1
|
Wu K, Xu Y, Liu P, Chen K, Zhao Y. STING inhibitors and degraders: Potential therapeutic agents in inflammatory diseases. Eur J Med Chem 2025; 291:117632. [PMID: 40262301 DOI: 10.1016/j.ejmech.2025.117632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 03/30/2025] [Accepted: 04/12/2025] [Indexed: 04/24/2025]
Abstract
The regulation of the STING (stimulator of interferon genes) pathway represents a promising target for a range of inflammatory diseases. This review provides an overview of the structure of STING and discusses the mechanisms by which the cyclic GMP-AMP synthase (cGAS)-STING pathway is associated with various autoinflammatory and autoimmune diseases. We explore how targeting STING inhibition or degradation can alleviate excessive inflammatory signaling and improve efficacy. Emerging strategies include inhibiting STING expression by covalently binding compounds or using ligands that target the binding pocket. In addition, selective degradation of STING via the ubiquitin-proteasome system or the lysosomal pathway shows promise. In addition, we explore the implications of modulating the cGAS-STING pathway in the context of various inflammatory diseases. Finally, we summarize the chemical properties of recently developed STING compounds and their potential clinical applications. By comprehensively reviewing the current understanding of the role of STING in inflammation and the therapeutic potential of targeting STING, we aim to identify new avenues of intervention that could improve outcomes for patients with inflammatory diseases. This review highlights the important role of STING in the regulation of inflammation and its potential as a target for innovative therapeutic strategies.
Collapse
Affiliation(s)
- Kerong Wu
- Department of General Surgery, Clinical Translational Research Center for Surgical Infection and Immunity of Nanjing Medical University, Nanjing BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Yiwen Xu
- Department of General Surgery, Clinical Translational Research Center for Surgical Infection and Immunity of Nanjing Medical University, Nanjing BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Peizhao Liu
- Research Institute of General Surgery, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu Province, China
| | - Kexin Chen
- Department of General Surgery, Clinical Translational Research Center for Surgical Infection and Immunity of Nanjing Medical University, Nanjing BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Yun Zhao
- Department of General Surgery, Clinical Translational Research Center for Surgical Infection and Immunity of Nanjing Medical University, Nanjing BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China.
| |
Collapse
|
2
|
Xu G, Sun X, An J, Sun F, Zhang C, Williams JP. Ozone protects from myocardial ischemia-reperfusion injury via inhibition of the NLRP3 inflammasome. Eur J Pharmacol 2025; 997:177631. [PMID: 40246138 DOI: 10.1016/j.ejphar.2025.177631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 04/01/2025] [Accepted: 04/15/2025] [Indexed: 04/19/2025]
Abstract
Ischemic heart disease (IHD) is a leading cause of morbidity and mortality worldwide. Myocardial ischemia/reperfusion injury (MIRI) is the primary cause of myocardial injury triggered by post-myocardial infarction reperfusion therapy. Its pathogenesis involves Ca2+ overload, the production of large amounts of oxygen-free radicals, inflammation, and cell necrosis. Growing evidence suggests that the NLRP3 inflammasome significantly contributes to the sterile inflammatory response and pyroptosis in MIRI, linking damage sensing to the initiation and amplification of the inflammatory response. Reportedly, ozone exerts anti-inflammatory and anti-infection effects by activating the antioxidant system. Additional evidence suggests that ozone inhibits NLRP3 inflammasome expression to relieve ischemic injury. In this study, we aimed to explore whether pretreating the myocardium with ozone protects it from MIRI by inhibiting the NLRP3 inflammasome. Rats were subjected to rectal infusion of ozone for 5 consecutive days, followed by ligation of the left anterior descending coronary artery for 30 min and reperfusion for 120 min to induce MIRI. Experimental results were obtained using echocardiography, triphenyltetrazolium chloride and hematoxylin and eosin staining, western blotting, and enzyme-linked immunosorbent assay. The results showed that ozone significantly improved the diastolic function of the heart, reduced the area of myocardial infarction, and decreased the expression levels of NLRP3, pro-caspase-1, ASC, and the secretion of caspase-1, interleukin (IL)-1β, and IL-18. In summary, these findings reveal that ozone pretreatment can alleviate the damage that occurs during MIRI by inhibiting the NLRP3 Inflammasome.
Collapse
Affiliation(s)
- Guohao Xu
- Laboratory of Anesthesia and Critical Care Medicine in Colleges and Universities of Shandong Province, School of Anesthesiology, Shandong Second Medical University, Weifang, Shandong, 261000, China; Institute for Lnnovation Diagnosis & Treatment in Anesthesiology, Shandong Second Medical University, Weifang, Shandong Province, China; Pain and Sleep Medicine Center, Rapid Anti-depression Center, The Affiliated Hospital of Shandong Second Medical University, Weifang, Shandong Province, China
| | - Xiaotong Sun
- Laboratory of Anesthesia and Critical Care Medicine in Colleges and Universities of Shandong Province, School of Anesthesiology, Shandong Second Medical University, Weifang, Shandong, 261000, China
| | - Jianxiong An
- Laboratory of Anesthesia and Critical Care Medicine in Colleges and Universities of Shandong Province, School of Anesthesiology, Shandong Second Medical University, Weifang, Shandong, 261000, China; Institute for Lnnovation Diagnosis & Treatment in Anesthesiology, Shandong Second Medical University, Weifang, Shandong Province, China; Pain and Sleep Medicine Center, Rapid Anti-depression Center, The Affiliated Hospital of Shandong Second Medical University, Weifang, Shandong Province, China; Department of Anesthesiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Brain Disease Institute & Department of Anesthesiology for the Integrated Traditional Chinese and Western Medicine Hospital, Southern Medical University, Guangzhou, China.
| | - Fan Sun
- Laboratory of Anesthesia and Critical Care Medicine in Colleges and Universities of Shandong Province, School of Anesthesiology, Shandong Second Medical University, Weifang, Shandong, 261000, China
| | - Chengming Zhang
- Laboratory of Anesthesia and Critical Care Medicine in Colleges and Universities of Shandong Province, School of Anesthesiology, Shandong Second Medical University, Weifang, Shandong, 261000, China.
| | - John P Williams
- Department of Anesthesiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
3
|
Liu X, Liu T, Ren X, Zhu X, Tan Y, Guan X, Bai X. Cloning of Toll3 and Toll4 and association analysis among their SNP haplotypes and disease resistance in red swamp crayfish (Procambarus clarkii). FISH & SHELLFISH IMMUNOLOGY 2025; 161:110269. [PMID: 40064215 DOI: 10.1016/j.fsi.2025.110269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 03/02/2025] [Accepted: 03/07/2025] [Indexed: 03/15/2025]
Abstract
With the expansion of the culture scale of red swamp crayfish (Procambarus clarkii), the high incidence of diseases has seriously threatened the development of its industry. In this study, PcToll3 and PcToll4 were respectively cloned and explored SNPs among the germplasm populations, which had been identified relating to disease resistance in crayfish based on our previous study. A total of 3036 bp and 2820 bp of the open reading frame of PcToll3 and PcToll4 encoded 1011 and 939 amino acids, respectively. They were specially expressed in haemolymph, and significantly up-regulated expression after stimulation by Vibrio parahaemolyticus, Aeromonas hydrophila and white spot syndrome virus. It was found that the expression of downstream genes PcALF, PcCru, PcIMD, PcMyD88, and PcNF-κB were repressed after interference of PcToll3 and/or PcToll4. Totally, 16 and 19 SNPs in the coding region of PcToll3 and PcToll4 were mined, and the favoured haplotypes and the combinations of them were classified according to the associated SNPs with the disease resistance in crayfish. The haplotypes of Toll3-Hap1, Toll4-Hap1 and the combination of Toll3+Toll4-Hap1 were further validated that they had the stronger disease resistance comparing to others haplotypes, and the related KASP markers were developed for further breeding application. This study will advance our understanding of the function of the two Toll genes in crayfish, and provide the markers for the molecular breeding.
Collapse
Affiliation(s)
- Xuewei Liu
- National Key Laboratory of Crop Genetic Improvement, Shuangshui Shuanglü Institute, Huazhong Agricultural University, Wuhan, 430070, China; College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Tiantian Liu
- National Key Laboratory of Crop Genetic Improvement, Shuangshui Shuanglü Institute, Huazhong Agricultural University, Wuhan, 430070, China; College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xin Ren
- National Key Laboratory of Crop Genetic Improvement, Shuangshui Shuanglü Institute, Huazhong Agricultural University, Wuhan, 430070, China; College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xintao Zhu
- National Key Laboratory of Crop Genetic Improvement, Shuangshui Shuanglü Institute, Huazhong Agricultural University, Wuhan, 430070, China; College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yunfei Tan
- National Key Laboratory of Crop Genetic Improvement, Shuangshui Shuanglü Institute, Huazhong Agricultural University, Wuhan, 430070, China; College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xinyu Guan
- National Key Laboratory of Crop Genetic Improvement, Shuangshui Shuanglü Institute, Huazhong Agricultural University, Wuhan, 430070, China; College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xufeng Bai
- National Key Laboratory of Crop Genetic Improvement, Shuangshui Shuanglü Institute, Huazhong Agricultural University, Wuhan, 430070, China; College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China; Hubei Hongshan Laboratory, Wuhan, 430070, China; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, China.
| |
Collapse
|
4
|
Raza S, Tewari A, Rajak S, Gupta P, Sinha RA. Extracellular RNA mediates iron-induced toxicity and inflammatory signalling in hepatic cells. Toxicol Rep 2025; 14:102002. [PMID: 40162071 PMCID: PMC7617531 DOI: 10.1016/j.toxrep.2025.102002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 03/06/2025] [Accepted: 03/17/2025] [Indexed: 04/02/2025] Open
Abstract
Hepatic iron accumulation and toxicity is a frequent finding in chronic liver diseases such as hereditary hemochromatosis (HH), metabolic associated fatty liver disease (MASLD), alcoholic liver disease (ALD) and hepatitis C virus (HCV) infection, however, it's contribution to disease pathology is not fully understood. Here, using HepG2 cells we show that iron induced hepatocyte damage triggers the release of extracellular RNAs (eRNAs), which bind to the toll-like receptor 3 (TLR3), resulting in the production of pro-inflammatory cytokines. Furthermore, the inhibition of eRNA activity by RNase1 and TLR3 inhibitor significantly improved cell viability as well as NLRP3 and NF-kB-mediated inflammatory signalling. Therefore, eRNA antagonism could represent a novel therapeutic approach to reduce iron-induced inflammation in chronic liver diseases.
Collapse
Affiliation(s)
- Sana Raza
- Correspondence to: Department of Endocrinology, India
| | | | - Sangam Rajak
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, India
| | - Pratima Gupta
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, India
| | - Rohit A. Sinha
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, India
| |
Collapse
|
5
|
Zhang Z, Yang J, Zhou Q, Zhong S, Liu J, Zhang X, Chang X, Wang H. The cGAS-STING-mediated ROS and ferroptosis are involved in manganese neurotoxicity. J Environ Sci (China) 2025; 152:71-86. [PMID: 39617588 DOI: 10.1016/j.jes.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/12/2024] [Accepted: 05/01/2024] [Indexed: 12/12/2024]
Abstract
Manganese (Mn) has been characterized as an environmental pollutant. Excessive releases of Mn due to human activities have increased Mn levels in the environment over the years, posing a threat to human health and the environment. Long-term exposure to high concentrations of Mn can induce neurotoxicity. Therefore, toxicological studies on Mn are of paramount importance. Mn induces oxidative stress through affecting the level of reactive oxygen species (ROS), and the overabundance of ROS further triggers ferroptosis. Additionally, Mn2+ was found to be a novel activator of the cyclic guanosine-adenosine synthase (cGAS)-stimulator of interferon genes (STING) pathway in the innate immune system. Thus, we speculate that Mn exposure may promote ROS production by activating the cGAS-STING pathway, which further induces oxidative stress and ferroptosis, and ultimately triggers Mn neurotoxicity. This review discusses the mechanism between Mn-induced oxidative stress and ferroptosis via activation of the cGAS-STING pathway, which may offer a prospective direction for future in-depth studies on the mechanism of Mn neurotoxicity.
Collapse
Affiliation(s)
- Zhimin Zhang
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Jirui Yang
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Qiongli Zhou
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Shiyin Zhong
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Jingjing Liu
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Xin Zhang
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Xuhong Chang
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Hui Wang
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
6
|
Yang X, Zhang L, Ran H, Peng F, Tu Y. Micro/nanomotors for active inflammatory disease therapy. Biomater Sci 2025; 13:2541-2555. [PMID: 40181756 DOI: 10.1039/d5bm00052a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
Inflammation is a carefully orchestrated response of the immune system to repair injured tissues and clear various damage factors. However, dysregulated inflammation can eventually contribute to the development and progression of various inflammatory diseases. Although anti-inflammatory drugs have demonstrated certain therapeutic efficacy in clinical settings, significant limitations still persist, highlighting the necessity for the development of improved approaches to address complex inflammatory conditions. Micro/nanomotors (MNMs) have shown significant promise for applications in the biomedical field due to their micro/nano-scale sizes and autonomous movement. Unlike traditional nanoparticles, which exhibit passive diffusion in biological fluids, MNMs can convert external energy into a driving force for self-propulsion. This capability not only enhances the tissue penetration depth and retention rates but also facilitates interaction with inflammatory lesions. Recent efforts have suggested that MNMs for inflammatory disease therapy could provide an efficient therapeutic effect. Herein, we mainly introduce the recent advances in inflammatory disease therapy based on MNMs. We conclude by discussing both the obstacles and potential opportunities for MNMs innovations in addressing inflammation.
Collapse
Affiliation(s)
- Xue Yang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China.
| | - Lishan Zhang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China.
| | - Hui Ran
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China.
| | - Fei Peng
- School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China.
| | - Yingfeng Tu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
7
|
Rixen R, Schütz P, Walter C, Hüchtmann B, Van Marck V, Heitplatz B, Varghese J, Varga G, Foell D, Pap T, Pavenstädt H, Buscher K. Microvascular immunity is organ-specific and remodeled after kidney injury in mice. Nat Commun 2025; 16:4333. [PMID: 40346040 PMCID: PMC12064663 DOI: 10.1038/s41467-025-59609-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 04/28/2025] [Indexed: 05/11/2025] Open
Abstract
Many studies analyze tissue-resident or blood-borne leukocytes to monitor disease progression. We hypothesized that the microvasculature serves as a distinct site for immune cell activity. Here, we investigate microvascular leukocyte phenotypes before, during and after acute kidney injury (AKI) in mice, uncovering unique characteristics in the kidney, liver, and lung. Using single-cell sequencing, we identify several immune cells that were up to 100-fold expanded in the kidney vasculature, including macrophages, dendritic cells (DC), and B cells. Regeneration after AKI is characterized by sustained remodeling of the renal microvascular interface. Homeostatic microvascular C1q+ macrophages withdraw from the vascular barrier which is subsequently repopulated by new subsets, including CD11c+F480+ and CD11c+F480- cells. These newly arrived macrophages exhibit enhanced phagocytic activity toward circulating bacteria and secretion of tumor necrosis factor, pointing to maladaptive repair mechanisms after AKI. These data suggest organ- and disease-specific microvascular immune dynamics which are not detectable through conventional blood and tissue analysis.
