1
|
Sato Y. Immune Aging and Its Implication for Age-Related Disease Progression. Physiology (Bethesda) 2025; 40:0. [PMID: 39887318 DOI: 10.1152/physiol.00051.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/18/2024] [Accepted: 01/25/2025] [Indexed: 02/01/2025] Open
Abstract
As life expectancy increases globally, the prevalence and severity of age-related diseases have risen, significantly impacting patients' quality of life and increasing dependency on the healthcare system. Age-related diseases share several pathological commonalities, and emerging evidence suggests that targeting these biological processes ameliorates multiple age-related diseases. Immune aging plays a critical role in the pathogenesis of age-related diseases, given its involvement not only in controlling infection and cancer but also in facilitating tissue homeostasis and repair. Aging causes compositional and functional changes in both innate and adaptive immune cells, thereby significantly contributing to the pathogenesis of age-related disease and systemic low-grade inflammation, termed "inflammaging." This review article aims to describe the current understanding of immune aging and its impact on age-related diseases with particular emphasis on kidney and autoimmune diseases. In addition, this review highlights tertiary lymphoid structures (TLS) as a hallmark of immune aging, exploring their roles in inflammation, tissue damage, and potential therapeutic targeting.
Collapse
Affiliation(s)
- Yuki Sato
- Department of Medicine, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, United States
- Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, United States
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
2
|
Wilbrink R, Neys SF, Hendriks RW, Spoorenberg A, Kroese FG, Corneth OB, Verstappen GM. Aberrant B cell receptor signaling responses in circulating double-negative 2 B cells from radiographic axial spondyloarthritis patients. J Transl Autoimmun 2025; 10:100270. [PMID: 39974741 PMCID: PMC11835616 DOI: 10.1016/j.jtauto.2025.100270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/24/2024] [Accepted: 01/15/2025] [Indexed: 02/21/2025] Open
Abstract
Objective Radiographic axial spondyloarthritis (r-axSpA) is a chronic rheumatic disease in which innate immune cells and T cells are thought to play a major role. However, recent studies also hint at B cell involvement. Here, we performed an in-depth analysis on alterations within the B-cell compartment from r-axSpA patients. Methods We performed immune gene expression profiling on total peripheral blood B cells from 8 r-axSpA patients and 8 healthy controls (HCs). Next, we explored B cell subset distribution and B-cell receptor (BCR) signaling responses in circulating B cells from 28 r-axSpA patients and 15 HCs, by measuring spleen tyrosine kinase, phosphoinositide 3-kinase and extracellular signal regulated kinase 1/2 phosphorylation upon α-Ig stimulation using phosphoflow cytometry. Results Immune gene expression profiling indicated an elevated pathway score for BCR signaling in total B cells from r-axSpA patients compared with HCs. Flow cytometric analysis revealed an increase in frequency of both total and double-negative 2 (DN2) B cells in r-axSpA patients compared with HCs. In r-axSpA patients, DN2 B cells displayed an isotype shift towards IgA. Remarkably, where DN2 B cells from HCs were hyporesponsive, these cells displayed significant proximal BCR signaling responses in r-axSpA patients. Enhanced BCR signaling responses were also observed in the transitional and naïve B cell population from r-axSpA patients compared with HCs. The enhanced BCR signaling responses in DN2 B cells correlated with clinical disease parameters. Conclusion In r-axSpA patients, circulating DN2 B cells are expanded and, together with transitional and naïve B cells, display significantly enhanced BCR signaling responses upon stimulation. Together, our data suggest B cell involvement in the pathogenesis of r-axSpA.
Collapse
Affiliation(s)
- Rick Wilbrink
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Stefan F.H. Neys
- Department of Pulmonary Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Rudi W. Hendriks
- Department of Pulmonary Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Anneke Spoorenberg
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Frans G.M. Kroese
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Odilia B.J. Corneth
- Department of Pulmonary Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Gwenny M.P.J. Verstappen
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
3
|
Fink DL, Etoori D, Hill R, Idilli O, Kartikapallil N, Payne O, Griffith S, Bradford HF, Mauri C, Kennedy PT, McCoy LE, Maini MK, Gill US. Auto-antibodies against interferons are common in people living with chronic hepatitis B virus infection and associate with PegIFNα non-response. JHEP Rep 2025; 7:101382. [PMID: 40276479 PMCID: PMC12018104 DOI: 10.1016/j.jhepr.2025.101382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 02/09/2025] [Accepted: 02/24/2025] [Indexed: 04/26/2025] Open
Abstract
Background & Aims Type one (T1) and three interferons (T3IFNs) are implicated in chronic hepatitis B (CHB) immunopathogenesis. IFN remains the only licenced immune modulating therapy for CHB. We measured the prevalence of auto-antibodies (auto-Abs) against T1 and T3IFNs to examine the hypothesis that they impact HBV control and treatment response, as highlighted by COVID-19. Methods Our multi-centre retrospective longitudinal study accessed two CHB cohorts; auto-Ab levels and neutralisation status were measured against T1IFN and T3IFN. Associations were tested against HBV clinical parameters. Results Overall, 16.7% (46/276) of patients with CHB had any detectable anti-IFN auto-Abs at any time and 6.5% (18/276) anti-T3IFN auto-Abs, with a high incidence of PegIFNα-induced de novo auto-Abs (31.4%, 11/35). However, only a minority of auto-Ab-positive sera demonstrated neutralisation in vitro (4/46, 8.7%). Auto-Ab positivity correlated with higher median HBsAg levels (p = 0.0110). All individuals with detectable anti-T1IFN auto-Abs were PegIFNα non-responders. Conclusions Non-neutralising anti-IFN auto-Abs are common in CHB and associate with higher median HBsAg levels. Further prospective study of anti-cytokine auto-Abs in CHB are required to characterise the association with long-term outcomes. Impact and implications HBV and PegIFNα individually may induce broad autoreactivity associated with dysregulated antiviral immune responses. Auto-Ab screening prior to PegIFNα treatment or other immunotherapies may play a critical role in predicting treatment responses.
Collapse
Affiliation(s)
- Douglas L. Fink
- Infection and Immunity, University College London, London, UK
- Royal Free London NHS Foundation Trust, London, UK
| | - David Etoori
- Institute for Global Health, University College London, London, UK
| | - Robert Hill
- Infection and Immunity, University College London, London, UK
| | - Orest Idilli
- Infection and Immunity, University College London, London, UK
| | | | - Olivia Payne
- Infection and Immunity, University College London, London, UK
| | - Sarah Griffith
- Infection and Immunity, University College London, London, UK
| | | | - Claudia Mauri
- Infection and Immunity, University College London, London, UK
| | - Patrick T.F. Kennedy
- Barts Liver Centre, Blizard Institute, Barts and The London, School of Medicine & Dentistry, Queen Mary University of London, London, UK
| | - Laura E. McCoy
- Infection and Immunity, University College London, London, UK
| | - Mala K. Maini
- Infection and Immunity, University College London, London, UK
| | - Upkar S. Gill
- Barts Liver Centre, Blizard Institute, Barts and The London, School of Medicine & Dentistry, Queen Mary University of London, London, UK
| |
Collapse
|
4
|
Perugino CA, Liu H, Feldman J, Marbourg J, Guy TV, Hui A, Ingram N, Liebaert J, Chaudhary N, Tao W, Jacob-Dolan C, Hauser BM, Mian Z, Nathan A, Zhao Z, Kaseke C, Tano-Menka R, Getz MA, Senjobe F, Berrios C, Ofoman O, Manickas-Hill Z, Wesemann DR, Lemieux JE, Goldberg MB, Nündel K, Moormann A, Marshak-Rothstein A, Larocque RC, Ryan ET, Iafrate JA, Lingwood D, Gaiha G, Charles R, Balazs AB, Pandit A, Naranbhai V, Schmidt AG, Pillai S. Two distinct durable human class-switched memory B cell populations are induced by vaccination and infection. Cell Rep 2025; 44:115472. [PMID: 40173042 DOI: 10.1016/j.celrep.2025.115472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 01/21/2025] [Accepted: 03/05/2025] [Indexed: 04/04/2025] Open
Abstract
Memory lymphocytes are durable cells that persist in the absence of antigen, but few human B cell subsets have been characterized in terms of durability. The relative durability of eight non-overlapping human B cell sub-populations covering 100% of all human class-switched B cells was interrogated. Only two long-lived B cell populations persisted in the relative absence of antigen. In addition to canonical germinal center-derived switched-memory B cells with an IgD-CD27+CXCR5+ phenotype, a second, non-canonical, but distinct memory population of IgD-CD27-CXCR5+ DN1 B cells was also durable, exhibited a unique TP63-linked transcriptional and anti-apoptotic signature, had low levels of somatic hypermutation, but was more clonally expanded than canonical switched-memory B cells. DN1 B cells likely evolved to preserve immunological breadth and may represent the human counterparts of rodent extrafollicular memory B cells that, unlike canonical memory B cells, can enter germinal centers and facilitate B cell and antibody evolution.
Collapse
Affiliation(s)
- Cory A Perugino
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA; Division of Rheumatology Allergy and Immunology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Hang Liu
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Jared Feldman
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Jess Marbourg
- Abbvie Cambridge Research Center, Cambridge, MA 02139, USA
| | - Thomas V Guy
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Anson Hui
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Nicole Ingram
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Julian Liebaert
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Neha Chaudhary
- Abbvie Cambridge Research Center, Cambridge, MA 02139, USA
| | - Weiyang Tao
- Abbvie Cambridge Research Center, Cambridge, MA 02139, USA
| | - Catherine Jacob-Dolan
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA; Monash University, Melbourne, VIC 3800, Australia
| | - Blake M Hauser
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Zayd Mian
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Anusha Nathan
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Zezhou Zhao
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Clarety Kaseke
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Rhoda Tano-Menka
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Matthew A Getz
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Fernando Senjobe
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Cristhian Berrios
- Department of Pathology, Massachusetts Hospital, Boston, MA 02114, USA
| | - Onosereme Ofoman
- Department of Pathology, Massachusetts Hospital, Boston, MA 02114, USA
| | | | - Duane R Wesemann
- Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Jacob E Lemieux
- Infectious Diseases Division, Massachusetts Hospital, Boston, MA 02114, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA
| | - Marcia B Goldberg
- Infectious Diseases Division, Massachusetts Hospital, Boston, MA 02114, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA; Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
| | - Kerstin Nündel
- University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Ann Moormann
- University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | | | - Regina C Larocque
- Infectious Diseases Division, Massachusetts Hospital, Boston, MA 02114, USA
| | - Edward T Ryan
- Infectious Diseases Division, Massachusetts Hospital, Boston, MA 02114, USA
| | - John A Iafrate
- MGH Cancer Center, Massachusetts Hospital, Boston, MA 02114, USA
| | - Daniel Lingwood
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Gaurav Gaiha
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA; Gastrointestinal Unit, Massachusetts Hospital, Boston, MA 02114, USA
| | - Richelle Charles
- Infectious Diseases Division, Massachusetts Hospital, Boston, MA 02114, USA
| | | | | | - Vivek Naranbhai
- MGH Cancer Center, Massachusetts Hospital, Boston, MA 02114, USA; Monash University, Melbourne, VIC 3800, Australia; Center for the AIDS Programme of Research in South Africa, Durban 4001, South Africa
| | - Aaaron G Schmidt
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA; Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
| | - Shiv Pillai
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA.
| |
Collapse
|
5
|
Imabayashi K, Yada Y, Kawata K, Yoshimura M, Iwasaki T, Baba A, Harada A, Akashi K, Niiro H, Baba Y. Critical roles of chronic BCR signaling in the differentiation of anergic B cells into age-associated B cells in aging and autoimmunity. SCIENCE ADVANCES 2025; 11:eadt8199. [PMID: 40249819 PMCID: PMC12007576 DOI: 10.1126/sciadv.adt8199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 03/13/2025] [Indexed: 04/20/2025]
Abstract
Age-associated B cells (ABCs) with autoreactive properties accumulate with age and expand prematurely in autoimmune diseases. However, the mechanisms behind ABC generation and maintenance remain poorly understood. We show that continuous B cell receptor (BCR) signaling is essential for ABC development from anergic B cells in aged and autoimmune mice. ABCs exhibit constitutive BCR activation, with surface BCRs being internalized. Notably, anergic B cells, but not nonautoreactive B cells, contributed to ABC formation in these models. Anergic B cells also showed a greater propensity for in vitro differentiation into ABCs, which was inhibited by the expression of the transcription factor Nr4a1. Bruton's tyrosine kinase (Btk), a key BCR signaling component, was constitutively activated in ABCs from aged and autoimmune mice as well as patients with lupus. Inhibiting Btk reduced ABC numbers and ameliorated the pathogenicity of lupus mice. Our findings reveal critical mechanisms underlying ABC development and offer previously unrecognized therapeutic insights for autoimmune diseases.
Collapse
Affiliation(s)
- Keisuke Imabayashi
- Division of Immunology and Genome Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Yutaro Yada
- Division of Immunology and Genome Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Kazuhiko Kawata
- Division of Immunology and Genome Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Motoki Yoshimura
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Takeshi Iwasaki
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Akemi Baba
- Division of Immunology and Genome Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Akihito Harada
- Department of Multi-Omics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Koichi Akashi
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Hiroaki Niiro
- Department of Medical Education, Faculty of Medical Sciences, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Yoshihiro Baba
- Division of Immunology and Genome Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| |
Collapse
|
6
|
Zhou H, Gizlenci M, Xiao Y, Martin F, Nakamori K, Zicari EM, Sato Y, Tullius SG. Obesity-associated Inflammation and Alloimmunity. Transplantation 2025; 109:588-596. [PMID: 39192462 PMCID: PMC11868468 DOI: 10.1097/tp.0000000000005183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Obesity is a worldwide health problem with a rapidly rising incidence. In organ transplantation, increasing numbers of patients with obesity accumulate on waiting lists and undergo surgery. Obesity is in general conceptualized as a chronic inflammatory disease, potentially impacting alloimmune response and graft function. Here, we summarize our current understanding of cellular and molecular mechanisms that control obesity-associated adipose tissue inflammation and provide insights into mechanisms affecting transplant outcomes, emphasizing on the beneficial effects of weight loss on alloimmune responses.
Collapse
Affiliation(s)
- Hao Zhou
- Division of Transplant Surgery & Transplant Surgery Research Laboratory, Brigham and Women’s Hospital, Harvard Medical School, Boston, United States
| | - Merih Gizlenci
- Division of Transplant Surgery & Transplant Surgery Research Laboratory, Brigham and Women’s Hospital, Harvard Medical School, Boston, United States
- Department of General, Visceral, Cancer and Transplant Surgery, University Hospital of Cologne, Cologne, Germany
| | - Yao Xiao
- Division of Transplant Surgery & Transplant Surgery Research Laboratory, Brigham and Women’s Hospital, Harvard Medical School, Boston, United States
| | - Friederike Martin
- Division of Transplant Surgery & Transplant Surgery Research Laboratory, Brigham and Women’s Hospital, Harvard Medical School, Boston, United States
- Department of Surgery, CVK/CCM, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Keita Nakamori
- Division of Transplant Surgery & Transplant Surgery Research Laboratory, Brigham and Women’s Hospital, Harvard Medical School, Boston, United States
- Department of Urology, Osaka Medical and Pharmaceutical University, Takatsuki, Osaka, Japan
| | - Elizabeth M. Zicari
- Division of Transplant Surgery & Transplant Surgery Research Laboratory, Brigham and Women’s Hospital, Harvard Medical School, Boston, United States
- Faculté de Pharmacie, Université Paris Cité, Paris, France
| | - Yuko Sato
- Division of Transplant Surgery & Transplant Surgery Research Laboratory, Brigham and Women’s Hospital, Harvard Medical School, Boston, United States
| | - Stefan G. Tullius
- Division of Transplant Surgery & Transplant Surgery Research Laboratory, Brigham and Women’s Hospital, Harvard Medical School, Boston, United States
| |
Collapse
|
7
|
La Gualana F, Olivieri G, Petriti B, Picciariello L, Natalucci F, Sciannamea M, Gragnani L, Basile U, Casato M, Spinelli FR, Stefanini L, Basili S, Visentini M, Ceccarelli F, Conti F. Early decrease of T-bet + B cells during subcutaneous belimumab predicts response to therapy in systemic lupus erythematosus patients. Immunol Lett 2025; 272:106962. [PMID: 39643119 DOI: 10.1016/j.imlet.2024.106962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 11/26/2024] [Accepted: 12/03/2024] [Indexed: 12/09/2024]
Abstract
Systemic lupus erythematosus (SLE) is characterized by B cell dysregulation and expansion of atypical B cells that may correlate with disease manifestations and activity. This study investigated the impact of subcutaneous (sc) Belimumab (BLM) on the peripheral B cell compartment and on the functional properties of CD21low, T-bet+ and CD11c+ atypical B cells, in 21 active SLE patients over a 12-month period. At baseline, active SLE patients displayed reduced unswitched IgM memory B cells and expansion of atypical B cells, compared to healthy donors and to SLE patients in remission. sc BLM therapy promptly restored B cell homeostasis with a reduction of T-bet+ B cells, observed early in patients responsive to therapy. These findings highlight the pathogenic role of T-bet+ B cells in SLE disease and suggest their potential utility as biomarker of clinical response.
