1
|
Blois S, Goetz BM, Mojumder A, Sullivan CS. Shedding dynamics of a DNA virus population during acute and long-term persistent infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.31.646279. [PMID: 40236044 PMCID: PMC11996411 DOI: 10.1101/2025.03.31.646279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Although much is known of the molecular mechanisms of virus infection within cells, substantially less is understood about within-host infection. Such knowledge is key to understanding how viruses take up residence and transmit infectious virus, in some cases throughout the life of the host. Here, using murine polyomavirus (muPyV) as a tractable model, we monitor parallel infections of thousands of differentially barcoded viruses within a single host. In individual mice, we show that numerous viruses (>2600) establish infection and are maintained for long periods post-infection. Strikingly, a low level of many different barcodes is shed in urine at all times post-infection, with a minimum of at least 80 different barcodes present in every sample throughout months of infection. During the early acute phase, bulk shed virus genomes derive from numerous different barcodes. This is followed by long term persistent infection detectable in diverse organs. Consistent with limited productive exchange of virus genomes between organs, each displays a unique pattern of relative barcode abundance. During the persistent phase, constant low-level shedding of typically hundreds of barcodes is maintained but is overlapped with rare, punctuated shedding of high amounts of one or a few individual barcodes. In contrast to the early acute phase, these few infrequent highly shed barcodes comprise the majority of bulk shed genomes observed during late times of persistent infection, contributing to a stark decrease in bulk barcode diversity that is shed over time. These temporally shifting patterns, which are conserved across hosts, suggest that polyomaviruses balance continuous transmission potential with reservoir-driven high-level reactivation. This offers a mechanistic basis for polyomavirus ubiquity and long-term persistence, which are typical of many DNA viruses. Author Summary / Importance Polyomavirus infections, mostly benign but potentially fatal for immunocompromised individuals, undergo acute and long-term persistent infections. Typically, polyomavirus-associated diseases arise due to virus infection occurring in the context of a persistently infected individual. However, little is understood regarding the mechanisms of how polyomaviruses establish, maintain, and reactivate from persistent infection. We developed a non-invasive virus shedding assay combining barcoded murine polyomavirus, massively parallel sequencing technology, and novel computational approaches to track long-term infections in mice. We expect these methods to be of use not only to the study of DNA viruses but also for understanding persitent infection of diverse microbes. The study revealed organ-specific virus reservoirs and two distinct shedding patterns: constant low-level shedding of numerous barcodes and episodic high-level shedding of few barcodes. Over time, the diversity of shed barcodes decreased substantially. These findings suggest a persistent low-level infection in multiple reservoirs, with occasional bursts of replication in a small subset of infected cells. This combination of broad reservoirs and varied shedding mechanisms may contribute to polyomavirus success in transmission and maintaining long-term infections.
Collapse
|
2
|
Chang Z, Deng J, Zhang J, Wu H, Wu Y, Bin L, Li D, Liu J, Yu R, Lin H, An L, Sun B. Rapid and accurate diagnosis of urinary tract infections using targeted next-generation sequencing: A multicenter comparative study with metagenomic sequencing and traditional culture methods. J Infect 2025; 90:106459. [PMID: 40058503 DOI: 10.1016/j.jinf.2025.106459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 02/21/2025] [Accepted: 02/26/2025] [Indexed: 03/16/2025]
Abstract
BACKGROUND Urinary tract infections (UTIs) rank among the most prevalent bacterial infections globally. Traditional urine culture methods have significant limitations in detection time and sensitivity, prompting the need to evaluate targeted next-generation sequencing (tNGS) as a potential diagnostic tool. METHODS The study included a discovery cohort of 400 suspected UTI patients (202 analyzed) and a validation cohort of 200 patients (110 analyzed). The study assessed detection time, concordance rates, ability to identify polymicrobial infections, and antibiotic resistance genes (ARGs). Both clear and turbid urine samples were evaluated across different clinical settings. RESULTS In the discovery cohort, tNGS demonstrated 96.5% concordance with culture-positive samples, while showing superior specificity in culture-negative specimens (53.1% vs 28.1% for mNGS). Detection time for tNGS (12.89 h) was notably shorter than mNGS (17.38 h) and traditional culture (61.48 h). tNGS exhibited remarkable capability in identifying polymicrobial infections (55.4% of samples), significantly outperforming both mNGS (27.7%) and traditional culture methods, which failed to detect any co-infections. The method showed particular strength in detecting fastidious organisms like Ureaplasma parvum and fungal species such as Candida tropicalis. For antibiotic resistance prediction, tNGS detected more ARGs (52.67% vs 41.22% for mNGS) and achieved 100% sensitivity for vancomycin and methicillin resistance in Gram-positive pathogens. The validation cohort confirmed tNGS's robust performance, maintaining high concordance rates for both culture-positive (90.00%) and culture-negative samples (55.00%), demonstrating consistent reliability across different clinical settings CONCLUSIONS: tNGS demonstrates advantages in rapid and accurate UTI diagnosis, particularly in detecting polymicrobial infections and analyzing antibiotic resistance genes. It shows promise as an effective complementary tool for UTI diagnostics.
Collapse
Affiliation(s)
- Zhenglin Chang
- Department of Clinical Laboratory, State Key Laboratory of Respiratory Disease, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China; Guangzhou National Laboratory, XingDaoHuanBei Road, Guangzhou International Bio Island, Guangzhou 510005, Guangdong, China
| | - Jiwang Deng
- Department of Urology, Guangdong Provincial People's Hospital, Southern Medical University, Guangzhou 510080, China
| | - Jinhu Zhang
- Department of Urology, Suizhou Central hospital, Suizhou, China
| | - Haojie Wu
- Department of Clinical Laboratory, State Key Laboratory of Respiratory Disease, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Yuanyuan Wu
- Guangzhou DaAn Clinical Laboratory Center Co. Ltd., YunKang Group, Guangzhou 510000, China
| | - Lai Bin
- Department of Urology, Yuebei People's Hospital Affiliated to Shantou University Medical College, Shaoguan 512025, China
| | - Danmei Li
- Guangzhou DaAn Clinical Laboratory Center Co. Ltd., YunKang Group, Guangzhou 510000, China
| | - Jingxing Liu
- Guangzhou DaAn Clinical Laboratory Center Co. Ltd., YunKang Group, Guangzhou 510000, China
| | - Rixia Yu
- Guangzhou DaAn Clinical Laboratory Center Co. Ltd., YunKang Group, Guangzhou 510000, China
| | - Huaming Lin
- Guangzhou DaAn Clinical Laboratory Center Co. Ltd., YunKang Group, Guangzhou 510000, China.
| | - Lingyue An
- Department of Urology, Guizhou Provincial People's Hospital, Guiyang 550002, Guizhou, China.
| | - Baoqing Sun
- Department of Clinical Laboratory, State Key Laboratory of Respiratory Disease, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China; Guangzhou National Laboratory, XingDaoHuanBei Road, Guangzhou International Bio Island, Guangzhou 510005, Guangdong, China.
| |
Collapse
|
3
|
Son HG, Ha DT, Xia Y, Li T, Blandin J, Oka T, Azin M, Conrad DN, Zhou C, Zeng Y, Hasegawa T, Strickley JD, Messerschmidt JL, Guennoun R, Erlich TH, Shoemaker GL, Johnson LH, Palmer KE, Fisher DE, Horn TD, Neel VA, Nazarian RM, Joh JJ, Demehri S. Commensal papillomavirus immunity preserves the homeostasis of highly mutated normal skin. Cancer Cell 2025; 43:36-48.e10. [PMID: 39672169 PMCID: PMC11732714 DOI: 10.1016/j.ccell.2024.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/12/2024] [Accepted: 11/21/2024] [Indexed: 12/15/2024]
Abstract
Immunosuppression commonly disrupts the homeostasis of mutated normal skin, leading to widespread skin dysplasia and field cancerization. However, the immune system's role in maintaining the normal state of mutated tissues remains uncertain. Herein, we demonstrate that T cell immunity to cutaneotropic papillomaviruses promotes the homeostasis of ultraviolet radiation-damaged skin. Mouse papillomavirus (MmuPV1) colonization blocks the expansion of mutant p53 clones in the epidermis in a CD8+ T cell-dependent manner. MmuPV1 activity is increased in p53-deficient keratinocytes, leading to their specific targeting by CD8+ T cells in the skin. Sun-exposed human skin containing mutant p53 clones shows increased epidermal beta-human papillomavirus (β-HPV) activity and CD8+ T cell infiltrates compared with sun-protected skin. The expansion of mutant p53 clones in premalignant skin lesions associates with β-HPV loss. Thus, immunity to commensal HPVs contributes to the homeostasis of mutated normal skin, highlighting the role of virome-immune system interactions in preserving aging human tissues.
