1
|
Shi Y, Roy PP, Higashitarumizu N, Lee TY, Li Q, Javey A, Landfester K, McCulloch I, Fleming GR. Annihilation-limited long-range exciton transport in high-mobility conjugated copolymer films. Proc Natl Acad Sci U S A 2025; 122:e2413850122. [PMID: 40261928 DOI: 10.1073/pnas.2413850122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 03/20/2025] [Indexed: 04/24/2025] Open
Abstract
A combination of ultrafast, long-range, and low-loss excitation energy transfer from the photoreceptor location to a functionally active site is essential for cost-effective polymeric semiconductors. Delocalized electronic wavefunctions along π-conjugated polymer (CP) backbone can enable efficient intrachain transport, while interchain transport is generally thought slow and lossy due to weak chain-chain interactions. In contrast to the conventional strategy of mitigating structural disorder, amorphous layers of rigid CPs, exemplified by highly planar poly(indacenodithiophene-co-benzothiadiazole) (IDT-BT) donor-accepter copolymer, exhibit trap-free transistor performance and charge-carrier mobilities similar to amorphous silicon. Here, we report long-range exciton transport in HJ-aggregated IDTBT thin-film, in which the competing exciton transport and exciton-exciton annihilation (EEA) dynamics are spectroscopically separated using a phase-cycling-based scheme and shown to depart from the classical diffusion-limited and strong-coupling regime. In the thin film, we find an annihilation-limited mechanism with ≪100% per-encounter annihilation probability, facilitating the minimization of EEA-induced excitation losses. In contrast, excitons on isolated IDTBT chains diffuse over 350 nm with 0.56 cm2 s-1 diffusivity, before eventually annihilating with unit probability on first contact. We complement the pump-probe studies with temperature-dependent photocurrent and EEA measurements from 295 K to 77 K and find a remarkable correspondence of annihilation rate and photocurrent activation energies in the 140 K to 295 K temperature range.
Collapse
Affiliation(s)
- Yuping Shi
- Department of Chemistry, University of California, Berkeley, CA 94720
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
- Max Planck Institute for Polymer Research, Mainz 55128, Germany
| | - Partha P Roy
- Department of Chemistry, University of California, Berkeley, CA 94720
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | - Naoki Higashitarumizu
- Electrical Engineering and Computer Sciences, University of California, Berkeley, CA 94720
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
- Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency, Kawaguchi, Saitama 332- 0012, Japan
| | - Tsung-Yen Lee
- Department of Chemistry, University of California, Berkeley, CA 94720
| | - Quanwei Li
- Department of Chemistry, University of California, Berkeley, CA 94720
| | - Ali Javey
- Electrical Engineering and Computer Sciences, University of California, Berkeley, CA 94720
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
- Kavli Energy Nanoscience Institute at the University of California, Berkeley, CA 94720
| | | | - Iain McCulloch
- Department of Chemistry, University of Oxford, Oxford OX1 3TA, United Kingdom
- Department of Electrical and Computer Engineering, Princeton University, Princeton, NJ 08544
| | - Graham R Fleming
- Department of Chemistry, University of California, Berkeley, CA 94720
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
- Kavli Energy Nanoscience Institute at the University of California, Berkeley, CA 94720
| |
Collapse
|
2
|
Ge Y, Wu Y, Hai Y, Li X, Pan T, Dela Peña TA, Wu J, Li Y, Yang H, Cui C, Li Y. Aggregation Engineering of Toluene-Processed Acceptor Layer Enables Over 19% Efficiency of Air-Blade-Coated Organic Solar Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2502579. [PMID: 40297926 DOI: 10.1002/adma.202502579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 03/23/2025] [Indexed: 04/30/2025]
Abstract
Understanding the unique features of photovoltaic materials in high-performance blade-coated organic solar cells (OSCs) is critical to narrow the device performance difference between spin-coating and blade-coating methods. In this work, it is clarified that the molecular packing of acceptor and molecule-solvent interaction plays an essential role in determining the photovoltaic performance of blade-coated layer-by-layer OSCs. It is demonstrated that the unique dimer packing feature of L8-BO-4Cl can lead to lower excited energy (∆ES1) and dominant J-aggregates in the blade-coated film compared to the analogs of Y6 and L8-BO. Meanwhile, the weaker molecule-solvent interaction between L8-BO-4Cl and toluene is in favor of forming prominent J-aggregation in blade-coated film, contributing to a more compact π-stacking than Y6 and L8-BO. Additionally, the blade-coated D18/L8-BO-4Cl film shows more defined interpenetrating networks with clearer donor-acceptor interfaces than D18/Y6 and D18/L8-BO, facilitating improved charge extraction and suppressed charge recombination. As a result, the air-blade-coated layer-by-layer device based on D18/L8-BO-4Cl yields a remarkable power-conversion efficiency (PCE) of 19.31% without any additive and post-treatment, while much lower PCEs of 7.01% and 16.47% are obtained in the device based on D18/Y6 and D18/L8-BO, respectively. This work offers an effective approach to developing highly efficient air-blade-coated layer-by-layer OSCs.
Collapse
Affiliation(s)
- Yu Ge
- Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor-Optoelectronics Materials and Devices, State Key Laboratory of Bioinspired Interfacial Materials Science, College of Chemistry Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Yue Wu
- Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor-Optoelectronics Materials and Devices, State Key Laboratory of Bioinspired Interfacial Materials Science, College of Chemistry Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Yulong Hai
- Advanced Materials Thrust, Function Hub, The Hong Kong University of Science and Technology, Guangzhou, Guangdong, 511455, China
| | - Xiaoxiao Li
- Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor-Optoelectronics Materials and Devices, State Key Laboratory of Bioinspired Interfacial Materials Science, College of Chemistry Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Tianchen Pan
- Faculty of Science, Department of Physics, National University of Singapore, Singapore, 117551, Singapore
| | - Top Archie Dela Peña
- Advanced Materials Thrust, Function Hub, The Hong Kong University of Science and Technology, Guangzhou, Guangdong, 511455, China
| | - Jiaying Wu
- Advanced Materials Thrust, Function Hub, The Hong Kong University of Science and Technology, Guangzhou, Guangdong, 511455, China
| | - Yungui Li
- Max Planck Institute for Polymer Research, 55128, Mainz, Germany
| | - Hang Yang
- Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor-Optoelectronics Materials and Devices, State Key Laboratory of Bioinspired Interfacial Materials Science, College of Chemistry Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Chaohua Cui
- Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor-Optoelectronics Materials and Devices, State Key Laboratory of Bioinspired Interfacial Materials Science, College of Chemistry Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu, 215123, China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Yongfang Li
- Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor-Optoelectronics Materials and Devices, State Key Laboratory of Bioinspired Interfacial Materials Science, College of Chemistry Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu, 215123, China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, Jiangsu, 215123, China
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
3
|
Menandro A, Bohne C, Péres LO. Fluorescent Self-Supporting Composite Film Formed from Chitosan and the Neutral Poly(3-hexylthiophene- co-1,4-phenylene) Polymer with Enhanced Dispersion Properties for a Small Molecule. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:10020-10028. [PMID: 40193321 PMCID: PMC12020410 DOI: 10.1021/acs.langmuir.5c00729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 03/27/2025] [Accepted: 03/28/2025] [Indexed: 04/09/2025]
Abstract
A composite film of chitosan (Ch) with a neutral conjugated polymer, poly(3-hexylthiophene-co-1,4-phenylene) (PTPh), was developed to combine the adsorption capacity of Ch with the fluorescence sensitivity of PTPh. Characterization of the films using thermogravimetric analysis, microscopy, and infrared, absorption, and fluorescence spectroscopies revealed that the dispersity of the target small molecule, 4-aminoazobenzene (4-AAB), was improved in the composite film compared to the pristine Ch film as evidenced in microscopy studies. In the presence of 4-AAB, the Ch/PTPh film exhibited fluorescence quenching at low 4-AAB concentrations and changes in emission spectra at higher concentrations. Photoisomerization studies suggested that the improved dispersity of 4-AAB in the composite film is due to an increase in the free volume provided by PTPh, with faster cis-to-trans isomerization observed when PTPh was present. Proof-of-concept adsorption experiments showed that the composite film adsorbed 4-AAB from an aqueous solution, leading to a change in the emission properties of the film. This qualitative characterization uncovered a dual role for the conjugated polymer in the composite film: the addition of the polymer changed the morphology and robustness of the film, and the polymer also provides the fluorophore to sense adsorbed molecules over a wide range of 4-AAB concentrations. These results show that the strategy of incorporating water-insoluble polymers at low concentrations into a versatile biopolymer leads to enhanced functionalities of a composite material.
Collapse
Affiliation(s)
- Alessandra
S. Menandro
- Laboratory
of Hybrid Materials, Federal University
of São Paulo, Diadema, São Paulo 09913-030, Brazil
| | - Cornelia Bohne
- Department
of Chemistry, University of Victoria, P.O. Box 1700 STN CSC, Victoria, British Columbia V8W 2Y2, Canada
- Centre
for Advanced Materials and Related Technology (CAMTEC), University of Victoria, 3800 Finnerty Rd, Victoria, British Columbia V8P 5C2, Canada
| | - Laura O. Péres
- Laboratory
of Hybrid Materials, Federal University
of São Paulo, Diadema, São Paulo 09913-030, Brazil
| |
Collapse
|
4
|
Sun M, Sun Z, Zheng Y, Kim R, Liu AL, Richter LJ, Gilchrist JF, Reichmanis E. Preprocessing Affords 3D Crystalline Poly(3-hexylthiophene) Structure. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2025; 37:2795-2805. [PMID: 40291952 PMCID: PMC12020000 DOI: 10.1021/acs.chemmater.4c03392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 03/25/2025] [Accepted: 03/26/2025] [Indexed: 04/30/2025]
Abstract
The aggregation and crystallization of poly(3-hexylthiophene-2,5-diyl) (P3HT), a representative active layer material used for organic field-effect transistor (OFET) applications, are influenced by the solution pretreatment and deposition process. This study explores vibration-assisted convective deposition for the fabrication of OFETs in comparison to spin coating, blade coating, and convective deposition without vibration. The ultraviolet-visible spectroscopic analysis demonstrates that convective deposition, especially assisted with vibration, leads to a greater degree of intrachain interactions, longer conjugation length, and enhanced polymer backbone planarization. When the P3HT solution is preprocessed via sonication and aging, the P3HT films exhibit J-like aggregation, and (h11) peaks can be observed through grazing-incidence wide-angle X-ray scattering, suggesting an ordered 3D crystalline structure. OFETs based on such films exhibit high mobilities (up to 0.14 cm2 V-1 s-1). The results point to the sensitivity of P3HT charge transport behavior to the intramolecular interactions and backbone planarity and further deepen our understanding of the relationship between processing, aggregates, molecular ordering, and resultant device properties.
Collapse
Affiliation(s)
- Mengting Sun
- Department
of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Zeyuan Sun
- Department
of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Yulong Zheng
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, Atlanta, Georgia 30332, United States
| | - Russell Kim
- Department
of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Aaron L. Liu
- School
of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Lee J. Richter
- Materials
Measurement Laboratory, National Institute
of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - James F. Gilchrist
- Department
of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Elsa Reichmanis
- Department
of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| |
Collapse
|
5
|
Si L, Tang J, Yang K, Wang M, Wang Y, Xia G, Wang H. An intramolecularly locked single molecule nanofluorophore with 13.55% quantum yield for SWIR multimodal phototheranostics. Chem Sci 2025; 16:7077-7086. [PMID: 40144501 PMCID: PMC11934149 DOI: 10.1039/d5sc00089k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Accepted: 03/11/2025] [Indexed: 03/28/2025] Open
Abstract
Multimodal phototheranostics in the short-wavelength infrared range (SWIR, 900-1700 nm) holds significant promise in precision medicine, yet its progress is constrained by photosensitizers that lack effective fluorescence emission due to unwanted intermolecular aggregation and molecular vibration patterns. Herein, we present a dual electrostatic anchoring strategy to construct ultrabright co-assembled nanoparticles (NPs) of the squaraine dye SQNMe. This molecular design incorporates two peripheral quaternary ammonium cations: one interacts with the phosphate anion of the liposome mPEG2K-DSPE to achieve intermolecular isolation, while the other forms an internal salt bridge with the central oxycyclobutenolate ring, increasing intramolecular rigidity. Both molecular dynamics simulations and reorganization energy calculations are employed to illustrate the coassembly process. Spectroscopic analysis shows that SQNMe@NPs have a fluorescence brightness of approximately 10 135 M-1 cm-1 and a photothermal conversion efficiency of 39.6% in aqueous media. Additionally, the high effectiveness of fluorescence and photoacoustic imaging-guided photothermal therapy for tumors in vivo was successfully demonstrated. These findings highlight the potential of the electrostatic anchoring strategy for improving multimodal tumor phototheranostics.
Collapse
Affiliation(s)
- Leilei Si
- College of Chemistry and Chemical Engineering, Nanchang University Nanchang 330031 China
- Jiangxi Provincial Key Laboratory of Functional Crystalline Materials Chemistry Nanchang 330031 China
- Institute for Advanced Study, Nanchang University Nanchang 330031 China
| | - Jun Tang
- College of Chemistry and Chemical Engineering, Nanchang University Nanchang 330031 China
- Jiangxi Provincial Key Laboratory of Functional Crystalline Materials Chemistry Nanchang 330031 China
- Institute for Advanced Study, Nanchang University Nanchang 330031 China
| | - Kaixin Yang
- College of Chemistry and Chemical Engineering, Nanchang University Nanchang 330031 China
- Jiangxi Provincial Key Laboratory of Functional Crystalline Materials Chemistry Nanchang 330031 China
- Institute for Advanced Study, Nanchang University Nanchang 330031 China
| | - Mingda Wang
- College of Chemistry and Chemical Engineering, Nanchang University Nanchang 330031 China
- Jiangxi Provincial Key Laboratory of Functional Crystalline Materials Chemistry Nanchang 330031 China
- Institute for Advanced Study, Nanchang University Nanchang 330031 China
| | - Yigang Wang
- Jiangxi Provincial Key Laboratory of Functional Crystalline Materials Chemistry Nanchang 330031 China
- Institute for Advanced Study, Nanchang University Nanchang 330031 China
| | - Guomin Xia
- Jiangxi Provincial Key Laboratory of Functional Crystalline Materials Chemistry Nanchang 330031 China
- Institute for Advanced Study, Nanchang University Nanchang 330031 China
- School of Advanced Manufacturing, Nanchang University Nanchang 330031 China
| | - Hongming Wang
- College of Chemistry and Chemical Engineering, Nanchang University Nanchang 330031 China
- Jiangxi Provincial Key Laboratory of Functional Crystalline Materials Chemistry Nanchang 330031 China
| |
Collapse
|
6
|
Takeyama T, Murata Y, Tamai Y. Directional control of singlet exciton diffusion in crystalline polythiophene films. J Chem Phys 2025; 162:144704. [PMID: 40197582 DOI: 10.1063/5.0245768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 03/10/2025] [Indexed: 04/10/2025] Open
Abstract
Understanding and controlling the direction of singlet exciton diffusion in conjugated polymer films is crucial for organic optoelectronic devices, such as organic photovoltaics. We previously demonstrated that singlet excitons generated in poly(3-hexylthiophene) (P3HT) predominantly diffuse along the π-stacking direction due to a relatively strong H-aggregate character. In contrast, we also found that thin films of a novel naphthobisoxadiazole-based low-bandgap polymer, PNOz4T, exhibit two-dimensional (2D) exciton diffusion characteristics along both the π-stacking (interchain) and main chain (intrachain) directions. Detailed analysis revealed that 2D exciton diffusion is due to a relatively strong J-aggregate character of PNOz4T. However, it remains unclear whether this behavior is unique to PNOz4T or can be reproduced in other conjugated polymers when J-aggregate character is enhanced. Herein, we investigate how the direction of singlet exciton diffusion is controlled in PDCBT, a polythiophene with greater J-aggregate character compared to P3HT. We demonstrate that the preferential direction of the singlet exciton diffusion shifts from the π-stacking direction to the main chain direction with increasing J-aggregate character. We observe 2D exciton diffusion when these two diffusional components are balanced. This study highlights the importance of side-chain engineering to control the direction of singlet exciton diffusion and provides new insight into understanding the mechanism of exciton diffusion in conjugated polymer films.
