1
|
Chen D, Yang YY, Yang Y. Astrocyte Loss Augments Body Weight Through Reduction in Adipose Sympathetic Outflows. Glia 2025; 73:1068-1076. [PMID: 39780483 PMCID: PMC11922664 DOI: 10.1002/glia.24673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 12/24/2024] [Accepted: 12/30/2024] [Indexed: 01/11/2025]
Abstract
Emerging evidence indicates that astrocytes modulate energy metabolism and homeostasis. However, one important but poorly understood element is the necessity of astrocytes in the control of body weight. Here, we apply viral vector-assisted brain-region selective loss of astrocytes to define physiological roles played by astrocytes in the arcuate nucleus of the hypothalamus (ARH) and to elucidate the involved mechanism. We find that astrocyte loss potently augments body weight in adult mice fed chow or high-fat diet. Mechanistically, we find that the loss of astrocytes reduces adipose tissue norepinephrine (NE) contents and chemogenetic stimulation of adipose tissue sympathetic inputs reverses the astrocyte loss-induced increase in body weight. Collectively, our findings in this study suggest a crucial physiological role of astrocytes in preventing diet-induced energy surfeit and obesity by modulating adipose tissue lipid metabolism through central sympathetic outflows to adipose tissues.
Collapse
Affiliation(s)
- Dan Chen
- Department of Medicine Division of Endocrinology, Albert Einstein College of Medicine, Bronx, New York, USA
| | | | - Yunlei Yang
- Department of Medicine Division of Endocrinology, Albert Einstein College of Medicine, Bronx, New York, USA
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, USA
- Einstein-Mount Sinai Diabetes Research Center, Albert Einstein College of Medicine, Bronx, New York, USA
- The Fleischer Institute for Diabetes and Metabolism, Albert Einstein College of Medicine, Bronx, New York, USA
| |
Collapse
|
2
|
Yu X, Dang L, Dhar A, Zhang R, Xu F, Spasojevic I, Sheng H, Yang W. Activation of ATF6 Signaling Confers Long-Term Beneficial Effects in Young and Aged Mice After Permanent Stroke. Transl Stroke Res 2025:10.1007/s12975-025-01351-3. [PMID: 40259100 DOI: 10.1007/s12975-025-01351-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 03/29/2025] [Accepted: 04/14/2025] [Indexed: 04/23/2025]
Abstract
Ischemic stroke disrupts protein homeostasis in brain cells, causes endoplasmic reticulum (ER) stress, and consequently activates the unfolded protein response (UPR). The primary function of UPR activation is to help cells restore ER function, thereby promoting cell survival. A major adaptive UPR branch is mediated by activating transcription factor 6 (ATF6). We previously provided experimental evidence that activation of ATF6 signaling in neurons improves short-term outcome after both transient and permanent stroke. However, the effect of ATF6 activation in astrocytes on stroke outcome remains undetermined, and critically, the long-term therapeutic potential of targeting this UPR branch in permanent stroke has not been evaluated. The current study aimed to address these two critical unknowns. First, using conditional knock-in mice in which functional short-form ATF6 (sATF6) is specifically expressed in astrocytes, we demonstrated that astrocytic ATF6 activation modestly improved outcome after permanent stroke. Then, our pharmacokinetic analysis indicated that compound AA147, an ATF6-specific activator, can cross the blood-brain barrier. Lastly, we found that post-stroke treatment with AA147 had no significant beneficial effect on short-term outcome, but improved long-term functional recovery in both young and aged mice after permanent stroke. Together with previous findings, our data support the notion that the ATF6 pathway is a promising target for stroke therapy.
Collapse
Affiliation(s)
- Xinyuan Yu
- Multidisciplinary Brain Protection Program (MBPP), Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA
| | - Lihong Dang
- Multidisciplinary Brain Protection Program (MBPP), Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA
| | - Ashis Dhar
- Multidisciplinary Brain Protection Program (MBPP), Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA
| | - Ran Zhang
- Multidisciplinary Brain Protection Program (MBPP), Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA
| | - Feng Xu
- Multidisciplinary Brain Protection Program (MBPP), Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA
| | - Ivan Spasojevic
- Department of Medicine - Oncology, Duke University Medical Center, Durham, NC, USA
- PK/PD Core Laboratory, Duke Cancer Institute, Duke School of Medicine, Durham, NC, USA
| | - Huaxin Sheng
- Multidisciplinary Brain Protection Program (MBPP), Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA
| | - Wei Yang
- Multidisciplinary Brain Protection Program (MBPP), Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA.
- Department of Neurology, Duke University Medical Center, Durham, NC, USA.
| |
Collapse
|
3
|
Wang C, He T, Qin J, Jiao J, Ji F. The roles of immune factors in neurodevelopment. Front Cell Neurosci 2025; 19:1451889. [PMID: 40276707 PMCID: PMC12018394 DOI: 10.3389/fncel.2025.1451889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 03/28/2025] [Indexed: 04/26/2025] Open
Abstract
The development of the nervous system is a highly complex process orchestrated by a multitude of factors, including various immune elements. These immune components play a dual role, not only regulating the immune response but also actively influencing brain development under both physiological and pathological conditions. The brain's immune barrier includes microglia in the brain parenchyma, which act as resident macrophages, astrocytes that support neuronal function and contribute to the inflammatory response, as well as circulating immune cells that reside at the brain's borders, including the choroid plexus, meninges, and perivascular spaces. Cytokines-soluble signaling molecules released by immune cells-play a crucial role in mediating communication between immune cells and the developing nervous system. Cytokines regulate processes such as neurogenesis, synaptic pruning, and inflammation, helping to shape the neural environment. Dysregulation of these immune cells, astrocytes, or cytokine signaling can lead to alterations in neurodevelopment, potentially contributing to neurodevelopmental abnormalities. This article reviews the central role of microglia, astrocytes, cytokines, and other immune factors in neurodevelopment, and explores how neuroinflammation can lead to the onset of neurodevelopmental disorders, shedding new light on their pathogenesis.
Collapse
Affiliation(s)
- Chong Wang
- State Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Tingting He
- State Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jie Qin
- State Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Jianwei Jiao
- State Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Fen Ji
- State Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| |
Collapse
|
4
|
Fang C, Zhang X, Yang L, Sun L, Lu Y, Liu Y, Guo J, Wang M, Tan Y, Zhang J, Gao X, Zhu L, Liu G, Ren M, Xiao J, Zhang F, Ma S, Zhao R, Mei X, Qi D. Transcriptomic and morphologic vascular aberrations underlying FCDIIb etiology. Nat Commun 2025; 16:3320. [PMID: 40199880 PMCID: PMC11978774 DOI: 10.1038/s41467-025-58535-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 03/25/2025] [Indexed: 04/10/2025] Open
Abstract
Focal cortical dysplasia type II (FCDII) is a major cause of drug-resistant epilepsy, but genetic factors explain only some cases, suggesting other mechanisms. In this study, we conduct a molecular analysis of brain lesions and adjacent areas in FCDIIb patients. By analyzing over 217,506 single-nucleus transcriptional profiles from 15 individuals, we find significant changes in smooth muscle cells (SMCs) and astrocytes. We identify abnormal vascular malformations and a unique type of SMC that we call "Firework cells", which migrate from blood vessels into the brain parenchyma and associate with VIM+ cells. These abnormalities create localized ischemic-hypoxic (I/H) microenvironments, as confirmed by clinical data, further impairing astrocyte function, activating the HIF-1α/mTOR/S6 pathway, and causing neuronal loss. Using zebrafish models, we demonstrate that vascular abnormalities resulting in I/H environments promote seizures. Our results highlight vascular malformations as a factor in FCDIIb pathogenesis, suggesting potential therapeutic avenues.
Collapse
Affiliation(s)
- Chuantao Fang
- Center for Clinical Research and Translational Medicine, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, China
- Institute of Pediatrics, Children's Hospital of Fudan University, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Obstetrics and Gynecology Hospital of Fudan University and Department of Neurology, Huashan Hospital of Fudan University, Fudan University, Shanghai, China
- Shanghai Tenth People's Hospital, Institute for Infectious Diseases and Vaccine Development, Tongji University School of Medicine, Shanghai, China
| | - Xiaodan Zhang
- Institute of Pediatrics, Children's Hospital of Fudan University, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Obstetrics and Gynecology Hospital of Fudan University and Department of Neurology, Huashan Hospital of Fudan University, Fudan University, Shanghai, China
| | - Lin Yang
- Institute of Pediatrics, Children's Hospital of Fudan University, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Obstetrics and Gynecology Hospital of Fudan University and Department of Neurology, Huashan Hospital of Fudan University, Fudan University, Shanghai, China
| | - Licheng Sun
- Center for Clinical Research and Translational Medicine, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yujia Lu
- Center for Clinical Research and Translational Medicine, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yi Liu
- Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Instituto de Agroecoloxía e Alimentación (IAA) - CITEXVI, Vigo, Spain
| | - Jingjing Guo
- Center for Clinical Research and Translational Medicine, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Min Wang
- Institute of Pediatrics, Children's Hospital of Fudan University, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Obstetrics and Gynecology Hospital of Fudan University and Department of Neurology, Huashan Hospital of Fudan University, Fudan University, Shanghai, China
| | - Yanfeng Tan
- Institute of Pediatrics, Children's Hospital of Fudan University, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Obstetrics and Gynecology Hospital of Fudan University and Department of Neurology, Huashan Hospital of Fudan University, Fudan University, Shanghai, China
| | - Jinsen Zhang
- Institute of Pediatrics, Children's Hospital of Fudan University, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Obstetrics and Gynecology Hospital of Fudan University and Department of Neurology, Huashan Hospital of Fudan University, Fudan University, Shanghai, China
| | - Xin Gao
- Shanghai Universal Medical Imaging Diagnostic Center, Shanghai, China
| | - Li Zhu
- Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Guoping Liu
- Institute of Pediatrics, Children's Hospital of Fudan University, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Obstetrics and Gynecology Hospital of Fudan University and Department of Neurology, Huashan Hospital of Fudan University, Fudan University, Shanghai, China
| | - Maozhi Ren
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu National Agricultural Science and Technology Center, Chengdu, China
| | - Jianbo Xiao
- Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Instituto de Agroecoloxía e Alimentación (IAA) - CITEXVI, Vigo, Spain
| | - Fayong Zhang
- Institute of Pediatrics, Children's Hospital of Fudan University, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Obstetrics and Gynecology Hospital of Fudan University and Department of Neurology, Huashan Hospital of Fudan University, Fudan University, Shanghai, China
| | - Shaojie Ma
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Rui Zhao
- Institute of Pediatrics, Children's Hospital of Fudan University, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Obstetrics and Gynecology Hospital of Fudan University and Department of Neurology, Huashan Hospital of Fudan University, Fudan University, Shanghai, China.
- Department of Neurosurgery, Children's Hospital of Shanghai, Shanghai, China.
- Department of Neurosurgery, Hainan Women and Children's Medical Center, Haikou, China.
| | - Xinyu Mei
- Center for Clinical Research and Translational Medicine, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, China.
| | - Dashi Qi
- Center for Clinical Research and Translational Medicine, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, China.
- Institute of Pediatrics, Children's Hospital of Fudan University, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Obstetrics and Gynecology Hospital of Fudan University and Department of Neurology, Huashan Hospital of Fudan University, Fudan University, Shanghai, China.
| |
Collapse
|
5
|
Tao X, Chen H, Zhu Z, Ren T, Zhen H, Sun X, Song Y, Xu X, Song Z, Liu J. Astrocyte-conditional knockout of MOB2 inhibits the phenotypic conversion of reactive astrocytes from A1 to A2 following spinal cord injury in mice. Int J Biol Macromol 2025; 300:140289. [PMID: 39863205 DOI: 10.1016/j.ijbiomac.2025.140289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 01/22/2025] [Accepted: 01/22/2025] [Indexed: 01/27/2025]
Abstract
After spinal cord injury (SCI), reactive astrocytes in the injured area are triggered after spinal cord injury (SCI) and to polarize into A1 astrocytes with a proinflammatory phenotype or A2 astrocytes with an anti-inflammatory phenotype. Monopolar spindle binder 2 (MOB2) induces astrocyte stellation, maintains cell homeostasis, and promotes neurite outgrowth; however, its role in the phenotypic transformation of reactive astrocytes remains unclear. Here, we confirmed for the first time that MOB2 is associated with A1/A2 phenotypic switching in reactive astrocytes following SCI in mice. MOB2 modulated A1/A2 transformation in a primary astrocyte reactive cell model. Therefore, we constructed MOB2 conditional knockout mice (MOB2GFAP-CKO) and discovered that conditional knockout of MOB2 inhibited the conversion of reactive astrocytes from A1 to A2 and hindered spinal cord function recovery. Mechanistically, MOB2 increased the activation of PI3K-AKT signaling to promote A1/A2 transformation in vitro, whereas sc79 (an AKT activator) reversed the subtype transformation of reactive astrocytes and improved functional recovery in MOB2GFAP-CKO mice after SCI. Taken together, study provides the first insights into how MOB2 acts as a novel regulator to promote the conversion this of the reactive astrocyte phenotype from A1 to A2, showing great potential for the treatment of SCI.
Collapse
Affiliation(s)
- Xin Tao
- Department of Spinal Surgery, The Third Affiliated Hospital of Soochow University, Changzhou 213000, Jiangsu, People's Republic of China; Department of Orthopedics, The People's Hospital of Liyang, Liyang 213300, Jiangsu, People's Republic of China
| | - Haining Chen
- Department of Orthopedics, The First Affiliated Hospital of Jiangsu University, Zhenjiang 212000, Jiangsu, People's Republic of China
| | - Zhenghuan Zhu
- Department of Orthopedics, Changzhou Maternal and Child Health Care Hospital, Changzhou 213000, Jiangsu, People's Republic of China
| | - Tianran Ren
- Department of Spinal Surgery, The Third Affiliated Hospital of Soochow University, Changzhou 213000, Jiangsu, People's Republic of China
| | - Hongming Zhen
- Department of Spinal Surgery, The Third Affiliated Hospital of Soochow University, Changzhou 213000, Jiangsu, People's Republic of China
| | - Xiaoliang Sun
- Department of Orthopedics, Changzhou Maternal and Child Health Care Hospital, Changzhou 213000, Jiangsu, People's Republic of China
| | - Yu Song
- Department of Spinal Surgery, The Third Affiliated Hospital of Soochow University, Changzhou 213000, Jiangsu, People's Republic of China
| | - Xu Xu
- Department of Spinal Surgery, The Third Affiliated Hospital of Soochow University, Changzhou 213000, Jiangsu, People's Republic of China
| | - Zhiwen Song
- Department of Spinal Surgery, The Third Affiliated Hospital of Soochow University, Changzhou 213000, Jiangsu, People's Republic of China.
| | - Jinbo Liu
- Department of Spinal Surgery, The Third Affiliated Hospital of Soochow University, Changzhou 213000, Jiangsu, People's Republic of China.
| |
Collapse
|
6
|
Manning A, Mendelson BZ, Bender PTR, Bainer K, Ruby R, Shifflett VR, Dariano DF, Webb BA, Geldenhuys WJ, Anderson CT. The Astrocytic Zinc Transporter ZIP12 Is a Synaptic Protein That Contributes to Synaptic Zinc Levels in the Mouse Auditory Cortex. J Neurosci 2025; 45:e2067242025. [PMID: 39809542 PMCID: PMC11949477 DOI: 10.1523/jneurosci.2067-24.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/10/2024] [Accepted: 01/06/2025] [Indexed: 01/16/2025] Open
Abstract
Synaptically released zinc is a neuronal signaling system that arises from the actions of the presynaptic vesicular zinc transporter protein zinc transporter 3 (ZnT3). Mechanisms that regulate the actions of zinc at synapses are of great importance for many aspects of synaptic signaling in the brain. Here, we identify the astrocytic zinc transporter protein ZIP12 as a candidate mechanism that contributes to zinc clearance at cortical synapses. We identify small-molecule compounds that antagonize the function of ZIP12 in heterologous expression systems, and we use one of these compounds, ZIP12 modulator 8, to increase the concentration of ZnT3-dependent zinc at synapses in the brain of male and female mice to inhibit the activity of neuronal AMPA and NMDA glutamate receptors. These results identify a cellular mechanism and provide a pharmacological toolbox to target the molecular machinery that supports the actions of synaptic zinc in the brain.
