1
|
Rauf A, Wang A, Li Y, Lian Z, Wei S, Khan Q, Jabbar K, Jan F, Khan I, Bibi M, Abidullah S, Li J. DUO1 Activated Zinc Finger (AtDAZ) protein role in the generative cell body morphogenesis. PLANT MOLECULAR BIOLOGY 2025; 115:15. [PMID: 39777569 DOI: 10.1007/s11103-024-01542-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 11/29/2024] [Indexed: 01/11/2025]
Abstract
Arabidopsis MYB transcription factor, AtDUO1 regulates generative cell body (GC) morphogenesis from round to semi and fully elongated forms before pollen mitosis-II (PM II). It was hypothesised that DUO1 might regulate morphogenesis through any of its direct target genes or components of the DUO1-DAZ1 network. The developmental analysis of plants harbouring T-DNA insertions in some DUO1 target genes using light and fluorescence microscopy revealed abnormal GC morphogenesis only in daz1 and daz2, but gcs1, trm16, mapkkk10, mapkkk20, tet11, and tip1 all undergo normal elongation indicating that these target genes have no important roles in morphogenesis or may be redundant. The important regulatory role of DUO1 was confirmed through the observed incomplete rescue of morphogenesis of mutant duo1-1 GCs by DAZ1 and independently by a C-terminally deleted version of DUO1 (DUO1∆C3) lacking activation sequences. The evidence supports the important role of DAZ1 in GC shape partial morphogenesis. The C-terminus of DUO1 may regulate some target genes that affect GC body elongation. Furthermore, an intact DUO1 is shown to be indispensable for GC shape and nucleus elongation and subsequently for timely division and sperm cell morphogenesis. The development of the GC cytoplasmic projection is regulated independently of DUO1, and all its target genes were able to form it.
Collapse
Affiliation(s)
- Abdur Rauf
- National Key Laboratory for Tropical Crop Breeding, Tropical Crop Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya, Haikou, 572024/571101, Hainan, China.
- Department of Genetic and Genome Biology, University of Leicester, Leicestershire, UK.
- Abdul Wali Khan University Mardan, Garden Campus, Mardan, Khyber Pakhtunkhwa, Pakistan.
- Hainan Banana Healthy Seedling Propagation Engineering Research Center, Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, China.
| | - Anbang Wang
- National Key Laboratory for Tropical Crop Breeding, Tropical Crop Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya, Haikou, 572024/571101, Hainan, China
| | - Yujia Li
- National Key Laboratory for Tropical Crop Breeding, Tropical Crop Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya, Haikou, 572024/571101, Hainan, China
| | - Zhihao Lian
- National Key Laboratory for Tropical Crop Breeding, Tropical Crop Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya, Haikou, 572024/571101, Hainan, China
| | - Shouxing Wei
- National Key Laboratory for Tropical Crop Breeding, Tropical Crop Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya, Haikou, 572024/571101, Hainan, China
| | - Qayash Khan
- Abdul Wali Khan University Mardan, Garden Campus, Mardan, Khyber Pakhtunkhwa, Pakistan
| | - Kashmala Jabbar
- Abdul Wali Khan University Mardan, Garden Campus, Mardan, Khyber Pakhtunkhwa, Pakistan
| | - Farooq Jan
- Abdul Wali Khan University Mardan, Garden Campus, Mardan, Khyber Pakhtunkhwa, Pakistan
| | - Ikramullah Khan
- Abdul Wali Khan University Mardan, Garden Campus, Mardan, Khyber Pakhtunkhwa, Pakistan
| | - Mamoona Bibi
- Abdul Wali Khan University Mardan, Garden Campus, Mardan, Khyber Pakhtunkhwa, Pakistan
| | - Syed Abidullah
- Abdul Wali Khan University Mardan, Garden Campus, Mardan, Khyber Pakhtunkhwa, Pakistan
| | - Jingyang Li
- National Key Laboratory for Tropical Crop Breeding, Tropical Crop Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya, Haikou, 572024/571101, Hainan, China.
- Hainan Banana Healthy Seedling Propagation Engineering Research Center, Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, China.
| |
Collapse
|
2
|
Laruelle E, Belcram K, Trubuil A, Palauqui JC, Andrey P. Large-scale analysis and computer modeling reveal hidden regularities behind variability of cell division patterns in Arabidopsis thaliana embryogenesis. eLife 2022; 11:79224. [DOI: 10.7554/elife.79224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 11/07/2022] [Indexed: 11/30/2022] Open
Abstract
Noise plays a major role in cellular processes and in the development of tissues and organs. Several studies have examined the origin, the integration or the accommodation of noise in gene expression, cell growth and elaboration of organ shape. By contrast, much less is known about variability in cell division plane positioning, its origin and links with cell geometry, and its impact on tissue organization. Taking advantage of the first-stereotyped-then-variable division patterns in the embryo of the model plant Arabidopsis thaliana, we combined 3D imaging and quantitative cell shape and cell lineage analysis together with mathematical and computer modeling to perform a large-scale, systematic analysis of variability in division plane orientation. Our results reveal that, paradoxically, variability in cell division patterns of Arabidopsis embryos is accompanied by a progressive reduction of heterogeneity in cell shape topology. The paradox is solved by showing that variability operates within a reduced repertoire of possible division plane orientations that is related to cell geometry. We show that in several domains of the embryo, a recently proposed geometrical division rule recapitulates observed variable patterns, suggesting that variable patterns emerge from deterministic principles operating in a variable geometrical context. Our work highlights the importance of emerging patterns in the plant embryo under iterated division principles, but also reveal domains where deviations between rule predictions and experimental observations point to additional regulatory mechanisms.