Collapse
Affiliation(s)
- Heehwa G Son
- Center for Cancer Immunology, Krantz Family Center for Cancer Research, Massachusetts General Hospital, and Harvard Medical School, Boston, MA, USA; Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Dat Thinh Ha
- Center for Cancer Immunology, Krantz Family Center for Cancer Research, Massachusetts General Hospital, and Harvard Medical School, Boston, MA, USA; Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Department of Medicine, University of Louisville School of Medicine, Louisville, KY, USA
| | - Yun Xia
- Center for Cancer Immunology, Krantz Family Center for Cancer Research, Massachusetts General Hospital, and Harvard Medical School, Boston, MA, USA; Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Tiancheng Li
- Center for Cancer Immunology, Krantz Family Center for Cancer Research, Massachusetts General Hospital, and Harvard Medical School, Boston, MA, USA; Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Jasmine Blandin
- Center for Cancer Immunology, Krantz Family Center for Cancer Research, Massachusetts General Hospital, and Harvard Medical School, Boston, MA, USA; Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Tomonori Oka
- Center for Cancer Immunology, Krantz Family Center for Cancer Research, Massachusetts General Hospital, and Harvard Medical School, Boston, MA, USA; Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Marjan Azin
- Center for Cancer Immunology, Krantz Family Center for Cancer Research, Massachusetts General Hospital, and Harvard Medical School, Boston, MA, USA; Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Danielle N Conrad
- Center for Cancer Immunology, Krantz Family Center for Cancer Research, Massachusetts General Hospital, and Harvard Medical School, Boston, MA, USA; Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Can Zhou
- Center for Cancer Immunology, Krantz Family Center for Cancer Research, Massachusetts General Hospital, and Harvard Medical School, Boston, MA, USA; Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Yuhan Zeng
- Center for Cancer Immunology, Krantz Family Center for Cancer Research, Massachusetts General Hospital, and Harvard Medical School, Boston, MA, USA; Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Tatsuya Hasegawa
- Center for Cancer Immunology, Krantz Family Center for Cancer Research, Massachusetts General Hospital, and Harvard Medical School, Boston, MA, USA; Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - John D Strickley
- Center for Cancer Immunology, Krantz Family Center for Cancer Research, Massachusetts General Hospital, and Harvard Medical School, Boston, MA, USA; Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Department of Medicine, University of Louisville School of Medicine, Louisville, KY, USA
| | - Jonathan L Messerschmidt
- Center for Cancer Immunology, Krantz Family Center for Cancer Research, Massachusetts General Hospital, and Harvard Medical School, Boston, MA, USA; Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Ranya Guennoun
- Center for Cancer Immunology, Krantz Family Center for Cancer Research, Massachusetts General Hospital, and Harvard Medical School, Boston, MA, USA; Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Tal H Erlich
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Gregory L Shoemaker
- Center for Cancer Immunology, Krantz Family Center for Cancer Research, Massachusetts General Hospital, and Harvard Medical School, Boston, MA, USA; Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Department of Medicine, University of Louisville School of Medicine, Louisville, KY, USA; Brown Cancer Center, University of Louisville Health Sciences Center, Louisville, KY, USA
| | - Luke H Johnson
- Center for Cancer Immunology, Krantz Family Center for Cancer Research, Massachusetts General Hospital, and Harvard Medical School, Boston, MA, USA; Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Department of Medicine, University of Louisville School of Medicine, Louisville, KY, USA; Brown Cancer Center, University of Louisville Health Sciences Center, Louisville, KY, USA
| | - Kenneth E Palmer
- Brown Cancer Center, University of Louisville Health Sciences Center, Louisville, KY, USA; Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, USA; Center for Predictive Medicine, University of Louisville Health Sciences Center, Louisville, KY, USA
| | - David E Fisher
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Thomas D Horn
- Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Victor A Neel
- Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Rosalynn M Nazarian
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Joongho J Joh
- Department of Medicine, University of Louisville School of Medicine, Louisville, KY, USA; Brown Cancer Center, University of Louisville Health Sciences Center, Louisville, KY, USA
| | - Shadmehr Demehri
- Center for Cancer Immunology, Krantz Family Center for Cancer Research, Massachusetts General Hospital, and Harvard Medical School, Boston, MA, USA; Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
4
|
Duarte-Benvenuto A, Díaz-Delgado J, Ewbank AC, Groch KR, dal Bianco V, Costa-Silva S, Zamana-Ramblas R, Favero C, Castaldo Colosio A, da Cunha Gomes Ramos H, Santos-Neto E, Lailson-Brito J, Carvalho VL, Ribeiro VL, Pacheco Bertozzi C, F. Pessi C, Sacristán I, Catão-Dias JL, Sacristán C. Polyomavirus surveillance in cetaceans of Brazil: first detection of polyomavirus in Guiana dolphins ( Sotalia guianensis). Vet Q 2024; 44:1-7. [PMID: 39428385 PMCID: PMC11492386 DOI: 10.1080/01652176.2024.2413185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 09/02/2024] [Accepted: 09/18/2024] [Indexed: 10/22/2024] Open
Abstract
Polyomaviruses (PyVs) are small double-stranded DNA viruses able to infect species across all vertebrate taxa. In cetaceans, PyVs have been reported only in short-beaked common dolphin (Delphinus delphis), common bottlenose dolphin (Tursiops truncatus) and killer whale (Orcinus orca). Herein, we surveyed PyV in 119 cetaceans (29 mysticetes and 90 odontocetes) stranded along the Brazilian coast, from 2002 to 2022, comprising 18 species. DNA extracted from the lungs was tested using a nested PCR targeting the major capsid protein gene of PyV. Polyomavirus was detected in lung samples of 1.7% (2/119) cetaceans: two juvenile female Guiana dolphins (Sotalia guianensis) stranded in Rio de Janeiro (Rio de Janeiro state) and Guriri (Espírito Santo state), in 2018. Both retrieved sequences were identical and presented 93.3% amino acid identity with Zetapolyomavirus delphini, suggesting a novel species. On histopathology, one of the PyV-positive individuals presented basophilic intranuclear inclusion bodies morphologically consistent with polyomavirus in the lungs. Other available tissues from both cases were PyV-PCR-negative; however, both individuals tested positive for Guiana dolphin morbillivirus. To our knowledge, this is the first report of PyV infection in cetaceans of the Southern Hemisphere and the first description of a co-infection with morbillivirus.
Collapse
Affiliation(s)
- Aricia Duarte-Benvenuto
- School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | | | - Ana Carolina Ewbank
- Centro de Investigación en Sanidad Animal (CISA-INIA), CSIC, Valdeolmos, Spain
| | - Kátia R. Groch
- School of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Vanessa dal Bianco
- School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Samira Costa-Silva
- School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Roberta Zamana-Ramblas
- School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Cíntia Favero
- School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | | | - Hernani da Cunha Gomes Ramos
- Instituto Baleia Jubarte, Caravelas, Brazil
- Applied Ecology & Conservation Lab, State University of Santa Cruz (UESC), Ilhéus, Brazil
| | - Elitieri Santos-Neto
- Laboratory of Aquatic Mammals and Bioindicators: Profa Izabel M. G. do N. Gurgel’ (MAQUA), Faculty of Oceanography, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Jose Lailson-Brito
- Laboratory of Aquatic Mammals and Bioindicators: Profa Izabel M. G. do N. Gurgel’ (MAQUA), Faculty of Oceanography, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Vitor L. Carvalho
- Associação de Pesquisa e Preservação de Ecossistemas Aquáticos – AQUASIS, Caucaia, Brazil
| | | | | | | | - Irene Sacristán
- Centro de Investigación en Sanidad Animal (CISA-INIA), CSIC, Valdeolmos, Spain
| | - José Luiz Catão-Dias
- School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Carlos Sacristán
- Centro de Investigación en Sanidad Animal (CISA-INIA), CSIC, Valdeolmos, Spain
| |
Collapse
|
5
|
Vasiliūnaitė E, Repšytė M, Kramer EM, Lang J, Jelinek C, Ulrich RG, Buck CB, Gedvilaitė A. Novel polyomavirus in the endangered garden dormouse Eliomys quercinus. Virol J 2024; 21:309. [PMID: 39605065 PMCID: PMC11603729 DOI: 10.1186/s12985-024-02581-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 11/14/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND The garden dormouse (Eliomys quercinus) has experienced a significant population decline across Europe in recent decades. While habitat loss and climate change are often cited as primary factors, pathogen exposure, either to novel or to previously known, may play a role in such a decline. This study aimed to investigate the presence of polyomaviruses in garden dormice, given that these viruses are highly prevalent and can cause disease, particularly in immunocompromised individuals. METHODS The carcasses of garden dormice (n = 89) were collected throughout Germany. Kidney samples were tested for the presence of polyomavirus DNA using nested degenerate and specific diagnostic PCRs. Seroprevalence was assessed from chest cavity fluid samples through an enzyme-linked immunosorbent assay using polyomavirus VP1 virus-like particles produced in yeast. RESULTS A new polyomavirus, related to chimpanzee (Pan troglodytes) polyomaviruses 4 and 5 and human Merkel cell polyomavirus, was identified in the garden dormouse. Two 5,380 bp-length complete viral genomes were sequenced from dormice kidney samples (sequences PQ246041 and PQ246042). Genes encoding the putative structural proteins VP1, VP2, and VP3, as well as the Large, Middle, and small T antigens, containing conserved functional domains were identified. Polyomavirus DNA was detected in 2 of 74 dormice (2.7%, 95% confidence interval: 0-6.4%) through PCR, while 12 of 69 animals (17.4%, 95% confidence interval: 8.4-26.3%) tested positive for polyomavirus-specific antibodies. CONCLUSIONS In conclusion, here we describe a novel polyomavirus in the garden dormouse with molecular and serological detection. Pairwise sequence comparison and phylogenetic analysis suggest that this novel virus may represent a novel species within the genus Alphapolyomavirus. Future work should examine if this virus is garden dormouse-specific and whether it is associated with disease in dormice.
Collapse
Affiliation(s)
- Emilija Vasiliūnaitė
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio al. 7, Vilnius, LT-10257, Lithuania.
| | - Monika Repšytė
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio al. 7, Vilnius, LT-10257, Lithuania
| | - Eva Marie Kramer
- Clinic for Birds, Reptiles, Amphibians and Fish, Working Group for Wildlife Research, Justus-Liebig-University Gießen, Frankfurter Strasse 104, D-35392, Gießen, Germany
| | - Johannes Lang
- Clinic for Birds, Reptiles, Amphibians and Fish, Working Group for Wildlife Research, Justus-Liebig-University Gießen, Frankfurter Strasse 104, D-35392, Gießen, Germany
| | - Christine Jelinek
- Clinic for Birds, Reptiles, Amphibians and Fish, Working Group for Wildlife Research, Justus-Liebig-University Gießen, Frankfurter Strasse 104, D-35392, Gießen, Germany
| | - Rainer G Ulrich
- Friedrich-Loeffler-Institut (FLI) Federal Research Institute for Animal Health, Institute of Novel and Emerging Infectious Diseases, Gießen, Germany
| | - Christopher B Buck
- Laboratory of Cellular Oncology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892-4263, USA
| | - Alma Gedvilaitė
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio al. 7, Vilnius, LT-10257, Lithuania
| |
Collapse
|
6
|
Farbarin M, Soleimanjahi H, Bakhshi B, Nasiri Z, Fakhredini K. Detection of JC and BK polyomaviruses in patients with colorectal cancer (CRC) by PCR. J Immunoassay Immunochem 2024; 45:467-480. [PMID: 39101634 DOI: 10.1080/15321819.2024.2384581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/06/2024]
Abstract
BACKGROUND Overall, 20-30% of all cancers are estimated to be linked to infectious agents. Polyomaviruses are oncogenic cause in rodent models, readily transform their cells, and cause chromosomal instability in animal and human cells in-vitro. Some reports have indicated the presence of JCPyV and BKPyV in some human tumors. The JCPyV and BKPyV genome encodes some transforming proteins such as LT-Ag. Thus, these viruses could cause or promote some neoplasia, such as lymphomas, pancreatic, prostate, and colorectal cancers. Colorectal cancer (CRC) is the third most common cancer in the world. Risk factors for developing CRC are associated with personal features or habits, such as age, lifestyle, and gut microbiota. MATERIALS AND METHODS In this study, we examined the prevalence of JCPyV and BKPyV in the 23 fecal samples of CRC patients and 24 healthy samples (control group). Virus DNA was extracted by a Favorgen DNA extraction kit. The large T antigen of JCPyV and VP1 of BKPyV were investigated by optimized multiplex PCR. RESULTS One of the samples was positive for the JCPyV (4.3%), while in the samples of healthy individuals, the JCPyV was negative. Also, positive results for BKPyV PCR were obtained for five cases (21.7%) in the samples of the CRC group and one case (4.1%) in healthy individuals. CONCLUSION The result showed no direct correlation between tumorigenesis and polyomavirus infections in CRC development. However, the exact role of BKPyV and JCPyV is still controversial and needs further study with larger sample size.
Collapse
Affiliation(s)
- Mahboube Farbarin
- Department of Virology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hoorieh Soleimanjahi
- Department of Virology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Bita Bakhshi
- Department of Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Zeinab Nasiri
- Department of Virology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Kamal Fakhredini
- Department of Virology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
7
|
Ohnezeit D, Huang J, Westerkamp U, Brinschwitz V, Schmidt C, Günther T, Czech-Sioli M, Weißelberg S, Schlemeyer T, Nakel J, Mai J, Schreiner S, Schneider C, Friedel CC, Schwanke H, Brinkmann MM, Grundhoff A, Fischer N. Merkel cell polyomavirus small tumor antigen contributes to immune evasion by interfering with type I interferon signaling. PLoS Pathog 2024; 20:e1012426. [PMID: 39110744 PMCID: PMC11333005 DOI: 10.1371/journal.ppat.1012426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 08/19/2024] [Accepted: 07/15/2024] [Indexed: 08/21/2024] Open
Abstract
Merkel cell polyomavirus (MCPyV) is the causative agent of the majority of Merkel cell carcinomas (MCC). The virus has limited coding capacity, with its early viral proteins, large T (LT) and small T (sT), being multifunctional and contributing to infection and transformation. A fundamental difference in early viral gene expression between infection and MCPyV-driven tumorigenesis is the expression of a truncated LT (LTtr) in the tumor. In contrast, sT is expressed in both conditions and contributes significantly to oncogenesis. Here, we identified novel functions of early viral proteins by performing genome-wide transcriptome and chromatin studies in primary human fibroblasts. Due to current limitations in infection and tumorigenesis models, we mimic these conditions by ectopically expressing sT, LT or LTtr, individually or in combination, at different time points. In addition to its known function in cell cycle and inflammation modulation, we reveal a fundamentally new function of sT. We show that sT regulates the type I interferon (IFN) response downstream of the type I interferon receptor (IFNAR) by interfering with the interferon-stimulated gene factor 3 (ISGF3)-induced interferon-stimulated gene (ISG) response. Expression of sT leads to a reduction in the expression of interferon regulatory factor 9 (IRF9) which is a central component of the ISGF3 complex. We further show that this function of sT is conserved in BKPyV. We provide a first mechanistic understanding of which early viral proteins trigger and control the type I IFN response, which may influence MCPyV infection, persistence and, during MCC progression, regulation of the tumor microenvironment.