Collapse
Affiliation(s)
- Rebecca Rixen
- Department of Medicine D, Division of General Internal Medicine, Nephrology and Rheumatology, University Hospital Münster, Münster, Germany
| | - Paula Schütz
- Department of Medicine D, Division of General Internal Medicine, Nephrology and Rheumatology, University Hospital Münster, Münster, Germany
| | - Carolin Walter
- Institute of Medical Informatics, University of Münster, Münster, Germany
| | - Birte Hüchtmann
- Department of Medicine D, Division of General Internal Medicine, Nephrology and Rheumatology, University Hospital Münster, Münster, Germany
| | - Veerle Van Marck
- Institute of Pathology, University Hospital Münster, Münster, Germany
| | - Barbara Heitplatz
- Institute of Pathology, University Hospital Münster, Münster, Germany
| | - Julian Varghese
- Institute of Medical Informatics, University of Münster, Münster, Germany
| | - Georg Varga
- Department of Pediatric Rheumatology and Immunology, University Hospital Münster, Münster, Germany
| | - Dirk Foell
- Department of Pediatric Rheumatology and Immunology, University Hospital Münster, Münster, Germany
| | - Thomas Pap
- Institute of Musculoskeletal Medicine, University Hospital Münster, Münster, Germany
| | - Hermann Pavenstädt
- Department of Medicine D, Division of General Internal Medicine, Nephrology and Rheumatology, University Hospital Münster, Münster, Germany
| | - Konrad Buscher
- Department of Medicine D, Division of General Internal Medicine, Nephrology and Rheumatology, University Hospital Münster, Münster, Germany.
| |
Collapse
|
8
|
Liang W, Chi Y, Liang B, Fu G, Yan K, Zhang G, Cai Y. Low-frequency ultrasound alleviates pulmonary inflammation induced by Klebsiella pneumoniae in mice by inhibiting the TNFR1/NF-κB pathway. Int Immunopharmacol 2025; 154:114574. [PMID: 40188523 DOI: 10.1016/j.intimp.2025.114574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 03/18/2025] [Accepted: 03/27/2025] [Indexed: 04/08/2025]
Abstract
BACKGROUND Therapeutic ultrasound has been found to promote tissue healing and reduce inflammation in non-infectious diseases, but its efficacy in infectious inflammation remains unclear. Here, we employ the mice pneumonia model to explore the anti-inflammatory effects of low-frequency ultrasound (LFU) and elucidate its potential molecular mechanisms. METHODS Pneumonia in mice was induced by intratracheal instillation of 100 μL of a 4.5 × 108 CFU/mL Klebsiella pneumoniae (Kp) bacterial suspension. A single LFU treatment (29.36 kHz, 270 mW/cm2, 10 min) was applied to the chest of mice at 6 or 48 h after infection. Biological samples were collected for gene, protein, and cellular experiments. RESULTS LFU demonstrated good anti-inflammatory effects in mice during the recovery phase of Kp infection (48 h after infection). Although LFU alone had no bactericidal effects, it slightly reduced the pathological score of lung injury and significantly decreased the infiltration of CD45+ leukocytes. Additionally, the protein levels of TNF-α, GM-CSF and COX-2 in the bronchoalveolar lavage fluid were significantly reduced. Bulk RNA-sequencing results showed that the TNF receptor (TNFR)/NF-κB pathway was up-regulated after Kp infection, which was suppressed after LFU treatment. Western blot and immunofluorescence revealed LFU significantly reduced the protein levels of TNFR1, p-p65, and nuclear p65. The anti-inflammatory effect of LFU was comparable to a 20 mg/kg NF-κB inhibitor and superior to a 15 mg/kg TNFR antagonist. CONCLUSION LFU exerts anti-inflammatory effects by inhibiting the TNFR1/NF-κB pathway during the recovery period of Kp infection, reducing inflammatory transcription and thereby decreasing the release of inflammatory factors.
Collapse
Affiliation(s)
- Wenxin Liang
- Center of Medicine Clinical Research, Department of Pharmacy, Medical Supplies Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Yulong Chi
- Center of Medicine Clinical Research, Department of Pharmacy, Medical Supplies Center of Chinese PLA General Hospital, Beijing 100853, China; Medical School of Chinese PLA, Beijing 100853, China
| | - Beibei Liang
- Center of Medicine Clinical Research, Department of Pharmacy, Medical Supplies Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Guanshuang Fu
- Center of Medicine Clinical Research, Department of Pharmacy, Medical Supplies Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Kaicheng Yan
- Center of Medicine Clinical Research, Department of Pharmacy, Medical Supplies Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Guanxuanzi Zhang
- Center of Medicine Clinical Research, Department of Pharmacy, Medical Supplies Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Yun Cai
- Center of Medicine Clinical Research, Department of Pharmacy, Medical Supplies Center of Chinese PLA General Hospital, Beijing 100853, China.
| |
Collapse
|
9
|
Zhang QX, Du YX, Cao JJ, Yang YB, Wu W, Xu W, Xiao BG, Xiao W. Ginsenoside Rb3 represses CPZ-induced demyelination and neuroinflammation by inhibiting TRAF6 K63 ubiquitination. Int Immunopharmacol 2025; 158:114800. [PMID: 40344978 DOI: 10.1016/j.intimp.2025.114800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 04/29/2025] [Accepted: 05/01/2025] [Indexed: 05/11/2025]
Abstract
Multiple sclerosis is a chronic inflammatory and neurodegenerative disorder of the central nervous system. Despite ongoing research, effective treatments remain limited, especially during progressive phase. Saponins extracted from the stem and leaf of Panax notoginseng (PNSL) demonstrate a superior anti-inflammatory effect by inhibiting NO production in LPS-induced BV2 cells. Ginsenoside Rb3, the primary active and most abundant component in PNSL, has been demonstrated to mitigate inflammation-induced damage. However, whether Rb3 mitigates demyelination by inhibiting neuroinflammation had not been previously reported. In this study, biochemical and histological assays revealed that ginsenoside Rb3 effectively mitigated Cuprizone-induced demyelination and attenuated aberrant microglial activation and reactive astrogliosis within the demyelinated areas. Mechanistic investigations demonstrated that Rb3 suppresses glial cell activation and consequently mitigates inflammatory responses by inhibiting the secretion of TNF-α, IL-6, and IL-1β. TNF receptor-associated factor 6 (TRAF6) is activated by K63-linked polyubiquitination, which leads to downstream activation of the inhibitor of nuclear factor-κB kinase (IKK) complex and mitogen-activated protein kinases (MAPKs). Furthermore, Rb3 was found to inhibit the activation of nuclear factor-κB (NF-κB) and MAPKs, as evidenced by the dephosphorylation of NF-κB p65 and the MAPKs p38 and JNK. Further investigation revealed that Rb3 binds to TRAF6 at residues 69 and 88, thereby inhibiting its K63-linked polyubiquitination. Conversely, the TRAF6 mutation at E69Q or R88N abolished the inhibition effects of Rb3 on K63-linked ubiquitination of TRAF6 and subsequent downstream signaling activation. Meta-analysis showed that Rb3 exerts its anti-inflammatory effects primarily by inhibiting the NF-κB pathway. Collectively, it is concluded that Rb3 alleviates demyelination and inhibits inflammation through bound to TRAF6 to prevent its K63-linked ubiquitination and subsequent activation of NF-κB. In this study, we have for the first time elucidated that dual mechanism by which Rb3 inhibits both NF-κB and MAPK pathways to exert its anti-inflammatory effects. This study demonstrates that Rb3 shows promising preclinical therapeutic potential. Additionally, TRAF6 represents a potential therapeutic target for MS treatment.
Collapse
Affiliation(s)
- Qian-Xia Zhang
- The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China; State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Jiangsu Kanion Pharmaceutical Co.,Ltd, Lianyungang, China
| | - Yu-Xin Du
- Nanjing University of Chinese Medicine, Nanjing, China; State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Jiangsu Kanion Pharmaceutical Co.,Ltd, Lianyungang, China
| | - Jiao-Jiao Cao
- Nanjing University of Chinese Medicine, Nanjing, China; State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Jiangsu Kanion Pharmaceutical Co.,Ltd, Lianyungang, China
| | - Ying-Bo Yang
- The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China; State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Jiangsu Kanion Pharmaceutical Co.,Ltd, Lianyungang, China
| | - Wei Wu
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Jiangsu Kanion Pharmaceutical Co.,Ltd, Lianyungang, China
| | - Wei Xu
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Bao-Guo Xiao
- Department of Neurology and National Research Center for Aging and Medicine, State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, Shanghai, China.
| | - Wei Xiao
- The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China; State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Jiangsu Kanion Pharmaceutical Co.,Ltd, Lianyungang, China.
| |
Collapse
|
10
|
Li Z, Gong Y, Okeke ES, Li D, Chen Y, Feng W, Zhao T, Yang L, Mao G, Wu X. Novel insights into DBP-induced zebrafish liver inflammatory damage: Ferroptosis activating the HMGB1-TLR4-NF-κB signaling pathway. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 376:126395. [PMID: 40345373 DOI: 10.1016/j.envpol.2025.126395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 03/31/2025] [Accepted: 05/06/2025] [Indexed: 05/11/2025]
Abstract
Typical plasticizer dibutyl phthalate (DBP) has been demonstrated to induce hepatotoxicity in zebrafish, but the underlying molecular mechanisms remain incompletely elucidated. Numerous studies have shown that ferroptosis is involved in the pathophysiological progression of hepatic disease. However, it remains unclear whether ferroptosis is involved in the DBP-induced hepatotoxicity in zebrafish. Initially, histopathological analyses have preliminarily confirmed that DBP can activate inflammatory responses in the zebrafish liver. Further investigation revealed that DBP induces ferroptosis in the zebrafish liver, characterized by iron overload, lipid peroxidation, and aberrant activation of ferroptosis pathways. Furthermore, DBP exposure induced ferroptosis, disrupting cell membranes and subsequent release of HMGB1, which are sensed by immunocytes TLR4/NF-κB signaling pathways, thereby activating the innate immune response in a context-dependent manner. Moreover, the ferroptosis inhibitor Fer-1 effectively rescues the activation of HMGB1-TLR4/NF-κB-mediated immune processes. Overall, this work enriches the molecular mechanism of DBP-induced zebrafish liver inflammatory damage and provides a reliable biomarker for future environmental risk assessment of DBP.
Collapse
Affiliation(s)
- Zixu Li
- School of the Environment and Safety Engineering Jiangsu University, 301 Xuefu Rd, Zhenjiang, 212013, China
| | - Yacan Gong
- School of the Environment and Safety Engineering Jiangsu University, 301 Xuefu Rd, Zhenjiang, 212013, China
| | - Emmanuel Sunday Okeke
- School of the Environment and Safety Engineering Jiangsu University, 301 Xuefu Rd, Zhenjiang, 212013, China; Department of Biochemistry, Faculty of Biological Science & Natural Science Unit, School of General Studies, University of Nigeria, Nsukka, Enugu State, 410001, Nigeria
| | - Dan Li
- School of the Environment and Safety Engineering Jiangsu University, 301 Xuefu Rd, Zhenjiang, 212013, China
| | - Yao Chen
- School of the Environment and Safety Engineering Jiangsu University, 301 Xuefu Rd, Zhenjiang, 212013, China; School of Emergency Management, Jiangsu University, 301 Xuefu Rd, Zhenjiang, 212013, China
| | - Weiwei Feng
- School of the Environment and Safety Engineering Jiangsu University, 301 Xuefu Rd, Zhenjiang, 212013, China; School of Emergency Management, Jiangsu University, 301 Xuefu Rd, Zhenjiang, 212013, China
| | - Ting Zhao
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Rd, Zhenjiang, 212013, China
| | - Liuqing Yang
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Rd, Zhenjiang, 212013, China
| | - Guanghua Mao
- School of the Environment and Safety Engineering Jiangsu University, 301 Xuefu Rd, Zhenjiang, 212013, China.
| | - Xiangyang Wu
- School of the Environment and Safety Engineering Jiangsu University, 301 Xuefu Rd, Zhenjiang, 212013, China.
| |
Collapse
|
11
|
Gao S, Ge H, Gao L, Gao Y, Tang S, Li Y, Yuan Z, Chen W. Silk Fibroin Nanoparticles for Enhanced Cuproptosis and Immunotherapy in Pancreatic Cancer Treatment. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2417676. [PMID: 40091480 DOI: 10.1002/advs.202417676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 02/16/2025] [Indexed: 03/19/2025]
Abstract
Cuproptosis is a newly discovered copper ion-dependent programmed cell death. Elesclomol (ES) is a Cu2+ transporter that delivers Cu2+ into tumor cells, causing cell death at toxic doses. However, ES has a short blood half-life, limiting its accumulation in tumors. This study introduces Tussah silk fibroin nanoparticles (TSF@ES-Cu NPs) to protect ES and Cu2+. TSF, with a stable structure, resists metabolism in circulation. Targeting tumors with natural RGD peptides and TSF's unique secondary structure, enhances drug enrichment and special release in pancreatic tumors, improving treatment efficacy. In vitro, TSF@ES-Cu induces tumor cell cuproptosis, releases DAMPs, promotes dendritic cells (DCs) maturation, and macrophage M1 polarization. In vivo, TSF@ES-Cu reshapes the tumor microenvironment (TME), increasing mature DCs from 22.7% to 43.3%, CD8+ T cells from 5.08% to 17.1%, and reducing M2 macrophages from 50.7% to 18.4%. Additionally, the combined anti-tumor efficacy of TSF@ES-Cu and αPDL-1 is 1.6 times higher than TSF@ES-Cu alone and 2.5 times higher than αPDL-1 alone. In summary, this study reports that the combination of TSF@ES-Cu and αPDL-1 effectively induces cuproptosis and reshapes the TME, offering a new approach for copper nanomaterial-based tumor immunotherapy.
Collapse
Affiliation(s)
- Si Gao
- Department of Biliary-pancreatic Surgery, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200127, China
| | - Haodong Ge
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200020, China
| | - Lili Gao
- Department of Pathology, Xinhua Hospital, Affiliated to Medicine School of Shanghai Jiaotong University, Shanghai, 200092, China
| | - Ying Gao
- School of Stomatology, Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region, 010030, China
| | - Shuibin Tang
- Department of Biliary-pancreatic Surgery, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200127, China
| | - Yiming Li
- Department of Biliary-pancreatic Surgery, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200127, China
- Department of Medicine, Mays Cancer Center, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Zhiqing Yuan
- Department of Biliary-pancreatic Surgery, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200127, China
| | - Wei Chen
- Department of Biliary-pancreatic Surgery, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200127, China
| |
Collapse
|
12
|
Le PM, Pal-Ghosh S, Stepp MA, Menko AS. Shared Phenotypes of Immune Cells Recruited to the Cornea and the Surface of the Lens in Response to Formation of Corneal Erosions. THE AMERICAN JOURNAL OF PATHOLOGY 2025; 195:960-981. [PMID: 39889825 PMCID: PMC12016862 DOI: 10.1016/j.ajpath.2025.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 01/02/2025] [Accepted: 01/15/2025] [Indexed: 02/03/2025]
Abstract
Injuries to the cornea can lead to recurrent corneal erosions, compromising its barrier function and increasing the risk of infection. Vital as corneal integrity is to the eye's optical power and homeostasis, the immune response to corneal erosions remains poorly understood. It is also unknown whether there is coordinated immune activation between the cornea and other regions of the anterior segment to protect against microbial invasion and limit the spread of inflammation when corneal erosions occur. Herein, a corneal debridement wounding model was used to characterize the immune cell phenotypes populating the cornea in response to erosion formation, and whether and which immune cells are concurrently recruited to the surface of the lens was investigated. The formation of corneal erosions induced an influx of myeloid lineage phenotypes, both M2 macrophages associated with tissue healing and wound repair, and Ly6G+ Ly6C+ myeloperoxidase+ cells resembling neutrophils/polymorphonuclear-myeloid-derived suppressor cells (PMN-MDSCs), with few regulatory T cells, into the corneal stroma under erosion sites. This leukocyte migration into the cornea when erosions develop was paralleled by the recruitment of immune cells, predominantly neutrophils/PMN-MDSCs, to the anterior, cornea-facing lens capsule. Both cornea-infiltrating and lens capsule-associated neutrophil/PMN-MDSC-like immune cells produce the anti-inflammatory cytokine IL-10. These findings suggest a collaborative role for the lens capsule-associated immune cells in preventing infections, controlling inflammation, and maintaining homeostasis of the anterior segment during recurrent corneal erosions.