Collapse
Affiliation(s)
- Elise Laruelle
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin
- Université Paris-Saclay, INRAE, MaIAGE
| | - Katia Belcram
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin
| | | | | | - Philippe Andrey
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin
| |
Collapse
|
3
|
Xu K, Zhao Y, Zhao S, Liu H, Wang W, Zhang S, Yang X. Genome-Wide Identification and Low Temperature Responsive Pattern of Actin Depolymerizing Factor (ADF) Gene Family in Wheat ( Triticum aestivum L.). FRONTIERS IN PLANT SCIENCE 2021; 12:618984. [PMID: 33719289 PMCID: PMC7943747 DOI: 10.3389/fpls.2021.618984] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 02/05/2021] [Indexed: 05/07/2023]
Abstract
The actin depolymerizing factor (ADF) gene family, which is conserved in eukaryotes, is important for plant development, growth, and stress responses. Cold stress restricts wheat growth, development, and distribution. However, genome-wide identification and functional analysis of the ADF family in wheat is limited. Further, because of the promising role of ADF genes in cold response, there is need for an understanding of the function of this family on wheat under cold stress. In this study, 25 ADF genes (TaADFs) were identified in the wheat genome and they are distributed on 15 chromosomes. The TaADF gene structures, duplication events, encoded conversed motifs, and cis-acting elements were investigated. Expression profiles derived from RNA-seq data and real-time quantitative PCR analysis revealed the tissue- and temporal-specific TaADF expression patterns. In addition, the expression levels of TaADF13/16/17/18/20/21/22 were significantly affected by cold acclimation or freezing conditions. Overexpression of TaADF16 increased the freezing tolerance of transgenic Arabidopsis, possibly because of enhanced ROS scavenging and changes to the osmotic regulation in cells. The expression levels of seven cold-responsive genes were up-regulated in the transgenic Arabidopsis plants, regardless of whether the plants were exposed to low temperature. These findings provide fundamental information about the wheat ADF genes and may help to elucidate the regulatory effects of the encoded proteins on plant development and responses to low-temperature stress.
Collapse
Affiliation(s)
- Ke Xu
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, China
| | - Yong Zhao
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, China
| | - Sihang Zhao
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, China
| | - Haodong Liu
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, China
| | - Weiwei Wang
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, China
- Cangzhou Academy of Agriculture and Forestry Sciences, Cangzhou, China
| | - Shuhua Zhang
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, China
| | - Xueju Yang
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, China
| |
Collapse
|
4
|
Wallner ES. The value of asymmetry: how polarity proteins determine plant growth and morphology. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:5733-5739. [PMID: 32687194 PMCID: PMC7888286 DOI: 10.1093/jxb/eraa329] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 07/14/2020] [Indexed: 06/11/2023]
Abstract
Cell polarity is indispensable for forming complex multicellular organisms. Proteins that polarize at specific plasma membrane domains can either serve as scaffolds for effectors or coordinate intercellular communication and transport. Here, I give an overview of polarity protein complexes and their fundamental importance for plant development, and summarize novel mechanistic insights into their molecular networks. Examples are presented for proteins that polarize at specific plasma membrane domains to orient cell division planes, alter cell fate progression, control transport, direct cell growth, read global polarity axes, or integrate external stimuli into plant growth. The recent advances in characterizing protein polarity during plant development enable a better understanding of coordinated plant growth and open up intriguing paths that could provide a means to modulate plant morphology and adaptability in the future.
Collapse
|
5
|
Vaškebová L, Šamaj J, Ovečka M. Single-point ACT2 gene mutation in the Arabidopsis root hair mutant der1-3 affects overall actin organization, root growth and plant development. ANNALS OF BOTANY 2018; 122:889-901. [PMID: 29293922 PMCID: PMC6215051 DOI: 10.1093/aob/mcx180] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 11/20/2017] [Indexed: 05/25/2023]
Abstract
BACKGROUND AND AIMS The actin cytoskeleton forms a dynamic network in plant cells. A single-point mutation in the DER1 (deformed root hairs1) locus located in the sequence of ACTIN2, a gene for major actin in vegetative tissues of Arabidopsis thaliana, leads to impaired root hair development (Ringli C, Baumberger N, Diet A, Frey B, Keller B. 2002. ACTIN2 is essential for bulge site selection and tip growth during root hair development of Arabidopsis. Plant Physiology129: 1464-1472). Only root hair phenotypes have been described so far in der1 mutants, but here we demonstrate obvious aberrations in the organization of the actin cytoskeleton and overall plant development. METHODS Organization of the actin cytoskeleton in epidermal cells of cotyledons, hypocotyls and roots was studied qualitatively and quantitatively by live-cell imaging of transgenic lines carrying the GFP-FABD2 fusion protein and in fixed cells after phalloidin labelling. Patterns of root growth were characterized by FM4-64 vital staining, light-sheet microscopy imaging and microtubule immunolabelling. Plant phenotyping included analyses of germination, root growth and plant biomass. KEY RESULTS Speed of germination, plant fresh weight and total leaf area were significantly reduced in the der1-3 mutant in comparison with the C24 wild-type. Actin filaments in root, hypocotyl and cotyledon epidermal cells of the der1-3 mutant were shorter, thinner and arranged in more random orientations, while actin bundles were shorter and had altered orientations. The wavy pattern of root growth in der1-3 mutant was connected with higher frequencies of shifted cell division planes (CDPs) in root cells, which was consistent with the shifted positioning of microtubule-based preprophase bands and phragmoplasts. The organization of cortical microtubules in the root cells of the der1-3 mutant, however, was not altered. CONCLUSIONS Root growth rate of the der1-3 mutant is not reduced, but changes in the actin cytoskeleton organization can induce a wavy root growth pattern through deregulation of CDP orientation. The results suggest that the der1-3 mutation in the ACT2 gene does not influence solely root hair formation process, but also has more general effects on the actin cytoskeleton, plant growth and development.