Collapse
Affiliation(s)
- Abbey Manning
- Departments of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University School of Medicine, Morgantown, West Virginia 26506
| | - Benjamin Z Mendelson
- Departments of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University School of Medicine, Morgantown, West Virginia 26506
| | - Philip T R Bender
- Departments of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University School of Medicine, Morgantown, West Virginia 26506
| | - Kaitlin Bainer
- Departments of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University School of Medicine, Morgantown, West Virginia 26506
| | - Rayli Ruby
- Departments of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University School of Medicine, Morgantown, West Virginia 26506
| | - Victoria R Shifflett
- Departments of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University School of Medicine, Morgantown, West Virginia 26506
| | - Donald F Dariano
- Biochemistry and Molecular Medicine, West Virginia University School of Medicine, Morgantown, West Virginia 26506
| | - Bradley A Webb
- Biochemistry and Molecular Medicine, West Virginia University School of Medicine, Morgantown, West Virginia 26506
| | - Werner J Geldenhuys
- Departments of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University School of Medicine, Morgantown, West Virginia 26506
- Department of Pharmaceutical Sciences, West Virginia University School of Pharmacy, Morgantown, West Virginia 26506
| | - Charles T Anderson
- Departments of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University School of Medicine, Morgantown, West Virginia 26506
| |
Collapse
|
7
|
Hasel P, Cooper ML, Marchildon AE, Rufen-Blanchette U, Kim RD, Ma TC, Groh AMR, Hill EJ, Lewis EM, Januszewski M, Light SEW, Smith CJ, Stratton JA, Sloan SA, Kang UJ, Chao MV, Liddelow SA. Defining the molecular identity and morphology of glia limitans superficialis astrocytes in vertebrates. Cell Rep 2025; 44:115344. [PMID: 39982817 DOI: 10.1016/j.celrep.2025.115344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 07/30/2024] [Accepted: 02/01/2025] [Indexed: 02/23/2025] Open
Abstract
Astrocytes are a highly abundant glial cell type and perform critical homeostatic functions in the central nervous system. Like neurons, astrocytes have many discrete heterogeneous subtypes. The subtype identity and functions are, at least in part, associated with their anatomical location and can be highly restricted to strategically important anatomical domains. Here, we report that astrocytes forming the glia limitans superficialis, the outermost border of the brain and spinal cord, are a highly specialized astrocyte subtype and can be identified by a single marker: myocilin (Myoc). We show that glia limitans superficialis astrocytes cover the entire brain and spinal cord surface, exhibit an atypical morphology, and are evolutionarily conserved from zebrafish, rodents, and non-human primates to humans. Identification of this highly specialized astrocyte subtype will advance our understanding of CNS homeostasis and potentially be targeted for therapeutic intervention to combat peripheral inflammatory effects on the CNS.
Collapse
Affiliation(s)
- Philip Hasel
- Institute for Translational Neuroscience, NYU Grossman School of Medicine, New York, NY, USA; UK Dementia Research Institute at the University of Edinburgh, Edinburgh, UK; Centre for Discovery Brain Sciences, School of Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, UK.
| | - Melissa L Cooper
- Institute for Translational Neuroscience, NYU Grossman School of Medicine, New York, NY, USA
| | - Anne E Marchildon
- Institute for Translational Neuroscience, NYU Grossman School of Medicine, New York, NY, USA
| | - Uriel Rufen-Blanchette
- Institute for Translational Neuroscience, NYU Grossman School of Medicine, New York, NY, USA
| | - Rachel D Kim
- Institute for Translational Neuroscience, NYU Grossman School of Medicine, New York, NY, USA
| | - Thong C Ma
- Fresco Institute for Parkinson's and Movement Disorders, Department of Neurology, NYU Grossman School of Medicine, New York, NY, USA; Parekh Center for Interdisciplinary Neurology, NYU Grossman School of Medicine, New York, NY, USA; Department of Neuroscience, NYU Grossman School of Medicine, New York, NY, USA
| | - Adam M R Groh
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montréal, QC, Canada
| | - Emily J Hill
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Eleanor M Lewis
- UK Dementia Research Institute at the University of Edinburgh, Edinburgh, UK; Centre for Discovery Brain Sciences, School of Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, UK
| | | | - Sarah E W Light
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA; Center for Stem Cells and Regenerative Medicine, University of Notre Dame, Notre Dame, IN, USA
| | - Cody J Smith
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA; Center for Stem Cells and Regenerative Medicine, University of Notre Dame, Notre Dame, IN, USA
| | - Jo Anne Stratton
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montréal, QC, Canada
| | - Steven A Sloan
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Un Jung Kang
- Institute for Translational Neuroscience, NYU Grossman School of Medicine, New York, NY, USA; Fresco Institute for Parkinson's and Movement Disorders, Department of Neurology, NYU Grossman School of Medicine, New York, NY, USA; Parekh Center for Interdisciplinary Neurology, NYU Grossman School of Medicine, New York, NY, USA; Department of Neuroscience, NYU Grossman School of Medicine, New York, NY, USA
| | - Moses V Chao
- Institute for Translational Neuroscience, NYU Grossman School of Medicine, New York, NY, USA; Department of Neuroscience, NYU Grossman School of Medicine, New York, NY, USA; Department of Cell Biology, NYU Grossman School of Medicine, New York, NY, USA; Department of Psychiatry, NYU Grossman School of Medicine, New York, NY, USA
| | - Shane A Liddelow
- Institute for Translational Neuroscience, NYU Grossman School of Medicine, New York, NY, USA; Parekh Center for Interdisciplinary Neurology, NYU Grossman School of Medicine, New York, NY, USA; Department of Neuroscience, NYU Grossman School of Medicine, New York, NY, USA; Department of Ophthalmology, NYU Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
8
|
Anding A, Ren B, Padmashri R, Burkovetskaya M, Dunaevsky A. Activity of human-specific Interlaminar Astrocytes in a Chimeric Mouse Model of Fragile X Syndrome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.26.640426. [PMID: 40060700 PMCID: PMC11888414 DOI: 10.1101/2025.02.26.640426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/15/2025]
Abstract
Astrocytes, a type of glial cells, have multiple roles in regulating neuronal development and homeostasis. In addition to the typical mammalian astrocytes, in the primate cortex interlaminar astrocytes are located in the superficial layer and project long processes traversing multiple layers of the cerebral cortex. Previously, we described a human stem cell based chimeric mouse model where interlaminar astrocytes develop. Here, we utilized this model to study the calcium signaling properties of interlaminar astrocytes. To determine how interlaminar astrocytes could contribute to neurodevelopmental disorders, we generated a chimeric mouse model for Fragile X syndrome. We report that FXS interlaminar astrocytes exhibit hyperexcitable calcium signaling and cause an increase in dendritic spine dynamics.
Collapse
Affiliation(s)
- Alexandria Anding
- Department of Genetics Cell Biology and Anatomy, University of Nebraska Medical Center
| | - Baiyan Ren
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center
| | - Ragunathan Padmashri
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Maria Burkovetskaya
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Anna Dunaevsky
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
9
|
Akkouh IA, Osete JR, Szabo A, Andreassen OA, Djurovic S. Neurobiological Perturbations in Bipolar Disorder Compared With Schizophrenia: Evidence From Cell Cultures and Brain Organoids. Biol Psychiatry 2025:S0006-3223(25)00110-6. [PMID: 39983953 DOI: 10.1016/j.biopsych.2025.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 01/06/2025] [Accepted: 02/13/2025] [Indexed: 02/23/2025]
Abstract
Bipolar disorder (BD) and schizophrenia (SCZ) are uniquely human disorders with a complex pathophysiology that involves adverse neuropathological events in brain development. High disease polygenicity and limited access to live human brain tissue make these disorders exceedingly challenging to study mechanistically. Cellular cultures and brain organoids generated from human-derived pluripotent stem cells preserve the genetic background of the donor cells and recapitulate some of the defining characteristics of human brain architecture and early spatiotemporal development. These model systems have already proven successful in deciphering some of the neuropathological perturbations in BD and SCZ, and methodological advancements, such as the functional integration of 2 or more region-specific organoids and organoid transplantation in animals, promise to deliver increasingly refined insights. Here, we review a selection of recent discoveries achieved by stem cell-based models, with a particular focus on patterns of cellular and molecular convergence and divergence between BD and SCZ. First, we provide a brief overview of the evidence from glial and neuronal cell cultures and brain organoids, centering our discussion on several key functional domains, including neuroinflammation, neuronal excitability, and mitochondrial function. Then, we review recent findings demonstrating the power of integrating stem cell-based systems with gene editing technologies to elucidate the functional consequences of risk variants identified through genetic association studies. We end with a discussion of current challenges and some promising avenues for future research.
Collapse
Affiliation(s)
- Ibrahim A Akkouh
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway; Centre for Precision Psychiatry, Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
| | - Jordi Requena Osete
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway; Centre for Precision Psychiatry, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Attila Szabo
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway; Centre for Precision Psychiatry, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; K.G. Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
| | - Ole A Andreassen
- Centre for Precision Psychiatry, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; K.G. Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
| | - Srdjan Djurovic
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway; K.G. Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway; Department of Clinical Science, University of Bergen, Bergen, Norway.
| |
Collapse
|
10
|
Cassina P, Miquel E, Martínez-Palma L, Cassina A. Mitochondria and astrocyte reactivity: Key mechanism behind neuronal injury. Neuroscience 2025; 567:227-234. [PMID: 39788313 DOI: 10.1016/j.neuroscience.2024.12.058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 12/19/2024] [Accepted: 12/30/2024] [Indexed: 01/12/2025]
Abstract
In this special issue to celebrate the 30th anniversary of the Uruguayan Society for Neuroscience (SNU), we find it pertinent to highlight that research on glial cells in Uruguay began almost alongside the history of SNU and contributed to the understanding of neuron-glia interactions within the international scientific community. Glial cells, particularly astrocytes, traditionally regarded as supportive components in the central nervous system (CNS), undergo notable morphological and functional alterations in response to neuronal damage, a phenomenon referred to as glial reactivity. Among the myriad functions of astrocytes, metabolic support holds significant relevance for neuronal function, given the high energy demand of the nervous system. Although astrocytes are typically considered to exhibit low mitochondrial respiratory chain activity, they possess a noteworthy mitochondrial network. Interestingly, both the morphology and activity of these organelles change following glial reactivity. Despite receiving less attention compared to studies on neuronal mitochondria, recent studies indicate that mitochondria play a crucial role in driving the transition of astrocytes from a quiescent to a reactive state in various neurological disorders. Notably, stimulating mitochondria in astrocytes has been shown to reduce damage associated with the neurodegenerative disease amyotrophic lateral sclerosis. Here, we focus on studies supporting the emerging paradigm that metabolic reprogramming occurs in astrocytes following damage, which is associated with their phenotypic shift to a new functional state that significantly influences the progression of pathology. Thus, exploring mitochondrial activity and metabolic reprogramming within glial cells may provide valuable insights for developing innovative therapeutic approaches to mitigate neuronal damage. In this review, we focus on studies supporting the emerging paradigm that metabolic reprogramming occurs in astrocytes following damage, which is associated with their phenotypic shift to a new functional state that significantly influences the progression of pathology. Thus, exploring mitochondrial activity and metabolic reprogramming within glial cells may provide valuable insights for developing innovative therapeutic approaches to mitigate neuronal damage.
Collapse
Affiliation(s)
- Patricia Cassina
- Departamento de Histología y Embriología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay.
| | - Ernesto Miquel
- Departamento de Histología y Embriología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Laura Martínez-Palma
- Departamento de Histología y Embriología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Adriana Cassina
- Departemento de Bioquímica and Centro de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
11
|
van Oostrum M, Schuman EM. Understanding the molecular diversity of synapses. Nat Rev Neurosci 2025; 26:65-81. [PMID: 39638892 DOI: 10.1038/s41583-024-00888-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2024] [Indexed: 12/07/2024]
Abstract
Synapses are composed of thousands of proteins, providing the potential for extensive molecular diversity to shape synapse type-specific functional specializations. In this Review, we explore the landscape of synaptic diversity and describe the mechanisms that expand the molecular complexity of synapses, from the genotype to the regulation of gene expression to the production of specific proteoforms and the formation of localized protein complexes. We emphasize the importance of examining every molecular layer and adopting a systems perspective to understand how these interconnected mechanisms shape the diverse functional and structural properties of synapses. We explore current frameworks for classifying synapses and methodologies for investigating different synapse types at varying scales, from synapse-type-specific proteomics to advanced imaging techniques with single-synapse resolution. We highlight the potential of synapse-type-specific approaches for integrating molecular data with cellular functions, circuit organization and organismal phenotypes to enable a more holistic exploration of neuronal phenomena across different scales.
Collapse
Affiliation(s)
- Marc van Oostrum
- Max Planck Institute for Brain Research, Frankfurt am Main, Germany
- Biozentrum, University of Basel, Basel, Switzerland
| | - Erin M Schuman
- Max Planck Institute for Brain Research, Frankfurt am Main, Germany.
| |
Collapse
|
12
|
Bae E, Perrin GE, Gonzenbach V, Orthmann-Murphy JL, Shinohara RT. FAST: Fast, Free, Consistent, and Unsupervised Oligodendrocyte Segmentation and Tracking System. eNeuro 2025; 12:ENEURO.0025-24.2024. [PMID: 39788730 DOI: 10.1523/eneuro.0025-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 11/04/2024] [Accepted: 11/28/2024] [Indexed: 01/12/2025] Open
Abstract
To develop reparative therapies for neurological disorders like multiple sclerosis (MS), we need to better understand the physiology of loss and replacement of oligodendrocytes, the cells that make myelin and are the target of damage in MS. In vivo two-photon fluorescence microscopy allows direct visualization of oligodendrocytes in the intact brain of transgenic mouse models, promising a deeper understanding of the longitudinal dynamics of replacing oligodendrocytes after damage. However, the task of tracking the fate of individual oligodendrocytes requires extensive effort for manual annotation and is especially challenging in three-dimensional images. While several models exist for annotating cells in two-dimensional images, few models exist to annotate cells in three-dimensional images and even fewer are designed for tracking cells in longitudinal imaging. Notably, existing options often come with a substantial financial investment, being predominantly commercial or confined to proprietary software. Furthermore, the complexity of processes and myelin formed by individual oligodendrocytes can result in the failure of algorithms that are specifically designed for tracking cell bodies alone. Here, we propose a fast, free, consistent, and unsupervised beta-mixture oligodendrocyte segmentation system (FAST) that is written in open-source software, and can segment and track oligodendrocytes in three-dimensional images over time with minimal human input. We showed that the FAST model can segment and track oligodendrocytes similarly to a blinded human observer. Although FAST was developed to apply to our studies on oligodendrocytes, we anticipate that it can be modified to study four-dimensional in vivo data of any brain cell with associated complex processes.