Collapse
Affiliation(s)
- Denise Ohnezeit
- Institute for Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jiabin Huang
- Institute for Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ute Westerkamp
- Institute for Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Veronika Brinschwitz
- Institute for Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Claudia Schmidt
- Institute for Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Manja Czech-Sioli
- Institute for Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Samira Weißelberg
- Institute for Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tabea Schlemeyer
- Institute for Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Julia Mai
- Institute of Virology, Hannover Medical School, Hannover, Germany
- Institute of Virology, Freiburg, Germany
| | - Sabrina Schreiner
- Institute of Virology, Hannover Medical School, Hannover, Germany
- Institute of Virology, Freiburg, Germany
| | | | - Caroline C. Friedel
- Institute of Informatics, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Hella Schwanke
- Institute of Genetics, Technische Universität Braunschweig, Braunschweig, Germany
| | - Melanie M. Brinkmann
- Institute of Genetics, Technische Universität Braunschweig, Braunschweig, Germany
- Helmholtz Centre for Infection Research, Braunschweig, Germany
| | | | - Nicole Fischer
- Institute for Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
8
|
Passerini S, Fracella M, Benvenuto D, Bugani G, D'Auria A, Coratti E, Babini G, Moens U, Cavallari EN, Torti C, Antonelli G, Ciccozzi M, Pierangeli A, d'Ettorre G, Scagnolari C, Pietropaolo V. High rates of anal Merkel Cell Polyomavirus and HPV co-infection among people living with HIV. J Med Virol 2024; 96:e29883. [PMID: 39185677 DOI: 10.1002/jmv.29883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/08/2024] [Accepted: 08/14/2024] [Indexed: 08/27/2024]
Abstract
Knowledge of Human Polyomavirus (HPyV) infection in the anal area and its association with sexually transmitted infections such as Human Papillomavirus (HPV) and Human Immunodeficiency Virus (HIV) remains limited. Therefore, anal specimens from 150 individuals of both sexes were analyzed for screening purposes. HPV DNA was found in 50.7% of cases, with a predominance of high-risk (HR) genotypes. HPyV DNA was found in 39.3% of samples, with Merkel Cell Polyomavirus (MCPyV) being the most common, with a higher viral load than JCPyV and BKPyV. In addition, MCPyV viral load increased in people living with HIV (PLWH) with HPV infection (p < 0.0001).
Collapse
Affiliation(s)
- Sara Passerini
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Matteo Fracella
- Department of Molecular Medicine, Laboratory of Virology, Sapienza University of Rome, Rome, Italy
| | - Domenico Benvenuto
- Dipartimento di Sicurezza e Bioetica, Sezione di Malattie Infettive, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Ginevra Bugani
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Alessandra D'Auria
- Department of Molecular Medicine, Laboratory of Virology, Sapienza University of Rome, Rome, Italy
| | - Eleonora Coratti
- Department of Molecular Medicine, Laboratory of Virology, Sapienza University of Rome, Rome, Italy
| | - Giulia Babini
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Ugo Moens
- Department of Medical Biology, Faculty of Health Sciences, University of Tromsø-The Arctic University of Norway, Tromsø, Norway
| | | | - Carlo Torti
- Dipartimento di Sicurezza e Bioetica, Sezione di Malattie Infettive, Università Cattolica del Sacro Cuore, Rome, Italy
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
| | - Guido Antonelli
- Department of Molecular Medicine, Laboratory of Virology, Sapienza University of Rome, Rome, Italy
| | - Massimo Ciccozzi
- Unit of Medical Statistics and Molecular Epidemiology, University Campus Bio-Medico of Rome, Rome, Italy
| | - Alessandra Pierangeli
- Department of Molecular Medicine, Laboratory of Virology, Sapienza University of Rome, Rome, Italy
| | - Gabriella d'Ettorre
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Carolina Scagnolari
- Department of Molecular Medicine, Laboratory of Virology, Sapienza University of Rome, Rome, Italy
| | - Valeria Pietropaolo
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
9
|
Abedi Kiasari B, Gholamnezhad M, Alipour AH, Hoda Fallah F. Development of a Recombinant Protein-Based Immunoassay for Detection of Antibodies Against Karolinska Institute and Washington University Polyomaviruses. Viral Immunol 2024; 37:308-316. [PMID: 39092481 DOI: 10.1089/vim.2024.0042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024] Open
Abstract
To develop polyomavirus VP1 recombinant protein-based immunoassay, the expression of two polyomavirus (Karolinska Institute Polyomavirus; KIPyV, and Washington University Polyomavirus; WUPyV) VP1s in insect cells was investigated using an improved baculovirus system (BacMagic). The reliability of the purified VP1 to serve as antigens in serological tests was confirmed by the establishment of an enzyme-linked immunosorbent assay (ELISA). Two panels of serum samples were used, with Panel I comprising 60 sera (20 KIPyV-positive, 20 WUPyV-positive, and 20 negative) and Panel II consisting of 134 sera with unknown status. The seroprevalence of KIPyV and WUPyV in the study population was determined to be 62% and 50%, respectively. Antibody-negative sera exhibited low reactivities in both ELISAs, whereas antibody-positive sera displayed high reactivity with median optical density values of 1.37 and 1.47 in the KIPyV and WUPyV ELISAs, respectively. The differences in seroreactivities between antibody positive and negative for each virus were statistically significant (p < 0.0001; with 95% confidence interval). The study suggests that seroconversion for KIPyV and WUPyV occurs in childhood, with KIPyV seropositivity reaching 70% and WUPyV seropositivity reaching 60% after the age of 5 years. Adult seroprevalence for polyomaviruses was high, with more than 64% and 51% of the adult population being seropositive for KIPyV and WUPyV, respectively. The constant prevalence of KIPyV and WUPyV antibody in the age groups suggested that this antibody persists for life. The fact that antibody titers were generally stable over time revealed a persistent infection of polyomaviruses in the human population. The insect cell-derived recombinant VP1-based ELISA has been demonstrated to be valuable as a serological assay, offering a valid, reliable, fast, nonlaborious, and economical procedure.
Collapse
Affiliation(s)
- Bahman Abedi Kiasari
- Microbiology and Immunology Group, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Mohammad Gholamnezhad
- Clinical Research Development Unit, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Amir Hossein Alipour
- Microbiology and Immunology Group, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
- Gene Therapy Research Center, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Hoda Fallah
- Allergy and Clinical Immunology Department, Children's Medical Centre, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
10
|
Haley SA, O'Hara BA, Schorl C, Atwood WJ. JCPyV infection of primary choroid plexus epithelial cells reduces expression of critical junctional proteins and increases expression of barrier disrupting inflammatory cytokines. Microbiol Spectr 2024; 12:e0062824. [PMID: 38874395 PMCID: PMC11302677 DOI: 10.1128/spectrum.00628-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 05/09/2024] [Indexed: 06/15/2024] Open
Abstract
The human polyomavirus, JCPyV, establishes a lifelong persistent infection in the peripheral organs of a majority of the human population worldwide. Patients who are immunocompromised due to underlying infections, cancer, or to immunomodulatory treatments for autoimmune disease are at risk for developing progressive multifocal leukoencephalopathy (PML) when the virus invades the CNS and infects macroglial cells in the brain parenchyma. It is not yet known how the virus enters the CNS to cause disease. The blood-choroid plexus barrier is a potential site of virus invasion as the cells that make up this barrier are known to be infected with virus both in vivo and in vitro. To understand the effects of virus infection on these cells we challenged primary human choroid plexus epithelial cells with JCPyV and profiled changes in host gene expression. We found that viral infection induced the expression of proinflammatory chemokines and downregulated junctional proteins essential for maintaining blood-CSF and blood-brain barrier function. These data contribute to our understanding of how JCPyV infection of the choroid plexus can modulate the host cell response to neuroinvasive pathogens. IMPORTANCE The human polyomavirus, JCPyV, causes a rapidly progressing demyelinating disease in the CNS of patients whose immune systems are compromised. JCPyV infection has been demonstrated in the choroid plexus both in vivo and in vitro and this highly vascularized organ may be important in viral invasion of brain parenchyma. Our data show that infection of primary choroid plexus epithelial cells results in increased expression of pro-inflammatory chemokines and downregulation of critical junctional proteins that maintain the blood-CSF barrier. These data have direct implications for mechanisms used by JCPyV to invade the CNS and cause neurological disease.
Collapse
Affiliation(s)
- Sheila A. Haley
- Department of Cell Biology, Biochemistry, and Molecular Biology, The Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
| | - Bethany A. O'Hara
- Department of Cell Biology, Biochemistry, and Molecular Biology, The Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
| | - Christoph Schorl
- Department of Cell Biology, Biochemistry, and Molecular Biology, The Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
| | - Walter J. Atwood
- Department of Cell Biology, Biochemistry, and Molecular Biology, The Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
| |
Collapse
|
11
|
Elkoshi Z. The Eradication of Carcinogenic Viruses in Established Solid Cancers. J Inflamm Res 2023; 16:6227-6239. [PMID: 38145011 PMCID: PMC10749098 DOI: 10.2147/jir.s430315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 12/12/2023] [Indexed: 12/26/2023] Open
Abstract
Carcinogenic viruses (oncoviruses) can initiate cancer, but their impact on established cancer varies. Some of these viruses prolong survival while others shorten it. This study classifies oncoviruses into two categories: viruses which induce a strong CD8+T cell reaction in non-cancerous tissues, and viruses which induce a weak CD8+ T cell reaction in non-cancerous tissues. The classification proves useful in predicting the effect of oncoviruses on the prognosis of solid cancers. Therefore, while eliminating carcinogenic viruses in healthy individuals (for example by immunization) may be important for cancer prevention, this study suggests that only viruses which induce a weak CD8+ T cell reaction should be eradicated in established solid tumors. The model correctly predicts the effect of oncoviruses on survival for six out of seven known oncoviruses, indicating that immune modulation by oncoviruses has a prominent effect on prognosis. It seems that CD8+ T cell response to oncoviruses observed in infected benign tissues is retained in infected tumors. Clinical significance: the effect of oncoviruses on solid cancer prognosis can be predicted with confidence based on immunological responses when clinical data are unavailable.
