology, Washington State University, Spokane, Washington 99202, United States
| | - Theodore Chauvin
- Department of Translational Medicine and Physiology, Washington State University, Spokane, Washington 99202, United States
| | - Franck Carbonero
- Department of Nutrition and Exercise Physiology, Washington State University, Spokane, Washington 99202, United States
| | - Patrick Solverson
- Department of Nutrition and Exercise Physiology, Washington State University, Spokane, Washington 99202, United States
| |
Collapse
|
18
|
Maggiolo G, Aldigeri R, Savini C, Mengani M, Maggi M, Frigeri G, Spigoni V, Cinquegrani G, Fantuzzi F, Di Donna L, Tosi N, Bergamo F, Bresciani L, Rosi A, Mena P, Scazzina F, Del Rio D, Bonadonna RC, Dei Cas A. Chronic consumption of a bergamot-based beverage does not affect glucose, lipid and inflammatory biomarkers of cardiometabolic risk in healthy subjects: a randomised controlled intervention study. Food Funct 2024; 15:5842-5854. [PMID: 38767145 DOI: 10.1039/d4fo00877d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Background: Pure bergamot juice exerts lipid lowering effects in dyslipidemic subjects. It is unknown whether bergamot-based beverages exert similar effects in healthy subjects. Aim: To assess the effects, if any, of a bergamot-based beverage (BBB, bergamot juice ≤25%) on lipid, metabolic and inflammatory biomarkers. Methods: Forty-five healthy subjects were randomised 1 : 1 to BBB intake (400 mL day-1) (55.5%) or control (44.5%) for 12 weeks. Anthropometric (waist circumference, body mass index (BMI)) and clinical (blood pressure) parameters, blood samples (glucose, glycated haemoglobin, insulinemia, lipid profile, liver and renal function, inflammatory biomarkers) and 24-h urine for the analysis of (poly)phenol metabolites were collected at the baseline and at 12 weeks. Intakes of energy, nutrients and food groups were assessed by a 7-day dietary record. Results: Both groups exhibited a time-related significant decrease in total cholesterol (p = 0.02), fasting plasma glucose (p = 0.016), insulin (p = 0.034), BMI (p < 0.001) and waist circumference (p = 0.04), but with no significant between-arm difference. The urinary profile of metabolites from the BBB-derived (poly)phenols well discriminated the two study groups, documenting good compliance in the intervention arm. Notably, urinary bergamot 3-hydroxy-3-methylglutaryl (HMG) -containing flavanones or derived HMG-containing metabolites were not detectable. BBB was well tolerated and no adverse events were recorded. Conclusion: This first randomized controlled trial of BBB consumption in healthy subjects showed no effects of BBB on the cardiometabolic risk profile. BBB consumption is a safe nutritional adjunct in the context of a well balanced diet.
Collapse
Affiliation(s)
- Giulia Maggiolo
- Division of Nutritional and Metabolic Sciences, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy.
| | | | - Cecilia Savini
- Division of Nutritional and Metabolic Sciences, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy.
| | - Martina Mengani
- Division of Nutritional and Metabolic Sciences, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy.
| | - Marta Maggi
- Division of Nutritional and Metabolic Sciences, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy.
| | - Giulia Frigeri
- Division of Nutritional and Metabolic Sciences, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy.
| | - Valentina Spigoni
- Department of Medicine and Surgery, Università di Parma, Parma, Italy
| | | | - Federica Fantuzzi
- Department of Medicine and Surgery, Università di Parma, Parma, Italy
| | - Leonardo Di Donna
- QUASIORA Laboratory, AGRINFRA Research Net, Department of Chemistry and Chemical Technologies, Università della Calabria, Cosenza, Italy
| | - Nicole Tosi
- Human Nutrition Unit, Department of Food and Drug, University of Parma, Parma, Italy
| | - Federica Bergamo
- Human Nutrition Unit, Department of Food and Drug, University of Parma, Parma, Italy
| | - Letizia Bresciani
- Human Nutrition Unit, Department of Food and Drug, University of Parma, Parma, Italy
| | - Alice Rosi
- Human Nutrition Unit, Department of Food and Drug, University of Parma, Parma, Italy
| | - Pedro Mena
- Human Nutrition Unit, Department of Food and Drug, University of Parma, Parma, Italy
| | - Francesca Scazzina
- Human Nutrition Unit, Department of Food and Drug, University of Parma, Parma, Italy
| | - Daniele Del Rio
- Human Nutrition Unit, Department of Food and Drug, University of Parma, Parma, Italy
| | - Riccardo C Bonadonna
- Department of Medicine and Surgery, Università di Parma, Parma, Italy
- Division of Endocrinology and Metabolic Diseases, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Alessandra Dei Cas
- Division of Nutritional and Metabolic Sciences, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy.
- Department of Medicine and Surgery, Università di Parma, Parma, Italy
| |
Collapse
|
19
|
Atoki AV, Aja PM, Shinkafi TS, Ondari EN, Awuchi CG. Naringenin: its chemistry and roles in neuroprotection. Nutr Neurosci 2024; 27:637-666. [PMID: 37585716 DOI: 10.1080/1028415x.2023.2243089] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
According to epidemiological research, as the population ages, neurological illnesses are becoming a bigger issue. Despite improvements in the treatment of these diseases, there are still widespread worries about how to find a long-lasting remedy. Several neurological diseases can be successfully treated with natural substances. As a result, current research has been concentrated on finding effective neuroprotective drugs with improved efficacy and fewer side effects. Naringenin is one potential treatment for neurodegenerative diseases. Many citrus fruits, tomatoes, bergamots, and other fruits are rich in naringenin, a flavonoid. This phytochemical is linked to a variety of biological functions. Naringenin has attracted a lot of interest for its ability to exhibit neuroprotection through several mechanisms. In the current article, we present evidence from the literature that naringenin reduces neurotoxicity and oxidative stress in brain tissues. Also, the literatures that are currently accessible shows that naringenin reduces neuroinflammation and other neurological anomalies. Additionally, we found several studies that touted naringenin as a promising anti-amyloidogenic, antidepressant, and neurotrophic treatment option. This review's major goal is to reflect on advancements in knowledge of the molecular processes that underlie naringenin's possible neuroprotective effects. Furthermore, this article also provides highlights of Naringenin with respect to its chemistry and pharmacokinetics.
Collapse
Affiliation(s)
| | - Patrick Maduabuchi Aja
- Department of Biochemistry, Kampala International University, Ishaka, Uganda
- Department of Biochemistry, Faculty of Science, Ebonyi State University, Abakaliki, Nigeria
| | | | - Erick Nyakundi Ondari
- Department of Biochemistry, Kampala International University, Ishaka, Uganda
- School of Pure and Applied Sciences, Department of Biological Sciences, Kisii University, Kisii, Kenya
| | - Chinaza Godswill Awuchi
- Department of Biochemistry, Kampala International University, Ishaka, Uganda
- School of Natural and Applied Sciences, Kampala International University, Kampala, Uganda
| |
Collapse
|
20
|
Ouyang J, Hu N, Wang H. Petanin Potentiated JNK Phosphorylation to Negatively Regulate the ERK/CREB/MITF Signaling Pathway for Anti-Melanogenesis in Zebrafish. Int J Mol Sci 2024; 25:5939. [PMID: 38892131 PMCID: PMC11173099 DOI: 10.3390/ijms25115939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/22/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024] Open
Abstract
Petanin, an acylated anthocyanin from the Solanaceae family, shows potential in tyrosinase inhibitory activity and anti-melanogenic effects; however, its mechanism remains unclear. Therefore, to investigate the underlying mechanism of petanin's anti-melanogenic effects, the enzyme activity, protein expression and mRNA transcription of melanogenic and related signaling pathways in zebrafish using network pharmacology, molecular docking and molecular dynamics simulation were combined for analysis. The results showed that petanin could inhibit tyrosinase activity and melanogenesis, change the distribution and arrangement of melanocytes and the structure of melanosomes, reduce the activities of catalase (CAT) and peroxidase (POD) and enhance the activity of glutathione reductase (GR). It also up-regulated JNK phosphorylation, inhibited ERK/RSK phosphorylation and down-regulated CREB/MITF-related protein expression and mRNA transcription. These results were consistent with the predictions provided through network pharmacology and molecular docking. Thus, petanin could inhibit the activity of tyrosinase and the expression of tyrosinase by inhibiting and negatively regulating the tyrosinase-related signaling pathway ERK/CREB/MITF through p-JNK. In conclusion, petanin is a good tyrosinase inhibitor and anti-melanin natural compound with significant market prospects in melanogenesis-related diseases and skin whitening cosmetics.
Collapse
Affiliation(s)
- Jian Ouyang
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research and CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Xining 810008, China; (J.O.); (N.H.)
- Huzhou China-Science Innovation Centre of Plateau Biology, Huzhou 313000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Na Hu
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research and CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Xining 810008, China; (J.O.); (N.H.)
| | - Honglun Wang
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research and CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Xining 810008, China; (J.O.); (N.H.)
- Huzhou China-Science Innovation Centre of Plateau Biology, Huzhou 313000, China
| |
Collapse
|
21
|
Ikeda C, Mori A, Hosokawa K, Iwaoka Y, Uemura T, Ito H. In Vivo Behavior of Hydrolyzable Tannins after Oral Administration of the Trapa bispinosa Extract to Rats. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 38619067 DOI: 10.1021/acs.jafc.4c00574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
The pericarp extract of Trapa bispinosa (TBPE), which is rich in hydrolyzable tannins, has been reported to inhibit α-glucosidase and glycation reactions. We investigated the in vivo behavior of hydrolyzable tannins and related metabolites after administration of TBPE to rats. Using high pressure liquid chromatography-electrospray ionization-tandem mass spectroscopy (HPLC-ESI-MS/MS), 12 ellagitannin metabolites, such as urolithins and 6 gallotannin metabolites, produced in the collected plasma and urine were quantified. Urolithins and gallic acid metabolites reached their maximum blood concentration after 24 and 1 h of administration, respectively. Conversely, the excretion of urolithins in urine required up to 72 h and followed a sigmoidal curve, whereas gallic acid metabolites were rapidly excreted earlier after administration. The results suggest that the metabolites gallotannin and ellagitannin are responsible for the antiglycation effect of TBPE, which proceeds via different mechanisms and times. Our findings provide basic data demonstrating the functionality of hydrolyzable tannins as well as Trapa ingredients.