Collapse
Affiliation(s)
- Taiki Takeyama
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo, Kyoto 615-8510, Japan
| | - Yasuhiro Murata
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo, Kyoto 615-8510, Japan
| | - Yasunari Tamai
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
- Japan Science and Technology Agency (JST), PRESTO, 4-1-8 Honcho Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
7
|
Yang S, Chen X, Pan Y, Fang J, Han Y, Wang Z, Qian F, Qi W, Shui K, Zhang Q, Guo F, Sun Y, Ma CQ, Luo Q. High Cell to Module Efficiency Remaining Ratio of ≈90% for the 100 cm 2 Fully Roll-to-Roll Gravure Printed Flexible Organic Solar Cells From Non-Halogenated Solvent. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2500115. [PMID: 40095357 DOI: 10.1002/adma.202500115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 03/06/2025] [Indexed: 03/19/2025]
Abstract
The cell-to-module (CTM) efficiency remaining ratio from monolithic device to large-area module indicates the scalability potential for large-area organic solar cells (OSCs). Nowadays, the CTM value is still low as the area increases to larger than 100 cm2. In this work, the crucial role of solvent in CTM for printing, which on one side influenced the large area homogeneity due to the ink rheology property, and on the other side impacted phase separation dynamics because of vaporization and crystalline rate is highlighted. The films from TMB show excessive pure phase and printing line defects in vertical the printing direction due to slow volatilization speed and low adhesion, while Tol-based films present printing line defects along the printing direction due to large surface adhesion are demonstrated. In contrast, the films from non-halogenated solvent, o-XY exhibited a suitable phase separation size and excellent large-area homogeneity. Consequently, the fully printed 1 cm2 FOSCs exhibit an efficiency of 14.81%. Moreover, the FOSCs module with an area of 28-104 cm2 gives an efficiency of over 13%, with a CTM of 0.9. Selecting suitable non-halogenated solvents to achieve large-area uniformity and appropriate phase separation morphology in >100 cm2 modules is of great importance for the industrialization of FOSCs.
Collapse
Affiliation(s)
- Shutao Yang
- Henan Institutes of Advanced Technology, Zhengzhou University, Zhengzhou, 450052, P. R. China
- i-Lab & Printable Electronics Research Center, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences (CAS), Suzhou, 215123, P. R. China
| | - Xingze Chen
- i-Lab & Printable Electronics Research Center, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences (CAS), Suzhou, 215123, P. R. China
| | - Yaqin Pan
- i-Lab & Printable Electronics Research Center, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences (CAS), Suzhou, 215123, P. R. China
| | - Jin Fang
- i-Lab & Printable Electronics Research Center, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences (CAS), Suzhou, 215123, P. R. China
| | - Yunfei Han
- i-Lab & Printable Electronics Research Center, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences (CAS), Suzhou, 215123, P. R. China
| | - Zhenguo Wang
- i-Lab & Printable Electronics Research Center, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences (CAS), Suzhou, 215123, P. R. China
| | - Fan Qian
- i-Lab & Printable Electronics Research Center, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences (CAS), Suzhou, 215123, P. R. China
| | - Weitao Qi
- i-Lab & Printable Electronics Research Center, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences (CAS), Suzhou, 215123, P. R. China
| | - Ke Shui
- i-Lab & Printable Electronics Research Center, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences (CAS), Suzhou, 215123, P. R. China
| | - Qing Zhang
- Vacuum Interconnected Nanotech Workstation (Nano-X), Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences (CAS), Suzhou, 215123, P. R. China
| | - Fengqi Guo
- Henan Institutes of Advanced Technology, Zhengzhou University, Zhengzhou, 450052, P. R. China
| | - Yanming Sun
- School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Chang-Qi Ma
- i-Lab & Printable Electronics Research Center, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences (CAS), Suzhou, 215123, P. R. China
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230027, P. R. China
| | - Qun Luo
- i-Lab & Printable Electronics Research Center, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences (CAS), Suzhou, 215123, P. R. China
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230027, P. R. China
| |
Collapse
|
8
|
Ding J, Mou H, Chen H, Xu J, Sun W, Zhu J, Wang Y, Huang Y, Li Y, Li Y. Manipulating Molecular Stacking for Semitransparent Organic Photovoltaics Achieving Light Utilization Efficiency >6. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2420439. [PMID: 40091305 DOI: 10.1002/adma.202420439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 02/21/2025] [Indexed: 03/19/2025]
Abstract
The trade-off between average visible transmittance (AVT) and power conversion efficiency (PCE), governed by the molecular stacking of the donor and acceptor materials in semitransparent organic solar cells (ST-OSCs), significantly constrains improvements in light utilization efficiency (LUE). Here, simultaneous enhancement of AVT and PCE is achieved by meticulously designing host-guest active layers to fine-tune the molecular stacking. A systematic investigation of various host donor and guest material combinations reveals that the donor material (D18) with more electron-deficient hydrogen atoms tends to form C─H···O interactions with the guest material (BTO-BO) that features electron-rich oxygen atoms. Hydrogen bonding interactions between host donor D18 and guest BTO-BO facilitate the transition from mixed J-type and H-type molecular stacking modes of the donor to predominant J-type stacking during crystallization, significantly reducing visible absorption and enhancing hole transport. Additionally, BTO-BO can act as a nucleation agent for the host acceptor BTP-eC9 to increase the crystallinity and absorption coefficient of the active layer, thereby, enhancing near-infrared light absorption. The resultant toluene-processed ST-OSCs with optical modulation exhibit simultaneous improvement in PCE and AVT, delivering record LUEs of 6.02%. Notably, this host-guest active layer demonstrates exceptional compatibility with flexible devices and promising scalability for greenhouse photovoltaic applications.
Collapse
Affiliation(s)
- Junyuan Ding
- Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor-optoelectronics Materials and Devices, State Key Laboratory of Bioinspired Interfacial Materials Science, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Hongyu Mou
- Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor-optoelectronics Materials and Devices, State Key Laboratory of Bioinspired Interfacial Materials Science, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Haiyang Chen
- Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor-optoelectronics Materials and Devices, State Key Laboratory of Bioinspired Interfacial Materials Science, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Jiachen Xu
- Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor-optoelectronics Materials and Devices, State Key Laboratory of Bioinspired Interfacial Materials Science, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Weiwei Sun
- Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor-optoelectronics Materials and Devices, State Key Laboratory of Bioinspired Interfacial Materials Science, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Juan Zhu
- Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor-optoelectronics Materials and Devices, State Key Laboratory of Bioinspired Interfacial Materials Science, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Yingyi Wang
- Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor-optoelectronics Materials and Devices, State Key Laboratory of Bioinspired Interfacial Materials Science, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Yuting Huang
- Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor-optoelectronics Materials and Devices, State Key Laboratory of Bioinspired Interfacial Materials Science, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Yaowen Li
- Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor-optoelectronics Materials and Devices, State Key Laboratory of Bioinspired Interfacial Materials Science, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123, China
| | - Yongfang Li
- Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor-optoelectronics Materials and Devices, State Key Laboratory of Bioinspired Interfacial Materials Science, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123, China
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
9
|
Schembri T, Albert J, Hebling H, Stepanenko V, Anhalt O, Shoyama K, Stolte M, Würthner F. Supramolecular Engineering of Narrow Absorption Bands by Exciton Coupling in Pristine and Mixed Solid-State Dye Aggregates. ACS CENTRAL SCIENCE 2025; 11:452-464. [PMID: 40161960 PMCID: PMC11950854 DOI: 10.1021/acscentsci.4c02157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 02/26/2025] [Accepted: 03/03/2025] [Indexed: 04/02/2025]
Abstract
Tunability of functional properties in a continuous manner is desired but challenging to accomplish for organic solid-state materials. Herein, we describe a method for tuning optoelectronic properties of solid-state aggregates with narrow absorption bands. First, we systematically shift the absorption maxima of highly dipolar merocyanine dyes in solution by chemical alterations of their chromophore cores. This leaves their solid-state packing arrangements unchanged, affording similar J- and H-coupled aggregate absorption bands at different wavelengths. Next, mixing these isostructural dyes leads to a spectral fine-tuning of the mixed layers, which could be characterized as crystalline organic solid solutions and utilized in narrowband color-selective organic photodiodes. Finally, we devise a semiempirical model, which explains the observed spectral tuning in terms of the molecular exciton theory. Thus, we demonstrate narrowband absorbing solid-state aggregates spanning the wavelength range of 437-760 nm, whose absorption can be fine-tuned over 40% of the visible light range.
Collapse
Affiliation(s)
- Tim Schembri
- Universität
Würzburg, Institut für
Organische Chemie, Am
Hubland, Würzburg 97074, Germany
- Universität
Würzburg, Center for Nanosystems
Chemistry (CNC), Theodor-Boveri-Weg, Würzburg 97074, Germany
| | - Julius Albert
- Universität
Würzburg, Institut für
Organische Chemie, Am
Hubland, Würzburg 97074, Germany
| | - Hendrik Hebling
- Universität
Würzburg, Center for Nanosystems
Chemistry (CNC), Theodor-Boveri-Weg, Würzburg 97074, Germany
| | - Vladimir Stepanenko
- Universität
Würzburg, Institut für
Organische Chemie, Am
Hubland, Würzburg 97074, Germany
- Universität
Würzburg, Center for Nanosystems
Chemistry (CNC), Theodor-Boveri-Weg, Würzburg 97074, Germany
| | - Olga Anhalt
- Universität
Würzburg, Center for Nanosystems
Chemistry (CNC), Theodor-Boveri-Weg, Würzburg 97074, Germany
| | - Kazutaka Shoyama
- Universität
Würzburg, Institut für
Organische Chemie, Am
Hubland, Würzburg 97074, Germany
- Universität
Würzburg, Center for Nanosystems
Chemistry (CNC), Theodor-Boveri-Weg, Würzburg 97074, Germany
| | - Matthias Stolte
- Universität
Würzburg, Institut für
Organische Chemie, Am
Hubland, Würzburg 97074, Germany
- Universität
Würzburg, Center for Nanosystems
Chemistry (CNC), Theodor-Boveri-Weg, Würzburg 97074, Germany
| | - Frank Würthner
- Universität
Würzburg, Institut für
Organische Chemie, Am
Hubland, Würzburg 97074, Germany
- Universität
Würzburg, Center for Nanosystems
Chemistry (CNC), Theodor-Boveri-Weg, Würzburg 97074, Germany
| |
Collapse
|
10
|
Hu K, Doti S, Brambilla L, Del Zoppo M, Castiglioni C, Zerbi G. Vibrational Properties of Doped P3HT Chains in Solution: Insight into the Doping Mechanism from Infrared IRAV and Raman RaAV Bands. Molecules 2025; 30:1403. [PMID: 40285844 PMCID: PMC11990279 DOI: 10.3390/molecules30071403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 03/18/2025] [Accepted: 03/20/2025] [Indexed: 04/29/2025] Open
Abstract
Chemical doping is a well-established technique for increasing the electrical conductivity of polyconjugated polymers, and its effectiveness can be assessed through IR spectroscopy, thanks to the rise of the so-called IRAVs (infrared activated vibrations), which prove the formation of polarons on the polymer chain. While the mechanism of the IRAVs activation has been widely explored in the past, several peculiar features remain unclear. Changes in the Raman spectrum of doped polymers (RaAV, Raman activated vibrations) are widely used as well for monitoring the doping process, but the interpretation is often limited to purely empirical correlations. By means of an experimental campaign on doped regio-regular poly(3-hexylthiophene-2,5-diyl) (P3HT) samples in chloroform solution and on the solid samples cast from the same solutions, this paper presents for the first time a thorough comparative analysis of IRAVs and RaAVs, aiming at a unified description of the structure of doped P3HT. In particular, we will discuss the effect of the doping level on the vibrational features of the polymer and the dopant so that spectroscopic markers can be found to be used in the identification of the presence of ICT (integer charge transfer) complexes in different doping regimes. This study demonstrates that combining IR, Raman, and UV-Vis-NIR spectroscopies provides a powerful, complementary set of tools to diagnose not only the doping level but also the detailed molecular and supramolecular structure of the doped P3HT, useful for the development of structure/properties relationships in the perspective of the optimization of the charge transport performances.
Collapse
Affiliation(s)
| | | | | | | | - Chiara Castiglioni
- Dipartimento di Chimica, Materiali e Ingegneria Chimica Giulio Natta, Politecnico di Milano, 20133 Milano, Italy; (K.H.); (S.D.); (L.B.); (M.D.Z.); (G.Z.)
| | | |
Collapse
|
11
|
Jasmin Finkelmeyer S, Presselt M. Tuning Optical Properties of Organic Thin Films through Intermolecular Interactions - Fundamentals, Advances and Strategies. Chemistry 2025; 31:e202403500. [PMID: 39829246 DOI: 10.1002/chem.202403500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 01/13/2025] [Accepted: 01/14/2025] [Indexed: 01/22/2025]
Abstract
In applications ranging from photon-energy conversion into electrical or chemical forms (such as photovoltaics or photocatalysis) to numerous sensor technologies based on organic solids, the role of supramolecular structures and chromophore interactions is crucial. This review comprehensively examines the critical intermolecular interactions between organic dyes and their impact on optical properties. We explore the range of changes in absorption or emission properties observed in molecular aggregates compared to single molecules. Each effect is dissected to reveal its physicochemical foundations, relevance to different application domains, and documented examples from the literature that illustrate the potential modulation of absorption or emission properties by molecular and supramolecular structural adjustments. This work aims to serve as a concise guide for exploiting supramolecular phenomena in the innovation of novel optical and optoelectronic organic materials, with emphasis on strategic application and exploitation.
Collapse
Affiliation(s)
| | - Martin Presselt
- Leibniz Institute of Photonic Technology (IPHT), Albert-Einstein-Str. 9, 07745, Jena, Germany
- Center for Energy and Environmental Chemistry Jena (CEEC Jena), Friedrich Schiller University Jena, Philosophenweg 7a, 07743, Jena, Germany
- Sciclus GmbH & Co. KG, Moritz-von-Rohr-Str. 1a, 07745, Jena, Germany
| |
Collapse
|
12
|
Khasbaatar A, Damron AM, Fernando PS, Williams JS, Zhu C, Gann EH, Lee JH, Birge A, Kim B, Sabury S, Lee ML, Reynolds JR, Diao Y. Lyotropic Liquid Crystal Mediated Assembly of Donor Polymers Enhances Efficiency and Stability of Blade-Coated Organic Solar Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2414632. [PMID: 39910837 PMCID: PMC11923519 DOI: 10.1002/adma.202414632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 01/24/2025] [Indexed: 02/07/2025]
Abstract
Conjugated polymers can undergo complex, concentration-dependent self-assembly during solution processing, yet little is known about its impact on film morphology and device performance of organic solar cells. Herein, lyotropic liquid crystal (LLC) mediated assembly across multiple conjugated polymers is reported, which generally gives rise to improved device performance of blade-coated non-fullerene bulk heterojunction solar cells. Using D18 as a model system, the formation mechanism of LLC is unveiled employing solution X-ray scattering and microscopic imaging tools: D18 first aggregates into semicrystalline nanofibers, then assemble into achiral nematic LLC which goes through symmetry breaking to yield a chiral twist-bent LLC. The assembly pathway is driven by increasing solution concentration - a common driving force during evaporative assembly relevant to scalable manufacturing. This assembly pathway can be largely modulated by coating regimes to give 1) lyotropic liquid crystalline assembly in the evaporation regime and 2) random fiber aggregation pathway in the Landau-Levich regime. The chiral liquid crystalline assembly pathway resulted in films with crystallinity 2.63 times that of films from the random fiber aggregation pathway, significantly enhancing the T80 lifetime by 50-fold. The generality of LLC-mediated assembly and enhanced device performance is further validated using polythiophene and quinoxaline-based donor polymers.