Collapse
Affiliation(s)
- Francesca La Gualana
- Department of Translational and Precision Medicine, Sapienza University, Rome, Italy
| | - Giulio Olivieri
- Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children's Hospital, IRCCS, Rome
| | - Begi Petriti
- Department of Translational and Precision Medicine, Sapienza University, Rome, Italy
| | - Licia Picciariello
- Lupus Clinic, Rheumatology, Dipartimento di Scienze Cliniche Internistiche Anestesiologiche e Cardiovascolari, Sapienza Università di Roma, Viale del Policlinico 155 00161 Rome, Italy
| | - Francesco Natalucci
- Lupus Clinic, Rheumatology, Dipartimento di Scienze Cliniche Internistiche Anestesiologiche e Cardiovascolari, Sapienza Università di Roma, Viale del Policlinico 155 00161 Rome, Italy
| | - Maddalena Sciannamea
- Department of Translational and Precision Medicine, Sapienza University, Rome, Italy
| | - Laura Gragnani
- Department of Translational Research and New Technologies in Medicine and Surgery, Medical School, University of Pisa, Pisa, Italy
| | - Umberto Basile
- Department of Clinical Pathology, Santa Maria Goretti HospitalAUSL Latina, Latina, Italy
| | - Milvia Casato
- Department of Translational and Precision Medicine, Sapienza University, Rome, Italy
| | - Francesca Romana Spinelli
- Lupus Clinic, Rheumatology, Dipartimento di Scienze Cliniche Internistiche Anestesiologiche e Cardiovascolari, Sapienza Università di Roma, Viale del Policlinico 155 00161 Rome, Italy
| | - Lucia Stefanini
- Department of Translational and Precision Medicine, Sapienza University, Rome, Italy
| | - Stefania Basili
- Department of Translational and Precision Medicine, Sapienza University, Rome, Italy
| | - Marcella Visentini
- Department of Translational and Precision Medicine, Sapienza University, Rome, Italy.
| | - Fulvia Ceccarelli
- Lupus Clinic, Rheumatology, Dipartimento di Scienze Cliniche Internistiche Anestesiologiche e Cardiovascolari, Sapienza Università di Roma, Viale del Policlinico 155 00161 Rome, Italy
| | - Fabrizio Conti
- Lupus Clinic, Rheumatology, Dipartimento di Scienze Cliniche Internistiche Anestesiologiche e Cardiovascolari, Sapienza Università di Roma, Viale del Policlinico 155 00161 Rome, Italy
| |
Collapse
|
8
|
Yin Y, Liu Y, Du L, Wu S. Compromised B-cell homeostasis: Unraveling the link between major depression, infection and autoimmune disorders. J Affect Disord 2025; 374:565-578. [PMID: 39842671 DOI: 10.1016/j.jad.2025.01.095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 10/22/2024] [Accepted: 01/18/2025] [Indexed: 01/24/2025]
Abstract
BACKGROUND Major depression can increase susceptibility to viral infections and autoimmune diseases. B cell responses are crucial for immune defense against infections but can trigger autoimmunity when deregulated. However, it remains unclear whether compromised B-cell homeostasis in major depression contributes to an increased risk of infection and autoimmunity. METHODS Chronic unpredictable mild stress (CUMS) procedure was applied to adult C57BL/6 J mice to generate a reliable depression model. Mice were immunized with (4-hydroxy-3-nitrophenyl) acetyl (NP) keyhole limpet hemocyanin (NP-KLH) to elicit B-cell-mediated humoral immune responses. CUMS mice were subjected to a collagen-induced arthritis model or a Bm12-induced systemic lupus erythematosus model to assess the contribution of major depression to autoimmunity. RNA sequencing was performed to understand the effects of CUMS on B-cell homeostasis at the transcriptomic level. RESULTS CUMS mice exhibited an impaired humoral immune response, as evidenced by reduced germinal centers (GCs), plasma cells, and antigen-specific antibodies. Unimmunized CUMS mice displayed aberrant spontaneous expansion of GC B cells, plasma cells, age-associated B cells and autoantibody production. CUMS mice also demonstrated a greater exacerbation of autoimmune manifestations. RNA sequencing revealed that genes involved in B-cell-mediated immune response were downregulated in B cells from CUMS mice, while the pathways related to autoimmunity seem to be upregulated. LIMITATIONS Further research is needed to understand the specific targets, mechanisms, and role of B cell dysfunction in major depression. CONCLUSIONS Our results provide novel insights into B-cell-dependent mechanisms that involve the association of increased susceptibility to infections and autoimmunity in major depression.
Collapse
Affiliation(s)
- Yuye Yin
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, Jiangsu, China
| | - Yuan Liu
- Department of Laboratory Medicine, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China
| | - Longfei Du
- Department of Laboratory Medicine, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China
| | - Shusheng Wu
- Department of Neurology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China.
| |
Collapse
|
9
|
Ma H, Wang Z, Yu M, Zhai Y, Yan J. Aberrations in peripheral B lymphocytes and B lymphocyte subsets levels in Parkinson disease: a systematic review. Front Immunol 2025; 16:1526095. [PMID: 40230858 PMCID: PMC11994702 DOI: 10.3389/fimmu.2025.1526095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 03/10/2025] [Indexed: 04/16/2025] Open
Abstract
Objective The association of B lymphocytes and B lymphocyte subsets and Parkinson's disease (PD) is increasingly acknowledged. However, there is inconsistence in the alterations of B lymphocytes or B lymphocyte subsets in peripheral blood of PD patients. To comprehensively understand its changes in PD patients,it is necessary to conduct a systematic review on this subject. Methods PubMed, Cochrane Library, and MEDLINE databases were searched until 3rd February 2024. Results We included 20 studies (n=2658) to conduct this systematic review. We conducted a qualitative analysis to assess the alterations of B lymphocytes and B lymphocyte subsets in the peripheral blood of individuals with PD. And studies reviewed demonstrated a significant decrease in the number of B cells, as well as immune dysregulation in the B lymphocyte subsets of these patients' peripheral blood. Conclusion Studies reviewed demonstrated that PD is linked to abnormalities in B lymphocytes and/or B lymphocytes subsets in peripheral blood. This study provides a novel perspective into the pathogenesis of PD, and future investigations into the B lymphocytes and/or B lymphocyte subsets as biomarkers and therapeutic targets for PD is warranted.
Collapse
Affiliation(s)
- Hongxia Ma
- Department of Neurology, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Ziyuan Wang
- Department of Neurology, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Miao Yu
- Department of Neurology, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Yibo Zhai
- Department of Neurology, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Junqiang Yan
- Department of Neurology, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
- Key laboratory of Neuromolecular Biology, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| |
Collapse
|
10
|
Knox JJ, Scholz JL, Futeran H, Cataliotti S, Cancro MP. T-bet +CD11c + age-associated B cells resist BLyS- and CD20-targeted ablation in murine lupus models. J Autoimmun 2025; 153:103410. [PMID: 40163938 DOI: 10.1016/j.jaut.2025.103410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 03/03/2025] [Accepted: 03/24/2025] [Indexed: 04/02/2025]
Abstract
OBJECTIVE B cell ablation strategies show promise for treating humoral autoimmune diseases, but their impact on pathogenic tissue-localized T-bet+CD11c+ age-associated B cells (ABCs) is poorly defined. We assessed whether mAb-mediated B cell depletion impacts ABCs and other splenic B cell subsets in two mouse models of lupus. METHODS Following disease onset, we injected NZBxNZWF1 mice (NZBWF1; n = 72) or bm12 chronic graft versus host disease mice (cGVHD; n = 59) with 0.2 mg or 1 mg of anti-BLyS (10F4), anti-CD20 (18B12), combined treatment, or saline. Spleens were harvested after two weeks and B cell subset representation was analyzed via flow cytometry. RESULTS In the NZBWF1 model, lymphopenia and resistance to 10F4 and 18B12 that arose concomitant with disease onset complicated interpretation, as ablative activity was partial and variable in the follicular (FO) and marginal zone (MZ) pools. Conversely, the T-bet+CD11c+ ABC pool was unchanged or enlarged versus controls and was entirely refractory to antibody treatments. In the cGVHD model, both 10F4 and 18B12 treatments ablated nearly all FO B cells. MZ B cells were profoundly ablated by 10F4 but spared by 18B12 treatment, whereas 10F4 treatment spared a small, undefined subset of splenic B cells that was ablated by 18B12. In contrast, T-bet+CD11c+ ABCs were minimally impacted by either reagent alone or combined, regardless of dose. CONCLUSION The spleen-resident T-bet+CD11c+ ABC pool resists anti-BLyS and anti-CD20 ablative treatment. These findings have implications for antibody-mediated ablative strategies in patients with autoimmune diseases.
Collapse
Affiliation(s)
- James J Knox
- Department of Pathology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Jean L Scholz
- Department of Pathology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Hannah Futeran
- Department of Pathology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sofia Cataliotti
- Department of Pathology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Michael P Cancro
- Department of Pathology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
11
|
Hu H, Zhang G, Chen T, Liu Y, Meng L, Holmdahl R, Dai L, Zhao Y. Immunosenescence in autoimmune diseases. Autoimmun Rev 2025; 24:103805. [PMID: 40132774 DOI: 10.1016/j.autrev.2025.103805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 03/21/2025] [Accepted: 03/21/2025] [Indexed: 03/27/2025]
Abstract
Autoimmune diseases (AIDs) are a group of disorders in which the immune system mistakenly attacks the body's own tissues, characterized by the loss of tolerance to self-antigens and destruction of tissues. Aging is a natural process of physiological decline that also alters the immune system, a condition known as immunosenescence. During immunosenescence, the immune system undergoes various changes, including modifications and antigenicity of self-antigens, abnormalities in the quantity, phenotype, and function of lymphocytes and antibodies, as well as a narrowing of the B and T cell receptor repertoire, changes that may increase susceptibility to AIDs. Additionally, senescent immune cells and the senescence-associated secretory phenotype (SASP) contribute to target organ involvement in AIDs, exacerbating chronic inflammation and tissue damage. Mitochondrial dysfunction and metabolic imbalances in AIDs lead to the accumulation of senescent cells, which act as upstream drivers of immunosenescence. In this review, we summarize the bidirectional relationship between AIDs and immunosenescence, as well as its potential mechanisms. Therapeutic approaches targeting immunosenescence in AIDs remain at an early stage. Strategies aimed at resetting or reversing the aging immune system are expected to become a novel direction in the future.
Collapse
Affiliation(s)
- Huifang Hu
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, 610041 Chengdu, Sichuan, China; Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, 610041 Chengdu, Sichuan, China
| | - Guangyue Zhang
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, 610041 Chengdu, Sichuan, China; Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, 610041 Chengdu, Sichuan, China
| | - Tao Chen
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, 610041 Chengdu, Sichuan, China; Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, 610041 Chengdu, Sichuan, China
| | - Yi Liu
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, 610041 Chengdu, Sichuan, China; Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, 610041 Chengdu, Sichuan, China
| | - Liesu Meng
- Department of Rheumatology, and National Joint Engineering Research Center of Biodiagnostics and Biotherapy, Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, PR China
| | - Rikard Holmdahl
- Medical Inflammation Research, Division of Immunology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Lunzhi Dai
- National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041 Chengdu, Sichuan, China.
| | - Yi Zhao
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, 610041 Chengdu, Sichuan, China; Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, 610041 Chengdu, Sichuan, China.
| |
Collapse
|
12
|
Cancro MP. B cells and aging: a historical perspective. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2025:vkaf025. [PMID: 40107285 DOI: 10.1093/jimmun/vkaf025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 01/21/2025] [Indexed: 03/22/2025]
Affiliation(s)
- Michael P Cancro
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
13
|
Jelcic I, Naghavian R, Fanaswala I, Macnair W, Esposito C, Calini D, Han Y, Marti Z, Raposo C, Sarabia Del Castillo J, Oldrati P, Erny D, Kana V, Zheleznyakova G, Al Nimer F, Tackenberg B, Reichen I, Khademi M, Piehl F, Robinson MD, Jelcic I, Sospedra M, Pelkmans L, Malhotra D, Reynolds R, Jagodic M, Martin R. T-bet+ CXCR3+ B cells drive hyperreactive B-T cell interactions in multiple sclerosis. Cell Rep Med 2025; 6:102027. [PMID: 40107244 PMCID: PMC11970401 DOI: 10.1016/j.xcrm.2025.102027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 05/16/2024] [Accepted: 02/20/2025] [Indexed: 03/22/2025]
Abstract
Multiple sclerosis (MS) is an autoimmune disease of the central nervous system (CNS). Self-peptide-dependent autoproliferation (AP) of B and T cells is a key mechanism in MS. Here, we show that pro-inflammatory B-T cell-enriched cell clusters (BTECs) form during AP and mirror features of a germinal center reaction. T-bet+CXCR3+ B cells are the main cell subset amplifying and sustaining their counterpart Th1 cells via interferon (IFN)-γ and are present in highly inflamed meningeal tissue. The underlying B cell activation signature is reflected by epigenetic modifications and receptor-ligand interactions with self-reactive T cells. AP+ CXCR3+ B cells show marked clonal evolution from memory to somatically hypermutated plasmablasts and upregulation of IFN-γ-related genes. Our data underscore a key role of T-bet+CXCR3+ B cells in the pathogenesis of MS in both the peripheral immune system and the CNS compartment, and thus they appear to be involved in both early relapsing-remitting disease and the chronic stage.