Collapse
Affiliation(s)
- L Vaškebová
- Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University Olomouc, Olomouc, Czech Republic
| | - J Šamaj
- Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University Olomouc, Olomouc, Czech Republic
| | - M Ovečka
- Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University Olomouc, Olomouc, Czech Republic
| |
Collapse
|
6
|
Rowghanian P, Campàs O. Non-equilibrium Membrane Homeostasis in Expanding Cellular Domains. Biophys J 2017; 113:132-137. [PMID: 28700911 DOI: 10.1016/j.bpj.2017.06.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 05/19/2017] [Accepted: 06/02/2017] [Indexed: 01/01/2023] Open
Abstract
Many cell behaviors involve cell-shape transformations that impose considerable changes in the cell's surface area, requiring a constant adaptation of the cell's plasma membrane area to prevent cell lysis. Here, we theoretically describe the interplay between the plasma membrane dynamics and a physically connected cell cortex or wall, accounting for spatial variations in membrane recycling and tension. In-plane membrane net flows result naturally from these dynamics and, in the presence of an expanding cell cortex or wall, regions of converging or diverging flow patterns emerge. These flow patterns can potentially explain the spatial localization/segregation of membrane proteins in processes such as cell polarization. We also identify the relevant parameters that control membrane homeostasis and derive the range of parameters for which homeostatic states exist.
Collapse
Affiliation(s)
- P Rowghanian
- Department of Mechanical Engineering and California NanoSystems Institute, University of California, Santa Barbara, Santa Barbara, California
| | - O Campàs
- Department of Mechanical Engineering and California NanoSystems Institute, University of California, Santa Barbara, Santa Barbara, California.
| |
Collapse
|
7
|
Meng X, Zhao Q, Jin Y, Yu J, Yin Z, Chen S, Dai S. Chilling-responsive mechanisms in halophyte Puccinellia tenuiflora seedlings revealed from proteomics analysis. J Proteomics 2016; 143:365-381. [PMID: 27130536 DOI: 10.1016/j.jprot.2016.04.038] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 04/14/2016] [Accepted: 04/24/2016] [Indexed: 11/28/2022]
Abstract
Alkali grass (Puccinellia tenuiflora), a monocotyledonous perennial halophyte species, is a good pasture with great nutritional value for livestocks. It can thrive under low temperature in the saline-alkali soil of Songnen plain in northeastern China. In the present study, the chilling-responsive mechanism in P. tenuiflora leaves was investigated using physiological and proteomic approaches. After treatment of 10°C for 10 and 20days, photosynthesis, biomass, contents of osmolytes and antioxidants, and activities of reactive oxygen species scavenging enzymes were analyzed in leaves of 20-day-old seedlings. Besides, 89 chilling-responsive proteins were revealed from proteomic analysis. All the results highlighted that the growth of seedlings was inhibited due to chilling-decreased enzymes in photosynthesis, carbohydrate metabolism, and energy supplying. The accumulation of osmolytes (i.e., proline, soluble sugar, and glycine betaine) and enhancement of ascorbate-glutathione cycle and glutathione peroxidase/glutathione S-transferase pathway in leaves could minimize oxidative damage of membrane and other molecules under the chilling conditions. In addition, protein synthesis and turnover in cytoplasm and chloroplast were altered to cope with the chilling stress. This study provides valuable information for understanding the chilling-responsive and cross-tolerant mechanisms in monocotyledonous halophyte plant species.
Collapse
Affiliation(s)
- Xuejiao Meng
- Alkali Soil Natural Environmental Science Center, Northeast Forestry University, Key Laboratory of Saline-alkali Vegetation Ecology Restoration in Oil Field, Ministry of Education, Harbin 150040, China
| | - Qi Zhao
- Alkali Soil Natural Environmental Science Center, Northeast Forestry University, Key Laboratory of Saline-alkali Vegetation Ecology Restoration in Oil Field, Ministry of Education, Harbin 150040, China
| | - Yudan Jin
- Alkali Soil Natural Environmental Science Center, Northeast Forestry University, Key Laboratory of Saline-alkali Vegetation Ecology Restoration in Oil Field, Ministry of Education, Harbin 150040, China
| | - Juanjuan Yu
- Alkali Soil Natural Environmental Science Center, Northeast Forestry University, Key Laboratory of Saline-alkali Vegetation Ecology Restoration in Oil Field, Ministry of Education, Harbin 150040, China
| | - Zepeng Yin
- Alkali Soil Natural Environmental Science Center, Northeast Forestry University, Key Laboratory of Saline-alkali Vegetation Ecology Restoration in Oil Field, Ministry of Education, Harbin 150040, China
| | - Sixue Chen
- Department of Biology, Genetics Institute, Plant Molecular and Cellular Biology Program, Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL 32610, USA
| | - Shaojun Dai
- Alkali Soil Natural Environmental Science Center, Northeast Forestry University, Key Laboratory of Saline-alkali Vegetation Ecology Restoration in Oil Field, Ministry of Education, Harbin 150040, China.