Collapse
Affiliation(s)
- Azzaya Khasbaatar
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, IL, 61801, USA
| | - Alec M Damron
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, IL, 61801, USA
| | - Pravini S Fernando
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, IL, 61801, USA
| | - Jasmine S Williams
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, IL, 61801, USA
| | - Chenhui Zhu
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Eliot H Gann
- Materials Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD, 20899, USA
| | - Jong-Hoon Lee
- Department of Advanced Materials Engineering, Kyonggi University, Suwon, 16227, Republic of Korea
| | - Adrian Birge
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, 1304 W. Green St., Urbana, IL, 61801, USA
| | - Bora Kim
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, 306 N. Wright St., Urbana, IL, 61801, USA
| | - Sina Sabury
- School of Chemistry and Biochemistry, Georgia Institute of Technology, North Avenue, Atlanta, GA, 30332, USA
| | - Minjoo L Lee
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, 306 N. Wright St., Urbana, IL, 61801, USA
| | - John R Reynolds
- School of Chemistry and Biochemistry, Georgia Institute of Technology, North Avenue, Atlanta, GA, 30332, USA
| | - Ying Diao
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, IL, 61801, USA
- Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| |
Collapse
|
13
|
Zhao N, Jeon SJ, Yuan Y, Venkateswarlu S, Stella A, Papazotos J, Li Y. Full Conjugation in a Polymer with Non-conjugated Piperazine-2,5-dione Units via Energy-minimized Lactam-to-Lactim Tautomerization Enables Water-gated Transistor Fluoride Sensors. Angew Chem Int Ed Engl 2025; 64:e202419314. [PMID: 39607390 PMCID: PMC11811691 DOI: 10.1002/anie.202419314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/26/2024] [Accepted: 11/28/2024] [Indexed: 11/29/2024]
Abstract
Piperazine-2,5-dione (glycine anhydride, GA) has recently emerged as a valuable precursor for high-performance π-conjugated polymer semiconductors in organic electronics. We utilized GA to design a novel bisindolin-dihydropiperazine (IDHP)-based conjugated polymer, PIDHPTT, for aqueous chemical sensing. In the isatin-flanked monomer, GA exists as a non-conjugated lactam (DHP-NH) but converts to a conjugated lactim (DHP-OH) form within the polymer. Density functional theory (DFT) calculations show that this conversion is driven by energy minimization via extended π-conjugation. Neighboring DHP units in the lactim form facilitate this process through π-bridges, demonstrating a vinylogous effect, which has previously only been observed in small molecules. This is the first study to report such a long-range vinylogous effect in a polymer due to the collective synergy of numerous functional groups. The OH groups in the lactim DHP interact more strongly with fluoride ions than other halides. PIDHPTT exhibits significant changes in optical absorption, electrochemical impedance, and charge transport in response to fluoride ions, which differ from responses to other halides. A water-gated organic field-effect transistor based on PIDHPTT shows excellent sensitivity and selectivity for fluoride ions, demonstrating the potential of this polymer design for chemical sensing applications.
Collapse
Affiliation(s)
- Naixin Zhao
- Department of Chemical EngineeringWaterloo Institute for Nanotechnology (WIN)University of Waterloo200 University Ave WestWaterlooOntarioN2L 3G1Canada
| | - Sung Jae Jeon
- Department of Chemical EngineeringWaterloo Institute for Nanotechnology (WIN)University of Waterloo200 University Ave WestWaterlooOntarioN2L 3G1Canada
| | - Yi Yuan
- Department of Chemical EngineeringWaterloo Institute for Nanotechnology (WIN)University of Waterloo200 University Ave WestWaterlooOntarioN2L 3G1Canada
| | - Samala Venkateswarlu
- Department of Chemical EngineeringWaterloo Institute for Nanotechnology (WIN)University of Waterloo200 University Ave WestWaterlooOntarioN2L 3G1Canada
| | - Andrew Stella
- Department of Chemical EngineeringWaterloo Institute for Nanotechnology (WIN)University of Waterloo200 University Ave WestWaterlooOntarioN2L 3G1Canada
| | - Jimmy Papazotos
- Department of Chemical EngineeringWaterloo Institute for Nanotechnology (WIN)University of Waterloo200 University Ave WestWaterlooOntarioN2L 3G1Canada
| | - Yuning Li
- Department of Chemical EngineeringWaterloo Institute for Nanotechnology (WIN)University of Waterloo200 University Ave WestWaterlooOntarioN2L 3G1Canada
| |
Collapse
|
14
|
Kuang Y, Yao T, Deng S, Dong J, Ye G, Zhang L, Shao S, Zhu Z, Liu J, Liu J. Matching P- and N-type Organic Electrochemical Transistor Performance Enables a Record High-gain Complementary Inverter. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2417691. [PMID: 39713921 DOI: 10.1002/adma.202417691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Indexed: 12/24/2024]
Abstract
The charge transport of channel materials in n-type organic electrochemical transistors (OECTs) is greatly limited by the adverse effects of electrochemical doping, posing a long-standing puzzle for the community. Herein, an n-type conjugated polymer with glycolated side chains (n-PT3) is introduced. This polymer can adapt to electrochemical doping and create more organized nanostructures, mitigating the adverse effects of electrochemical doping. This unique characteristic gives n-PT3 excellent charge transport in the doped state and reversible ion storage, making it highly suitable as an n-type organic mixed ionic-electronic conducting (OMIEC) material. n-PT3 exhibits a high electron mobility of µ ≈ 1.0 cm2 V-1 s-1 and a figure of merit value of µC* ≈ 100 F cm-1 V-1 s-1, representing one of the best results for n-type OMIEC materials. A new p-type OMIEC polymer has been synthesized as the channel material for constructing a complementary inverter to match the n-type OECT channel layer based on n-PT3. As a result, a voltage gain value of up to 307 VV-1 has been achieved, which is a record value for sub-1 V complementary inverters based on OECTs. This work offers valuable insights into designing electrochemical doping adaptive n-type OMIEC materials and fabricating high-gain organic complementary inverters.
Collapse
Affiliation(s)
- Yazhuo Kuang
- State Key Laboratory of Polymer Physics and Chemistry & Key Laboratory of Polymer Science and Technology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Tangqing Yao
- State Key Laboratory of Polymer Physics and Chemistry & Key Laboratory of Polymer Science and Technology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Sihui Deng
- State Key Laboratory of Polymer Physics and Chemistry & Key Laboratory of Polymer Science and Technology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Jingjin Dong
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Gang Ye
- State Key Laboratory of Polymer Physics and Chemistry & Key Laboratory of Polymer Science and Technology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Linlong Zhang
- State Key Laboratory of Polymer Physics and Chemistry & Key Laboratory of Polymer Science and Technology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Shuyan Shao
- Institute of Molecular Aggregation Science, Tianjin University, Tianjin, 300072, P. R. China
| | - Zhongjie Zhu
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 200003, P.R. China
| | - Jun Liu
- State Key Laboratory of Polymer Physics and Chemistry & Key Laboratory of Polymer Science and Technology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Jian Liu
- State Key Laboratory of Polymer Physics and Chemistry & Key Laboratory of Polymer Science and Technology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| |
Collapse
|
15
|
Ni M, Zhuo Z, Zheng Y, Yang J, Sun L, Xu Z, An X, Wang S, Cai J, Bai L, Xie G, Xu M, Lin J, Wu Y, Huang W. High-Efficiency Intrinsically Thermoplastic Semiconducting Polymer with Excellent Strain-Tolerance Capacity for Flexible Ultra-Deep-Blue Polymer Light-Emitting Diodes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2411547. [PMID: 39801183 DOI: 10.1002/adma.202411547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 12/23/2024] [Indexed: 02/26/2025]
Abstract
Complex internal stresses that appear in flexible thin-film electronic devices under long-term deformation operation are associated with incompatible mechanical properties of the multiple layers, which potentially cause intralayer fracture and separation. These defects may result in device instability, performance loss, and failure. Herein, a thermoplastic functional strategy is proposed for manufacturing high-performance stretchable semiconducting polymers with excellent strain-tolerance capacities for flexible electronic devices. Internal plasticization is used to obtain a thermoplastic light-emitting polymer (N2) that can suppress intralayer tensile fracture and compressive separation to enhance the deformation stability of flexible thin-film optoelectronic devices, enabling outstanding energy dissipation capacity under stress. The thermoplastic films exhibit stable and efficient ultra-deep-blue emission with a high efficiency of ≈90% and chromaticity coordinates of (0.16, 0.04). Moreover, the N2-based rigid and flexible polymer light-emitting diodes (PLEDs) exhibit stable ultra-deep-blue electroluminescence properties with high EQEs of ≈2.4% and 1.9%, respectively. Compared with devices based on brittle PODPF, flexible PLEDs based on thermoplastic films effectively suppress performance degradation after hundreds of cycles of bending fatigue, even under extremely rigid conditions. Introducing intrinsically thermoplastic semiconducting polymers in flexible electronic devices can thus substantially enhance their operational stability under deformation.
Collapse
Affiliation(s)
- Mingjian Ni
- The Institute of Flexible Electronics (IFE Future Technologies), Xiamen University, 422 Siming South Road, Xiamen, 361005, China
| | - Zhiqiang Zhuo
- State Key Laboratory of Flexible Electronics (LOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Yingying Zheng
- State Key Laboratory of Flexible Electronics (LOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Jing Yang
- State Key Laboratory of Flexible Electronics (LOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Lili Sun
- School of Flexible Electronics (SoFE) & State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, 66 Gongchang Road, Shenzhen, 518107, China
| | - Zhenhua Xu
- State Key Laboratory of Flexible Electronics (LOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Xiang An
- State Key Laboratory of Flexible Electronics (LOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Shengjie Wang
- State Key Laboratory of Flexible Electronics (LOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Jiangli Cai
- State Key Laboratory of Flexible Electronics (LOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Lubing Bai
- State Key Laboratory of Flexible Electronics (LOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Guohua Xie
- The Institute of Flexible Electronics (IFE Future Technologies), Xiamen University, 422 Siming South Road, Xiamen, 361005, China
| | - Man Xu
- State Key Laboratory of Flexible Electronics (LoFE) & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Jinyi Lin
- State Key Laboratory of Flexible Electronics (LOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
- Institute of Quantum and Sustainable Technology (IQST), School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Yutong Wu
- State Key Laboratory of Flexible Electronics (LOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Wei Huang
- The Institute of Flexible Electronics (IFE Future Technologies), Xiamen University, 422 Siming South Road, Xiamen, 361005, China
- State Key Laboratory of Flexible Electronics (LOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
- School of Flexible Electronics (SoFE) & State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, 66 Gongchang Road, Shenzhen, 518107, China
- State Key Laboratory of Flexible Electronics (LoFE) & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| |
Collapse
|
16
|
Liu P, Zheng Y, Liu Z, Yang Z, Lu Z, Ai X, Ye Z, Yang C, Li X, Yuan L. Shape-Persistent Tetraphenylethylene Macrocycle: Highly Efficient Synthesis and Circularly Polarized Luminescence. MATERIALS (BASEL, SWITZERLAND) 2025; 18:200. [PMID: 39795844 PMCID: PMC11722041 DOI: 10.3390/ma18010200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 12/27/2024] [Accepted: 01/03/2025] [Indexed: 01/13/2025]
Abstract
Circularly polarized luminescence (CPL) is an emerging field with significant applications in molecular electronics, optical materials, and chiroptical sensing. Achieving efficient CPL emission in organic systems remains a major challenge, particularly in the development of materials with high fluorescence quantum yields (ΦF) and large luminescence dissymmetry factors (glum). Herein, we report the efficient synthesis of shape-persistent tetraphenylethylene macrocycles and investigate its potential as a CPL material. Chiral side chains were introduced to induce chiroptical properties. The macrocycles and their properties were characterized using NMR, MALDI-TOF MS, FT-IR, TGA, DSC, UV-Vis spectroscopy, SEM, fluorescence spectroscopy, ECD, and CPL. A significant fluorescence enhancement was observed upon aggregation, demonstrating a typical aggregation-induced emission (AIE) behavior. Moreover, one of the macrocycles in the solid state displayed distinct CPL emission with a high glum of 2 × 10-2 and a ΦF value reaching 60%, and exhibited aggregation-induced circularly polarized luminescence (AICPL). These findings highlight the advantage of using a macrocycle with a noncollapsible backbone for the design of organic systems with CPL property, offering promising applications in chiroptical materials.
Collapse
Affiliation(s)
- Peixin Liu
- College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Yuexuan Zheng
- College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Zejiang Liu
- College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Zhiyao Yang
- College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Ziying Lu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Xiongrui Ai
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Zecong Ye
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Cheng Yang
- College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Xiaowei Li
- College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Lihua Yuan
- College of Chemistry, Sichuan University, Chengdu 610064, China
| |
Collapse
|
17
|
Berruée S, Guigner JM, Bizien T, Bouteiller L, Sosa Vargas L, Rieger J. Spontaneous Formation of Polymeric Nanoribbons in Water Driven by π-π Interactions. Angew Chem Int Ed Engl 2025; 64:e202413627. [PMID: 39375147 DOI: 10.1002/anie.202413627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/20/2024] [Accepted: 10/07/2024] [Indexed: 10/09/2024]
Abstract
A simple method was developed to produce polymeric nanoribbons and other nanostructures in water. This approach incorporates a perylene diimide (PDI) functionalized by triethylene glycol (TEG) as a hydrophobic supramolecular structure directing unit (SSDU) into the core of hydrophilic poly(N,N-dimethylacrylamide) (PDMAc) chains using RAFT polymerization. All PDI-functional polymers dissolved spontaneously in water, forming different nanostructures depending on the degree of polymerization (DPn): nanoribbons and nanocylinders for DPn=14 and 22, and spheres for DPn>50 as determined by cryo-TEM and SAXS analyses. UV/Vis absorption spectroscopy was used to monitor the evolution of the PDI absorption signal upon dissolution. In solid form, all polymers show a H-aggregate absorption signature, but upon dissolution in water, the shortest DPn forming nanoribbons evolved to show HJ-aggregate absorption signals. Over time, the J-aggregate band increased in intensity, while cryo-TEM monitoring evidenced an increase in the nanoribbon's width. Heating the nanoribbons above 60 °C, triggered a morphological transition from nanoribbons to nanocylinders, due to the disappearance of J-aggregates, while H-aggregates were maintained. The study shows that the TEG-PDI is a powerful SSDU to promote 2D or 1D self-assembly of polymers depending on DPn through simple dissolution in water.
Collapse
Affiliation(s)
- Sébastien Berruée
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire (IPCM), F-75005, Paris, France
| | - Jean-Michel Guigner
- Sorbonne Université, CNRS, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), F-75005, Paris, France
| | - Thomas Bizien
- Synchrotron SOLEIL, L'Orme des Merisiers Départementale, 128, 91190, Saint-Aubin
| | - Laurent Bouteiller
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire (IPCM), F-75005, Paris, France
| | - Lydia Sosa Vargas
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire (IPCM), F-75005, Paris, France
| | - Jutta Rieger
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire (IPCM), F-75005, Paris, France
| |
Collapse
|
18
|
Schofield RM, Maciejewska BM, Elmestekawy KA, Woolley JM, Tebbutt GT, Danaie M, Allen CS, Herz LM, Assender HE, Grobert N. Nanostructure and Photovoltaic Potential of Plasmonic Nanofibrous Active Layers. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2409269. [PMID: 39578239 PMCID: PMC11753493 DOI: 10.1002/smll.202409269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Indexed: 11/24/2024]
Abstract
Nanofibrous active layers offer hierarchical control over molecular structure, and the size and distribution of electron donor:acceptor domains, beyond conventional organic photovoltaic architectures. This structure is created by forming donor pathways via electrospinning nanofibers of semiconducting polymer, then infiltrating with an electron acceptor. Electrospinning induces chain and crystallite alignment, resulting in enhanced light-harvesting and charge transport. Here, the charge transport capabilities are predicted, and charge separation and dynamics are evaluated in these active layers, to assess their photovoltaic potential. Through X-ray and electron diffraction, the fiber nanostructure is elucidated, with uniaxial elongation of the electrospinning jet aligning the polymer backbones within crystallites orthogonal to the fiber axis, and amorphous chains parallel. It is revealed that this structure forms when anisotropic crystallites, pre-assembled in solution, become oriented along the fiber- a configuration with high charge transport potential. Competitive dissociation of excitons formed in the photoactive nanofibers is recorded, with 95%+ photoluminescence quenching upon electron acceptor introduction. Transient absorption studies reveal that silver nanoparticle addition to the fibers improves charge generation and/or lifetimes. 1 ns post-excitation, the plasmonic architecture contains 45% more polarons, per exciton formed, than the bulk heterojunction. Therefore, enhanced exciton populations may be successfully translated into additional charge carriers.