Collapse
Affiliation(s)
- Zeev Elkoshi
- Research and Development Department, Taro Pharmaceutical Industries Ltd, Haifa, Israel
| |
Collapse
|
12
|
Lorentzen EM, Henriksen S, Rinaldo CH. Modelling BK Polyomavirus dissemination and cytopathology using polarized human renal tubule epithelial cells. PLoS Pathog 2023; 19:e1011622. [PMID: 37639485 PMCID: PMC10491296 DOI: 10.1371/journal.ppat.1011622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/08/2023] [Accepted: 08/17/2023] [Indexed: 08/31/2023] Open
Abstract
Most humans have a lifelong imperceptible BK Polyomavirus (BKPyV) infection in epithelial cells lining the reno-urinary tract. In kidney transplant recipients, unrestricted high-level replication of donor-derived BKPyV in the allograft underlies polyomavirus-associated nephropathy, a condition with massive epithelial cell loss and inflammation causing premature allograft failure. There is limited understanding on how BKPyV disseminates throughout the reno-urinary tract and sometimes causes kidney damage. Tubule epithelial cells are tightly connected and have unique apical and basolateral membrane domains with highly specialized functions but all in vitro BKPyV studies have been performed in non-polarized cells. We therefore generated a polarized cell model of primary renal proximal tubule epithelial cells (RPTECs) and characterized BKPyV entry and release. After 8 days on permeable inserts, RPTECs demonstrated apico-basal polarity. BKPyV entry was most efficient via the apical membrane, that in vivo faces the tubular lumen, and depended on sialic acids. Progeny release started between 48 and 58 hours post-infection (hpi), and was exclusively detected in the apical compartment. From 72 hpi, cell lysis and detachment gradually increased but cells were mainly shed by extrusion and the barrier function was therefore maintained. The decoy-like cells were BKPyV infected and could transmit BKPyV to uninfected cells. By 120 hpi, the epithelial barrier was disrupted by severe cytopathic effects, and BKPyV entered the basolateral compartment mimicking the interstitial space. Addition of BKPyV-specific neutralizing antibodies to this compartment inhibited new infections. Taken together, we propose that during in vivo low-level BKPyV replication, BKPyV disseminates inside the tubular system, thereby causing minimal damage and delaying immune detection. However, in kidney transplant recipients lacking a well-functioning immune system, replication in the allograft will progress and eventually cause denudation of the basement membrane, leading to an increased number of decoy cells, high-level BKPyV-DNAuria and DNAemia, the latter a marker of allograft damage.
Collapse
Affiliation(s)
- Elias Myrvoll Lorentzen
- Department of Microbiology and Infection Control, University Hospital of North Norway, Tromsø, Norway
- Metabolic and Renal Research Group, Department of Clinical Medicine, UiT The Arctic University of Norway, Tromsø, Norway
| | - Stian Henriksen
- Department of Microbiology and Infection Control, University Hospital of North Norway, Tromsø, Norway
- Metabolic and Renal Research Group, Department of Clinical Medicine, UiT The Arctic University of Norway, Tromsø, Norway
| | - Christine Hanssen Rinaldo
- Department of Microbiology and Infection Control, University Hospital of North Norway, Tromsø, Norway
- Metabolic and Renal Research Group, Department of Clinical Medicine, UiT The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
13
|
An P, Sáenz Robles MT, Cantalupo PG, Naik AS, Sealfon R, Imperiale MJ, Pipas JM. Cultured Renal Proximal Tubular Epithelial Cells Resemble a Stressed/Damaged Kidney While Supporting BK Virus Infection. J Virol 2023; 97:e0034323. [PMID: 37166336 PMCID: PMC10231206 DOI: 10.1128/jvi.00343-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 04/22/2023] [Indexed: 05/12/2023] Open
Abstract
BK virus (BKV; human polyomavirus 1) infections are asymptomatic in most individuals, and the virus persists throughout life without harm. However, BKV is a threat to transplant patients and those with immunosuppressive disorders. Under these circumstances, the virus can replicate robustly in proximal tubule epithelial cells (PT). Cultured renal proximal tubule epithelial cells (RPTE) are permissive to BKV and have been used extensively to characterize different aspects of BKV infection. Recently, lines of hTERT-immortalized RPTE have become available, and preliminary studies indicate they support BKV infection as well. Our results indicate that BKV infection leads to a similar response in primary and immortalized RPTE. In addition, we examined the patterns of global gene expression of primary and immortalized RPTE and compared them with uncultured PT freshly dissociated from human kidney. As expected, PT isolated from the healthy kidney express a number of differentiation-specific genes that are associated with kidney function. However, the expression of most of these genes is absent or repressed in cultured RPTE. Rather, cultured RPTE exhibit a gene expression profile indicative of a stressed or injured kidney. Inoculation of cultured RPTE with BKV results in the suppression of many genes associated with kidney stress. In summary, this study demonstrated similar global gene expression patterns and responses to BKV infection between primary and immortalized RPTE. Moreover, results from bulk transcriptome sequencing (RNA-seq) and SCT experiments revealed distinct transcriptomic signatures representing cell injury and stress in primary RPTE in contrast to the uncultured, freshly dissociated PT from human kidney. IMPORTANCE Cultured primary human cells provide powerful tools for the study of viral infectious cycles and host virus interactions. In the case of BKV-associated nephropathy, viral replication occurs primarily in the proximal tubule epithelia in the kidney. Consequently, cultured primary and immortalized renal proximal tubule epithelial cells (RPTE) are widely used to study BKV infection. In this work, using bulk and single-cell transcriptomics, we found that primary and immortalized RPTE responded similarly to BKV infection. However, both uninfected primary and immortalized RPTE have gene expression profiles that are markedly different from healthy proximal tubule epithelia isolated directly from human kidney without culture. Cultured RPTE are in a gene expression state indicative of an injured or stressed kidney. These results raise the possibility that BKV replicates preferentially in injured or stressed kidney epithelial cells during nephropathy.
Collapse
Affiliation(s)
- Ping An
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | - Paul G. Cantalupo
- Department of Biomedical Informatics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Abhijit S. Naik
- Department of Internal Medicine, University of Michigan School of Medicine, Ann Arbor, Michigan, USA
| | | | - Michael J. Imperiale
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
| | - James M. Pipas
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
14
|
Passerini S, Prezioso C, Prota A, Babini G, Coppola L, Lodi A, Epifani AC, Sarmati L, Andreoni M, Moens U, Pietropaolo V, Ciotti M. Detection Analysis and Study of Genomic Region Variability of JCPyV, BKPyV, MCPyV, HPyV6, HPyV7 and QPyV in the Urine and Plasma of HIV-1-Infected Patients. Viruses 2022; 14:2544. [PMID: 36423152 PMCID: PMC9698965 DOI: 10.3390/v14112544] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022] Open
Abstract
Since it was clearly established that HIV/AIDS predisposes to the infection, persistence or reactivation of latent viruses, the prevalence of human polyomaviruses (HPyVs) among HIV-1-infected patients and a possible correlation between HPyVs and HIV sero-status were investigated. PCR was performed to detect and quantify JCPyV, BKPyV, MCPyV, HPyV6, HPyV7 and QPyV DNA in the urine and plasma samples of 103 HIV-1-infected patients. Subsequently, NCCR, VP1 and MCPyV LT sequences were examined. In addition, for MCPyV, the expression of transcripts for the LT gene was investigated. JCPyV, BKPyV and MCPyV's presence was reported, whereas HPyV6, HPyV7 and QPyV were not detected in any sample. Co-infection patterns of JCPyV, BKPyV and MCPyV were found. Archetype-like NCCRs were observed with some point mutations in plasma samples positive for JCPyV and BKPyV. The VP1 region was found to be highly conserved among these subjects. LT did not show mutations causing stop codons, and LT transcripts were expressed in MCPyV positive samples. A significant correlation between HPyVs' detection and a low level of CD4+ was reported. In conclusion, HPyV6, HPyV7 and QPyV seem to not have a clinical relevance in HIV-1 patients, whereas further studies are warranted to define the clinical importance of JCPyV, BKPyV and MCPyV DNA detection in these subjects.
Collapse
Affiliation(s)
- Sara Passerini
- Department of Public Health and Infectious Diseases, “Sapienza” University of Rome, 00185 Rome, Italy
| | - Carla Prezioso
- Department of Public Health and Infectious Diseases, “Sapienza” University of Rome, 00185 Rome, Italy
- IRCSS San Raffaele Roma, Microbiology of Chronic Neuro-Degenerative Pathologies, 00163 Rome, Italy
| | - Annalisa Prota
- Department of Public Health and Infectious Diseases, “Sapienza” University of Rome, 00185 Rome, Italy
| | - Giulia Babini
- Department of Public Health and Infectious Diseases, “Sapienza” University of Rome, 00185 Rome, Italy
| | - Luigi Coppola
- Infectious Diseases Clinic, Polyclinic Tor Vergata, Viale Oxford 81, 00133 Rome, Italy
| | - Alessandra Lodi
- Infectious Diseases Clinic, Polyclinic Tor Vergata, Viale Oxford 81, 00133 Rome, Italy
| | - Anna Chiara Epifani
- Infectious Diseases Clinic, Polyclinic Tor Vergata, Viale Oxford 81, 00133 Rome, Italy
| | - Loredana Sarmati
- Infectious Diseases Clinic, Polyclinic Tor Vergata, Viale Oxford 81, 00133 Rome, Italy
| | - Massimo Andreoni
- Infectious Diseases Clinic, Polyclinic Tor Vergata, Viale Oxford 81, 00133 Rome, Italy
| | - Ugo Moens
- Department of Medical Biology, Faculty of Health Sciences, University of Tromsø—The Arctic University of Norway, 9037 Tromsø, Norway
| | - Valeria Pietropaolo
- Department of Public Health and Infectious Diseases, “Sapienza” University of Rome, 00185 Rome, Italy
| | - Marco Ciotti
- Virology Unit, Polyclinic Tor Vergata, Viale Oxford 81, 00133 Rome, Italy
| |
Collapse
|
15
|
Dunowska M, Perrott M, Biggs P. Identification of a novel polyomavirus from a marsupial host. Virus Evol 2022; 8:veac096. [PMID: 36381233 PMCID: PMC9662318 DOI: 10.1093/ve/veac096] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 09/09/2022] [Accepted: 10/05/2022] [Indexed: 08/26/2023] Open
Abstract
We report the identification and analysis of a full sequence of a novel polyomavirus from a brushtail possum (Trichosurus vulpecula ) termed possum polyomavirus (PPyV). The sequence was obtained from the next-generation sequencing assembly during an investigation into the aetiological agent for a neurological disease of possums termed wobbly possum disease (WPD), but the virus was not aetiologically involved in WPD. The PPyV genome was 5,224 nt long with the organisation typical for polyomaviruses, including early (large and small T antigens) and late (Viral Protein 1 (VP1), VP2, and VP3) coding regions separated by the non-coding control region of 465 nt. PPyV clustered with betapolyomaviruses in the WUKI clade but showed less than 60 per cent identity to any of the members of this clade. We propose that PPyV is classified within a new species in the genus Betapolyomavirus . These data add to our limited knowledge of marsupial viruses and their evolution.
Collapse
Affiliation(s)
- Magdalena Dunowska
- School of Veterinary Science, Massey University, Palmerston North 4410, New Zealand
| | - Matthew Perrott
- School of Veterinary Science, Massey University, Palmerston North 4410, New Zealand
| | - Patrick Biggs
- School of Veterinary Science, Massey University, Palmerston North 4410, New Zealand
- School of Natural Sciences, Massey University, Palmerston North 4410, New Zealand
| |
Collapse
|
16
|
Prezioso C, Passerini S, Limongi D, Palamara AT, Moens U, Pietropaolo V. COS-7 and SVGp12 Cellular Models to Study JCPyV Replication and MicroRNA Expression after Infection with Archetypal and Rearranged-NCCR Viral Strains. Viruses 2022; 14:2070. [PMID: 36146876 PMCID: PMC9502812 DOI: 10.3390/v14092070] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 11/16/2022] Open
Abstract
Since the non-coding control region (NCCR) and microRNA (miRNA) could represent two different and independent modalities of regulating JC polyomavirus (JCPyV) replication at the transcriptional and post-transcriptional levels, the interplay between JC viral load based on NCCR architecture and miRNA levels, following JCPyV infection with archetypal and rearranged (rr)-NCCR JCPyV variants, was explored in COS-7 and SVGp12 cells infected by different JCPyV strains. Specifically, the involvement of JCPyV miRNA in regulating viral replication was investigated for the archetypal CY strain-which is the transmissible form-and for the rearranged MAD-1 strain, which is the first isolated variant from patients with progressive multifocal leukoencephalopathy. The JCPyV DNA viral load was low in cells infected with CY compared with that in MAD-1-infected cells. Productive viral replication was observed in both cell lines. The expression of JCPyV miRNAs was observed from 3 days after viral infection in both cell types, and miR-J1-5p expression was inversely correlated with the JCPyV replication trend. The JCPyV miRNAs in the exosomes present in the supernatants produced by the infected cells could be carried into uninfected cells. Additional investigations of the expression of JCPyV miRNAs and their presence in exosomes are necessary to shed light on their regulatory role during viral reactivation.