Collapse
Affiliation(s)
- Phuong M Le
- Department of Pathology and Genomic Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Sonali Pal-Ghosh
- Department of Anatomy and Cell Biology, George Washington University School of Medicine and Health Sciences, Washington, District of Columbia
| | - Mary Ann Stepp
- Department of Anatomy and Cell Biology, George Washington University School of Medicine and Health Sciences, Washington, District of Columbia; Department of Ophthalmology, George Washington University School of Medicine and Health Sciences, Washington, District of Columbia
| | - A Sue Menko
- Department of Pathology and Genomic Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania; Department of Ophthalmology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania.
| |
Collapse
|
13
|
Zhang Y, Zheng Z, Zhu S, Xu L, Zhang Q, Gao J, Ye M, Shen S, Xing J, Wu M, Xu RX. Electroactive Electrospun Nanofibrous Scaffolds: Innovative Approaches for Improved Skin Wound Healing. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2416267. [PMID: 40190057 DOI: 10.1002/advs.202416267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 03/05/2025] [Indexed: 05/16/2025]
Abstract
The incidence and burden of skin wounds, especially chronic and complex wounds, have a profound impact on healthcare. Effective wound healing strategies require a multidisciplinary approach, and advances in materials science and bioengineering have paved the way for the development of novel wound healing dressing. In this context, electrospun nanofibers can mimic the architecture of the natural extracellular matrix and provide new opportunities for wound healing. Inspired by the bioelectric phenomena in the human body, electrospun nanofibrous scaffolds with electroactive characteristics are gaining widespread attention and gradually emerging. To this end, this review first summarizes the basic process of wound healing, the causes of chronic wounds, and the current status of clinical treatment, highlighting the urgency and importance of wound dressings. Then, the biological effects of electric fields, the preparation materials, and manufacturing techniques of electroactive electrospun nanofibrous (EEN) scaffolds are discussed. The latest progress of EEN scaffolds in enhancing skin wound healing is systematically reviewed, mainly including treatment and monitoring. Finally, the importance of EEN scaffold strategies to enhance wound healing is emphasized, and the challenges and prospects of EEN scaffolds are summarized.
Collapse
Affiliation(s)
- Yang Zhang
- Department of Rehabilitation, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, P. R. China
- Department of Precision Machinery and Instrumentation, School of Engineering Science, University of Science and Technology of China, Hefei, Anhui, 230027, P. R. China
| | - Zhiyuan Zheng
- Department of Precision Machinery and Instrumentation, School of Engineering Science, University of Science and Technology of China, Hefei, Anhui, 230027, P. R. China
| | - Shilu Zhu
- School of Biomedical Engineering, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, P. R. China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, 215000, China
| | - Liang Xu
- School of Biomedical Engineering, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, P. R. China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, 215000, China
| | - Qingdong Zhang
- Department of Precision Machinery and Instrumentation, School of Engineering Science, University of Science and Technology of China, Hefei, Anhui, 230027, P. R. China
- School of Biomedical Engineering, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, P. R. China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, 215000, China
| | - Jie Gao
- School of Biomedical Engineering, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, P. R. China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, 215000, China
| | - Min Ye
- School of Biomedical Engineering, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, P. R. China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, 215000, China
| | - Shuwei Shen
- School of Biomedical Engineering, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, P. R. China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, 215000, China
| | - Jinyu Xing
- Department of Precision Machinery and Instrumentation, School of Engineering Science, University of Science and Technology of China, Hefei, Anhui, 230027, P. R. China
| | - Ming Wu
- Department of Rehabilitation, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, P. R. China
| | - Ronald X Xu
- Department of Precision Machinery and Instrumentation, School of Engineering Science, University of Science and Technology of China, Hefei, Anhui, 230027, P. R. China
- School of Biomedical Engineering, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, P. R. China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, 215000, China
| |
Collapse
|
14
|
Yang JY, Luo CH, Wang KB, Tu XY, Xiao YY, Ou YT, Xie YX, Guan CX, Zhong WJ. Unraveling the mechanisms of NINJ1-mediated plasma membrane rupture in lytic cell death and related diseases. Int J Biol Macromol 2025; 309:143165. [PMID: 40239793 DOI: 10.1016/j.ijbiomac.2025.143165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 04/03/2025] [Accepted: 04/13/2025] [Indexed: 04/18/2025]
Abstract
Plasma membrane rupture (PMR), the ultimate event during lytic cell death, releases damage-associated molecular patterns (DAMPs) that trigger inflammation and immune responses in the development of various diseases. Recent years have witnessed significant advances in understanding the PMR mediated by ninjurin1 (NINJ1) in different lytic cell death processes. NINJ1 oligomerizes and ruptures the membrane in pyroptosis and other lytic cell death, participating in the pathogenesis of multiple diseases. Although the membrane-permeabilizing function of NINJ1 is well recognized, the role of NINJ1 in different types of lytic cell death and its impact on multiple disease processes have yet to be fully elucidated. This review summarizes the latest advances in the mechanisms of NINJ1-mediated PMR, discusses the membrane-inducing activity of NINJ1 in different lytic cell death, explains the implications of NINJ1 in lytic cell death-related diseases, and lists the inhibitory strategies for NINJ1. We expect to provide new insights into targeting NINJ1 to suppress lytic cell death for therapeutic benefit, which may become a new strategy to control inflammatory cell lysis-related diseases.
Collapse
Affiliation(s)
- Ji-Yan Yang
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China; Key Laboratory of the General University of Hunan Province, Basic and Clinic Research in Major Respiratory Disease, Changsha, Hunan 410078, China; National Experimental Teaching Demonstration Center for Medical Function, Changsha, Hunan 410078, China
| | - Chen-Hua Luo
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China
| | - Kun-Bo Wang
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China
| | - Xin-Yu Tu
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China
| | - Yun-Ying Xiao
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China
| | - Ye-Tong Ou
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China
| | - Yan-Xin Xie
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China
| | - Cha-Xiang Guan
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China; Key Laboratory of the General University of Hunan Province, Basic and Clinic Research in Major Respiratory Disease, Changsha, Hunan 410078, China; National Experimental Teaching Demonstration Center for Medical Function, Changsha, Hunan 410078, China
| | - Wen-Jing Zhong
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China; Key Laboratory of the General University of Hunan Province, Basic and Clinic Research in Major Respiratory Disease, Changsha, Hunan 410078, China; National Experimental Teaching Demonstration Center for Medical Function, Changsha, Hunan 410078, China.
| |
Collapse
|
15
|
Tian H, Liu Q, Yu X, Cao Y, Huang X. Damage-associated molecular patterns in viral infection: potential therapeutic targets. Crit Rev Microbiol 2025; 51:514-531. [PMID: 39091137 DOI: 10.1080/1040841x.2024.2384885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 05/25/2024] [Accepted: 07/22/2024] [Indexed: 08/04/2024]
Abstract
Frequent viral infections leading to infectious disease outbreaks have become a significant global health concern. Fully elucidating the molecular mechanisms of the immune response against viral infections is crucial for epidemic prevention and control. The innate immune response, the host's primary defense against viral infection, plays a pivotal role and has become a breakthrough in research mechanisms. A component of the innate immune system, damage-associated molecular patterns (DAMPs) are involved in inducing inflammatory responses to viral infections. Numerous DAMPs are released from virally infected cells, activating downstream signaling pathways via internal and external receptors on immune cells. This activation triggers immune responses and helps regulate viral host invasion. This review examines the immune regulatory mechanisms of various DAMPs, such as the S100 protein family, high mobility group box 1 (HMGB1), and heat shock proteins, in various viral infections to provide a theoretical basis for designing novel antiviral drugs.
Collapse
Affiliation(s)
- Huizhen Tian
- School of Basic Medical Sciences, Jiangxi medical College, Nanchang University, Nanchang, China
| | - Qiong Liu
- School of Basic Medical Sciences, Jiangxi medical College, Nanchang University, Nanchang, China
| | - Xiaomin Yu
- School of Basic Medical Sciences, Jiangxi medical College, Nanchang University, Nanchang, China
- Medical Experimental Teaching Center, School of Basic Medical Sciences, School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yanli Cao
- School of Basic Medical Sciences, Jiangxi medical College, Nanchang University, Nanchang, China
| | - Xiaotian Huang
- School of Basic Medical Sciences, Jiangxi medical College, Nanchang University, Nanchang, China
| |
Collapse
|
16
|
Tao P, Su B, Mao X, Lin Y, Zheng L, Zou X, Yang H, Liu J, Li H. Interleukin-35 inhibits NETs to ameliorate Th17/Treg immune imbalance during the exacerbation of cigarette smoke exposed-asthma via gp130/STAT3/ferroptosis axis. Redox Biol 2025; 82:103594. [PMID: 40101533 PMCID: PMC11964675 DOI: 10.1016/j.redox.2025.103594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 03/12/2025] [Accepted: 03/12/2025] [Indexed: 03/20/2025] Open
Abstract
Cigarette smoke (CS) exposure amplifies neutrophil accumulation. IL-35, a novel cytokine with anti-inflammatory properties, is involved in protection against asthma. However, the biological roles of neutrophils and the precise molecular mechanisms of IL-35 in CS exposed-asthma remain unclear. We showed that the exacerbation of CS exposed-asthma leads to dramatically increased neutrophil counts and an imbalance in DC-Th17/Treg immune responses. RNA sequencing revealed that NETs, part of a key biological process in neutrophils, were significantly upregulated in the context of CS exposed-asthma exacerbation and that IL-35 treatment downregulated NET-associated gene expression. Targeted degradation of NETs, rather than neutrophil depletion, alleviated the CS exposed-asthma. Mechanistically, STAT3 phosphorylation promoted ferroptosis, exacerbating NET release, which in turn enhanced dendritic cell (DC) antigen presentation, activated T cells, and specifically promoted Th17 cell differentiation while inhibiting Treg cells. IL-35 acting on the gp130 receptor alleviated STAT3-mediated ferroptosis-associated NET formation. In summary, our study revealed a novel mechanism by which IL-35 inhibited NET formation, subsequently alleviating neutrophilic inflammation and restoring the DC-Th17/Treg imbalance in CS exposed-asthma, highlighting the potential of IL-35 as a targeted therapeutic strategy.
Collapse
Affiliation(s)
- Peizhi Tao
- Department of Pulmonary and Critical Care Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Institute of Respiratory Diseases of Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Beiting Su
- Department of Pulmonary and Critical Care Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Institute of Respiratory Diseases of Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Xueyan Mao
- Department of Pulmonary and Critical Care Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Institute of Respiratory Diseases of Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Yusen Lin
- Department of Pulmonary and Critical Care Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Institute of Respiratory Diseases of Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Li Zheng
- Department of Pulmonary and Critical Care Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Institute of Respiratory Diseases of Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Xiaoling Zou
- Department of Pulmonary and Critical Care Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Institute of Respiratory Diseases of Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Hailing Yang
- Department of Pulmonary and Critical Care Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Institute of Respiratory Diseases of Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Jing Liu
- Department of Pulmonary and Critical Care Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Institute of Respiratory Diseases of Sun Yat-sen University, Guangzhou, People's Republic of China.
| | - Hongtao Li
- Department of Pulmonary and Critical Care Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Institute of Respiratory Diseases of Sun Yat-sen University, Guangzhou, People's Republic of China.
| |
Collapse
|
17
|
Bekbossynova M, Mukarov M, Kanabekova P, Shaktybek Z, Sugralimova M, Batpen A, Kozhakhmetova A, Sholdanova Z, Zhanbolat A. Biochemical markers of myocardial contusion after blunt chest trauma. Eur J Trauma Emerg Surg 2025; 51:189. [PMID: 40298997 PMCID: PMC12041082 DOI: 10.1007/s00068-025-02866-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 04/13/2025] [Indexed: 04/30/2025]
Abstract
One of the most common manifestations of cardiac injury because of trauma is myocardial contusion. Today, the blurred definition and wide range of nonspecific clinical presentations led to absence in consensus of diagnostic pathways and criteria. Currently, the marker of cardiac injury measured at clinical level is troponin and instrumental diagnostic tool is ECG. The patients with elevated troponin level after the chest trauma should be suspected to have myocardial contusion as cardiogenic shock or arrhythmia might take place as a complication. The release of DAMPs after the trauma has been observed as a part of inflammatory response to it. HMGB1 protein and histone levels were found to be elevated in patients with trauma and associated to recruit the inflammation. In this review the potential of these molecules to be used as diagnostic markers of myocardial contusion is discussed. Moreover, the obstacles for implementing DAMPS to clinical protocols and future research directions are included.
Collapse
Affiliation(s)
| | | | | | | | | | - Arman Batpen
- National Scientific Center of Traumatology and Orthopedics Named After Academician N.D. Batpenov, Astana, Kazakhstan
| | - Anar Kozhakhmetova
- National Scientific Center of Traumatology and Orthopedics Named After Academician N.D. Batpenov, Astana, Kazakhstan
| | | | | |
Collapse
|
18
|
Sanati M, Pieterman I, Levy N, Akbari T, Tavakoli M, Hassani Najafabadi A, Amin Yavari S. Osteoimmunomodulation by bone implant materials: harnessing physicochemical properties and chemical composition. Biomater Sci 2025. [PMID: 40289736 DOI: 10.1039/d5bm00357a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
Chronic inflammation at bone defect sites can impede regenerative processes, but local immune responses can be adjusted to promote healing. Regulating the osteoimmune microenvironment, particularly through macrophage polarization, has become a key focus in bone regeneration research. While bone implants are crucial for addressing significant bone defects, they are often recognized by the immune system as foreign, triggering inflammation that leads to bone resorption and implant issues like fibrous encapsulation and aseptic loosening. Developing osteoimmunomodulatory implants offers a promising approach to transforming destructive inflammation into healing processes, enhancing implant integration and bone regeneration. This review explores strategies based on tuning the physicochemical attributes and chemical composition of materials in engineering osteoimmunomodulatory and pro-regenerative bone implants.
Collapse
Affiliation(s)
- Mehdi Sanati
- Department of Orthopedics, University Medical Center Utrecht, Utrecht, The Netherlands.
| | - Ines Pieterman
- Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Natacha Levy
- Metabolic Diseases Pediatrics Division, University Medical Centre Utrecht, Utrecht, The Netherlands
- Regenerative Medicine Centre Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Tayebeh Akbari
- Department of Microbiology, Islamic Azad University, North Tehran Branch, Tehran, Iran
| | - Mohamadreza Tavakoli
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Saber Amin Yavari
- Department of Orthopedics, University Medical Center Utrecht, Utrecht, The Netherlands.