Collapse
Affiliation(s)
- Ryan M. Schofield
- Department of MaterialsUniversity of OxfordParks RoadOxfordOX1 3PHUK
| | | | - Karim A. Elmestekawy
- Department of PhysicsUniversity of OxfordClarendon LaboratoryParks RoadOxfordOX1 3PUUK
| | - Jack M. Woolley
- Department of PhysicsUniversity of WarwickGibbet Hill RoadCoventryCV4 7ALUK
| | | | - Mohsen Danaie
- Electron Physical Science Imaging CentreDiamond Light SourceDidcotOX11 0DEUK
| | - Christopher S. Allen
- Department of MaterialsUniversity of OxfordParks RoadOxfordOX1 3PHUK
- Electron Physical Science Imaging CentreDiamond Light SourceDidcotOX11 0DEUK
| | - Laura M. Herz
- Department of PhysicsUniversity of OxfordClarendon LaboratoryParks RoadOxfordOX1 3PUUK
| | - Hazel E. Assender
- Department of MaterialsUniversity of OxfordParks RoadOxfordOX1 3PHUK
| | - Nicole Grobert
- Department of MaterialsUniversity of OxfordParks RoadOxfordOX1 3PHUK
| |
Collapse
|
19
|
Kwaśniewska A, Orzechowska K, Rząd K, Ceresa L, Figiel M, Hoser AA, Nowak ME, Karcz D, Gładyszewska B, Gładyszewski G, Srebro-Hooper M, Matwijczuk A. Dual-fluorescent starch biopolymer films containing 5-(4-nitrophenyl)-1,3,4-thiadiazol-2-amine powder as a functional nanofiller. Sci Rep 2024; 14:31350. [PMID: 39732911 DOI: 10.1038/s41598-024-82853-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 12/09/2024] [Indexed: 12/30/2024] Open
Abstract
Physical and photophysical properties of starch-based biopolymer films containing 5-(4-nitrophenyl)-1,3,4-thiadiazol-2-amine (NTA) powder as a nanofiller were examined using atomic force microscopy (AFM), Fourier-transform infrared spectroscopy (FTIR), stationary UV-Vis and fluorescence spectroscopy as well as resonance light scattering (RLS) and time-resolved measurements, and where possible, analyzed with reference to pristine NTA solutions. AFM studies revealed that the addition of NTA into the starch biopolymer did not significantly affect surface roughness, with all examined films displaying similar Sq values ranging from 70.7 nm to 79.7 nm. Similarly, Young's modulus measurements showed no significant changes after incorporating the 1,3,4-thiadiazole. Adhesion force and water contact angle assessments demonstrated that the films maintained high hydrophilicity (water wetting) across all examined films. Color analysis corroborated the anticipated trend, showing that increasing additive content resulted in decreased lightness and increased yellowness. Interestingly, however, while in polar isopropanol solvent at low concentration, NTA shows a typical single-band emission, centered at 410 nm and a slight enhancement of the band on the long-wavelength side around 530 nm, its incorporation into the biopolymer matrices results in the appearance of dual fluorescence signal with maxima at 430 and 530 nm. Concentration-dependence emission experiments, demonstrating that with even a slight increase of the amount of NTA in solution, an additional, weak long-wavelength emission band emerged within the spectral range corresponding to the intensive band in the biopolymer film, along with results of the performed quantum-chemical studies, including both the monomeric and aggregated (dimer and trimer) models, conclusively unveil that the dual fluorescence observed in starch/NTA films is due to molecular aggregation effects resulting in aggregation-induced emission. This study underscores the potential of NTA as an additive in biobased polymer films, furnishing them with new photophysical features without substantially altering their surface properties and thus enabling their extended applications.
Collapse
Affiliation(s)
- Anita Kwaśniewska
- Department of Applied Physics, Faculty of Mechanical Engineering, Lublin University of Technology, Nadbystrzycka 38, Lublin, 20-618, Poland
| | - Katarzyna Orzechowska
- Department of Theoretical Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, Kraków, 30-387, Poland
| | - Klaudia Rząd
- Department of Biophysics, Faculty of Environmental Biology, University of Life Sciences in Lublin, Akademicka 13, Lublin, 20-950, Poland
| | - Luca Ceresa
- Department of Physics and Astronomy, Texas Christian University, Fort Worth, TX, 76109, USA
| | - Małgorzata Figiel
- Department of Physical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, Kraków, 30-387, Poland
| | - Anna A Hoser
- Faculty of Chemistry, University of Warsaw, Pasteura 1, Warszawa, 02-093, Poland
| | - Maurycy E Nowak
- Faculty of Chemistry, University of Warsaw, Pasteura 1, Warszawa, 02-093, Poland
| | - Dariusz Karcz
- Faculty of Chemical Engineering and Technology, Department of Chemical Technology and Environmental Analytics (C1), Cracow University of Technology, Krakow, 31-155, Poland
| | - Bożena Gładyszewska
- Department of Biophysics, Faculty of Environmental Biology, University of Life Sciences in Lublin, Akademicka 13, Lublin, 20-950, Poland
| | - Grzegorz Gładyszewski
- Department of Applied Physics, Faculty of Mechanical Engineering, Lublin University of Technology, Nadbystrzycka 38, Lublin, 20-618, Poland
| | - Monika Srebro-Hooper
- Department of Theoretical Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, Kraków, 30-387, Poland.
| | - Arkadiusz Matwijczuk
- Department of Biophysics, Faculty of Environmental Biology, University of Life Sciences in Lublin, Akademicka 13, Lublin, 20-950, Poland.
| |
Collapse
|
20
|
Dhakar GL, Malik S. Linear and Nonlinear Rheological Investigations of Poly(3-hexylthiophene) H-Aggregated Gel Networks. J Phys Chem B 2024; 128:12292-12309. [PMID: 39620354 DOI: 10.1021/acs.jpcb.4c06835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
Owing to its facile synthesis and low cost, poly(3-hexylthiophene) (P3HT) has been extensively investigated in the field of organic electronics. Well-defined packing of P3HT chains and getting controlled morphologies, which solely depend on the polarity of the solvent, remain challenging. Herein, the aggregation behaviors of P3HT in organic solvents having different solvent polarities have been investigated to achieve different orderings of P3HT chains (H-type or J-type). The aggregation in the solution phase and the subsequent structural as well as morphological behaviors of P3HT chains have been investigated by absorption, X-ray powder diffraction, and topological studies, respectively. It has been noticed from absorption studies that P3HT forms H-type aggregates in anisole, phenetole, etc., whereas it produces J-type aggregates in toluene. More surprisingly, H-type aggregations of P3HT chains at low concentrations (CP3HT = 0.001 g/cm3) eventually lead to the formation of the gel network that ceases the flow of the solvents. Contrary to expectations, J-type aggregation in toluene does not produce the gel network at the said concentration. Further, to reveal the viscoelastic and microstructural properties, P3HT gel networks have been thoroughly investigated by small-amplitude oscillatory shear (SAOS) and large-amplitude oscillatory shear (LAOS) with varying concentrations, solvents, and molecular weights of P3HT. With quantitative analysis, the nonlinear rheological characteristics of higher harmonics, strain-stiffening ratio, shear-thinning ratio, dissipation ratio, intracycle transient moduli, and derivative of transient moduli have been evaluated for P3HT networks, which significantly provide the rheological information for the understanding of conducting polymer networks.
Collapse
Affiliation(s)
- Gopal Lal Dhakar
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Sudip Malik
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| |
Collapse
|
21
|
Sabury S, Jones AL, Schopp N, Nanayakkara S, Chaney TP, Coropceanu V, Marder SR, Toney MF, Brédas JL, Nguyen TQ, Reynolds JR. Manipulating Backbone Planarity of Ester Functionalized Conjugated Polymer Constitutional Isomer Derivatives Blended with Molecular Acceptors for Controlling Photovoltaic Properties. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2024; 36:11656-11668. [PMID: 39678931 PMCID: PMC11635973 DOI: 10.1021/acs.chemmater.4c02751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/11/2024] [Accepted: 11/13/2024] [Indexed: 12/17/2024]
Abstract
Exploring both electron donor and acceptor phase components in bulk heterojunction structures has contributed to the advancement of organic photovoltaics (OPV) realizing power conversion efficiencies reaching 20%. Being able to control backbone planarity of the donor polymer, while understanding its effects on the polymer conformation and photophysical properties, fosters the groundwork for further achievements in this realm. In this report, three isomeric PM7 derivatives are designed and synthesized where the benzodithiophene-4,8-dione structure is replaced by a quaterthiophene bridge carrying two ester moieties. The placement of these two ester groups varies among three configurational isomers, which ultimately influences the chain conformations and aggregation behavior of each polymer. Specifically, PM7-D3 has ester groups attached to the inner positions of the outer thiophenes showing moderate solution aggregation; PM7-D4 has ester groups attached to the inner positions of the inner thiophenes featuring a twisted backbone with no solution aggregation behavior; and PM7-D5 has ester groups attached to the outer positions of the inner thiophenes with strong solution aggregation. PM7-D5 shows the highest average power conversion efficiency of 11.4% paired with the molecular acceptor L8-BO. In addition, the differences among the polymer backbones are expressed by their state energies and carrier mobility in the corresponding fabricated OPV devices.
Collapse
Affiliation(s)
- Sina Sabury
- School
of Chemistry and Biochemistry, School of Materials Science and Engineering,
Center for Organic Photonics and Electronics, Georgia Tech Polymer
Network, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Austin L. Jones
- School
of Chemistry and Biochemistry, School of Materials Science and Engineering,
Center for Organic Photonics and Electronics, Georgia Tech Polymer
Network, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Nora Schopp
- Center
for Polymers and Organic Solids, Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California 93106, United States
| | - Sadisha Nanayakkara
- Department
of Chemistry and Biochemistry, The University
of Arizona, Tucson, Arizona 85721-0041, United States
| | - Thomas P. Chaney
- Materials
Science and Engineering Program, University
of Colorado, Boulder, Colorado 80309, United States
| | - Veaceslav Coropceanu
- Department
of Chemistry and Biochemistry, The University
of Arizona, Tucson, Arizona 85721-0041, United States
| | - Seth R. Marder
- Materials
Science and Engineering Program, University
of Colorado, Boulder, Colorado 80309, United States
- Department
of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80309, United States
- Renewable
and Sustainable Energy Institute, University
of Colorado, Boulder, Colorado 80303, United
States
| | - Michael F. Toney
- Materials
Science and Engineering Program, University
of Colorado, Boulder, Colorado 80309, United States
- Department
of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80309, United States
- Renewable
and Sustainable Energy Institute, University
of Colorado, Boulder, Colorado 80303, United
States
| | - Jean-Luc Brédas
- Department
of Chemistry and Biochemistry, The University
of Arizona, Tucson, Arizona 85721-0041, United States
| | - Thuc-Quyen Nguyen
- Center
for Polymers and Organic Solids, Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California 93106, United States
| | - John R. Reynolds
- School
of Chemistry and Biochemistry, School of Materials Science and Engineering,
Center for Organic Photonics and Electronics, Georgia Tech Polymer
Network, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
22
|
Kamptner A, Scharber MC, Schiek M. Accurate Determination of the Uniaxial Complex Refractive Index and the Optical Band Gap of Polymer Thin Films to Correlate Their Absorption Strength and Onset of Absorption. Chemphyschem 2024; 25:e202400233. [PMID: 39096317 PMCID: PMC11614375 DOI: 10.1002/cphc.202400233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 05/03/2024] [Accepted: 07/31/2024] [Indexed: 08/05/2024]
Abstract
The advanced development of optoelectronic devices requires a methodical knowledge of the fundamental material properties of the key active components. Systematic investigations and correlations of such basic optical properties can lead to new insights for the design of more potent materials. In this perspective, we provide a systematic overview of the uniaxial anisotropic complex refractive indices and the absorption coefficients obtained by ellipsometry as well as the optical band gap energies derived from Tauc plots of six selected solution-processed polymer thin films. While the optical band gap energies are intentionally distributed over the visible spectral range, we found that the absorption strength of all polymer samples are grouped in a random distribution within a rather uniform range of values.
Collapse
Affiliation(s)
- Alexander Kamptner
- Institute for Physical Chemistry (IPC) & Linz Institute for Organic Solar Cells (LIOS)Johannes Kepler UniversityAltenberger Str. 69A-4040LinzAustria E-mal
- Center for Surface- and Nanoanalytics (ZONA)Johannes Kepler UniversityAltenberger Str. 69A-4040LinzAustria
| | - Markus C. Scharber
- Institute for Physical Chemistry (IPC) & Linz Institute for Organic Solar Cells (LIOS)Johannes Kepler UniversityAltenberger Str. 69A-4040LinzAustria E-mal
| | - Manuela Schiek
- Institute for Physical Chemistry (IPC) & Linz Institute for Organic Solar Cells (LIOS)Johannes Kepler UniversityAltenberger Str. 69A-4040LinzAustria E-mal
- Center for Surface- and Nanoanalytics (ZONA)Johannes Kepler UniversityAltenberger Str. 69A-4040LinzAustria
| |
Collapse
|
23
|
Thomas ME, Schmitt LD, Lees AJ. An Investigation into Anion Sensing of the Molecular Aggregate of 4-(Pyrrol-1-yl)pyridine and Its Derivatives. Molecules 2024; 29:5692. [PMID: 39683851 DOI: 10.3390/molecules29235692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/21/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
Recently, 4-(pyrrol-1-yl)pyridine has been found to act as a supramolecular chemodosimeter, sensing nitrite ions in an aqueous solution with naked eye detection and a low limit of detection of 0.330 ppm. This work explores the anion-sensing properties of related derivatives, 4-(2,5-dimethyl-pyrrol-1-yl)pyridine and 4-(2,4-dimethyl-pyrrol-1-yl)pyridine, and provides a comparison with the parent compound. These molecules are determined to be effective sensors for nitrite ions with limits of detection of 1.06 ppm and 1.05 ppm, respectively. The high sensitivity and selectivity to nitrite remain even in the presence of competing anions such as SO32-, NO32-, PO43-, SO42-, Cl-, F-, I-, Br-, AcO-, and CN-. Analogous to the 4-(pyrrol-1-yl)pyridine system, the sensing mechanism appears to be the result of changes in the supramolecular aggregate system upon the interaction of an anion; this is further explored through dynamic light scattering, the Tyndall effect, and NMR spectroscopy. The two methylated derivative systems reported herein, 4-(2,5-dimethyl-pyrrol-1-yl)pyridine and 4-(2,4-dimethyl-pyrrol-1-yl)pyridine, are shown to affect the size of the supramolecular system and provide further insight into the unique mechanism of action.
Collapse
Affiliation(s)
- Mallory E Thomas
- Department of Chemistry, Binghamton University, Binghamton, NY 13902, USA
| | - Lynn D Schmitt
- Department of Chemistry, SUNY Cortland, Cortland, NY 13045, USA
| | - Alistair J Lees
- Department of Chemistry, Binghamton University, Binghamton, NY 13902, USA
| |
Collapse
|
24
|
Ma J, Xu M, Zhuo Z, Wang K, Li Q, Li H, Feng Q, Chen W, Yu N, Li M, Xie L, Lin J. Plasticizer Design Principle of "Like Dissolves Like": Semiconductor Fluid Plasticized Stretchable Fully π-Conjugated Polymers Films for Uniform Large-Area and Flexible Deep-Blue Polymer Light-Emitting Diodes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2411449. [PMID: 39543791 DOI: 10.1002/adma.202411449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 10/24/2024] [Indexed: 11/17/2024]
Abstract
Physical blending of fully π-conjugated polymers (FπCPs) is an effective strategy to achieve intrinsically stretchable films for the fabrication of flexible optoelectronic devices, but easily causes phase separation, nonuniform morphology and uncontrollable photo-electronic processing. This may cause low efficiency, unstable and nonuniform emission, and poor color purity, which are undesirable for deep-blue flexible polymer light-emitting diodes (FPLEDs). Herein, a "Like Dissolves Like" design principle to prepare semiconductor fluid plasticizers (SFPs) is established and intrinsically stretchable FπCPs films via external plasticization for high-performance deep-blue FPLEDs are developed. Three fundamental requirements are proposed, "similar conjugated skeleton, similar molecular polarity, and similar electronic structures," to prepare model-matched nonpolar M1 and polar M2 plasticizers for poly(9,9-dioctylfluorene) (PFO). Large-area plasticized PFO films exhibit an efficient, narrowband, and stable ultra-deep-blue electroluminescence (FWHM < 40 nm, CIE: 0.12, 0.04), uniform morphology, and excellent intrinsic stretchability (fracture strain >20% and crack-onset strain >120%). Efficient and uniform deep-blue FPLEDs based on stretchable PFO films are fabricated with a high brightness of ≈3000 cd cm-2. Finally, blended PFO films exhibit outstanding stretch-deformation cycling stability of their deep-blue electroluminescent behavior, confirming the effectiveness of the "Like Dissolves Like" principle to design matched SFPs for stretchable FπCP films in flexible electronics.