| |
Collapse
|
8
|
Yu TY, Shi DQ, Jia PF, Tang J, Li HJ, Liu J, Yang WC. The Arabidopsis Receptor Kinase ZAR1 Is Required for Zygote Asymmetric Division and Its Daughter Cell Fate. PLoS Genet 2016; 12:e1005933. [PMID: 27014878 PMCID: PMC4807781 DOI: 10.1371/journal.pgen.1005933] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 02/23/2016] [Indexed: 11/19/2022] Open
Abstract
Asymmetric division of zygote is critical for pattern formation during early embryogenesis in plants and animals. It requires integration of the intrinsic and extrinsic cues prior to and/or after fertilization. How these cues are translated into developmental signals is poorly understood. Here through genetic screen for mutations affecting early embryogenesis, we identified an Arabidopsis mutant, zygotic arrest 1 (zar1), in which zygote asymmetric division and the cell fate of its daughter cells were impaired. ZAR1 encodes a member of the RLK/Pelle kinase family. We demonstrated that ZAR1 physically interacts with Calmodulin and the heterotrimeric G protein Gβ, and ZAR1 kinase is activated by their binding as well. ZAR1 is specifically expressed micropylarly in the embryo sac at eight-nucleate stage and then in central cell, egg cell and synergids in the mature embryo sac. After fertilization, ZAR1 is accumulated in zygote and endosperm. The disruption of ZAR1 and AGB1 results in short basal cell and an apical cell with basal cell fate. These data suggest that ZAR1 functions as a membrane integrator for extrinsic cues, Ca2+ signal and G protein signaling to regulate the division of zygote and the cell fate of its daughter cells in Arabidopsis.
Collapse
Affiliation(s)
- Tian-Ying Yu
- State Key Laboratory of Molecular Developmental Biology, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Dong-Qiao Shi
- State Key Laboratory of Molecular Developmental Biology, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Peng-Fei Jia
- State Key Laboratory of Molecular Developmental Biology, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Jun Tang
- State Key Laboratory of Molecular Developmental Biology, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Hong-Ju Li
- State Key Laboratory of Molecular Developmental Biology, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Jie Liu
- State Key Laboratory of Molecular Developmental Biology, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Wei-Cai Yang
- State Key Laboratory of Molecular Developmental Biology, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
9
|
Juraniec M, Heyman J, Schubert V, Salis P, De Veylder L, Verbruggen N. Arabidopsis COPPER MODIFIED RESISTANCE1/PATRONUS1 is essential for growth adaptation to stress and required for mitotic onset control. THE NEW PHYTOLOGIST 2016; 209:177-91. [PMID: 26261921 DOI: 10.1111/nph.13589] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 07/01/2015] [Indexed: 05/23/2023]
Abstract
The mitotic checkpoint (MC) guards faithful sister chromatid segregation by monitoring the attachment of spindle microtubules to the kinetochores. When chromosome attachment errors are detected, MC delays the metaphase-to-anaphase transition through the inhibition of the anaphase-promoting complex/cyclosome (APC/C) ubiquitin ligase. In contrast to yeast and mammals, our knowledge on the proteins involved in MC in plants is scarce. Transient synchronization of root tips as well as promoter-reporter gene fusions were performed to analyze temporal and spatial expression of COPPER MODIFIED RESISTANCE1/PATRONUS1 (CMR1/PANS1) in developing Arabidopsis thaliana seedlings. Functional analysis of the gene was carried out, including CYCB1;2 stability in CMR1/PANS1 knockout and overexpressor background as well as metaphase-anaphase chromosome status. CMR1/PANS1 is transcriptionally active during M phase. Its deficiency provokes premature cell cycle exit and in consequence a rapid consumption of the number of meristematic cells in particular under stress conditions that are known to affect spindle microtubules. Root growth impairment is correlated with a failure to delay the onset of anaphase, resulting in anaphase bridges and chromosome missegregation. CMR1/PANS1 overexpression stabilizes the mitotic CYCB1;2 protein. Likely, CMR1/PANS1 coordinates mitotic cell cycle progression by acting as an APC/C inhibitor and plays a key role in growth adaptation to stress.
Collapse
Affiliation(s)
- Michal Juraniec
- Laboratory of Plant Physiology and Molecular Genetics, Université Libre de Bruxelles, B-1050, Brussels, Belgium
| | - Jefri Heyman
- Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie, B-9052, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052, Gent, Belgium
| | - Veit Schubert
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, D-06466, Stadt Seeland, Germany
| | - Pietrino Salis
- Laboratory of Plant Physiology and Molecular Genetics, Université Libre de Bruxelles, B-1050, Brussels, Belgium
| | - Lieven De Veylder
- Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie, B-9052, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052, Gent, Belgium
| | - Nathalie Verbruggen
- Laboratory of Plant Physiology and Molecular Genetics, Université Libre de Bruxelles, B-1050, Brussels, Belgium
| |
Collapse
|
10
|
Rodríguez VM, Soengas P, Alonso-Villaverde V, Sotelo T, Cartea ME, Velasco P. Effect of temperature stress on the early vegetative development of Brassica oleracea L. BMC PLANT BIOLOGY 2015; 15:145. [PMID: 26077340 PMCID: PMC4467057 DOI: 10.1186/s12870-015-0535-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 05/28/2015] [Indexed: 05/04/2023]
Abstract
BACKGROUND Due to its biennual life cycle Brassica oleracea is especially exposed to seasonal changes in temperature that could limit its growth and fitness. Thermal stress could limit plant growth, leaf development and photosynthesis. We evaluated the performance of two local populations of B. oleracea: one population of cabbage (B. oleracea capitata group) and one population of kale (B. oleracea acephala group) under limiting low and high temperatures. RESULTS There were differences between crops and how they responded to high and low temperature stress. Low temperatures especially affect photosynthesis and fresh weight. Stomatal conductance and the leaf water content were dramatically reduced and plants produce smaller and thicker leaves. Under high temperatures there was a reduction of the weight that could be associated to a general impairment of the photosynthetic activity. CONCLUSIONS Although high temperatures significantly reduced the dry weight of seedlings, in general terms, low temperature had a higher impact in B. oleracea physiology than high temperature. Interestingly, our results suggest that the capitata population is less sensitive to changes in air temperature than the acephala population.