Collapse
Affiliation(s)
- Ivan Jelcic
- Neuroimmunology and MS Research Section (NIMS), Neurology Clinic, University of Zurich, University Hospital Zurich, 8091 Zurich, Switzerland; Roche Pharma Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland.
| | - Reza Naghavian
- Neuroimmunology and MS Research Section (NIMS), Neurology Clinic, University of Zurich, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Imran Fanaswala
- SIB Swiss Institute of Bioinformatics, University of Zurich, Zurich, Switzerland; Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Will Macnair
- Roche Pharma Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Cinzia Esposito
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Daniela Calini
- Roche Pharma Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Yanan Han
- Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Zoe Marti
- Neuroimmunology and MS Research Section (NIMS), Neurology Clinic, University of Zurich, University Hospital Zurich, 8091 Zurich, Switzerland; Cellerys AG, Schlieren, Switzerland
| | - Catarina Raposo
- Roche Pharma Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | | | - Pietro Oldrati
- Neuroimmunology and MS Research Section (NIMS), Neurology Clinic, University of Zurich, University Hospital Zurich, 8091 Zurich, Switzerland; Cellerys AG, Schlieren, Switzerland
| | - Daniel Erny
- Neuroimmunology and MS Research Section (NIMS), Neurology Clinic, University of Zurich, University Hospital Zurich, 8091 Zurich, Switzerland; Institute of Neuropathology, University of Freiburg, Freiburg, Germany
| | - Veronika Kana
- Neuroimmunology and MS Research Section (NIMS), Neurology Clinic, University of Zurich, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Galina Zheleznyakova
- Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Faiez Al Nimer
- Neuroimmunology and MS Research Section (NIMS), Neurology Clinic, University of Zurich, University Hospital Zurich, 8091 Zurich, Switzerland; Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Björn Tackenberg
- Product Development Medical Affairs, Neuroscience and Rare Disease, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Ina Reichen
- Neuroimmunology and MS Research Section (NIMS), Neurology Clinic, University of Zurich, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Mohsen Khademi
- Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Fredrik Piehl
- Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Mark D Robinson
- SIB Swiss Institute of Bioinformatics, University of Zurich, Zurich, Switzerland; Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Ilijas Jelcic
- Neuroimmunology and MS Research Section (NIMS), Neurology Clinic, University of Zurich, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Mireia Sospedra
- Neuroimmunology and MS Research Section (NIMS), Neurology Clinic, University of Zurich, University Hospital Zurich, 8091 Zurich, Switzerland; Cellerys AG, Schlieren, Switzerland
| | - Lucas Pelkmans
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Dheeraj Malhotra
- Roche Pharma Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | | | - Maja Jagodic
- Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Roland Martin
- Neuroimmunology and MS Research Section (NIMS), Neurology Clinic, University of Zurich, University Hospital Zurich, 8091 Zurich, Switzerland; Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland; Therapeutic Design Unit, Center for Molecular Medicine, Department of Clinical Neurosciences, Karolinska Institutet, Stockholm, Sweden; Cellerys AG, Schlieren, Switzerland.
| |
Collapse
|
14
|
Winslow GM, Levack R. Know Your ABCs: Discovery, Differentiation, and Targeting of T-Bet+ B Cells. Immunol Rev 2025; 330:e13440. [PMID: 39844597 PMCID: PMC11754996 DOI: 10.1111/imr.13440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/22/2024] [Accepted: 01/01/2025] [Indexed: 01/24/2025]
Abstract
Since their first description in 2008, T-bet+ B cells have emerged as a clinically important B cell subset. Now commonly known as ABCs (Age-associated B Cells), they are uniquely characterized by their expression of the transcription factor T-bet. Indeed, this singular factor defines this B cell subset. This review will describe the discovery of T-bet+ B cells, their role in bacterial infection as T cell-independent (TI) plasmablasts, as well as long-term follicular helper T cell-dependent (TD) IgM+ and switched memory cells (i.e., T-bet+ ABCs), and later discoveries of their role(s) in diverse immunological responses. These studies highlight a critical, although limited, role of T-bet in IgG2a class switching, a function central to the cells' role in immunity and autoimmunity. Given their association with autoimmunity, pharmacological targeting is an attractive strategy for reducing or eliminating the B cells. T-bet+ ABCs express a number of characteristic cell surface markers, including CD11c, CD11b, CD73, and the adenosine 2a receptor (A2aR). Accordingly, A2aR agonist administration effectively targeted T-bet+ ABCs in vivo. Moreover, agonist treatment of lupus-prone mice reduced autoantibodies and disease symptoms. This latter work highlights the potential therapeutic use of adenosine agonists for treating autoimmune diseases involving T-bet+ ABCs.
Collapse
Affiliation(s)
- Gary M. Winslow
- Department of Microbiology and ImmunologyUpstate Medical UniversitySyracuseNew YorkUSA
| | - Russell Levack
- Department of ImmunologyUniversity of PittsburghPittsburghPennsylvaniaUSA
| |
Collapse
|
15
|
Xu W, Guo Y, Zhao L, Fu R, Qin X, Zhang Y, Cheng X, Xu S. The Aging Immune System: A Critical Attack on Ischemic Stroke. Mol Neurobiol 2025; 62:3322-3342. [PMID: 39271626 DOI: 10.1007/s12035-024-04464-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 08/29/2024] [Indexed: 09/15/2024]
Abstract
Ischemic stroke caused by cerebrovascular embolism is an age-related disease with high rates of disability and mortality. Although the mechanisms of immune and inflammatory development after stroke have been of great interest, most studies have neglected the critical and unavoidable factor of age. As the global aging trend intensifies, the number of stroke patients is constantly increasing, emphasizing the urgency of finding effective measures to address the needs of elderly stroke patients. The concept of "immunosenescence" appears to explain the worse stroke outcomes in older individuals. Immune remodeling due to aging involves dynamic changes at all levels of the immune system, and the overall consequences of central (brain-resident) and peripheral (non-brain-resident) immune cells in stroke vary according to the age of the individual. Lastly, the review outlines recent strategies aimed at immunosenescence to improve stroke prognosis.
Collapse
Affiliation(s)
- Wenzhe Xu
- Medical Experiment Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin, China
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yuying Guo
- Medical Experiment Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin, China
| | - Linna Zhao
- Medical Experiment Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin, China
| | - Rong Fu
- Medical Experiment Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin, China
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiaoli Qin
- Medical Experiment Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin, China
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yunsha Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xueqi Cheng
- Medical Experiment Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin, China
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Shixin Xu
- Medical Experiment Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.
- Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin, China.
| |
Collapse
|
16
|
Fan F, Liu S, Wang B, Song X, Wang W. Integrated analyses uncover new features of atypical memory B cells and novel targets for intervention. Immunobiology 2025; 230:152877. [PMID: 39938454 DOI: 10.1016/j.imbio.2025.152877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 12/21/2024] [Accepted: 01/28/2025] [Indexed: 02/14/2025]
Abstract
BACKGROUND Atypical memory B (AMB) is a novel subset of B lymphocytes, but its immune features and pathogenetic roles in systemic rheumatic diseases are still largely elusive. This study aimed to characterize transcriptomic features, immune phenotypes and potential signaling pathways of AMB, and also to confirm its alternations in systemic rheumatic diseases via combined transcriptome analyses. METHOD B cell subsets and their transcriptomic signatures were identified via analyses of single cell RNA-sequencing (scRNA-seq) data. Functional characterization of AMB was performed with bioinformatics and CyTOF-based phenotyping. Alternation of AMB in systemic lupus erythematosus (SLE), rheumatoid arthritis (RA) and Sjögren's syndrome (SjS) was evaluated via bioinformatic approaches. RESULT A total of 11 B cell subsets including AMB were identified through scRNA-seq transcriptome analyses. Both transcriptome analyses and CyTOF-based immune phenotyping confirmed that AMB had increased levels of TBX21 (T-bet), ITGAX (CD11c), CD19, CD20 and CXCR3 (P < 0.05), and it had decreased expressions of CD27, CD38, CXCR4, CXCR5 and CD62L (P < 0.05). More than 50 % of T-bet+ B cells did not express CD11c, and more than 30 % expressed CD27. AMB was characterized by activated mTORC1 signaling and increased p-P38 level (P < 0.05). AMB transcriptional signature was significantly enriched in the peripheral blood and disease tissues of patients of SLE, RA and SjS (P < 0.05), suggesting the expanded AMB cells in those patients. CONCLUSION This study defines the transcriptomic signature, immune phenotypes and potential signaling pathways of AMB, and also confirms the involvement of AMB in systemic rheumatic diseases including SLE, RA and SjS via transcriptomic approaches. mTORC1 signaling and P38/MAPK signaling are promising therapeutic targets for systemic rheumatic diseases mediated by AMB.
Collapse
Affiliation(s)
- Fuli Fan
- Department of Hematology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266000, China
| | - Shubei Liu
- Department of Rheumatology and Immunology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Bin Wang
- Central Laboratory, Weifang People's Hospital, Shandong Second Medical University, Weifang 261000, China; Department of Traumatology and Orthopaedics, Weifang People's Hospital, Shandong Second Medical University, Weifang 261000, China.
| | - Xiaojian Song
- Weiriver Novel Research Association, Weifang 262212, China
| | - Wei Wang
- Department of Hematology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266000, China.
| |
Collapse
|
17
|
Staniek J, Rizzi M. Signaling Activation and Modulation in Extrafollicular B Cell Responses. Immunol Rev 2025; 330:e70004. [PMID: 39917832 PMCID: PMC11803499 DOI: 10.1111/imr.70004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 01/20/2025] [Indexed: 02/11/2025]
Abstract
The differentiation of naive follicular B cells into either the germinal center (GC) or extrafollicular (EF) pathway plays a critical role in shaping the type, affinity, and longevity of effector B cells. This choice also governs the selection and survival of autoreactive B cells, influencing their potential to enter the memory compartment. During the first 2-3 days following antigen encounter, initially activated B cells integrate activating signals from T cells, Toll-like receptors (TLRs), and cytokines, alongside inhibitory signals mediated by inhibitory receptors. This integration modulates the intensity of signaling, particularly of the PI3K/AKT/mTOR pathway, which plays a central role in guiding developmental decisions. These early signaling events determine whether B cells undergo GC maturation or differentiate rapidly into antibody-secreting cells (ASCs) via the EF pathway. Dysregulation of these signaling pathways-whether through excessive activation or defective regulatory mechanisms-can disrupt the balance between GC and EF fates, predisposing individuals to autoimmunity. Accordingly, aberrant PI3K/AKT/mTOR signaling has been implicated in the defective selection of autoreactive B cells, increasing the risk of autoimmune disease. This review focuses on the signaling events in newly activated B cells, with an emphasis on the induction and regulation of the PI3K/AKT/mTOR pathway. It also highlights gaps in our understanding of how alternative B cell fates are regulated. Both the physiological context and the implications of inborn errors of immunity (IEIs) and complex autoimmune conditions will be discussed in this regard.
Collapse
Affiliation(s)
- Julian Staniek
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, University Medical Center FreiburgUniversity of FreiburgFreiburgGermany
- Faculty of Medicine, Center for Chronic Immunodeficiency, University Medical Center FreiburgUniversity of FreiburgFreiburgGermany
| | - Marta Rizzi
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, University Medical Center FreiburgUniversity of FreiburgFreiburgGermany
- Faculty of Medicine, Center for Chronic Immunodeficiency, University Medical Center FreiburgUniversity of FreiburgFreiburgGermany
- Division of Clinical and Experimental Immunology, Institute of Immunology, Center for Pathophysiology, Infectiology and ImmunologyMedical University of ViennaViennaAustria
- CIBSS—Centre for Integrative Biological Signalling StudiesUniversity of FreiburgFreiburgGermany
| |
Collapse
|
18
|
Toriu N, Sato Y, Kamimura H, Yoshikawa T, Tanaka M, Yamamoto S, Fukuma S, Hattori M, Terai S, Yanagita M. Aligning cellular and molecular components in age-dependent tertiary lymphoid tissues of kidney and liver. PLoS One 2025; 20:e0311193. [PMID: 40014629 DOI: 10.1371/journal.pone.0311193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 01/23/2025] [Indexed: 03/01/2025] Open
Abstract
Tertiary lymphoid tissues (TLTs) are ectopic lymphoid structures induced by multiple stimuli, including infection and tissue injuries; however, their clinical relevance in disease progression has remained unclear. We demonstrated previously that TLTs develop in mouse and human kidneys with aging and can be a potential marker of kidney injury and prognosis, and therapeutic targets. In addition, we found that two types of unique lymphocytes that emerge with aging, senescence-associated T cells and age-associated B cells, are essential for TLT formation in the kidney. Although TLTs develop with aging in other organs as well, their cellular and molecular components, and clinical significance remain unclear. In the present study, we found that TLTs developed in the liver with aging, and that their cellular and molecular components were similar to those in the kidneys. Notably, senescence-associated T cells and age-associated B cells were also present in hepatic TLTs. Furthermore, analysis of publicly available data on human liver biopsy transcriptomes revealed that the expression of TLT-related genes was elevated in the liver biopsy samples from hepatitis C virus (HCV)-infected patients compared with those without HCV infection and was associated with liver injury and fibrosis. Therefore, we analyzed liver biopsy samples from 47 HCV patients and found that TLTs were present in 87.2% of cases and that the numbers and stages of TLTs were higher in aged patients and cellular and molecular components of TLTs in humans were similar to those in mice. Our findings suggesting that age-dependent TLT formation is a systemic phenomenon across the tissues and aging is also a predisposing factor for TLT formation across organs.
Collapse
Affiliation(s)
- Naoya Toriu
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Japan
| | - Yuki Sato
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Medical Innovation Center TMK Project, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hiroteru Kamimura
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Takahisa Yoshikawa
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masaou Tanaka
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shinya Yamamoto
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shingo Fukuma
- Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Department of Epidemiology Infectious Disease Control and Prevention, Hiroshima University Graduate school of Biomedical and Health Sciences, Higashihiroshima, Japan
| | - Masakazu Hattori
- Department of Immunosenescence, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shuji Terai
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Motoko Yanagita
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Japan
| |
Collapse
|
19
|
Knox JJ, Karolyi K, Monslow J, Cromley D, Rader DJ, Puré E, Cancro MP. T-bet-expressing B cells promote atherosclerosis in apolipoprotein E-deficient mice. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2025; 214:vkae027. [PMID: 40073097 PMCID: PMC11952879 DOI: 10.1093/jimmun/vkae027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 11/18/2024] [Indexed: 03/14/2025]
Abstract
The humoral immune system influences the development of atherosclerosis, but the contributions of specific memory B cell subsets and IgG isotypes are poorly understood. We assessed the relationship between atherosclerosis and age-associated B cells (ABCs), a T-bet-expressing memory B cell subset that is enriched for IgG2c production and implicated in humoral autoimmunity. We found increased numbers of splenic CD11c+ ABCs in 6-mo-old, chow-fed Apoe-/- mice versus C57BL/6 control mice, which were exacerbated by high-fat diet. Deletion of T-bet in the B lineage in high-fat diet-fed Apoe-/- mice reduced aortic lesion area, and this correlated with decreased splenic CD11c+ B cells and reduced serum oxidized low-density lipoprotein-specific IgG2c. Our findings suggest that T-bet-expressing B cells are atherogenic agents in the Apoe-/- model and indicate that interventions to inhibit a T-bet-driven humoral response may improve atherosclerotic disease.
Collapse
Affiliation(s)
- James J Knox
- Department of Pathology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Katalin Karolyi
- Department of Pathology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - James Monslow
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Debra Cromley
- Division of Translational Medicine and Human Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Daniel J Rader
- Division of Translational Medicine and Human Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Ellen Puré
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Michael P Cancro
- Department of Pathology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
20
|
Neo SY, Shuen TWH, Khare S, Chong J, Lau M, Shirgaonkar N, Chua L, Zhao J, Lee K, Tan C, Ba R, Lim J, Chua J, Cheong HS, Chai HM, Chan CY, Chung AYF, Cheow PC, Jeyaraj PR, Teo JY, Koh YX, Chok AY, Chow PKH, Goh B, Wan WK, Leow WQ, Loh TJZ, Tang PY, Karunanithi J, Ngo NT, Lim TKH, Xu S, Dasgupta R, Toh HC, Lam KP. Atypical memory B cells acquire Breg phenotypes in hepatocellular carcinoma. JCI Insight 2025; 10:e187025. [PMID: 39998891 PMCID: PMC11981623 DOI: 10.1172/jci.insight.187025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2025] Open
Abstract
The functional plasticity of tumor-infiltrating lymphocyte B-cells (TIL-B) spans from antitumor responses to noncanonical immune suppression. Yet, how the tumor microenvironment (TME) influences TIL-B development is still underappreciated. Our current study integrated single-cell transcriptomics and B cell receptor (BCR) sequencing to profile TIL-B phenotypes and clonalities in hepatocellular carcinoma (HCC). Using trajectory and gene regulatory network analysis, we were able to characterize plasma cells and memory and naive B cells within the HCC TME and further revealed a downregulation of BCR signaling genes in plasma cells and a subset of inflammatory TNF+ memory B cells. Within the TME, a nonswitched memory B cell subset acquired an age-associated B cell phenotype (TBET+CD11c+) and expressed higher levels of PD-L1, CD25, and granzyme B. We further demonstrated that the presence of HCC tumor cells could confer suppressive functions on peripheral blood B cells that in turn, dampen T cell costimulation. To the best of our knowledge, these findings represent novel mechanisms of noncanonical immune suppression in HCC. While previous studies identified atypical memory B cells in chronic hepatitis and across several solid cancer types, we further highlighted their potential role as regulatory B cells (Bregs) within both the TME and peripheral blood of HCC patients.