Collapse
Affiliation(s)
- Jingyao Ma
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Man Xu
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Zhiqiang Zhuo
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Kuande Wang
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Qianyi Li
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Hao Li
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Quanyou Feng
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Wenyu Chen
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Ningning Yu
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Mengyuan Li
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Linghai Xie
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Jinyi Lin
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| |
Collapse
|
25
|
Huang YJ, Yeh JW, Yang ACM. Photonics of High-Entropy Polymers Revealing Molecular Dispersion via Polymer Mixing. ACS NANO 2024; 18:32759-32768. [PMID: 39549014 PMCID: PMC11603877 DOI: 10.1021/acsnano.4c10585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 11/03/2024] [Accepted: 11/07/2024] [Indexed: 11/18/2024]
Abstract
Blending multiple polymers together to form the so-called "high-entropy polymers (HEPs)" can generate the effects of molecular dispersion in addition to suppressing polymer phase separation. We embedded a semiconducting polymer (conjugated polymers, CPs) in an optically inert matrix composed of n polymer species and found that a molecule-level dispersion is attained in HEPs defined as n ≥ 5. In the regime of dilute CP concentrations, the photonic properties vary widely in the n = 1 matrices owing to diverse solubility parameters, but the distribution narrows with n, and the CP starts to exhibit behaviors of molecule-level dispersion at n ≥ 5, where the matrix polymers compete with each other to exert direct influences on the embedded CP. Specifically, for MEH-PPV, increasing n reduces the fluorescence redshift and spectral width from diminishing aggregation. For the rigid PFO molecules, increasing n creates a dilution effect facilitating formation of the low-energy planar β-phase. For the flexible regioregular P3HT-rr, HEPs offer well-dispersed amorphous chains highly susceptible to chain environments, thus influencing ηR's in the quasi-fixed amorphous-crystalline energy transfer landscape. The HEP effects continue for greater CP concentrations, consistent with the matrix dispersing behaviors in the dilute regime. This work demonstrates a molecular-level dispersion by HEPs, offering a method of molecular tailoring for polymer research and applications via simple mixing.
Collapse
Affiliation(s)
- Yu-Jr Huang
- Department
of Materials Science and Engineering, National
Tsing Hua University, Hsinchu 30013, Taiwan
| | - Jien-Wei Yeh
- Department
of Materials Science and Engineering, National
Tsing Hua University, Hsinchu 30013, Taiwan
- High
Entropy
Materials Center, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Arnold Chang-Mou Yang
- Department
of Materials Science and Engineering, National
Tsing Hua University, Hsinchu 30013, Taiwan
| |
Collapse
|
26
|
Youm SG, Howell MT, Chiang CH, Lu L, Kuruppu Arachchige NMK, Ankner JF, Strzalka J, Losovyj Y, Garno JC, Nesterov EE. Precision Synthesis of Conjugated Polymer Films by Surface-Confined Stepwise Sonogashira Cross-Coupling. Molecules 2024; 29:5466. [PMID: 39598855 PMCID: PMC11597661 DOI: 10.3390/molecules29225466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 10/28/2024] [Accepted: 11/18/2024] [Indexed: 11/29/2024] Open
Abstract
Thin films of poly(arylene ethynylene)-conjugated polymers, including low-energy-gap donor-acceptor polymers, can be prepared via stepwise polymerization utilizing surface-confined Sonogashira cross-coupling. This robust and efficient polymerization protocol yields conjugated polymers with a precise molecular structure and with nanometer-level control of the organization and the uniform alignment of the macromolecular chains in the densely packed film. In addition to high stability and predictable and well-defined molecular organization and morphology, the surface-confined conjugated polymer chains experience significant interchain electronic interactions, resulting in dominating intermolecular π-electron delocalization which is primarily responsible for the electronic and spectroscopic properties of polymer films. The fluorescent films demonstrate remarkable performance in chemosensing applications, showing a turn-off fluorescent response on the sub-ppt (part per trillion) level of nitroaromatic explosives in water. This unique sensitivity is likely related to the enhanced exciton mobility in the uniformly aligned and structurally monodisperse polymer films.
Collapse
Affiliation(s)
- Sang Gil Youm
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL 60115, USA
| | - Mitchell T. Howell
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL 60115, USA
| | - Chien-Hung Chiang
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Lu Lu
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA
| | | | - John F. Ankner
- Spallation Neutron Source, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Joseph Strzalka
- X-Ray Science Division, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Yaroslav Losovyj
- Department of Chemistry, Indiana University, Bloomington, IN 47401, USA;
| | - Jayne C. Garno
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Evgueni E. Nesterov
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL 60115, USA
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA
| |
Collapse
|
27
|
Schultz JD, Yuly JL, Arsenault EA, Parker K, Chowdhury SN, Dani R, Kundu S, Nuomin H, Zhang Z, Valdiviezo J, Zhang P, Orcutt K, Jang SJ, Fleming GR, Makri N, Ogilvie JP, Therien MJ, Wasielewski MR, Beratan DN. Coherence in Chemistry: Foundations and Frontiers. Chem Rev 2024; 124:11641-11766. [PMID: 39441172 DOI: 10.1021/acs.chemrev.3c00643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Coherence refers to correlations in waves. Because matter has a wave-particle nature, it is unsurprising that coherence has deep connections with the most contemporary issues in chemistry research (e.g., energy harvesting, femtosecond spectroscopy, molecular qubits and more). But what does the word "coherence" really mean in the context of molecules and other quantum systems? We provide a review of key concepts, definitions, and methodologies, surrounding coherence phenomena in chemistry, and we describe how the terms "coherence" and "quantum coherence" refer to many different phenomena in chemistry. Moreover, we show how these notions are related to the concept of an interference pattern. Coherence phenomena are indeed complex, and ambiguous definitions may spawn confusion. By describing the many definitions and contexts for coherence in the molecular sciences, we aim to enhance understanding and communication in this broad and active area of chemistry.
Collapse
Affiliation(s)
- Jonathan D Schultz
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Jonathon L Yuly
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey 08540, United States
- Department of Physics, Duke University, Durham, North Carolina 27708, United States
| | - Eric A Arsenault
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Kelsey Parker
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Sutirtha N Chowdhury
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Reshmi Dani
- Department of Chemistry, University of Illinois, Urbana, Illinois 61801, United States
| | - Sohang Kundu
- Department of Chemistry, University of Illinois, Urbana, Illinois 61801, United States
| | - Hanggai Nuomin
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Zhendian Zhang
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Jesús Valdiviezo
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
- Sección Química, Departamento de Ciencias, Pontificia Universidad Católica del Perú, San Miguel, Lima 15088, Peru
| | - Peng Zhang
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Kaydren Orcutt
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Bioproducts Research Unit, Western Regional Research Center, Agricultural Research Service, United States Department of Agriculture, 800 Buchanan Street, Albany, California 94710, United States
| | - Seogjoo J Jang
- Department of Chemistry and Biochemistry, Queens College, City University of New York, Queens, New York 11367, United States
- Chemistry and Physics PhD programs, Graduate Center, City University of New York, New York, New York 10016, United States
| | - Graham R Fleming
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| | - Nancy Makri
- Department of Chemistry, University of Illinois, Urbana, Illinois 61801, United States
- Department of Physics, University of Illinois, Urbana, Illinois 61801, United States
- Illinois Quantum Information Science and Technology Center, University of Illinois, Urbana, Illinois 61801, United States
| | - Jennifer P Ogilvie
- Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Michael J Therien
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Michael R Wasielewski
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - David N Beratan
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
- Department of Physics, Duke University, Durham, North Carolina 27708, United States
- Department of Biochemistry, Duke University, Durham, North Carolina 27710, United States
| |
Collapse
|
28
|
Shi Y, Landfester K, Morris SM. Fine-Tuning the Microstructure and Photophysical Characteristics of Fluorescent Conjugated Copolymers Using Photoalignment and Liquid-Crystal Ordering. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2407117. [PMID: 39206683 PMCID: PMC11538637 DOI: 10.1002/advs.202407117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/29/2024] [Indexed: 09/04/2024]
Abstract
Replicating the microstructural basis and the near 100% excitation energy transfer efficiency in naturally occurring light-harvesting complexes (LHCs) remains challenging in synthetic energy-harvesting devices. Biological photosynthesis regulates active ensembles of light-absorbing and funneling chlorophylls in proteins in response to fluctuating sunlight. Here, use of long-range liquid crystal (LC) ordering to tailor chain orientation and packing structure in liquid crystalline conjugated polymer (LCCP) layers for bio-mimicry of certain structural basis and light-harvesting properties of LHCs is reported. It is found that long-range orientational ordering in an LC phase of poly(9,9-dioctylfluorene-co-benzothiadiazole) (F8BT) copolymer stabilizes a small fraction of randomly-oriented F8BT nanocrystals dispersed in an amorphous matrix of F8BT chains, resembling a self-doped host-guest system whereby excitation energy funneling and photoluminescence quantum efficiencies are enhanced significantly by triggering 3D donor-to-acceptor Förster resonance energy transfer (FRET) and dominant intrachain emission in the nano-crystal acceptor. Further, photoalignment of nematic F8BT layers is combined with LC orientational ordering to fabricate large-area-extended monodomains exhibiting >60% crystallinity and ≈20 nm-long interchain packing order. Remarkably, these monodomains demonstrate strong linearly polarized emission, whilst also promoting a new band-edge absorption species and an extra emissive interchain excited state as compared to the non-aligned films.
Collapse
Affiliation(s)
- Yuping Shi
- Max Planck Institute for Polymer ResearchAckermannweg 1055128MainzGermany
- Department of Engineering ScienceUniversity of OxfordParks RoadOxfordOX1 3PJUK
| | | | - Stephen M. Morris
- Department of Engineering ScienceUniversity of OxfordParks RoadOxfordOX1 3PJUK
| |
Collapse
|
29
|
Parida S, Patra SK, Mishra S. Structure-Spectroscopy Correlation in the Self-Assembled Perylene Diimide-Based Dimers via Inter-Chromophore Coupling. J Phys Chem B 2024; 128:9873-9888. [PMID: 39236114 DOI: 10.1021/acs.jpcb.4c04181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
The impact of conformational change on the ground and excited states of seven perylene diimide (PDI)-based dimeric systems is examined by introducing longitudinal shift, transverse shift, and rotation of one monomer with respect to another. The minimum energy conformations are compared via an energy decomposition analysis. The heteroatom-substituted dimeric systems, such as B2 N2-embedded PDI, trans-thio-PDI (trans-S2-PDI), and N-PDI, show BN···π, C═S···π, and N···H interactions that survive over a longer range of longitudinal and transverse shifts. The excitonic coupling analysis reveals that both Coulomb- and CT-mediated couplings are crucial for understanding aggregate absorption spectra. While the Coulomb coupling exhibits a monotonic behavior with conformation changes, the CT component changes significantly with minor geometrical deviations. The interplay between the two couplings leads to J-type, H-type, and null aggregates, depending on the conformations of the dimers. The overall trend of both couplings is consistent across all systems, although they differ in magnitude. The trans-S2-PDI shows the strongest Coulomb and CT couplings, while it is weak in perylene and B2N2-PDI dimers. The resonant model for strongly coupled Frenkel excitonic (FE) and CT states successfully characterizes the single- and double-band nature of absorption spectra in dimers. In strong coupling regions, the dimers show blue-shifted single-band excitation to the upper FE state. In contrast, excitation to the lower FE and upper CT states produces a red-shifted two-band spectrum in the weakly coupled regions. The intensity of the CT band diminishes with the monomer separation. In most cases, the perpendicularly stacked structures show null-aggregate behavior with no spectral shift due to the absence of Coulomb and CT couplings. The exciton relaxation pathway of the heteroatom-substituted PDIs is found to be influenced by the presence of nπ* states between the FE and CT states.
Collapse
Affiliation(s)
- Sanjukta Parida
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Sanjib K Patra
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Sabyashachi Mishra
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| |
Collapse
|
30
|
Yue H, Wang Y, Luo S, Guo J, Jin J, Li G, Meng Z, Zhang L, Zhou D, Zhen Y, Hu W. In situ continuous hydrogen-bonded engineering for intrinsically stretchable and healable high-mobility polymer semiconductors. SCIENCE ADVANCES 2024; 10:eadq0171. [PMID: 39356754 PMCID: PMC11446264 DOI: 10.1126/sciadv.adq0171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 08/27/2024] [Indexed: 10/04/2024]
Abstract
As a key component for wearable electronics, intrinsically stretchable and healable semiconducting polymers are scarce because carrier mobility is often reduced with increasing stretchability and self-healability. Here, we combine stepwise polymerization and thermal conversion to introduce in situ continuous hydrogen bonding sites in a polymer backbone without breaking the conjugation or introducing bulky softer side chains, benefiting the intrachain and interchain charge transport. We demonstrate that a regular sequence structure facilitated the formation of big nanofibers with a high degree of aggregation, providing the loose and porous thin film with simultaneously improved charge transport, stretchability, and self-healability. The mobility of damaged devices can be recovered to 81% after a healing treatment. Fully stretchable transistor based on the designed polymer exhibited a greatly enhanced mobility up to 1.08 square centimeters per volt per second under 100% strain, which is an unprecedented value and constitutes a major step for the development of intrinsically stretchable and healable semiconducting polymers.
Collapse
Affiliation(s)
- Haoguo Yue
- Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Ying Wang
- Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Shaochuan Luo
- Department of Polymer Science and Engineering, State Key Laboratory of Coordination Chemistry, Key Laboratory of High Performance Polymer Material and Technology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Junfeng Guo
- Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jun Jin
- Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Gongxi Li
- Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhihao Meng
- Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Lei Zhang
- Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Dongshan Zhou
- Department of Polymer Science and Engineering, State Key Laboratory of Coordination Chemistry, Key Laboratory of High Performance Polymer Material and Technology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yonggang Zhen
- Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Wenping Hu
- MOE Key Laboratory of Organic Integrated Circuits & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Sciences, Tianjin University, Tianjin 300072, China
| |
Collapse
|
31
|
Li K, Liu M, Li H, Dong Q, Fu F, Bai X, Su P, Chen M, Li Y, Liu H, Liu D, Wang P. Terpyridine-Based Metal-Organic Cage with Enhanced Emission via Coordination-Induced Rigidity. Inorg Chem 2024; 63:18103-18109. [PMID: 39285848 DOI: 10.1021/acs.inorgchem.4c02852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Realizing the regulation of photophysical properties by precisely controlling the molecular composition and configuration, thereby obtaining high-performance optical materials, remains of great significance. Due to the directionality and reversibility of the coordination bond, coordination-driven self-assembly endows the molecule with customized thermodynamically stable structures and desired properties. In this paper, a luminous metal-organic cage [Zn12L6] (S) was elaborately designed and quantitatively synthesized by self-assembly of tetrapodal TQPP chromophore-containing terpyridine ligand L with Zn2+. Complex S possessed a rigid cage-like structure, which endows a higher fluorescence quantum efficiency both in solution (∼88%) and neat solid (16%) than the corresponding ligand L. Further, using complex S as the photoactive component, two light-emitting diodes (LEDs) were successfully fabricated and the emission of pure white light (CIE coordinates: 0.3341, 0.3300) was achieved. These results afford a method to obtain enhanced luminescence performance via the formation of rigid coordination-driven supramolecular architectures.
Collapse
Affiliation(s)
- Kaixiu Li
- Department of Organic and Polymer Chemistry, Hunan Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - Mingliang Liu
- Department of Organic and Polymer Chemistry, Hunan Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - Huili Li
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou 510006, China
| | - Qiangqiang Dong
- Department of Organic and Polymer Chemistry, Hunan Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - Fan Fu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Xinyu Bai
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou 510006, China
| | - Peiyang Su
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou 510006, China
| | - Mingzhao Chen
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou 510006, China
| | - Yiming Li
- Department of Organic and Polymer Chemistry, Hunan Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - Hui Liu
- School of Metallurgy and Environment, Central South University, Changsha, Hunan 410083, China
- Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha, Hunan 410083, China
- State Key Laboratory of Advanced Metallurgy for Non-ferrous Metals, Changsha, Hunan 410083, China
| | - Die Liu
- Department of Organic and Polymer Chemistry, Hunan Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - Pingshan Wang
- Department of Organic and Polymer Chemistry, Hunan Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou 510006, China
| |
Collapse
|
32
|
Thapa GJ, Chauhan M, Cranston RR, Guo B, Lessard BH, Dougherty DB, Amassian A. Linking Electronic and Structural Disorder Parameters to Carrier Transport in a Modern Conjugated Polymer. ACS APPLIED MATERIALS & INTERFACES 2024; 16:48016-48024. [PMID: 39213484 DOI: 10.1021/acsami.4c10298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Understanding charge transport in conjugated polymers is crucial for the development of next-generation organic electronic applications. It is presumed that structural disorder in conjugated polymers originating from their semicrystallinity, processing, or polymorphism leads to a complex energetic landscape that influences charge carrier transport properties. However, the link between polymer order parameters and energetic landscape is not well established experimentally. In this work, we successfully link statistical surveys of the local polymer electronic structure with paracrystalline structural disorder, a measure of statistical fluctuations away from the ideal polymer packing structure. We use scanning tunneling microscopy/spectroscopy to measure spatial variability in electronic band edges in PM6 films, a high-performance conjugated polymer, and find that films with higher paracrystallinity exhibit greater electronic disorder, as expected. In addition, we show that macroscopic charge carrier mobility in field effect transistors and and trap influence in hole-only diode devices is positively correlated with these microscopic structural and electronic parameters.