Collapse
Affiliation(s)
- Víctor M Rodríguez
- Group of Genetics, Breeding and Biochemistry of Brassicas. Misión Biológica de Galicia (MBG-CSIC), Apartado 28, 36080, Pontevedra, Spain.
| | - Pilar Soengas
- Group of Genetics, Breeding and Biochemistry of Brassicas. Misión Biológica de Galicia (MBG-CSIC), Apartado 28, 36080, Pontevedra, Spain.
| | | | - Tamara Sotelo
- Group of Genetics, Breeding and Biochemistry of Brassicas. Misión Biológica de Galicia (MBG-CSIC), Apartado 28, 36080, Pontevedra, Spain.
| | - María E Cartea
- Group of Genetics, Breeding and Biochemistry of Brassicas. Misión Biológica de Galicia (MBG-CSIC), Apartado 28, 36080, Pontevedra, Spain.
| | - Pablo Velasco
- Group of Genetics, Breeding and Biochemistry of Brassicas. Misión Biológica de Galicia (MBG-CSIC), Apartado 28, 36080, Pontevedra, Spain.
| |
Collapse
|
11
|
Qin Y, Dong J. Focusing on the focus: what else beyond the master switches for polar cell growth? MOLECULAR PLANT 2015; 8:582-94. [PMID: 25744359 PMCID: PMC5124495 DOI: 10.1016/j.molp.2014.12.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2014] [Revised: 12/24/2014] [Accepted: 12/29/2014] [Indexed: 05/21/2023]
Abstract
Cell polarity, often associated with polarized cell expansion/growth in plants, describes the uneven distribution of cellular components, such as proteins, nucleic acids, signaling molecules, vesicles, cytoskeletal elements, and organelles, which may ultimately modulate cell shape, structure, and function. Pollen tubes and root hairs are model cell systems for studying the molecular mechanisms underlying sustained tip growth. The formation of intercalated epidermal pavement cells requires excitatory and inhibitory pathways to coordinate cell expansion within single cells and between cells in contact. Strictly controlled cell expansion is linked to asymmetric cell division in zygotes and stomatal lineages, which require integrated processes of pre-mitotic cellular polarization and division asymmetry. While small GTPase ROPs are recognized as fundamental signaling switches for cell polarity in various cellular and developmental processes in plants, the broader molecular machinery underpinning polarity establishment required for asymmetric division remains largely unknown. Here, we review the widely used ROP signaling pathways in cell polar growth and the recently discovered feedback loops with auxin signaling and PIN effluxers. We discuss the conserved phosphorylation and phospholipid signaling mechanisms for regulating uneven distribution of proteins, as well as the potential roles of novel proteins and MAPKs in the polarity establishment related to asymmetric cell division in plants.
Collapse
Affiliation(s)
- Yuan Qin
- Center for Genomics and Biotechnology, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian Province, China
| | - Juan Dong
- Waksman Institute of Microbiology, Rutgers the State University of New Jersey, Piscataway, NJ 08854, USA; The Department of Plant Biology and Pathology, Rutgers the State University of New Jersey, New Brunswick, NJ 08901, USA.
| |
Collapse
|
12
|
Rover T, Simioni C, Hable W, Bouzon ZL. Ultrastructural and structural characterization of zygotes and embryos during development in Sargassum cymosum (Phaeophyceae, Fucales). PROTOPLASMA 2015; 252:505-18. [PMID: 25252885 DOI: 10.1007/s00709-014-0696-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 08/26/2014] [Indexed: 06/03/2023]
Abstract
This study investigates the pattern and performance of cellular structures during the early development of zygotes and embryos of Sargassum cymosum. The early development S. cymosum germlings has already been characterized and compared with the pattern of development established for all fucoid algae, in which the zygote remains attached to the receptacle by mucilage during the establishment of polarity and early cell division. As in the algae Fucus and Silvetia, the first division is transverse across the longer axis of the zygote of S. cymosum. However, the cell that will give rise to the rhizoids is not determined in the first division; rather, the formation of this cell occurs with the second division, forming a small cell in the embryo shaded site. Stabilizing polarity during the process of forming a multicellular embryo occurs rapidly. During development, significant cytoplasmic alterations take place. Initially, the cytoplasm shows large clusters of phenolic compounds located in specific parts, but later, in the course of development, these compounds are dispersed in the cytoplasm, although a significant amount remains confined to the nucleus. Moreover, to produce more zygotes and higher growth rates for the germlings, the best conditions found for the species S. cymosum were 22 and 26 °C, respectively.
Collapse
Affiliation(s)
- Ticiane Rover
- Department of Cell Biology, Embryology and Genetics, Federal University of Santa Catarina (UFSC), Trindade, 88040-900, Florianópolis, Santa Catarina, Brazil,
| | | | | | | |
Collapse
|
13
|
Bogaert KA, Beeckman T, De Clerck O. Photopolarization of Fucus zygotes is determined by time sensitive vectorial addition of environmental cues during axis amplification. FRONTIERS IN PLANT SCIENCE 2015; 6:26. [PMID: 25691888 PMCID: PMC4315017 DOI: 10.3389/fpls.2015.00026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 01/12/2015] [Indexed: 05/21/2023]
Abstract
Fucoid zygotes have been extensively used to study cell polarization and asymmetrical cell division. Fertilized eggs are responsive to different environmental cues (e.g., light, gravity) for a long period before the polarity is fixed and the cells germinate accordingly. First, it is commonly believed that the direction and sense of the polarization vector are established simultaneously as indicated by the formation of an F-actin patch. Secondly, upon reorientation of the zygote, a new polar gradient is formed and it is assumed that the position of the future rhizoid pole is only influenced by the latter. Here we tested these two hypotheses investigating photopolarization in Fucus zygotes by reorienting zygotes 90° relative to a unilateral light source at different time points during the first cell cycle. We conclude that fixation of direction and sense of the polarization vector is indeed established simultaneously. However, the experiments yielded a distribution of polarization axes that cannot be explained if only the last environmental cue is supposed to determine the polarization axis. We conclude that our observations, together with published findings, can only be explained by assuming imprinting of the different polarization vectors and their integration as a vectorial sum at the moment of axis fixation. This way cells will average different serially perceived cues resulting in a polarization vector representative of the dynamic intertidal environment, instead of betting exclusively on the perceived vector at the moment of axis fixation.