Collapse
Affiliation(s)
- Shi Yong Neo
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore
- Department of Oncology and Pathology, Karolinska Institute, Stockholm, Sweden
| | | | - Shruti Khare
- Laboratory of Precision Oncology and Cancer Evolution, Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Joni Chong
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Maichan Lau
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Niranjan Shirgaonkar
- Laboratory of Precision Oncology and Cancer Evolution, Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Levene Chua
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Junzhe Zhao
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore
| | - Keene Lee
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Charmaine Tan
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore
| | - Rebecca Ba
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore
| | - Janice Lim
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore
| | - Joelle Chua
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore
| | - Hui Shi Cheong
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore
| | - Hui Min Chai
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore
| | - Chung Yip Chan
- Department of Hepato-pancreato-biliary and Transplant Surgery, Singapore General Hospital, Singapore
| | - Alexander Yaw Fui Chung
- Department of Hepato-pancreato-biliary and Transplant Surgery, Singapore General Hospital, Singapore
| | - Peng Chung Cheow
- Department of Hepato-pancreato-biliary and Transplant Surgery, Singapore General Hospital, Singapore
| | - Prema Raj Jeyaraj
- Department of Hepato-pancreato-biliary and Transplant Surgery, Singapore General Hospital, Singapore
| | - Jin Yao Teo
- Department of Hepato-pancreato-biliary and Transplant Surgery, Singapore General Hospital, Singapore
| | - Ye Xin Koh
- Department of Hepato-pancreato-biliary and Transplant Surgery, Singapore General Hospital, Singapore
| | - Aik Yong Chok
- Department of Hepato-pancreato-biliary and Transplant Surgery, Singapore General Hospital, Singapore
| | - Pierce Kah Hoe Chow
- Department of Hepato-pancreato-biliary and Transplant Surgery, Singapore General Hospital, Singapore
- Division of Surgery and Surgical Oncology, National Cancer Centre Singapore, Singapore
| | - Brian Goh
- Department of Hepato-pancreato-biliary and Transplant Surgery, Singapore General Hospital, Singapore
| | - Wei Keat Wan
- Department of Anatomical Pathology, Singapore General Hospital, Singapore
| | - Wei Qiang Leow
- Department of Anatomical Pathology, Singapore General Hospital, Singapore
| | - Tracy Jie Zhen Loh
- Department of Anatomical Pathology, Singapore General Hospital, Singapore
| | - Po Yin Tang
- Department of Anatomical Pathology, Singapore General Hospital, Singapore
| | | | - Nye Thane Ngo
- Department of Anatomical Pathology, Singapore General Hospital, Singapore
| | - Tony Kiat Hon Lim
- Department of Anatomical Pathology, Singapore General Hospital, Singapore
| | - Shengli Xu
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Ramanuj Dasgupta
- Laboratory of Precision Oncology and Cancer Evolution, Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Han Chong Toh
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore
| | - Kong-Peng Lam
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore
- Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
21
|
Xie G, Chen X, Gao Y, Yang M, Zhou S, Lu L, Wu H, Lu Q. Age-Associated B Cells in Autoimmune Diseases: Pathogenesis and Clinical Implications. Clin Rev Allergy Immunol 2025; 68:18. [PMID: 39960645 PMCID: PMC11832777 DOI: 10.1007/s12016-025-09021-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/07/2025] [Indexed: 02/20/2025]
Abstract
As a heterogeneous B cell subset, age-associated B cells (ABCs) exhibit distinct transcription profiles, extrafollicular differentiation processes, and multiple functions in autoimmunity. TLR7 and TLR9 signals, along with IFN-γ and IL-21 stimulation, are both essential for ABC differentiation, which is also regulated by chemokine receptors including CXCR3 and CCR2 and integrins including CD11b and CD11c. Given their functions in antigen uptake and presentation, autoantibody and proinflammatory cytokine secretion, and T helper cell activation, ABCs display potential in the prognosis, diagnosis, and therapy for autoimmune diseases, including systemic lupus erythematosus, rheumatoid arthritis, Sjögren's syndrome, multiple sclerosis, neuromyelitis optica spectrum disorders, and ankylosing spondylitis. Specifically targeting ABCs by inhibiting T-bet and CD11c and activating CD11b and ARA2 represents potential therapeutic strategies for SLE and RA. Although single-cell sequencing technologies have recently revealed the heterogeneous characteristics of ABCs, further investigations to explore and validate ABC-target therapies are still warranted.
Collapse
Affiliation(s)
- Guangyang Xie
- Department of Dermatology, the Second Xiangya Hospital, Hunan Key Laboratory of Medical Epigenomics, Central South University, Changsha, Hunan, China
| | - Xiaojing Chen
- Department of Dermatology, the Second Xiangya Hospital, Hunan Key Laboratory of Medical Epigenomics, Central South University, Changsha, Hunan, China
| | - Yixia Gao
- Department of Dermatology, the Second Xiangya Hospital, Hunan Key Laboratory of Medical Epigenomics, Central South University, Changsha, Hunan, China
| | - Ming Yang
- Department of Dermatology, the Second Xiangya Hospital, Hunan Key Laboratory of Medical Epigenomics, Central South University, Changsha, Hunan, China
| | - Suqing Zhou
- Department of Dermatology, the Second Xiangya Hospital, Hunan Key Laboratory of Medical Epigenomics, Central South University, Changsha, Hunan, China
| | - Liwei Lu
- Department of Pathology and Shenzhen Institute of Research and Innovation, The University of Hong Kong, Hong Kong, China.
- Centre for Oncology and Immunology, Hong Kong Science Park, Hong Kong, China.
| | - Haijing Wu
- Department of Dermatology, the Second Xiangya Hospital, Hunan Key Laboratory of Medical Epigenomics, Central South University, Changsha, Hunan, China.
- FuRong Laboratory, Changsha, China.
| | - Qianjin Lu
- Department of Dermatology, the Second Xiangya Hospital, Hunan Key Laboratory of Medical Epigenomics, Central South University, Changsha, Hunan, China.
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, China.
| |
Collapse
|
22
|
Georgakis S, Ioannidou K, Mora BB, Orfanakis M, Brenna C, Muller YD, Del Rio Estrada PM, Sharma AA, Pantaleo G, de Leval L, Comte D, Gottardo R, Petrovas C. Cellular and molecular determinants mediating the dysregulated germinal center immune dynamics in systemic lupus erythematosus. Front Immunol 2025; 16:1530327. [PMID: 40070830 PMCID: PMC11894538 DOI: 10.3389/fimmu.2025.1530327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 01/17/2025] [Indexed: 03/14/2025] Open
Abstract
Introduction Systemic lupus erythematosus (SLE) is characterized by dysregulated humoral immunity, leading to the generation of autoreactive B cells that can differentiate both within and outside of lymph node (LN) follicles. Methods Here, we employed spatial transcriptomics and multiplex imaging to investigate the follicular immune landscaping and the in situ transcriptomic profile in LNs from SLE individuals. Results Our spatial transcriptomic analysis revealed robust type I IFN and plasma cell signatures in SLE compared to reactive, control follicles. Cell deconvolution revealed that follicular T cell subsets are mainly affected by the type I IFN fingerprint of SLE follicles. Dysregulation of TFH differentiation was documented by i) the significant reduction of Bcl6hi TFH cells, ii) the reduced cell density of potential IL-4 producing TFH cell subsets associated with the impaired transcriptomic signature of follicular IL-4 signaling and iii) the loss of their correlation with GC-B cells. This profile was accompanied by a marked reduction of Bcl6hi B cells and an enrichment of extrafollicular CD19hiCD11chiTbethi, age-associated B cells (ABCs), known for their autoreactive potential. The increased prevalence of follicular IL-21hi cells further reveals a hyperactive microenvironment in SLE compared to control. Discussion Taken together, our findings highlight the altered immunological landscape of SLE follicles, likely fueled by potent inflammatory signals such as sustained type I IFN and/or IL-21 signaling. Our work provides novel insights into the spatial molecular and cellular signatures of SLE follicular B and TFH cell dynamics, and points to druggable targets to restore immune tolerance and enhance vaccine responses in SLE patients.
Collapse
Affiliation(s)
- Spiros Georgakis
- Department of Laboratory Medicine and Pathology, Institute of Pathology, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | - Kalliopi Ioannidou
- Department of Laboratory Medicine and Pathology, Institute of Pathology, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | - Bernat Bramon Mora
- Biomedical Data Science Center, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | - Michail Orfanakis
- Department of Laboratory Medicine and Pathology, Institute of Pathology, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | - Cloe Brenna
- Department of Laboratory Medicine and Pathology, Institute of Pathology, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | - Yannick D. Muller
- Service of Immunology and Allergy, Department of Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Perla M. Del Rio Estrada
- Pathology Advanced Translational Research Unit, Department of Pathology, Emory University School of Medicine, Atlanta, GA, United States
- Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas”, Mexico City, Mexico
| | - Ashish A. Sharma
- Pathology Advanced Translational Research Unit, Department of Pathology, Emory University School of Medicine, Atlanta, GA, United States
| | - Giuseppe Pantaleo
- Service of Immunology and Allergy, Department of Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Laurence de Leval
- Department of Laboratory Medicine and Pathology, Institute of Pathology, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | - Denis Comte
- Service of Internal Medicine, Department of Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Raphael Gottardo
- Biomedical Data Science Center, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
- Swiss Institute for Bioinformatics, Lausanne, Switzerland
| | - Constantinos Petrovas
- Department of Laboratory Medicine and Pathology, Institute of Pathology, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| |
Collapse
|
23
|
Escrig-Larena JI, Mittelbrunn M. Everything everywhere all at once: Unraveling the waves of aging. Immunity 2025; 58:276-278. [PMID: 39938481 DOI: 10.1016/j.immuni.2025.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 01/19/2025] [Accepted: 01/20/2025] [Indexed: 02/14/2025]
Abstract
In a recent work reported in Science, Zhang et al. untangle dynamic changes arising across aging in multiple cell populations within thirteen organs using single-cell transcriptomics and identify four distinct dynamic waves in which immune cells are the most affected populations.
Collapse
Affiliation(s)
- Jose Ignacio Escrig-Larena
- Tissue and Organ Homeostasis Program, Centro de Biología Molecular Severo Ochoa (CBM), Consejo Superior de Investigaciones Científicas (CSIC) - Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - María Mittelbrunn
- Tissue and Organ Homeostasis Program, Centro de Biología Molecular Severo Ochoa (CBM), Consejo Superior de Investigaciones Científicas (CSIC) - Universidad Autónoma de Madrid (UAM), Madrid, Spain.
| |
Collapse
|
24
|
Samiea A, Celis G, Yadav R, Rodda LB, Moreau JM. B cells in non-lymphoid tissues. Nat Rev Immunol 2025:10.1038/s41577-025-01137-6. [PMID: 39910240 DOI: 10.1038/s41577-025-01137-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/16/2025] [Indexed: 02/07/2025]
Abstract
B cells have long been understood to be drivers of both humoral and cellular immunity. Recent advances underscore this importance but also indicate that in infection, inflammatory disease and cancer, B cells function directly at sites of inflammation and form tissue-resident memory populations. The spatial organization and cellular niches of tissue B cells have profound effects on their function and on disease outcome, as well as on patient response to therapy. Here we review the role of B cells in peripheral tissues in homeostasis and disease, and discuss the newly identified cellular and molecular signals that are involved in regulating their activity. We integrate emerging data from multi-omic human studies with experimental models to propose a framework for B cell function in tissue inflammation and homeostasis.
Collapse
Affiliation(s)
- Abrar Samiea
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR, USA
- Cancer Early Detection Advanced Research Center, Oregon Health & Science University, Portland, OR, USA
| | - George Celis
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR, USA
| | - Rashi Yadav
- Cancer Early Detection Advanced Research Center, Oregon Health & Science University, Portland, OR, USA
| | - Lauren B Rodda
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR, USA.
| | - Joshua M Moreau
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR, USA.
- Cancer Early Detection Advanced Research Center, Oregon Health & Science University, Portland, OR, USA.
- Department of Dermatology, Oregon Health & Science University, Portland, OR, USA.
- Division of Oncological Sciences, Oregon Health & Science University, Portland, OR, USA.
| |
Collapse
|
25
|
Fukushima Y, Ueno R, Minato N, Hattori M. Senescence-associated T cells in immunosenescence and diseases. Int Immunol 2025; 37:143-152. [PMID: 39320393 DOI: 10.1093/intimm/dxae056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 09/24/2024] [Indexed: 09/26/2024] Open
Abstract
Age-related changes in the immune system, referred to as immunosenescence, appear to evolve with rather paradoxical manifestations, a diminished adaptive immune capacity, and an increased propensity for chronic inflammation often with autoimmunity, which may underlie the development of diverse disorders with age. Immunosenescent phenotypes are associated with the emergence of unique lymphocyte subpopulations of both T and B lineages. We report that a CD153+ programmed cell death protein 1 (PD-1)+ CD4+ T-cell subpopulation with severely attenuated T-cell receptor (TCR)-responsiveness, termed senescence-associated T (SAT) cells, co-evolve with potentially autoreactive CD30+ B cells, such as spontaneous germinal center B cells and age-associated B cells, in aging mice. SAT cells and CD30+ B cells are reciprocally activated with the aid of the interaction of CD153 with CD30 in trans and with the TCR complex in cis, resulting in the restoration of TCR-mediated proliferation and secretion of abundant pro-inflammatory cytokines in SAT cells and the activation and production of autoantibodies by CD30+ B cells. Besides normal aging, the development of SAT cells coupled with counterpart B cells may be robustly accelerated and accumulated in the relevant tissues of lymphoid or extra-lymphoid organs under chronic inflammatory conditions, including autoimmunity, and may contribute to the pathogenesis and aggravation of the disorders. This review summarizes and discusses recent advances in the understanding of SAT cells in the contexts of immunosenescent phenotypes, as well as autoimmune and chronic inflammatory diseases, and it provides a novel therapeutic clue.
Collapse
Affiliation(s)
- Yuji Fukushima
- Department of Regulation of Neurocognitive Disorders (Cyn-K Project), Graduate School of Medicine, Kyoto University, 53 Shogoin-Kawahara-cho, Kyoto 606-8507, Japan
| | - Ryuji Ueno
- Department of Regulation of Neurocognitive Disorders (Cyn-K Project), Graduate School of Medicine, Kyoto University, 53 Shogoin-Kawahara-cho, Kyoto 606-8507, Japan
| | - Nagahiro Minato
- Medical Innovation Center, Graduate School of Medicine, Kyoto University, 53 Shogoin-Kawahara-cho, Kyoto 606-8507, Japan
| | - Masakazu Hattori
- Laboratory of Tumor Tissue Response, Graduate School of Medicine, Kyoto University, 53 Shogoin-Kawahara-cho, Kyoto 606-8507, Japan
| |
Collapse
|
26
|
Awaji K, Shibata S, Koyama A, Yamamoto T, Fukui Y, Toyama S, Omatsu J, Norimatsu Y, Ikawa T, Watanabe Y, Miyagawa T, Yamashita T, Nakayama Y, Trojanowska M, Sato S, Asano Y. Impact of Fli1 deletion on B cell populations: A focus on age-associated B cells and transcriptional dynamics. J Dermatol Sci 2025; 117:19-29. [PMID: 39818445 DOI: 10.1016/j.jdermsci.2024.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 11/07/2024] [Accepted: 12/20/2024] [Indexed: 01/18/2025]
Abstract
BACKGROUND Altered Fli1 expression is associated with various autoimmune diseases, yet its impact on B cells remains unexplored. OBJECTIVE This study investigated the direct effects of Fli1 depletion on B cell populations, focusing on age-associated B cells (ABCs). METHODS Splenocytes of Fli1 BcKO (Cd19-Cre+/-; Fli1flox/flox) and Cd19-Cre+/- mice were analyzed flow cytometrically. Transcriptional/epigenetic profiles of Cd11b+Cd11c+ ABCs were examined by RNA-sequencing and ATAC-sequencing. RESULTS Fli1 BcKO mice displayed a notable reduction in follicular and marginal zone B cells, with a concurrent rise in newly formed B cells compared to Cd19-Cre+/- mice. Additionally, a striking increase in B-1 B cells, as well as Cd11b+Cd11c+ or T-bet+Cd11c+ ABCs, was observed in Fli1 BcKO mice. Furthermore, these mice exhibited elevated Cd138 levels in follicular B cells. Conducting transcriptional analyses of Fli1-depleted ABCs unveiled upregulated genes associated with cell-cell adhesion, coupled with downregulated genes linked to cell activation or immune responses. Exploring the chromatin landscape found that Fli1 depletion dysregulated the chromatin accessibility of the interferon regulatory factor family, implying potential roles in autoimmunity. CONCLUSION These findings suggest complex modulations of B cell populations and immune-related gene expression due to Fli1 deficiency, shedding light on its involvement in autoimmune processes.