Collapse
Affiliation(s)
- Chiaki Ikeda
- Division of Nutritional Science, Graduate School of Health and Welfare Science, Okayama Prefectural University, Soja, Okayama 719-1197, Japan
| | - Ayaka Mori
- Division of Nutritional Science, Graduate School of Health and Welfare Science, Okayama Prefectural University, Soja, Okayama 719-1197, Japan
| | - Kanano Hosokawa
- Division of Nutritional Science, Graduate School of Health and Welfare Science, Okayama Prefectural University, Soja, Okayama 719-1197, Japan
| | - Yuji Iwaoka
- Division of Nutritional Science, Graduate School of Health and Welfare Science, Okayama Prefectural University, Soja, Okayama 719-1197, Japan
| | - Tomohiro Uemura
- Hayashikane Sangyo, Ltd., Co., Shimonoseki, Yamaguchi 750-8608, Japan
| | - Hideyuki Ito
- Division of Nutritional Science, Graduate School of Health and Welfare Science, Okayama Prefectural University, Soja, Okayama 719-1197, Japan
| |
Collapse
|
22
|
Behrendt I, Röder I, Will F, Michel G, Friedrich E, Grote D, Martin Z, Dötzer HP, Fasshauer M, Speckmann M, Kuntz S. Grape/Blueberry Anthocyanins and Their Gut-Derived Metabolites Attenuate LPS/Nigericin-Induced Inflammasome Activation by Inhibiting ASC Speck Formation in THP-1 Monocytes. Metabolites 2024; 14:203. [PMID: 38668331 PMCID: PMC11051782 DOI: 10.3390/metabo14040203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/28/2024] [Accepted: 03/28/2024] [Indexed: 04/28/2024] Open
Abstract
Inflammasomes are multi-protein complexes, which are formed in response to tissue injury, infections, and metabolic stress. However, aberrant inflammasome activation has been linked to several inflammatory diseases. Anthocyanins have been reported to attenuate NLR family pyrin domain-containing 3 (NLRP3) inflammasome activation, but the influence of grape/blueberry anthocyanins and especially their gut-derived metabolites on NLRP3 inflammasome activation in human monocytes remains unclear. Therefore, human leukemic monocytes (THP-1 cells, Tohoku Hospital Pediatrics-1 cells) were preincubated with different concentrations of grape/blueberry anthocyanins, homovanillyl alcohol, or 2,4,6-trihydroxybenzaldehyde (THBA) before the NLRP3 inflammasome was activated by lipopolysaccharide and/or nigericin. Apoptosis-associated speck-like protein containing a CARD (ASC) speck formation, as well as ASC and NLRP3 protein expression, were determined using flow cytometry. Caspase-1 activity was measured in cultured cells, and pro-inflammatory cytokine secretion was determined using enzyme-linked immunosorbent assays. Anthocyanins and their metabolites had no effect on ASC or NLRP3 protein expression. However, THBA significantly inhibited ASC speck formation in primed and unprimed THP-1 monocytes, while caspase-1 activity was significantly declined by grape/blueberry anthocyanins. Furthermore, reduced inflammasome activation resulted in lower pro-inflammatory cytokine secretion. In conclusion, our results show for the first time that grape/blueberry anthocyanins and their gut-derived metabolites exert anti-inflammatory effects by attenuating NLRP3 inflammasome activation in THP-1 monocytes.
Collapse
Affiliation(s)
- Inken Behrendt
- Institute of Nutritional Science, Justus-Liebig-University Giessen, 35390 Giessen, Germany; (E.F.); (D.G.); (Z.M.); (H.P.D.); (M.F.); (S.K.)
| | - Isabella Röder
- Department of Beverage Research, Hochschule Geisenheim University, 65366 Geisenheim, Germany; (I.R.); (F.W.)
| | - Frank Will
- Department of Beverage Research, Hochschule Geisenheim University, 65366 Geisenheim, Germany; (I.R.); (F.W.)
| | - Gabriela Michel
- Institute for Clinical Immunology, Transfusion Medicine and Hemostaseology, Justus-Liebig-University Giessen, 35392 Giessen, Germany; (G.M.); (M.S.)
- Flow Cytometry Core Facility, Department of Medicine, Justus-Liebig-University Giessen, 35392 Giessen, Germany
| | - Elvira Friedrich
- Institute of Nutritional Science, Justus-Liebig-University Giessen, 35390 Giessen, Germany; (E.F.); (D.G.); (Z.M.); (H.P.D.); (M.F.); (S.K.)
| | - Daniela Grote
- Institute of Nutritional Science, Justus-Liebig-University Giessen, 35390 Giessen, Germany; (E.F.); (D.G.); (Z.M.); (H.P.D.); (M.F.); (S.K.)
| | - Zoe Martin
- Institute of Nutritional Science, Justus-Liebig-University Giessen, 35390 Giessen, Germany; (E.F.); (D.G.); (Z.M.); (H.P.D.); (M.F.); (S.K.)
| | - Hanna Pauline Dötzer
- Institute of Nutritional Science, Justus-Liebig-University Giessen, 35390 Giessen, Germany; (E.F.); (D.G.); (Z.M.); (H.P.D.); (M.F.); (S.K.)
| | - Mathias Fasshauer
- Institute of Nutritional Science, Justus-Liebig-University Giessen, 35390 Giessen, Germany; (E.F.); (D.G.); (Z.M.); (H.P.D.); (M.F.); (S.K.)
| | - Martin Speckmann
- Institute for Clinical Immunology, Transfusion Medicine and Hemostaseology, Justus-Liebig-University Giessen, 35392 Giessen, Germany; (G.M.); (M.S.)
- Flow Cytometry Core Facility, Department of Medicine, Justus-Liebig-University Giessen, 35392 Giessen, Germany
| | - Sabine Kuntz
- Institute of Nutritional Science, Justus-Liebig-University Giessen, 35390 Giessen, Germany; (E.F.); (D.G.); (Z.M.); (H.P.D.); (M.F.); (S.K.)
| |
Collapse
|
23
|
Liu Y, Wang X, Podio NS, Wang X, Xu S, Jiang S, Wei X, Han Y, Cai Y, Chen X, Jin F, Li X, Gong ES. Research progress on the regulation of oxidative stress by phenolics: the role of gut microbiota and Nrf2 signaling pathway. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:1861-1873. [PMID: 37851871 DOI: 10.1002/jsfa.13062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 10/10/2023] [Accepted: 10/19/2023] [Indexed: 10/20/2023]
Abstract
In recent years, the increase in high-calorie diets and sedentary lifestyles has made obesity a global public health problem. An unbalanced diet promotes the production of proinflammatory cytokines and causes redox imbalance in the body. Phenolics have potent antioxidant activity and cytoprotective ability. They can scavenge free radicals and reactive oxygen species, and enhance the activity of antioxidant enzymes, thus combating the body's oxidative stress. They can also improve the body's inflammatory response, enhance the enzyme activity of lipid metabolism, and reduce the contents of cholesterol and triglyceride. Most phenolics are biotransformed and absorbed into the blood after the action by gut microbiota; these metabolites then undergo phase I and II metabolism and regulate oxidative stress by scavenging free radicals and increasing expression of antioxidant enzymes. Phenolics induce the expression of genes encoding antioxidant enzymes and phase II detoxification enzymes by stimulating Nrf2 to enter the nucleus and bind to the antioxidant response element after uncoupling from Keap1, thereby promoting the production of antioxidant enzymes and phase II detoxification enzymes. The absorption rate of phenolics in the small intestine is extremely low. Most phenolics reach the colon, where they interact with the microbiota and undergo a series of metabolism. Their metabolites will reach the liver via the portal vein and undergo conjugation reactions. Subsequently, the metabolites reach the whole body to exert biological activity by traveling with the systemic circulation. Phenolics can promote the growth of probiotics, reduce the ratio of Firmicutes/Bacteroidetes (F/B), and improve intestinal microecological imbalance. This paper reviews the nutritional value, bioactivity, and antioxidant mechanism of phenolics in the body, aiming to provide a scientific basis for the development and utilization of natural antioxidants and provide a reference for elucidating the mechanism of action of phenolics for regulating oxidative stress in the body. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yanxia Liu
- School of Public Health and Health Management, Key Laboratory of Development and Utilization of Gannan Characteristic Food Function Component of Ganzhou, Gannan Medical University, Jiangxi, China
| | - Xiaoling Wang
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Natalia S Podio
- ICYTAC (Instituto de Ciencia y Tecnología de Alimentos Córdoba), CONICET and Universidad Nacional de Córdoba, Bv. Dr. Juan Filloy s/n; Cdad. Universitaria, Argentina
| | - Xiaoyin Wang
- School of Public Health and Health Management, Key Laboratory of Development and Utilization of Gannan Characteristic Food Function Component of Ganzhou, Gannan Medical University, Jiangxi, China
| | - Shuyan Xu
- School of Public Health and Health Management, Key Laboratory of Development and Utilization of Gannan Characteristic Food Function Component of Ganzhou, Gannan Medical University, Jiangxi, China
| | - Suhang Jiang
- School of Public Health and Health Management, Key Laboratory of Development and Utilization of Gannan Characteristic Food Function Component of Ganzhou, Gannan Medical University, Jiangxi, China
| | - Xia Wei
- School of Public Health and Health Management, Key Laboratory of Development and Utilization of Gannan Characteristic Food Function Component of Ganzhou, Gannan Medical University, Jiangxi, China
| | - Yuna Han
- School of Public Health and Health Management, Key Laboratory of Development and Utilization of Gannan Characteristic Food Function Component of Ganzhou, Gannan Medical University, Jiangxi, China
| | - Yunyan Cai
- School of Public Health and Health Management, Key Laboratory of Development and Utilization of Gannan Characteristic Food Function Component of Ganzhou, Gannan Medical University, Jiangxi, China
| | - Xingyu Chen
- School of Public Health and Health Management, Key Laboratory of Development and Utilization of Gannan Characteristic Food Function Component of Ganzhou, Gannan Medical University, Jiangxi, China
| | - Fan Jin
- School of Public Health and Health Management, Key Laboratory of Development and Utilization of Gannan Characteristic Food Function Component of Ganzhou, Gannan Medical University, Jiangxi, China
| | - Xianbao Li
- School of Public Health and Health Management, Key Laboratory of Development and Utilization of Gannan Characteristic Food Function Component of Ganzhou, Gannan Medical University, Jiangxi, China
| | - Er Sheng Gong
- School of Public Health and Health Management, Key Laboratory of Development and Utilization of Gannan Characteristic Food Function Component of Ganzhou, Gannan Medical University, Jiangxi, China
| |
Collapse
|
24
|
Del Burgo-Gutiérrez C, Ludwig IA, De Peña MP, Cid C. Industrial and culinary treatments applied to Piquillo pepper ( Capsicum annuum cv. Piquillo) impact positively on (poly)phenols' bioaccessibility and gut microbiota catabolism. Food Funct 2024; 15:2443-2458. [PMID: 38344768 DOI: 10.1039/d3fo04762h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
Thermal treatments applied to plant-based foods prior to consumption might influence (poly)phenols' bioaccessibility and the metabolization of these compounds by the gut microbiota. In the present research, the impact of industrial (grilling and canning) and culinary (microwaving and frying) treatments on the bioaccessibility and colonic biotransformations of (poly)phenols from Piquillo pepper (Capsicum annum cv. Piquillo) were evaluated by in vitro gastrointestinal digestion and colonic fermentation models and HPLC-ESI-MS/MS. The application of industrial treatments impacted positively on (poly)phenols' bioaccessibility compared to raw pepper. Microwaving also exerted a positive effect on (poly)phenols' bioaccessibility compared to canning whereas the addition of oil for frying seemed to negatively affect (poly)phenols' release from the food matrix. Throughout the 48 hours of the colonic fermentation process (poly)phenolic compounds were catabolized into different (poly)phenol derivatives whose formation was also positively affected by industrial and culinary treatments. Based on the concentration and time of appearance of these derivatives, catabolic pathways of (poly)phenols from Piquillo pepper were proposed. The major (poly)phenol derivatives identified (3-(3'-hydroxyphenyl)propanoic acid, 4-hydroxy-3-methoxyphenylacetic acid and benzene-1,2-diol) are considered of great interest for the study of their bioactivity and the potential effect on human health.