Collapse
Affiliation(s)
- Kenny A. Bogaert
- Research Group Phycology, Biology Department, Ghent UniversityGhent, Belgium
| | - Tom Beeckman
- Department of Plant Biotechnology and Bioinformatics, Ghent UniversityGhent, Belgium
- Department of Plant Systems Biology, Vlaams Instituut voor BiotechnologieGhent, Belgium
| | - Olivier De Clerck
- Research Group Phycology, Biology Department, Ghent UniversityGhent, Belgium
- *Correspondence: Olivier De Clerck, Research Group Phycology, Biology Department, Ghent University, Krijgslaan 281 S8, 9000 Ghent, Belgium e-mail:
| |
Collapse
|
14
|
Beneficial effects of marine algal compounds in cosmeceuticals. Mar Drugs 2013; 11:146-64. [PMID: 23344156 PMCID: PMC3564164 DOI: 10.3390/md11010146] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Revised: 10/19/2012] [Accepted: 12/12/2012] [Indexed: 11/21/2022] Open
Abstract
The name “cosmeceuticals” is derived from “cosmetics and pharmaceuticals”, indicating that a specific product contains active ingredients. Marine algae have gained much importance in cosmeceutical product development due to their rich bioactive compounds. In the present review, marine algal compounds (phlorotannins, sulfated polysaccharides and tyrosinase inhibitors) have been discussed toward cosmeceutical application. In addition, atopic dermatitis and the possible role of matrix metalloproteinase (MMP) in skin-related diseases have been explored extensively for cosmeceutical products. The proper development of marine algae compounds will be helpful in cosmeceutical product development and in the development of the cosmeceutical industry.
Collapse
|
15
|
Abstract
Brown algae are an extremely interesting, but surprisingly poorly explored, group of organisms. They are one of only five eukaryotic lineages to have independently evolved complex multicellularity, which they express through a wide variety of morphologies ranging from uniseriate branched filaments to complex parenchymatous thalli with multiple cell types. Despite their very distinct evolutionary history, brown algae and land plants share a striking amount of developmental features. This has led to an interest in several aspects of brown algal development, including embryogenesis, polarity, cell cycle, asymmetric cell division and a putative role for plant hormone signalling. This review describes how investigations using brown algal models have helped to increase our understanding of the processes controlling early embryo development, in particular polarization, axis formation and asymmetric cell division. Additionally, the diversity of life cycles in the brown lineage and the emergence of Ectocarpus as a powerful model organism, are affording interesting insights on the molecular mechanisms underlying haploid-diploid life cycles. The use of these and other emerging brown algal models will undoubtedly add to our knowledge on the mechanisms that regulate development in multicellular photosynthetic organisms.
Collapse
Affiliation(s)
- Kenny A Bogaert
- Phycology Research Group, Department of Biology, Center for Molecular Phylogenetics and Evolution, Ghent University, Ghent, Belgium
| | | | | | | |
Collapse
|
16
|
Breygina M, Matveyeva N, Polevova S, Meychik N, Nikolaeva Y, Mamaeva A, Yermakov I. Ni(2+) effects on Nicotiana tabacum L. pollen germination and pollen tube growth. Biometals 2012; 25:1221-33. [PMID: 22983762 DOI: 10.1007/s10534-012-9584-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Accepted: 09/03/2012] [Indexed: 11/27/2022]
Abstract
To investigate the mechanisms of Ni(2+) effects on initiation and maintenance of polar cell growth, we used a well-studied model system-germination of angiosperm pollen grains. In liquid medium tobacco pollen grain forms a long tube, where the growth is restricted to the very tip. Ni(2+) did not prevent the formation of pollen tube initials, but inhibited their subsequent growth with IC(50) = 550 μM. 1 mM Ni(2+) completely blocked the polar growth, but all pollen grains remained viable, their respiration was slightly affected and ROS production did not increase. Addition of Ni(2+) after the onset of germination had a bidirectional effect on the tubes development: there was a considerable amount of extra-long tubes, which appeared to be rapidly growing, but the growth of many tubes was impaired. Studying the localization of possible targets of Ni(2+) influence, we found that they may occur both in the wall and in the cytoplasm, as confirmed by specific staining. Ni(2+) disturbed the segregation of transport vesicles in the tips of these tubes and significantly reduced the relative content of calcium in the aperture area of pollen grains, as measured by X-ray microanalysis. These factors are considered being critical for normal polar cell growth. Ni(2+) also causes the deposition of callose in the tips of the tube initials and the pollen tubes that had stopped their growth. We can assume that Ni(2+)-induced disruption of calcium homeostasis can lead to vesicle traffic impairment and abnormal callose deposition and, consequently, block the polar growth.