Collapse
Affiliation(s)
- Eunchan Bae
- Penn Statistics in Imaging and Visualization Center (PennSIVE), Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Gregory E Perrin
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Virgilio Gonzenbach
- Penn Statistics in Imaging and Visualization Center (PennSIVE), Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Jennifer L Orthmann-Murphy
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Russell T Shinohara
- Penn Statistics in Imaging and Visualization Center (PennSIVE), Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
- Center for Biomedical Image Computing and Analytics, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| |
Collapse
|
13
|
Chen L, Jiao J, Lei F, Zhou B, Li H, Liao P, Li X, Kang Y, Liu J, Jiang R. Ezrin-mediated astrocyte-synapse signaling regulates cognitive function via astrocyte morphological changes in fine processes in male mice. Brain Behav Immun 2025; 124:177-191. [PMID: 39580057 DOI: 10.1016/j.bbi.2024.11.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 11/11/2024] [Accepted: 11/17/2024] [Indexed: 11/25/2024] Open
Abstract
Astrocytes, which actively participate in cognitive processes, have a complex spongiform morphology, highlighted by extensive ramified fine processes that closely enwrap the pre- and post-synaptic compartments, forming tripartite synapses. However, the role of astrocyte morphology in cognitive processes remains incompletely understood and even controversial. The actin-binding protein Ezrin is highly expressed in astrocytes and is a key structural determinant of astrocyte morphology. Here, we found that Ezrin expression and astrocyte fine process volume in the hippocampus of male mice increased after learning but decreased after lipopolysaccharide injection and in a mouse model of postoperative cognitive dysfunction, both of which involved models with impaired cognitive function. Additionally, astrocytic Ezrin knock-out led to significantly decreased astrocytic fine process volumes, decreased astrocyte-neuron proximity, and induced anxiety-like behaviors and cognitive dysfunction. Astrocytic Ezrin deficiency in the hippocampus was achieved by using a microRNA silencing technique delivered by adeno-associated viruses. Down-regulation of Ezrin in hippocampal astrocytes led to disrupted astrocyte-synapse interactions and impaired synaptic functions, including synaptic transmission and synaptic plasticity, which could be rescued by exogenous administration of D-serine. Remarkably, decreased Ezrin expression and reduced astrocyte fine processes volumes were also observed in aged mice with decreased cognitive function. Moreover, overexpression of astrocytic Ezrin increased astrocyte fine process volumes and improved cognitive function in aged mice. Overall, our results indicate Ezrin-mediated astrocyte fine processes integrity shapes astrocyte-synapse signaling contributing to cognitive function.
Collapse
Affiliation(s)
- Lingmin Chen
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China; Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jiao Jiao
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China; Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Fan Lei
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China; Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Bin Zhou
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China; Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Hong Li
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China; Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Ping Liao
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China; Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xin Li
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China; Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yi Kang
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China; Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jin Liu
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China; Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.
| | - Ruotian Jiang
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China; Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.
| |
Collapse
|
14
|
Lu CL, Ren J, Cao X. An Astroglial Basis of Major Depressive Disorder: Molecular, Cellular, and Circuit Features. Biol Psychiatry 2025; 97:217-226. [PMID: 39084500 DOI: 10.1016/j.biopsych.2024.07.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 06/17/2024] [Accepted: 07/15/2024] [Indexed: 08/02/2024]
Abstract
Major depressive disorder is a common psychiatric disorder and a leading cause of disability worldwide. Astrocytes play a role in the maintenance of the function of the central nervous system, both physiologically and pathologically. Accumulated evidence indicates that the astrocyte is an important contributor to the pathophysiology of major depressive disorder including blood-brain barrier integrity, gap junctions, gliotransmission, glutamate homeostasis, and energy metabolism. Here, we comprehensively summarize an astroglial basis for major depressive disorder based on molecular, cellular, and circuit properties, suggesting that astrocytes appear to be highly sensitive to stress and are likely to be uniquely positioned to integrate peripheral and central stress responses.
Collapse
Affiliation(s)
- Cheng-Lin Lu
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong Joint Laboratory for Psychiatric Disorders, Guangdong Province Key Laboratory of Psychiatric Disorders, Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, People's Republic of China; Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Jing Ren
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong Joint Laboratory for Psychiatric Disorders, Guangdong Province Key Laboratory of Psychiatric Disorders, Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, People's Republic of China
| | - Xiong Cao
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong Joint Laboratory for Psychiatric Disorders, Guangdong Province Key Laboratory of Psychiatric Disorders, Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, People's Republic of China; Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China.
| |
Collapse
|
15
|
Bosquez Huerta NA, Lee ZF, Christine Song EA, Woo J, Cheng YT, Sardar D, Sert O, Maleki E, Yu K, Akdemir ES, Sanchez K, Jo J, Rasband MN, Lee HK, Harmanci AS, Deneen B. Sex-specific astrocyte regulation of spinal motor circuits by Nkx6.1. Cell Rep 2025; 44:115121. [PMID: 39731735 PMCID: PMC11932065 DOI: 10.1016/j.celrep.2024.115121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 09/30/2024] [Accepted: 12/06/2024] [Indexed: 12/30/2024] Open
Abstract
Astrocytes exhibit diverse cellular and molecular properties across the central nervous system (CNS). Recent studies identified region-specific transcription factors (TF) that oversee these diverse properties; how sex differences intersect with region-specific transcriptional programs to regulate astrocyte function is unknown. Here, we show that the TF Nkx6.1 is specifically expressed in ventral astrocytes of the spinal cord and that its deletion results in sex-specific effects on astrocyte morphology. Astrocytes from males exhibit enhanced morphological complexity, accompanied by increased motor function and cholinergic synapses. In contrast, female astrocytes exhibit reduced complexity and no changes in motor function. Mechanistically, we found that Nkx6.1 exhibits sex-specific DNA-binding properties and epigenomic remodeling, identifying Semaphorin 4A (Sema4A) and Gabbr1 as targets regulating astrocyte morphology and cholinergic synapse formation. Collectively, our studies identify astrocytic Nkx6.1 as a key regulator of astrocyte properties in the spinal cord while adding sexual dimorphism as a layer of transcriptional regulation to astrocyte function and circuit activity.
Collapse
Affiliation(s)
- Navish A Bosquez Huerta
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA; Program in Development, Disease, Models, and Therapeutics, Baylor College of Medicine, Houston, TX 77030, USA; Center for Cancer Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Zhung-Fu Lee
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA; Program in Development, Disease, Models, and Therapeutics, Baylor College of Medicine, Houston, TX 77030, USA; Center for Cancer Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Eun-Ah Christine Song
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77030, USA; Center for Cancer Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Junsung Woo
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77030, USA; Center for Cancer Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yi-Ting Cheng
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA; Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77030, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Center for Cancer Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Debosmita Sardar
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77030, USA; Center for Cancer Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ozlem Sert
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ehson Maleki
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77030, USA
| | - Kwanha Yu
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Center for Cancer Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ekin Su Akdemir
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA; Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77030, USA; Center for Cancer Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Kaitlyn Sanchez
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77030, USA; Center for Cancer Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Juyeon Jo
- Department of Pediatrics, Section of Neurology, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Matthew N Rasband
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA; Program in Development, Disease, Models, and Therapeutics, Baylor College of Medicine, Houston, TX 77030, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Hyun Kyoung Lee
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA; Program in Development, Disease, Models, and Therapeutics, Baylor College of Medicine, Houston, TX 77030, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Department of Pediatrics, Section of Neurology, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA; Center for Cancer Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Akdes Serin Harmanci
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX 77030, USA; Center for Cancer Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Benjamin Deneen
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA; Program in Development, Disease, Models, and Therapeutics, Baylor College of Medicine, Houston, TX 77030, USA; Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77030, USA; Department of Neurosurgery, Baylor College of Medicine, Houston, TX 77030, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA; Center for Cancer Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
16
|
Onat F, Andersson M, Çarçak N. The Role of Glial Cells in the Pathophysiology of Epilepsy. Cells 2025; 14:94. [PMID: 39851521 PMCID: PMC11763453 DOI: 10.3390/cells14020094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 01/03/2025] [Accepted: 01/08/2025] [Indexed: 01/26/2025] Open
Abstract
Epilepsy is a chronic neurological disorder marked by recurrent seizures, significantly impacting individuals worldwide. Current treatments are often ineffective for a third of patients and can cause severe side effects, necessitating new therapeutic approaches. Glial cells, particularly astrocytes, microglia, and oligodendrocytes, are emerging as crucial targets in epilepsy management. Astrocytes regulate neuronal homeostasis, excitability, and synaptic plasticity, playing key roles in maintaining the blood-brain barrier (BBB) and mediating neuroinflammatory responses. Dysregulated astrocyte functions, such as reactive astrogliosis, can lead to abnormal neuronal activity and seizure generation. They release gliotransmitters, cytokines, and chemokines that may exacerbate or mitigate seizures. Microglia, the innate immune cells of the CNS, contribute to neuroinflammation, glutamate excitotoxicity, and the balance between excitatory and inhibitory neurotransmission, underscoring their dual role in seizure promotion and protection. Meanwhile, oligodendrocytes, primarily involved in myelination, also modulate axonal excitability and contribute to the neuron-glia network underlying seizure pathogenesis. Understanding the dynamic interactions of glial cells with neurons provides promising avenues for novel epilepsy therapies. Targeting these cells may lead to improved seizure control and better clinical outcomes, offering hope for patients with refractory epilepsy.
Collapse
Affiliation(s)
- Filiz Onat
- Department of Medical Pharmacology, School of Medicine, Acibadem Mehmet Ali Aydinlar University, 34684 Istanbul, Türkiye
- Institute of Health Sciences, Department of Neuroscience, Acibadem Mehmet Ali Aydinlar University, 34684 Istanbul, Türkiye
| | - My Andersson
- Department of Experimental Medicine, Faculty of Medicine, Lund University, 221 00 Lund, Sweden;
| | - Nihan Çarçak
- Institute of Health Sciences, Department of Neuroscience, Acibadem Mehmet Ali Aydinlar University, 34684 Istanbul, Türkiye
- Department of Pharmacology, Faculty of Pharmacy, Istanbul University, 34452 Istanbul, Türkiye
| |
Collapse
|
17
|
Lana D, Ugolini F, Iovino L, Attorre S, Giovannini MG. Astrocytes phenomics as new druggable targets in healthy aging and Alzheimer's disease progression. Front Cell Neurosci 2025; 18:1512985. [PMID: 39835288 PMCID: PMC11743640 DOI: 10.3389/fncel.2024.1512985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 12/13/2024] [Indexed: 01/22/2025] Open
Abstract
For over a century after their discovery astrocytes were regarded merely as cells located among other brain cells to hold and give support to neurons. Astrocytes activation, "astrocytosis" or A1 functional state, was considered a detrimental mechanism against neuronal survival. Recently, the scientific view on astrocytes has changed. Accumulating evidence indicate that astrocytes are not homogeneous, but rather encompass heterogeneous subpopulations of cells that differ from each other in terms of transcriptomics, molecular signature, function and response in physiological and pathological conditions. In this review, we report and discuss the recent literature on the phenomic differences of astrocytes in health and their modifications in disease conditions, focusing mainly on the hippocampus, a region involved in learning and memory encoding, in the age-related memory impairments, and in Alzheimer's disease (AD) dementia. The morphological and functional heterogeneity of astrocytes in different brain regions may be related to their different housekeeping functions. Astrocytes that express diverse transcriptomics and phenomics are present in strictly correlated brain regions and they are likely responsible for interactions essential for the formation of the specialized neural circuits that drive complex behaviors. In the contiguous and interconnected hippocampal areas CA1 and CA3, astrocytes show different, finely regulated, and region-specific heterogeneity. Heterogeneous astrocytes have specific activities in the healthy brain, and respond differently to physiological or pathological stimuli, such as inflammaging present in normal brain aging or beta-amyloid-dependent neuroinflammation typical of AD. To become reactive, astrocytes undergo transcriptional, functional, and morphological changes that transform them into cells with different properties and functions. Alterations of astrocytes affect the neurovascular unit, the blood-brain barrier and reverberate to other brain cell populations, favoring or dysregulating their activities. It will be of great interest to understand whether the differential phenomics of astrocytes in health and disease can explain the diverse vulnerability of the hippocampal areas to aging or to different damaging insults, in order to find new astrocyte-targeted therapies that might prevent or treat neurodegenerative disorders.
Collapse
Affiliation(s)
- Daniele Lana
- Section of Clinical Pharmacology and Oncology, Department of Health Sciences, University of Florence, Florence, Italy
| | - Filippo Ugolini
- Section of Pathological Anatomy, Department of Health Sciences, University of Florence, Florence, Italy
| | - Ludovica Iovino
- Institute of Neuroscience, National Research Council (CNR), Pisa, Italy
| | - Selene Attorre
- Section of Pathological Anatomy, Department of Health Sciences, University of Florence, Florence, Italy
| | - Maria Grazia Giovannini
- Section of Clinical Pharmacology and Oncology, Department of Health Sciences, University of Florence, Florence, Italy
| |
Collapse
|
18
|
Schuurmans IME, Mordelt A, de Witte LD. Orchestrating the neuroglial compartment: Ontogeny and developmental interaction of astrocytes, oligodendrocytes, and microglia. HANDBOOK OF CLINICAL NEUROLOGY 2025; 209:27-47. [PMID: 40122629 DOI: 10.1016/b978-0-443-19104-6.00011-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
Neuroglial cells serve as the master regulators of the central nervous system, making it imperative for glial development to be tightly regulated both spatially and temporally to ensure optimal brain function. In this chapter, we will discuss the origin and development of the three major glia cells such as astrocytes, oligodendrocytes, and microglia in the central nervous system. While much of our understanding of neuroglia development stems from studies using animal models, we will also explore recent insights into human glial development and potential differences from rodent models. Finally, the extensive crosstalk between glia cells will be highlighted, discussing how interactions among astrocyte, oligodendrocyte, and microglial influence their respective developmental pathways.
Collapse
Affiliation(s)
- Imke M E Schuurmans
- Department of Pediatrics, Radboud University Medical Center, Amalia Children's Hospital, Nijmegen, The Netherlands; Emma Center for Personalized Medicine, Departments of Pediatrics and Human Genetics, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Annika Mordelt
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands; Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Lot D de Witte
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands; Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands; Department of Psychiatry, Radboud University Medical Center, Nijmegen, The Netherlands.
| |
Collapse
|
19
|
Zinsmaier AK, Nestler EJ, Dong Y. Astrocytic G Protein-Coupled Receptors in Drug Addiction. ENGINEERING (BEIJING, CHINA) 2025; 44:256-265. [PMID: 40109668 PMCID: PMC11922559 DOI: 10.1016/j.eng.2024.12.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
Understanding the cellular mechanisms of drug addiction remains a key task in current brain research. While neuron-based mechanisms have been extensively explored over the past three decades, recent evidence indicates a critical involvement of astrocytes, the main type of non-neuronal cells in the brain. In response to extracellular stimuli, astrocytes modulate the activity of neurons, synaptic transmission, and neural network properties, collectively influencing brain function. G protein-coupled receptors (GPCRs) expressed on astrocyte surfaces respond to neuron- and environment-derived ligands by activating or inhibiting astrocytic signaling, which in turn regulates adjacent neurons and their circuitry. In this review, we focus on the dopamine D1 receptors (D1R) and metabotropic glutamate receptor 5 (mGLUR5 or GRM5)-two GPCRs that have been critically implicated in the acquisition and maintenance of addiction-related behaviors. Positioned as an introductory-level review, this article briefly discusses astrocyte biology, outlines earlier discoveries about the role of astrocytes in substance-use disorders (SUDs), and provides detailed discussion about astrocytic D1Rs and mGLUR5s in regulating synapse and network functions in the nucleus accumbens (NAc)-a brain region that mediates addiction-related emotional and motivational responses. This review serves as a stepping stone for readers of Engineering to explore links between astrocytic GPCRs and drug addiction and other psychiatric disorders.