Collapse
Affiliation(s)
- Cristina Del Burgo-Gutiérrez
- University of Navarra, Faculty of Pharmacy & Nutrition, Department of Nutrition, Food Science & Physiology, 31008 Pamplona, Spain.
- University of Navarra, Center for Nutrition Research, c/Irunlarrea 1, 31008 Pamplona, Spain
| | - Iziar A Ludwig
- University of Navarra, Faculty of Pharmacy & Nutrition, Department of Nutrition, Food Science & Physiology, 31008 Pamplona, Spain.
- University of Navarra, Center for Nutrition Research, c/Irunlarrea 1, 31008 Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
| | - María-Paz De Peña
- University of Navarra, Faculty of Pharmacy & Nutrition, Department of Nutrition, Food Science & Physiology, 31008 Pamplona, Spain.
- University of Navarra, Center for Nutrition Research, c/Irunlarrea 1, 31008 Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
| | - Concepción Cid
- University of Navarra, Faculty of Pharmacy & Nutrition, Department of Nutrition, Food Science & Physiology, 31008 Pamplona, Spain.
- University of Navarra, Center for Nutrition Research, c/Irunlarrea 1, 31008 Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
| |
Collapse
|
25
|
Wang CJ, Meng HJ, Tang Y, Chen J, Zhou L. Aromatic Amine and Chiral Phosphoric Acid Synergistic Catalyzed Cascade Reaction of Alkynylnaphthols with Aldehydes. Org Lett 2024; 26:1489-1494. [PMID: 38358098 DOI: 10.1021/acs.orglett.4c00172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
A novel approach using aromatic amines and chiral phosphoric acids in a synergistic catalytic cascade reaction of 2-alkynylnaphthols with aldehydes has been established. This method offers a direct route to preparing flavanone analogues with excellent stereoselectivity. Mechanistic studies reveal a sequential process involving addition, elimination, cyclization, and hydrolysis in which aromatic amines and chiral phosphoric acids play key roles via imine-enamine and hydrogen bonding models.
Collapse
Affiliation(s)
- Chuan-Jin Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Department of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
| | - Hao-Jie Meng
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Department of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
| | - Yue Tang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Department of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
| | - Jie Chen
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Department of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
| | - Ling Zhou
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Department of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
| |
Collapse
|
26
|
Espley RV, Jaakola L. The role of environmental stress in fruit pigmentation. PLANT, CELL & ENVIRONMENT 2023; 46:3663-3679. [PMID: 37555620 DOI: 10.1111/pce.14684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/24/2023] [Accepted: 07/31/2023] [Indexed: 08/10/2023]
Abstract
For many fruit crops, the colour of the fruit outwardly defines its eating quality. Fruit pigments provide reproductive advantage for the plant as well as providing protection against unfavourable environmental conditions and pathogens. For consumers these colours are considered attractive and provide many of the dietary benefits derived from fruits. In the majority of species, the main pigments are either carotenoids and/or anthocyanins. They are produced in the fruit as part of the ripening process, orchestrated by phytohormones and an ensuing transcriptional cascade, culminating in pigment biosynthesis. Whilst this is a controlled developmental process, the production of pigments is also attuned to environmental conditions such as light quantity and quality, availability of water and ambient temperature. If these factors intensify to stress levels, fruit tissues respond by increasing (or ceasing) pigment production. In many cases, if the stress is not severe, this can have a positive outcome for fruit quality. Here, we focus on the principal environmental factors (light, temperature and water) that can influence fruit colour.
Collapse
Affiliation(s)
- Richard V Espley
- Department of New Cultivar Innovation, The New Zealand Institute for Plant and Food Research Ltd, Auckland, New Zealand
| | - Laura Jaakola
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Tromsø, Norway
- Norwegian Institute of Bioeconomy Research (NIBIO), Ås, Norway
| |
Collapse
|
27
|
Muralidharan J, Romain C, Bresciani L, Mena P, Angelino D, Del Rio D, Chung LH, Alcaraz PE, Cases J. Nutrikinetics and urinary excretion of phenolic compounds after a 16-week supplementation with a flavanone-rich ingredient. Food Funct 2023; 14:10506-10519. [PMID: 37943075 DOI: 10.1039/d3fo02820h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
Background: Polyphenols are a broad group of compounds with a complex metabolic fate. Flavanones and their metabolites provide cardiovascular protection and assistance in long-term body composition management. Objective: This study evaluates the nutrikinetics and the bioavailability of phenolic compounds after both acute and chronic supplementation with a flavanone-rich product, namely Sinetrol® Xpur, in healthy overweight and obese volunteers. Design: An open-label study including 20 volunteers was conducted for 16 weeks. Participants received Sinetrol® Xpur, either a low dose (900 mg per day) or a high dose (1800 mg per day), in capsules during breakfast and lunch. They were advised to follow an individualized isocaloric diet and avoid a list of polyphenol-rich foods 48 hours before and during the pharmacokinetic measurements. Results: Over 20 phase II and colonic metabolites were measured in the plasma. Two peaks were observed at 1 h and 7h-10 h after the first capsule ingestion. No significant differences in the AUC were observed in circulating metabolites between both doses. In urine excretion, 53 metabolites were monitored, including human phase II and colonic metabolites, at weeks 1 and 16. Cumulative urine excretion was higher after the high dose than after the low dose in both acute and chronic studies. Total urinary metabolites were significantly lower in week 16 compared to week 1. Conclusion: Although the urinary excreted metabolites reduced significantly over 16 weeks, the circulating metabolites did not decrease significantly. This study suggests that chronic intake might not offer the same bioavailability as in the acute study, and this effect does not seem to be dose-dependent. The clinical trial registry number is NCT03823196.
Collapse
Affiliation(s)
| | - Cindy Romain
- Fytexia, ZAE via Europa - 3 rue d'Athènes, 34350 Vendres, France.
| | - Letizia Bresciani
- Human Nutrition Unit, Department of Food & Drug, University of Parma, Via Volturno 39, 43125 Parma, Italy
| | - Pedro Mena
- Human Nutrition Unit, Department of Food & Drug, University of Parma, Via Volturno 39, 43125 Parma, Italy
| | - Donato Angelino
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, 64100, Italy
| | - Daniele Del Rio
- Human Nutrition Unit, Department of Food & Drug, University of Parma, Via Volturno 39, 43125 Parma, Italy
| | - Linda H Chung
- Research Center for High Performance Sport - UCAM Universidad Católica de Murcia, Murcia, Spain
- Department of Food and Nutrition Technology, Universidad Católica de Murcia, Murcia, Spain
| | - Pedro E Alcaraz
- Research Center for High Performance Sport - UCAM Universidad Católica de Murcia, Murcia, Spain
- Department of Food and Nutrition Technology, Universidad Católica de Murcia, Murcia, Spain
| | - Julien Cases
- Fytexia, ZAE via Europa - 3 rue d'Athènes, 34350 Vendres, France.
| |
Collapse
|
28
|
Kapoor MP, Moriwaki M, Abe A, Morishima S, Ozeki M, Sato N. Hesperetin-7- O-glucoside/β-cyclodextrin Inclusion Complex Induces Acute Vasodilator Effect to Inhibit the Cold Sensation Response during Localized Cold-Stimulate Stress in Healthy Human Subjects: A Randomized, Double-Blind, Crossover, and Placebo-Controlled Study. Nutrients 2023; 15:3702. [PMID: 37686734 PMCID: PMC10489958 DOI: 10.3390/nu15173702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 08/17/2023] [Accepted: 08/20/2023] [Indexed: 09/10/2023] Open
Abstract
Hesperetin, a citrus flavonoid, exerts vasodilation and is expected to improve endothelial function and alleviate cold sensation by activating nervous system thermal transduction pathways. In this randomized, double-blind, crossover, and placebo-controlled study, the purpose was to assess the effect of an orally administered highly bioavailable soluble inclusion complex of hesperetine-7-O-glucoside with β-cyclodextrin (HEPT7G/βCD; SunActive® HES/HCD) on cold sensation response during localized cold-stimulated stress in healthy humans. A significant (p ≤ 0.05) dose-dependent increase in skin cutaneous blood flow following relatively small doses of HEPT7G/βCD inclusion complex ingestion was confirmed, which led to a relatively effective recovery of peripheral skin temperature. The time delay of an increase in blood flow during rewarming varied significantly between low- and high-dose HEPT7G/βCD inclusion complex consumption (e.g., 150 mg and 300 mg contain 19.5 mg and 39 mg of HEPT7G, respectively). In conclusion, the substantial alteration in peripheral skin blood flow observed during local cooling stress compared to placebo suggested that deconjugated hesperetin metabolites may have a distinct capacity for thermoregulatory control of human skin blood flow to maintain a constant body temperature during cold stress exposure via cutaneous vasodilation and vasoconstriction systems.