Collapse
Affiliation(s)
- Maria Breygina
- Department of Plant Physiology, School of Biology, Lomonosov Moscow State University, 119991, Moscow, Russia.
| | | | | | | | | | | | | |
Collapse
|
17
|
de Almeida M, de Almeida CV, Mendes Graner E, Ebling Brondani G, Fiori de Abreu-Tarazi M. Pre-procambial cells are niches for pluripotent and totipotent stem-like cells for organogenesis and somatic embryogenesis in the peach palm: a histological study. PLANT CELL REPORTS 2012; 31:1495-515. [PMID: 22534682 DOI: 10.1007/s00299-012-1264-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Revised: 03/26/2012] [Accepted: 04/10/2012] [Indexed: 05/18/2023]
Abstract
UNLABELLED The direct induction of adventitious buds and somatic embryos from explants is a morphogenetic process that is under the influence of exogenous plant growth regulators and its interactions with endogenous phytohormones. We performed an in vitro histological analysis in peach palm (Bactris gasipaes Kunth) shoot apexes and determined that the positioning of competent cells and their interaction with neighboring cells, under the influence of combinations of exogenously applied growth regulators (NAA/BAP and NAA/TDZ), allows the pre-procambial cells (PPCs) to act in different morphogenic pathways to establish niche competent cells. It is likely that there has been a habituation phenomenon during the regeneration and development of the microplants. This includes promoting the tillering of primary or secondary buds due to culturing in the absence of NAA/BAP or NAA/TDZ after a period in the presence of these growth regulators. Histological analyses determined that the adventitious roots were derived from the dedifferentiation of the parenchymal cells located in the basal region of the adventitious buds, with the establishment of rooting pole, due to an auxin gradient. Furthermore, histological and histochemical analyses allowed us to characterize how the PPCs provide niches for multipotent, pluripotent and totipotent stem-like cells for vascular differentiation, organogenesis and somatic embryogenesis in the peach palm. The histological and histochemical analyses also allowed us to detect the unicellular or multicellular origin of somatic embryogenesis. Therefore, our results indicate that the use of growth regulators in microplants can lead to habituation and to different morphogenic pathways leading to potential niche establishment, depending on the positioning of the competent cells and their interaction with neighboring cells. KEY MESSAGE Our results indicate that the use of growth regulators in microplants can lead to habituation and to different morphogenic pathways leading to potential niche establishment, depending on the positioning of the competent cells and their interaction with neighboring cells.
Collapse
Affiliation(s)
- Marcilio de Almeida
- Departamento de Ciências Biológicas PPG em Fisiologia e Bioquímica de Plantas e PPG em Recursos Florestais, Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, Piracicaba, São Paulo 13.418-900, Brazil.
| | | | | | | | | |
Collapse
|
18
|
Uváčková L, Takáč T, Boehm N, Obert B, Samaj J. Proteomic and biochemical analysis of maize anthers after cold pretreatment and induction of androgenesis reveals an important role of anti-oxidative enzymes. J Proteomics 2012; 75:1886-94. [PMID: 22252011 DOI: 10.1016/j.jprot.2011.12.033] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2011] [Revised: 12/22/2011] [Accepted: 12/23/2011] [Indexed: 11/25/2022]
Abstract
In stress conditions, microspores and young pollen grains can be switched from their normal pollen development toward an embryogenic pathway via a process called androgenesis. Androgenic embryos can produce completely homozygous, haploid or double-haploid plants. This study aimed to investigate changes in the abundance of protein species during cold pretreatment and subsequent cultivation of maize anthers on induction media using gel-based proteomics. Proteins upregulated on the third day of anther induction were identified and discussed here. Simultaneous microscopic observations revealed that the first division occurred in microspores within this period. Using 2-D electrophoresis combined with MALDI TOF/TOF MS/MS analysis 19 unique proteins were identified and classified into 8 functional groups. Proteins closely associated with metabolism, protein synthesis and cell structure were the most abundant ones. Importantly, ascorbate peroxidase, an enzyme decomposing hydrogen peroxide, was also upregulated. Isozyme analysis of peroxidases validated the proteomic data and showed increased peroxidase activities during androgenic induction. Further, the isozyme pattern of SOD revealed increased activity of the MnSOD, which could provide hydrogen peroxide as a substrate for in vivo peroxidase reactions (including ascorbate peroxidase). Together, these data reveal the role of enzymes controlling oxidative stress during induction of maize androgenesis.
Collapse
Affiliation(s)
- L'ubica Uváčková
- Institute of Plant Genetics and Biotechnology, Slovak Academy of Sciences, Akademická 2, P. O. Box 39A, 95007 Nitra, Slovak Republic
| | | | | | | | | |
Collapse
|
19
|
Rasmussen CG, Humphries JA, Smith LG. Determination of symmetric and asymmetric division planes in plant cells. ANNUAL REVIEW OF PLANT BIOLOGY 2011; 62:387-409. [PMID: 21391814 DOI: 10.1146/annurev-arplant-042110-103802] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The cellular organization of plant tissues is determined by patterns of cell division and growth coupled with cellular differentiation. Cells proliferate mainly via symmetric division, whereas asymmetric divisions are associated with initiation of new developmental patterns and cell types. Division planes in both symmetrically and asymmetrically dividing cells are established through the action of a cortical preprophase band (PPB) of cytoskeletal filaments, which is disassembled upon transition to metaphase, leaving behind a cortical division site (CDS) to which the cytokinetic phragmoplast is later guided to position the cell plate. Recent progress has been made in understanding PPB formation and function as well as the nature and function of the CDS. In asymmetrically dividing cells, division plane establishment is governed by cell polarity. Recent work is beginning to shed light on polarization mechanisms in asymmetrically dividing cells, with receptor-like proteins and potential downstream effectors emerging as important players in this process.