Collapse
Affiliation(s)
| | - Eric J Nestler
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York City, NY 10029, USA
| | - Yan Dong
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA 15260, USA
| |
Collapse
|
20
|
Endo F. Deciphering the spectrum of astrocyte diversity: Insights into molecular, morphological, and functional dimensions in health and neurodegenerative diseases. Neurosci Res 2025; 210:1-10. [PMID: 39098767 DOI: 10.1016/j.neures.2024.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 07/11/2024] [Accepted: 07/30/2024] [Indexed: 08/06/2024]
Abstract
Astrocytes are the most abundant and morphologically complex glial cells that play active roles in the central nervous system (CNS). Recent research has identified shared and region-specific astrocytic genes and functions, elucidated the cellular origins of their regional diversity, and uncovered the molecular networks for astrocyte morphology, which are essential for their functional complexity. Reactive astrocytes exhibit a wide range of functional diversity in a context-specific manner in CNS disorders. This review discusses recent advances in understanding the molecular and morphological diversity of astrocytes in healthy individuals and those with neurodegenerative diseases, such as Alzheimer's disease, Huntington's disease, and amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- Fumito Endo
- Department of Neuroscience and Pathobiology, Research Institute of Environmental Medicine, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan.
| |
Collapse
|
21
|
Cabral-Miranda F, Matias I, Gomes FCA. Astrocytic proteostasis in the tale of aging and neurodegeneration. Ageing Res Rev 2025; 103:102580. [PMID: 39557299 DOI: 10.1016/j.arr.2024.102580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 11/05/2024] [Accepted: 11/09/2024] [Indexed: 11/20/2024]
Abstract
Homeostasis of proteins (proteostasis), which governs protein processing, folding, quality control, and degradation, is a fundamental cellular process that plays a pivotal role in various neurodegenerative diseases and in the natural aging process of the mammalian brain. While the role of neuronal proteostasis in neuronal physiology is well characterized, the contribution of proteostasis of glial cells, particularly of astrocytes, has received fairly less attention in this context. Here, we summarize recent data highlighting proteostasis dysfunction in astrocytes and its putative implication to neurodegenerative diseases and aging. We discuss how distinct proteostasis nodes and pathways in astrocytes may specifically contribute to brain function and different age-associated pathologies. Finally, we argue that the understanding of astrocytic proteostasis role in neuronal physiology and functional decay may arise as a potential new avenue of intervention in neurodegenerative diseases and grant relevant data in the biology of aging.
Collapse
Affiliation(s)
- Felipe Cabral-Miranda
- Institute of Biomedical Sciences, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Isadora Matias
- Institute of Biomedical Sciences, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | |
Collapse
|
22
|
Cheng L, Liu Z, Shen C, Xiong Y, Shin SY, Hwang Y, Yang S, Chen Z, Zhang X. A Wonderful Journey: The Diverse Roles of Adenosine Deaminase Action on RNA 1 (ADAR1) in Central Nervous System Diseases. CNS Neurosci Ther 2025; 31:e70208. [PMID: 39753993 PMCID: PMC11702419 DOI: 10.1111/cns.70208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 12/03/2024] [Accepted: 12/20/2024] [Indexed: 01/14/2025] Open
Abstract
BACKGROUND Adenosine deaminase action on RNA 1 (ADAR1) can convert the adenosine in double-stranded RNA (dsRNA) molecules into inosine in a process known as A-to-I RNA editing. ADAR1 regulates gene expression output by interacting with RNA and other proteins; plays important roles in development, including growth; and is linked to innate immunity, tumors, and central nervous system (CNS) diseases. RESULTS In recent years, the role of ADAR1 in tumors has been widely discussed, but its role in CNS diseases has not been reviewed. It is worth noting that recent studies have shown ADAR1 has great potential in the treatment of neurodegenerative diseases, but the mechanisms are still unclear. Therefore, it is necessary to elaborate on the role of ADAR1 in CNS diseases. CONCLUSIONS Here, we focus on the effects and mechanisms of ADAR1 on CNS diseases such as Aicardi-AicardiGoutières syndrome, Alzheimer's disease, Parkinson's disease, glioblastoma, epilepsy, amyotrophic lateral sclerosis, and autism. We also evaluate the impact of ADAR1-based treatment strategies on these diseases, with a particular focus on the development and treatment strategies of new technologies such as microRNAs, nanotechnology, gene editing, and stem cell therapy. We hope to provide new directions and insights for the future development of ADAR1 gene editing technology in brain science and the treatment of CNS diseases.
Collapse
Affiliation(s)
- Lin Cheng
- Department of NeurologyAffiliated Hospital of Jiujiang UniversityJiujiangJiangxiChina
- Jiujiang Clinical Precision Medicine Research CenterJiujiangJiangxiChina
| | - Ziying Liu
- Jiujiang Clinical Precision Medicine Research CenterJiujiangJiangxiChina
- Department of PathologyAffiliated Hospital of Jiujiang UniversityJiujiangJiangxiChina
| | - Chunxiao Shen
- Jiujiang Clinical Precision Medicine Research CenterJiujiangJiangxiChina
- Department of PathologyAffiliated Hospital of Jiujiang UniversityJiujiangJiangxiChina
| | - Yinyi Xiong
- Department of RehabilitationAffiliated Hospital of Jiujiang UniversityJiujiangJiangxiChina
| | - Sang Yol Shin
- Department of Emergency Medical TechnologyWonkwang University College of MedicineIksanJeonbuk‐doRepublic of Korea
| | - Yong Hwang
- Department of Emergency MedicineWonkwang University College of MedicineIksanJeonbuk‐doRepublic of Korea
| | - Seung‐Bum Yang
- Department of ParamedicineWonkwang Health Science UniversityIksanJeonbuk‐doRepublic of Korea
| | - Zhiying Chen
- Department of NeurologyAffiliated Hospital of Jiujiang UniversityJiujiangJiangxiChina
- Jiujiang Clinical Precision Medicine Research CenterJiujiangJiangxiChina
| | - Xiaorong Zhang
- Jiujiang Clinical Precision Medicine Research CenterJiujiangJiangxiChina
- Department of PathologyAffiliated Hospital of Jiujiang UniversityJiujiangJiangxiChina
| |
Collapse
|
23
|
Chierzi S, Murai KK. An Astrocyte Transplantation Method to Investigate Astrocyte Development and Diversity in the Central Nervous System (CNS). Methods Mol Biol 2025; 2896:81-94. [PMID: 40111598 DOI: 10.1007/978-1-0716-4366-2_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
Astrocytes have rich structural, molecular, and physiological properties and show remarkable diversity in form and function that supports circuit-specific physiology within the central nervous system (CNS). However, the developmental mechanisms and cellular interactions that help to locally and globally diversify astrocytes with the CNS remain to be better understood. Understanding these processes will help to understand how astrocytes establish specialized microenvironments in the healthy brain and how they may differentially respond to CNS injury and disease. Here, we describe a cell transplantation method that enables the study of cell-autonomous and non-cell-autonomous determinants of astrocyte diversification by tracking the developmental trajectory of astrocytes transferred to the same or different regions of the mouse brain. With this method, it is possible to evaluate how astrocytes mature in "familiar" or "foreign" environmental contexts, for example, by transplanting cortical astrocytes into the cortex (a familiar context) or cerebellum (a foreign context). Also, with this method, the effect of developmental state on the ability of transplanted astrocytes to integrate into the brain environment can be studied, for example, by transplanting embryonically or postnatally derived cortical astrocytes into the cerebellum and monitoring their maturation within the recipient brain. We find that this transplantation method provides a flexible and robust approach to investigate how intrinsic cell properties and extrinsic cues from the extracellular environment shape astrocyte diversity.
Collapse
Affiliation(s)
- Sabrina Chierzi
- Centre for Research in Neuroscience, Department of Neurology & Neurosurgery, Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, QC, Canada
| | - Keith K Murai
- Centre for Research in Neuroscience, Department of Neurology & Neurosurgery, Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, QC, Canada.
- Quantitative Life Sciences Graduate Program, McGill University, Montreal, QC, Canada.
| |
Collapse
|
24
|
Díaz-Pérez S, DeLong JH, Rivier CA, Lee CY, Askenase MH, Zhu B, Zhang L, Brennand KJ, Martins AJ, Sansing LH. Single-nucleus RNA sequencing of human periventricular white matter in vascular dementia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.06.627202. [PMID: 39713290 PMCID: PMC11661092 DOI: 10.1101/2024.12.06.627202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Vascular dementia (VaD) refers to a variety of dementias driven by cerebrovascular disease and is the second leading cause of dementia globally. VaD may be caused by ischemic strokes, intracerebral hemorrhage, and/or cerebral small vessel disease, commonly identified as white matter hyperintensities on MRI. The mechanisms underlying these white matter lesions in the periventricular brain are poorly understood. In this study we perform an extensive transcriptomic analysis on human postmortem periventricular white matter lesions in patients with VaD with the goal of identifying molecular pathways in the disease. We find increased cellular stress responses in astrocytes, oligodendrocytes, and oligodendrocyte precursor cells as well as transcriptional and translational repression in microglia in our dataset. We show that several genes identified by GWAS as being associated with white matter disease are differentially expressed in cells in VaD. Finally, we compare our dataset to an independent snRNAseq dataset of PVWM in VaD and a scRNAseq dataset on human iPSC-derived microglia exposed to oxygen glucose deprivation (OGD). We identify the increase of the heat shock protein response as a conserved feature of VaD across celltypes and show that this increase is not linked to OGD exposure. Overall, our study is the first to show that increased heat shock protein responses are a common feature of lesioned PVWM in VaD and may represent a potential therapeutic target.
Collapse
Affiliation(s)
| | - Jonathan H. DeLong
- Department of Neurology, Yale University School of Medicine, New Haven, CT
| | - Cyprien A. Rivier
- Department of Neurology, Yale University School of Medicine, New Haven, CT
| | - Chia-Yi Lee
- Department of Genetics, Yale University School of Medicine, New Haven, CT
| | - Michael H. Askenase
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT
| | - Biqing Zhu
- Program of Computational Biology and Bioinformatics, Yale University School of Medicine, New Haven, CT
| | - Le Zhang
- Department of Neurology, Yale University School of Medicine, New Haven, CT
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT
| | - Kristen J. Brennand
- Department of Genetics, Yale University School of Medicine, New Haven, CT
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT
| | - Andrew J. Martins
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT
| | - Lauren H. Sansing
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT
- Department of Neurology, Yale University School of Medicine, New Haven, CT
| |
Collapse
|
25
|
Hochmuth L, Hirrlinger J. Physiological and Pathological Role of mTOR Signaling in Astrocytes. Neurochem Res 2024; 50:53. [PMID: 39652154 PMCID: PMC11628441 DOI: 10.1007/s11064-024-04306-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 11/20/2024] [Accepted: 12/02/2024] [Indexed: 12/12/2024]
Abstract
The mammalian target of rapamycin (mTOR) signaling pathway is one of the key regulators of cellular energy metabolism. It senses diverse alterations in the extracellular environment such as availability of nutrients and growth factors, and mediates the corresponding intracellular response. In the brain, astrocytes crucially contribute to energy and neurotransmitter metabolism, and numerous other functions. However, the relevance of physiological, astrocytic mTOR signaling in maintaining brain homeostasis and function is not well understood. Pathophysiological mTOR signaling is involved in manifold diseases in the central nervous system and most of the knowledge about astrocytic mTOR signaling has been derived from observations on these disorders. Dysregulation of the mTOR signaling pathway impairs important functions of astrocytes including neurotransmitter uptake and -signaling as well as energy metabolism. Some of these alterations could trigger neuropathological conditions such as epilepsy. This review focuses on how mTOR signaling regulates properties of astrocytes, and how these signaling events might contribute to the physiological function of the brain.
Collapse
Affiliation(s)
- Luise Hochmuth
- Carl-Ludwig-Institute for Physiology, Faculty of Medicine, University of Leipzig, D- 04103, Leipzig, Germany.
| | - Johannes Hirrlinger
- Carl-Ludwig-Institute for Physiology, Faculty of Medicine, University of Leipzig, D- 04103, Leipzig, Germany.
- Department of Neurogenetics, Max-Planck-Institute for Multidisciplinary Sciences, D- 37075, Göttingen, Germany.
| |
Collapse
|
26
|
Sámano C, Mazzone GL. The role of astrocytes response triggered by hyperglycaemia during spinal cord injury. Arch Physiol Biochem 2024; 130:724-741. [PMID: 37798949 DOI: 10.1080/13813455.2023.2264538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 09/22/2023] [Indexed: 10/07/2023]
Abstract
OBJECTIVE This manuscript aimed to provide a comprehensive overview of the physiological, molecular, and cellular mechanisms triggered by reactive astrocytes (RA) in the context of spinal cord injury (SCI), with a particular focus on cases involving hyperglycaemia. METHODS The compilation of articles related to astrocyte responses in neuropathological conditions, with a specific emphasis on those related to SCI and hyperglycaemia, was conducted by searching through databases including Science Direct, Web of Science, and PubMed. RESULTS AND CONCLUSIONS This article explores the dual role of astrocytes in both neurophysiological and neurodegenerative conditions within the central nervous system (CNS). In the aftermath of SCI and hyperglycaemia, astrocytes undergo a transformation into RA, adopting a distinct phenotype. While there are currently no approved therapies for SCI, various therapeutic strategies have been proposed to alleviate the detrimental effects of RAs following SCI and hyperglycemia. These strategies show promising potential in the treatment of SCI and its likely comorbidities.
Collapse
Affiliation(s)
- C Sámano
- Departamento de Ciencias Naturales, Universidad Autónoma Metropolitana, Unidad Cuajimalpa (UAM-C), Ciudad de México, México
| | - G L Mazzone
- Instituto de Investigaciones en Medicina Traslacional (IIMT), CONICET-Universidad Austral, Pilar, Buenos Aires, Argentina
- Facultad de Ciencias Biomédicas, Universidad Austral, Pilar, Buenos Aires, Argentina
| |
Collapse
|
27
|
Suay G, Garcia-Cañaveras JC, Aparisi F, Garcia J, Juan-Vidal O, Lahoz A. Immune checkpoint inhibitors as first-line treatment for brain metastases in stage IV NSCLC patients without driver mutations. Cancer Lett 2024; 606:217317. [PMID: 39489211 DOI: 10.1016/j.canlet.2024.217317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/28/2024] [Accepted: 10/31/2024] [Indexed: 11/05/2024]
Abstract
Immune checkpoint inhibitors (ICI) therapy with or without chemotherapy has been established as the first-line treatment for patients with non-oncogene addicted advanced Non-Small Cell Lung Cancer (NSCLC). Yet some clinical settings, such as the treatment sequence in patients with brain metastases, have barely been evidenced. Although ICIs cannot directly cross the blood-brain barrier (BBB), evidence suggests that BBB damage could allow ICIs into the central nervous system, or that they can have an indirect effect on the tumor immune microenvironment (TIME) and cause an anti-tumor response. Pivotal phase III trials have included a highly selected population but offer few data on these patients. Here we first review how ICIs can indirectly shape the brain metastases microenvironment through different mechanisms, and some possible causes of ICIs resistance. We also analyze the evidence reported in pivotal phase III trials and phase II trials focused on NSCLC brain metastases for first-line treatment, and the evidence for upfront or delayed local brain therapy. Finally, we discuss the best evidence-based approach to treat NSCLC patients with brain metastases and propose future research.