Collapse
Affiliation(s)
- Mahendra P. Kapoor
- Nutrition Division, Taiyo Kagaku Co., Ltd., 1-3 Takaramachi, Yokkaichi 510-0844, Mie, Japan
| | - Masamitsu Moriwaki
- Nutrition Division, Taiyo Kagaku Co., Ltd., 1-3 Takaramachi, Yokkaichi 510-0844, Mie, Japan
| | - Aya Abe
- Nutrition Division, Taiyo Kagaku Co., Ltd., 1-3 Takaramachi, Yokkaichi 510-0844, Mie, Japan
| | - So Morishima
- Nutrition Division, Taiyo Kagaku Co., Ltd., 1-3 Takaramachi, Yokkaichi 510-0844, Mie, Japan
| | - Makoto Ozeki
- Nutrition Division, Taiyo Kagaku Co., Ltd., 1-3 Takaramachi, Yokkaichi 510-0844, Mie, Japan
| | - Norio Sato
- Taiyo Kagaku Co., Ltd., 800 Yamada-Cho, Yokkaichi 510-1111, Mie, Japan
| |
Collapse
|
29
|
Shu C, Wu S, Li H, Tian J. Health benefits of anthocyanin-containing foods, beverages, and supplements have unpredictable relation to gastrointestinal microbiota: A systematic review and meta-analysis of random clinical trials. Nutr Res 2023; 116:48-59. [PMID: 37336096 DOI: 10.1016/j.nutres.2023.04.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 04/10/2023] [Accepted: 04/11/2023] [Indexed: 06/21/2023]
Abstract
Anthocyanins are a type of natural pigment that has numerous health benefits. In recent years, the interaction of anthocyanins with gastrointestinal (GI) microbiota has been presented as a viable paradigm for explaining anthocyanin activities. The current study performed a systematic review and meta-analysis to determine the potential modulation of GI microbiota by anthocyanins in human health improvement. Clinical trials were retrieved from PubMed, Cochrane, Web of Knowledge, China Biology Medicine, China National Knowledge Infrastructure, and ClinicalTrials.gov with no language restrictions. Eight clinical trials (252 participants) were selected from the 1121 identified studies and the relative phylum abundance extracted from the trials was analyzed using a random-effects model. Based on the analysis, anthocyanins had no effect on the relative abundance of Firmicutes (standard mean difference [SMD]: -0.46 [-1.25 to 0.34], P = .26), Proteobacteria (SMD, -0.32 [-0.73 to 0.09], P = .13), nor Actinobacteria (SMD, -0.19 [-0.50 to 0.12], P = 0.24), but influenced the abundance of Bacteroidetes (SMD, 0.84 [0.17 to 1.52], P = .01) when compared with placebo/control. No significant influence on the relative abundance was detected when the data were analyzed following the "posttreatment vs. pretreatment" strategy. Our preliminary analysis revealed that the effects of anthocyanins on human GI microbiota vary between studies and individuals, and at the current stage, the clinical trials regarding the effects of anthocyanin interventions on human GI microbiota are lacking. More trials with larger sample sizes are needed to promote the clinical application of anthocyanins.
Collapse
Affiliation(s)
- Chi Shu
- College of Food Science, Shenyang Agricultural University, No. 120 Dongling Road, Shenhe District, Shenyang, China, 100866.
| | - Siyu Wu
- College of Food Science, Shenyang Agricultural University, No. 120 Dongling Road, Shenhe District, Shenyang, China, 100866
| | - Haikun Li
- College of Food Science, Shenyang Agricultural University, No. 120 Dongling Road, Shenhe District, Shenyang, China, 100866
| | - Jinlong Tian
- College of Food Science, Shenyang Agricultural University, No. 120 Dongling Road, Shenhe District, Shenyang, China, 100866
| |
Collapse
|
30
|
Bešlo D, Golubić N, Rastija V, Agić D, Karnaš M, Šubarić D, Lučić B. Antioxidant Activity, Metabolism, and Bioavailability of Polyphenols in the Diet of Animals. Antioxidants (Basel) 2023; 12:1141. [PMCID: PMC10294820 DOI: 10.3390/antiox12061141] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/04/2023] [Accepted: 05/15/2023] [Indexed: 06/29/2023] Open
Abstract
As the world’s population grows, so does the need for more and more animal feed. In 2006, the EU banned the use of antibiotics and other chemicals in order to reduce chemical residues in food consumed by humans. It is well known that oxidative stress and inflammatory processes must be combated to achieve higher productivity. The adverse effects of the use of pharmaceuticals and other synthetic compounds on animal health and product quality and safety have increased interest in phytocompounds. With the use of plant polyphenols in animal nutrition, they are gaining more attention as a supplement to animal feed. Livestock feeding based on a sustainable, environmentally friendly approach (clean, safe, and green agriculture) would also be a win–win for farmers and society. There is an increasing interest in producing healthier products of animal origin with a higher ratio of polyunsaturated fatty acids (PUFAs) to saturated fatty acids by modulating animal nutrition. Secondary plant metabolites (polyphenols) are essential chemical compounds for plant physiology as they are involved in various functions such as growth, pigmentation, and resistance to pathogenic organisms. Polyphenols are exogenous antioxidants that act as one of the first lines of cell defense. Therefore, the discoveries on the intracellular antioxidant activity of polyphenols as a plant supplement have contributed significantly to the improvement of antioxidant activity, as polyphenols prevent oxidative stress damage and eliminate excessively produced free radicals. To achieve animal welfare, reduce stress and the need for medicines, and increase the quality of food of animal origin, the addition of polyphenols to research and breeding can be practised in part with a free-choice approach to animal nutrition.
Collapse
Affiliation(s)
- Drago Bešlo
- Faculty of Agrobiotechnical Sciences Osijek, J. J. Strossmayer University Osijek, Vladimira Preloga 1, HR-31000 Osijek, Croatia; (N.G.); (V.R.); (D.A.); (M.K.); (D.Š.)
| | - Nataša Golubić
- Faculty of Agrobiotechnical Sciences Osijek, J. J. Strossmayer University Osijek, Vladimira Preloga 1, HR-31000 Osijek, Croatia; (N.G.); (V.R.); (D.A.); (M.K.); (D.Š.)
| | - Vesna Rastija
- Faculty of Agrobiotechnical Sciences Osijek, J. J. Strossmayer University Osijek, Vladimira Preloga 1, HR-31000 Osijek, Croatia; (N.G.); (V.R.); (D.A.); (M.K.); (D.Š.)
| | - Dejan Agić
- Faculty of Agrobiotechnical Sciences Osijek, J. J. Strossmayer University Osijek, Vladimira Preloga 1, HR-31000 Osijek, Croatia; (N.G.); (V.R.); (D.A.); (M.K.); (D.Š.)
| | - Maja Karnaš
- Faculty of Agrobiotechnical Sciences Osijek, J. J. Strossmayer University Osijek, Vladimira Preloga 1, HR-31000 Osijek, Croatia; (N.G.); (V.R.); (D.A.); (M.K.); (D.Š.)
| | - Domagoj Šubarić
- Faculty of Agrobiotechnical Sciences Osijek, J. J. Strossmayer University Osijek, Vladimira Preloga 1, HR-31000 Osijek, Croatia; (N.G.); (V.R.); (D.A.); (M.K.); (D.Š.)
| | - Bono Lučić
- NMR Center, Ruđer Bošković Institute, Bijenička cesta 54, HR-10000 Zagreb, Croatia;
| |
Collapse
|
31
|
Ticinesi A, Nouvenne A, Cerundolo N, Parise A, Meschi T. Accounting Gut Microbiota as the Mediator of Beneficial Effects of Dietary (Poly)phenols on Skeletal Muscle in Aging. Nutrients 2023; 15:nu15102367. [PMID: 37242251 DOI: 10.3390/nu15102367] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/14/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
Sarcopenia, the age-related loss of muscle mass and function increasing the risk of disability and adverse outcomes in older people, is substantially influenced by dietary habits. Several studies from animal models of aging and muscle wasting indicate that the intake of specific polyphenol compounds can be associated with myoprotective effects, and improvements in muscle strength and performance. Such findings have also been confirmed in a smaller number of human studies. However, in the gut lumen, dietary polyphenols undergo extensive biotransformation by gut microbiota into a wide range of bioactive compounds, which substantially contribute to bioactivity on skeletal muscle. Thus, the beneficial effects of polyphenols may consistently vary across individuals, depending on the composition and metabolic functionality of gut bacterial communities. The understanding of such variability has recently been improved. For example, resveratrol and urolithin interaction with the microbiota can produce different biological effects according to the microbiota metabotype. In older individuals, the gut microbiota is frequently characterized by dysbiosis, overrepresentation of opportunistic pathogens, and increased inter-individual variability, which may contribute to increasing the variability of biological actions of phenolic compounds at the skeletal muscle level. These interactions should be taken into great consideration for designing effective nutritional strategies to counteract sarcopenia.
Collapse
Affiliation(s)
- Andrea Ticinesi
- Department of Medicine and Surgery, University of Parma, Via Antonio Gramsci 14, 43126 Parma, Italy
- Microbiome Research Hub, University of Parma, Parco Area delle Scienze 11/1, 43124 Parma, Italy
- Geriatric-Rehabilitation Department, Azienda Ospedaliero-Universitaria di Parma, Via Antonio Gramsci 14, 43126 Parma, Italy
| | - Antonio Nouvenne
- Microbiome Research Hub, University of Parma, Parco Area delle Scienze 11/1, 43124 Parma, Italy
- Geriatric-Rehabilitation Department, Azienda Ospedaliero-Universitaria di Parma, Via Antonio Gramsci 14, 43126 Parma, Italy
| | - Nicoletta Cerundolo
- Geriatric-Rehabilitation Department, Azienda Ospedaliero-Universitaria di Parma, Via Antonio Gramsci 14, 43126 Parma, Italy
| | - Alberto Parise
- Geriatric-Rehabilitation Department, Azienda Ospedaliero-Universitaria di Parma, Via Antonio Gramsci 14, 43126 Parma, Italy
| | - Tiziana Meschi
- Department of Medicine and Surgery, University of Parma, Via Antonio Gramsci 14, 43126 Parma, Italy
- Microbiome Research Hub, University of Parma, Parco Area delle Scienze 11/1, 43124 Parma, Italy
- Geriatric-Rehabilitation Department, Azienda Ospedaliero-Universitaria di Parma, Via Antonio Gramsci 14, 43126 Parma, Italy
| |
Collapse
|
32
|
Hernández-Prieto D, Garre A, Agulló V, García-Viguera C, Egea JA. Differences Due to Sex and Sweetener on the Bioavailability of (Poly)phenols in Urine Samples: A Machine Learning Approach. Metabolites 2023; 13:metabo13050653. [PMID: 37233694 DOI: 10.3390/metabo13050653] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/09/2023] [Accepted: 05/10/2023] [Indexed: 05/27/2023] Open
Abstract
Metabolic diseases have been related to the overdrinking of high-sugar content beverages. As a result, the demand for alternative formulations based on plant-based ingredients with health-promoting properties has increased during the last few years. Nonetheless, the design and production of effective formulations requires understanding the bioavailability of these compounds. For this purpose, a two-month longitudinal trial with 140 volunteers was conducted to measure the beneficial effects of a maqui-citrus beverage, rich in (poly)phenols. From data obtained by quantifying metabolites present in urine samples, biostatistical and machine learning (data imputation, feature selection, and clustering) methods were applied to assess whether a volunteer's sex and the sweetener added to the beverage (sucrose, sucralose, or stevia) affected the bioavailability of (poly)phenol metabolites. Several metabolites have been described as being differentially influenced: 3,4-dihydroxyphenylacetic acid and naringenin with its derivatives were positively influenced by stevia and men, while eriodictyol sulfate and homoeridictyol glucunoride concentrations were enhanced with stevia and women. By examining groups of volunteers created by clustering analysis, patterns in metabolites' bioavailability distribution as a function of sex and/or sweeteners (or even due to an uncontrolled factor) were also discovered. These results underline the potential of stevia as a (poly)phenol bioavailability enhancer. Furthermore, they also evidence sex affects the bioavailability of (poly)phenols, pointing at a sex-dependent metabolic pathway regulation.