Collapse
Affiliation(s)
- Carla Prezioso
- IRCSS San Raffaele Roma, Microbiology of Chronic Neuro-Degenerative Pathologies, 00163 Rome, Italy
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Rome, Italy
| | - Sara Passerini
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Rome, Italy
| | - Dolores Limongi
- IRCCS San Raffaele Roma, Telematic University, 00163 Rome, Italy
| | - Anna Teresa Palamara
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy
- Laboratory Affiliated to Institute Pasteur Italia-Cenci Bolognetti Foundation, Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Rome, Italy
| | - Ugo Moens
- Department of Medical Biology, Faculty of Health Sciences, University of Tromsø—The Arctic University of Norway, 9037 Tromsø, Norway
| | - Valeria Pietropaolo
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Rome, Italy
| |
Collapse
|
17
|
Bovine Polyomavirus-1 (Epsilonpolyomavirus bovis): An Emerging Fetal Pathogen of Cattle That Causes Renal Lesions Resembling Polyomavirus-Associated Nephropathy of Humans. Viruses 2022; 14:v14092042. [PMID: 36146848 PMCID: PMC9502773 DOI: 10.3390/v14092042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 11/17/2022] Open
Abstract
Bovine polyomavirus-1 (BoPyV-1, Epsilonpolyomavirus bovis) is widespread in cattle and has been detected in commercialized beef at supermarkets in the USA and Germany. BoPyV-1 has been questioned as a probable zoonotic agent with documented increase in seropositivity in people exposed to cattle. However, to date, BoPyV-1 has not been causally associated with pathology or disease in any animal species, including humans. Here we describe and illustrate pathological findings in an aborted bovine fetus naturally infected with BoPyV-1, providing evidence of its pathogenicity and probable abortigenic potential. Our results indicate that: (i) BoPyV-1 can cause severe kidney lesions in cattle, including tubulointerstitial nephritis with cytopathic changes and necrosis in tubular epithelial cells, tubular and interstitial inflammation, and interstitial fibroplasia; (ii) lesions are at least partly attributable to active viral replication in renal tubular epithelial cells, which have abundant intranuclear viral inclusions; (iii) BoPyV-1 large T (LT) antigen, resulting from early viral gene expression, can be detected in infected renal tubular epithelial cells using a monoclonal antibody raised against Simian Virus-40 polyomavirus LT antigen; and (iv) there is productive BoPyV-1 replication and virion assembly in the nuclei of renal tubular epithelial cells, as demonstrated by the ultrastructural observation of abundant arrays of viral particles with typical polyomavirus morphology. Altogether, these lesions resemble the “cytopathic-inflammatory pathology pattern” proposed in the pathogenesis of Human polyomavirus-1-associated nephropathy in immunocompromised people and kidney allograft recipients. Additionally, we sequenced the complete genome of the BoPyV-1 infecting the fetus, which represents the first whole genome of a BoPyV-1 from the Southern Hemisphere. Lastly, the BoPyV-1 strain infecting this fetus was isolated, causing a cytopathic effect in Madin–Darby bovine kidney cells. We conclude that BoPyV-1 is pathogenic to the bovine fetus under natural circumstances. Further insights into the epidemiology, biology, clinical relevance, and zoonotic potential of BoPyV-1 are needed.
Collapse
|
18
|
Merettig N, Bockmühl DP. Virucidal Efficacy of Laundering. Pathogens 2022; 11:993. [PMID: 36145425 PMCID: PMC9503802 DOI: 10.3390/pathogens11090993] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/17/2022] [Accepted: 08/26/2022] [Indexed: 11/23/2022] Open
Abstract
Viruses contribute significantly to the burden of infectious diseases worldwide. Although there are multiple infection routes associated with viruses, it is important to break the chain of infection and thus consider all possible transmission routes. Consequently, laundering can be a means to eliminate viruses from textiles, in clinical settings well as for domestic laundry procedures. Several factors influence the survival and inactivation of microorganisms, including viruses on hard surfaces and textiles. Therefore, textiles should be regarded as potential fomites. While in clinical and industrial settings laundry hygiene is ensured by standardized processes, temperatures of at least 60 °C and the use of oxidizing agents, domestic laundry is not well defined. Thus, the parameters affecting viral mitigation must be understood and prudently applied, especially in domestic laundering. Laundering can serve as a means to break the chain of infection for viral diseases by means of temperature, time, chemistry and mechanical action.
Collapse
Affiliation(s)
| | - Dirk P. Bockmühl
- Faculty of Life Sciences, Rhine-Waal University of Applied Sciences, 47533 Kleve, Germany
| |
Collapse
|
19
|
Mineeva-Sangwo O, Martí-Carreras J, Cleenders E, Kuypers D, Maes P, Andrei G, Naesens M, Snoeck R. Polyomavirus BK Genome Comparison Shows High Genetic Diversity in Kidney Transplant Recipients Three Months after Transplantation. Viruses 2022; 14:v14071533. [PMID: 35891513 PMCID: PMC9318200 DOI: 10.3390/v14071533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/05/2022] [Accepted: 07/12/2022] [Indexed: 11/16/2022] Open
Abstract
BK polyomavirus (BKPyV) is a human DNA virus generally divided into twelve subgroups based on the genetic diversity of Viral Protein 1 (VP1). BKPyV can cause polyomavirus-associated nephropathy (PVAN) after kidney transplantation. Detection of BKPyV DNA in blood (viremia) is a source of concern and increase in plasma viral load is associated with a higher risk of developing PVAN. In this work, we looked for possible associations of specific BKPyV genetic features with higher plasma viral load in kidney transplant patients. We analyzed BKPyV complete genome in three-month samples from kidney recipients who developed viremia during their follow-up period. BKPyV sequences were obtained by next-generation sequencing and were de novo assembled using the new BKAnaLite pipeline. Based on the data from 72 patients, we identified 24 viral groups with unique amino acid sequences: three in the VP1 subgroup IVc2, six in Ib1, ten in Ib2, one in Ia, and four in II. In none of the groups did the mean plasma viral load reach a statistically significant difference from the overall mean observed at three months after transplantation. Further investigation is needed to better understand the link between the newly described BKPyV genetic variants and pathogenicity in kidney transplant recipients.
Collapse
Affiliation(s)
- Olga Mineeva-Sangwo
- Laboratory of Virology and Chemotherapy, Rega Institute, Department of Microbiology, Immunology and Transplantation, KU Leuven, BE3000 Leuven, Belgium;
| | - Joan Martí-Carreras
- Zoonotic Infectious Diseases Unit, Laboratory of Clinical and Epidemiological Virology, Rega Institute, Department of Microbiology, Immunology and Transplantation, KU Leuven, BE3000 Leuven, Belgium; (J.M.-C.); (P.M.)
| | - Evert Cleenders
- Nephrology and Renal Transplantation Research Group, Department of Microbiology, Immunology and Transplantation, KU Leuven, BE3000 Leuven, Belgium; (E.C.); (D.K.); (M.N.)
| | - Dirk Kuypers
- Nephrology and Renal Transplantation Research Group, Department of Microbiology, Immunology and Transplantation, KU Leuven, BE3000 Leuven, Belgium; (E.C.); (D.K.); (M.N.)
- Department of Nephrology and Renal Transplantation, University Hospitals Leuven, BE3000 Leuven, Belgium
| | - Piet Maes
- Zoonotic Infectious Diseases Unit, Laboratory of Clinical and Epidemiological Virology, Rega Institute, Department of Microbiology, Immunology and Transplantation, KU Leuven, BE3000 Leuven, Belgium; (J.M.-C.); (P.M.)
| | - Graciela Andrei
- Laboratory of Virology and Chemotherapy, Rega Institute, Department of Microbiology, Immunology and Transplantation, KU Leuven, BE3000 Leuven, Belgium;
- Correspondence: (G.A.); (R.S.)
| | - Maarten Naesens
- Nephrology and Renal Transplantation Research Group, Department of Microbiology, Immunology and Transplantation, KU Leuven, BE3000 Leuven, Belgium; (E.C.); (D.K.); (M.N.)
- Department of Nephrology and Renal Transplantation, University Hospitals Leuven, BE3000 Leuven, Belgium
| | - Robert Snoeck
- Laboratory of Virology and Chemotherapy, Rega Institute, Department of Microbiology, Immunology and Transplantation, KU Leuven, BE3000 Leuven, Belgium;
- Correspondence: (G.A.); (R.S.)
| |
Collapse
|
20
|
Small DNA tumor viruses and human cancer: Preclinical models of virus infection and disease. Tumour Virus Res 2022; 14:200239. [PMID: 35636683 PMCID: PMC9194455 DOI: 10.1016/j.tvr.2022.200239] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 05/05/2022] [Accepted: 05/25/2022] [Indexed: 01/13/2023] Open
Abstract
Human tumor viruses cause various human cancers that account for at least 15% of the global cancer burden. Among the currently identified human tumor viruses, two are small DNA tumor viruses: human papillomaviruses (HPVs) and Merkel cell polyomavirus (MCPyV). The study of small DNA tumor viruses (adenoviruses, polyomaviruses, and papillomaviruses) has facilitated several significant biological discoveries and established some of the first animal models of virus-associated cancers. The development and use of preclinical in vivo models to study HPVs and MCPyV and their role in human cancer is the focus of this review. Important considerations in the design of animal models of small DNA tumor virus infection and disease, including host range, cell tropism, choice of virus isolates, and the ability to recapitulate human disease, are presented. The types of infection-based and transgenic model strategies that are used to study HPVs and MCPyV, including their strengths and limitations, are also discussed. An overview of the current models that exist to study HPV and MCPyV infection and neoplastic disease are highlighted. These comparative models provide valuable platforms to study various aspects of virus-associated human disease and will continue to expand knowledge of human tumor viruses and their relationship with their hosts.
Collapse
|
21
|
Abstract
BK polyomavirus (BKPyV) is a small nonenveloped DNA virus that establishes a ubiquitous, asymptomatic, and lifelong persistent infection in at least 80% of the world's population. In some immunosuppressed transplant recipients, BKPyV reactivation causes polyomavirus-associated nephropathy and hemorrhagic cystitis. We report a novel in vitro model of BKPyV persistence and reactivation using a BKPyV natural host cell line. In this system, viral genome loads remain constant for various times after establishment of persistent infection, during which BKPyV undergoes extensive random genome recombination. Certain recombination events result in viral DNA amplification and protein expression, resulting in production of viruses with enhanced replication ability.
Collapse
|
22
|
O’Hara BA, Gee GV, Haley SA, Morris-Love J, Nyblade C, Nieves C, Hanson BA, Dang X, Turner TJ, Chavin JM, Lublin A, Koralnik IJ, Atwood WJ. Teriflunomide Inhibits JCPyV Infection and Spread in Glial Cells and Choroid Plexus Epithelial Cells. Int J Mol Sci 2021; 22:ijms22189809. [PMID: 34575975 PMCID: PMC8468119 DOI: 10.3390/ijms22189809] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/18/2021] [Accepted: 08/24/2021] [Indexed: 11/16/2022] Open
Abstract
Several classes of immunomodulators are used for treating relapsing-remitting multiple sclerosis (RRMS). Most of these disease-modifying therapies, except teriflunomide, carry the risk of progressive multifocal leukoencephalopathy (PML), a severely debilitating, often fatal virus-induced demyelinating disease. Because teriflunomide has been shown to have antiviral activity against DNA viruses, we investigated whether treatment of cells with teriflunomide inhibits infection and spread of JC polyomavirus (JCPyV), the causative agent of PML. Treatment of choroid plexus epithelial cells and astrocytes with teriflunomide reduced JCPyV infection and spread. We also used droplet digital PCR to quantify JCPyV DNA associated with extracellular vesicles isolated from RRMS patients. We detected JCPyV DNA in all patients with confirmed PML diagnosis (n = 2), and in six natalizumab-treated (n = 12), two teriflunomide-treated (n = 7), and two nonimmunomodulated (n = 2) patients. Of the 21 patients, 12 (57%) had detectable JCPyV in either plasma or serum. CSF was uniformly negative for JCPyV. Isolation of extracellular vesicles did not increase the level of detection of JCPyV DNA versus bulk unprocessed biofluid. Overall, our study demonstrated an effect of teriflunomide inhibiting JCPyV infection and spread in glial and choroid plexus epithelial cells. Larger studies using patient samples are needed to correlate these in vitro findings with patient data.