Collapse
Affiliation(s)
- Guillermo Suay
- Medical Oncology Department - La Fe Hospital, Valencia, Spain; Biomarker and Precision Medicine Unit - Health Research Institute La Fe Hospital, Valencia, Spain
| | | | - Francisco Aparisi
- Medical Oncology Department - La Fe Hospital, Valencia, Spain; Biomarker and Precision Medicine Unit - Health Research Institute La Fe Hospital, Valencia, Spain
| | - José Garcia
- Medical Oncology Service, Hospital Arnau Vilanova, Valencia, Spain
| | - Oscar Juan-Vidal
- Medical Oncology Department - La Fe Hospital, Valencia, Spain; Biomarker and Precision Medicine Unit - Health Research Institute La Fe Hospital, Valencia, Spain
| | - Agustín Lahoz
- Biomarker and Precision Medicine Unit - Health Research Institute La Fe Hospital, Valencia, Spain.
| |
Collapse
|
28
|
Habiba SU, Choi HJ, Munni YA, Yang IJ, Haque MN, Moon IS. Neurotrophic Effects of Foeniculum vulgare Ethanol Extracts on Hippocampal Neurons: Role of Anethole in Neurite Outgrowth and Synaptic Development. Int J Mol Sci 2024; 25:12701. [PMID: 39684414 DOI: 10.3390/ijms252312701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/22/2024] [Accepted: 11/23/2024] [Indexed: 12/18/2024] Open
Abstract
Foeniculum vulgare Mill, commonly known as fennel, is an aromatic herb traditionally used for culinary and medicinal purposes, with potential therapeutic effects on neurological disorders. However, limited research has focused on its neurotrophic impact, particularly on neuronal maturation and synaptic development. This study investigates the neurotrophic effects of F. vulgare ethanol extracts (FVSE) on the maturation of rat primary hippocampal neurons. Results show that FVSE and its prominent component, anethole, significantly promote neurite outgrowth in a dose-dependent manner. Optimal axonal and dendritic growth occurred at concentrations of 40 µg/mL FVSE and 20 µM anethole, respectively, without causing cytotoxicity, underscoring the safety of FVSE for neuronal health. Additionally, FVSE enhances the formation of synapses, essential for neuronal communication. Network pharmacology analysis revealed that FVSE components influence critical neurotrophic pathways, including PI3K-AKT and Alzheimer's disease pathways. Specifically, FVSE modulates key proteins, including tropomyosin receptor kinase (Trk), glycogen synthase kinase 3 (GSK3βser9), phosphatidylinositol 3-kinase (PI3K), and extracellular signal-regulated protein kinase (Erk1/2). Anethole was found to play a key role in regulating these pathways, which was confirmed by immunocytochemistry experiments demonstrating its effect on promoting neuronal growth and synaptic development. In conclusion, this study highlights the neurotrophic properties of FVSE, with anethole emerging as a critical bioactive compound. These findings provide valuable insights into the therapeutic potential of fennel in treating neurological disorders, offering a basis for future research into interventions promoting neuronal growth and survival.
Collapse
Affiliation(s)
- Sarmin Ummey Habiba
- Department of Anatomy, College of Medicine, Dongguk University, Gyeongju 38066, Republic of Korea
| | - Ho Jin Choi
- Department of Anatomy, College of Medicine, Dongguk University, Gyeongju 38066, Republic of Korea
- Medical Institute of Dongguk University, Gyeongju 38066, Republic of Korea
| | - Yeasmin Akter Munni
- Department of Anatomy, College of Medicine, Dongguk University, Gyeongju 38066, Republic of Korea
- Department of Physiology, College of Korean Medicine, Dongguk University, Gyeongju 38066, Republic of Korea
| | - In-Jun Yang
- Department of Physiology, College of Korean Medicine, Dongguk University, Gyeongju 38066, Republic of Korea
| | - Md Nazmul Haque
- Department of Fisheries Biology and Genetics, Patuakhali Science and Technology University, Dumki 8602, Bangladesh
| | - Il Soo Moon
- Department of Anatomy, College of Medicine, Dongguk University, Gyeongju 38066, Republic of Korea
| |
Collapse
|
29
|
Li H, Zhao Y, Dai R, Geng P, Weng D, Wu W, Yu F, Lin R, Wu Z, Li Y, Luo M. Astrocytes release ATP/ADP and glutamate in flashes via vesicular exocytosis. Mol Psychiatry 2024:10.1038/s41380-024-02851-8. [PMID: 39578520 DOI: 10.1038/s41380-024-02851-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 11/12/2024] [Accepted: 11/14/2024] [Indexed: 11/24/2024]
Abstract
Astrocytes regulate brain functions through gliotransmitters like ATP/ADP and glutamate, but their release patterns and mechanisms remain controversial. Here, we visualized ATP/ADP and glutamate response following astrocyte activation and investigated their mechanisms in vivo. Employing cOpn5-mediated optogenetic stimulation, genetically encoded fluorescent sensors, and two-photon imaging, we observed ATP/ADP released as temporally prolonged and spatially extended flashes that later converted to adenosine. This release occurs via Ca2+ and VNUT-dependent vesicular exocytosis. Additionally, astrocytes also release glutamate in flashes through TeNT-sensitive exocytosis, independent of ATP/ADP release. ATP/ADP released by astrocytes triggers further ATP/ADP release from microglia through P2Y12- and VNUT-dependent mechanisms. VNUT in astrocytes and microglia also contributes to ATP/ADP release under LPS-induced brain inflammation. These findings establish Ca2+-dependent vesicular exocytosis as a key mode of action, reveal intricate astrocyte-microglia interactions, and suggest a role for gliotransmission in brain inflammation. Furthermore, the methodologies may provide valuable tools for deciphering glial physiology and pathophysiology.
Collapse
Affiliation(s)
- Heng Li
- National Institute of Biological Sciences (NIBS), Beijing, 102206, Beijing, China
- School of Life Sciences, Tsinghua University, 100084, Beijing, China
- Tsinghua Institute of Multidisciplinary Biomedical Research (TIMBR), 102206, Beijing, China
| | - Yuqing Zhao
- National Institute of Biological Sciences (NIBS), Beijing, 102206, Beijing, China
| | - Ruicheng Dai
- Chinese Institute for Brain Research (CIBR), Beijing, 102206, Beijing, China
| | - Peiyao Geng
- National Institute of Biological Sciences (NIBS), Beijing, 102206, Beijing, China
- Tsinghua Institute of Multidisciplinary Biomedical Research (TIMBR), 102206, Beijing, China
| | - Danwei Weng
- National Institute of Biological Sciences (NIBS), Beijing, 102206, Beijing, China
| | - Wenting Wu
- National Institute of Biological Sciences (NIBS), Beijing, 102206, Beijing, China
- Tsinghua Institute of Multidisciplinary Biomedical Research (TIMBR), 102206, Beijing, China
| | - Fengting Yu
- Chinese Institute for Brain Research (CIBR), Beijing, 102206, Beijing, China
| | - Rui Lin
- National Institute of Biological Sciences (NIBS), Beijing, 102206, Beijing, China
- Tsinghua Institute of Multidisciplinary Biomedical Research (TIMBR), 102206, Beijing, China
| | - Zhaofa Wu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101, Beijing, China
| | - Yulong Li
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, 100871, Beijing, China
- New Cornerstone Science Laboratory, 518054, Shenzhen, China
| | - Minmin Luo
- Chinese Institute for Brain Research (CIBR), Beijing, 102206, Beijing, China.
- New Cornerstone Science Laboratory, 518054, Shenzhen, China.
- Research Unit of Medical Neurobiology, Chinese Academy of Medical Sciences, 100005, Beijing, China.
- Beijing Institute for Brain Research, Chinese Academy of Medical Sciences & Peking Union Medical College, 102206, Beijing, China.
| |
Collapse
|
30
|
Huang T, Lam XJ, Lim CT, Jusoh N, Fakurazi S, Cheah PS, Ling KH. Understanding perspectives and research trends in Down syndrome neuropathogenesis: A bibliometric analysis. JOURNAL OF INTELLECTUAL DISABILITIES : JOID 2024:17446295241299160. [PMID: 39533897 DOI: 10.1177/17446295241299160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Down syndrome (DS), characterised by compromised brain development and intellectual challenges, often manifests Alzheimer's disease (AD) -like symptoms. Utilising the Web of Science Core Collection (WOSCC) database from January 1, 2000, to July 31, 2023, we conducted a comprehensive bibliometric analysis using VOSviewer, CiteSpace, and the R package "bibliometrix." Analyses included co-authorship, co-citation, co-occurrence, cooperative network, reference, and keyword burst citation. Analysing 5,082 papers, the U.S. demonstrated prominence with the highest number of research organisations and citations. Keyword analysis revealed promising research areas, including "Alzheimer's disease," "development," "inflammation," and "neurogenesis". This 22-year survey of the brain with trisomy 21 research unveils key trends, contributors, and focal areas in DS neuropathogenesis. Notably, Alzheimer 's-related genes and proteins play a pervasive role in DS neuropathological processes across patients' lifespans. The study contributes foundational knowledge for advancing research and care in the DS neuropathogenesis domain.
Collapse
Affiliation(s)
- Tan Huang
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Malaysia
| | - Xin-Jieh Lam
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Malaysia
| | - Chong-Teik Lim
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Malaysia
| | - Norhazlin Jusoh
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Malaysia
| | - Sharida Fakurazi
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Malaysia
| | - Pike-See Cheah
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Malaysia
| | - King-Hwa Ling
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Malaysia
- Malaysian Research Institute on Ageing (MyAgeing®), Universiti Putra Malaysia, Malaysia
| |
Collapse
|
31
|
Alagiakrishnan K, Halverson T. Role of Peripheral and Central Insulin Resistance in Neuropsychiatric Disorders. J Clin Med 2024; 13:6607. [PMID: 39518747 PMCID: PMC11547162 DOI: 10.3390/jcm13216607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 10/27/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024] Open
Abstract
Insulin acts on different organs, including the brain, which helps it regulate energy metabolism. Insulin signaling plays an important role in the function of different cell types. In this review, we have summarized the key roles of insulin and insulin receptors in healthy brains and in different brain disorders. Insulin signaling, as well as insulin resistance (IR), is a major contributor in the regulation of mood, behavior, and cognition. Recent evidence showed that both peripheral and central insulin resistance play a role in the pathophysiology, clinical presentation, and management of neuropsychiatric disorders like Cognitive Impairment/Dementia, Depression, and Schizophrenia. Many human studies point out Insulin Resistance/Metabolic Syndrome can increase the risk of dementia especially Alzheimer's dementia (AD). IR has been shown to play a role in AD development but also in its progression. This review article discusses the pathophysiological pathways and mechanisms of insulin resistance in major neuropsychiatric disorders. The extent of insulin resistance can be quantified using IR biomarkers like insulin levels, HOMA-IR index, and Triglyceride glucose-body mass index (TyG-BMI) levels. IR has been shown to precede neurodegeneration. Human trials showed current treatment with certain antidiabetic drugs, as well as life style management, like weight loss and exercise for IR, have shown promise in the management of cognitive/neuropsychiatric disorders. This may pave the pathway to the development of new therapeutic approaches to these challenging disorders of dementia and psychiatric diseases. Recent clinical trials are showing some encouraging evidence for these pharmacological and nonpharmacological approaches for IR in psychiatric and cognitive disorders, even though more research is needed to apply this evidence into clinical practice. Early identification and management of IR may help as a strategy to potentially alter neuropsychiatric disorders onset as well as its progression.
Collapse
Affiliation(s)
| | - Tyler Halverson
- Department of Psychiatry, University of Toronto, Toronto, ON M5T 1R8, Canada;
| |
Collapse
|
32
|
Bai Y, Zhou Z, Han B, Xiang X, Huang W, Yao H. Revisiting astrocytic calcium signaling in the brain. FUNDAMENTAL RESEARCH 2024; 4:1365-1374. [PMID: 39734522 PMCID: PMC11670731 DOI: 10.1016/j.fmre.2023.11.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 11/28/2023] [Accepted: 11/30/2023] [Indexed: 12/31/2024] Open
Abstract
Astrocytes, characterized by complex spongiform morphology, participate in various physiological processes, and abnormal changes in their calcium (Ca2+) signaling are implicated in central nervous system disorders. However, medications targeting the control of Ca2+ have fallen short of the anticipated therapeutic outcomes in clinical applications. This underscores the fact that our comprehension of this intricate regulation of calcium ions remains considerably incomplete. In recent years, with the advancement of Ca2+ labeling, imaging, and analysis techniques, Ca2+ signals have been found to exhibit high specificity at different spatial locations within the intricate structure of astrocytes. This has ushered the study of Ca2+ signaling in astrocytes into a new phase, leading to several groundbreaking research achievements. Despite this, the comprehensive understanding of astrocytic Ca2+ signaling and their implications remains challenging area for future research.
Collapse
Affiliation(s)
- Ying Bai
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing 210009, China
| | - Zhongqiu Zhou
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing 210009, China
| | - Bing Han
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing 210009, China
| | - Xianyuan Xiang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Wenhui Huang
- Molecular Physiology, CIPMM, University of Saarland, Homburg 66421, Germany
| | - Honghong Yao
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing 210009, China
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
- Institute of Life Sciences, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing 210096, China
- Center for Global Health, School of Public Health, Nanjig Medical University, Nanjing 211166, China
| |
Collapse
|
33
|
Luo R, Hu X, Li X, Lei F, Liao P, Yi L, Zhang X, Zhou B, Jiang R. Dysfunctional astrocyte glutamate uptake in the hypothalamic paraventricular nucleus contributes to visceral pain and anxiety-like behavior in mice with chronic pancreatitis. Glia 2024; 72:2022-2037. [PMID: 39046219 DOI: 10.1002/glia.24595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/12/2024] [Accepted: 07/08/2024] [Indexed: 07/25/2024]
Abstract
Abdominal visceral pain is a predominant symptom in patients with chronic pancreatitis (CP); however, the underlying mechanism of pain in CP remains elusive. We hypothesized that astrocytes in the hypothalamic paraventricular nucleus (PVH) contribute to CP pain pathogenesis. A mouse model of CP was established by repeated intraperitoneal administration of caerulein to induce abdominal visceral pain. Abdominal mechanical stimulation, open field and elevated plus maze tests were performed to assess visceral pain and anxiety-like behavior. Fiber photometry, brain slice Ca2+ imaging, electrophysiology, and immunohistochemistry were used to investigate the underlying mechanisms. Mice with CP displayed long-term abdominal mechanical allodynia and comorbid anxiety, which was accompanied by astrocyte glial fibrillary acidic protein reactivity, elevated Ca2+ signaling, and astroglial glutamate transporter-1 (GLT-1) deficits in the PVH. Specifically, reducing astrocyte Ca2+ signaling in the PVH via chemogenetics significantly rescued GLT-1 deficits and alleviated mechanical allodynia and anxiety in mice with CP. Furthermore, we found that GLT-1 deficits directly contributed to the hyperexcitability of VGLUT2PVH neurons in mice with CP, and that pharmacological activation of GLT-1 alleviated the hyperexcitability of VGLUT2PVH neurons, abdominal visceral pain, and anxiety in these mice. Taken together, our data suggest that dysfunctional astrocyte glutamate uptake in the PVH contributes to visceral pain and anxiety in mice with CP, highlighting GLT-1 as a potential therapeutic target for chronic pain in patients experiencing CP.