Collapse
Affiliation(s)
- Diego Hernández-Prieto
- Lab Fitoquimica y Alimentos Saludables (LabFAS), Department of Food Science and Technology (CEBAS-CSIC), Campus Universitario Espinardo, 25, 30100 Murcia, Spain
| | - Alberto Garre
- Agronomic Engineering Department, Universidad Politécnica de Cartagena (UPCT), Paseo Alfonso XIII, 48, 30203 Cartagena, Spain
- Associated Unit of R&D and Innovation CEBAS-CSIC+UPCT on "Quality and Risk Assessment of Foods", CEBAS-CSIC, Campus Universitario de Espinardo, 25, 30100 Murcia, Spain
| | - Vicente Agulló
- Human Nutrition Unit, Department of Food & Drug, University of Parma, 43125 Parma, Italy
| | - Cristina García-Viguera
- Lab Fitoquimica y Alimentos Saludables (LabFAS), Department of Food Science and Technology (CEBAS-CSIC), Campus Universitario Espinardo, 25, 30100 Murcia, Spain
- Associated Unit of R&D and Innovation CEBAS-CSIC+UPCT on "Quality and Risk Assessment of Foods", CEBAS-CSIC, Campus Universitario de Espinardo, 25, 30100 Murcia, Spain
| | - Jose A Egea
- Group of Fruit Breeding, Department of Plant Breeding, CEBAS-CSIC, Campus Universitario de Espinardo, 25, 30100 Murcia, Spain
| |
Collapse
|
33
|
Lan HN, Liu RY, Liu ZH, Li X, Li BZ, Yuan YJ. Biological valorization of lignin to flavonoids. Biotechnol Adv 2023; 64:108107. [PMID: 36758651 DOI: 10.1016/j.biotechadv.2023.108107] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 01/12/2023] [Accepted: 01/31/2023] [Indexed: 02/10/2023]
Abstract
Lignin is the most affluent natural aromatic biopolymer on the earth, which is the promising renewable source for valuable products to promote the sustainability of biorefinery. Flavonoids are a class of plant polyphenolic secondary metabolites containing the benzene ring structure with various biological activities, which are largely applied in health food, pharmaceutical, and medical fields. Due to the aromatic similarity, microbial conversion of lignin derived aromatics to flavonoids could facilitate flavonoid biosynthesis and promote the lignin valorization. This review thereby prospects a novel valorization route of lignin to high-value natural products and demonstrates the potential advantages of microbial bioconversion of lignin to flavonoids. The biodegradation of lignin polymers is summarized to identify aromatic monomers as momentous precursors for flavonoid synthesis. The biosynthesis pathways of flavonoids in both plants and strains are introduced and compared. After that, the key branch points and important intermediates are clearly discussed in the biosynthesis pathways of flavonoids. Moreover, the most significant enzyme reactions including Claisen condensation, cyclization and hydroxylation are demonstrated in the biosynthesis pathways of flavonoids. Finally, current challenges and potential future strategies are also discussed for transforming lignin into various flavonoids. The holistic microbial conversion routes of lignin to flavonoids could make a sustainable production of flavonoids and improve the feasibility of lignin valorization.
Collapse
Affiliation(s)
- Hai-Na Lan
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
| | - Ruo-Ying Liu
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
| | - Zhi-Hua Liu
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
| | - Xia Li
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
| | - Bing-Zhi Li
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China.
| | - Ying-Jin Yuan
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
| |
Collapse
|
34
|
Rust BM, Riordan JO, Carbonero FG, Solverson PM. One-Week Elderberry Juice Treatment Increases Carbohydrate Oxidation after a Meal Tolerance Test and Is Well Tolerated in Adults: A Randomized Controlled Pilot Study. Nutrients 2023; 15:2072. [PMID: 37432227 DOI: 10.3390/nu15092072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 07/12/2023] Open
Abstract
Obesity in the United States continues to worsen. Anthocyanin-rich fruits and vegetables provide a pragmatic dietary approach to slow its metabolic complications. Given American diet patterns, foods with high anthocyanin content could address dose-response challenges. The study objective was to determine the effect of 100% elderberry juice on measures of indirect calorimetry (IC) and insulin sensitivity/glucose tolerance in a placebo-controlled, randomized, crossover pilot study. Overweight and obese adults were randomized to a 5-week study which included 2 1-week periods of twice-daily elderberry juice (EBJ) or sugar-matched placebo consumption separated by a 3-week washout period. Following each 1-week test period, IC and insulin sensitivity/glucose tolerance was measured with a 3 h meal tolerance test (MTT). Treatment differences were tested with linear mixed modeling. A total of 22 prospective study volunteers (18 F/4 M) attended recruitment meetings, and 9 were analyzed for treatment differences. EBJ was well tolerated and compliance was 99.6%. A total of 6 IC measures (intervals) were created, which coincided with 10-20 min gaseous samplings in-between MTT blood samplings. Average CHO oxidation was significantly higher during the MTT after 1-week EBJ consumption (3.38 vs. 2.88 g per interval, EBJ vs. placebo, p = 0.0113). Conversely, average fat oxidation was significantly higher during the MTT after 1-week placebo consumption (1.17 vs. 1.47 g per interval, EBJ vs. placebo, p = 0.0189). This was in-line with a significantly lower average respiratory quotient after placebo treatment (0.87 vs. 0.84, EBJ vs. placebo, p = 0.0114). Energy expenditure was not different. There was no difference in serum glucose or insulin response between treatments. This pilot study of free-living volunteers describes significant change in IC but not insulin sensitivity with an EBJ intervention. Controlled feeding and increased sample size will help determine the utility of EBJ on these outcomes.
Collapse
Affiliation(s)
- Bret M Rust
- Department of Nutrition and Exercise Physiology, Elson S Floyd College of Medicine, Washington State University, Spokane, WA 99202, USA
- Department of Applied Health Science, School of Public Health, Indiana University, Bloomington, IN 47405, USA
| | - Joseph O Riordan
- Department of Nutrition and Exercise Physiology, Elson S Floyd College of Medicine, Washington State University, Spokane, WA 99202, USA
| | - Franck G Carbonero
- Department of Nutrition and Exercise Physiology, Elson S Floyd College of Medicine, Washington State University, Spokane, WA 99202, USA
| | - Patrick M Solverson
- Department of Nutrition and Exercise Physiology, Elson S Floyd College of Medicine, Washington State University, Spokane, WA 99202, USA
| |
Collapse
|
35
|
Pereira-Caro G, Almutairi TM, Cáceres-Jiménez S, Moreno-Rojas JM, Malkova D, García AL, Crozier A. Bioavailability of orange juice (poly)phenols: β-glucan-rich oat bran decreases urinary excretion of flavanone phase II metabolites and enhances excretion of microbiota-derived phenolic catabolites. Free Radic Biol Med 2023; 199:34-43. [PMID: 36764628 DOI: 10.1016/j.freeradbiomed.2023.02.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/19/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023]
Abstract
The impact of β-glucan-rich oat bran on the bioavailability of orange juice (OJ) flavanones was investigated. Volunteers consumed 500 mL of OJ with and without 22 g of oat bran containing 6 g of β-glucan (OB-6). Urine collected 12 h prior to and over a 0-24 h period post-supplementation was analysed by UHPLC-HRMS. Sixteen flavanone metabolites and thirty-nine colon-derived phenolic catabolites were identified and quantified. The major compounds were hesperetin-3'-glucuronide, along with hippuric acids and the C6-C3 phenolic acids 3-(3'-hydroxy-4'-methoxyphenyl)hydracrylic acid and 3-(4'-hydroxy-3'-methoxyphenyl)propanoic acid. A marked reduction in the 0-24 h excretion of flavanone metabolites from 29.7 μmol (9.3% recovery) to 9.3 μmol (2.9% recovery), occurred following consumption of OB-6 compared to OJ. This appeared not to be an effect of fiber on the rate of transport in the upper gut. After consumption of OJ there was a 163 ± 15 μmol excretion of colon-derived phenolic catabolites, equivalent to 43% of (poly)phenol intake and following OB-6 intake there was a further significant 30% increase. The β-oat bran in OB-6 contained 5.8 μmol of free and 52 μmol of bound phenolic derivatives compared to 371 μmol of OJ (poly)phenols. The elevated excretion of phenolics after OB-6 consumption appears not to be due to bound phenolics in the bran, rather it is consequence, principally, of a bran-mediated increase in the quantities of flavanones passing from the upper to the lower bowel where they were subjected to microbiota-mediated catabolism. CLINICAL TRIAL REGISTRATION NUMBER: This trial was registered at clinicaltrials.gov as NCT04867655.
Collapse
Affiliation(s)
- Gema Pereira-Caro
- Department of Agroindustry and Food Quality, IFAPA-Alameda del Obispo, Córdoba, Spain
| | | | - Salud Cáceres-Jiménez
- Department of Agroindustry and Food Quality, IFAPA-Alameda del Obispo, Córdoba, Spain; Departamento de Bromatología y Tecnología de los Alimentos, Campus Rabanales, Ed. Darwin-anexo Universidad de Córdoba, Córdoba, Spain
| | | | - Dalia Malkova
- Human Nutrition, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Ada L García
- Human Nutrition, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Alan Crozier
- Department of Chemistry, King Saud University, Riyadh, Saudi Arabia; School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK.
| |
Collapse
|
36
|
Oteiza PI, Cremonini E, Fraga CG. Anthocyanin actions at the gastrointestinal tract: Relevance to their health benefits. Mol Aspects Med 2023; 89:101156. [PMID: 36379746 DOI: 10.1016/j.mam.2022.101156] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/26/2022] [Accepted: 10/28/2022] [Indexed: 11/15/2022]
Abstract
Anthocyanins (AC) are flavonoids abundant in the human diet, which consumption has been associated to several health benefits, including the mitigation of cardiovascular disease, type 2 diabetes, non-alcoholic fatty liver disease, and neurological disorders. It is widely recognized that the gastrointestinal (GI) tract is not only central for food digestion but actively participates in the regulation of whole body physiology. Given that AC, and their metabolites reach high concentrations in the intestinal lumen after food consumption, their biological actions at the GI tract can in part explain their proposed local and systemic health benefits. In terms of mechanisms of action, AC have been found to: i) inhibit GI luminal enzymes that participate in the absorption of lipids and carbohydrates; ii) preserve intestinal barrier integrity and prevent endotoxemia, inflammation and oxidative stress; iii) sustain goblet cell number, immunological functions, and mucus production; iv) promote a healthy microbiota; v) be metabolized by the microbiota to AC metabolites which will be absorbed and have systemic effects; and vi) modulate the metabolism of GI-generated hormones. This review will summarize and discuss the latest information on AC actions at the GI tract and their relationship to overall health benefits.