Collapse
Affiliation(s)
- Gaurab J Thapa
- Department of Materials Science and Engineering and Organic and Carbon Electronics Laboratories (ORaCEL), North Carolina State University, Raleigh, North Carolina 27695, United States
- Department of Physics and Organic and Carbon Electronics Laboratories (ORaCEL), North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Mihirsinh Chauhan
- Department of Materials Science and Engineering and Organic and Carbon Electronics Laboratories (ORaCEL), North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Rosemary R Cranston
- Department of Chemical and Biological Engineering, University of Ottawa, 161 Louis Pasteur, Ottawa, ON K1N 6N5, Canada
| | - Boyu Guo
- Department of Materials Science and Engineering and Organic and Carbon Electronics Laboratories (ORaCEL), North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Benoît H Lessard
- Department of Chemical and Biological Engineering, University of Ottawa, 161 Louis Pasteur, Ottawa, ON K1N 6N5, Canada
- School of Electrical Engineering and Computer Science, University of Ottawa, 800 King Edward Ave, Ottawa, ON K1N 6N5, Canada
| | - Daniel B Dougherty
- Department of Physics and Organic and Carbon Electronics Laboratories (ORaCEL), North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Aram Amassian
- Department of Materials Science and Engineering and Organic and Carbon Electronics Laboratories (ORaCEL), North Carolina State University, Raleigh, North Carolina 27695, United States
| |
Collapse
|
33
|
Gotfredsen H, Hergenhahn J, Duarte F, Claridge TDW, Anderson HL. Bimolecular Sandwich Aggregates of Porphyrin Nanorings. J Am Chem Soc 2024; 146:25232-25244. [PMID: 39186461 PMCID: PMC11403599 DOI: 10.1021/jacs.4c09267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Extended π-systems often form supramolecular aggregates, drastically changing their optical and electronic properties. However, aggregation processes can be difficult to characterize or predict. Here, we show that butadiyne-linked 8- and 12-porphyrin nanorings form stable and well-defined bimolecular aggregates with remarkably sharp NMR spectra, despite their dynamic structures and high molecular weights (12.7 to 26.0 kDa). Pyridine breaks up the aggregates into their constituent rings, which are in slow exchange with the aggregates on the NMR time scale. All the aggregates have the same general two-layer sandwich structure, as deduced from NMR spectroscopy experiments, including 1H DOSY, 1H-1H COSY, TOCSY, NOESY, and 1H-13C HSQC. This structure was confirmed by analysis of residual dipolar couplings from 13C-coupled 1H-13C HSQC experiments on one of the 12-ring aggregates. Variable-temperature NMR spectroscopy revealed an internal ring-on-ring rotation process by which two π-π stacked conformers interconvert via a staggered conformation. A slower dynamic process, involving rotation of individual porphyrin units, was also detected by exchange spectroscopy in the 8-ring aggregates, implying partial disaggregation and reassociation. Molecular dynamics simulations indicate that the 8-ring aggregates are bowl-shaped and highly fluxional, compared to the 12-ring aggregates, which are cylindrical. This work demonstrates that large π-systems can form surprisingly well-defined aggregates and may inspire the design of other noncovalent assemblies.
Collapse
Affiliation(s)
- Henrik Gotfredsen
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Oxford, OX1 3TA, U.K
| | - Janko Hergenhahn
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Oxford, OX1 3TA, U.K
| | - Fernanda Duarte
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Oxford, OX1 3TA, U.K
| | - Timothy D W Claridge
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Oxford, OX1 3TA, U.K
| | - Harry L Anderson
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Oxford, OX1 3TA, U.K
| |
Collapse
|
34
|
Zheng J, Zhang W, Gong Y, Liang W, Leng Y. A novel near-infrared polymethine dye biosensor for rapid and selective detection of lithocholic acid. Biosens Bioelectron 2024; 259:116383. [PMID: 38749286 DOI: 10.1016/j.bios.2024.116383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 05/05/2024] [Accepted: 05/11/2024] [Indexed: 06/03/2024]
Abstract
Lithocholic acid (LCA), a secondary bile acid, has emerged as a potential early diagnostic biomarker for various liver diseases. In this study, we introduce a novel near-infrared (NIR) polymethine dye-based biosensor, capable of sensitive and selective detection of LCA in phosphate buffer and artificial urine (AU) solutions. The detection mechanism relies on the formation of J-aggregates resulting from the interplay of 3,3-Diethylthiatricarbocyanine iodide (DiSC2(7)) dye molecules and LCA, which induces a distinctive red shift in both absorption and fluorescence spectra. The biosensor demonstrates a detection limit for LCA of 70 μM in PBS solution (pH 7.4), while in AU solution, it responds to an LCA concentration as low as ∼60 μM. Notably, the proposed biosensor exhibits outstanding selectivity for LCA, effectively distinguishing it from common interferents such as uric acid, ascorbic acid, and glucose. This rapid, straightforward, and cost-effective spectrometer-based method underscores its potential for early diagnosis of liver diseases by monitoring LCA concentrations.
Collapse
Affiliation(s)
- Jianlu Zheng
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, Sichuan, China; Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba Meguro-Ku, Tokyo, 153-8505, Japan
| | - Wencui Zhang
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, Sichuan, China; Equipe Chimie des Polymères, Institut Parisien de Chimie Moléculaire (UMR-CNRS 8232), Sorbonne Université, 75252, Paris, France
| | - Yanli Gong
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, Sichuan, China; Key Laboratory of Advanced Technologies of Materials, Ministry of Education and School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Wenlang Liang
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, Sichuan, China; Key Laboratory of Advanced Technologies of Materials, Ministry of Education and School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China.
| | - Yongxiang Leng
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, Sichuan, China; Key Laboratory of Advanced Technologies of Materials, Ministry of Education and School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| |
Collapse
|
35
|
Sabury S, Xu Z, Saiev S, Davies D, Österholm AM, Rinehart JM, Mirhosseini M, Tong B, Kim S, Correa-Baena JP, Coropceanu V, Jurchescu OD, Brédas JL, Diao Y, Reynolds JR. Non-covalent planarizing interactions yield highly ordered and thermotropic liquid crystalline conjugated polymers. MATERIALS HORIZONS 2024; 11:3352-3363. [PMID: 38686501 DOI: 10.1039/d3mh01974h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Controlling the multi-level assembly and morphological properties of conjugated polymers through structural manipulation has contributed significantly to the advancement of organic electronics. In this work, a redox active conjugated polymer, TPT-TT, composed of alternating 1,4-(2-thienyl)-2,5-dialkoxyphenylene (TPT) and thienothiophene (TT) units is reported with non-covalent intramolecular S⋯O and S⋯H-C interactions that induce controlled main-chain planarity and solid-state order. As confirmed by density functional theory (DFT) calculations, these intramolecular interactions influence the main chain conformation, promoting backbone planarization, while still allowing dihedral rotations at higher kinetic energies (higher temperature), and give rise to temperature-dependent aggregation properties. Thermotropic liquid crystalline (LC) behavior is confirmed by cross-polarized optical microscopy (CPOM) and closely correlated with multiple thermal transitions observed by differential scanning calorimetry (DSC). This LC behavior allows us to develop and utilize a thermal annealing treatment that results in thin films with notable long-range order, as shown by grazing-incidence X-ray diffraction (GIXD). Specifically, we identified a first LC phase, ranging from 218 °C to 107 °C, as a nematic phase featuring preferential face-on π-π stacking and edge-on lamellar stacking exhibiting a large extent of disorder and broad orientation distribution. A second LC phase is observed from 107 °C to 48 °C, as a smectic A phase featuring sharp, highly ordered out-of-plane lamellar stacking features and sharp tilted backbone stacking peaks, while the structure of a third LC phase with a transition at 48 °C remains unclear, but resembles that of the solid state at ambient temperature. Furthermore, the significance of thermal annealing is evident in the ∼3-fold enhancement of the electrical conductivity of ferric tosylate-doped annealed films reaching 55 S cm-1. More importantly, thermally annealed TPT-TT films exhibit both a narrow distribution of charge-carrier mobilities (1.4 ± 0.1) × 10-2 cm2 V-1 s-1 along with a remarkable device yield of 100% in an organic field-effect transistor (OFET) configuration. This molecular design approach to obtain highly ordered conjugated polymers in the solid state affords a deeper understanding of how intramolecular interactions and repeat-unit symmetry impact liquid crystallinity, solution aggregation, solution to solid-state transformation, solid-state morphology, and ultimately device applications.
Collapse
Affiliation(s)
- Sina Sabury
- School of Chemistry and Biochemistry, School of Materials Science and Engineering, Center for Organic Photonics and Electronics, Georgia Tech Polymer Network, Georgia Institute of Technology, Atlanta, Georgia 30332, USA.
| | - Zhuang Xu
- Department of Chemical and Biomolecular Engineering, Department of Chemistry, Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, USA
| | - Shamil Saiev
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, AZ 85721-0041, USA
| | - Daniel Davies
- Department of Chemical and Biomolecular Engineering, Department of Chemistry, Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, USA
| | - Anna M Österholm
- School of Chemistry and Biochemistry, School of Materials Science and Engineering, Center for Organic Photonics and Electronics, Georgia Tech Polymer Network, Georgia Institute of Technology, Atlanta, Georgia 30332, USA.
| | - Joshua M Rinehart
- School of Chemistry and Biochemistry, School of Materials Science and Engineering, Center for Organic Photonics and Electronics, Georgia Tech Polymer Network, Georgia Institute of Technology, Atlanta, Georgia 30332, USA.
| | - Motahhare Mirhosseini
- Department of Physics and Center for Functional Materials, Wake Forest University, Winston-Salem, NC 27109, USA
| | - Benedict Tong
- School of Chemistry and Biochemistry, School of Materials Science and Engineering, Center for Organic Photonics and Electronics, Georgia Tech Polymer Network, Georgia Institute of Technology, Atlanta, Georgia 30332, USA.
| | - Sanggyun Kim
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Juan-Pablo Correa-Baena
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Veaceslav Coropceanu
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, AZ 85721-0041, USA
| | - Oana D Jurchescu
- Department of Physics and Center for Functional Materials, Wake Forest University, Winston-Salem, NC 27109, USA
| | - Jean-Luc Brédas
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, AZ 85721-0041, USA
| | - Ying Diao
- Department of Chemical and Biomolecular Engineering, Department of Chemistry, Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, USA
| | - John R Reynolds
- School of Chemistry and Biochemistry, School of Materials Science and Engineering, Center for Organic Photonics and Electronics, Georgia Tech Polymer Network, Georgia Institute of Technology, Atlanta, Georgia 30332, USA.
| |
Collapse
|
36
|
Deng X, Gao Y, Jiang F, Zhang Y, Zhu J, Wang M. Controllable Supramolecular Aggregation of Hydroazaheptacene Tetraimides and Derivatives in Nonpolar and Polar Solvents. ACS APPLIED MATERIALS & INTERFACES 2024; 16:32481-32489. [PMID: 38875075 DOI: 10.1021/acsami.4c03481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2024]
Abstract
Rational control of the supramolecular aggregation of π-conjugated molecules plays an important role in determining their optoelectronic properties and applications. Here, we report a systematic study of the factors, including solvent polarity, concentration, and surfactants, that affect the aggregation behavior of a brominated hydroazaheptacene tetraimide (HATI) and its thiophene-substituted derivative, Th-HATI, as near-infrared fluorophores, in both nonpolar and polar solvents. The thermal stability of the aggregates is also studied by monitoring their optical absorption against temperature change. Our results indicate that the aggregation of HATI is highly sensitive to the solvent polarity. Moreover, the average aggregation number of HATI inside the colloidal nanoparticles formed in aqueous media can be controlled by surfactants. The substitution of the bromo groups in HATI by thiophene units induces a slight blue shift of the optical absorption, enhanced crystallinity, distinct aggregation behavior in both nonpolar and polar solvents, and improved thermal stability. The multifacet understanding of the supramolecular aggregation of these systems may offer insight for other π-conjugated molecular chromophores with various optoelectronic properties and applications.
Collapse
Affiliation(s)
- Xianjun Deng
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Yuan Gao
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Feng Jiang
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Yipeng Zhang
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Jun Zhu
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Mingfeng Wang
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen 518172, China
| |
Collapse
|
37
|
Wang S, Zhu W, Jacobs IE, Wood WA, Wang Z, Manikandan S, Andreasen JW, Un HI, Ursel S, Peralta S, Guan S, Grivel JC, Longuemart S, Sirringhaus H. Enhancing the Thermoelectric Properties of Conjugated Polymers by Suppressing Dopant-Induced Disorder. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2314062. [PMID: 38558210 DOI: 10.1002/adma.202314062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/17/2024] [Indexed: 04/04/2024]
Abstract
Doping is a crucial strategy to enhance the performance of various organic electronic devices. However, in many cases, the random distribution of dopants in conjugated polymers leads to the disruption of the polymer microstructure, severely constraining the achievable performance of electronic devices. Here, it is shown that by ion-exchange doping polythiophene-based P[(3HT)1-x-stat-(T)x] (x = 0 (P1), 0.12 (P2), 0.24 (P3), and 0.36 (P4)), remarkably high electrical conductivity of >400 S cm-1 and power factor of >16 µW m-1 K-2 are achieved for the random copolymer P3, ranking it among highest ever reported for unaligned P3HT-based films, significantly higher than that of P1 (<40 S cm-1, <4 µW m-1 K-2). Although both polymers exhibit comparable field-effect transistor hole mobilities of ≈0.1 cm2 V-1 s-1 in the pristine state, after doping, Hall effect measurements indicate that P3 exhibits a large Hall mobility up to 1.2 cm2 V-1 s-1, significantly outperforming that of P1 (0.06 cm2 V-1 s-1). GIWAXS measurement determines that the in-plane π-π stacking distance of doped P3 is 3.44 Å, distinctly shorter than that of doped P1 (3.68 Å). These findings contribute to resolving the long-standing dopant-induced-disorder issues in P3HT and serve as an example for achieving fast charge transport in highly doped polymers for efficient electronics.