Collapse
Affiliation(s)
- Rong Luo
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaojun Hu
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - Xin Li
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - Fan Lei
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - Ping Liao
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - Limei Yi
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - Xia Zhang
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, China
| | - Bin Zhou
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - Ruotian Jiang
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
34
|
Zhang Y, Li D, Cai Y, Zou R, Zhang Y, Deng X, Wang Y, Tang T, Ma Y, Wu F, Xie Y. Astrocyte allocation during brain development is controlled by Tcf4-mediated fate restriction. EMBO J 2024; 43:5114-5140. [PMID: 39300210 PMCID: PMC11535398 DOI: 10.1038/s44318-024-00218-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 08/07/2024] [Accepted: 08/09/2024] [Indexed: 09/22/2024] Open
Abstract
Astrocytes in the brain exhibit regional heterogeneity contributing to regional circuits involved in higher-order brain functions, yet the mechanisms controlling their distribution remain unclear. Here, we show that the precise allocation of astrocytes to specific brain regions during development is achieved through transcription factor 4 (Tcf4)-mediated fate restriction based on their embryonic origin. Loss of Tcf4 in ventral telencephalic neural progenitor cells alters the fate of oligodendrocyte precursor cells to transient intermediate astrocyte precursor cells, resulting in mislocalized astrocytes in the dorsal neocortex. These ectopic astrocytes engage with neocortical neurons and acquire features reminiscent of dorsal neocortical astrocytes. Furthermore, Tcf4 functions as a suppressor of astrocyte fate during the differentiation of oligodendrocyte precursor cells derived from the ventral telencephalon, thereby restricting the fate to the oligodendrocyte lineage in the dorsal neocortex. Together, our findings highlight a previously unappreciated role for Tcf4 in regulating astrocyte allocation, offering additional insights into the mechanisms underlying neurodevelopmental disorders linked to Tcf4 mutations.
Collapse
Affiliation(s)
- Yandong Zhang
- Department of Anesthesia, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, and Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Dan Li
- Department of Anesthesia, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, and Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Yuqun Cai
- Department of Anesthesia, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, and Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Rui Zou
- Department of Anesthesia, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, and Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Yilan Zhang
- Department of Anesthesia, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, and Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Xin Deng
- Department of Anesthesia, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, and Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Yafei Wang
- Department of Anesthesia, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, and Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Tianxiang Tang
- Department of Anesthesia, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, and Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Yuanyuan Ma
- Department of Anesthesia, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, and Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Feizhen Wu
- Laboratory of Epi-Informatics, Intelligent Medicine Institute of Fudan University, Shanghai, 200032, China
| | - Yunli Xie
- Department of Anesthesia, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, and Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
35
|
Blossom V, Ullal SD, Rai R, Chakraborthi S, Kumar NA, Pai MM, Vadgaonkar R. Bacterial lipopolysaccharide model of neuroinflammation-associated neurodegeneration in Wistar rats: A comparison between different durations of lipopolysaccharide induction. Vet World 2024; 17:2567-2576. [PMID: 39829657 PMCID: PMC11736368 DOI: 10.14202/vetworld.2024.2567-2576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 10/07/2024] [Indexed: 01/22/2025] Open
Abstract
Background and Aim Bacterial lipopolysaccharide (LPS)-induced neuroinflammation can be the most dependable animal model for studying neurodegeneration mechanisms driven by systemic inflammation-induced neuroinflammation. Hence, this study aimed to standardize the LPS model of neuroinflammation by comparing the effect of relatively low-dose LPS administered for different durations on the induction of neurodegeneration in Wistar rats. Materials and Methods Six groups of six adult Wistar rats per group were used in the study. Group 1 was the control group, and the other five were administered single weekly dose of LPS (170 μg/kg) for increasing durations, ranging from 4 weeks to 8 weeks. The study endpoints included behavioral parameters, neuronal assay results, and the expression of microglia and astrocytes in the frontal cortex, dentate gyrus, and hippocampus. Results We observed a significant reduction in the number of neurons and an increase in glial cells at 5 weeks of exposure, along with a decline in memory. Thereafter, these changes were gradual until 7 weeks of exposure. However, at 8 weeks of exposure, there was no further statistically significant worsening compared with the group exposed for 7 weeks. Conclusion To effectively induce neuroinflammation and cause neuronal damage, a minimum of five weekly LPS administrations at a dose of 170 μg/kg is required. Moreover, our results recommend a maximum of 7 weeks of LPS exposure to create a chronic inflammatory model of neuroinflammation.
Collapse
Affiliation(s)
- Vandana Blossom
- Department of Anatomy, Kasturba Medical College Mangalore, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Sheetal Dinkar Ullal
- Department of Pharmacology, Kasturba Medical College Mangalore, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Rajalakshmi Rai
- Department of Anatomy, Kasturba Medical College Mangalore, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Shrijeet Chakraborthi
- Department of Cellular Pathology, Royal Preston Hospital, Fulwood, Preston, Lancashire, UK
| | - Nayanatara Arun Kumar
- Department of Physiology, Kasturba Medical College Mangalore, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Mangala M. Pai
- Department of Anatomy, Kasturba Medical College Mangalore, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Rajanigandha Vadgaonkar
- Department of Anatomy, Kasturba Medical College Mangalore, Manipal Academy of Higher Education, Manipal, Karnataka, India
| |
Collapse
|
36
|
Dong W, Liu S, Li S, Wang Z. Cell reprogramming therapy for Parkinson's disease. Neural Regen Res 2024; 19:2444-2455. [PMID: 38526281 PMCID: PMC11090434 DOI: 10.4103/1673-5374.390965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/23/2023] [Accepted: 10/08/2023] [Indexed: 03/26/2024] Open
Abstract
Parkinson's disease is typically characterized by the progressive loss of dopaminergic neurons in the substantia nigra pars compacta. Many studies have been performed based on the supplementation of lost dopaminergic neurons to treat Parkinson's disease. The initial strategy for cell replacement therapy used human fetal ventral midbrain and human embryonic stem cells to treat Parkinson's disease, which could substantially alleviate the symptoms of Parkinson's disease in clinical practice. However, ethical issues and tumor formation were limitations of its clinical application. Induced pluripotent stem cells can be acquired without sacrificing human embryos, which eliminates the huge ethical barriers of human stem cell therapy. Another widely considered neuronal regeneration strategy is to directly reprogram fibroblasts and astrocytes into neurons, without the need for intermediate proliferation states, thus avoiding issues of immune rejection and tumor formation. Both induced pluripotent stem cells and direct reprogramming of lineage cells have shown promising results in the treatment of Parkinson's disease. However, there are also ethical concerns and the risk of tumor formation that need to be addressed. This review highlights the current application status of cell reprogramming in the treatment of Parkinson's disease, focusing on the use of induced pluripotent stem cells in cell replacement therapy, including preclinical animal models and progress in clinical research. The review also discusses the advancements in direct reprogramming of lineage cells in the treatment of Parkinson's disease, as well as the controversy surrounding in vivo reprogramming. These findings suggest that cell reprogramming may hold great promise as a potential strategy for treating Parkinson's disease.
Collapse
Affiliation(s)
- Wenjing Dong
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan Province, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan Province, China
| | - Shuyi Liu
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan Province, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan Province, China
| | - Shangang Li
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan Province, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan Province, China
| | - Zhengbo Wang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan Province, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan Province, China
| |
Collapse
|
37
|
Schroeder ME, McCormack DM, Metzner L, Kang J, Li KX, Yu E, Levandowski KM, Zaniewski H, Zhang Q, Boyden ES, Krienen FM, Feng G. Astrocyte regional specialization is shaped by postnatal development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.11.617802. [PMID: 39416060 PMCID: PMC11482951 DOI: 10.1101/2024.10.11.617802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Astrocytes are an abundant class of glial cells with critical roles in neural circuit assembly and function. Though many studies have uncovered significant molecular distinctions between astrocytes from different brain regions, how this regionalization unfolds over development is not fully understood. We used single-nucleus RNA sequencing to characterize the molecular diversity of brain cells across six developmental stages and four brain regions in the mouse and marmoset brain. Our analysis of over 170,000 single astrocyte nuclei revealed striking regional heterogeneity among astrocytes, particularly between telencephalic and diencephalic regions, at all developmental time points surveyed in both species. At the stages sampled, most of the region patterning was private to astrocytes and not shared with neurons or other glial types. Though astrocytes were already regionally patterned in late embryonic stages, this region-specific astrocyte gene expression signature changed dramatically over postnatal development, and its composition suggests that regional astrocytes further specialize postnatally to support their local neuronal circuits. Comparing across species, we found divergence in the expression of astrocytic region- and age-differentially expressed genes and the timing of astrocyte maturation relative to birth between mouse and marmoset, as well as hundreds of species differentially expressed genes. Finally, we used expansion microscopy to show that astrocyte morphology is largely conserved across gray matter regions of prefrontal cortex, striatum, and thalamus in the mouse, despite substantial molecular divergence.
Collapse
Affiliation(s)
- Margaret E Schroeder
- McGovern Institute for Brain Research, MIT, Cambridge, MA, USA
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA, USA
| | | | - Lukas Metzner
- McGovern Institute for Brain Research, MIT, Cambridge, MA, USA
| | - Jinyoung Kang
- McGovern Institute for Brain Research, MIT, Cambridge, MA, USA
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA, USA
| | - Katelyn X Li
- McGovern Institute for Brain Research, MIT, Cambridge, MA, USA
| | - Eunah Yu
- McGovern Institute for Brain Research, MIT, Cambridge, MA, USA
| | - Kirsten M Levandowski
- McGovern Institute for Brain Research, MIT, Cambridge, MA, USA
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Qiangge Zhang
- McGovern Institute for Brain Research, MIT, Cambridge, MA, USA
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Edward S Boyden
- McGovern Institute for Brain Research, MIT, Cambridge, MA, USA
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA, USA
- Yang Tan Collective, MIT, Cambridge, MA, USA
- Center for Neurobiological Engineering and K. Lisa Yang Center for Bionics, MIT, Cambridge, MA, USA
- Department of Biological Engineering, MIT, Cambridge, MA, USA
- Koch Institute, MIT, Cambridge, MA, USA
- Howard Hughes Medical Institute, Cambridge, MA, USA
- Media Arts and Sciences, MIT, Cambridge, MA, USA
| | - Fenna M Krienen
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Guoping Feng
- McGovern Institute for Brain Research, MIT, Cambridge, MA, USA
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA, USA
- Yang Tan Collective, MIT, Cambridge, MA, USA
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| |
Collapse
|
38
|
Sutley-Koury SN, Anderson A, Taitano-Johnson C, Ajayi M, Kulinich AO, Contreras K, Regalado J, Tiwari-Woodruff SK, Ethell IM. Astrocytic Ephrin-B1 Regulates Oligodendrocyte Development and Myelination. ASN Neuro 2024; 16:2401753. [PMID: 39437409 PMCID: PMC11792131 DOI: 10.1080/17590914.2024.2401753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024] Open
Abstract
Astrocytes have been implicated in oligodendrocyte development and myelination, however, the mechanisms by which astrocytes regulate oligodendrocytes remain unclear. Our findings suggest a new mechanism that regulates astrocyte-mediated oligodendrocyte development through ephrin-B1 signaling in astrocytes. Using a mouse model, we examined the role of astrocytic ephrin-B1 signaling in oligodendrocyte development by deleting ephrin-B1 specifically in astrocytes during the postnatal days (P)14-P28 period and used mRNA analysis, immunohistochemistry, and mouse behaviors to study its effects on oligodendrocytes and myelination. We found that deletion of astrocytic ephrin-B1 downregulated many genes associated with oligodendrocyte development, myelination, and lipid metabolism in the hippocampus and the corpus callosum. Additionally, we observed a reduced number of oligodendrocytes and impaired myelination in the corpus callosum of astrocyte-specific ephrin-B1 KO mice. Finally, our data show reduced motor strength in these mice exhibiting clasping phenotype and impaired performance in the rotarod test most likely due to impaired myelination. Our studies provide new evidence that astrocytic ephrin-B1 positively regulates oligodendrocyte development and myelination, potentially through astrocyte-oligodendrocyte interactions.
Collapse
Affiliation(s)
- Samantha N. Sutley-Koury
- Division of Biomedical Sciences and Biomedical Sciences Graduate Program, School of Medicine, University of California Riverside, Riverside, California, USA
| | - Alyssa Anderson
- Division of Biomedical Sciences and Biomedical Sciences Graduate Program, School of Medicine, University of California Riverside, Riverside, California, USA
| | - Christopher Taitano-Johnson
- Division of Biomedical Sciences and Biomedical Sciences Graduate Program, School of Medicine, University of California Riverside, Riverside, California, USA
- Neuroscience Graduate Program, University of California Riverside, Riverside, California, USA
| | - Moyinoluwa Ajayi
- Division of Biomedical Sciences and Biomedical Sciences Graduate Program, School of Medicine, University of California Riverside, Riverside, California, USA
| | - Anna O. Kulinich
- Division of Biomedical Sciences and Biomedical Sciences Graduate Program, School of Medicine, University of California Riverside, Riverside, California, USA
| | - Kimberly Contreras
- Division of Biomedical Sciences and Biomedical Sciences Graduate Program, School of Medicine, University of California Riverside, Riverside, California, USA
| | - Jasmin Regalado
- Division of Biomedical Sciences and Biomedical Sciences Graduate Program, School of Medicine, University of California Riverside, Riverside, California, USA
| | - Seema K. Tiwari-Woodruff
- Division of Biomedical Sciences and Biomedical Sciences Graduate Program, School of Medicine, University of California Riverside, Riverside, California, USA
- Neuroscience Graduate Program, University of California Riverside, Riverside, California, USA
| | - Iryna M. Ethell
- Division of Biomedical Sciences and Biomedical Sciences Graduate Program, School of Medicine, University of California Riverside, Riverside, California, USA
- Neuroscience Graduate Program, University of California Riverside, Riverside, California, USA
| |
Collapse
|
39
|
Freund A, Mayr A, Winkler P, Weber R, Tervonen A, Refaeli R, Lenk K. Computational modeling of the relationship between morphological heterogeneity and functional responses in mouse hippocampal astrocytes. Front Cell Neurosci 2024; 18:1474948. [PMID: 39484184 PMCID: PMC11524972 DOI: 10.3389/fncel.2024.1474948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 09/23/2024] [Indexed: 11/03/2024] Open
Abstract
Recent studies indicate that astrocytes show heterogeneity in morphology and physiological function. They integrate synaptic signals and release calcium in reaction to active neurons. These calcium signals are not yet fully understood as they are highly dependent on the cell's morphology, which can vary across and within brain regions. We found structural heterogeneity among mouse hippocampal CA1 astrocytes based on geometric features, clustering 741 cells into six classes. Of those, we selected 84 cells and reconstructed their morphology based on confocal microscope images and converted them into multi-compartment models with a high detailedness. We applied a computational biophysical model simulating the intracellular ion and IP3 signaling and diffusion in those 3D cell geometries. The cells were stimulated with three different glutamate stimuli. Calcium mainly oscillated in the stimulated and the neighboring compartment but not in the soma. Significant differences were found in the peak width, mean prominence, and mean peak amplitude of the calcium signal when comparing the signals in the stimulated and neighboring compartments. Overall, this study highlights the influence of the complex morphology of astrocytes on intracellular ionic signaling.