Collapse
Affiliation(s)
- Bethany A. O’Hara
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02903, USA; (B.A.O.); (S.A.H.); (J.M.-L.); (C.N.); (C.N.)
| | - Gretchen V. Gee
- MassBiologics, University of Massachusetts Medical School, Worcester, MA 01601, USA;
| | - Sheila A. Haley
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02903, USA; (B.A.O.); (S.A.H.); (J.M.-L.); (C.N.); (C.N.)
| | - Jenna Morris-Love
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02903, USA; (B.A.O.); (S.A.H.); (J.M.-L.); (C.N.); (C.N.)
| | - Charlotte Nyblade
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02903, USA; (B.A.O.); (S.A.H.); (J.M.-L.); (C.N.); (C.N.)
| | - Chris Nieves
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02903, USA; (B.A.O.); (S.A.H.); (J.M.-L.); (C.N.); (C.N.)
| | - Barbara A. Hanson
- Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60007, USA; (B.A.H.); (X.D.); (I.J.K.)
| | - Xin Dang
- Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60007, USA; (B.A.H.); (X.D.); (I.J.K.)
| | | | | | - Alex Lublin
- Sanofi, Cambridge, MA 02114, USA; (T.J.T.); (J.M.C.); (A.L.)
| | - Igor J. Koralnik
- Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60007, USA; (B.A.H.); (X.D.); (I.J.K.)
| | - Walter J. Atwood
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02903, USA; (B.A.O.); (S.A.H.); (J.M.-L.); (C.N.); (C.N.)
- Correspondence: ; Tel.: +1-401-863-3116
| |
Collapse
|
23
|
Chk1 and the Host Cell DNA Damage Response as a Potential Antiviral Target in BK Polyomavirus Infection. Viruses 2021; 13:v13071353. [PMID: 34372559 PMCID: PMC8310304 DOI: 10.3390/v13071353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 06/30/2021] [Accepted: 07/07/2021] [Indexed: 12/26/2022] Open
Abstract
The human BK polyomavirus (BKPyV) is latent in the kidneys of most adults, but can be reactivated in immunosuppressed states, such as following renal transplantation. If left unchecked, BK polyomavirus nephropathy (PyVAN) and possible graft loss may result from viral destruction of tubular epithelial cells and interstitial fibrosis. When coupled with regular post-transplant screening, immunosuppression reduction has been effective in limiting BKPyV viremia and the development of PyVAN. Antiviral drugs that are safe and effective in combating BKPyV have not been identified but would be a benefit in complementing or replacing immunosuppression reduction. The present study explores inhibition of the host DNA damage response (DDR) as an antiviral strategy. Immunohistochemical and immunofluorescent analyses of PyVAN biopsies provide evidence for stimulation of a DDR in vivo. DDR pathways were also stimulated in vitro following BKPyV infection of low-passage human renal proximal tubule epithelial cells. The role of Chk1, a protein kinase known to be involved in the replication stress-induced DDR, was examined by inhibition with the small molecule LY2603618 and by siRNA-mediated knockdown. Inhibition of Chk1 resulted in decreased replication of BKPyV DNA and viral spread. Activation of mitotic pathways was associated with the reduction in BKPyV replication. Chk1 inhibitors that are found to be safe and effective in clinical trials for cancer should also be evaluated for antiviral activity against BKPyV.
Collapse
|
24
|
Abstract
Polyomaviruses are a family of non-enveloped DNA viruses with wide host ranges. Human polyomaviruses typically cause asymptomatic infection and establish persistence but can be reactivated under certain conditions and cause severe diseases. Most well studied polyomaviruses encode a viral miRNA that regulates viral replication and pathogenesis by targeting both viral early genes and host genes. In this review, we summarize the current knowledge of polyomavirus miRNAs involved in virus infection. We review in detail the regulation of polyomavirus miRNA expression, as well as the role polyomavirus miRNAs play in viral pathogenesis by controlling both host and viral gene expression. An overview of the potential application of polyomavirus miRNA as a marker for the progression of polyomaviruses associated diseases and polyomaviruses reactivation is also included.
Collapse
Affiliation(s)
- Wei Zou
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, United States
| | - Michael J Imperiale
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
25
|
Prezioso C, Van Ghelue M, Moens U, Pietropaolo V. HPyV6 and HPyV7 in urine from immunocompromised patients. Virol J 2021; 18:24. [PMID: 33482864 PMCID: PMC7821732 DOI: 10.1186/s12985-021-01496-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 01/12/2021] [Indexed: 12/20/2022] Open
Abstract
Background Human polyomavirus 6 (HPyV6) and HPyV7 are two of the novel polyomaviruses that were originally detected in non-diseased skin. Serological studies have shown that these viruses are ubiquitous in the healthy adult population with seroprevalence up to 88% for HPyV6 and 72% for HPyV7. Both viruses are associated with pruritic skin eruption in immunocompromised patients, but a role with other diseases in immunoincompetent patients or malignancies has not been established. Methods PCR was used to determine the presence of HPyV6 and HPyV7 DNA in urine samples from systemic lupus erythematosus (n = 73), multiple sclerosis (n = 50), psoriasis vulgaris (n = 15), arthritic psoriasis (n = 15) and HIV-positive patients (n = 66). In addition, urine from pregnant women (n = 47) and healthy blood donors (n = 20) was investigated. Results HPyV6 DNA was detected in 21 (28.8%) of the urine specimens from SLE patients, in 6 (9.1%) of the urine samples from the HIV-positive cohort, and in 19 (40.4%) samples from pregnant women. HPyV7 DNA was only found in 6 (8.2%) of the urine specimens from SLE patients and in 4 (8.5%) samples from pregnant women. No HPyV6 and HPyV7 viruria was detected in the urine samples from the other patients. Conclusions HPyV6, and to a lesser extend HPyV7, viruria seems to be common in SLE and HIV-positive patients, and pregnant women. Whether these viruses are of clinical relevance in these patients is not known.
Collapse
Affiliation(s)
- Carla Prezioso
- Department of Public Health and Infectious Diseases, "Sapienza" University of Rome, Rome, Italy.,Microbiology of Chronic Neuro-Degenerative Pathologies, IRCSS San Raffaele Pisana, Rome, Italy
| | - Marijke Van Ghelue
- Department of Medical Genetics, Division of Child and Adolescent Health, University Hospital of North Norway, Tromsø, Norway.,Department of Clinical Medicine Faculty of Health Sciences, University of Tromsø - The Arctic University of Norway, Tromsø, Norway
| | - Ugo Moens
- Department of Medical Biology, Faculty of Health Sciences, University of Tromsø - The Arctic University of Norway, Tromsø, Norway.
| | - Valeria Pietropaolo
- Department of Public Health and Infectious Diseases, "Sapienza" University of Rome, Rome, Italy.
| |
Collapse
|
26
|
Li Z, Cai S, Sun Y, Li L, Ding S, Wang X. When STING Meets Viruses: Sensing, Trafficking and Response. Front Immunol 2020; 11:2064. [PMID: 33133062 PMCID: PMC7550420 DOI: 10.3389/fimmu.2020.02064] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 07/29/2020] [Indexed: 12/19/2022] Open
Abstract
To effectively defend against microbial pathogens, the host cells mount antiviral innate immune responses by producing interferons (IFNs), and hundreds of IFN-stimulated genes (ISGs). Upon recognition of cytoplasmic viral or bacterial DNAs and abnormal endogenous DNAs, the DNA sensor cGAS synthesizes 2',3'-cGAMP that induces STING (stimulator of interferon genes) undergoing conformational changes, cellular trafficking, and the activation of downstream factors. Therefore, STING plays a pivotal role in preventing microbial pathogen infection by sensing DNAs during pathogen invasion. This review is dedicated to the recent advances in the dynamic regulations of STING activation, intracellular trafficking, and post-translational modifications (PTMs) by the host and microbial proteins.
Collapse
Affiliation(s)
- Zhaohe Li
- Key Laboratory of Marine Drugs of Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Siqi Cai
- Key Laboratory of Marine Drugs of Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Yutong Sun
- Key Laboratory of Marine Drugs of Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Li Li
- Key Laboratory of Marine Drugs of Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China.,Center for Innovation Marine Drug Screening and Evaluation, Pilot National Laboratory for Marine Science and Technology, Qingdao, China.,Marine Biomedical Research Institute of Qingdao, Qingdao, China
| | - Siyuan Ding
- Department of Molecular Microbiology, School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
| | - Xin Wang
- Key Laboratory of Marine Drugs of Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China.,Center for Innovation Marine Drug Screening and Evaluation, Pilot National Laboratory for Marine Science and Technology, Qingdao, China.,Marine Biomedical Research Institute of Qingdao, Qingdao, China
| |
Collapse
|
27
|
Wilhelm M, Kaur A, Wernli M, Hirsch HH. BK Polyomavirus-Specific CD8 T-Cell Expansion In Vitro Using 27mer Peptide Antigens for Developing Adoptive T-Cell Transfer and Vaccination. J Infect Dis 2020; 223:1410-1422. [PMID: 32857163 DOI: 10.1093/infdis/jiaa546] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 08/22/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND BK polyomavirus (BKPyV) remains a significant cause of premature kidney transplant failure. In the absence of effective antivirals, current treatments rely on reducing immunosuppression to regain immune control over BKPyV replication. Increasing BKPyV-specific CD8 T cells correlate with clearance of BKPyV DNAemia in kidney transplant patients. We characterized a novel approach for expanding BKPyV-specific CD8 T cells in vitro using 27mer-long synthetic BKPyV peptides, different types of antigen-presenting cells, and CD4 T cells. METHODS Langerhans cells and immature or mature monocyte-derived dendritic cells (Mo-DCs) were generated from peripheral blood mononuclear cells of healthy blood donors, pulsed with synthetic peptide pools consisting of 36 overlapping 27mers (27mP) or 180 15mers (15mP). BKPyV-specific CD8 T-cell responses were assessed by cytokine release assays using 15mP or immunodominant 9mers. RESULTS BKPyV-specific CD8 T cells expanded using 27mP and required mature Mo-DCs (P = .0312) and CD4 T cells (P = .0156) for highest responses. The resulting BKPyV-specific CD8 T cells proliferated, secreted multiple cytokines including interferon γ and tumor necrosis factor α, and were functional (CD107a+/PD1-) and cytotoxic. CONCLUSIONS Synthetic 27mP permit expanding BKPyV-specific CD8 T-cell responses when pulsing mature Mo-DCs in presence of CD4 T cells, suggesting novel and safe approaches to vaccination and adoptive T-cell therapies for patients before and after kidney transplantation.