Collapse
Affiliation(s)
- Kentaro Awaji
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Sayaka Shibata
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo, Japan.
| | - Asumi Koyama
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Toyoki Yamamoto
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Yuki Fukui
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Satoshi Toyama
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Jun Omatsu
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Yuta Norimatsu
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo, Japan; Department of Dermatology, International University of Health and Welfare Graduate School of Medicine, Chiba, Japan
| | - Tetsuya Ikawa
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo, Japan; Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yusuke Watanabe
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Takuya Miyagawa
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Takashi Yamashita
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Yukiteru Nakayama
- Department of Cardiovascular Medicine, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Maria Trojanowska
- Arthritis & Autoimmune Diseases Research Center, Boston University Chobanian & Avedisian School of Medicine, Boston, USA
| | - Shinichi Sato
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Yoshihide Asano
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo, Japan; Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Japan.
| |
Collapse
|
27
|
Kim NH, Sim SJ, Han HG, Yoon JH, Han YH. Immunosenescence and age-related immune cells: causes of age-related diseases. Arch Pharm Res 2025; 48:132-149. [PMID: 39725853 DOI: 10.1007/s12272-024-01529-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 12/17/2024] [Indexed: 12/28/2024]
Abstract
Immunosenescence is a weakening of the immune system due to aging, characterized by changes in immune cells and dysregulated immune function. Age-related immune cells are increasing with aging. They are associated with chronic prolonged inflammation, causing tissue dysfunction and age-related diseases. Here, we discuss increased pro-inflammatory activity of aged macrophages, accumulation of lymphocytes with an age-associated phenotype, and specific alterations in both functions and characteristics of these immune cells. These cellular changes are associated with development of age-related diseases. Additionally, we reviewed various therapeutic strategies targeting age-related immunosenescence, providing pathways to mitigate effects of age-related diseases.
Collapse
Affiliation(s)
- Nam-Hee Kim
- Laboratory of Pathology and Physiology, College of Pharmacy, Kangwon National University, 1, Kangwondaehak-gil, Chuncheon-si, Gangwon-do, 24341, South Korea
| | - So-Jin Sim
- Laboratory of Pathology and Physiology, College of Pharmacy, Kangwon National University, 1, Kangwondaehak-gil, Chuncheon-si, Gangwon-do, 24341, South Korea
| | - Hong-Gyu Han
- Laboratory of Pathology and Physiology, College of Pharmacy, Kangwon National University, 1, Kangwondaehak-gil, Chuncheon-si, Gangwon-do, 24341, South Korea
| | - Jeong-Hyuk Yoon
- Laboratory of Pathology and Physiology, College of Pharmacy, Kangwon National University, 1, Kangwondaehak-gil, Chuncheon-si, Gangwon-do, 24341, South Korea
| | - Yong-Hyun Han
- Laboratory of Pathology and Physiology, College of Pharmacy, Kangwon National University, 1, Kangwondaehak-gil, Chuncheon-si, Gangwon-do, 24341, South Korea.
- Multidimentional Genomics Research Center, Kangwon National University, Chuncheon, 24341, South Korea.
| |
Collapse
|
28
|
Montenegro VM, Delgado Hernandez M, Rojas A, Rivera-Correa J. Autoantibodies against phosphatidylserine and DNA during canine Dirofilaria immitis infection. Vet Parasitol 2025; 334:110392. [PMID: 39799747 DOI: 10.1016/j.vetpar.2025.110392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 01/08/2025] [Accepted: 01/08/2025] [Indexed: 01/15/2025]
Abstract
Heartworm infection caused by Dirofilaria immitis induces a devastating disease that greatly affects the global canine population. The mechanism leading to heartworm pathology has been attributed to be mostly by mechanical damage of the worm to the dog´s vascular system and immune-mediated, but the latter processes are not completely understood. Autoantibodies targeting host molecules such as lipids and nucleic acids have been described with pathological roles during malaria and COVID-19 and mediating anemia and thrombocytopenia. We hypothesized that autoantibodies could be present and have a pathological role during canine heartworm disease caused by D. immitis. In this study, we analyzed the levels of autoantibodies (IgM and IgG) against membrane lipid phosphatidylserine (PS) and DNA in the serum of 169 canine samples based on D. immitis infection. First, our results found significant levels of anti-PS IgM and IgG autoantibodies that were associated with D. immitis-positive when compared to D. immitis-negative samples. Second, we found that autoantibodies, particularly anti-PS, are correlated with hematological parameters such as low platelet count suggesting an association with pathologies such as thrombocytopenia. Altogether, these findings elucidate the understudied presence and pathological role of autoantibodies during canine heartworm disease by D. immitis with implications as biomarkers of disease.
Collapse
Affiliation(s)
- Victor M Montenegro
- Laboratorio de Parasitología, Escuela de Medicina Veterinaria, Universidad Nacional, P.O. Box 86-3000, Heredia, Costa Rica
| | - Mónica Delgado Hernandez
- Laboratorio de Parasitología, Escuela de Medicina Veterinaria, Universidad Nacional, P.O. Box 86-3000, Heredia, Costa Rica
| | - Alicia Rojas
- Laboratorio de Helmintología, Faculty of Microbiology, Universidad de Costa Rica, P.O. Box 11501-2060, San José, Costa Rica; Centro de Investigación en Enfermedades Tropicales, University of Costa Rica, P.O. Box 11501-2060, San José, Costa Rica
| | - Juan Rivera-Correa
- Biological Sciences Department, New York City College of Technology, City University of New York, Brooklyn, NY, United States; Biology PhD Program, CUNY Graduate Center, New York, NY, United States.
| |
Collapse
|
29
|
Weyand CM, Goronzy JJ. Immune Aging in Rheumatoid Arthritis. Arthritis Rheumatol 2025. [PMID: 39800938 DOI: 10.1002/art.43105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 11/11/2024] [Accepted: 12/18/2024] [Indexed: 02/12/2025]
Abstract
Rheumatoid arthritis (RA) is a life-long autoimmune disease caused by the confluence of genetic and environmental variables that lead to loss of self-tolerance and persistent joint inflammation. RA occurs at the highest incidence in individuals >65 years old, implicating the aging process in disease susceptibility. Transformative approaches in molecular immunology and in functional genomics have paved the way for pathway paradigms underlying the replacement of immune homeostasis with autodestructive immunity in affected patients, including the process of immune aging. Patients with RA have a signature of premature immune aging, best understood for CD4+ T cells, which function as pathogenic effectors in this HLA class II-associated disease. Premature immune aging is present in healthy HLA-DRB1*04+ individuals, placing accelerated immune aging before joint inflammation. Aging-related molecular abnormalities directly implicated in turning RA CD4+ T cells into proinflammatory effector cells are linked to malfunction of subcellular organelles, such as mitochondria, lysosomes, lipid droplets, and the endoplasmic reticulum. Resulting changes in T cell behavior include cellular hypermobility, tissue invasiveness, unopposed mammalian target of rapamycin complex (mTORC)1 activation, excessive release of tumor necrosis factor, lysosomal failure, clonal expansion, and immunogenic cell death. Aged and metabolically reprogrammed T cells in patients with RA are accompanied by age-associated B cells, which specialize in autoantibody production. Clonal hematopoiesis drives myeloid cell aging by producing aged monocytes and hypermetabolic macrophages, which sustain the process of inflammaging. Here, we synthesize insights into the relationship of RA risk and immune aging and discuss mechanisms through which immune aging can cause autoimmunity.
Collapse
Affiliation(s)
- Cornelia M Weyand
- Mayo Clinic Alix School of Medicine, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, and Stanford University School of Medicine, Stanford, California
| | - Jörg J Goronzy
- Mayo Clinic Alix School of Medicine, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, and Stanford University School of Medicine, Stanford, California
| |
Collapse
|
30
|
Geng Z, Cao Y, Zhao L, Wang L, Dong Y, Bi Y, Liu G. Function and Regulation of Age-Associated B Cells in Diseases. J Cell Physiol 2025; 240:e31522. [PMID: 39749652 DOI: 10.1002/jcp.31522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 12/16/2024] [Accepted: 12/21/2024] [Indexed: 01/04/2025]
Abstract
The aging process often leads to immune-related diseases, including infections, tumors, and autoimmune disorders. Recently, researchers identified a special subpopulation of B cells in elderly female mice that increases with age and accumulates prematurely in mouse models of autoimmune diseases or viral infections; these B cells are known as age-related B cells (ABCs). These cells possess distinctive cell surface phenotypes and transcriptional characteristics, and the cell population is widely recognized as CD11c+CD11b+T-bet+CD21-CD23- cells. Research has shown that ABCs are a heterogeneous group of B cells that originate independently of the germinal center and are insensitive to B-cell receptor (BCR) and CD40 stimulation, differentiating and proliferating in response to toll-like receptor 7 (TLR7) and IL-21 stimulation. Additionally, they secrete self-antibodies and cytokines to regulate the immune response. These issues have aroused widespread interest among researchers in this field. This review summarizes recent research progress on ABCs, including the functions and regulation of ABCs in aging, viral infection, autoimmune diseases, and organ transplantation.
Collapse
Affiliation(s)
- Zi Geng
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Yejin Cao
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Longhao Zhao
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Likun Wang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Science, Beijing, China
| | - Yingjie Dong
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Yujing Bi
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Science, Beijing, China
| | - Guangwei Liu
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China
| |
Collapse
|
31
|
Yang Y, Fan L, Li M, Wang Z. Immune senescence: A key player in cancer biology. Semin Cancer Biol 2025; 108:71-82. [PMID: 39675646 DOI: 10.1016/j.semcancer.2024.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/30/2024] [Accepted: 12/10/2024] [Indexed: 12/17/2024]
Abstract
With the rapid development of immunological techniques in recent years, our understanding of immune senescence has gradually deepened, but the role of immune senescence in cancer biology remains incompletely elucidated. Understanding these mechanisms and interactions is crucial for the development of tumor biology. This review examines five key areas: the classification and main features of immune senescence, factors influencing immune cell senescence in cancer, the reciprocal causal cycle between immune senescence and malignancy, and the potential of immune senescence as a target for cancer immunotherapy.
Collapse
Affiliation(s)
- Yanru Yang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Pathology, School of Basic Medicine and Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Linni Fan
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Pathology, School of Basic Medicine and Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Mingyang Li
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Pathology, School of Basic Medicine and Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Zhe Wang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Pathology, School of Basic Medicine and Xijing Hospital, Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
32
|
Yoshikawa T, Yanagita M. Single-Cell Analysis Provides New Insights into the Roles of Tertiary Lymphoid Structures and Immune Cell Infiltration in Kidney Injury and Chronic Kidney Disease. THE AMERICAN JOURNAL OF PATHOLOGY 2025; 195:40-54. [PMID: 39097168 DOI: 10.1016/j.ajpath.2024.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/27/2024] [Accepted: 07/02/2024] [Indexed: 08/05/2024]
Abstract
Chronic kidney disease (CKD) is a global health concern with high morbidity and mortality. Acute kidney injury (AKI) is a pivotal risk factor for the progression of CKD, and the rate of AKI-to-CKD progression increases with aging. Intrarenal inflammation is a fundamental mechanism underlying AKI-to-CKD progression. Tertiary lymphoid structures (TLSs), ectopic lymphoid aggregates formed in nonlymphoid organs, develop in aged injured kidneys, but not in young kidneys, with prolonged inflammation and maladaptive repair, which potentially exacerbates AKI-to-CKD progression in aged individuals. Dysregulated immune responses are involved in the pathogenesis of various kidney diseases, such as IgA nephropathy, lupus nephritis, and diabetic kidney diseases, thereby deteriorating kidney function. TLSs also develop in several kidney diseases, including transplanted kidneys and renal cell carcinoma. However, the precise immunologic mechanisms driving AKI-to-CKD progression and development of these kidney diseases remain unclear, which hinders the development of novel therapeutic approaches. This review aims to describe recent findings from single-cell analysis of cellular heterogeneity and complex interactions among immune and renal parenchymal cells, which potentially contribute to the pathogenesis of AKI-to-CKD progression and other kidney diseases, highlighting the mechanisms of formation and pathogenic roles of TLSs in aged injured kidneys.
Collapse
Affiliation(s)
- Takahisa Yoshikawa
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Motoko Yanagita
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Institute for the Advanced Study of Human Biology, Kyoto University, Kyoto, Japan.
| |
Collapse
|
33
|
Li W, Liu H, Gao L, Hu Y, Zhang A, Li W, Liu G, Bai W, Xu Y, Xiao C, Deng J, Lei W, Chen G. In-depth human immune cellular profiling from newborn to frail. J Leukoc Biol 2024; 117:qiae046. [PMID: 38447557 DOI: 10.1093/jleuko/qiae046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/20/2024] [Accepted: 02/16/2024] [Indexed: 03/08/2024] Open
Abstract
Immune functional decline and remodeling accompany aging and frailty. It is still largely unknown how changes in the immune cellular composition differentiate healthy individuals from those who become frail at a relatively early age. Our aim in this exploratory study was to investigate immunological changes from newborn to frailty and the association between health statute and various immune cell subtypes. The participants analyzed in this study covered human cord blood cells and peripheral blood cells collected from young adults and healthy and frail old individuals. A total of 30 immune cell subsets were performed by flow cytometry based on the surface markers of immune cells. Furthermore, frailty was investigated for its relations with various leukocyte subpopulations. Frail individuals exhibited a higher CD4/CD8 ratio; a higher proportion of CD4+ central memory T cells, CD8+ effector memory T cells, CD27- switched memory B (BSM) cells, CD27+ BSM cells, age-associated B cells, and CD38-CD24- B cells; and a lower proportion of naïve CD8+ T cells and progenitor B cells. The frailty index score was found to be associated with naïve T cells, CD4/CD8 ratio, age-associated B cells, CD27- BSM cells, and CD4+ central memory T cells. Our findings conducted a relatively comprehensive and extensive atlas of age- and frailty-related changes in peripheral leukocyte subpopulations from newborn to frailty. The immune phenotypes identified in this study can contribute to a deeper understanding of immunosenescence in frailty and may provide a rationale for future interventions and diagnosis.
Collapse
Affiliation(s)
- Wangchun Li
- Intensive Care Unit, Affiliated Shunde Hospital, Jinan University, No.50, East Guizhou Avenue, Foshan 528000, China
| | - Hangyu Liu
- Institute of Geriatric Immunology, Department of Microbiology and Immunology, School of Medicine, Jinan University, No.601, West Huangpu Avenue, Tianhe District, Guangzhou 510632, China
- Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, Jinan University, No.601, West Huangpu Avenue, Tianhe District, Guangzhou 510632, China
| | - Lijuan Gao
- Institute of Geriatric Immunology, Department of Microbiology and Immunology, School of Medicine, Jinan University, No.601, West Huangpu Avenue, Tianhe District, Guangzhou 510632, China
- Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, Jinan University, No.601, West Huangpu Avenue, Tianhe District, Guangzhou 510632, China
| | - Yang Hu
- NHC Key Laboratory of Male Reproduction and Genetics, Guangdong Provincial Reproductive Science Institute, Guangdong Provincial Fertility Hospital, No.17, Meidong Road, Yuexiu District, Guangzhou 510632, China
| | - Anna Zhang
- Intensive Care Unit, Affiliated Shunde Hospital, Jinan University, No.50, East Guizhou Avenue, Foshan 528000, China
| | - Wenfeng Li
- Intensive Care Unit, Affiliated Shunde Hospital, Jinan University, No.50, East Guizhou Avenue, Foshan 528000, China
| | - Guolong Liu
- Department of Medical Oncology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, No.1, Panfu Road, Yuexiu District, Guangzhou 510180, China
| | - Weibin Bai
- Department of Food Science and Engineering, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Institute of Food Safety and Nutrition, Jinan University, No.601, West Huangpu Avenue, Tianhe District, Guangzhou 510632, China
| | - Yudai Xu
- Institute of Geriatric Immunology, Department of Microbiology and Immunology, School of Medicine, Jinan University, No.601, West Huangpu Avenue, Tianhe District, Guangzhou 510632, China
- Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, Jinan University, No.601, West Huangpu Avenue, Tianhe District, Guangzhou 510632, China
| | - Chanchan Xiao
- Institute of Geriatric Immunology, Department of Microbiology and Immunology, School of Medicine, Jinan University, No.601, West Huangpu Avenue, Tianhe District, Guangzhou 510632, China
- Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, Jinan University, No.601, West Huangpu Avenue, Tianhe District, Guangzhou 510632, China
| | - Jieping Deng
- Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, Jinan University, No.601, West Huangpu Avenue, Tianhe District, Guangzhou 510632, China
- Department of Systems Biomedical Sciences, School of Medicine, Jinan University, No.601, West Huangpu Avenue, Tianhe District, Guangzhou 510632, China
| | - Wen Lei
- Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, Jinan University, No.601, West Huangpu Avenue, Tianhe District, Guangzhou 510632, China
- Integrated Chinese and Western Medicine Postdoctoral Research Station, Guangdong Second Provincial General Hospital, School of Medicine, Jinan University, No.466, Xingang Middle Road, Haizhu District, Guangzhou 510632, China
| | - Guobing Chen
- Institute of Geriatric Immunology, Department of Microbiology and Immunology, School of Medicine, Jinan University, No.601, West Huangpu Avenue, Tianhe District, Guangzhou 510632, China
- Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, Jinan University, No.601, West Huangpu Avenue, Tianhe District, Guangzhou 510632, China
- Key Laboratory of Viral Pathogenesis and Infection Prevention and Control, Jinan University, Ministry of Education, No.601, West Huangpu Avenue, Tianhe District, Guangzhou, 510632, China
| |
Collapse
|
34
|
Rahimpour S, Clary BL, Nasoohi S, Berhanu YS, Brown CM. Immunometabolism In Brain Aging and Neurodegeneration: Bridging Metabolic Pathways and Immune Responses. Aging Dis 2024:AD.2024.1293. [PMID: 39751865 DOI: 10.14336/ad.2024.1293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 12/18/2024] [Indexed: 01/04/2025] Open
Abstract
The complex set of interactions between the immune system and metabolism, known as immunometabolism, has emerged as a critical regulator of disease outcomes in the central nervous system. Numerous studies have linked metabolic disturbances to impaired immune responses in brain aging, neurodegenerative disorders, and brain injury. In this review, we will discuss how disruptions in brain immunometabolism balance contribute to the pathophysiology of brain dysfunction. The first part of the review summarizes the contributions of critical immune cell populations such as microglia, astrocytes, and infiltrating immune cells in mediating inflammation and metabolism in CNS disorders. The remainder of the review addresses the impact of metabolic changes on immune cell activation and disease progression in brain aging, Alzheimer's disease, Parkinson's disease, multiple sclerosis, stroke, spinal cord injury, and traumatic brain injury. Furthermore, we also address the therapeutic potential of targeting immunometabolic pathways to reduce neuroinflammation and slow disease progression. By focusing on the interactions among brain immune cells and the metabolic mechanisms they recruit in disease, we present a comprehensive overview of brain immunometabolism in human health and disease.