- Regenerative Medicine Centre Utrecht, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
19
|
Zhang B, Qi R. The dual-function of HSP70 in immune response and tumor immunity: from molecular regulation to therapeutic innovations. Front Immunol 2025; 16:1587414. [PMID: 40297581 PMCID: PMC12034705 DOI: 10.3389/fimmu.2025.1587414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Accepted: 03/27/2025] [Indexed: 04/30/2025] Open
Abstract
Heat shock protein 70 (HSP70) is a highly conserved molecular chaperone that plays a core role in assisting protein folding and maintaining cellular homeostasis. In recent years, studies have revealed that HSP70 has dual functions in immune regulation: on the one hand, it enhances immune responses by activating non-specific immunity (such as Toll-like receptor 2/4 (TLR2/4) signaling pathways) and specific immunity (such as cross-presentation of antigens, T helper 1 (Th1)/T helper 17 (Th17) differentiation); on the other hand, it inhibits excessive immune reactions by inducing the differentiation of regulatory T cells (Treg) and promoting the secretion of anti-inflammatory factors [such as interleukin-10 (IL-10)]. In cancer, the duality of HSP70 is also very prominent: it can drive tumor progression through pathways such as inhibiting apoptosis, promoting angiogenesis, and tumor metastasis, and it can also inhibit tumor growth by activating immunogenic cell death (ICD), enhancing antigen presentation, and natural killer (NK) cell activity. This review aims to systematically analyze the immune regulatory functions of HSP70, focusing on its dual regulatory mechanisms and the "double-edged sword" nature of HSP70 in tumor immunotherapy and the innovative nature of targeted strategies, as well as providing a theoretical basis and research directions for precision medicine in the treatment strategies of related diseases.
Collapse
Affiliation(s)
- Beining Zhang
- Health Sciences Institute, China Medical University, Shenyang, Liaoning, China
| | - Ruiqun Qi
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, China
- Key Laboratory of Immunodermatology, Ministry of Education, and National Health Commission; National Joint Engineering Research Center for Theranostics of Immunological Skin Diseases, Shenyang, China
| |
Collapse
|
20
|
Wang W, Zhai Y, Yang X, Ye L, Lu G, Shi X, Zhai G. Effective design of therapeutic nanovaccines based on tumor neoantigens. J Control Release 2025; 380:17-35. [PMID: 39892648 DOI: 10.1016/j.jconrel.2025.01.078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 01/17/2025] [Accepted: 01/26/2025] [Indexed: 02/04/2025]
Abstract
Neoantigen vaccines are among the most potent immunotherapies for personalized cancer treatment. Therapeutic vaccines containing tumor-specific neoantigens that elicit specific T cell responses offer the potential for long-term clinical benefits to cancer patients. Unlike immune-checkpoint inhibitors (ICIs), which rely on pre-existing specific T cell responses, personalized neoantigen vaccines not only promote existing specific T cell responses but importantly stimulate the generation of neoantigen-specific T cells, leading to the establishment of a persistent specific memory T cell pool. The review discusses the current state of clinical research on neoantigen nanovaccines, focusing on the application of vectors, adjuvants, and combinational strategies to address a range of challenges and optimize therapeutic outcomes.
Collapse
Affiliation(s)
- Weilin Wang
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Yujia Zhai
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT 84124, United States of America
| | - Xiaoye Yang
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Lei Ye
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Guoliang Lu
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand; Maurice Wilkins Centre, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Xiaoqun Shi
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China.
| | - Guangxi Zhai
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China.
| |
Collapse
|
21
|
Imiela AM, Kucharska J, Kukliński F, Fernandez Moreno T, Dzik K, Pruszczyk P. Advanced Research in the Pathophysiology of Venous Thromboembolism-Acute Pulmonary Embolism. Biomedicines 2025; 13:906. [PMID: 40299499 PMCID: PMC12025274 DOI: 10.3390/biomedicines13040906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 03/23/2025] [Accepted: 03/27/2025] [Indexed: 04/30/2025] Open
Abstract
According to the literature, cardiovascular diseases (CVDs)-including myocardial infarction, stroke, and venous thromboembolism (VTE)-are among the leading causes of mortality and morbidity worldwide. Evidence suggests that CVDs share common risk factors and pathophysiological mechanisms. Similar to the Mosaic Theory of Hypertension proposed by Irvine Page in 1949, the pathophysiology of VTE is multifactorial, involving multiple interacting processes. The concept of immunothrombosis, introduced by Engelmann and Massberg in 2009, describes the interplay between the immune system and thrombosis. Both thrombosis and hemostasis share core mechanisms, including platelet activation and fibrin formation. Additionally, immune mediators-such as monocytes, neutrophil extracellular traps (NETs), lymphocytes, selectins, and various molecular factors-play a critical role in thrombus formation. This review highlights inflammation as a key risk factor for pulmonary embolism (APE). Immunity is central to the complex interactions among the coagulation cascade, platelets, endothelium, reactive oxygen species (ROS), and genetic factors. Specifically, we examine the roles of the endothelium, immune cells, and microRNAs (miRNAs) in the pathophysiology of APE and explore potential therapeutic targets. This review aims to elucidate the roles of the endothelium, immune cells, and miRNAs in the pathophysiology of APE and explore potential future perspective.
Collapse
Affiliation(s)
- Anna M. Imiela
- Department of Internal Diseases and Cardiology, Infant Jesus Clinical Hospital, Medical University of Warsaw, Lindleya 4 Street, 02-005 Warsaw, Poland
| | - Joanna Kucharska
- Department of Internal Diseases and Cardiology, Infant Jesus Clinical Hospital, Medical University of Warsaw, Lindleya 4 Street, 02-005 Warsaw, Poland
| | - Franciszek Kukliński
- Department of Intensive Cardiac Care, Medical University of Bialystok, 15-089 Białystok, Poland
| | - Teresa Fernandez Moreno
- Department of Intensive Cardiac Care, Medical University of Bialystok, 15-089 Białystok, Poland
| | - Konrad Dzik
- Department of Internal Diseases and Cardiology, Infant Jesus Clinical Hospital, Medical University of Warsaw, Lindleya 4 Street, 02-005 Warsaw, Poland
| | - Piotr Pruszczyk
- Department of Internal Diseases and Cardiology, Infant Jesus Clinical Hospital, Medical University of Warsaw, Lindleya 4 Street, 02-005 Warsaw, Poland
| |
Collapse
|
22
|
Rembe JD, Garabet W, Augustin M, Dissemond J, Ibing W, Schelzig H, Stuermer EK. Immunomarker profiling in human chronic wound swabs reveals IL-1 beta/IL-1RA and CXCL8/CXCL10 ratios as potential biomarkers for wound healing, infection status and regenerative stage. J Transl Med 2025; 23:407. [PMID: 40200385 PMCID: PMC11978031 DOI: 10.1186/s12967-025-06417-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 03/25/2025] [Indexed: 04/10/2025] Open
Abstract
BACKGROUND Chronic wounds, such as diabetic foot ulcers, venous leg ulcers, and post-surgical wound healing disorders pose a significant challenge due to prolonged healing, risk of infection, and impaired quality of life. Persistent inflammation and impaired tissue remodeling are common in these wounds. Traditional diagnostic methods, including visual inspection and microbiological cultures, offer limited insight into the wound micro-environment. Immunomarker profiling could provide a deeper understanding of the molecular mechanisms underpinning wound healing, offering potential biomarkers for infection status and healing progression. METHODS This observational, multi-center cohort study, part of the 'Wound-BIOME' project, analyzed 110 swab samples from patients with acute and chronic wounds using multiplex immunoassays. Clinical parameters such as wound type, healing status, regeneration stage, and microbial burden were recorded. Total protein concentration was assessed, and 35 key immunomarkers, including cytokines (e.g. IL- 1α, IL- 1β), chemokines (CCL2, CXCL8, CXCL10), growth factors (FGF- 2, VEGF) and matrix metalloproteinases (MMP- 7, MMP- 9, MMP- 13), were quantified. Statistical analyses were performed to correlate immunomarker levels with clinical outcomes. RESULTS Pro-inflammatory markers, such as IL- 1β, IL- 18 and chemokines like CCL2 and CXCL8, were significantly elevated in non-healing and infected wounds compared to healing wounds. The study identified two new immunomarker ratios - IL- 1β/IL- 1RA and CXCL8/CXCL10 - as potential predictors of wound healing status. The IL- 1β/IL- 1RA ratio showed the highest accuracy for distinguishing healing from non-healing wounds (AUC = 0.6837), while the CXCL8/CXCL10 ratio was most effective in identifying infection (AUC = 0.7669). CONCLUSIONS Immunomarker profiling via wound swabbing offers valuable insights into the wound healing process. Elevated levels of pro-inflammatory cytokines and MMPs are associated with chronic inflammation and impaired healing. The IL- 1β/IL- 1RA and CXCL8/CXCL10 ratios emerge as promising biomarkers to distinguish between infection and inflammation, with potential in targeted wound care. Further studies are needed to validate these findings and implement them in clinical practice.
Collapse
Affiliation(s)
- Julian-Dario Rembe
- Department for Vascular and Endovascular Surgery, University Hospital Duesseldorf (UKD), Heinrich Heine University Duesseldorf, Moorenstrasse 5, 40225, Duesseldorf, Germany.
| | - Waseem Garabet
- Department for Vascular and Endovascular Surgery, University Hospital Duesseldorf (UKD), Heinrich Heine University Duesseldorf, Moorenstrasse 5, 40225, Duesseldorf, Germany
| | - Matthias Augustin
- Institute for Health Services Research in Dermatology and Nursing Professions (IVDP), University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Joachim Dissemond
- Department of Dermatology, Venereology and Allergology, Essen University Hospital, Essen, Germany
| | - Wiebke Ibing
- Department for Vascular and Endovascular Surgery, University Hospital Duesseldorf (UKD), Heinrich Heine University Duesseldorf, Moorenstrasse 5, 40225, Duesseldorf, Germany
| | - Hubert Schelzig
- Department for Vascular and Endovascular Surgery, University Hospital Duesseldorf (UKD), Heinrich Heine University Duesseldorf, Moorenstrasse 5, 40225, Duesseldorf, Germany
| | - Ewa K Stuermer
- Clinic and Polyclinic for Vascular Medicine, University Heart and Vascular Center, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| |
Collapse
|
23
|
Davoodi Karsalari P, Asna Ashari K, Rezaei N. NLRP3 inflammasome: significance and potential therapeutic targets to advance solid organ transplantation. Expert Opin Ther Targets 2025; 29:281-301. [PMID: 40317257 DOI: 10.1080/14728222.2025.2500425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Revised: 03/31/2025] [Accepted: 04/17/2025] [Indexed: 05/07/2025]
Abstract
INTRODUCTION NOD-like receptor (NLR) family pyrin domain-containing 3 (NLRP3) inflammasome, integral to innate immunity, has become a pivotal figure in the inflammatory cascade. AREAS COVERED This article provides an overview of the NLRP3 inflammasome, reviewing its complicated structure, as well as the diverse signals that trigger its assembly. Furthermore, we explored the intricate relationship between the NLRP3 inflammasome and acute and chronic rejection in solid organ transplantation. Solid organ transplantation stands as a crucial medical intervention, yet its efficacy is challenged by immune-mediated complications, including acute rejection, ischemia-reperfusion injury, and chronic allograft rejection. We also investigated the encouraging potential of immunosuppressive therapies targeting NLRP3 signaling to alleviate inflammatory responses linked to transplantation. EXPERT OPINION In recent years, the NLRP3 inflammasome has garnered considerable attention owing to its critical functions spanning diverse fields. This study highlights the critical function of the NLRP3 inflammasome and presents insights, offering fresh perspectives on how its modulation might help to improve the outcomes among patients who undergo solid organ transplantations.
Collapse
Affiliation(s)
- Pershia Davoodi Karsalari
- Network of Immunity in Infection, Malignancy and Autoimmunity, Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Kosar Asna Ashari
- Network of Immunity in Infection, Malignancy and Autoimmunity, Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Department of Pediatrics, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Nima Rezaei
- Network of Immunity in Infection, Malignancy and Autoimmunity, Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Research Center for Immunodeficiencies, Children's Medical Center Hospital, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
24
|
Li Q, Xie Y, Lin J, Li M, Gu Z, Xin T, Zhang Y, Lu Q, Guo Y, Xing Y, Wang W. Microglia Sing the Prelude of Neuroinflammation-Associated Depression. Mol Neurobiol 2025; 62:5311-5332. [PMID: 39535682 DOI: 10.1007/s12035-024-04575-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 10/21/2024] [Indexed: 11/16/2024]
Abstract
Major depressive disorder (MDD) is a psychiatric condition characterized by sadness and anhedonia and is closely linked to chronic low-grade neuroinflammation, which is primarily induced by microglia. Nonetheless, the mechanisms by which microglia elicit depressive symptoms remain uncertain. This review focuses on the mechanism linking microglia and depression encompassing the breakdown of the blood-brain barrier, the hypothalamic-pituitary-adrenal axis, the gut-brain axis, the vagus and sympathetic nervous systems, and the susceptibility influenced by epigenetic modifications on microglia. These pathways may lead to the alterations of microglia in cytokine levels, as well as increased oxidative stress. Simultaneously, many antidepressant treatments can alter the immune phenotype of microglia, while anti-inflammatory treatments can also have antidepressant effects. This framework linking microglia, neuroinflammation, and depression could serve as a reference for targeting microglia to treat depression.
Collapse
Affiliation(s)
- Qingqing Li
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, 209 Tongshan Rd, Xuzhou, 221004, Jiangsu, China
| | - Ying Xie
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, 209 Tongshan Rd, Xuzhou, 221004, Jiangsu, China
| | - Jinyi Lin
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, 209 Tongshan Rd, Xuzhou, 221004, Jiangsu, China
| | - Miaomiao Li
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, 209 Tongshan Rd, Xuzhou, 221004, Jiangsu, China
| | - Ziyan Gu
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, 209 Tongshan Rd, Xuzhou, 221004, Jiangsu, China
| | - Tianli Xin
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, 209 Tongshan Rd, Xuzhou, 221004, Jiangsu, China
| | - Yang Zhang
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, 209 Tongshan Rd, Xuzhou, 221004, Jiangsu, China
| | - Qixia Lu
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, 209 Tongshan Rd, Xuzhou, 221004, Jiangsu, China
| | - Yihui Guo
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, 209 Tongshan Rd, Xuzhou, 221004, Jiangsu, China
| | - Yanhong Xing
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, 209 Tongshan Rd, Xuzhou, 221004, Jiangsu, China.
| | - Wuyang Wang
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, 209 Tongshan Rd, Xuzhou, 221004, Jiangsu, China.
| |
Collapse
|
25
|
Javed MJ, Howard RM, Li H, Carrasco L, Dirain ML, Su G, Cai G, Upchurch GR, Jiang Z. GSDMD Deficiency Attenuates the Development of Ascending Aortic Dissections in a Novel Mouse Model. Arterioscler Thromb Vasc Biol 2025; 45:541-556. [PMID: 39945067 PMCID: PMC11945581 DOI: 10.1161/atvbaha.124.321740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 01/27/2025] [Indexed: 02/19/2025]
Abstract
BACKGROUND Mechanisms driving the development of type A aortic dissection (TAD) are currently poorly understood, and animal models of spontaneous TAD are limited. In the present study, we developed a novel mouse TAD model and evaluated the role of GSDMD (gasdermin D) in TAD development. METHODS TADs were created by treating the ascending aorta of adult C57BL/6J mice with Act E (active elastase) and β-aminopropionitrile. The temporal progress of the TAD pathology was rigorously characterized by histological evaluation and scanning electron microscopy, while potential mechanisms were explored using bulk RNA sequencing of specimens collected at multiple time points. With this novel TAD model, we conducted additional experiments to investigate the impact of GSDMD deficiency on TAD formation. RESULTS Ascending aortas challenged with Act E and β-aminopropionitrile developed pathology featuring the early onset of intimomedial tears (complete penetration) and intramural hematomas, followed by progressive medial loss and aortic dilation. Ingenuity pathway analysis and functional annotation of differentially expressed genes suggested that a unique inflammatory microenvironment, rather than general inflammation, promotes the onset of TADs by specifically recruiting neutrophils to the aortic wall. At later stages, T cell-mediated immune injury emerged as the primary driver of pathology. Gsdmd deficiency attenuated medial loss, adventitial fibrosis, and dilation of TADs. This protective effect correlated with a reduced cell death and decreased T-cell infiltration in TADs. Notably, cleaved GSDMD was detected in human TADs but was absent in healthy aortas. CONCLUSIONS A novel mouse TAD model was developed, specifically targeting the ascending aorta. This model generates a unique microenvironment that activates specific immune cell subsets, driving the onset and subsequent remodeling of TADs. Consistently, Gsdmd deficiency mitigates TAD development, likely by modulating cell death and T-cell responses. This model provides a valuable tool for studying immune injury mechanisms in TAD pathogenesis.