Collapse
Affiliation(s)
- Maud Wilhelm
- Transplantation and Clinical Virology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Amandeep Kaur
- Transplantation and Clinical Virology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Marion Wernli
- Transplantation and Clinical Virology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Hans H Hirsch
- Transplantation and Clinical Virology, Department of Biomedicine, University of Basel, Basel, Switzerland.,Clinical Virology, Laboratory Medicine, University Hospital Basel, Basel, Switzerland.,Infectious Diseases and Hospital Epidemiology, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
28
|
Wang C, Wei T, Huang Y, Guo Q, Xie Z, Song J, Chen A, Zheng L. Isolation and characterization of WUPyV in polarized human airway epithelial cells. BMC Infect Dis 2020; 20:488. [PMID: 32646445 PMCID: PMC7344044 DOI: 10.1186/s12879-020-05224-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 07/02/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Washington University polyomavirus (WUPyV) is a novel human polyomavirus detected in childwith acute respiratory infection in 2007. However, the relationship between WUPyV and respiratory diseases has yet to be established for lacking of a suitable in vitro culture system. METHODS To isolate WUPyV with human airway epithelial (HAE) cells, the positive samples were incubated in HAE, and then the nucleic acid, VP1 protein and virions were detected using real-time PCR, immunofluorescence and electron microscopy respectively. RESULTS The result showed that WUPyV could replicate effectively in HAE cells and virions with typical polyomavirus characteristics could be observed. Additionally, the entire genome sequence of the isolated strain (BJ0771) was obtained and phylogenetic analysis indicated that BJ0771 belongs to gene cluster I. CONCLUSIONS Our findings demonstrated clinical WUPyV strain was successfully isolated for the first time in the world and this will help unravel the etiology and pathogenic mechanisms of WUPyV in respiratory infection diseases.
Collapse
Affiliation(s)
- Chao Wang
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, China CDC, 100 Ying-Xin St., Xi-Cheng District, Beijing, 100052, China
| | - Tianli Wei
- Department of Pediatrics, Beijing Friendship Hospital, Capital Medical University, 95 Yong-An St., Xi-Cheng District, Beijing, 100050, China
| | - Yiman Huang
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, China CDC, 100 Ying-Xin St., Xi-Cheng District, Beijing, 100052, China
| | - Qiong Guo
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, China CDC, 100 Ying-Xin St., Xi-Cheng District, Beijing, 100052, China
| | - Zhiping Xie
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, China CDC, 100 Ying-Xin St., Xi-Cheng District, Beijing, 100052, China
| | - Jingdong Song
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, China CDC, 100 Ying-Xin St., Xi-Cheng District, Beijing, 100052, China
| | - Aijun Chen
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, China CDC, 100 Ying-Xin St., Xi-Cheng District, Beijing, 100052, China.
| | - Lishu Zheng
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, China CDC, 100 Ying-Xin St., Xi-Cheng District, Beijing, 100052, China.
| |
Collapse
|
29
|
Manzetti J, Weissbach FH, Graf FE, Unterstab G, Wernli M, Hopfer H, Drachenberg CB, Rinaldo CH, Hirsch HH. BK Polyomavirus Evades Innate Immune Sensing by Disrupting the Mitochondrial Network and Promotes Mitophagy. iScience 2020; 23:101257. [PMID: 32599557 PMCID: PMC7326741 DOI: 10.1016/j.isci.2020.101257] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 03/16/2020] [Accepted: 06/05/2020] [Indexed: 12/12/2022] Open
Abstract
Immune escape contributes to viral persistence, yet little is known about human polyomaviruses. BK-polyomavirus (BKPyV) asymptomatically infects 90% of humans but causes premature allograft failure in kidney transplant patients. Despite virus-specific T cells and neutralizing antibodies, BKPyV persists in kidneys and evades immune control as evidenced by urinary shedding in immunocompetent individuals. Here, we report that BKPyV disrupts the mitochondrial network and membrane potential when expressing the 66aa-long agnoprotein during late replication. Agnoprotein is necessary and sufficient, using its amino-terminal and central domain for mitochondrial targeting and network disruption, respectively. Agnoprotein impairs nuclear IRF3-translocation, interferon-beta expression, and promotes p62/SQSTM1-mitophagy. Agnoprotein-mutant viruses unable to disrupt mitochondria show reduced replication and increased interferon-beta expression but can be rescued by type-I interferon blockade, TBK1-inhibition, or CoCl2-treatment. Mitochondrial fragmentation and p62/SQSTM1-autophagy occur in allograft biopsies of kidney transplant patients with BKPyV nephropathy. JCPyV and SV40 infection similarly disrupt mitochondrial networks, indicating a conserved mechanism facilitating polyomavirus persistence and post-transplant disease. BK polyomavirus agnoprotein disrupts mitochondrial membrane potential and network Agnoprotein impairs nucleus IRF3 translocation and interferon-β expression Agnoprotein facilitates innate immune evasion during the late viral replication phase Damaged mitochondria are targeted for p62/SQSTM1 autophagy
Collapse
Affiliation(s)
- Julia Manzetti
- Transplantation & Clinical Virology, Department Biomedicine (Haus Petersplatz), University of Basel, Petersplatz 10, CH-4009 Basel, Switzerland
| | - Fabian H Weissbach
- Transplantation & Clinical Virology, Department Biomedicine (Haus Petersplatz), University of Basel, Petersplatz 10, CH-4009 Basel, Switzerland
| | - Fabrice E Graf
- Transplantation & Clinical Virology, Department Biomedicine (Haus Petersplatz), University of Basel, Petersplatz 10, CH-4009 Basel, Switzerland
| | - Gunhild Unterstab
- Transplantation & Clinical Virology, Department Biomedicine (Haus Petersplatz), University of Basel, Petersplatz 10, CH-4009 Basel, Switzerland
| | - Marion Wernli
- Transplantation & Clinical Virology, Department Biomedicine (Haus Petersplatz), University of Basel, Petersplatz 10, CH-4009 Basel, Switzerland
| | - Helmut Hopfer
- Institute for Pathology, University Hospital Basel, Basel, Switzerland
| | - Cinthia B Drachenberg
- Departments of Pathology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Christine Hanssen Rinaldo
- Department of Microbiology and Infection Control, University Hospital of North Norway, Tromsø, Norway; Metabolic and Renal Research Group, UiT The Arctic University of Norway, Tromsø, Norway
| | - Hans H Hirsch
- Transplantation & Clinical Virology, Department Biomedicine (Haus Petersplatz), University of Basel, Petersplatz 10, CH-4009 Basel, Switzerland; Clinical Virology, Laboratory Medicine, University Hospital Basel, Basel, Switzerland; Infectious Diseases & Hospital Epidemiology, University Hospital Basel, Basel, Switzerland.
| |
Collapse
|
30
|
Haley SA, O'Hara BA, Atwood WJ. Adipocyte Plasma Membrane Protein (APMAP) promotes JC Virus (JCPyV) infection in human glial cells. Virology 2020; 548:17-24. [PMID: 32838939 DOI: 10.1016/j.virol.2020.06.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/01/2020] [Accepted: 06/01/2020] [Indexed: 11/16/2022]
Abstract
The demyelinating disease progressive multifocal leukoencephalopathy (PML) is caused by the human polyomavirus, JCPyV, under conditions of prolonged immunosuppression. Initial infection is asymptomatic, and the virus establishes lifelong persistence in the host. Following the loss of immune surveillance, the virus can traffic to the central nervous system and infect oligodendrocytes to cause demyelination and PML. The mechanisms involved in glial cell infection are not completely understood. In a screen for N-glycosylated proteins that influence JCPyV pathology, we identified Adipocyte Plasma Membrane Associated Protein (APMAP) as a host cell modulator of JCPyV infection. The removal of APMAP by small interfering siRNA as well as by CRISPR-Cas9 gene editing resulted in a significant decrease in JCPyV infection. Exogenous expression of APMAP in APMAP knockout cell lines rescued susceptibility to infection. These data suggest that virus infection of glial cells is dependent on APMAP.
Collapse
Affiliation(s)
- Sheila A Haley
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, USA.
| | - Bethany A O'Hara
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, USA
| | - Walter J Atwood
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, USA.
| |
Collapse
|
31
|
CD8 T Cells and STAT1 Signaling Are Essential Codeterminants in Protection from Polyomavirus Encephalopathy. J Virol 2020; 94:JVI.02038-19. [PMID: 31996425 DOI: 10.1128/jvi.02038-19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 01/21/2020] [Indexed: 01/27/2023] Open
Abstract
JC polyomavirus (JCPyV), a human-specific virus, causes the aggressive brain-demyelinating disease progressive multifocal leukoencephalopathy (PML) in individuals with depressed immune status. The increasing incidence of PML in patients receiving immunotherapeutic and chemotherapeutic agents creates a pressing clinical need to define biomarkers to stratify PML risk and develop anti-JCPyV interventions. Mouse polyomavirus (MuPyV) CNS infection causes encephalopathology and may provide insight into JCPyV-PML pathogenesis. Type I, II, and III interferons (IFNs), which all signal via the STAT1 transcription factor, mediate innate and adaptive immune defense against a variety of viral infections. We previously reported that type I and II IFNs control MuPyV infection in non-central nervous system (CNS) organs, but their relative contributions to MuPyV control in the brain remain unknown. To this end, mice deficient in type I, II, or III IFN receptors or STAT1 were infected intracerebrally with MuPyV. We found that STAT1, but not type I, II, or III IFNs, mediated viral control during acute and persistent MuPyV encephalitis. Mice deficient in STAT1 also developed severe hydrocephalus, blood-brain barrier permeability, and increased brain infiltration by myeloid cells. CD8 T cell deficiency alone did not increase MuPyV infection and pathology in the brain. In the absence of STAT1 signaling, however, depletion of CD8 T cells resulted in lytic infection of the choroid plexus and ependymal lining, marked meningitis, and 100% mortality within 2 weeks postinfection. Collectively, these findings indicate that STAT1 signaling and CD8 T cells cocontribute to controlling MuPyV infection in the brain and CNS injury.IMPORTANCE A comprehensive understanding of JCPyV-induced PML pathogenesis is needed to define determinants that predispose patients to PML, a goal whose urgency is heightened by the lack of anti-JCPyV agents. A handicap to achieving this goal is the lack of a tractable animal model to study PML pathogenesis. Using intracerebral inoculation with MuPyV, we found that MuPyV encephalitis in wild-type mice causes an encephalopathy, which is markedly exacerbated in mice deficient in STAT1, a molecule involved in transducing signals from type I, II, and III IFN receptors. CD8 T cell deficiency compounded the severity of MuPyV neuropathology and resulted in dramatically elevated virus levels in the CNS. These findings demonstrate that STAT1 signaling and CD8 T cells concomitantly act to mitigate MuPyV-encephalopathy and control viral infection.
Collapse
|
32
|
Hirsch HH, Randhawa PS. BK polyomavirus in solid organ transplantation-Guidelines from the American Society of Transplantation Infectious Diseases Community of Practice. Clin Transplant 2019; 33:e13528. [PMID: 30859620 DOI: 10.1111/ctr.13528] [Citation(s) in RCA: 263] [Impact Index Per Article: 43.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 02/26/2019] [Indexed: 02/07/2023]
Abstract
The present AST-IDCOP guidelines update information on BK polyomavirus (BKPyV) infection, replication, and disease, which impact kidney transplantation (KT), but rarely non-kidney solid organ transplantation (SOT). As pretransplant risk factors in KT donors and recipients presently do not translate into clinically validated measures regarding organ allocation, antiviral prophylaxis, or screening, all KT recipients should be screened for BKPyV-DNAemia monthly until month 9, and then every 3 months until 2 years posttransplant. Extended screening after 2 years may be considered in pediatric KT. Stepwise immunosuppression reduction is recommended for KT patients with plasma BKPyV-DNAemia of >1000 copies/mL sustained for 3 weeks or increasing to >10 000 copies/mL reflecting probable and presumptive BKPyV-associated nephropathy, respectively. Reducing immunosuppression is also the primary intervention for biopsy-proven BKPyV-associated nephropathy. Hence, allograft biopsy is not required for treating BKPyV-DNAemic patients with baseline renal function. Despite virological rationales, proper randomized clinical trials are lacking to generally recommend treatment by switching from tacrolimus to cyclosporine-A, from mycophenolate to mTOR inhibitors or leflunomide or by the adjunct use of intravenous immunoglobulins, leflunomide, or cidofovir. Fluoroquinolones are not recommended for prophylaxis or therapy. Retransplantation after allograft loss due to BKPyV nephropathy can be successful if BKPyV-DNAemia is definitively cleared, independent of failed allograft nephrectomy.