Collapse
Affiliation(s)
- Anna Freund
- Faculty of Computer Science and Biomedical Engineering, Institute of Neural Engineering, Graz University of Technology, Graz, Austria
| | - Alexander Mayr
- Faculty of Computer Science and Biomedical Engineering, Institute of Neural Engineering, Graz University of Technology, Graz, Austria
| | - Peter Winkler
- Faculty of Computer Science and Biomedical Engineering, Institute of Neural Engineering, Graz University of Technology, Graz, Austria
| | - Rene Weber
- Faculty of Computer Science and Biomedical Engineering, Institute of Neural Engineering, Graz University of Technology, Graz, Austria
| | - Aapo Tervonen
- Biosciences Unit, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Ron Refaeli
- Laboratory of Inbal Goshen, Hebrew University of Jerusalem, Edmond and Lily Safra Center (ELSC), Jerusalem, Israel
| | - Kerstin Lenk
- Faculty of Computer Science and Biomedical Engineering, Institute of Neural Engineering, Graz University of Technology, Graz, Austria
- BioTechMed, Graz, Austria
| |
Collapse
|
40
|
Rangel-Gomez M, Alberini CM, Deneen B, Drummond GT, Manninen T, Sur M, Vicentic A. Neuron-Glial Interactions: Implications for Plasticity, Behavior, and Cognition. J Neurosci 2024; 44:e1231242024. [PMID: 39358030 PMCID: PMC11450529 DOI: 10.1523/jneurosci.1231-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 07/28/2024] [Accepted: 07/29/2024] [Indexed: 10/04/2024] Open
Abstract
The traditional view of glial cells as mere supportive tissue has shifted, due to advances in technology and theoretical conceptualization, to include a diversity of other functions, such as regulation of complex behaviors. Astrocytes, the most abundant glial cells in the central nervous system (CNS), have been shown to modulate synaptic functions through gliotransmitter-mediated neurotransmitter reuptake, influencing neuronal signaling and behavioral functions. Contemporary studies further highlight astrocytes' involvement in complex cognitive functions. For instance, inhibiting astrocytes in the hippocampus can lead to memory deficits, suggesting their integral role in memory processes. Moreover, astrocytic calcium activity and astrocyte-neuron metabolic coupling have been linked to changes in synaptic strength and learning. Microglia, another type of glial cell, also extend beyond their supportive roles, contributing to learning and memory processes, with microglial reductions impacting these functions in a developmentally dependent manner. Oligodendrocytes, traditionally thought to have limited roles postdevelopment, are now recognized for their activity-dependent modulation of myelination and plasticity, thus influencing behavioral responses. Recent advancements in technology and computational modeling have expanded our understanding of glial functions, particularly how astrocytes influence neuronal circuits and behaviors. This review underscores the importance of glial cells in CNS functions and the need for further research to unravel the complexities of neuron-glia interactions, the impact of these interactions on brain functions, and potential implications for neurological diseases.
Collapse
Affiliation(s)
- Mauricio Rangel-Gomez
- Division of Neuroscience and Basic Behavioral Sciences, National Institute of Mental Health, Bethesda, Maryland 20852
| | | | - Benjamin Deneen
- Center for Cell and Gene Therapy, Center for Cancer Neuroscience, and Department of Neurosurgery, Baylor College of Medicine, Houston, Texas 77030
| | - Gabrielle T Drummond
- Department of Brain and Cognitive Sciences, Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Tiina Manninen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland 33720
| | - Mriganka Sur
- Department of Brain and Cognitive Sciences, Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Aleksandra Vicentic
- Division of Neuroscience and Basic Behavioral Sciences, National Institute of Mental Health, Bethesda, Maryland 20852
| |
Collapse
|
41
|
Wang H, Huang M, Yang S, Xu J, Li J, Qin H, Liang S, Teng T, Yang C, Gong M, He Y, Li X, Wang H, Liao X, Chen X, Yang Z, Zhang K. Mapping multi-regional functional connectivity of astrocyte-neuronal networks during behaviors. NEUROPHOTONICS 2024; 11:045010. [PMID: 39554692 PMCID: PMC11566604 DOI: 10.1117/1.nph.11.4.045010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/21/2024] [Accepted: 10/22/2024] [Indexed: 11/19/2024]
Abstract
Significance Diverse behaviors rely on coordinated activity and multi-regional functional connectivity within astrocyte-neuronal networks. However, current techniques for simultaneously measuring astrocytic and neuronal activities across multiple brain regions during behaviors remain limited. Aim We propose a multi-fiber solution that can simultaneously record activities of astrocyte-neuronal networks across multiple regions during behaviors. Approach We employed cell-specific dual-color genetically encoded calcium indicators (GECIs) and multi-fiber photometry to simultaneously measure astrocytic and neuronal Ca2+ transients across multiple brain regions in freely behaving animals. Results Our findings demonstrate that both movements and sensory stimuli induce synchronized and highly correlated Ca2+ transients in astrocytes and neurons of freely behaving mice. In addition, we recorded astrocytic and neuronal Ca2+ transients from multiple brain regions during mouse behaviors. Our observations reveal heightened synchronization of astrocytic and neuronal Ca2+ transients across different brain regions during movements or sensory stimuli, indicating enhanced functional connectivity within brain-wide astrocyte-neuronal networks. Conclusions Multi-fiber photometry, combined with cell-specific dual-color GECIs, represents a powerful approach for investigating astrocytic and neuronal activities across different brain regions during behaviors. This technique serves as a versatile tool for analyzing the multi-regional functional connectivity map of astrocyte-neuronal networks associated with specific behaviors.
Collapse
Affiliation(s)
- Haoyu Wang
- Third Military Medical University, Brain Research Center and State Key Laboratory of Trauma and Chemical Poisoning, Chongqing, China
| | - Mingzhu Huang
- Chongqing University, College of Bioengineering, Chongqing, China
| | - Shaofan Yang
- Third Military Medical University, Brain Research Center and State Key Laboratory of Trauma and Chemical Poisoning, Chongqing, China
| | - Jiameng Xu
- Tiangong University, The School of Control Science and Engineering, Tianjin, China
| | - Jin Li
- Third Military Medical University, Brain Research Center and State Key Laboratory of Trauma and Chemical Poisoning, Chongqing, China
| | - Han Qin
- Chongqing Institute for Brain and Intelligence, Guangyang Bay Laboratory, Chongqing, China
| | - Shanshan Liang
- Third Military Medical University, Brain Research Center and State Key Laboratory of Trauma and Chemical Poisoning, Chongqing, China
| | - Teng Teng
- Third Military Medical University, Brain Research Center and State Key Laboratory of Trauma and Chemical Poisoning, Chongqing, China
| | - Chuanyan Yang
- Third Military Medical University, Brain Research Center and State Key Laboratory of Trauma and Chemical Poisoning, Chongqing, China
| | - Mingyue Gong
- Third Military Medical University, Brain Research Center and State Key Laboratory of Trauma and Chemical Poisoning, Chongqing, China
| | - Yong He
- Peking university, School of Electronics, Beijing, China
| | - Xingyi Li
- Chongqing University, School of Medicine, Center for Neurointelligence, Chongqing, China
| | - Huiquan Wang
- Tiangong University, The School of Control Science and Engineering, Tianjin, China
| | - Xiang Liao
- Chongqing University, School of Medicine, Center for Neurointelligence, Chongqing, China
| | - Xiaowei Chen
- Third Military Medical University, Brain Research Center and State Key Laboratory of Trauma and Chemical Poisoning, Chongqing, China
| | - Zhiqi Yang
- Gansu Provincial Central Hospital, Department of Neurology, Lanzhou, China
| | - Kuan Zhang
- Third Military Medical University, Brain Research Center and State Key Laboratory of Trauma and Chemical Poisoning, Chongqing, China
| |
Collapse
|
42
|
Cheng X, Zhao M, Chen L, Huang C, Xu Q, Shao J, Wang HT, Zhang Y, Li X, Xu X, Yao XP, Lin KJ, Xue H, Wang H, Chen Q, Zhu YC, Zhou JW, Ge WP, Zhu SJ, Liu JY, Chen WJ, Xiong ZQ. Astrocytes modulate brain phosphate homeostasis via polarized distribution of phosphate uptake transporter PiT2 and exporter XPR1. Neuron 2024; 112:3126-3142.e8. [PMID: 39019040 DOI: 10.1016/j.neuron.2024.06.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/05/2024] [Accepted: 06/20/2024] [Indexed: 07/19/2024]
Abstract
Aberrant inorganic phosphate (Pi) homeostasis causes brain calcification and aggravates neurodegeneration, but the underlying mechanism remains unclear. Here, we found that primary familial brain calcification (PFBC)-associated Pi transporter genes Pit2 and Xpr1 were highly expressed in astrocytes, with importer PiT2 distributed over the entire astrocyte processes and exporter XPR1 localized to astrocyte end-feet on blood vessels. This polarized PiT2 and XPR1 distribution endowed astrocyte with Pi transport capacity competent for brain Pi homeostasis, which was disrupted in mice with astrocyte-specific knockout (KO) of either Pit2 or Xpr1. Moreover, we found that Pi uptake by PiT2, and its facilitation by PFBC-associated galactosidase MYORG, were required for the high Pi transport capacity of astrocytes. Finally, brain calcification was suppressed by astrocyte-specific PiT2 re-expression in Pit2-KO mice. Thus, astrocyte-mediated Pi transport is pivotal for brain Pi homeostasis, and elevating astrocytic Pi transporter function represents a potential therapeutic strategy for reducing brain calcification.
Collapse
Affiliation(s)
- Xuewen Cheng
- Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience and State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai 200031, China; Lin Gang Laboratory, Shanghai 201602, China.
| | - Miao Zhao
- Department of Neurology, The First Affiliated Hospital, Institute of Neuroscience, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou 350005, China
| | - Lei Chen
- Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience and State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai 200031, China; Lin Gang Laboratory, Shanghai 201602, China
| | - Chenwei Huang
- Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience and State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiwu Xu
- Lin Gang Laboratory, Shanghai 201602, China
| | - Jia Shao
- Lin Gang Laboratory, Shanghai 201602, China
| | - Hong-Tao Wang
- Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience and State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yuxian Zhang
- Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience and State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xuequan Li
- Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience and State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xuan Xu
- Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience and State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xiang-Ping Yao
- Department of Neurology, The First Affiliated Hospital, Institute of Neuroscience, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou 350005, China
| | - Kai-Jun Lin
- Department of Neurology, The First Affiliated Hospital, Institute of Neuroscience, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou 350005, China
| | - Hui Xue
- Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience and State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Han Wang
- Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience and State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qi Chen
- Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience and State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yong-Chuan Zhu
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Jia-Wei Zhou
- Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience and State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Woo-Ping Ge
- Chinese Institute for Brain Research, Beijing 102206, China
| | - Shu-Jia Zhu
- Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience and State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing-Yu Liu
- Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience and State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wan-Jin Chen
- Department of Neurology, The First Affiliated Hospital, Institute of Neuroscience, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou 350005, China.
| | - Zhi-Qi Xiong
- Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience and State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
43
|
Zhao Y, Huang Y, Cao Y, Yang J. Astrocyte-Mediated Neuroinflammation in Neurological Conditions. Biomolecules 2024; 14:1204. [PMID: 39456137 PMCID: PMC11505625 DOI: 10.3390/biom14101204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/15/2024] [Accepted: 09/18/2024] [Indexed: 10/28/2024] Open
Abstract
Astrocytes are one of the key glial types of the central nervous system (CNS), accounting for over 20% of total glial cells in the brain. Extensive evidence has established their indispensable functions in the maintenance of CNS homeostasis, as well as their broad involvement in neurological conditions. In particular, astrocytes can participate in various neuroinflammatory processes, e.g., releasing a repertoire of cytokines and chemokines or specific neurotrophic factors, which result in both beneficial and detrimental effects. It has become increasingly clear that such astrocyte-mediated neuroinflammation, together with its complex crosstalk with other glial cells or immune cells, designates neuronal survival and the functional integrity of neurocircuits, thus critically contributing to disease onset and progression. In this review, we focus on the current knowledge of the neuroinflammatory responses of astrocytes, summarizing their common features in neurological conditions. Moreover, we highlight several vital questions for future research that promise novel insights into diagnostic or therapeutic strategies against those debilitating CNS diseases.
Collapse
Affiliation(s)
- Yanxiang Zhao
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China
- The Affiliated High School, Peking University, Beijing 100080, China
| | - Yingying Huang
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China
| | - Ying Cao
- Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Jing Yang
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China
- Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- Peking University Third Hospital Cancer Center, Beijing 100191, China
| |
Collapse
|
44
|
Akter KA, Sharma S, Sifat AE, Zhang Y, Patel DK, Cucullo L, Abbruscato TJ. Metformin ameliorates neuroinflammatory environment for neurons and astrocytes during in vitro and in vivo stroke and tobacco smoke chemical exposure: Role of Nrf2 activation. Redox Biol 2024; 75:103266. [PMID: 39094400 PMCID: PMC11345405 DOI: 10.1016/j.redox.2024.103266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/26/2024] [Accepted: 07/06/2024] [Indexed: 08/04/2024] Open
Abstract
Despite the protective nature of the blood-brain barrier (BBB) and brain-protecting tissues, some types of CNS injury or stress can cause cerebral cytokine production and profound alterations in brain function. Neuroinflammation, which can also be accompanied by increased cerebral cytokine production, has a remarkable impact on the pathogenesis of many neurological illnesses, including loss of BBB integrity and ischemic stroke, yet effective treatment choices for these diseases are currently lacking. Although little is known about the brain effects of Metformin (MF), a commonly prescribed first-line antidiabetic drug, prior research suggested that it may be useful in preventing BBB deterioration and the increased risk of stroke caused by tobacco smoking (TS). Therefore, reducing neuroinflammation by escalating anti-inflammatory cytokine production and declining pro-inflammatory cytokine production could prove an effective therapeutic strategy for ischemic stroke. Hence, the current investigation was planned to explore the potential role of MF against stroke and TS-induced neuroinflammation and reactive oxygen species (ROS) production. Our studies revealed that MF suppressed releasing pro-inflammatory mediators like tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) by aiming at the nuclear factor kappa B (NF-κB) signaling pathway in primary neurons and astrocytes. MF also upregulated anti-inflammatory mediators, like interleukin-10 (IL-10), and interleukin-4 (IL-4), by upregulating the Nrf2-ARE signaling pathway. Adolescent mice receiving MF along with TS exposure also showed a notable decrease in NF-κB expression compared to the mice not treated with MF and significantly decreased the level of TNF-α, IL-1β, MCP-1, and MIP-2 and increased the levels of IL-10 and IL-4 through the activation of Nrf2-ARE signaling pathway. These results suggest that MF has anti-neuroinflammatory effects via inhibiting NF-κB signaling by activating Nrf2-ARE. These studies support that MF could be a strong candidate drug for treating and or preventing TS-induced neuroinflammation and ischemic stroke.
Collapse
Affiliation(s)
- Khondker Ayesha Akter
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, United States.
| | - Sejal Sharma
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, United States.
| | - Ali Ehsan Sifat
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, United States.
| | - Yong Zhang
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, United States.
| | - Dhaval Kumar Patel
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, United States.
| | - Luca Cucullo
- Department of Foundation Medical Studies, Oakland University William Beaumont School of Medicine, Rochester, MI, United States.
| | - Thomas J Abbruscato
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, United States.
| |
Collapse
|
45
|
Cullen PF, Gammerdinger WJ, Sui SJH, Mazumder AG, Sun D. Transcriptional profiling of retinal astrocytes identifies a specific marker and points to functional specialization. Glia 2024; 72:1604-1628. [PMID: 38785355 PMCID: PMC11262981 DOI: 10.1002/glia.24571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/19/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024]
Abstract
Astrocyte heterogeneity is an increasingly prominent research topic, and studies in the brain have demonstrated substantial variation in astrocyte form and function, both between and within regions. In contrast, retinal astrocytes are not well understood and remain incompletely characterized. Along with optic nerve astrocytes, they are responsible for supporting retinal ganglion cell axons and an improved understanding of their role is required. We have used a combination of microdissection and Ribotag immunoprecipitation to isolate ribosome-associated mRNA from retinal astrocytes and investigate their transcriptome, which we also compared to astrocyte populations in the optic nerve. Astrocytes from these regions are transcriptionally distinct, and we identified retina-specific astrocyte genes and pathways. Moreover, although they share much of the "classical" gene expression patterns of astrocytes, we uncovered unexpected variation, including in genes related to core astrocyte functions. We additionally identified the transcription factor Pax8 as a highly specific marker of retinal astrocytes and demonstrated that these astrocytes populate not only the retinal surface, but also the prelaminar region at the optic nerve head. These findings are likely to contribute to a revised understanding of the role of astrocytes in the retina.