Collapse
Affiliation(s)
- Patricia I Oteiza
- Department of Nutrition, University of California, Davis, USA; Department of Environmental Toxicology, University of California, Davis, USA.
| | - Eleonora Cremonini
- Department of Nutrition, University of California, Davis, USA; Department of Environmental Toxicology, University of California, Davis, USA
| | - Cesar G Fraga
- Department of Nutrition, University of California, Davis, USA; Fisicoquímica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina; Instituto de Bioquímica y Medicina Molecular (IBIMOL), UBA-CONICET, Buenos Aires, Argentina
| |
Collapse
|
37
|
Meng X, Wu H, Xiong J, Li Y, Chen L, Gu Q, Li P. Metabolism of eriocitrin in the gut and its regulation on gut microbiota in mice. Front Microbiol 2023; 13:1111200. [PMID: 36713175 PMCID: PMC9877458 DOI: 10.3389/fmicb.2022.1111200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 12/22/2022] [Indexed: 01/13/2023] Open
Abstract
Introduction Eriocitrin, found in lemon fruit, has shown a wide range of biological properties. Herein, we investigated the intestinal metabolic profile of eriocitrin in colon, and the regulation of dietary intervention of eriocitrin on gut microbiota. Methods We performed ultra performance liquid chromatography-electrospray ionization-tandem mass spectrometry (UPLC-ESI-MS/MS), 16S rDNA gene sequencing and gas chromatography-mass (GC-MS) on colon contents from the eriocitrin group (n=6), and compared them with control participants (n=6). Results A total of 136 flavonoids were found in colon contents, including eriocitrin and its six metabolites (eriodictyol, homoeriodictyol, hesperetin, eriodictyol-3'-O-glucoside, hesperetin-7-O-glucoside and eriodictyol-7-O-(6″-O-galloyl) glucoside). Moreover, dietary intervention of eriocitrin significantly alters the beta diversity of the gut microbiota, the probiotics such as Lachnospiraceae_UCG_006 were significantly enriched, and the production of butyrate, valerate and hexanoate in the colon pool of short-chain fatty acids were significant increased. The spearman's association analysis performed some intestinal bacteria may be involved in the metabolism of eriocitrin. Discussion Collectively, our results preliminarily suggest the metabolism of eriocitrin in the gut, demonstrating alterations of eriocitrin in gut microbiota, which warrants further investigation to determine its potential use in food and biomedical applications.
Collapse
|
38
|
A Comprehensive Review on Anti-Inflammatory Response of Flavonoids in Experimentally-Induced Epileptic Seizures. Brain Sci 2023; 13:brainsci13010102. [PMID: 36672083 PMCID: PMC9856497 DOI: 10.3390/brainsci13010102] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/23/2022] [Accepted: 12/31/2022] [Indexed: 01/06/2023] Open
Abstract
Flavonoids, a group of natural compounds with phenolic structure, are becoming popular as alternative medicines obtained from plants. These compounds are reported to have various pharmacological properties, including attenuation of inflammatory responses in multiple health issues. Epilepsy is a disorder of the central nervous system implicated with the activation of the inflammatory cascade in the brain. The aim of the present study was to summarize the role of various neuroinflammatory mediators in the onset and progression of epilepsy, and, thereafter, to discuss the flavonoids and their classes, including their biological properties. Further, we highlighted the modulation of anti-inflammatory responses achieved by these substances in different forms of epilepsy, as evident from preclinical studies executed on multiple epilepsy models. Overall, the review summarizes the available evidence of the anti-inflammatory potential of various flavonoids in epilepsy.
Collapse
|
39
|
Figueira I, Bastos P, González-Sarrías A, Espín JC, Costa-Silva B, Nunes Dos Santos C. Can exosomes transfer the preconditioning effects triggered by (poly)phenol compounds between cells? Food Funct 2023; 14:15-31. [PMID: 36525310 PMCID: PMC9809131 DOI: 10.1039/d2fo00876a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Effective strategies in prolonging life- and health span are increasingly recognized as acting as mild stressors. Micronutrients and other dietary compounds such as (poly)phenols may act as moderate stressors and confer protective effects via a preconditioning phenomenon. (Poly)phenols and their metabolites may not need to reach their target cells to produce biologically significant responses, so that cells exposed to it at entry points may communicate signals to other cells. One of such "communication" mechanisms could occur through extracellular vesicles, including exosomes. In vitro loading of exosomes with (poly)phenols has been used to achieve targeted exosome homing. However, it is unknown if similar shuttling phenomena occur in vivo upon (poly)phenols consumption. Alternatively, exposure to (poly)phenols might trigger responses in exposed organs, which can subsequently signal to cells distant from exposure sites via exosomes. The currently available studies favor indirect effects of (poly)phenols, tempting to suggest a "billiard-like" or "domino-like" propagating effect mediated by quantitative and qualitative changes in exosomes triggered by (poly)phenols. In this review, we discuss the limited current data available on how (poly)phenols exposure can potentially modify exosomes activity, highlighting major questions regarding how (epi)genetic, physiological, and gut microbiota factors can modulate and be modulated by the putative exosome-(poly)phenolic compound interplay that still remains to be fully understood.
Collapse
Affiliation(s)
- Inês Figueira
- iNOVA4Health, NOVA Medical School| Faculdade de Ciências Médicas, NMS|FCM, Universidade NOVA de Lisboa, Lisboa, Portugal.
| | - Paulo Bastos
- iNOVA4Health, NOVA Medical School| Faculdade de Ciências Médicas, NMS|FCM, Universidade NOVA de Lisboa, Lisboa, Portugal.
| | - Antonio González-Sarrías
- Laboratory of Food & Health, Research Group on Quality, Safety and Bioactivity of Plant Foods, CEBAS-CSIC, Murcia, Spain
| | - Juan Carlos Espín
- Laboratory of Food & Health, Research Group on Quality, Safety and Bioactivity of Plant Foods, CEBAS-CSIC, Murcia, Spain
| | - Bruno Costa-Silva
- Champalimaud Physiology and Cancer Programme, Champalimaud Foundation, Lisboa, Portugal
| | - Cláudia Nunes Dos Santos
- iNOVA4Health, NOVA Medical School| Faculdade de Ciências Médicas, NMS|FCM, Universidade NOVA de Lisboa, Lisboa, Portugal.
- iBET, Institute of Experimental and Technological Biology, Oeiras, Portugal
| |
Collapse
|
40
|
Unique roles in health promotion of dietary flavonoids through gut microbiota regulation: Current understanding and future perspectives. Food Chem 2023; 399:133959. [DOI: 10.1016/j.foodchem.2022.133959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 08/08/2022] [Accepted: 08/13/2022] [Indexed: 11/21/2022]
|
41
|
Biochemistry of Antioxidants: Mechanisms and Pharmaceutical Applications. Biomedicines 2022; 10:biomedicines10123051. [PMID: 36551806 PMCID: PMC9776363 DOI: 10.3390/biomedicines10123051] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/18/2022] [Accepted: 11/21/2022] [Indexed: 11/29/2022] Open
Abstract
Natural antioxidants from fruits and vegetables, meats, eggs and fish protect cells from the damage caused by free radicals. They are widely used to reduce food loss and waste, minimizing lipid oxidation, as well as for their effects on health through pharmaceutical preparations. In fact, the use of natural antioxidants is among the main efforts made to relieve the pressure on natural resources and to move towards more sustainable food and pharmaceutical systems. Alternative food waste management approaches include the valorization of by-products as a source of phenolic compounds for functional food formulations. In this review, we will deal with the chemistry of antioxidants, including their molecular structures and reaction mechanisms. The biochemical aspects will also be reviewed, including the effects of acidity and temperature on their partitioning in binary and multiphasic systems. The poor bioavailability of antioxidants remains a huge constraint for clinical applications, and we will briefly describe some delivery systems that provide for enhanced pharmacological action of antioxidants via drug targeting and increased bioavailability. The pharmacological activity of antioxidants can be improved by designing nanotechnology-based formulations, and recent nanoformulations include nanoparticles, polymeric micelles, liposomes/proliposomes, phytosomes and solid lipid nanoparticles, all showing promising outcomes in improving the efficiency and bioavailability of antioxidants. Finally, an overview of the pharmacological effects, therapeutic properties and future choice of antioxidants will be incorporated.
Collapse
|
42
|
Yang C, Han Y, Tian X, Sajid M, Mehmood S, Wang H, Li H. Phenolic composition of grape pomace and its metabolism. Crit Rev Food Sci Nutr 2022; 64:4865-4881. [PMID: 36398354 DOI: 10.1080/10408398.2022.2146048] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Grape pomace is the most important residual after wine making, and it is considered to be a very abundant source for the extraction of a wide range of polyphenols. These polyphenols exhibit a variety of bioactivities, such as antioxidant, anti-inflammatory, and anti-cancer. They are also beneficial in alleviating metabolic syndrome and regulating intestinal flora, etc. These health effects are most likely contributed by polyphenol metabolite, which are formed by the grape pomace phenolics after a complex metabolic process in vivo. Therefore, understanding the phenolic composition of grape pomace and its metabolism is the basis for an in-depth study of the biological activity of grape pomace polyphenols. In this paper, we first summarize the composition of phenolics in grape pomace, then review the recent studies on the metabolism of grape pomace phenolics, including changes in phenolics in the gastrointestinal tract, their pharmacokinetics in the systemic circulation, the tissue distribution of phenolic metabolites, and the beneficial effects of metabolites on intestinal health, and finally summarize the effects of human health status and dietary fiber on the metabolism of grape polyphenols. It is expected to provide help for the in-depth research on the metabolism and biological activity of grape pomace polyphenol extracts, and to provide theoretical support for the development and utilization of grape pomace.