Collapse
Affiliation(s)
- Muhammad J. Javed
- Division of Vascular Surgery and Endovascular Therapy, University of Florida College of Medicine, Gainesville, FL 32601, United States; Division of Thoracic and Cardiovascular Surgery, University of Florida College of Medicine, Gainesville, FL 32601, United States
| | - Rachael M. Howard
- Division of Vascular Surgery and Endovascular Therapy, University of Florida College of Medicine, Gainesville, FL 32601, United States; Division of Thoracic and Cardiovascular Surgery, University of Florida College of Medicine, Gainesville, FL 32601, United States
| | - Hua Li
- Division of Vascular Surgery and Endovascular Therapy, University of Florida College of Medicine, Gainesville, FL 32601, United States; Division of Thoracic and Cardiovascular Surgery, University of Florida College of Medicine, Gainesville, FL 32601, United States
| | - Laura Carrasco
- Division of Vascular Surgery and Endovascular Therapy, University of Florida College of Medicine, Gainesville, FL 32601, United States; Division of Thoracic and Cardiovascular Surgery, University of Florida College of Medicine, Gainesville, FL 32601, United States
| | - Marvin L.S Dirain
- Division of Vascular Surgery and Endovascular Therapy, University of Florida College of Medicine, Gainesville, FL 32601, United States; Division of Thoracic and Cardiovascular Surgery, University of Florida College of Medicine, Gainesville, FL 32601, United States
| | - Gang Su
- Division of Vascular Surgery and Endovascular Therapy, University of Florida College of Medicine, Gainesville, FL 32601, United States; Division of Thoracic and Cardiovascular Surgery, University of Florida College of Medicine, Gainesville, FL 32601, United States
| | - Guoshuai Cai
- Division of Vascular Surgery and Endovascular Therapy, University of Florida College of Medicine, Gainesville, FL 32601, United States; Division of Thoracic and Cardiovascular Surgery, University of Florida College of Medicine, Gainesville, FL 32601, United States
| | - Gilbert R. Upchurch
- Division of Vascular Surgery and Endovascular Therapy, University of Florida College of Medicine, Gainesville, FL 32601, United States; Division of Thoracic and Cardiovascular Surgery, University of Florida College of Medicine, Gainesville, FL 32601, United States
| | - Zhihua Jiang
- Division of Vascular Surgery and Endovascular Therapy, University of Florida College of Medicine, Gainesville, FL 32601, United States; Division of Thoracic and Cardiovascular Surgery, University of Florida College of Medicine, Gainesville, FL 32601, United States
- Malcom Randll VA Medical Center, Gainesville, FL 32608
| |
Collapse
|
26
|
Tanneti NS, Stillwell HA, Weiss SR. Human coronaviruses: activation and antagonism of innate immune responses. Microbiol Mol Biol Rev 2025; 89:e0001623. [PMID: 39699237 PMCID: PMC11948496 DOI: 10.1128/mmbr.00016-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2024] Open
Abstract
SUMMARYHuman coronaviruses cause a range of respiratory diseases, from the common cold (HCoV-229E, HCoV-NL63, HCoV-OC43, and SARS-CoV-2) to lethal pneumonia (SARS-CoV, SARS-CoV-2, and MERS-CoV). Coronavirus interactions with host innate immune antiviral responses are an important determinant of disease outcome. This review compares the host's innate response to different human coronaviruses. Host antiviral defenses discussed in this review include frontline defenses against respiratory viruses in the nasal epithelium, early sensing of viral infection by innate immune effectors, double-stranded RNA and stress-induced antiviral pathways, and viral antagonism of innate immune responses conferred by conserved coronavirus nonstructural proteins and genus-specific accessory proteins. The common cold coronaviruses HCoV-229E and -NL63 induce robust interferon signaling and related innate immune pathways, SARS-CoV and SARS-CoV-2 induce intermediate levels of activation, and MERS-CoV shuts down these pathways almost completely.
Collapse
Affiliation(s)
- Nikhila S. Tanneti
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Helen A. Stillwell
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Susan R. Weiss
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
27
|
Li Y, Li X, Wu W, Liu P, Liu J, Jiang H, Deng L, Ni C, Wu X, Zhao Y, Ren J. Insights into the roles of macrophages in Klebsiella pneumoniae infections: a comprehensive review. Cell Mol Biol Lett 2025; 30:34. [PMID: 40140770 PMCID: PMC11948646 DOI: 10.1186/s11658-025-00717-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 03/11/2025] [Indexed: 03/28/2025] Open
Abstract
Klebsiella pneumoniae (KP) infections represent a significant global health challenge, characterized by severe inflammatory sequelae and escalating antimicrobial resistance. This comprehensive review elucidates the complex interplay between macrophages and KP, encompassing pathogen recognition mechanisms, macrophage activation states, cellular death pathways, and emerging immunotherapeutic strategies. We critically analyze current literature on macrophage pattern recognition receptor engagement with KP-associated molecular patterns. The review examines the spectrum of macrophage responses to KP infection, including classical M1 polarization and the newly described M(Kp) phenotype, alongside metabolic reprogramming events such as glycolytic enhancement and immune responsive gene 1 (IRG1)-itaconate upregulation. We systematically evaluate macrophage fate decisions in response to KP, including autophagy, apoptosis, pyroptosis, and necroptosis. Furthermore, we provide a critical assessment of potential future therapeutic modalities. Given the limitations of current treatment paradigms, elucidating macrophage-KP interactions is imperative. Insights gained from this analysis may inform the development of novel immunomodulatory approaches to augment conventional antimicrobial therapies, potentially transforming the clinical management of KP infections.
Collapse
Affiliation(s)
- Yangguang Li
- Research Institute of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Xuanheng Li
- Research Institute of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Wenqi Wu
- Research Institute of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Peizhao Liu
- Research Institute of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Juanhan Liu
- Research Institute of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Haiyang Jiang
- Department of General Surgery, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, 210009, China
| | - Liting Deng
- School of Medicine, Southeast University, Nanjing, 210000, China
| | - Chujun Ni
- Department of General Surgery, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, 210009, China
| | - Xiuwen Wu
- Research Institute of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
| | - Yun Zhao
- Department of General Surgery, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, 210009, China.
- Clinical Translational Research Center for Surgical Infection and Immunity of Nanjing Medical University, Nanjing, China.
| | - Jianan Ren
- Research Institute of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
| |
Collapse
|
28
|
Zhang Q, Shen Y, Zhang C, Zhang H, Li X, Yang S, Dai C, Yu X, Lou J, Feng J, Hu C, Lin Z, Li X, Zhou X. Immunoengineered mitochondria for efficient therapy of acute organ injuries via modulation of inflammation and cell repair. SCIENCE ADVANCES 2025; 11:eadj1896. [PMID: 40106554 DOI: 10.1126/sciadv.adj1896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 02/11/2025] [Indexed: 03/22/2025]
Abstract
Acute organ injuries represent a major public health concern, driven by inflammation and mitochondrial dysfunction, leading to cell damage and organ failure. In this study, we engineered neutrophil membrane-fused mitochondria (nMITO), which combine the injury-targeting and anti-inflammatory properties of neutrophil membrane proteins with the cell repairing function of mitochondria. nMITO effectively blocked inflammatory cascades and restored mitochondrial function, targeting both key mechanisms in acute organ injuries. In addition, nMITO selectively targeted damaged endothelial cells via β-integrins and were delivered to injured tissues through tunneling nanotubes, enhancing their regulatory effects on inflammation and cell damage. In mouse models of acute myocardial injury, liver injury, and pancreatitis, nMITO notably reduced inflammatory responses and repaired tissue damage. These findings suggest that nMITO is a promising therapeutic strategy for managing acute organ injuries.
Collapse
Affiliation(s)
- Qing Zhang
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, PR China
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine & Rehabilitation School, Kunming Medical University, Kunming 650500, PR China
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, PR China
| | - Yan Shen
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, PR China
| | - Chengyuan Zhang
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine & Rehabilitation School, Kunming Medical University, Kunming 650500, PR China
| | - Hanyi Zhang
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, PR China
| | - Xuemei Li
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, PR China
| | - Shengqian Yang
- Institute of Materia Medica College of Pharmacy, Army Medical University, Chongqing 400038, PR China
| | - Chen Dai
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, PR China
| | - Xiuyan Yu
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, PR China
| | - Jie Lou
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, PR China
| | - Jinwei Feng
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, PR China
| | - Chenglu Hu
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, PR China
| | - Zhihua Lin
- Chongqing University of Chinese Medicine, Chongqing 402760, PR China
| | - Xiaohui Li
- Institute of Materia Medica College of Pharmacy, Army Medical University, Chongqing 400038, PR China
| | - Xing Zhou
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine & Rehabilitation School, Kunming Medical University, Kunming 650500, PR China
- School of Pharmaceutical Sciences & Yunnan Provincial Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, Yunnan 650500, PR China
| |
Collapse
|
29
|
Rroji M, Spahia N, Figurek A, Spasovski G. Targeting Diabetic Atherosclerosis: The Role of GLP-1 Receptor Agonists, SGLT2 Inhibitors, and Nonsteroidal Mineralocorticoid Receptor Antagonists in Vascular Protection and Disease Modulation. Biomedicines 2025; 13:728. [PMID: 40149704 PMCID: PMC11940462 DOI: 10.3390/biomedicines13030728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Revised: 03/03/2025] [Accepted: 03/12/2025] [Indexed: 03/29/2025] Open
Abstract
Atherosclerosis is a closely related complication of diabetes mellitus (DM), driven by endothelial dysfunction, inflammation, and oxidative stress. The progression of atherosclerosis is accelerated by hyperglycemia, insulin resistance, and hyperlipidemia. Novel antidiabetic agents, SGLT2 inhibitors, and GLP-1 agonists improve glycemic control and offer cardiovascular protection, reducing the risk of major adverse cardiovascular events (MACEs) and heart failure hospitalization. These agents, along with nonsteroidal mineralocorticoid receptor antagonists (nsMRAs), promise to mitigate metabolic disorders and their impact on endothelial function, oxidative stress, and inflammation. This review explores the potential molecular mechanisms through which these drugs may prevent the development of atherosclerosis and cardiovascular disease (CVD), supported by a summary of preclinical and clinical evidence.
Collapse
Affiliation(s)
- Merita Rroji
- Department of Nephrology, University of Medicine Tirana, 1001 Tirana, Albania
- Department of Nephrology, University Hospital Center Mother Tereza, 1001 Tirana, Albania;
| | - Nereida Spahia
- Department of Nephrology, University Hospital Center Mother Tereza, 1001 Tirana, Albania;
| | - Andreja Figurek
- Institute of Anatomy, University of Zurich, 8057 Zurich, Switzerland;
| | - Goce Spasovski
- Department of Nephrology, University Sts. Cyril and Methodius, 1000 Skopje, North Macedonia;
| |
Collapse
|
30
|
Zhou X, Ma Z, Cheng Q, Jiang N, Li J, Zhan T, Yuan N, Chen Y, Wang L, Wang J, Li Q, Jia W, Xie B, Zhao Y, Zhang B, Yang B, Dai C, Wei L, Liu J, Chen Z, Lan P. Sour neuronal signalling attenuates macrophage-mediated liver injury. J Hepatol 2025:S0168-8278(25)00135-7. [PMID: 40058705 DOI: 10.1016/j.jhep.2025.02.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 02/01/2025] [Accepted: 02/12/2025] [Indexed: 05/01/2025]
Abstract
BACKGROUND & AIMS Liver injury, a common pathophysiological basis of various liver diseases, is associated with inflammation. Hepatic nerves regulate inflammation. However, the specific signals that trigger inflammation and methods to treat inflammation by targeting nerves remain unknown. METHODS First, we constructed an animal model to detect the effect of sour stimuli on liver ischaemia-reperfusion injury (IRI) in mice. Next, we analysed the altered gene expression of neurons during liver IRI by single-cell sequencing. In addition, we explored the effect of sour stimuli on liver IRI in mice. Finally, we designed clinical trials to explore the effect of sour stimuli on liver IRI during hepatectomy. RESULTS In this study, single-cell sequencing data from the liver and celiac ganglion showed that TAFA2 was induced in neurones during liver IRI, whereas sour stimuli decreased TAFA2 production and liver injury. In vivo studies showed that TAFA2 ablation and specific knockdown in neurones reduce liver injury. Using FLAG-tagged TAFA2, we found that TAFA2 interacted with chemokine C-C-motif receptor 2 (CCR2) and promoted macrophage activation, consistent with RNA sequencing data showing that TAFA2 induced the expression of inflammatory genes in wild-type macrophages, but not in Ccr2 knockout macrophages. Moreover, patients exposed to sour stimuli exhibited less severe liver IRI during hepatectomy. CONCLUSIONS Our results reveal a neuroimmune interaction in which neurone-derived TAFA2 recruits CCR2+ macrophages to the liver and triggers liver injury, which is at least partly reduced by nerve signalling in response to sour stimuli, i.e. consumption of acidic substances. Our findings provide new insights into the brain-liver axis and potential therapeutic approaches for liver injury. IMPACT AND IMPLICATIONS In this study, we demonstrated that sour stimuli, which are related to consumption of acidic foods, are at least partly responsible for reducing human and mouse liver ischaemia-reperfusion injury (IRI), and we confirmed the important role of the brain-liver axis in liver IRI. In this study, we found that the brain-liver axis increases liver IRI through the secretion of TAFA2 protein. TAFA2 mediated liver IRI through the recruitment and activation of macrophages via the receptor CCR2. Additionally, TAFA2 was shown to induce a proinflammatory transcriptional profile in macrophages. Our findings provide new insights into the brain-liver axis and uncover a potential therapeutic strategy to reduce IRI. CLINICAL TRIAL NUMBER This clinical trial was registered with the Chinese Clinical Trial Registry (ChiCTR2400088096).