Collapse
Affiliation(s)
- Hans H Hirsch
- Transplantation & Clinical Virology, Department of Biomedicine, University of Basel, Basel, Switzerland.,Infectious Diseases & Hospital Epidemiology, University Hospital Basel, Basel, Switzerland
| | - Parmjeet S Randhawa
- Division of Transplantation Pathology, Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania.,Thomas E Starzl Transplantation Institute, Pittsburgh, Pennsylvania
| | | |
Collapse
|
33
|
Chechetkin VR, Lobzin VV. Genome packaging within icosahedral capsids and large-scale segmentation in viral genomic sequences. J Biomol Struct Dyn 2018; 37:2322-2338. [PMID: 30044190 DOI: 10.1080/07391102.2018.1479660] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The assembly and maturation of viruses with icosahedral capsids must be coordinated with icosahedral symmetry. The icosahedral symmetry imposes also the restrictions on the cooperative specific interactions between genomic RNA/DNA and coat proteins that should be reflected in quasi-regular segmentation of viral genomic sequences. Combining discrete direct and double Fourier transforms, we studied the quasi-regular large-scale segmentation in genomic sequences of different ssRNA, ssDNA, and dsDNA viruses. The particular representatives included satellite tobacco mosaic virus (STMV) and the strains of satellite tobacco necrosis virus (STNV), STNV-C, STNV-1, STNV-2, Escherichia phages MS2, ϕX174, α3, and HK97, and Simian virus 40. In all their genomes, we found the significant quasi-regular segmentation of genomic sequences related to the virion assembly and the genome packaging within icosahedral capsid. We also found good correspondence between our results and available cryo-electron microscopy data on capsid structures and genome packaging in these viruses. Fourier analysis of genomic sequences provides the additional insight into mechanisms of hierarchical genome packaging and may be used for verification of the concepts of 3-fold or 5-fold intermediates in virion assembly. The results of sequence analysis should be taken into account at the choice of models and data interpretation. They also may be helpful for the development of antiviral drugs.
Collapse
Affiliation(s)
- V R Chechetkin
- a Engelhardt Institute of Molecular Biology of Russian Academy of Sciences , Moscow , Russia.,b Theoretical Department of Division for Perspective Investigations , Troitsk Institute of Innovation and Thermonuclear Investigations (TRINITI) , Moscow , Troitsk District , Russia
| | - V V Lobzin
- c School of Physics , University of Sydney , Sydney , NSW , Australia
| |
Collapse
|
34
|
BK Polyomavirus MicroRNA Levels in Exosomes Are Modulated by Non-Coding Control Region Activity and Down-Regulate Viral Replication When Delivered to Non-Infected Cells Prior to Infection. Viruses 2018; 10:v10090466. [PMID: 30200237 PMCID: PMC6164188 DOI: 10.3390/v10090466] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 08/29/2018] [Indexed: 12/18/2022] Open
Abstract
In immunosuppressed patients, BKPyV-variants emerge carrying rearranged non-coding control-regions (rr-NCCRs) that increase early viral gene region (EVGR) expression and replication capacity. BKPyV also encodes microRNAs, which have been reported to downregulate EVGR-encoded large T-antigen transcripts, to decrease viral replication in infected cells and to be secreted in exosomes. To investigate the interplay of NCCR and microRNAs, we compared archetype- and rr-NCCR-BKPyV infection in cell culture. We found that laboratory and clinical rr-NCCR-BKPyV-strains show higher replication rates but significantly lower microRNA levels than archetype virus intracellularly and in exosomes. To investigate whether rr-NCCR or increased EVGR activity modulated microRNA levels, we examined the (sp1-4)NCCR-BKPyV, which has an archetype NCCR-architecture but shows increased EVGR expression due to point mutations inactivating one Sp1 binding site. We found that microRNA levels following (sp1-4)NCCR-BKPyV infection were as low as in rr-NCCR-variants. Thus, NCCR rearrangements are not required for lower miRNA levels. Accordingly, Sp1 siRNA knock-down decreased microRNA levels in archetype BKPyV infection but had no effect on (sp1-4)- or rr-NCCR-BKPyV. However, rr-NCCR-BKPyV replication was downregulated by exosome preparations carrying BKPyV-microRNA prior to infection. To explore the potential relevance in humans, urine samples from 12 natalizumab-treated multiple sclerosis patients were analysed. In 7 patients, rr-NCCR-BKPyV were detected showing high urine BKPyV loads but low microRNAs levels, whereas the opposite was seen in 5 patients with archetype BKPyV. We discuss the results in a dynamic model of BKPyV replication according to NCCR activity and exosome regulation, which integrates immune selection pressure, spread to new host cells and rr-NCCR emergence.
Collapse
|
35
|
Novel Human Polyomavirus Noncoding Control Regions Differ in Bidirectional Gene Expression according to Host Cell, Large T-Antigen Expression, and Clinically Occurring Rearrangements. J Virol 2018; 92:JVI.02231-17. [PMID: 29343574 DOI: 10.1128/jvi.02231-17] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 01/05/2018] [Indexed: 01/13/2023] Open
Abstract
Human polyomavirus (HPyV) DNA genomes contain three regions denoted the early viral gene region (EVGR), encoding the regulatory T-antigens and one microRNA, the late viral gene region (LVGR), encoding the structural Vp capsid proteins, and the noncoding control region (NCCR). The NCCR harbors the origin of viral genome replication and bidirectional promoter/enhancer functions governing EVGR and LVGR expression on opposite DNA strands. Despite principal similarities, HPyV NCCRs differ in length, sequence, and architecture. To functionally compare HPyV NCCRs, sequences from human isolates were inserted into a bidirectional reporter vector using dsRed2 for EVGR expression and green fluorescent protein (GFP) for LVGR expression. Transfecting HPyV NCCR reporter vectors into human embryonic kidney 293 (HEK293) cells and flow cytometry normalized to archetype BKPyV NCCR revealed a hierarchy of EVGR expression levels with MCPyV, HPyV12, and STLPyV NCCRs conferring stronger levels and HPyV6, HPyV9, and HPyV10 NCCRs weaker levels, while LVGR expression was less variable and showed comparable activity levels. Transfection of HEK293T cells expressing simian virus 40 (SV40) large T antigen (LTag) increased EVGR expression for most HPyV NCCRs, which correlated with the number of LTag-binding sites (Spearman's r, 0.625; P < 0.05) and decreased following SV40 LTag small interfering RNA (siRNA) knockdown. LTag-dependent activation was specifically confirmed for two different MCPyV NCCRs in 293MCT cells expressing the cognate MCPyV LTag. HPyV NCCR expression in different cell lines derived from skin (A375), cervix (HeLaNT), lung (A549), brain (Hs683), and colon (SW480) demonstrated that host cell properties significantly modulate the baseline HPyV NCCR activity, which partly synergized with SV40 LTag expression. Clinically occurring NCCR sequence rearrangements of HPyV7 PITT-1 and -2 and HPyV9 UF1 were found to increase EVGR expression compared to the respective HPyV archetype, but this was partly host cell type specific.IMPORTANCE HPyV NCCRs integrate essential viral functions with respect to host cell specificity, persistence, viral replication, and disease. Here, we show that HPyV NCCRs not only differ in sequence length, number, and position of LTag- and common transcription factor-binding sites but also confer differences in bidirectional viral gene expression. Importantly, EVGR reporter expression was significantly modulated by LTag expression and by host cell properties. Clinical sequence variants of HPyV7 and HPyV9 NCCRs containing deletions and insertions were associated with increased EVGR expression, similar to BKPyV and JCPyV rearrangements, emphasizing that HPyV NCCR sequences are major determinants not only of host cell tropism but also of pathogenicity. These results will help to define secondary HPyV cell tropism beyond HPyV surface receptors, to identify key viral and host factors shaping the viral life cycle, and to develop preclinical models of HPyV persistence and replication and suitable antiviral targets.
Collapse
|
36
|
|
37
|
McNees AL, Harrigal LJ, Kelly A, Minard CG, Wong C, Butel JS. Viral microRNA effects on persistent infection of human lymphoid cells by polyomavirus SV40. PLoS One 2018; 13:e0192799. [PMID: 29432481 PMCID: PMC5809058 DOI: 10.1371/journal.pone.0192799] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 01/30/2018] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Polyomaviruses, including simian virus 40 (SV40), display evidence of lymphotropic properties. This study analyzed the nature of SV40-human lymphocyte interactions in established cell lines and in primary lymphocytes. The effects of viral microRNA and the structure of the viral regulatory region on SV40 persistence were examined. RESULTS SV40 DNA was maintained in infected B cell and myeloid cell lines during cell growth for at least 28 days. Limiting dilution analysis showed that low amounts of SV40 DNA (~2 copies per cell) were retained over time. Infected B cells remained viable and able to proliferate. Genome copies of the SV40 microRNA-null mutant persisted at higher levels than the DNA of wild-type viruses. Complex viral regulatory regions produced modestly higher DNA levels than simple regulatory regions. Viral large T-antigen protein was detected at low frequency and at low levels in infected B cells. Following infection of primary lymphocytes, SV40 DNA was detected in CD19+ B cells and CD14+ monocytes, but not in CD3+ T cells. Rescue attempts using either lysates of SV40-infected B lymphocytes, coculture of live cells, or infectious center assays all showed that replication-competent SV40 could be recovered on rare occasions. SV40 infections altered the expression of several B cell surface markers, with more pronounced changes following infections with the microRNA-null mutant. CONCLUSION These findings indicate that SV40 can establish persistent infections in human B lymphocytes. The cells retain low copy numbers of viral DNA; the infections are nonproductive and noncytolytic but can occasionally produce infectious virus. SV40 microRNA negatively regulates the degree of viral effects on B cells. SIGNIFICANCE Lymphocytes may serve as viral reservoirs and may function to disseminate polyomaviruses to different tissues in a host. To our knowledge, this report is the first extensive analysis of viral microRNA effects on SV40 infection of human lymphocytes.
Collapse
Affiliation(s)
- Adrienne L. McNees
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Lindsay J. Harrigal
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Aoife Kelly
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Charles G. Minard
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, Texas, United States of America
| | - Connie Wong
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Janet S. Butel
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
| |
Collapse
|
38
|
Abstract
In 1971, the first human polyomavirus was isolated from the brain of a patient who died from a rapidly progressing demyelinating disease known as progressive multifocal leukoencephalopathy. The virus was named JC virus after the initials of the patient. In that same year a second human polyomavirus was discovered in the urine of a kidney transplant patient and named BK virus. In the intervening years it became clear that both viruses were widespread in the human population but only rarely caused disease. The past decade has witnessed the discovery of eleven new human polyomaviruses, two of which cause unusual and rare cancers. We present an overview of the history of these viruses and the evolution of JC polyomavirus-induced progressive multifocal leukoencephalopathy over three different epochs. We review what is currently known about JC polyomavirus, what is suspected, and what remains to be done to understand the biology of how this mostly harmless endemic virus gives rise to lethal disease.
Collapse
Affiliation(s)
- Sheila A Haley
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island 02912; ,
| | - Walter J Atwood
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island 02912; ,
| |
Collapse
|