Collapse
Affiliation(s)
- Chenlu Yang
- College of Enology, Northwest A&F University, Yangling, China
| | - Yulei Han
- College of Enology, Northwest A&F University, Yangling, China
| | - Xuelin Tian
- College of Enology, Northwest A&F University, Yangling, China
| | - Marina Sajid
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
- Institute of Food and Nutritional Sciences, PMAS-Arid Agriculture University, Rawalpindi, Pakistan
| | - Sajid Mehmood
- College of Plant Protection, Northwest A&F University, Yangling, China
- Department of Plant Pathology, PMAS-Arid Agriculture University, Rawalpindi, Pakistan
| | - Hua Wang
- College of Enology, Northwest A&F University, Yangling, China
- China Wine Industry Technology Institute, Yinchuan, China
- Shaanxi Engineering Research Center for Viti-Viniculture, Yangling, China
| | - Hua Li
- College of Enology, Northwest A&F University, Yangling, China
- China Wine Industry Technology Institute, Yinchuan, China
- Shaanxi Engineering Research Center for Viti-Viniculture, Yangling, China
| |
Collapse
|
43
|
Calani L, Bresciani L, Rodolfi M, Del Rio D, Petruccelli R, Faraloni C, Ganino T. Characterization of the (Poly)Phenolic Fraction of Fig Peel: Comparison among Twelve Cultivars Harvested in Tuscany. PLANTS (BASEL, SWITZERLAND) 2022; 11:3073. [PMID: 36432801 PMCID: PMC9697167 DOI: 10.3390/plants11223073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/04/2022] [Accepted: 11/11/2022] [Indexed: 06/16/2023]
Abstract
(1) Background: The fig tree (Ficus carica L.) is widely cultivated in the Mediterranean area and it produces fruits largely consumed in the Mediterranean diet. Previous studies have shown that this fruit represents a rich source of (poly)phenols, which are mainly located in the peel rather than the pulp. In our study, fig peel derived from twelve different cultivars located in Tuscany was assessed for its (poly)phenol profile. (2) Methods: The (poly)phenol characterization was performed through ultra-high performance liquid chromatography coupled to multiple-stage mass spectrometry. (3) Results: Twenty-eight (poly)phenolic compounds were quantified in the investigated fig peel. It was possible to observe an interesting variability in the (poly)phenol content among the twelve cultivars of fig peel. Rutin and 5-caffeoylquinic acid were the main compounds in the greenish fig peel, while cyanidin-3-O-rutinoside was the main component in the dark-violet fig peel. (4) Conclusions: fig peel could be used as a (poly)phenol-rich ingredient in several food products to increase the bioactive compound content of foods. Moreover, dark-violet peel could be considered potentially suitable as a natural food colorant.
Collapse
Affiliation(s)
- Luca Calani
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - Letizia Bresciani
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - Margherita Rodolfi
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - Daniele Del Rio
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - Raffaella Petruccelli
- Institute of BioEconomy (IBE-CNR), via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy
| | - Cecilia Faraloni
- Institute of BioEconomy (IBE-CNR), via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy
| | - Tommaso Ganino
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
- Institute of BioEconomy (IBE-CNR), via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
44
|
Tao R, Chen Q, Li Y, Guo L, Zhou Z. Physicochemical, nutritional, and phytochemical profile changes of fermented citrus puree from enzymatically hydrolyzed whole fruit under cold storage. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
45
|
Speciani MC, Cintolo M, Marino M, Oren M, Fiori F, Gargari G, Riso P, Ciafardini C, Mascaretti F, Parpinel M, Airoldi A, Vangeli M, Leone P, Cantù P, Lagiou P, Del Bo’ C, Vecchi M, Carnevali P, Oreggia B, Guglielmetti S, Bonzi R, Bonato G, Ferraroni M, La Vecchia C, Penagini R, Mutignani M, Rossi M. Flavonoid Intake in Relation to Colorectal Cancer Risk and Blood Bacterial DNA. Nutrients 2022; 14:4516. [PMID: 36364779 PMCID: PMC9653960 DOI: 10.3390/nu14214516] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/14/2022] [Accepted: 10/17/2022] [Indexed: 09/29/2023] Open
Abstract
Flavonoids have been inversely associated to colorectal cancer (CRC) and are plausible intermediaries for the relation among gut microbiome, intestinal permeability and CRC. We analyzed the relation of flavonoid intake with CRC and blood bacterial DNA. We conducted a case-control study in Italy involving 100 incident CRC cases and 200 controls. A valid and reproducible food-frequency questionnaire was used to assess dietary habits and to estimate six flavonoid subclass intakes. We applied qPCR and 16S rRNA gene profiling to assess blood bacterial DNA. We used multiple logistic regression to derive odds ratios (ORs) of CRC and Mann-Whitney and chi--square tests to evaluate abundance and prevalence of operational taxonomic units (OTUs) according to flavonoid intakes. Inverse associations with CRC were found for anthocyanidins (OR for the highest versus the lowest tertile = 0.24, 95% confidence interval, CI = 0.11-0.52) and flavanones (OR = 0.18, 95% CI = 0.08-0.42). We found different abundance and prevalence according to anthocyanidin and flavanone intake for OTUs referring to Oligoflexales order, Diplorickettsiaceae family, Staphylococcus, Brevundimonas, Pelomonas and Escherischia-Shigella genera, and Flavobacterium and Legionella species. The study provides evidence to a protective effect of dietary anthocyanidins and flavanones on CRC and suggests an influence of flavonoids on blood bacterial DNA, possibly through intestinal permeability changes.
Collapse
Affiliation(s)
- Michela Carola Speciani
- Department of Clinical Sciences and Community Health, Branch of Medical Statistics, Biometry and Epidemiology “G.A. Maccacaro”, Università degli Studi di Milano, 20133 Milan, Italy
| | - Marcello Cintolo
- Digestive and Interventional Endoscopy Unit, Azienda Socio Sanitaria Territoriale (ASST) Grande Ospedale Metropolitano Niguarda, 20162 Milan, Italy
| | - Mirko Marino
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Università Degli Studi di Milano, 20133 Milan, Italy
| | - Maya Oren
- Department of Clinical Sciences and Community Health, Branch of Medical Statistics, Biometry and Epidemiology “G.A. Maccacaro”, Università degli Studi di Milano, 20133 Milan, Italy
| | - Federica Fiori
- Department of Medicine, University of Udine, 33100 Udine, Italy
| | - Giorgio Gargari
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Università Degli Studi di Milano, 20133 Milan, Italy
| | - Patrizia Riso
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Università Degli Studi di Milano, 20133 Milan, Italy
| | - Clorinda Ciafardini
- Gastroenterology and Endoscopy Unit, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Federica Mascaretti
- Gastroenterology and Endoscopy Unit, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Maria Parpinel
- Department of Medicine, University of Udine, 33100 Udine, Italy
| | - Aldo Airoldi
- Hepatology and Gastroenterology Unit, Azienda Socio Sanitaria Territoriale (ASST) Grande Ospedale Metropolitano Niguarda, 20162 Milan, Italy
| | - Marcello Vangeli
- Hepatology and Gastroenterology Unit, Azienda Socio Sanitaria Territoriale (ASST) Grande Ospedale Metropolitano Niguarda, 20162 Milan, Italy
| | - Pierfrancesco Leone
- General Surgery Unit, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Paolo Cantù
- Gastroenterology and Digestive Endoscopy Unit, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Istituto Nazionale Tumori, 20133 Milan, Italy
| | - Pagona Lagiou
- Department of Hygiene, Epidemiology and Medical Statistics, School of Medicine, National and Kapodistrian University of Athens, GR-115 27 Athens, Greece
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Cristian Del Bo’
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Università Degli Studi di Milano, 20133 Milan, Italy
| | - Maurizio Vecchi
- Gastroenterology and Endoscopy Unit, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, 20133 Milan, Italy
| | - Pietro Carnevali
- Division of Minimally–Invasive Surgical Oncology, Niguarda Cancer Center, Azienda Socio Sanitaria Territoriale (ASST) Grande Ospedale Metropolitano Niguarda, 20133 Milan, Italy
| | - Barbara Oreggia
- General Surgery Unit, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Simone Guglielmetti
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Università Degli Studi di Milano, 20133 Milan, Italy
| | - Rossella Bonzi
- Department of Clinical Sciences and Community Health, Branch of Medical Statistics, Biometry and Epidemiology “G.A. Maccacaro”, Università degli Studi di Milano, 20133 Milan, Italy
| | - Giulia Bonato
- Digestive and Interventional Endoscopy Unit, Azienda Socio Sanitaria Territoriale (ASST) Grande Ospedale Metropolitano Niguarda, 20162 Milan, Italy
| | - Monica Ferraroni
- Department of Clinical Sciences and Community Health, Branch of Medical Statistics, Biometry and Epidemiology “G.A. Maccacaro”, Università degli Studi di Milano, 20133 Milan, Italy
- Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Carlo La Vecchia
- Department of Clinical Sciences and Community Health, Branch of Medical Statistics, Biometry and Epidemiology “G.A. Maccacaro”, Università degli Studi di Milano, 20133 Milan, Italy
| | - Roberto Penagini
- Gastroenterology and Endoscopy Unit, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, 20133 Milan, Italy
| | - Massimiliano Mutignani
- Digestive and Interventional Endoscopy Unit, Azienda Socio Sanitaria Territoriale (ASST) Grande Ospedale Metropolitano Niguarda, 20162 Milan, Italy
| | - Marta Rossi
- Department of Clinical Sciences and Community Health, Branch of Medical Statistics, Biometry and Epidemiology “G.A. Maccacaro”, Università degli Studi di Milano, 20133 Milan, Italy
| |
Collapse
|
46
|
Kapoor S, Damiani E, Wang S, Dharmanand R, Tripathi C, Tovar Perez JE, Dashwood WM, Rajendran P, Dashwood RH. BRD9 Inhibition by Natural Polyphenols Targets DNA Damage/Repair and Apoptosis in Human Colon Cancer Cells. Nutrients 2022; 14:nu14204317. [PMID: 36297001 PMCID: PMC9610492 DOI: 10.3390/nu14204317] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/07/2022] [Accepted: 10/14/2022] [Indexed: 11/07/2022] Open
Abstract
Epigenetic mechanisms play an important role in the etiology of colorectal cancer (CRC) and other malignancies due, in part, to deregulated bromodomain (BRD) functions. Inhibitors of the bromodomain and extraterminal (BET) family have entered into clinical trials as anticancer agents, and interest has grown in other acetyl 'reader' proteins as therapeutic targets, including non-BET member bromodomain-containing protein 9 (BRD9). We report here that overexpression of BRD9 is associated with poor prognosis in CRC patients, and that siRNA-mediated knockdown of BRD9 decreased cell viability and activated apoptosis in human colon cancer cells, coincident with increased DNA damage. Seeking natural compounds as BRD9 antagonists, molecular docking in silico identified several polyphenols such as Epigallocatechin-3-gallate (EGCG), Equol, Quercetin, and Aspalathin, with favorable binding energies, supported by BROMOscan® (DiscoverX) and isothermal titration calorimetry experiments. Polyphenols mimicked BRD9 knockdown and iBRD9 treatment in reducing colon cancer cell viability, inhibiting colony formation, and enhancing DNA damage and apoptosis. Normal colonic epithelial cells were unaffected, signifying cancer-specific effects. These findings suggest that natural polyphenols recognize and target BRD9 for inhibition, and might serve as useful lead compounds for bromodomain therapeutics in the clinical setting.