Collapse
Affiliation(s)
- Suhao Wang
- Optoelectronics Group, Cavendish Laboratory, JJ Thomson Avenue, Cambridge, CB3 0HE, UK
- Unité de Dynamique et Structure des Matériaux Moléculaires, Université du Littoral Côte d'Opale, 145 Avenue Maurice Schumann, Dunkerque, 59140, France
| | - Wenjin Zhu
- Optoelectronics Group, Cavendish Laboratory, JJ Thomson Avenue, Cambridge, CB3 0HE, UK
| | - Ian E Jacobs
- Optoelectronics Group, Cavendish Laboratory, JJ Thomson Avenue, Cambridge, CB3 0HE, UK
| | - William A Wood
- Optoelectronics Group, Cavendish Laboratory, JJ Thomson Avenue, Cambridge, CB3 0HE, UK
| | - Zichen Wang
- Optoelectronics Group, Cavendish Laboratory, JJ Thomson Avenue, Cambridge, CB3 0HE, UK
| | - Suraj Manikandan
- Department of Energy Conversion and Storage, Technical University of Denmark, Kongens Lyngby, 2800, Denmark
| | - Jens Wenzel Andreasen
- Department of Energy Conversion and Storage, Technical University of Denmark, Kongens Lyngby, 2800, Denmark
| | - Hio-Ieng Un
- Optoelectronics Group, Cavendish Laboratory, JJ Thomson Avenue, Cambridge, CB3 0HE, UK
| | - Sarah Ursel
- Optoelectronics Group, Cavendish Laboratory, JJ Thomson Avenue, Cambridge, CB3 0HE, UK
| | - Sébastien Peralta
- Laboratoire de Physicochimie des Polymères et des Interfaces, CY Cergy Paris Université, 5 Mail Gay Lussac, Neuville-sur-Oise, 95000, France
| | - Shaoliang Guan
- Maxwell Centre, Cavendish Laboratory, University of Cambridge, Cambridge, CB3 0HE, UK
| | - Jean-Claude Grivel
- Department of Energy Conversion and Storage, Technical University of Denmark, Kongens Lyngby, 2800, Denmark
| | - Stéphane Longuemart
- Unité de Dynamique et Structure des Matériaux Moléculaires, Université du Littoral Côte d'Opale, 145 Avenue Maurice Schumann, Dunkerque, 59140, France
| | - Henning Sirringhaus
- Optoelectronics Group, Cavendish Laboratory, JJ Thomson Avenue, Cambridge, CB3 0HE, UK
| |
Collapse
|
38
|
Chakraborty J, Chatterjee A, Molkens K, Nath I, Arenas Esteban D, Bourda L, Watson G, Liu C, Van Thourhout D, Bals S, Geiregat P, Van der Voort P. Decoding Excimer Formation in Covalent-Organic Frameworks Induced by Morphology and Ring Torsion. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2314056. [PMID: 38618981 DOI: 10.1002/adma.202314056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/02/2024] [Indexed: 04/16/2024]
Abstract
A thorough and quantitative understanding of the fate of excitons in covalent-organic frameworks (COFs) after photoexcitation is essential for their augmented optoelectronic and photocatalytic applications via precise structure tuning. The synthesis of a library of COFs having identical chemical backbone with impeded conjugation, but varied morphology and surface topography to study the effect of these physical properties on the photophysics of the materials is herein reported. The variation of crystallite size and surface topography substantified different aggregation pattern in the COFs, which leads to disparities in their photoexcitation and relaxation properties. Depending on aggregation, an inverse correlation between bulk luminescence decay time and exciton binding energy of the materials is perceived. Further transient absorption spectroscopic analysis confirms the presence of highly localized, immobile, Frenkel excitons (of diameter 0.3-0.5 nm) via an absence of annihilation at high density, most likely induced by structural torsion of the COF skeletons, which in turn preferentially relaxes via long-lived (nanosecond to microsecond) excimer formation (in femtosecond scale) over direct emission. These insights underpin the importance of structural and topological design of COFs for their targeted use in photocatalysis.
Collapse
Affiliation(s)
- Jeet Chakraborty
- Centre for Ordered Materials, Organometallics and Catalysis (COMOC), Department of Chemistry, Ghent University, Krijgslaan 281-S3, Ghent, 9000, Belgium
| | - Amrita Chatterjee
- Centre for Ordered Materials, Organometallics and Catalysis (COMOC), Department of Chemistry, Ghent University, Krijgslaan 281-S3, Ghent, 9000, Belgium
| | - Korneel Molkens
- Physics and Chemistry of Nanostructures, Department of Chemistry, Ghent University, Krijgslaan 281-S3, Ghent, 9000, Belgium
- NOLIMITS, Center for Non-Linear Microscopy and Spectroscopy, Ghent University, Krijgslaan 281-S3, Ghent, 9000, Belgium
- Photonics Research Group, Department of Information Technology, Ghent University - imec, Technologiepark-Zwijnaarde 126, Ghent, 9052, Belgium
| | - Ipsita Nath
- Centre for Ordered Materials, Organometallics and Catalysis (COMOC), Department of Chemistry, Ghent University, Krijgslaan 281-S3, Ghent, 9000, Belgium
| | - Daniel Arenas Esteban
- EMAT-Electron Microscopy for Materials Science, Department of Physics, University of Antwerp, Groenenborgerlaan 171, Antwerp, 2020, Belgium
| | - Laurens Bourda
- Centre for Ordered Materials, Organometallics and Catalysis (COMOC), Department of Chemistry, Ghent University, Krijgslaan 281-S3, Ghent, 9000, Belgium
- XStruct, Department of Chemistry, Ghent University, Krijgslaan 281-S3, Ghent, 9000, Belgium
| | - Geert Watson
- Centre for Ordered Materials, Organometallics and Catalysis (COMOC), Department of Chemistry, Ghent University, Krijgslaan 281-S3, Ghent, 9000, Belgium
| | - Chunhui Liu
- Centre for Ordered Materials, Organometallics and Catalysis (COMOC), Department of Chemistry, Ghent University, Krijgslaan 281-S3, Ghent, 9000, Belgium
- NanoSensing Group, Department of Chemistry, Ghent University, Krijgslaan 281S3, Ghent, 9000, Belgium
| | - Dries Van Thourhout
- NOLIMITS, Center for Non-Linear Microscopy and Spectroscopy, Ghent University, Krijgslaan 281-S3, Ghent, 9000, Belgium
- Photonics Research Group, Department of Information Technology, Ghent University - imec, Technologiepark-Zwijnaarde 126, Ghent, 9052, Belgium
| | - Sara Bals
- Photonics Research Group, Department of Information Technology, Ghent University - imec, Technologiepark-Zwijnaarde 126, Ghent, 9052, Belgium
| | - Pieter Geiregat
- Physics and Chemistry of Nanostructures, Department of Chemistry, Ghent University, Krijgslaan 281-S3, Ghent, 9000, Belgium
- NOLIMITS, Center for Non-Linear Microscopy and Spectroscopy, Ghent University, Krijgslaan 281-S3, Ghent, 9000, Belgium
| | - Pascal Van der Voort
- Centre for Ordered Materials, Organometallics and Catalysis (COMOC), Department of Chemistry, Ghent University, Krijgslaan 281-S3, Ghent, 9000, Belgium
| |
Collapse
|
39
|
Philip AM, Krogh ME, Laursen BW. Robust Red-Absorbing Donor-Acceptor Stenhouse Adduct Photoswitches. Chemistry 2024; 30:e202400621. [PMID: 38536207 DOI: 10.1002/chem.202400621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Indexed: 04/25/2024]
Abstract
Donor-Acceptor Stenhouse Adduct (DASA), a class of push-pull negative photochrome, has received large interest lately owing to its versatile synthesis, modularity and excellent photoswitching in solutions. From a technological perspective, it is imperative for this class of photoswitches to work robustly in solid state, e. g. thin films. We feature a molecular framework for the optimized design of DASAs by introducing a new thioindoline donor (D3) and assessing its performance against known 2nd generation indoline-based donors. The systematic structure-function investigations suggest that to achieve robust reversible photoswitching, a ground state with low charge separation is desired. DASAs with stronger electron donors and a larger charge separation in the ground state result in a low population of the photothermalstationary state (PTSS) and reduced photostability. The DASA with thioindoline donor (D3A3) seems to be a special case among the donor series as it causes a red shift (ca. 15 nm), however with less polarization of the ground state and marginally better photostability as compared to the unsubstituted 2-methyl indoline (D1A3). We also emphasize the consideration of the key additional factors that can modulate the red-light photoswitching properties of DASA chromophores in polymer thin films, which might not be dominant in homogenous solution state.
Collapse
Affiliation(s)
- Abbey M Philip
- Nano-Science Center & Department of Chemistry, University of Copenhagen, Copenhagen, 2100, Denmark
| | - Marie E Krogh
- Nano-Science Center & Department of Chemistry, University of Copenhagen, Copenhagen, 2100, Denmark
| | - Bo W Laursen
- Nano-Science Center & Department of Chemistry, University of Copenhagen, Copenhagen, 2100, Denmark
| |
Collapse
|
40
|
Gaurav KV, Rai H, Singh KRB, Sharma S, Ando Y, Pandey SS. Clarifying the Dominant Role of Crystallinity and Molecular Orientation in Differently Processed Thin Films of Regioregular Poly(3-hexylthiophene). MICROMACHINES 2024; 15:677. [PMID: 38930647 PMCID: PMC11205662 DOI: 10.3390/mi15060677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/15/2024] [Accepted: 05/21/2024] [Indexed: 06/28/2024]
Abstract
Conjugated polymers (CPs) offer the potential for sustainable semiconductor devices due to their low cost and inherent molecular self-assembly. Enhanced crystallinity and molecular orientation in thin films of solution-processable CPs have significantly improved organic electronic device performance. In this work, three methods, namely spin coating, dip coating, and unidirectional floating-film transfer method (UFTM), were utilized with their parametric optimization for fabricating RR-P3HT films. These films were then utilized for their characterization via optical and microstructural analysis to elucidate dominant roles of molecular orientation and crystallinity in controlling charge transport in organic field-effect transistors (OFETs). OFETs fabricated by RR-P3HT thin films using spin coating and dip coating displayed field-effect mobility (μ) of 8.0 × 10-4 cm2V-1s-1 and 1.3 × 10-3 cm2V-1s-1, respectively. This two-time enhancement in µ for dip-coated films was attributed to its enhanced crystallinity. Interestingly, UFTM film-based OFETs demonstrated μ of 7.0 × 10-2 cm2V-1s-1, >100 times increment as compared to its spin-coated counterpart. This superior device performance is attributed to the synergistic influence of higher crystallinity and molecular orientation. Since the crystallinity of dip-coated and UFTM-thin films are similar, ~50 times improved µ of UFTM thin films, this suggests a dominant role of molecular orientation as compared to crystallinity in controlling the charge transport.
Collapse
Affiliation(s)
| | | | | | | | | | - Shyam S. Pandey
- Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, Kitakyushu 808-0196, Fukuoka, Japan; (K.V.G.); (H.R.); (K.R.S.); (S.S.); (Y.A.)
| |
Collapse
|
41
|
van den Bersselaar BWL, Cattenstart EHW, Elangovan KE, Yen-Chi C, de Waal BFM, van der Tol J, Diao Y, Meijer EW, Vantomme G. Trade-off between processability and device performance in donor-acceptor semiconductors revealed using discrete siloxane side chains. JOURNAL OF MATERIALS CHEMISTRY. C 2024; 12:6637-6644. [PMID: 38737516 PMCID: PMC11079859 DOI: 10.1039/d4tc00875h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 04/08/2024] [Indexed: 05/14/2024]
Abstract
Donor-acceptor polymeric semiconductors are crucial for state-of-the-art applications, such as electronic skin mimics. The processability, and thus solubility, of these polymers in benign solvents is critical and can be improved through side chain engineering. Nevertheless, the impact of novel side chains on backbone orientation and emerging device properties often remains to be elucidated. Here, we investigate the influence of elongated linear and branched discrete oligodimethylsiloxane (oDMS) side chains on solubility and device performance. Thereto, diketopyrrolopyrrole-thienothiophene polymers are equipped with various oDMS pendants (PDPPTT-Sin) and subsequently phase separated into lamellar domains. The introduction of a branching point in the siloxane significantly enhanced the solubility of the polymer, as a result of increased backbone distortion. Simultaneously, the charge carrier mobility of the polymers decreased by an order of magnitude upon functionalization with long and/or branched siloxanes. This work unveils the intricate balance between processability and device performance in organic semiconductors, which is key for the development of next-generation electronic devices.
Collapse
Affiliation(s)
- Bart W L van den Bersselaar
- Laboratory of Macromolecular and Organic Chemistry and Institute for Complex Molecular Systems, Eindhoven University of Technology P.O. Box 513 5600MB Eindhoven The Netherlands
| | - Elisabeth H W Cattenstart
- Laboratory of Macromolecular and Organic Chemistry and Institute for Complex Molecular Systems, Eindhoven University of Technology P.O. Box 513 5600MB Eindhoven The Netherlands
| | - Kavinraaj Ella Elangovan
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign Urbana Illinois 61801 USA
| | - Chen Yen-Chi
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign Urbana Illinois 61801 USA
| | - Bas F M de Waal
- Laboratory of Macromolecular and Organic Chemistry and Institute for Complex Molecular Systems, Eindhoven University of Technology P.O. Box 513 5600MB Eindhoven The Netherlands
| | - Joost van der Tol
- Laboratory of Macromolecular and Organic Chemistry and Institute for Complex Molecular Systems, Eindhoven University of Technology P.O. Box 513 5600MB Eindhoven The Netherlands
| | - Ying Diao
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign Urbana Illinois 61801 USA
| | - E W Meijer
- Laboratory of Macromolecular and Organic Chemistry and Institute for Complex Molecular Systems, Eindhoven University of Technology P.O. Box 513 5600MB Eindhoven The Netherlands
| | - Ghislaine Vantomme
- Laboratory of Macromolecular and Organic Chemistry and Institute for Complex Molecular Systems, Eindhoven University of Technology P.O. Box 513 5600MB Eindhoven The Netherlands
| |
Collapse
|
42
|
Hui D, Ye C, Cao X, Hu Y, Chen S, Yang W, Hu L, Pan G. Unraveling the Molecular Weight Dependence of High Magnetic Field to Manipulate the Semiconducting Polymer Molecular Orientation. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38709947 DOI: 10.1021/acsami.4c00334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
The magnetic alignment of molecules, which exploits the anisotropy of diamagnetic susceptibility, provides a clean and versatile approach to the structural manipulation of semiconducting polymers. Here, the magnetic-alignment dynamics of two molecular-weight (MW) batches of a diketopyrrolopyrrole (DPP)-based copolymer (PDVT-8) were investigated. Microstructural characterizations revealed that the magnetically aligned, high-MW (Mn = 53.7 kDa) PDVT-8 film exhibited a higher degree of backbone chain alignment and film crystallinity compared with the low-MW (Mn = 17.6 kDa) PDVT-8 film grown via the same magnetic alignment method. We found that as the MW increases, the degree of preaggregation of the polymer molecules in solution significantly increases and the aggregation mode changes from H-aggregation to J-aggregation through a cooperative assembly mechanism. These events improved the responsiveness of high-MW polymer molecules to magnetic fields. Field-effect transistors based on the magnetic aligned high-MW PDVT-8 films exhibited a 6.8-fold increase in hole mobility compared to the spin-coated films, along with a mobility anisotropy ratio of 12.6. This work establishes a significant correlation among chain aggregation behavior in solution, polymer film microstructures, magnetic responsiveness, and carrier transport performance in donor-acceptor polymer systems.
Collapse
Affiliation(s)
- Di Hui
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, P. R. China
| | - Chun Ye
- Anhui Province Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory (HMFL), Chinese Academy of Sciences, Hefei 230031, P. R. China
| | - Xian Cao
- Anhui Province Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory (HMFL), Chinese Academy of Sciences, Hefei 230031, P. R. China
| | - Yanna Hu
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, P. R. China
| | - Shichao Chen
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, P. R. China
| | - Wenqiang Yang
- Chemical Engineering, University of South Carolina, 301 S. Main Street, Columbia, South Carolina 29208, United States
| | - Lin Hu
- Anhui Province Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory (HMFL), Chinese Academy of Sciences, Hefei 230031, P. R. China
| | - Guoxing Pan
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, P. R. China
- Anhui Province Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory (HMFL), Chinese Academy of Sciences, Hefei 230031, P. R. China
| |
Collapse
|
43
|
Sun N, Han Y, Huang W, Xu M, Wang J, An X, Lin J, Huang W. A Holistic Review of C = C Crosslinkable Conjugated Molecules in Solution-Processed Organic Electronics: Insights into Stability, Processibility, and Mechanical Properties. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2309779. [PMID: 38237201 DOI: 10.1002/adma.202309779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/22/2023] [Indexed: 02/01/2024]
Abstract
Solution-processable organic conjugated molecules (OCMs) consist of a series of aromatic units linked by σ-bonds, which present a relatively freedom intramolecular motion and intermolecular re-arrangement under external stimulation. The cross-linked strategy provides an effective platform to obtain OCMs network, which allows for outstanding optoelectronic, excellent physicochemical properties, and substantial improvement in device fabrication. An unsaturated double carbon-carbon bond (C = C) is universal segment to construct crosslinkable OCMs. In this review, the authors will set C = C cross-linkable units as an example to summarize the development of cross-linkable OCMs for solution-processable optoelectronic applications. First, this review provides a comprehensive overview of the distinctive chemical, physical, and optoelectronic properties arising from the cross-linking strategies employed in OCMs. Second, the methods for probing the C = C cross-linking reaction are also emphasized based on the perturbations of chemical structure and physicochemical property. Third, a series of model C = C cross-linkable units, including styrene, trifluoroethylene, and unsaturated acid ester, are further discussed to design and prepare novel OCMs. Furthermore, a concise overview of the optoelectronic applications associated with this approach is presented, including light-emitting diodes (LEDs), solar cells (SCs), and field-effect transistors (FETs). Lastly, the authors offer a concluding perspective and outlook for the improvement of OCMs and their optoelectronic application via the cross-linking strategy.