Collapse
Affiliation(s)
- Shokofeh Rahimpour
- Department of Microbiology, Immunology, and Cell Biology, School of Medicine, West Virginia University, Morgantown, WV 26506, USA
| | - Briana L Clary
- Department of Neuroscience, School of Medicine, West Virginia University, Morgantown, WV 26506, USA
- Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26506 USA
| | - Sanaz Nasoohi
- Department of Neuroscience, School of Medicine, West Virginia University, Morgantown, WV 26506, USA
- Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26506 USA
| | - Yohanna S Berhanu
- Department of Neuroscience, School of Medicine, West Virginia University, Morgantown, WV 26506, USA
| | - Candice M Brown
- Department of Microbiology, Immunology, and Cell Biology, School of Medicine, West Virginia University, Morgantown, WV 26506, USA
- Department of Neuroscience, School of Medicine, West Virginia University, Morgantown, WV 26506, USA
- Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26506 USA
| |
Collapse
|
35
|
Chen R, Zou J, Chen J, Wang L, Kang R, Tang D. Immune aging and infectious diseases. Chin Med J (Engl) 2024; 137:3010-3049. [PMID: 39679477 PMCID: PMC11706578 DOI: 10.1097/cm9.0000000000003410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Indexed: 12/17/2024] Open
Abstract
ABSTRACT The rise in global life expectancy has led to an increase in the older population, presenting significant challenges in managing infectious diseases. Aging affects the innate and adaptive immune systems, resulting in chronic low-grade inflammation (inflammaging) and immune function decline (immunosenescence). These changes would impair defense mechanisms, increase susceptibility to infections and reduce vaccine efficacy in older adults. Cellular senescence exacerbates these issues by releasing pro-inflammatory factors, further perpetuating chronic inflammation. Moreover, comorbidities, such as cardiovascular disease and diabetes, which are common in older adults, amplify immune dysfunction, while immunosuppressive medications further complicate responses to infections. This review explores the molecular and cellular mechanisms driving inflammaging and immunosenescence, focusing on genomic instability, telomere attrition, and mitochondrial dysfunction. Additionally, we discussed how aging-associated immune alterations influence responses to bacterial, viral, and parasitic infections and evaluated emerging antiaging strategies, aimed at mitigating these effects to improve health outcomes in the aging population.
Collapse
Affiliation(s)
- Ruochan Chen
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- National Clinical Research Center for Geriatric Disorders (Xiangya), Changsha, Hunan 410008, China
| | - Ju Zou
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- National Clinical Research Center for Geriatric Disorders (Xiangya), Changsha, Hunan 410008, China
| | - Jiawang Chen
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- National Clinical Research Center for Geriatric Disorders (Xiangya), Changsha, Hunan 410008, China
| | - Ling Wang
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- National Clinical Research Center for Geriatric Disorders (Xiangya), Changsha, Hunan 410008, China
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX 75235, USA
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX 75235, USA
| |
Collapse
|
36
|
Dörner T, Lipsky PE. The essential roles of memory B cells in the pathogenesis of systemic lupus erythematosus. Nat Rev Rheumatol 2024; 20:770-782. [PMID: 39511302 DOI: 10.1038/s41584-024-01179-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/02/2024] [Indexed: 11/15/2024]
Abstract
Emerging evidence indicates that memory B cells are dysfunctional in systemic lupus erythematosus (SLE). They are hyporesponsive to signalling through the B cell receptor (BCR) but retain responsiveness to Toll-like receptor (TLR) and type I interferon signalling, as well as to T cell-mediated activation via CD40-CD154. Chronic exposure to immune complexes of ribonucleoprotein (RNP)-specific autoantibodies and TLR-engaging or BCR-engaging cargo is likely to contribute to this partially anergic phenotype. TLR7 or TLR8 signalling and the resulting production of type I interferon, as well as the sustained activation by bystander T cells, fuel a positive feedforward loop in memory B cells that can evade negative selection and permit preferential expansion of anti-RNP autoantibodies. Clinical trials of autologous stem cell transplantation or of B cell-targeted monoclonal antibodies and chimeric antigen receptor (CAR) T cells have correlated replenishment of the memory B cell population with relapse of SLE. Moreover, the BCR hyporesponsiveness of memory B cells might explain the failure of non-depleting B cell-targeting approaches in SLE, including BTK inhibitors and anti-CD22 monoclonal antibodies. Thus, targeting of dysfunctional memory B cells might prove effective in SLE, while also avoiding the adverse events of broad-spectrum targeting of B cell and plasma cell subsets that are not directly involved in disease pathogenesis.
Collapse
Affiliation(s)
- Thomas Dörner
- Department Medicine/Rheumatology and Clinical Immunology, Charite Universitätsmedizin Berlin & Deutsches Rheumaforschungszentrum (DRFZ), Berlin, Germany.
| | | |
Collapse
|
37
|
Chizzolini C, Guery JC, Noulet F, Gruaz L, Cenac C, Frasca L, Spoerl D, Arlettaz L, Horisberger A, Ribi C, Hugues S. Extrafollicular CD19 lowCXCR5 -CD11c - double negative 3 (DN3) B cells are significantly associated with disease activity in females with systemic lupus erythematosus. J Transl Autoimmun 2024; 9:100252. [PMID: 39444662 PMCID: PMC11497371 DOI: 10.1016/j.jtauto.2024.100252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/03/2024] [Accepted: 10/03/2024] [Indexed: 10/25/2024] Open
Abstract
Objective B cells play a major role in the development and maintenance of systemic lupus erythematosus (SLE). Double negative (DN) B cells defined by the lack of surface expression of IgD and CD27 have attracted recent interest for their sensitivity to Toll-like receptor 7 (TLR7) ligands and their potential role in the production of autoantibodies. Here we aimed at investigating the possible association of DN B cells and their subsets with SLE disease activity specifically in female patients, in which TLR7 gene has been reported to escape X chromosome inactivation. Methods Peripheral blood mononuclear cells were purified from woman participating to the clinically well-characterized Swiss SLE Cohort Study (SSCS). PBMC from age-matched healthy females were used as controls. PBMC were stained for cell surface markers, intracellular Tbet and analyzed by multicolor cytofluorimetry. Single nucleotide TLR7 polymorphisms were assessed by polymerase chain reaction. Results The median SLE disease activity index of the 86 females was 2, IQR [0-6], all but 8 were under chronic SLE treatment. B cells co-expressing CD11c and Tbet were increased, the mean fluorescence intensity (MFI) of CD19 was considerably reduced and we observed a large increase in CD11c + CXCR5-and CD11c-CXCR5-concomitantly with a reduction of CD11c-CXCR5+ B cells in SLE compared to 40 healthy donors (HD). When focusing on the DN B cell subset, we found a reduction of DN1 (CD11c-CXCR5+) and an increase of DN2 (CD11c + CXCR5-) and most impressively of DN3 (CD11c-CXCR5-) cells. The DN subset, particularly DN3, showed the lowest level of CD19 expression. Both DN1 and DN3 percentages as well as the CD19 MFI of DN cells were associated with SLE disease activity. The use of glucocorticoids, immunosuppressants, and antimalarials impacted differentially on the frequencies of DN B cell subsets. CD19 MFI in B cells and the percentage of DN3 were the strongest biomarkers of disease activity. The TLR7 snp3858384 G allele was associated with increased percentages of B cells and CD19+CD11c-CXCR5+ and decreased CD19+CD11c-CXCR5-. Conclusions DN3 B cells are strongly associated with SLE clinical activity pointing to their potential involvement in disease pathogenesis, and CD19 expression level performs accurately as disease activity biomarker.
Collapse
Affiliation(s)
- Carlo Chizzolini
- Department of Pathology and Immunology, Centre Médical Universitaire, School of Medicine, University of Geneva, Geneva, Switzerland
| | - Jean-Charles Guery
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity) INSERM UMR1291, CNRS UMR5051, University Paul Sabatier Toulouse, F-31024, Toulouse, France
| | - Fanny Noulet
- Department of Pathology and Immunology, Centre Médical Universitaire, School of Medicine, University of Geneva, Geneva, Switzerland
| | - Lyssia Gruaz
- Department of Pathology and Immunology, Centre Médical Universitaire, School of Medicine, University of Geneva, Geneva, Switzerland
| | - Claire Cenac
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity) INSERM UMR1291, CNRS UMR5051, University Paul Sabatier Toulouse, F-31024, Toulouse, France
| | - Loredana Frasca
- National Center for Global Health, Istituto Superiore di Sanità, Rome, Italy
| | - David Spoerl
- Clinical Immunology and Allergy, Department of Medicine, University Hospital and Faculty of Medicine, Geneva, Switzerland
| | - Lionel Arlettaz
- Department of Biology, ICH, Valais Hospital, Sion, Switzerland
| | - Alice Horisberger
- Service of Immunology and Allergy, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Camillo Ribi
- Service of Immunology and Allergy, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Stéphanie Hugues
- Department of Pathology and Immunology, Centre Médical Universitaire, School of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
38
|
Touil H, Luquez T, Comandante-Lou N, Lee AJ, Fujita M, Habeck C, Kroshilina A, Hegewisch-Solloa E, McInvale J, Zuroff L, Isnard S, Walker E, Zhang L, Routy JP, Zhang Y, Mace EM, Klotz L, Wiendl H, Xia Z, Bar-Or A, Menon V, Stern Y, De Jager PL. Relation of CMV and brain atrophy to trajectories of immunosenescence in diverse populations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.07.614568. [PMID: 39416188 PMCID: PMC11482892 DOI: 10.1101/2024.10.07.614568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Immunosenescence (ISC), the aging of the immune system, has largely been studied in populations of European descent. Here, circulating immune cell cytometric data from African-American, Hispanic, and non-Hispanic White participants were generated. Known and novel age effects were identified using either a meta-analysis approach or a parallel genetic approach. Most results are consistent across the three populations, but some cell populations display evidence of heterogeneity, such as a PD-L1 + CD56 + NK cell subset. The study estimated "Immunological Age" (IA) during physiologic aging. While we found no relation of IA to Multiple Sclerosis, IA is associated with entorhinal cortex atrophy, a presymptomatic feature of Alzheimer's disease, linking neurodegeneration and peripheral immunity. ISC trajectories were also inferred, highlighting age, CMV status, and genetic ancestry as key influences. Our assessment offers reference ISC trajectories for personalization of assessments of immune function over the life course in diverse populations.
Collapse
|
39
|
Räuber S, Schulte-Mecklenbeck A, Willison A, Hagler R, Jonas M, Pul D, Masanneck L, Schroeter CB, Golombeck KS, Lichtenberg S, Strippel C, Gallus M, Dik A, Kerkhoff R, Barman S, Weber KJ, Kovac S, Korsen M, Pawlitzki M, Goebels N, Ruck T, Gross CC, Paulus W, Reifenberger G, Hanke M, Grauer O, Rapp M, Sabel M, Wiendl H, Meuth SG, Melzer N. Flow cytometry identifies changes in peripheral and intrathecal lymphocyte patterns in CNS autoimmune disorders and primary CNS malignancies. J Neuroinflammation 2024; 21:286. [PMID: 39497174 PMCID: PMC11536547 DOI: 10.1186/s12974-024-03269-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Accepted: 10/20/2024] [Indexed: 11/06/2024] Open
Abstract
BACKGROUND Immune dysregulation is a hallmark of autoimmune diseases of the central nervous system (CNS), characterized by an excessive immune response, and primary CNS tumors (pCNS-tumors) showing a highly immunosuppressive parenchymal microenvironment. METHODS Aiming to provide novel insights into the pathogenesis of CNS autoimmunity and cerebral tumor immunity, we analyzed the peripheral blood (PB) and cerebrospinal fluid (CSF) of 81 autoimmune limbic encephalitis (ALE), 148 relapsing-remitting multiple sclerosis (RRMS), 33 IDH-wildtype glioma, 9 primary diffuse large B cell lymphoma of the CNS (CNS-DLBCL), and 110 controls by flow cytometry (FC). Additionally, an in-depth immunophenotyping of the PB from an independent cohort of 20 RRMS and 18 IDH-wildtype glioblastoma patients compared to 19 controls was performed by FC combined with unsupervised computational approaches. RESULTS We identified alterations in peripheral and intrathecal adaptive immunity, mainly affecting the T cell (Tc) but also the B cell (Bc) compartment in ALE, RRMS, and pCNS-tumors compared to controls. ALE, RRMS, and pCNS-tumors featured higher expression of the T cell activation marker HLA-DR, which was even more pronounced in pCNS-tumors than in ALE or RRMS. Glioblastoma patients showed signs of T cell exhaustion that were not visible in RRMS patients. In-depth characterization of the PB revealed differences mainly in the T effector and memory compartment between RRMS and glioblastoma patients and similar alterations in the Bc compartment, including atypical Bc, CD19+CD20- double negative Bc, and plasma cells. PB and CSF mFC together with CSF routine parameters could reliably differentiate ALE and RRMS from pCNS-tumors facilitating early diagnosis and treatment. CONCLUSIONS ALE, RRMS, and pCNS-tumors show distinct but partially overlapping changes mainly in HLA-DR+ Tc, memory Tc, exhausted Tc, and Bc subsets providing insights into disease pathogenesis. Moreover, mFC shows diagnostic potential facilitating early diagnosis and treatment.