Collapse
Affiliation(s)
- Xi Zhou
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, People's Republic of China; Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, 430030 Wuhan, People's Republic of China
| | - Zhibo Ma
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, People's Republic of China; Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, 430030 Wuhan, People's Republic of China
| | - Qi Cheng
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Na Jiang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, People's Republic of China
| | - Junbo Li
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, People's Republic of China; Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, 430030 Wuhan, People's Republic of China
| | - Tianao Zhan
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Naonao Yuan
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, People's Republic of China; Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, 430030 Wuhan, People's Republic of China
| | - Yanyu Chen
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, People's Republic of China; Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, 430030 Wuhan, People's Republic of China
| | - Lu Wang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, People's Republic of China; Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, 430030 Wuhan, People's Republic of China
| | - Jingzeng Wang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, People's Republic of China; Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, 430030 Wuhan, People's Republic of China
| | - Qingwen Li
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, People's Republic of China; Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, 430030 Wuhan, People's Republic of China
| | - Wenlong Jia
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Bowen Xie
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, People's Republic of China; Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, 430030 Wuhan, People's Republic of China
| | - Yuanyuan Zhao
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, People's Republic of China; Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, 430030 Wuhan, People's Republic of China
| | - Bo Zhang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, People's Republic of China; Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, 430030 Wuhan, People's Republic of China
| | - Bo Yang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, People's Republic of China; Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, 430030 Wuhan, People's Republic of China
| | - Chen Dai
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, People's Republic of China; Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, 430030 Wuhan, People's Republic of China
| | - Lai Wei
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, People's Republic of China; Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, 430030 Wuhan, People's Republic of China
| | - Jing Liu
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, People's Republic of China; Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, 430030 Wuhan, People's Republic of China.
| | - Zhishui Chen
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, People's Republic of China; Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, 430030 Wuhan, People's Republic of China.
| | - Peixiang Lan
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, People's Republic of China; Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, 430030 Wuhan, People's Republic of China.
| |
Collapse
|
31
|
Ma X, Han R, Wang J, Zhang B, Ruan M, Zhao W, Zhang J. Novel NIR fluorescent probe based on BODIPY for diagnosis and treatment evaluation of alcoholic liver disease via visualizing HClO fluctuation. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 328:125497. [PMID: 39615092 DOI: 10.1016/j.saa.2024.125497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 11/20/2024] [Accepted: 11/24/2024] [Indexed: 12/10/2024]
Abstract
Alcoholic liver disease (ALD) is gradually becoming common due to the increasing number of drinkers worldwide, which is a serious threat to human physical and mental health. In the process of ALD, it is often accompanied by the occurrence of inflammation, which induce high expression of reactive oxygen species including HClO. In this work, we successfully fabricated a NIR fluorescent probe BDP-ENE-Fur-HClO for real-time imaging alcoholic liver disease via tracing HClO. The probe displayed good sensitivity and specificity, rapid recognition speed and NIR emitting (700 nm) for detection of HClO in vitro. Based on the remarkable performances, probe was capable of tracing endogenous/exogenous HClO in living cells without interference from other ROS as well as in ALD cell model. Additionally, probe could monitor the exogenous HClO in normal mice and high expression of HClO in the peritonitis mice, that accomplishing the diagnosis of inflammation. What's more, one simulated hazardous drinking ALD mice model and simulated excessive drinking (a type of alcohol use disorder) ALD mice model were developed, probe could image the alcoholic liver injury of mice by monitoring the HClO fluctuation in ALD mice, which affording a valid instrument for the diagnosis of ALD. Ultimately, after hepatoprotective drug administrating to the models, probe could triumphantly evaluate the treatment effect of drug on ALD.
Collapse
Affiliation(s)
- Xiaoteng Ma
- Key Laboratory for Special Functional Materials of Ministry of Education, School of Nanoscience and Materials Engineering, Henan University, Kaifeng 475004, PR China
| | - Ruiqi Han
- Key Laboratory for Special Functional Materials of Ministry of Education, School of Nanoscience and Materials Engineering, Henan University, Kaifeng 475004, PR China
| | - Jiamin Wang
- Henan Key Laboratory of Natural Medicine Innovation and Transformation, State Key Laboratory of Antiviral Drugs, Henan University, Kaifeng 475004, PR China.
| | - Bo Zhang
- Key Laboratory for Special Functional Materials of Ministry of Education, School of Nanoscience and Materials Engineering, Henan University, Kaifeng 475004, PR China
| | - Minghao Ruan
- Key Laboratory for Special Functional Materials of Ministry of Education, School of Nanoscience and Materials Engineering, Henan University, Kaifeng 475004, PR China
| | - Weili Zhao
- Key Laboratory for Special Functional Materials of Ministry of Education, School of Nanoscience and Materials Engineering, Henan University, Kaifeng 475004, PR China; School of Pharmacy, Institutes of Integrative Medicine, Fudan University, Shanghai 201203, PR China.
| | - Jian Zhang
- Key Laboratory for Special Functional Materials of Ministry of Education, School of Nanoscience and Materials Engineering, Henan University, Kaifeng 475004, PR China.
| |
Collapse
|
32
|
Quan S, Fu X, Cai H, Ren Z, Xu Y, Jia L. The neuroimmune nexus: unraveling the role of the mtDNA-cGAS-STING signal pathway in Alzheimer's disease. Mol Neurodegener 2025; 20:25. [PMID: 40038765 PMCID: PMC11877805 DOI: 10.1186/s13024-025-00815-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 02/17/2025] [Indexed: 03/06/2025] Open
Abstract
The relationship between Alzheimer's disease (AD) and neuroimmunity has gradually begun to be unveiled. Emerging evidence indicates that cyclic GMP-AMP synthase (cGAS) acts as a cytosolic DNA sensor, recognizing cytosolic damage-associated molecular patterns (DAMPs), and inducing the innate immune response by activating stimulator of interferon genes (STING). Dysregulation of this pathway culminates in AD-related neuroinflammation and neurodegeneration. A substantial body of evidence indicates that mitochondria are involved in the critical pathogenic mechanisms of AD, whose damage leads to the release of mitochondrial DNA (mtDNA) into the extramitochondrial space. This leaked mtDNA serves as a DAMP, activating various pattern recognition receptors and immune defense networks in the brain, including the cGAS-STING pathway, ultimately leading to an imbalance in immune homeostasis. Therefore, modulation of the mtDNA-cGAS-STING pathway to restore neuroimmune homeostasis may offer promising prospects for improving AD treatment outcomes. In this review, we focus on the mechanisms of mtDNA release during stress and the activation of the cGAS-STING pathway. Additionally, we delve into the research progress on this pathway in AD, and further discuss the primary directions and potential hurdles in developing targeted therapeutic drugs, to gain a deeper understanding of the pathogenesis of AD and provide new approaches for its therapy.
Collapse
Affiliation(s)
- Shuiyue Quan
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, 45 Changchun St, Beijing, 100053, China
| | - Xiaofeng Fu
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, 45 Changchun St, Beijing, 100053, China
| | - Huimin Cai
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, 45 Changchun St, Beijing, 100053, China
| | - Ziye Ren
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, 45 Changchun St, Beijing, 100053, China
| | - Yinghao Xu
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, 45 Changchun St, Beijing, 100053, China
| | - Longfei Jia
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, 45 Changchun St, Beijing, 100053, China.
| |
Collapse
|
33
|
Jiang J, Xie H, Cao S, Xu X, Zhou J, Liu Q, Ding C, Liu M. Post-stroke depression: exploring gut microbiota-mediated barrier dysfunction through immune regulation. Front Immunol 2025; 16:1547365. [PMID: 40098959 PMCID: PMC11911333 DOI: 10.3389/fimmu.2025.1547365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 02/17/2025] [Indexed: 03/19/2025] Open
Abstract
Post-stroke depression (PSD) is one of the most common and devastating neuropsychiatric complications in stroke patients, affecting more than one-third of survivors of ischemic stroke (IS). Despite its high incidence, PSD is often overlooked or undertreated in clinical practice, and effective preventive measures and therapeutic interventions remain limited. Although the exact mechanisms of PSD are not fully understood, emerging evidence suggests that the gut microbiota plays a key role in regulating gut-brain communication. This has sparked great interest in the relationship between the microbiota-gut-brain axis (MGBA) and PSD, especially in the context of cerebral ischemia. In addition to the gut microbiota, another important factor is the gut barrier, which acts as a frontline sensor distinguishing between beneficial and harmful microbes, regulating inflammatory responses and immunomodulation. Based on this, this paper proposes a new approach, the microbiota-immune-barrier axis, which is not only closely related to the pathophysiology of IS but may also play a critical role in the occurrence and progression of PSD. This review aims to systematically analyze how the gut microbiota affects the integrity and function of the barrier after IS through inflammatory responses and immunomodulation, leading to the production or exacerbation of depressive symptoms in the context of cerebral ischemia. In addition, we will explore existing technologies that can assess the MGBA and potential therapeutic strategies for PSD, with the hope of providing new insights for future research and clinical interventions.
Collapse
Affiliation(s)
- Jia Jiang
- The Second Affiliated Hospital, Hunan University of Chinese Medicine, Changsha, China
| | - Haihua Xie
- School of Acupuncture & Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, China
| | - Sihui Cao
- School of Acupuncture & Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, China
| | - Xuan Xu
- School of Acupuncture & Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, China
| | - Jingying Zhou
- School of Acupuncture & Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, China
| | - Qianyan Liu
- School of Acupuncture & Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, China
| | - Changsong Ding
- School of Information Science and Engineering, Hunan University of Chinese Medicine, Changsha, China
| | - Mi Liu
- School of Acupuncture & Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
34
|
Karjalainen A, Witalisz-Siepracka A, Prchal-Murphy M, Martin D, Sternberg F, Krunic M, Dolezal M, Fortelny N, Farlik M, Macho-Maschler S, Lassnig C, Meissl K, Amenitsch L, Lederer T, Pohl E, Gotthardt D, Bock C, Decker T, Strobl B, Müller M. Cell-type-specific requirement for TYK2 in murine immune cells under steady state and challenged conditions. Cell Mol Life Sci 2025; 82:98. [PMID: 40025196 PMCID: PMC11872851 DOI: 10.1007/s00018-025-05625-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 01/31/2025] [Accepted: 02/17/2025] [Indexed: 03/04/2025]
Abstract
Tyrosine kinase 2 (TYK2) deficiency and loss or inhibition of kinase activity in men and mice leads to similar immune compromised phenotypes, predominantly through impairment of interferon (IFN) and interleukin 12 family responses. Here we relate the transcriptome changes to phenotypical changes observed in TYK2-deficient (Tyk2-/-) and TYK2 kinase-inactive (Tyk2K923E) mice in naïve splenic immune cells and upon ex vivo IFN treatment or in vivo tumor transplant infiltration. The TYK2 activities under homeostatic and both challenged conditions are highly cell-type-specific with respect to quantity and quality of transcriptionally dependent genes. The major impact of loss of TYK2 protein or kinase activity in splenic homeostatic macrophages, NK and CD8+ T cells and tumor-derived cytolytic cells is on IFN responses. While reportedly TYK2 deficiency leads to partial impairment of IFN-I responses, we identified cell-type-specific IFN-I-repressed gene sets completely dependent on TYK2 kinase activity. Reported kinase-inactive functions of TYK2 relate to signaling crosstalk, metabolic functions and cell differentiation or maturation. None of these phenotypes relates to respective enriched gene sets in the TYK2 kinase-inactive cell types. Nonetheless, the scaffolding functions of TYK2 are capable to change transcriptional activities at single gene levels and chromatin accessibility at promoter-distal regions upon cytokine treatment most prominently in CD8+ T cells. The cell-type-specific transcriptomic and epigenetic effects of TYK2 shed new light on the biology of this JAK family member and are relevant for current and future treatment of autoimmune and inflammatory diseases with TYK2 inhibitors.
Collapse
Affiliation(s)
- Anzhelika Karjalainen
- Animal Breeding and Genetics, Department of Biological Sciences and Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Agnieszka Witalisz-Siepracka
- Animal Breeding and Genetics, Department of Biological Sciences and Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
- Division Pharmacology, Karl Landsteiner University of Health Sciences, Krems an Der Donau, Austria
| | - Michaela Prchal-Murphy
- Pharmacology and Toxicology, Department of Biological Sciences and Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - David Martin
- Animal Breeding and Genetics, Department of Biological Sciences and Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Felix Sternberg
- Physiology and Biophysics, Department of Biological Sciences and Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
- Department of Nutritional Sciences, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Milica Krunic
- Campus Tulln, University of Applied Sciences Wiener Neustadt, Wiener Neustadt, Austria
| | - Marlies Dolezal
- Platform Biostatistics and Bioinformatics, Department of Biological Sciences and Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Nikolaus Fortelny
- Department of Biosciences and Medical Biology, Center for Tumor Biology and Immunology, Paris-Lodron University Salzburg, Salzburg, Austria
| | - Matthias Farlik
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Sabine Macho-Maschler
- Animal Breeding and Genetics, Department of Biological Sciences and Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Caroline Lassnig
- Core Facility VetBiomodels, University of Veterinary Medicine, Vienna, Austria
| | - Katrin Meissl
- Animal Breeding and Genetics, Department of Biological Sciences and Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Lena Amenitsch
- Animal Breeding and Genetics, Department of Biological Sciences and Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Therese Lederer
- Animal Breeding and Genetics, Department of Biological Sciences and Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Elena Pohl
- Physiology and Biophysics, Department of Biological Sciences and Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Dagmar Gotthardt
- Division Pharmacology, Karl Landsteiner University of Health Sciences, Krems an Der Donau, Austria
| | - Christoph Bock
- Cemm Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Institute of Artificial Intelligence, Center for Medical Data Science, Medical University of Vienna, Vienna, Austria
| | - Thomas Decker
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria
- Center for Molecular Biology, Department of Microbiology, Immunobiology and Genetics, University of Vienna, Vienna, Austria
| | - Birgit Strobl
- Animal Breeding and Genetics, Department of Biological Sciences and Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Mathias Müller
- Animal Breeding and Genetics, Department of Biological Sciences and Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria.
| |
Collapse
|
35
|
Hussain N, Khan MM, Sharma A, Singh RK, Khan RH. Beyond plaques and tangles: The role of immune cell dysfunction in Alzheimer's disease. Neurochem Int 2025; 184:105947. [PMID: 39956324 DOI: 10.1016/j.neuint.2025.105947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 02/11/2025] [Accepted: 02/12/2025] [Indexed: 02/18/2025]
Abstract
The interplay between immune cell dysfunction and associated neuroinflammation plays a critical role in the pathogenesis of Alzheimer's disease. Neuroinflammation, orchestrated by microglia and peripheral immune cells, exacerbates synaptic dysfunction and neurodegeneration in AD. Emerging evidence suggests a systemic immune response in AD, challenging traditional views of neurocentric pathology. Therapeutic strategies targeting neuroinflammation hold promise, yet translating preclinical findings into clinical success remains elusive. This article presents recent advances in AD scientific studies, highlighting the pivotal role of immune cell dysfunction and signaling pathways in disease progression. We also discussed therapeutic studies targeting immune cell dysregulation, as treatment methods. This advocates for a paradigm shift towards holistic approaches that integrate peripheral and central immune responses, fostering a comprehensive understanding of AD pathophysiology and paving the way for transformative interventions.
Collapse
Affiliation(s)
- Nasif Hussain
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, 202002, India
| | - Mohd Moin Khan
- Brigham and Women's Hospital, Harvard Medical School, Harvard University, Boston, MA, USA
| | - Ayushi Sharma
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, 202002, India
| | - Rakesh K Singh
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Rizwan Hasan Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, 202002, India.
| |
Collapse
|
36
|
Abellanas MA, Purnapatre M, Burgaletto C, Schwartz M. Monocyte-derived macrophages act as reinforcements when microglia fall short in Alzheimer's disease. Nat Neurosci 2025; 28:436-445. [PMID: 39762659 DOI: 10.1038/s41593-024-01847-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 11/06/2024] [Indexed: 03/12/2025]
Abstract
The central nervous system (CNS) is endowed with its own resident innate immune cells, the microglia. They constitute approximately 10% of the total cells within the CNS parenchyma and act as 'sentinels', sensing and mitigating any deviation from homeostasis. Nevertheless, under severe acute or chronic neurological injury or disease, microglia are unable to contain the damage, and the reparative activity of monocyte-derived macrophages (MDMs) is required. The failure of the microglia under such conditions could be an outcome of their prolonged exposure to hostile stimuli, leading to their exhaustion or senescence. Here, we describe the conditions under which the microglia fall short, focusing mainly on the context of Alzheimer's disease, and shed light on the functions performed by MDMs. We discuss whether and how MDMs engage in cross-talk with the microglia, why their recruitment is often inadequate, and potential ways to augment their homing to the brain in a well-controlled manner.