Collapse
Affiliation(s)
- Paul F Cullen
- Department of Ophthalmology, Schepens Eye Research Institute of Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA 02114 USA
| | - William J Gammerdinger
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Shannan J Ho Sui
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Arpan G Mazumder
- Department of Ophthalmology, Schepens Eye Research Institute of Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA 02114 USA
| | - Daniel Sun
- Department of Ophthalmology, Schepens Eye Research Institute of Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA 02114 USA
| |
Collapse
|
46
|
Li M, Liu X, Zhou Y, Guan R, Zhu X, Zou Y, Zheng M, Luo W, Zhang J. Retarded astrogliogenesis in response to hypoxia is facilitated by downregulation of CIRBP. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 282:116710. [PMID: 39024953 DOI: 10.1016/j.ecoenv.2024.116710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 06/24/2024] [Accepted: 07/07/2024] [Indexed: 07/20/2024]
Abstract
The adverse impacts of chronic hypoxia on maternal and infant health at high altitudes warrant significant attention. However, effective protective measures against the resultant growth restrictions and neurodevelopmental disorders in infants and young children are still lacking. This study investigated the neurodevelopment of mice offspring under hypoxic conditions by exposing pregnant mice to a hypobaric oxygen chamber that simulated the hypobaric hypoxia at an altitude of 4000 m until 28 days after delivery. Our findings suggested that prolonged exposure to hypoxia might result in emotional abnormalities and social disorders in offspring. The significant reduction in astrogliogenesis was a characteristic feature associated with neurodevelopmental disorders induced by hypoxia. Further studies demonstrated that cold-induced RNA-binding protein (CIRBP) was a key transcriptional regulator in astrogliogenesis, which downregulated astrocytic differentiation under hypoxia through its crosstalk with the NFIA. Our study emphasized the crucial role of CIRBP in regulating astrogliogenesis and highlighted its potential as a promising target for therapeutic interventions in neurodevelopmental disorders associated with hypoxia.
Collapse
Affiliation(s)
- Ming Li
- Department of Occupational and Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, China
| | - Xinqin Liu
- Department of Occupational and Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, China
| | - Yang Zhou
- Department of Occupational and Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, China
| | - Ruili Guan
- Department of Occupational and Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, China
| | - Xiaozheng Zhu
- Otolaryngology & Head and Neck Center, Cancer Center, Department of Head and Neck Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| | - Yuankang Zou
- Department of Occupational and Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, China
| | - Mingze Zheng
- School of Basic Medical Sciences, Fourth Military Medical University, China
| | - Wenjing Luo
- Department of Occupational and Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, China
| | - Jianbin Zhang
- Department of Occupational and Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, China.
| |
Collapse
|
47
|
Castro-Mendoza PB, Weaver CM, Chang W, Medalla M, Rockland KS, Lowery L, McDonough E, Varghese M, Hof PR, Meyer DE, Luebke JI. Proteomic features of gray matter layers and superficial white matter of the rhesus monkey neocortex: comparison of prefrontal area 46 and occipital area 17. Brain Struct Funct 2024; 229:1495-1525. [PMID: 38943018 PMCID: PMC11374833 DOI: 10.1007/s00429-024-02819-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 06/08/2024] [Indexed: 06/30/2024]
Abstract
In this novel large-scale multiplexed immunofluorescence study we comprehensively characterized and compared layer-specific proteomic features within regions of interest of the widely divergent dorsolateral prefrontal cortex (A46) and primary visual cortex (A17) of adult rhesus monkeys. Twenty-eight markers were imaged in rounds of sequential staining, and their spatial distribution precisely quantified within gray matter layers and superficial white matter. Cells were classified as neurons, astrocytes, oligodendrocytes, microglia, or endothelial cells. The distribution of fibers and blood vessels were assessed by quantification of staining intensity across regions of interest. This method revealed multivariate similarities and differences between layers and areas. Protein expression in neurons was the strongest determinant of both laminar and regional differences, whereas protein expression in glia was more important for intra-areal laminar distinctions. Among specific results, we observed a lower glia-to-neuron ratio in A17 than in A46 and the pan-neuronal markers HuD and NeuN were differentially distributed in both brain areas with a lower intensity of NeuN in layers 4 and 5 of A17 compared to A46 and other A17 layers. Astrocytes and oligodendrocytes exhibited distinct marker-specific laminar distributions that differed between regions; notably, there was a high proportion of ALDH1L1-expressing astrocytes and of oligodendrocyte markers in layer 4 of A17. The many nuanced differences in protein expression between layers and regions observed here highlight the need for direct assessment of proteins, in addition to RNA expression, and set the stage for future protein-focused studies of these and other brain regions in normal and pathological conditions.
Collapse
Affiliation(s)
- Paola B Castro-Mendoza
- Department of Anatomy and Neurobiology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, 02118, USA
- Center for Systems Neuroscience, Boston University, Boston, MA, 02215, USA
| | - Christina M Weaver
- Department of Mathematics, Franklin and Marshall College, Lancaster, PA, 17604, USA
| | - Wayne Chang
- Yale School of Medicine, 333 Cedar St, New Haven, CT, 06510, USA
| | - Maria Medalla
- Department of Anatomy and Neurobiology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, 02118, USA
- Center for Systems Neuroscience, Boston University, Boston, MA, 02215, USA
| | - Kathleen S Rockland
- Department of Anatomy and Neurobiology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, 02118, USA
| | - Lisa Lowery
- GE HealthCare Technology and Innovation Center, Niskayuna, NY, 12309, USA
| | | | - Merina Varghese
- Nash Family Department of Neuroscience, Friedman Brain Institute, and Center for Discovery and Innovation, Icahn School of Medicine at Mount Sinai, New York, NY, 10019, USA
| | - Patrick R Hof
- Nash Family Department of Neuroscience, Friedman Brain Institute, and Center for Discovery and Innovation, Icahn School of Medicine at Mount Sinai, New York, NY, 10019, USA
| | - Dan E Meyer
- GE HealthCare Technology and Innovation Center, Niskayuna, NY, 12309, USA
| | - Jennifer I Luebke
- Department of Anatomy and Neurobiology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, 02118, USA.
- Center for Systems Neuroscience, Boston University, Boston, MA, 02215, USA.
| |
Collapse
|
48
|
Wang L, Guo Q, Acharya S, Zheng X, Huynh V, Whitmore B, Yimit A, Malhotra M, Chatterji S, Rosin N, Labit E, Chipak C, Gorzo K, Haidey J, Elliott DA, Ram T, Zhang Q, Kuipers H, Gordon G, Biernaskie J, Guo J. Primary cilia signaling in astrocytes mediates development and regional-specific functional specification. Nat Neurosci 2024; 27:1708-1720. [PMID: 39103557 DOI: 10.1038/s41593-024-01726-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 07/09/2024] [Indexed: 08/07/2024]
Abstract
Astrocyte diversity is greatly influenced by local environmental modulation. Here we report that the majority of astrocytes across the mouse brain possess a singular primary cilium localized to the cell soma. Comparative single-cell transcriptomics reveals that primary cilia mediate canonical SHH signaling to modulate astrocyte subtype-specific core features in synaptic regulation, intracellular transport, energy and metabolism. Independent of canonical SHH signaling, primary cilia are important regulators of astrocyte morphology and intracellular signaling balance. Dendritic spine analysis and transcriptomics reveal that perturbation of astrocytic cilia leads to disruption of neuronal development and global intercellular connectomes in the brain. Mice with primary ciliary-deficient astrocytes show behavioral deficits in sensorimotor function, sociability, learning and memory. Our results uncover a critical role for primary cilia in transmitting local cues that drive the region-specific diversification of astrocytes within the developing brain.
Collapse
Affiliation(s)
- Lizheng Wang
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Qianqian Guo
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Sandesh Acharya
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Xiao Zheng
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Vanessa Huynh
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Brandon Whitmore
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Askar Yimit
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Mehr Malhotra
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Siddharth Chatterji
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Nicole Rosin
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Department of Surgery, University of Calgary, Calgary, Alberta, Canada
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Elodie Labit
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Department of Surgery, University of Calgary, Calgary, Alberta, Canada
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Colten Chipak
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Kelsea Gorzo
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
| | - Jordan Haidey
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
| | - David A Elliott
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Tina Ram
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Qingrun Zhang
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Mathematics and Statistics, University of Calgary, Calgary, Alberta, Canada
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta, Canada
| | - Hedwich Kuipers
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Clinical Neuroscience, University of Calgary, Calgary, Alberta, Canada
| | - Grant Gordon
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
| | - Jeff Biernaskie
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Surgery, University of Calgary, Calgary, Alberta, Canada
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Jiami Guo
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, Alberta, Canada.
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada.
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.
- Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
49
|
Kharlamova A, Krivova Y, Proshchina A, Godovalova O, Otlyga D, Andreeva E, Shachina M, Grushetskaya E, Saveliev S. Spatial-temporal representation of the astroglial markers in the developing human cortex. Brain Struct Funct 2024:10.1007/s00429-024-02850-z. [PMID: 39153086 DOI: 10.1007/s00429-024-02850-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 08/07/2024] [Indexed: 08/19/2024]
Abstract
Specific spatiotemporal patterns of the normal glial differentiation during human brain development have not been thoroughly studied. Immunomorphological studies on postmortem material have remained a basic method for human neurodevelopmental studies so far. The main problem for the immunohistochemical research of astrogliogenesis is that now there are no universal astrocyte markers, that characterize the whole mature astrocyte population or precursors at each stage of development. To define the general course of astrogliogenesis in the developing human cortex, 25 fetal autopsy samples at the stages from eight postconceptional weeks to birth were collected for the immunomorphological analysis. Spatiotemporal immunoreactivity patterns with the panel of markers (ALDH1L1, GFAP, S100, SOX9, and Olig-2), related to glial differentiation were described and compared. The early S100 + cell population of ventral origin was described as well. This S100 + cell distribution deviated from the SOX9-immunoreactivity pattern and was similar to the Olig-2 one. In the given material the dorsal gliogenic wave was characterized by ALDH1L1-, GFAP-, and S100-immunoreactivity manifestation in the dorsal proliferative niche at the end of the early fetal period. The time point of dorsal astrogliogenesis was agreed upon not later than the 17 GW stage. ALDH1L1 + , GFAP + , S100 + , and SOX9 + cell expansion patterns from the ventricular and subventricular zones to the intermediate zone, subplate, and cortical plate were described at the end of early fetal, middle, and late fetal periods. The ALDH1L1-, GFAP-, and S100-immunoreactivity patterns were shown to be not completely identical.
Collapse
Affiliation(s)
- A Kharlamova
- Avtsyn Research Institute of Human Morphology of FSBSI "Petrovsky National Research Centre of Surgery", Tsyurupy St., 3, Moscow, Russia, 117418.
| | - Yu Krivova
- Avtsyn Research Institute of Human Morphology of FSBSI "Petrovsky National Research Centre of Surgery", Tsyurupy St., 3, Moscow, Russia, 117418
| | - A Proshchina
- Avtsyn Research Institute of Human Morphology of FSBSI "Petrovsky National Research Centre of Surgery", Tsyurupy St., 3, Moscow, Russia, 117418
| | - O Godovalova
- Avtsyn Research Institute of Human Morphology of FSBSI "Petrovsky National Research Centre of Surgery", Tsyurupy St., 3, Moscow, Russia, 117418
| | - D Otlyga
- Avtsyn Research Institute of Human Morphology of FSBSI "Petrovsky National Research Centre of Surgery", Tsyurupy St., 3, Moscow, Russia, 117418
| | - E Andreeva
- Moscow Regional Research Institute of Obstetrics and Gynecology, Pokrovka St., 22A, Moscow, Russia, 101000
- FGBEU APE Russian Medical Academy Continuous Professional Education, Barrikadnaya St., 2/1, S.1, Moscow, Russia, 125993
| | - M Shachina
- Moscow Regional Research Institute of Obstetrics and Gynecology, Pokrovka St., 22A, Moscow, Russia, 101000
| | - E Grushetskaya
- Avtsyn Research Institute of Human Morphology of FSBSI "Petrovsky National Research Centre of Surgery", Tsyurupy St., 3, Moscow, Russia, 117418
| | - S Saveliev
- Avtsyn Research Institute of Human Morphology of FSBSI "Petrovsky National Research Centre of Surgery", Tsyurupy St., 3, Moscow, Russia, 117418
| |
Collapse
|
50
|
Ayala DA, Matarazzo A, Seaberg BL, Patel M, Tijerina E, Matthews C, Bizi G, Brown A, Ta A, Rimer M, Srinivasan R. Heterogeneous brain region-specific responses to astrocytic mitochondrial DNA damage in mice. Sci Rep 2024; 14:18586. [PMID: 39127716 PMCID: PMC11316820 DOI: 10.1038/s41598-024-69499-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024] Open
Abstract
Astrocytes display context-specific diversity in their functions and respond to noxious stimuli between brain regions. Astrocytic mitochondria have emerged as key players in governing astrocytic functional heterogeneity, given their ability to dynamically adapt their morphology to regional demands on ATP generation and Ca2+ buffering functions. Although there is reciprocal regulation between mitochondrial dynamics and mitochondrial Ca2+ signaling in astrocytes, the extent of this regulation in astrocytes from different brain regions remains unexplored. Brain-wide, experimentally induced mitochondrial DNA (mtDNA) loss in astrocytes showed that mtDNA integrity is critical for astrocyte function, however, possible diverse responses to this noxious stimulus between brain areas were not reported in these experiments. To selectively damage mtDNA in astrocytes in a brain-region-specific manner, we developed a novel adeno-associated virus (AAV)-based tool, Mito-PstI expressing the restriction enzyme PstI, specifically in astrocytic mitochondria. Here, we applied Mito-PstI to two brain regions, the dorsolateral striatum and dentate gyrus, and we show that Mito-PstI induces astrocytic mtDNA loss in vivo, but with remarkable brain-region-dependent differences on mitochondrial dynamics, Ca2+ fluxes, and astrocytic and microglial reactivity. Thus, AAV-Mito-PstI is a novel tool to explore the relationship between astrocytic mitochondrial network dynamics and astrocytic mitochondrial Ca2+ signaling in a brain-region-selective manner.
Collapse
Affiliation(s)
- Daniela A Ayala
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University, Bryan, TX, 77843, USA
- Graduate Program in Medical Sciences, Texas A&M University, Bryan, TX, 77843, USA
| | - Anthony Matarazzo
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University, Bryan, TX, 77843, USA
- Graduate Program in Genetics and Genomics, Texas A&M University, Bryan, TX, 77843, USA
| | - Bonnie L Seaberg
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University, Bryan, TX, 77843, USA
| | - Misha Patel
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University, Bryan, TX, 77843, USA
| | - Eliana Tijerina
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University, Bryan, TX, 77843, USA
| | - Camryn Matthews
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University, Bryan, TX, 77843, USA
| | - Gabriel Bizi
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University, Bryan, TX, 77843, USA
| | - Ashton Brown
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University, Bryan, TX, 77843, USA
| | - Alan Ta
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University, Bryan, TX, 77843, USA
| | - Mendell Rimer
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University, Bryan, TX, 77843, USA.
- Graduate Program in Genetics and Genomics, Texas A&M University, Bryan, TX, 77843, USA.
- Texas A&M Institute for Neuroscience, Texas A&M University, Bryan, TX, 77843, USA.
| | - Rahul Srinivasan
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University, Bryan, TX, 77843, USA.
- Graduate Program in Medical Sciences, Texas A&M University, Bryan, TX, 77843, USA.
- Texas A&M Institute for Neuroscience, Texas A&M University, Bryan, TX, 77843, USA.
| |
Collapse
|