Collapse
Affiliation(s)
- Saskia Räuber
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
- Department of Neurology with Institute of Translational Neurology, University of Münster, Münster, Germany
| | | | - Alice Willison
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Ramona Hagler
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Marius Jonas
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Duygu Pul
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Lars Masanneck
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Christina B Schroeter
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
- Department of Neurology with Institute of Translational Neurology, University of Münster, Münster, Germany
| | - Kristin S Golombeck
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
- Department of Neurology with Institute of Translational Neurology, University of Münster, Münster, Germany
| | - Stefanie Lichtenberg
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
- Department of Neurology with Institute of Translational Neurology, University of Münster, Münster, Germany
| | - Christine Strippel
- Department of Neurology with Institute of Translational Neurology, University of Münster, Münster, Germany
| | - Marco Gallus
- Department of Neurology with Institute of Translational Neurology, University of Münster, Münster, Germany
| | - Andre Dik
- Department of Neurology with Institute of Translational Neurology, University of Münster, Münster, Germany
| | - Ruth Kerkhoff
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Sumanta Barman
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Katharina J Weber
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Neurological Institute (Edinger Institute), University Hospital, Goethe University, Frankfurt/Main, Germany
- Frankfurt Cancer Institute (FCI), Frankfurt/Main, Germany
| | - Stjepana Kovac
- Department of Neurology with Institute of Translational Neurology, University of Münster, Münster, Germany
| | - Melanie Korsen
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Marc Pawlitzki
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
- Department of Neurology with Institute of Translational Neurology, University of Münster, Münster, Germany
| | - Norbert Goebels
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Tobias Ruck
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
- Department of Neurology with Institute of Translational Neurology, University of Münster, Münster, Germany
| | - Catharina C Gross
- Department of Neurology with Institute of Translational Neurology, University of Münster, Münster, Germany
| | - Werner Paulus
- Institute of Neuropathology, University of Münster, Münster, Germany
| | - Guido Reifenberger
- Institute of Neuropathology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Michael Hanke
- Institute of Neuroscience and Medicine, Brain and Behaviour (INM-7), Research Center Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Oliver Grauer
- Department of Neurology with Institute of Translational Neurology, University of Münster, Münster, Germany
| | - Marion Rapp
- Department of Neurosurgery, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Michael Sabel
- Department of Neurosurgery, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Heinz Wiendl
- Department of Neurology with Institute of Translational Neurology, University of Münster, Münster, Germany
| | - Sven G Meuth
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
- Department of Neurology with Institute of Translational Neurology, University of Münster, Münster, Germany
| | - Nico Melzer
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany.
- Department of Neurology with Institute of Translational Neurology, University of Münster, Münster, Germany.
| |
Collapse
|
40
|
Chang KJ, Shiau LY, Lin SC, Cheong HP, Wang CY, Ma C, Liang YW, Yang YP, Ko PS, Hsu CH, Chiou SH. N 6-methyladenosine and its epitranscriptomic effects on hematopoietic stem cell regulation and leukemogenesis. Mol Med 2024; 30:196. [PMID: 39497033 PMCID: PMC11536562 DOI: 10.1186/s10020-024-00965-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 10/20/2024] [Indexed: 11/06/2024] Open
Abstract
N6-methyladenosine (m6A) RNA modification orchestrates cellular epitranscriptome through tuning the homeostasis of transcript stability, translation efficiency, and the transcript affinity toward RNA-binding proteins (RBPs). An aberrant m6A deposition on RNA can lead toward oncogenic expression profile (mRNA), impaired mitochondrial metabolism (mtRNA), and translational suppression (rRNA) of tumor suppressor genes. In addition, non-coding RNAs (ncRNAs), such as X-inactive specific transcript (XIST), miRNAs, and α-ketoglutarate-centric metabolic transcripts are also regulated by the m6A epitranscriptome. Notably, recent studies had uncovered a myriad of m6A-modified transcripts the center of hematopoietic stem cell (HSC) regulation, in which m6A modification act as a context dependent switch to the on and off of hematopoietic stem cell (HSC) maintenance, lineage commitment and terminal differentiation. In this review, we sequentially unfold the m6A mediated epithelial-to-hematopoietic transition in progenitor blood cell production, lymphocytic lineage expansion (T cells, B cells, NK cells, and non-NK ILCs), and the m6A crosstalk with the onco-metabolic prospects of leukemogenesis. Together, an encompassing body of evidence highlighted the emerging m6A significance in the regulation of HSC biology and leukemogenesis.
Collapse
Affiliation(s)
- Kao-Jung Chang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Li-Yang Shiau
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Shiuan-Chen Lin
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Han-Ping Cheong
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
- Institute of Pharmacology, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Ching-Yun Wang
- Department of Medical Education, Taichung Veterans General Hospital, Taipei, Taiwan
| | - Chun Ma
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yan-Wen Liang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Life Sciences and Institute of Genomic Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Yi-Ping Yang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Po-Shen Ko
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Division of Hematology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chih-Hung Hsu
- The Fourth Affiliated Hospital, and Department of Environmental Medicine, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Genetics, International School of Medicine, Zhejiang University, Hangzhou, China
| | - Shih-Hwa Chiou
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan.
- Institute of Pharmacology, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| |
Collapse
|
41
|
Lam N, Lee Y, Farber DL. A guide to adaptive immune memory. Nat Rev Immunol 2024; 24:810-829. [PMID: 38831162 DOI: 10.1038/s41577-024-01040-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/26/2024] [Indexed: 06/05/2024]
Abstract
Immune memory - comprising T cells, B cells and plasma cells and their secreted antibodies - is crucial for human survival. It enables the rapid and effective clearance of a pathogen after re-exposure, to minimize damage to the host. When antigen-experienced, memory T cells become activated, they proliferate and produce effector molecules at faster rates and in greater magnitudes than antigen-inexperienced, naive cells. Similarly, memory B cells become activated and differentiate into antibody-secreting cells more rapidly than naive B cells, and they undergo processes that increase their affinity for antigen. The ability of T cells and B cells to form memory cells after antigen exposure is the rationale behind vaccination. Understanding immune memory not only is crucial for the design of more-efficacious vaccines but also has important implications for immunotherapies in infectious disease and cancer. This 'guide to' article provides an overview of the current understanding of the phenotype, function, location, and pathways for the generation, maintenance and protective capacity of memory T cells and memory B cells.
Collapse
Affiliation(s)
- Nora Lam
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - YoonSeung Lee
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Donna L Farber
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA.
- Department of Surgery, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
42
|
Liu S, Zhang W, Tian S, Zhang Y, Yin Z, Huang G, Zhang H, Li F. B cell-intrinsic IFN-γ promotes excessive CD11c + age-associated B cell differentiation and compromised germinal center selection in lupus mice. Cell Immunol 2024; 405-406:104883. [PMID: 39503082 DOI: 10.1016/j.cellimm.2024.104883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 10/14/2024] [Accepted: 10/15/2024] [Indexed: 12/02/2024]
Abstract
CD11c+ age-associated B cells (ABCs) have emerged as a key component in protective and autoreactive B cell responses. Lupus is an autoimmune disorder linked to reduced efficacy of vaccines and increased susceptibility to infections. Previously, we reported that excessive CD11c+ ABCs not only significantly contribute to autoantibody production but also promote aberrant T cell activation and compromised affinity-based germinal center selection in response to immunization in lupus mice. Yet, the regulation of CD11c+ ABC differentiation is not fully understood. In this study, we show that B cell-intrinsic IFN-γ is required for excessive CD11c+ ABC differentiation in lupus mice. B cell-intrinsic IFN-γ is mainly produced by CD11c+ ABCs. IFN-γ-deficiency leads to decreased expression of ABC characteristic genes. We further show that ablating IFN-γ can normalize T cell overactivation and rescue antigen-specific GC responses in lupus mice. Our study offers insight into the crucial role of B cell-intrinsic IFN-γ in promoting excessive CD11c+ ABC differentiation, which compromises affinity-based germinal center selection and affinity maturation in lupus, providing a potential strategy to normalize vaccine responses in lupus.
Collapse
Affiliation(s)
- Shujun Liu
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, Shanghai, China; Shanghai Institute of Immunology, Faculty of Basic Medicine, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, Shanghai, China
| | - Wenqian Zhang
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, Shanghai, China; Shanghai Institute of Immunology, Faculty of Basic Medicine, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, Shanghai, China
| | - Shihao Tian
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, Shanghai, China; Shanghai Institute of Immunology, Faculty of Basic Medicine, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, Shanghai, China
| | - Yan Zhang
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, Shanghai, China; Shanghai Institute of Immunology, Faculty of Basic Medicine, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, Shanghai, China
| | - Zhinan Yin
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai 519000, Guangdong, China; The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou 510632, Guangdong, China
| | - Gonghua Huang
- Shanghai Institute of Immunology, Faculty of Basic Medicine, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, Shanghai, China; Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan 523808, Guangdong, China
| | - Huihui Zhang
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, Shanghai, China; Shanghai Institute of Immunology, Faculty of Basic Medicine, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, Shanghai, China.
| | - Fubin Li
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, Shanghai, China; Shanghai Institute of Immunology, Faculty of Basic Medicine, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, Shanghai, China.
| |
Collapse
|
43
|
Mink S, Saely CH, Leiherer A, Reimann P, Frick M, Cadamuro J, Hitzl W, Drexel H, Fraunberger P. Antibody levels versus vaccination status in the outcome of older adults with COVID-19. JCI Insight 2024; 9:e183913. [PMID: 39435658 PMCID: PMC11529978 DOI: 10.1172/jci.insight.183913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 08/23/2024] [Indexed: 10/23/2024] Open
Abstract
BACKGROUNDDespite the currently prevailing, milder Omicron variant of COVID-19, older adults remain at elevated risk of hospital admission, critical illness, and death. Loss of efficacy of the immune system, including reduced strength, quality, and durability of antibody responses, may render generalized recommendations on booster vaccinations inadequate. There is a lack of data on the efficacy of antibody levels in older adults and on the utility of vaccination status versus antibody levels as a correlate of protection. It is further unclear whether antibody levels may be used to guide the timing of booster vaccinations in older adults.METHODSWe conducted a prospective multicenter cohort study comprising hospitalized patients with COVID-19. Anti-SARS-CoV-2 spike antibodies were measured on hospital admission. The primary endpoint was in-hospital mortality. Patients were stratified by age, antibody levels, and vaccination status. Multiple logistic regression and Cox regression analyses were conducted.RESULTSIn total, 785 older patients (≥60 years of age [a]) and 367 controls (<60a) were included. After adjusting for confounders, risk of mortality, ICU admission, endotracheal intubation, and oxygen administration was 4.9, 2.6, 6.5, and 2.3 times higher, respectively, if antibody levels were < 1,200 BAU/mL (aOR, 4.92 [95%CI, 2.59-9.34], P < 0.0001; aOR, 2.64 [95%CI, 1.52-4.62], P = 0.0006; aOR, 6.50 [95%CI, 1.48-28.47], P = 0.013; aOR, 2.34 [95%CI, 1.60-3.343], P < 0.0001). Older adults infected with the Omicron variant were approximately 6 times more likely to die if antibody levels were < 1,200 BAU/mL (aOR, 6.3 [95% CI, 2.43-16.40], P = 0.0002).CONCLUSIONAntibody levels were a stronger predictor of in-hospital mortality than vaccination status. Monitoring antibody levels may constitute a better and more direct approach for safeguarding older adults from adverse COVID-19 outcomes.
Collapse
Affiliation(s)
- Sylvia Mink
- Central Medical Laboratories, Feldkirch, Austria
- Private University in the Principality of Liechtenstein, Triesen, Principality of Liechtenstein
| | - Christoph H. Saely
- Private University in the Principality of Liechtenstein, Triesen, Principality of Liechtenstein
- VIVIT Institute and
| | - Andreas Leiherer
- Central Medical Laboratories, Feldkirch, Austria
- VIVIT Institute and
| | - Patrick Reimann
- Private University in the Principality of Liechtenstein, Triesen, Principality of Liechtenstein
- Department of Internal Medicine, Academic Teaching Hospital Feldkirch, Feldkirch, Austria
| | - Matthias Frick
- Department of Internal Medicine, Academic Teaching Hospital Feldkirch, Feldkirch, Austria
| | - Janne Cadamuro
- Department of Laboratory Medicine, Paracelsus Medical University Salzburg, Salzburg, Austria
| | - Wolfgang Hitzl
- Department of Research and Innovation, Team Biostatistics and Publication of Clinical Trials, Paracelsus, Medical University, Salzburg, Austria
| | - Heinz Drexel
- Private University in the Principality of Liechtenstein, Triesen, Principality of Liechtenstein
- VIVIT Institute and
- Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Peter Fraunberger
- Central Medical Laboratories, Feldkirch, Austria
- Private University in the Principality of Liechtenstein, Triesen, Principality of Liechtenstein
| |
Collapse
|
44
|
Jia Y, Luan S, Huang S, Zhang W, Li M, Xu T, Fei Y. Prevalence and clinical significance of anti-SSA antibody in the Chinese health screening population. Clin Exp Immunol 2024; 218:169-176. [PMID: 39136066 PMCID: PMC11482497 DOI: 10.1093/cei/uxae073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 07/06/2024] [Accepted: 08/12/2024] [Indexed: 10/18/2024] Open
Abstract
Anti-Sjögren's syndrome type A (anti-SSA) antibodies are non-organ-specific autoantibodies highly prevalent in various autoimmune diseases. This study primarily investigated the prevalence of anti-SSA antibodies in the health screening population. Additionally, we explored the clinical features of the anti-SSA antibody-positive population and evaluated the development of connective tissue diseases (CTD) over the years in individuals with anti-SSA antibodies for whom follow-up was available. A total of, 64 045 individuals without a history of CTD from 2013 to 2022 who visited Peking Union Medical College Hospital for health screening were screened for autoimmune antibodies: 1.7% (1091/64 045) of the Chinese health screening population were positive for anti-SSA antibodies, with a prevalence of 0.9% (290/33 829) in men and 2.7% (801/30 216) in women. Compared with matched autoantibody-negative controls, anti-SSA antibody-positive individuals had higher levels of serological abnormalities, including erythrocyte sedimentation rate (ESR) [10 (6-15) mm/h vs. 7 (4-12) mm/h, P < 0.0001], rheumatoid factor (RF) [7.15 (4.30-16.90) IU/ml vs. 5.00 (3.20-7.90) IU/ml, P < 0.0001], and immunoglobulin G [13.09 (11.20-15.45) g/L vs. 11.34 (9.85-13.18) g/L, P < 0.0001], and lower levels of white blood cells (WBC; 5.49 ± 1.50 × 109/L vs. 5.82 ± 1.49 × 109/L, P < 0.0001). Additionally, they had a higher proportion of coexisting thyroid autoantibodies, including anti-thyroid peroxidase antibodies (TPO-Ab) (17.1% vs. 11.3%, P < 0.0001) and anti-thyroglobulin antibodies (Tg-Ab) (17.8% vs. 11.0%, P < 0.0001). Among the 381 subjects who were anti-SSA positive and followed up for a median of 4.6 years, 146 (38.3%) individuals developed CTD, including 68 (17.8%) cases of primary Sjögren's syndrome (pSS), 10 (2.6%) cases of rheumatoid arthritis (RA), 5 (1.3%) cases of systemic lupus erythematosus (SLE), 4 (1.0%) cases of secondary Sjögren's syndrome (sSS), and 59 (15.5%) cases of undifferentiated connective tissue disease (UCTD). In all, 235 (61.7%) individuals did not develop CTD over a median time of 5.9 (2.9-8.1) years after the earliest autoantibody detection. Elevated ESR (>20 mm/h), RF positivity (>20 IU/ml), and female gender were identified as independent risk factors for CTD among the anti-SSA antibody-positive individuals. Anti-SSA antibodies were found in 17 among approximately 1000 individuals without a history of autoimmune diseases. Anti-SSA antibody-positive individuals are advised to periodically monitor thyroid function. Elevated ESR (>20 mm/h), female gender, and RF positivity may delineate a high-risk cohort for CTDs.