Collapse
Affiliation(s)
- Miguel A Abellanas
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | | | - Chiara Burgaletto
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Michal Schwartz
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
37
|
Sato S, Iwaki J, Hirabayashi J. Decoding the multifaceted roles of galectins in self-defense. Semin Immunol 2025; 77:101926. [PMID: 39721561 DOI: 10.1016/j.smim.2024.101926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 12/13/2024] [Accepted: 12/14/2024] [Indexed: 12/28/2024]
Abstract
In this review, we aim to explore the multifaceted roles of galectins in host defense from a broader perspective, particularly regarding their functions when host integrity is compromised. Numerous comprehensive reviews on galectin functions in immunity have already been published. For researchers new to the field, this wealth of information may create an impression of galectins as proteins involved in a wide array of biological processes. Furthermore, due to the heterogeneity of galectin ligands, glycans, there is a risk of perceiving galectin-specific functions as ambiguous, potentially obscuring their core biological significance. To address this, we revisit foundational aspects, focusing on the significance of the recognition of galactose, a "late-comer" monosaccharide in evolutionary terms, provide an overview of galectin glycan binding specificity, with emphasis on the potential biological importance of each carbohydrate-recognition domain. We also discuss the biological implications of the galectin location paradox wherein these cytosolic lectins function in host defense despite their glycan ligands being synthesized in the secretory pathway. Additionally, we examine the role of galectins in liquid-liquid phase separation on membranes, which may facilitate their diverse functions in cellular responses. Through this approach, we aim to re-evaluate the complex and diverse biological roles of galectins in host defense.
Collapse
Affiliation(s)
- Sachiko Sato
- Axe of Infectious and Immune Diseases, CHU de Quebec-Université Laval Research Centre, Faculty of Medicine, and Research Centre for Infectious Diseases, Laval University, Quebec City, Canada.
| | - Jun Iwaki
- Tokyo Chemical Industry Co., Ltd., Tokyo, Japan.
| | - Jun Hirabayashi
- Institute for Glyco-core Research, Nagoya University, Tokai Higher Education and Research System, Nagoya, Japan.
| |
Collapse
|
38
|
Wang K, Huang M, Zeng Q, Wu H. Characterization and functional analysis of chicken hnRNP protein. Poult Sci 2025; 104:104859. [PMID: 39893919 PMCID: PMC11840536 DOI: 10.1016/j.psj.2025.104859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/18/2025] [Accepted: 01/24/2025] [Indexed: 02/04/2025] Open
Abstract
While the role of hnRNP proteins in modulating interferon signaling and virus replication in mammals has been extensively studied, the impact of chicken hnRNPs on innate immune response and Infectious Bursal Disease Virus (IBDV) replication remains largely unexplored. In this study, multiple chicken hnRNPs were identified to interact with genomic dsRNA. Initially, these hnRNPs were found to be exclusively localized in the nucleus before IBDV infection. However, post-infection, they translocated into the cytoplasm to co-localize with the viral dsRNA. Furthermore, the effects of various chicken hnRNPs on IFN-β activation, induced by the chicken MDA5-MAVS-TBK1 and STING-IRF7 pathway, were analyzed. Among these hnRNPs, hnRNPA3 demonstrated the most significant reduction in inhibiting IFN-β activation at the MAVS step. Additionally, overexpression of chicken hnRNPA3 was found to markedly enhance IBDV replication. Conversely, silencing chicken hnRNPA3 via siRNA significantly increased IFN-β production, thereby substantially suppressing IBDV replication. In summary, our findings reveal for the first time that multiple chicken hnRNPs interact with viral dsRNA, modulate IFN-β production, and specifically, that chicken hnRNPA3 promotes IBDV replication. These insights into the role of chicken hnRNPs in viral replication and immune response could pave the way for new therapeutic strategies against IBDV.
Collapse
Affiliation(s)
- Ke Wang
- Department of Veterinary Preventive Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, Zhimin Street, Qingshan Lake, Nanchang, 330045, PR China; Jiangxi Provincial Key laboratory for Animal Science and Technology, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Manzi Huang
- Department of Veterinary Preventive Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, Zhimin Street, Qingshan Lake, Nanchang, 330045, PR China; Jiangxi Provincial Key laboratory for Animal Science and Technology, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Qinghua Zeng
- Department of Veterinary Preventive Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, Zhimin Street, Qingshan Lake, Nanchang, 330045, PR China; Jiangxi Provincial Key laboratory for Animal Science and Technology, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Huansheng Wu
- Department of Veterinary Preventive Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, Zhimin Street, Qingshan Lake, Nanchang, 330045, PR China; Jiangxi Provincial Key laboratory for Animal Science and Technology, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, PR China.
| |
Collapse
|
39
|
Lei Y, Wang Y, Tang S, Yang J, Lai D, Qiu Q. The adaptive immune system in the retina of diabetics. Surv Ophthalmol 2025; 70:241-254. [PMID: 39566563 DOI: 10.1016/j.survophthal.2024.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 11/07/2024] [Accepted: 11/13/2024] [Indexed: 11/22/2024]
Abstract
As the prevalence of diabetes mellitus increases each year, its most common microvascular complication, diabetic retinopathy (DR), is also on the rise. DR is now regarded as an inflammatory disease in which innate immunity plays a crucial role, and a large number of innate immune cells with associated cytokines are involved in the pathologic process of DR. The role of adaptive immunity in DR is seldom mentioned, probably due to the general perception of the immune privileged environment of the retina; however, in recent years there has been a gradual increase in research on the role of adaptive immunity in DR, and with the discovery of the retinal lymphatic system, it seems that the role of adaptive immunity can no longer be ignored. Here, we discuss the immunosuppressive environment of the retina, the phenomenon and potential mechanisms of lymphocyte infiltration in DR, and the role of the adaptive immune system in the diabetic retina, which may point the way for future research.
Collapse
Affiliation(s)
- Yiou Lei
- Xiangya School of Medicine, Central South University, Changsha, Hunan, PR China; Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China; National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, PR China
| | - Yani Wang
- Xiangya School of Medicine, Central South University, Changsha, Hunan, PR China; Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China; National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, PR China
| | - Siao Tang
- Xiangya School of Medicine, Central South University, Changsha, Hunan, PR China; Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China; National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, PR China
| | - Jiaqi Yang
- Xiangya School of Medicine, Central South University, Changsha, Hunan, PR China; Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China; National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, PR China
| | - Dongwei Lai
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China; National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, PR China.
| | - Qinghua Qiu
- Department of Ophthalmology, Tong Ren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China.
| |
Collapse
|
40
|
Zheng XB, Wang X, Gao SQ, Gao CC, Li T, Han YL, Zhao R, Sun Y, Miao SH, Qiu JY, Jin WX, Zhou ML. NINJ1-mediated plasma membrane rupture of pyroptotic endothelial cells exacerbates blood-brain barrier destruction caused by neutrophil extracellular traps in traumatic brain injury. Cell Death Discov 2025; 11:69. [PMID: 39979243 PMCID: PMC11842820 DOI: 10.1038/s41420-025-02350-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 01/23/2025] [Accepted: 02/11/2025] [Indexed: 02/22/2025] Open
Abstract
Brain endothelial cell (bEC) dysfunction is the main factor of blood-brain barrier (BBB) breakdown, which triggers a vicious cycle of aggravating traumatic brain injury (TBI) pathogenesis. Previous studies have revealed that neutrophil extracellular traps (NETs) released by neutrophils can lead to BBB disruption, but there is a lack of research on the underlying mechanisms after TBI. Here, excessive NETs were found in both contused brain tissue and circulation following TBI. We found that NETs could activate the TLR4/NF-κB pathway to induce bEC pyroptosis, which led to BBB disruption after TBI. During this process, ninjurin-1 (NINJ1) was activated in pyroptotic bECs, and it mediated the release of high mobility group box 1 protein (HMGB1) via plasma membrane rupture (PMR) to promote NET formation. NINJ1-mediated release of HMGB1 aggravated NET accumulation by forming a vicious circle following TBI. Knockdown of NINJ1 rescued NET formation, attenuated BBB leakage, and improved neurological outcomes after TBI. NINJ1 may represent a promising target for alleviating NET-induced BBB destruction and other related injuries after TBI.
Collapse
Affiliation(s)
- Xiao-Bo Zheng
- Jinling Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xue Wang
- Department of Neurosurgery, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Sheng-Qing Gao
- Department of Neurosurgery, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Chao-Chao Gao
- Department of Neurosurgery, Jinling Hospital, Jinling School of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Tao Li
- Department of Neurosurgery, Jinling Hospital, Jinling School of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Yan-Ling Han
- Department of Neurosurgery, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Ran Zhao
- Department of Neurosurgery, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Yan Sun
- Department of Neurosurgery, Jinling Hospital, Jinling School of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Shu-Hao Miao
- Department of Neurosurgery, Jinling Hospital, Jinling School of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Jia-Yin Qiu
- Department of Neurosurgery, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Wang-Xuan Jin
- Department of Neurosurgery, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Meng-Liang Zhou
- Jinling Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China.
- Department of Neurosurgery, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
| |
Collapse
|
41
|
Ni HM, Ding WX. An ER Transmembrane Protein Protects Against Hepatic Ischemia-Reperfusion Injury By Inhibiting ER-phagy and Apoptosis? J Hepatol 2025:S0168-8278(25)00094-7. [PMID: 39983834 DOI: 10.1016/j.jhep.2025.02.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Accepted: 02/06/2025] [Indexed: 02/23/2025]
Affiliation(s)
- Hong-Min Ni
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas 66160, USA.
| | - Wen-Xing Ding
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas 66160, USA; Division of Gastroenterology, Hepatology and Motility, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas 66160, USA.
| |
Collapse
|
42
|
Kasal DA, Sena V, Huguenin GVB, De Lorenzo A, Tibirica E. Microvascular endothelial dysfunction in vascular senescence and disease. Front Cardiovasc Med 2025; 12:1505516. [PMID: 40041173 PMCID: PMC11878104 DOI: 10.3389/fcvm.2025.1505516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 01/21/2025] [Indexed: 03/06/2025] Open
Abstract
Cardiovascular disease (CVD) is the main cause of morbidity and mortality in the adult and the elderly, with increasing prevalence worldwide. A growing body of research has focused on the earliest stage of vascular decline-endothelial dysfunction (ED)-which at the microvascular level can anticipate in decades the diagnosis of CVD. This review aims to provide a prospect of the literature regarding the development of ED as an indissociable feature of the aging of the cardiovascular system, highlighting the role of inflammation in the process. Vascular aging consists of a lifelong continuum, which starts with cell respiration and its inherent production of reactive oxygen species. Molecular imbalance is followed by cellular epigenetic changes, which modulate immune cells, such as macrophage and lymphocyte subtypes. These mechanisms are influenced by lifestyle habits, which affect inflammation hotspots in organism, such as visceral fat and gut microbiota. The process can ultimately lead to an environment committed to the loss of the physiological functions of endothelial cells. In addition, we discuss lifestyle changes targeting the connection between age-related inflammation and vascular dysfunction. Addressing microvascular ED represents a critical endeavor in order to prevent or delay vascular aging and associated diseases.
Collapse
Affiliation(s)
- Daniel A. Kasal
- Research and Teaching Department, National Institute of Cardiology, Rio de Janeiro, Brazil
- Internal Medicine Department, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Viviane Sena
- Research and Teaching Department, National Institute of Cardiology, Rio de Janeiro, Brazil
| | - Grazielle Vilas Bôas Huguenin
- Research and Teaching Department, National Institute of Cardiology, Rio de Janeiro, Brazil
- Nutrition and Dietetics Department, Fluminense Federal University, Rio de Janeiro, Brazil
| | - Andrea De Lorenzo
- Research and Teaching Department, National Institute of Cardiology, Rio de Janeiro, Brazil
| | - Eduardo Tibirica
- Research and Teaching Department, National Institute of Cardiology, Rio de Janeiro, Brazil
| |
Collapse
|
43
|
Chee YJ, Dalan R, Cheung C. The Interplay Between Immunity, Inflammation and Endothelial Dysfunction. Int J Mol Sci 2025; 26:1708. [PMID: 40004172 PMCID: PMC11855323 DOI: 10.3390/ijms26041708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 02/04/2025] [Accepted: 02/12/2025] [Indexed: 02/27/2025] Open
Abstract
The endothelium is pivotal in multiple physiological processes, such as maintaining vascular homeostasis, metabolism, platelet function, and oxidative stress. Emerging evidence in the past decade highlighted the immunomodulatory function of endothelium, serving as a link between innate, adaptive immunity and inflammation. This review examines the regulation of the immune-inflammatory axis by the endothelium, discusses physiological immune functions, and explores pathophysiological processes leading to endothelial dysfunction in various metabolic disturbances, including hyperglycemia, obesity, hypertension, and dyslipidaemia. The final section focuses on the novel, repurposed, and emerging therapeutic targets that address the immune-inflammatory axis in endothelial dysfunction.
Collapse
Affiliation(s)
- Ying Jie Chee
- Department of Endocrinology, Tan Tock Seng Hospital, Singapore 308433, Singapore;
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore;
| | - Rinkoo Dalan
- Department of Endocrinology, Tan Tock Seng Hospital, Singapore 308433, Singapore;
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore;
| | - Christine Cheung
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore;
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore 138632, Singapore
| |
Collapse
|
44
|
Yu H, Ren K, Jin Y, Zhang L, Liu H, Huang Z, Zhang Z, Chen X, Yang Y, Wei Z. Mitochondrial DAMPs: Key mediators in neuroinflammation and neurodegenerative disease pathogenesis. Neuropharmacology 2025; 264:110217. [PMID: 39557152 DOI: 10.1016/j.neuropharm.2024.110217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/02/2024] [Accepted: 11/13/2024] [Indexed: 11/20/2024]
Abstract
Neurodegenerative diseases such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), and amyotrophic lateral sclerosis (ALS) are increasingly linked to mitochondrial dysfunction and neuroinflammation. Central to this link are mitochondrial damage-associated molecular patterns (mtDAMPs), including mitochondrial DNA, ATP, and reactive oxygen species, released during mitochondrial stress or damage. These mtDAMPs activate inflammatory pathways, such as the NLRP3 inflammasome and cGAS-STING, contributing to the progression of neurodegenerative diseases. This review delves into the mechanisms by which mtDAMPs drive neuroinflammation and discusses potential therapeutic strategies targeting these pathways to mitigate neurodegeneration. Additionally, it explores the cross-talk between mitochondria and the immune system, highlighting the complex interplay that exacerbates neuronal damage. Understanding the role of mtDAMPs could pave the way for novel treatments aimed at modulating neuroinflammation and slowing disease progression, ultimately improving patient outcome.