Collapse
Affiliation(s)
- Ning Sun
- College of Chemistry and Chemical Engineering, Inner Mongolia Key Laboratory of Fine Organic Synthesis, Inner Mongolia University, Hohhot, 010021, China
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced materials (IAM), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Yamin Han
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced materials (IAM), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Wenxin Huang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced materials (IAM), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Man Xu
- State Key Laboratory of Organic Electronics and Information Displays, Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Jianguo Wang
- College of Chemistry and Chemical Engineering, Inner Mongolia Key Laboratory of Fine Organic Synthesis, Inner Mongolia University, Hohhot, 010021, China
| | - Xiang An
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced materials (IAM), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Jinyi Lin
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced materials (IAM), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Wei Huang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced materials (IAM), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing, 211816, China
- State Key Laboratory of Organic Electronics and Information Displays, Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| |
Collapse
|
44
|
Xiong H, Lin Q, Lu Y, Zheng D, Li Y, Wang S, Xie W, Li C, Zhang X, Lin Y, Wang ZX, Shi Q, Marks TJ, Huang H. General room-temperature Suzuki-Miyaura polymerization for organic electronics. NATURE MATERIALS 2024; 23:695-702. [PMID: 38287128 DOI: 10.1038/s41563-023-01794-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 12/21/2023] [Indexed: 01/31/2024]
Abstract
π-Conjugated polymers (CPs) have broad applications in high-performance optoelectronics, energy storage, sensors and biomedicine. However, developing green and efficient methods to precisely synthesize alternating CP structures on a large scale remains challenging and critical for their industrialization. Here a room-temperature, scalable and homogeneous Suzuki-Miyaura-type polymerization reaction is developed with broad generality validated for 24 CPs including donor-donor, donor-acceptor and acceptor-acceptor connectivities, yielding device-quality polymers with high molecular masses. Furthermore, the polymerization protocol significantly reduces homocoupling structural defects, yielding more structurally regular and higher-performance electronic materials and optoelectronic devices than conventional thermally activated polymerizations. Experimental and theoretical studies reveal that a borate transmetalation process plays a key role in suppressing protodeboronation, which is critical for large-scale structural regularity. Thus, these results provide a general polymerization tool for the scalable production of device-quality CPs with alternating structural regularity.
Collapse
Affiliation(s)
- Haigen Xiong
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Qijie Lin
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Yu Lu
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Ding Zheng
- Department of Chemistry and the Materials Research Center, Northwestern University, Evanston, IL, USA
| | - Yawen Li
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, People's Republic of China
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Song Wang
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Wenbin Xie
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Congqi Li
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Xin Zhang
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Yuze Lin
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, People's Republic of China
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Zhi-Xiang Wang
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Qinqin Shi
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, People's Republic of China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, People's Republic of China.
| | - Tobin J Marks
- Department of Chemistry and the Materials Research Center, Northwestern University, Evanston, IL, USA.
| | - Hui Huang
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, People's Republic of China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, People's Republic of China.
- CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing, People's Republic of China.
- CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing, People's Republic of China.
| |
Collapse
|
45
|
Li M, Zhang Y, Yu N, Chen W, Gong H, Zheng Y, Ni M, Han Y, Sun N, Bai L, An X, Yang J, Lin Y, Huang W, Zhuo Z, Liang X, Wang L, Sun L, Xu M, Lin J, Huang W. Triphenylamine Spirofunctionalized Light-Emitting Conjugated Polymer with an Ultradeep-Blue Narrowband Emission for Large-Area Printed Display. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307605. [PMID: 38349697 DOI: 10.1002/adma.202307605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 01/16/2024] [Indexed: 02/25/2024]
Abstract
Emerging printed large-area polymer light-emitting diodes (PLEDs) are essential for manufacturing flat-panel displays and solid lighting devices. However, it is challenging to obtain large-area and stable ultradeep-blue PLEDs because of the lack of light-emitting conjugated polymers (LCPs) with robust deep-blue emissions, excellent morphological stabilities, and high charging abilities. Here, a novel unsymmetrically substituted polydiarylfluorene (POPSAF) is obtained with stable narrowband emission for large-area printed displays via triphenylamine (TPA) spirofunctionalization of LCPs. POPSAF films show narrowband and stable ultradeep-blue emission with a full width at half maximum (FWHM) of 36 nm, associated with their intrachain excitonic behavior without obvious polaron formation. Compared to controlled poly[4-(octyloxy)-9,9-diphenylfluoren-2,7-diyl]-co-[5-(octyloxy)-9,9-diphenylfluoren-2,7-diyl] (PODPF), excellent charge transport is observed in the POPSAF films because of the intrinsic hole transport ability of the TPA units. Large-area PLEDs are fabricated via blade-coating with an emission area of 9 cm2, which exhibit uniform ultradeep-blue emission with an FWHM of 36 nm and corresponding Commission internationale de l'éclairage (CIE) coordinates of (0.155, 0.072). These findings are attributed to the synergistic effects of robust emission, stable morphology, and printing capacity. Finally, preliminary printed passive matrix (PM) PLED displays with 20 × 20 pixels monochromes are fabricated, confirmed the effectiveness of spirofunctionalization in optoelectronics.
Collapse
Affiliation(s)
- Mengyuan Li
- Key Laboratory of Flexible Electronics (KLoFE), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, 211816, China
| | - Yahui Zhang
- Key Laboratory of Flexible Electronics (KLoFE), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, 211816, China
| | - Ningning Yu
- Key Laboratory of Flexible Electronics (KLoFE), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, 211816, China
| | - Wenyu Chen
- Key Laboratory of Flexible Electronics (KLoFE), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, 211816, China
| | - Huaqiang Gong
- Key Laboratory of Flexible Electronics (KLoFE), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, 211816, China
| | - Yingying Zheng
- Key Laboratory of Flexible Electronics (KLoFE), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, 211816, China
| | - Mingjian Ni
- Key Laboratory of Flexible Electronics (KLoFE), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, 211816, China
| | - Yamin Han
- Key Laboratory of Flexible Electronics (KLoFE), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, 211816, China
| | - Ning Sun
- Key Laboratory of Flexible Electronics (KLoFE), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, 211816, China
| | - Lubing Bai
- Key Laboratory of Flexible Electronics (KLoFE), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, 211816, China
| | - Xiang An
- Key Laboratory of Flexible Electronics (KLoFE), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, 211816, China
| | - Jing Yang
- Key Laboratory of Flexible Electronics (KLoFE), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, 211816, China
| | - Yingru Lin
- Key Laboratory of Flexible Electronics (KLoFE), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, 211816, China
| | - Wenxin Huang
- Key Laboratory of Flexible Electronics (KLoFE), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, 211816, China
| | - Zhiqiang Zhuo
- Key Laboratory of Flexible Electronics (KLoFE), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, 211816, China
| | - Xinyu Liang
- Key Laboratory of Flexible Electronics (KLoFE), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, 211816, China
| | - Lizhi Wang
- Key Laboratory of Flexible Electronics (KLoFE), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, 211816, China
| | - Lili Sun
- Key Laboratory of Flexible Electronics (KLoFE), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, 211816, China
| | - Man Xu
- Key Laboratory of Flexible Electronics (KLoFE), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, 211816, China
- State Key Laboratory of Organic Electronics and Information Displays, Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Jinyi Lin
- Key Laboratory of Flexible Electronics (KLoFE), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, 211816, China
| | - Wei Huang
- Key Laboratory of Flexible Electronics (KLoFE), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, 211816, China
- State Key Laboratory of Organic Electronics and Information Displays, Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| |
Collapse
|
46
|
Zheng Y, Rojas-Gatjens E, Lee M, Reichmanis E, Silva-Acuña C. Unveiling Multiquantum Excitonic Correlations in Push-Pull Polymer Semiconductors. J Phys Chem Lett 2024; 15:3705-3712. [PMID: 38546242 PMCID: PMC11017317 DOI: 10.1021/acs.jpclett.4c00065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/19/2024] [Accepted: 03/21/2024] [Indexed: 04/12/2024]
Abstract
Bound and unbound Frenkel-exciton pairs are essential transient precursors for a variety of photophysical and biochemical processes. In this work, we identify bound and unbound Frenkel-exciton complexes in an electron push-pull polymer semiconductor using coherent two-dimensional spectroscopy. We find that the dominant A0-1 peak of the absorption vibronic progression is accompanied by a subpeak, each dressed by distinct vibrational modes. By considering the Liouville pathways within a two-exciton model, the imbalanced cross-peaks in one-quantum rephasing and nonrephasing spectra can be accounted for by the presence of pure biexcitons. The two-quantum nonrephasing spectra provide direct evidence for unbound exciton pairs and biexcitons with dominantly attractive force. In addition, the spectral features of unbound exciton pairs show mixed absorptive and dispersive character, implying many-body interactions within the correlated Frenkel-exciton pairs. Our work offers novel perspectives on the Frenkel-exciton complexes in semiconductor polymers.
Collapse
Affiliation(s)
- Yulong Zheng
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, 901 Atlantic Drive, Atlanta, Georgia 30332, United States
| | - Esteban Rojas-Gatjens
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, 901 Atlantic Drive, Atlanta, Georgia 30332, United States
| | - Myeongyeon Lee
- Department
of Chemical & Biomolecular Engineering, Lehigh University, 124 E. Morton Street, Bethlehem, Pennsylvania 18015, United States
| | - Elsa Reichmanis
- Department
of Chemical & Biomolecular Engineering, Lehigh University, 124 E. Morton Street, Bethlehem, Pennsylvania 18015, United States
| | - Carlos Silva-Acuña
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, 901 Atlantic Drive, Atlanta, Georgia 30332, United States
- Institut
Courtois & Département de physique, Université de Montréal, 1375 Avenue Thérèse-Lavoie-Roux, Montréal, Québec H2V 0B3, Canada
| |
Collapse
|
47
|
Brey D, Burghardt I. Coherent Transient Localization Mechanism of Interchain Exciton Transport in Regioregular P3HT: A Quantum-Dynamical Study. J Phys Chem Lett 2024; 15:1836-1845. [PMID: 38334949 DOI: 10.1021/acs.jpclett.3c03290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
Transient localization has been proposed as a transport mechanism in organic materials, for both charge carriers and excitons. Here, we characterize a quantum coherent transient localization mechanism using full quantum simulations of an H-aggregated model system representative of regioregular poly(3-hexylthiophene) (rrP3HT). A Frenkel-Holstein Hamiltonian parametrized from first principles is considered, including local high-frequency modes and anharmonic, site-correlated interchain modes. Quantum-dynamical calculations are carried out using the Multi-Layer Multi-Configuration Time-Dependent Hartree (ML-MCTDH) method for a 13-site system with 195 vibrational modes, under periodic boundary conditions. It is shown that temporary localization of exciton polarons alternates with resonant transfer driven by interchain modes. While the transport process is mainly determined by exciton-polarons at the low-energy band edge, persistent coupling with the excitonic manifold is observed, giving rise to a nonadiabatic excitonic flux. This elementary transport mechanism remains preserved for limited static disorder and gives way to Anderson localization when the static disorder becomes dominant.
Collapse
Affiliation(s)
- Dominik Brey
- Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 7, 60438 Frankfurt, Germany
| | - Irene Burghardt
- Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 7, 60438 Frankfurt, Germany
| |
Collapse
|
48
|
Moritaka SS, Lebedev VS. Orientational effects in the polarized absorption spectra of molecular aggregates. J Chem Phys 2024; 160:074901. [PMID: 38364011 DOI: 10.1063/5.0188128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 01/23/2024] [Indexed: 02/18/2024] Open
Abstract
We present a detailed theoretical analysis of polarized absorption spectra and linear dichroism of cyanine dye aggregates whose unit cells contain two molecules. The studied threadlike ordered system with a molecular exciton delocalized along its axis can be treated as two chains of conventional molecular aggregates, rotated relative to each other at a certain angle around the aggregate axis. Our approach is based on the general formulas for the effective cross section of light absorption by a molecular aggregate and key points of the molecular exciton theory. We have developed a self-consistent theory for describing the orientational effects in the absorption and dichroic spectra of such supramolecular structures with nonplanar unit cell. It is shown that the spectral behavior of such systems exhibits considerable distinctions from that of conventional cyanine dye aggregates. They consist in the strong dependence of the relative intensities of the J- and H-type spectral bands of the aggregate with a nonplanar unit cell on the angles determining the mutual orientations of the transition dipole moments of constituting molecules and the aggregate axis as well as on the polarization direction of incident light. The derived formulas are reduced to the well-known analytical expressions in the particular case of aggregates with one molecule in the unit cell. The calculations performed within the framework of our excitonic theory combined with available vibronic theory allow us to quite reasonably explain the experimental data for the pseudoisocyanine bromide dye aggregate.
Collapse
Affiliation(s)
- S S Moritaka
- P. N. Lebedev Physical Institute of Russian Academy of Sciences, 53 Leninskiy Prosp., 119991 Moscow, Russian Federation
| | - V S Lebedev
- P. N. Lebedev Physical Institute of Russian Academy of Sciences, 53 Leninskiy Prosp., 119991 Moscow, Russian Federation
| |
Collapse
|
49
|
Chen L, Cai J, Zhen Y, Ou C, Ding X, Lin J. Ultraviolet Organic Laser from Rhombus Microcrystal: Benefits of Single-Molecule Emission from Twisted Structure. J Phys Chem Lett 2024; 15:1028-1033. [PMID: 38253018 DOI: 10.1021/acs.jpclett.3c03106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Light-emitting molecular crystals with efficient emission behavior are crucial for fabricating low-threshold ultraviolet organic lasers. Herein, we demonstrated a rhombus microcrystal from a fluorene-based conjugated molecule (CL-1) with robust emission behavior for an ultraviolet organic laser. Due to the synergistic effect of twisted intramolecular conformation and weak π-interaction, the CL-1 single crystal showed an extremely high photoluminescence quantum yield (PLQY) of ∼82%, due to their single-molecule excitonic behavior. Considering the diverse noncovalent interactions, CL-1 molecules easily self-assembled into the rhombus microcrystals. Finally, a low-threshold ultraviolet organic laser was fabricated with a sharp emission at 379 nm, attributed to the 0-1 vibration band of a single CL-1 molecule, also further confirming the single twisted-molecule emission in crystal states. Precisely controlling the intramolecular twisted structure and intermolecular interaction of organic conjugated molecules is a precondition to obtain robust ultraviolet emission for optoelectronic applications.
Collapse
Affiliation(s)
- Lin Chen
- School of Environment and Safety Engineering, Nanjing Polytechnic Institute, Nanjing 210048, China
- Centre for Supramolecular Optoelectronics (CSO), Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Jiangli Cai
- Centre for Supramolecular Optoelectronics (CSO), Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Yingying Zhen
- Centre for Supramolecular Optoelectronics (CSO), Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Changjin Ou
- Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Xuehua Ding
- Centre for Supramolecular Optoelectronics (CSO), Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Jinyi Lin
- Centre for Supramolecular Optoelectronics (CSO), Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| |
Collapse
|
50
|
Herbert JM. Visualizing and characterizing excited states from time-dependent density functional theory. Phys Chem Chem Phys 2024; 26:3755-3794. [PMID: 38226636 DOI: 10.1039/d3cp04226j] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
Time-dependent density functional theory (TD-DFT) is the most widely-used electronic structure method for excited states, due to a favorable combination of low cost and semi-quantitative accuracy in many contexts, even if there are well recognized limitations. This Perspective describes various ways in which excited states from TD-DFT calculations can be visualized and analyzed, both qualitatively and quantitatively. This includes not just orbitals and densities but also well-defined statistical measures of electron-hole separation and of Frenkel-type exciton delocalization. Emphasis is placed on mathematical connections between methods that have often been discussed separately. Particular attention is paid to charge-transfer diagnostics, which provide indicators of when TD-DFT may not be trustworthy due to its categorical failure to describe long-range electron transfer. Measures of exciton size and charge separation that are directly connected to the underlying transition density are recommended over more ad hoc metrics for quantifying charge-transfer character.
Collapse
Affiliation(s)
- John M Herbert
- Department of Chemistry & Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA.
| |
Collapse
|