Collapse
Affiliation(s)
- Yimeng Jia
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
- National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), The Ministry of Education Key Laboratory, Beijing, China
| | - Shuqi Luan
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
- National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), The Ministry of Education Key Laboratory, Beijing, China
| | - Sicheng Huang
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
- National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), The Ministry of Education Key Laboratory, Beijing, China
| | - Wen Zhang
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
- National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), The Ministry of Education Key Laboratory, Beijing, China
| | - Mengtao Li
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
- National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), The Ministry of Education Key Laboratory, Beijing, China
| | - Tengda Xu
- Department of Health and Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Yunyun Fei
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
- National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), The Ministry of Education Key Laboratory, Beijing, China
- Department of Health and Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| |
Collapse
|
45
|
Wrona MV, Ghosh R, Coll K, Chun C, Yousefzadeh MJ. The 3 I's of immunity and aging: immunosenescence, inflammaging, and immune resilience. FRONTIERS IN AGING 2024; 5:1490302. [PMID: 39478807 PMCID: PMC11521913 DOI: 10.3389/fragi.2024.1490302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 09/23/2024] [Indexed: 11/02/2024]
Abstract
As we age, our immune system's ability to effectively respond to pathogens declines, a phenomenon known as immunosenescence. This age-related deterioration affects both innate and adaptive immunity, compromising immune function and leading to chronic inflammation that accelerates aging. Immunosenescence is characterized by alterations in immune cell populations and impaired functionality, resulting in increased susceptibility to infections, diminished vaccine efficacy, and higher prevalence of age-related diseases. Chronic low-grade inflammation further exacerbates these issues, contributing to a decline in overall health and resilience. This review delves into the characteristics of immunosenescence and examines the various intrinsic and extrinsic factors contributing to immune aging and how the hallmarks of aging and cell fates can play a crucial role in this process. Additionally, it discusses the impact of sex, age, social determinants, and gut microbiota health on immune aging, illustrating the complex interplay of these factors in altering immune function. Furthermore, the concept of immune resilience is explored, focusing on the metrics for assessing immune health and identifying strategies to enhance immune function. These strategies include lifestyle interventions such as diet, regular physical activity, stress management, and the use of gerotherapeutics and other approaches. Understanding and mitigating the effects of immunosenescence are crucial for developing interventions that support robust immune responses in aged individuals.
Collapse
Affiliation(s)
- Marianna V. Wrona
- Columbia University in the City of New York, New York, NY, United States
| | - Rituparna Ghosh
- Columbia Center for Human Longevity, Columbia University Medical Center, New York, NY, United States
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY, United States
- Department of Medicine, Columbia University Medical Center, New York, NY, United States
| | - Kaitlyn Coll
- Florida International University, Miami, FL, United States
| | - Connor Chun
- Bronx High School of Science, New York, NY, United States
| | - Matthew J. Yousefzadeh
- Columbia University in the City of New York, New York, NY, United States
- Columbia Center for Human Longevity, Columbia University Medical Center, New York, NY, United States
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY, United States
- Department of Medicine, Columbia University Medical Center, New York, NY, United States
| |
Collapse
|
46
|
Moysidou E, Christodoulou M, Lioulios G, Stai S, Karamitsos T, Dimitroulas T, Fylaktou A, Stangou M. Lymphocytes Change Their Phenotype and Function in Systemic Lupus Erythematosus and Lupus Nephritis. Int J Mol Sci 2024; 25:10905. [PMID: 39456692 PMCID: PMC11508046 DOI: 10.3390/ijms252010905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 10/04/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
Systemic lupus erythematosus (SLE) is a complex autoimmune disease, characterized by considerable changes in peripheral lymphocyte structure and function, that plays a critical role in commencing and reviving the inflammatory and immune signaling pathways. In healthy individuals, B lymphocytes have a major role in guiding and directing defense mechanisms against pathogens. Certain changes in B lymphocyte phenotype, including alterations in surface and endosomal receptors, occur in the presence of SLE and lead to dysregulation of peripheral B lymphocyte subpopulations. Functional changes are characterized by loss of self-tolerance, intra- and extrafollicular activation, and increased cytokine and autoantibody production. T lymphocytes seem to have a supporting, rather than a leading, role in the disease pathogenesis. Substantial aberrations in peripheral T lymphocyte subsets are evident, and include a reduction of cytotoxic, regulatory, and advanced differentiated subtypes, together with an increase of activated and autoreactive forms and abnormalities in follicular T cells. Up-regulated subpopulations, such as central and effector memory T cells, produce pre-inflammatory cytokines, activate B lymphocytes, and stimulate cell signaling pathways. This review explores the pivotal roles of B and T lymphocytes in the pathogenesis of SLE and Lupus Nephritis, emphasizing the multifaceted mechanisms and interactions and their phenotypic and functional dysregulations.
Collapse
Affiliation(s)
- Eleni Moysidou
- School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (E.M.); (M.C.); (G.L.); (S.S.); (T.K.); (T.D.)
- 1st Department of Nephrology, Hippokration General Hospital, 54642 Thessaloniki, Greece
| | - Michalis Christodoulou
- School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (E.M.); (M.C.); (G.L.); (S.S.); (T.K.); (T.D.)
- 1st Department of Nephrology, Hippokration General Hospital, 54642 Thessaloniki, Greece
| | - Georgios Lioulios
- School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (E.M.); (M.C.); (G.L.); (S.S.); (T.K.); (T.D.)
- 1st Department of Nephrology, Hippokration General Hospital, 54642 Thessaloniki, Greece
| | - Stamatia Stai
- School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (E.M.); (M.C.); (G.L.); (S.S.); (T.K.); (T.D.)
- 1st Department of Nephrology, Hippokration General Hospital, 54642 Thessaloniki, Greece
| | - Theodoros Karamitsos
- School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (E.M.); (M.C.); (G.L.); (S.S.); (T.K.); (T.D.)
- 1st Department of Cardiology, AHEPA University Hospital, 54636 Thessaloniki, Greece
| | - Theodoros Dimitroulas
- School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (E.M.); (M.C.); (G.L.); (S.S.); (T.K.); (T.D.)
- 4th Department of Medicine, Hippokration General Hospital, 54642 Thessaloniki, Greece
| | - Asimina Fylaktou
- Department of Immunology, National Histocompatibility Center, Hippokration General Hospital, 54642 Thessaloniki, Greece;
| | - Maria Stangou
- School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (E.M.); (M.C.); (G.L.); (S.S.); (T.K.); (T.D.)
- 1st Department of Nephrology, Hippokration General Hospital, 54642 Thessaloniki, Greece
| |
Collapse
|
47
|
Urban BC, Gonçalves ANA, Loukov D, Passos FM, Reiné J, Gonzalez-Dias P, Solórzano C, Mitsi E, Nikolaou E, O'Connor D, Collins AM, Adler H, Pollard A, Rylance J, Gordon SB, Jochems SP, Nakaya HI, Ferreira DM. Inflammation of the nasal mucosa is associated with susceptibility to experimental pneumococcal challenge in older adults. Mucosal Immunol 2024; 17:973-989. [PMID: 38950826 PMCID: PMC11464406 DOI: 10.1016/j.mucimm.2024.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/03/2024]
Abstract
Streptococcus pneumoniae colonization in the upper respiratory tract is linked to pneumococcal disease development, predominantly affecting young children and older adults. As the global population ages and comorbidities increase, there is a heightened concern about this infection. We investigated the immunological responses of older adults to pneumococcal-controlled human infection by analyzing the cellular composition and gene expression in the nasal mucosa. Our comparative analysis with data from a concurrent study in younger adults revealed distinct gene expression patterns in older individuals susceptible to colonization, highlighted by neutrophil activation and elevated levels of CXCL9 and CXCL10. Unlike younger adults challenged with pneumococcus, older adults did not show recruitment of monocytes into the nasal mucosa following nasal colonization. However, older adults who were protected from colonization showed increased degranulation of cluster of differentiation 8+ T cells, both before and after pneumococcal challenge. These findings suggest age-associated cellular changes, in particular enhanced mucosal inflammation, that may predispose older adults to pneumococcal colonization.
Collapse
Affiliation(s)
- Britta C Urban
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK; Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK; NIHR Oxford Biomedical Research Centre, Oxford, UK.
| | - André N A Gonçalves
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK; Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK; NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Dessi Loukov
- Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Fernando M Passos
- Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Jesús Reiné
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK; Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK; NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Patrícia Gonzalez-Dias
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK; Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK; NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Carla Solórzano
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK; Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK; NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Elena Mitsi
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK; Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK; NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Elissavet Nikolaou
- Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK; Infection, Immunity and Global Health, Murdoch Children's Research Institute, Parkville, Victoria, Australia; Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Victoria, Australia
| | - Daniel O'Connor
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK; NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Andrea M Collins
- Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK; University Hospital Aintree, Liverpool University Hospitals Trust, Liverpool, UK
| | - Hugh Adler
- Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Andrew Pollard
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK; NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Jamie Rylance
- Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Stephen B Gordon
- Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK; Malawi-Liverpool-Wellcome Clinical Research Programme, Blantyre, Malawi
| | - Simon P Jochems
- Leiden University Centre for Infectious Diseases, Leiden University Medical Centre, Leiden, The Netherlands
| | - Helder I Nakaya
- Hospital Israelita Albert Einstein, São Paulo, Brazil; Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Daniela M Ferreira
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK; Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK; NIHR Oxford Biomedical Research Centre, Oxford, UK.
| |
Collapse
|
48
|
Pérez RF, Jiménez-Martínez V, Martín-Subero JI. Lymphoma lurks within aged B cells. NATURE AGING 2024; 4:1343-1345. [PMID: 39349623 DOI: 10.1038/s43587-024-00714-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2024]
Affiliation(s)
- Raúl F Pérez
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Víctor Jiménez-Martínez
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- University of Barcelona, Barcelona, Spain
| | - José I Martín-Subero
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.
- University of Barcelona, Barcelona, Spain.
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.
| |
Collapse
|
49
|
Yolmo P, Rahimi S, Chenard S, Conseil G, Jenkins D, Sachdeva K, Emon I, Hamilton J, Xu M, Rangachari M, Michaud E, Mansure JJ, Kassouf W, Berman DM, Siemens DR, Koti M. Atypical B Cells Promote Cancer Progression and Poor Response to Bacillus Calmette-Guérin in Non-Muscle Invasive Bladder Cancer. Cancer Immunol Res 2024; 12:1320-1339. [PMID: 38916567 PMCID: PMC11443217 DOI: 10.1158/2326-6066.cir-23-1114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 04/03/2024] [Accepted: 06/21/2024] [Indexed: 06/26/2024]
Abstract
Poor response to Bacillus Calmette-Guérin (BCG) immunotherapy remains a major barrier in the management of patients with non-muscle invasive bladder cancer (NMIBC). Multiple factors are associated with poor outcomes, including biological aging and female sex. More recently, it has emerged that a B-cell-infiltrated pretreatment immune microenvironment of NMIBC tumors can influence the response to intravesically administered BCG. The mechanisms underlying the roles of B cells in NMIBC are poorly understood. Here, we show that B-cell-dominant tertiary lymphoid structures (TLSs), a hallmark feature of the chronic mucosal immune response, are abundant and located close to the epithelial compartment in pretreatment tumors from BCG non-responders. Digital spatial proteomic profiling of whole tumor sections from male and female patients with NMIBC who underwent treatment with intravesical BCG, revealed higher expression of immune exhaustion-associated proteins within the tumor-adjacent TLSs in both responders and non-responders. Chronic local inflammation, induced by the N-butyl-N-(4-hydroxybutyl) nitrosamine carcinogen, led to TLS formation with recruitment and differentiation of the immunosuppressive atypical B-cell (ABC) subset within the bladder microenvironment, predominantly in aging female mice compared to their male counterparts. Depletion of ABCs simultaneous to BCG treatment delayed cancer progression in female mice. Our findings provide evidence indicating a role for ABCs in BCG response and will inform future development of therapies targeting the B-cell-exhaustion axis.
Collapse
Affiliation(s)
- Priyanka Yolmo
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Canada
- Sinclair Cancer Research Institute, Queen's University, Kingston, Canada
| | - Sadaf Rahimi
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Canada
- Sinclair Cancer Research Institute, Queen's University, Kingston, Canada
| | - Stephen Chenard
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Canada
- Sinclair Cancer Research Institute, Queen's University, Kingston, Canada
| | - Gwenaëlle Conseil
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Canada
- Sinclair Cancer Research Institute, Queen's University, Kingston, Canada
| | - Danielle Jenkins
- Pathology and Molecular Medicine, Queen's University, Kingston, Canada
| | - Kartik Sachdeva
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Canada
- Sinclair Cancer Research Institute, Queen's University, Kingston, Canada
| | - Isaac Emon
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Canada
- Sinclair Cancer Research Institute, Queen's University, Kingston, Canada
| | - Jake Hamilton
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Canada
| | - Minqi Xu
- Pathology and Molecular Medicine, Queen's University, Kingston, Canada
| | - Manu Rangachari
- Department of Molecular Medicine, Faculty of Medicine, Université Laval, Quebec City, Canada
| | - Eva Michaud
- Division of Urology, Department of Surgery, McGill University Health Center, Montreal, Canada
| | - Jose J Mansure
- Division of Urology, Department of Surgery, McGill University Health Center, Montreal, Canada
| | - Wassim Kassouf
- Division of Urology, Department of Surgery, McGill University Health Center, Montreal, Canada
| | - David M Berman
- Sinclair Cancer Research Institute, Queen's University, Kingston, Canada
- Pathology and Molecular Medicine, Queen's University, Kingston, Canada
| | - David R Siemens
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Canada
- Sinclair Cancer Research Institute, Queen's University, Kingston, Canada
- Department of Urology, Queen's University, Kingston, Canada
| | - Madhuri Koti
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Canada
- Sinclair Cancer Research Institute, Queen's University, Kingston, Canada
- Department of Urology, Queen's University, Kingston, Canada
| |
Collapse
|
50
|
Qi Y, Yan Y, Tang D, Han J, Zhu X, Cui M, Wu H, Tao Y, Fan F. Inflammatory and Immune Mechanisms in COPD: Current Status and Therapeutic Prospects. J Inflamm Res 2024; 17:6603-6618. [PMID: 39318994 PMCID: PMC11421452 DOI: 10.2147/jir.s478568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 09/12/2024] [Indexed: 09/26/2024] Open
Abstract
Background Chronic obstructive pulmonary disease (COPD) currently ranks among the top three causes of mortality worldwide, presenting as a prevalent and complex respiratory ailment. Ongoing research has underscored the pivotal role of immune function in the onset and progression of COPD. The immune response in COPD patients exhibits abnormalities, characterized by diminished anti-infection capacity due to immune senescence, heightened activation of neutrophils and macrophages, T cell infiltration, and aberrant B cell activity, collectively contributing to airway inflammation and lung injury in COPD. Objective This review aimed to explore the pivotal role of the immune system in COPD and its therapeutic potential. Methods We conducted a review of immunity and COPD published within the past decade in the Web of Science and PubMed databases, sorting through and summarizing relevant literature. Results This article examines the pivotal roles of the immune system in COPD. Understanding the specific functions and interactions of these immune cells could facilitate the development of novel therapeutic strategies and interventions aimed at controlling inflammation, enhancing immune function, and mitigating the impact of respiratory infections in COPD patients.
Collapse
Affiliation(s)
- Yanan Qi
- School of Pharmacy, Bengbu Medical University, Bengbu, People’s Republic of China
- Anhui Engineering Technology Research Center of Biochemical Pharmaceutical, Bengbu, People’s Republic of China
| | - Yuanyuan Yan
- School of Pharmacy, Bengbu Medical University, Bengbu, People’s Republic of China
- Anhui Engineering Technology Research Center of Biochemical Pharmaceutical, Bengbu, People’s Republic of China
| | - Dawei Tang
- School of Pharmacy, Bengbu Medical University, Bengbu, People’s Republic of China
- Anhui Engineering Technology Research Center of Biochemical Pharmaceutical, Bengbu, People’s Republic of China
| | - Jingjing Han
- School of Pharmacy, Bengbu Medical University, Bengbu, People’s Republic of China
- Anhui Engineering Technology Research Center of Biochemical Pharmaceutical, Bengbu, People’s Republic of China
| | - Xinyi Zhu
- School of Pharmacy, Bengbu Medical University, Bengbu, People’s Republic of China
- Anhui Engineering Technology Research Center of Biochemical Pharmaceutical, Bengbu, People’s Republic of China
| | - Mengting Cui
- School of Pharmacy, Bengbu Medical University, Bengbu, People’s Republic of China
- Anhui Engineering Technology Research Center of Biochemical Pharmaceutical, Bengbu, People’s Republic of China
| | - Hongyan Wu
- Institute of Biomedical Technology, Jiangsu Vocational College of Medicine, Yancheng, Jiangsu, 224005, People’s Republic of China
| | - Yu Tao
- School of Pharmacy, Bengbu Medical University, Bengbu, People’s Republic of China
- Anhui Engineering Technology Research Center of Biochemical Pharmaceutical, Bengbu, People’s Republic of China
| | - Fangtian Fan
- School of Pharmacy, Bengbu Medical University, Bengbu, People’s Republic of China
- Anhui Engineering Technology Research Center of Biochemical Pharmaceutical, Bengbu, People’s Republic of China
| |
Collapse
|