Collapse
Affiliation(s)
- Haihan Yu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China
| | - Kaidi Ren
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China
| | - Yage Jin
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China
| | - Li Zhang
- Key Clinical Laboratory of Henan Province, Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China
| | - Hui Liu
- Henan Key Laboratory of Immunology and Targeted Drug, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Medical Technology, Xinxiang Medical University, Xinxiang, 453003, PR China
| | - Zhen Huang
- Henan Key Laboratory of Immunology and Targeted Drug, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Medical Technology, Xinxiang Medical University, Xinxiang, 453003, PR China
| | - Ziheng Zhang
- College of Life Sciences, Xinjiang University, Urumqi, Xinjiang, 830046, PR China
| | - Xing Chen
- Clinical Systems Biology Laboratories, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China.
| | - Yang Yang
- Clinical Systems Biology Laboratories, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China.
| | - Ziqing Wei
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China.
| |
Collapse
|
45
|
Starikova EA, Mammedova JT, Rubinstein AA, Sokolov AV, Kudryavtsev IV. Activation of the Coagulation Cascade as a Universal Danger Sign. Curr Issues Mol Biol 2025; 47:108. [PMID: 39996829 PMCID: PMC11854423 DOI: 10.3390/cimb47020108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 01/29/2025] [Accepted: 02/02/2025] [Indexed: 02/26/2025] Open
Abstract
Hemostasis is a mechanism that stops bleeding from an injured vessel, involves multiple interlinked steps, culminating in the formation of a "clot" sealing the damaged area. Moreover, it has long been recognized that inflammation also provokes the activation of the coagulation system. However, there has been an increasing amount of evidence revealing the immune function of the hemostasis system. This review collects and analyzes the results of the experimental studies and data from clinical observations confirming the inflammatory function of hemostasis. Here, we summarize the latest knowledge of the pathways in immune system activation under the influence of coagulation factors. The data analyzed allow us to consider the components of hemostasis as receptors recognizing «foreign» or damaged «self» or/and as «self» damage signals that initiate and reinforce inflammation and affect the direction of the adaptive immune response. To sum up, the findings collected in the review allow us to classify the coagulation factors, such as Damage-Associated Molecular Patterns that break down the conventional concepts of the coagulation system.
Collapse
Affiliation(s)
- Eleonora A. Starikova
- Laboratory of Cellular Immunology, Department of Immunology, Institute of Experimental Medicine, Akademika Pavlova 12, 197376 Saint Petersburg, Russia (I.V.K.)
- Medical Faculty, First Saint Petersburg State I. Pavlov Medical University, L’va Tolstogo St. 6-8, 197022 Saint Petersburg, Russia
- Department of Microbiology and Virology, Institute of Medical Education Almazov National Medical Research Centre, 2 Akkuratova Street, 197341 Saint Petersburg, Russia
| | - Jennet T. Mammedova
- Laboratory of Cellular Immunology, Department of Immunology, Institute of Experimental Medicine, Akademika Pavlova 12, 197376 Saint Petersburg, Russia (I.V.K.)
- Department of Molecular Biotechnology, Chemical and Biotechnology Faculty, Saint Petersburg State Institute of Technology, Moskovski Ave., 26, 190013 Saint Petersburg, Russia
| | - Artem A. Rubinstein
- Laboratory of Cellular Immunology, Department of Immunology, Institute of Experimental Medicine, Akademika Pavlova 12, 197376 Saint Petersburg, Russia (I.V.K.)
| | - Alexey V. Sokolov
- Laboratory of Systemic Virology, Department of Molecular Biology of Viruses, Smorodintsev Research Institute of Influenza, 15/17, Prof. Popova Str., 197376 Saint Petersburg, Russia;
| | - Igor V. Kudryavtsev
- Laboratory of Cellular Immunology, Department of Immunology, Institute of Experimental Medicine, Akademika Pavlova 12, 197376 Saint Petersburg, Russia (I.V.K.)
- Medical Faculty, First Saint Petersburg State I. Pavlov Medical University, L’va Tolstogo St. 6-8, 197022 Saint Petersburg, Russia
| |
Collapse
|
46
|
Zhu L, Dong H, Li L, Liu X. The Mechanisms of Sepsis Induced Coagulation Dysfunction and Its Treatment. J Inflamm Res 2025; 18:1479-1495. [PMID: 39925935 PMCID: PMC11804232 DOI: 10.2147/jir.s504184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 01/22/2025] [Indexed: 02/11/2025] Open
Abstract
Sepsis is a critical condition characterized by organ dysfunction due to a dysregulated response to infection that poses significant global health challenges. Coagulation dysfunction is nearly ubiquitous among sepsis patients. Its mechanisms involve platelet activation, coagulation cascade activation, inflammatory reaction imbalances, immune dysregulation, mitochondrial damage, neuroendocrine network disruptions, and endoplasmic reticulum (ER) stress. These factors not only interact but also exacerbate one another, leading to severe organ dysfunction. This review illustrates the mechanisms of sepsis-induced coagulopathy, with a focus on tissue factor activation, endothelial glycocalyx damage, and the release of neutrophil extracellular traps (NETs), all of which are potential targets for therapeutic interventions.
Collapse
Affiliation(s)
- Lei Zhu
- Department of Anesthesiology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, People’s Republic of China
- Department of Anesthesiology, Shandong Provincial Key Medical and Heath Laboratory of Anesthesia and Brain Function, Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, People’s Republic of China
| | - He Dong
- Department of Anesthesiology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, People’s Republic of China
- Department of Anesthesiology, Shandong Provincial Key Medical and Heath Laboratory of Anesthesia and Brain Function, Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, People’s Republic of China
| | - Lin Li
- Department of Anesthesiology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, People’s Republic of China
- Department of Anesthesiology, Shandong Provincial Key Medical and Heath Laboratory of Anesthesia and Brain Function, Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, People’s Republic of China
| | - Xiaojie Liu
- Department of Anesthesiology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, People’s Republic of China
- Department of Anesthesiology, Shandong Provincial Key Medical and Heath Laboratory of Anesthesia and Brain Function, Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, People’s Republic of China
| |
Collapse
|
47
|
Franczak S, Ulrich H, Ratajczak MZ. Hematopoietic stem cells on the crossroad between purinergic signaling and innate immunity. Purinergic Signal 2025; 21:3-9. [PMID: 37184740 PMCID: PMC11958923 DOI: 10.1007/s11302-023-09943-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 05/09/2023] [Indexed: 05/16/2023] Open
Abstract
Hematopoiesis is regulated by several mediators such as peptide-based growth factors, cytokines, and chemokines, whose biological effects have been studied for many years. However, several other mediators have been identified recently that affect the fate of hematopoietic stem/progenitor cells (HSPC) as well as non-hematopoietic cells in the bone marrow microenvironment. These new mediators comprise members of purinergic signaling pathways and are active mediators of the soluble arm of innate immunity, the complement cascade (ComC). In this review, we will discuss the coordinated effects of these pathways in regulating the biology of HSPC. Importantly, both purinergic signaling and the ComC are activated in stress situations and interact with specific receptors expressed on HSPC. Evidence has accumulated indicating that some of the purinergic as well as ComC receptors could also be activated intracellularly by intrinsically expressed ligands. To support this recent evidence, our work indicates that the major mediator of purinergic signaling, adenosine triphosphate, and the cleavage product of the fifth component of the ComC (C5), C5a anaphylatoxin, can activate their corresponding receptors expressed on the outer mitochondrial membrane in an autocrine manner. We will also discuss recent evidence that these responses, mediated by purinergic signaling and the ComC network, are coordinated by activation of the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 2 - reactive oxygen species - NLR family pyrin domain containing 3 (NLRP3) inflammasome (Nox2-ROS-NLRP3) axis.
Collapse
Affiliation(s)
- Stephanie Franczak
- Laboratory of Regenerative Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Henning Ulrich
- Department of Biochemistry, University of Sao Paulo, Sao Paulo, Brazil
| | - Mariusz Z Ratajczak
- Laboratory of Regenerative Medicine, Medical University of Warsaw, Warsaw, Poland.
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, 500 S. Floyd Street, Rm. 107, Louisville, KY, 40202, USA.
| |
Collapse
|
48
|
Yesitayi G, Wang Q, Wang M, Ainiwan M, Kadier K, Aizitiaili A, Ma Y, Ma X. LPS-LBP complex induced endothelial cell pyroptosis in aortic dissection is associated with gut dysbiosis. Microbes Infect 2025; 27:105406. [PMID: 39168178 DOI: 10.1016/j.micinf.2024.105406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 08/04/2024] [Accepted: 08/12/2024] [Indexed: 08/23/2024]
Abstract
Acute aortic dissection (AAD) is the most severe traumatic disease affecting the aorta. Pyroptosis-mediated vascular wall inflammation is a crucial trigger for AAD, and the exact mechanism requires further investigation. In this study, our proteomic analysis showed that Lipopolysaccharide (LPS)-binding protein (LBP) was significantly upregulated in the plasma and aortic tissue of patients with AAD. Further, 16S rRNA sequencing of stool samples suggested that patients with AAD exhibit gut dysbiosis, which may lead to an impaired intestinal barrier and LPS leakage. By comparing with control mice, we found that LBP, including Pyrin Domain Containing Protein3 (NLRP3), the CARD-containing adapter apoptosis-associated speck-like protein (ASC), and Cleaved caspase-1, were upregulated in the AAD aorta, whereas gut intestinal barrier-related proteins were downregulated. Moreover, treated with LBPK95A (an LBP inhibitor) attenuated the incidence of AAD, the expression levels of pyroptosis-related factors, and the extent of vascular pathological changes compared to those in AAD mice. In addition, LPS and LBP treatment of human umbilical vein endothelial cells (HUVECs) activated TLR4 signaling and intracellular reactive oxygen species (ROS) production, which stimulated NLRP3 inflammasome formation and mediated pyroptosis in endothelial cells. Our findings showed that gut dysbiosis mediates pyroptosis by the LPS-LBP complex, thus providing new insights into developing AAD.
Collapse
Affiliation(s)
- Gulinazi Yesitayi
- Department of Cardiology, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang Medical University, Ürümqi, China.
| | - Qi Wang
- Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
| | - Mengmeng Wang
- Department of Respiratory Medicine, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, China.
| | - Mierxiati Ainiwan
- Department of Cardiology, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang Medical University, Ürümqi, China.
| | - Kaisaierjiang Kadier
- Department of Cardiology, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang Medical University, Ürümqi, China.
| | - Aliya Aizitiaili
- Department of Cardiology, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang Medical University, Ürümqi, China.
| | - Yitong Ma
- Department of Cardiology, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang Medical University, Ürümqi, China.
| | - Xiang Ma
- Department of Cardiology, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang Medical University, Ürümqi, China.
| |
Collapse
|
49
|
Chen Y, Li J, Fu J, Xiao L, Chu J, Qin W, Xiao J, Feng H. SENP2 negatively regulates RIG-I/MDA5 mediated innate immunity in black carp. FISH & SHELLFISH IMMUNOLOGY 2025; 157:110097. [PMID: 39724728 DOI: 10.1016/j.fsi.2024.110097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/08/2024] [Accepted: 12/23/2024] [Indexed: 12/28/2024]
Abstract
Mammalian SUMO specific peptidase 2 (SENP2) plays vital roles in a variety of biological procedures including the immune response. However, the effects of teleost SENP2 are still mostly unexplored. In this study, the SENP2 of black carp (Mylopharyngodon piceus) was cloned and characterized. The open reading frame of black carp SENP2 (bcSENP2) consists of 1800 nucleotides, which encode 600 amino acids. The reporter assay results showed that over-expression of bcSENP2 alone had a weak effect on interferon (IFN) promoter transcription activity, whereas it significantly reduced bcMDA5/bcRIG-I mediated IFN promoter transcription activity. The interaction between bcSENP2 and bcMDA5 or bcRIG-I was detected by immunoprecipitation experiments. The plaque assay and qPCR results indicated that bcMDA5 or bcRIG-I mediated antiviral capacity was attenuated by bcSENP2, while knockdown of bcSENP2 led to enhanced antiviral resistance to SVCV in host cells. In addition, the expression level of bcMDA5/bcRIG-I protein was attenuated by co-expressed bcSENP2 and MG132 treatment rescued this attenuating effect. All of these data support the conclusion that bcSENP2 inhibits bcMDA5/bcRIG-I mediated antiviral signaling by enhancing ubiquitin-proteasome mediated degradation of bcMDA5/bcRIG-I in black carp.
Collapse
Affiliation(s)
- Yixia Chen
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Jun Li
- Key Laboratory of Hunan Province for Study and Utilization of Ethnic Medicinal Plant Resources, College of Biological and Food Engineering, Huaihua University, Huaihua, 418008, China
| | - Jiaxin Fu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Lili Xiao
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Jixiang Chu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Wei Qin
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Jun Xiao
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China; Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, 410081, China.
| | - Hao Feng
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China; Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, 410081, China.
| |
Collapse
|
50
|
Jiang X, Chen X, He L, Qin D, Nie M, Li C, Liu X. Equol promotes osteogenic differentiation of hPDLSCs by inhibiting oxidative stress via IL1B/NF-κB/CXCL1 signaling axis. Chem Biol Interact 2025; 407:111367. [PMID: 39743035 DOI: 10.1016/j.cbi.2024.111367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 12/16/2024] [Accepted: 12/29/2024] [Indexed: 01/04/2025]
Abstract
Oxidative stress (OS) inhibits the osteogenic differentiation of human periodontal ligament stem cells (hPDLSCs). Equol (Eq), a phytoestrogen, exhibits notable antioxidant properties and potential for preventing osteoporosis. However, the research on the regulatory effects of Eq on stem cell osteogenesis remains limited. This investigation aimed to identify whether Eq could protect the osteogenic potential of hPDLSCs under H2O2-induced oxidative microenvironment. We employed a series of assays, including CCK-8, DCFH-DA, ALP staining, ARS, RT-qPCR, and Western Blotting, to assess the changes in cell viability, antioxidant capacity, and osteogenic potential following H2O2 and Eq treatments. Our findings indicated that low concentrations of Eq had no cytotoxic effects on hPDLSCs and promoted their proliferation. Eq pre-treatment (0.5 μmol/L) partially counteracted the inhibitory effect of H2O2, reduced the generation of reactive oxygen species, and increased glutathione levels, thereby inhibiting oxidative damage. Eq suppressed the H2O2-induced inhibition of osteogenic differentiation, presenting as restoring the alkaline phosphatase levels and calcium nodule formation, as well as by upregulating the expression of BMP2 and RUNX2. Furthermore, bioinformatics analysis in this study suggested that the IL1B/NF-κB/CXCL1 signaling pathway might be a key pathway for Eq's enhancement of osteogenic differentiation potential of hPDLSCs under OS conditions. The activation of this axis by H2O2, which Eq can alleviate, was confirmed by validation experiments. This study provides new insights into the potential therapeutic application of Eq in alveolar bone resorption and bone regeneration research.
Collapse
Affiliation(s)
- Xiaoxi Jiang
- Department of Periodontics and Oral Mucosal Diseases, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China; Luzhou Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Xiao Chen
- Department of Oral Medical Technology, Sichuan College of Traditional Chinese Medicine, Mianyang, 621000, Sichuan, China; Department of Orthodontics, Mianyang Stomatological Hospital, Mianyang, 621000, Sichuan, China
| | - Lingxiao He
- Department of Periodontics and Oral Mucosal Diseases, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China; Luzhou Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Dan Qin
- Department of Periodontics and Oral Mucosal Diseases, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China; Luzhou Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Minhai Nie
- Department of Periodontics and Oral Mucosal Diseases, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China; Luzhou Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Chunhui Li
- Department of Periodontics and Oral Mucosal Diseases, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China; Luzhou Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, Southwest Medical University, Luzhou, 646000, Sichuan, China.
| | - Xuqian Liu
- Department of Periodontics and Oral Mucosal Diseases, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China; Luzhou Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, Southwest Medical University, Luzhou, 646000, Sichuan, China.
| |
Collapse
|