Collapse
Affiliation(s)
- Sabeeta Kapoor
- Center for Epigenetics & Disease Prevention, Texas A&M Health, Houston, TX 77030, USA
| | - Elisabetta Damiani
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, 60121 Ancona, Italy
| | - Shan Wang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Hangzhou 310030, China
| | - Ravirajan Dharmanand
- Center for Infectious & Inflammatory Diseases, Texas A&M Health, Houston, TX 77030, USA
| | - Chakrapani Tripathi
- Center for Epigenetics & Disease Prevention, Texas A&M Health, Houston, TX 77030, USA
| | | | - Wan Mohaiza Dashwood
- Center for Epigenetics & Disease Prevention, Texas A&M Health, Houston, TX 77030, USA
| | - Praveen Rajendran
- Center for Epigenetics & Disease Prevention, Texas A&M Health, Houston, TX 77030, USA
- Department of Translational Medical Sciences, Texas A&M College of Medicine, Houston, TX 77030, USA
- Correspondence: (P.R.); (R.H.D.); Tel.: +1-713-677-7803 (P.R.); +1-713-677-7806 (R.H.D.)
| | - Roderick Hugh Dashwood
- Center for Epigenetics & Disease Prevention, Texas A&M Health, Houston, TX 77030, USA
- Department of Translational Medical Sciences, Texas A&M College of Medicine, Houston, TX 77030, USA
- Correspondence: (P.R.); (R.H.D.); Tel.: +1-713-677-7803 (P.R.); +1-713-677-7806 (R.H.D.)
| |
Collapse
|
47
|
Zhao Y, Zhong X, Yan J, Sun C, Zhao X, Wang X. Potential roles of gut microbes in biotransformation of natural products: An overview. Front Microbiol 2022; 13:956378. [PMID: 36246222 PMCID: PMC9560768 DOI: 10.3389/fmicb.2022.956378] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 08/29/2022] [Indexed: 11/23/2022] Open
Abstract
Natural products have been extensively applied in clinical practice, characterized by multi-component and multi-target, many pharmacodynamic substances, complex action mechanisms, and various physiological activities. For the oral administration of natural products, the gut microbiota and clinical efficacy are closely related, but this relationship remains unclear. Gut microbes play an important role in the transformation and utilization of natural products caused by the diversity of enzyme systems. Effective components such as flavonoids, alkaloids, lignans, and phenols cannot be metabolized directly through human digestive enzymes but can be transformed by enzymes produced by gut microorganisms and then utilized. Therefore, the focus is paid to the metabolism of natural products through the gut microbiota. In the present study, we systematically reviewed the studies about gut microbiota and their effect on the biotransformation of various components of natural products and highlighted the involved common bacteria, reaction types, pharmacological actions, and research methods. This study aims to provide theoretical support for the clinical application in the prevention and treatment of diseases and provide new ideas for studying natural products based on gut biotransformation.
Collapse
Affiliation(s)
- Yucui Zhao
- Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xinqin Zhong
- Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Junyuan Yan
- Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Congying Sun
- Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xin Zhao
- Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- *Correspondence: Xin Zhao,
| | - Xiaoying Wang
- Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Xiaoying Wang,
| |
Collapse
|
48
|
Costa M, Costa V, Lopes M, Paiva-Martins F. A biochemical perspective on the fate of virgin olive oil phenolic compounds in vivo. Crit Rev Food Sci Nutr 2022; 64:1403-1428. [PMID: 36094444 DOI: 10.1080/10408398.2022.2116558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The chemistry of the phenolic compounds found in virgin olive oil (VOO) is very complex due, not only to the different classes of polyphenols that can be found in it, but, above all, due to the existence of a very specific phenol class found only in oleaceae plants: the secoiridoids. Searching in the Scopus data base the keywords flavonoid, phenolic acid, lignin and secoiridoid, we can find a number of 148174, 79435, 11326 and 1392 research articles respectively, showing how little is devote to the latter class of compounds. Moreover, in contrast with other classes, that include only phenolic compounds, secoiridoids may include phenolic and non-phenolic compounds, being the articles concerning phenolic secoiridoids much less than the half of the abovementioned articles. Therefore, it is important to clarify the structures of these compounds and their chemistry, as this knowledge will help understand their bioactivity and metabolism studies, usually performed by researchers with a more health science's related background. In this review, all the structures found in many research articles concerning VOO phenolic compounds chemistry and metabolism was gathered, with a special attention devoted to the secoiridoids, the main phenolic compound class found in olives, VOO and olive leaf.
Collapse
Affiliation(s)
- Marlene Costa
- REQUIMTE-LAQV, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Vânia Costa
- REQUIMTE-LAQV, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Margarida Lopes
- REQUIMTE-LAQV, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Fátima Paiva-Martins
- REQUIMTE-LAQV, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| |
Collapse
|
49
|
Iglesias-Aguirre C, Vallejo F, Beltrán D, Aguilar-Aguilar E, Puigcerver J, Alajarín M, Berná J, Selma MV, Espín JC. Lunularin Producers versus Non-producers: Novel Human Metabotypes Associated with the Metabolism of Resveratrol by the Gut Microbiota. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:10521-10531. [PMID: 35981285 PMCID: PMC9449969 DOI: 10.1021/acs.jafc.2c04518] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
We describe here for the first time the consistent observation of two metabotypes associated with resveratrol metabolism by the human gut microbiota, that is, lunularin (LUNU)-producers and LUNU non-producers. In healthy volunteers (n = 195), resveratrol was reduced to dihydroresveratrol, which only in the LUNU-producer metabotype was sequentially dehydroxylated at the 5-position to yield LUNU and the 3-position to produce 4-hydroxydibenzyl. These metabolites (also 3,4'-dihydroxy-trans-stilbene in some LUNU-producers) were detected in the urine and (or) feces of 74% of volunteers after consuming resveratrol, while 26% lacked these dehydroxylase activities. The LUNU non-producer metabotype was more prevalent in females (P < 0.05) but independent of individuals' BMI and age. A 4-styrylphenol reductase in both metabotypes converted stilbenes to their corresponding dibenzyls, while no 4-dehydroxylation in stilbenes or dibenzyls was observed. 4-Hydroxy-trans-stilbene, pinosylvin, dihydropinosylvin, 3-hydroxydibenzyl, and 3-hydroxy-trans-stilbene were not detected in vivo or in vitro. Further research on LUNU metabotypes, their associated gut microbiota, and their impact on health is worthwhile.
Collapse
Affiliation(s)
- Carlos
E. Iglesias-Aguirre
- Laboratory
of Food & Health, Research Group on Quality, Safety, and Bioactivity
of Plant Foods, CEBAS-CSIC, Campus de Espinardo, Murcia 30100, Spain
| | - Fernando Vallejo
- Laboratory
of Food & Health, Research Group on Quality, Safety, and Bioactivity
of Plant Foods, CEBAS-CSIC, Campus de Espinardo, Murcia 30100, Spain
| | - David Beltrán
- Laboratory
of Food & Health, Research Group on Quality, Safety, and Bioactivity
of Plant Foods, CEBAS-CSIC, Campus de Espinardo, Murcia 30100, Spain
| | - Elena Aguilar-Aguilar
- Nutrition
and Clinical Trials Unit, GENYAL Platform, IMDEA-Food Institute, CEI UAM + CSIC, Madrid 28049, Spain
| | - Julio Puigcerver
- Department
of Organic Chemistry, Faculty of Chemistry, University of Murcia, Murcia 30100, Spain
| | - Mateo Alajarín
- Department
of Organic Chemistry, Faculty of Chemistry, University of Murcia, Murcia 30100, Spain
| | - José Berná
- Department
of Organic Chemistry, Faculty of Chemistry, University of Murcia, Murcia 30100, Spain
| | - María V. Selma
- Laboratory
of Food & Health, Research Group on Quality, Safety, and Bioactivity
of Plant Foods, CEBAS-CSIC, Campus de Espinardo, Murcia 30100, Spain
| | - Juan Carlos Espín
- Laboratory
of Food & Health, Research Group on Quality, Safety, and Bioactivity
of Plant Foods, CEBAS-CSIC, Campus de Espinardo, Murcia 30100, Spain
| |
Collapse
|
50
|
Regulation of Anthocyanin Biosynthesis by Drought and UV-B Radiation in Wild Tomato (Solanum peruvianum) Fruit. Antioxidants (Basel) 2022; 11:antiox11091639. [PMID: 36139713 PMCID: PMC9495367 DOI: 10.3390/antiox11091639] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/19/2022] [Accepted: 08/21/2022] [Indexed: 11/16/2022] Open
Abstract
Anthocyanins are plant pigments derived from the phenylpropanoid pathway which are produced in many different species, contributing to defense against stresses by their antioxidant properties. Cultivated tomatoes cannot synthesize flavonoids; however, wild tomatoes such as Solanum chilense and Solanum lycopersicoides have anthocyanin pigmented skin. Other wild tomato species such as Solanum peruvianum have been poorly studied concerning anthocyanin accumulation in the fruit. This research is the first to address the regulation of anthocyanin biosynthesis mediated by drought stress and light radiation in S. peruvianum fruit. Transcript accumulation of SpAN2, encoding for a key MYB type transcription factor for the regulation of anthocyanin biosynthesis, was induced in the fruit of plants exposed to drought treatment. In addition, fruit peel accumulates a greater anthocyanin content in water deficit-treated plants. The expression of SpAN2 was also regulated according to sunlight exposure, reaching a higher expression during maximal daily UV radiation and under controlled UV-B treatments. Similar results were observed for the expression of the late flavonoid biosynthetic gene dihydroflavonol 4-reductase (SpDFR). These results suggest that SpAN2 and SpDFR are involved in anthocyanin biosynthesis under drought stress and UV radiation in S. peruvianum.
Collapse
|