Collapse
Affiliation(s)
- Carolyn G Rasmussen
- Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, California 92093, USA.
| | | | | |
Collapse
|
20
|
Michel G, Tonon T, Scornet D, Cock JM, Kloareg B. The cell wall polysaccharide metabolism of the brown alga Ectocarpus siliculosus. Insights into the evolution of extracellular matrix polysaccharides in Eukaryotes. THE NEW PHYTOLOGIST 2010; 188:82-97. [PMID: 20618907 DOI: 10.1111/j.1469-8137.2010.03374.x] [Citation(s) in RCA: 264] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
• Brown algal cell walls share some components with plants (cellulose) and animals (sulfated fucans), but they also contain some unique polysaccharides (alginates). Analysis of the Ectocarpus genome provides a unique opportunity to decipher the molecular bases of these crucial metabolisms. • An extensive bioinformatic census of the enzymes potentially involved in the biogenesis and remodeling of cellulose, alginate and fucans was performed, and completed by phylogenetic analyses of key enzymes. • The routes for the biosynthesis of cellulose, alginates and sulfated fucans were reconstructed. Surprisingly, known families of cellulases, expansins and alginate lyases are absent in Ectocarpus, suggesting the existence of novel mechanisms and/or proteins for cell wall expansion in brown algae. • Altogether, our data depict a complex evolutionary history for the main components of brown algal cell walls. Cellulose synthesis was inherited from the ancestral red algal endosymbiont, whereas the terminal steps for alginate biosynthesis were acquired by horizontal gene transfer from an Actinobacterium. This horizontal gene transfer event also contributed genes for hemicellulose biosynthesis. By contrast, the biosynthetic route for sulfated fucans is an ancestral pathway, conserved with animals. These findings shine a new light on the origin and evolution of cell wall polysaccharides in other Eukaryotes.
Collapse
Affiliation(s)
- Gurvan Michel
- UPMC University Paris 6, UMR 7139 Marine Plants and Biomolecules, Station Biologique de Roscoff, F-29682 Roscoff, Bretagne, France.
| | | | | | | | | |
Collapse
|
21
|
Campàs O, Mahadevan L. Shape and dynamics of tip-growing cells. Curr Biol 2010; 19:2102-7. [PMID: 20022245 DOI: 10.1016/j.cub.2009.10.075] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Revised: 10/14/2009] [Accepted: 10/20/2009] [Indexed: 10/20/2022]
Abstract
Walled cells have the ability to remodel their shape while sustaining an internal turgor pressure that can reach values up to 10 atmospheres [1-7]. Although it is undisputed that this requires a tight and simultaneous regulation of cell wall assembly and mechanics, previous theoretical studies on tip growth focused either on the mechanical behavior of the cell wall or on its assembly [8-14]. To study the interplay between growth and mechanics in shaping a walled cell, we examine the particularly simple geometry of tip-growing cells [1, 3, 15, 16], which elongate via the assembly and expansion of cell wall in the apical region of the cell. We describe the observed irreversible expansion of the cell wall during growth as the extension of an inhomogeneous viscous fluid shell under the action of turgor pressure, fed by a material source in the neighborhood of the growing tip. This allows us to determine theoretically the radius of the cell and its growth velocity in terms of the turgor pressure and the secretion rate and rheology of the cell wall material. We derive simple scaling laws for the geometry of the cell and find that a single dimensionless parameter, which characterizes the relative roles of cell wall assembly and expansion, is sufficient to explain the observed variability in shapes of tip-growing cells. More generally, our description provides a framework to understand cell growth and remodeling in plants (pollen tubes [17], root hairs, etc. [18]), fungi (hyphal growth [19, 20] and fission and budding yeast [3]), and some bacteria [21], in the context of both tip growth and diffuse growth.
Collapse
Affiliation(s)
- Otger Campàs
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | | |
Collapse
|
22
|
Dong J, MacAlister CA, Bergmann DC. BASL controls asymmetric cell division in Arabidopsis. Cell 2009; 137:1320-30. [PMID: 19523675 DOI: 10.1016/j.cell.2009.04.018] [Citation(s) in RCA: 228] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2008] [Revised: 02/19/2009] [Accepted: 04/01/2009] [Indexed: 12/25/2022]
Abstract
Development in multicellular organisms requires the organized generation of differences. A universal mechanism for creating such differences is asymmetric cell division. In plants, as in animals, asymmetric divisions are correlated with the production of cellular diversity and pattern; however, structural constraints imposed by plant cell walls and the absence of homologs of known animal or fungal cell polarity regulators necessitates that plants utilize new molecules and mechanisms to create asymmetries. Here, we identify BASL, a novel regulator of asymmetric divisions in Arabidopsis. In asymmetrically dividing stomatal-lineage cells, BASL accumulates in a polarized crescent at the cell periphery before division, and then localizes differentially to the nucleus and a peripheral crescent in self-renewing cells and their sisters after division. BASL presence at the cell periphery is critical for its function, and we propose that BASL represents a plant-specific solution to the challenge of asymmetric cell division.
Collapse
Affiliation(s)
- Juan Dong
- Department of Biology, Stanford University, Stanford, CA 94305-5020, USA
| | | | | |
Collapse
|
23
|
Kim HJ, Triplett B. Involvement of extracellular Cu/Zn superoxide dismutase in cotton fiber primary and secondary cell wall biosynthesis. PLANT SIGNALING & BEHAVIOR 2008; 3:1119-21. [PMID: 19704453 PMCID: PMC2634474 DOI: 10.4161/psb.3.12.7039] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2008] [Accepted: 09/17/2008] [Indexed: 05/24/2023]
Abstract
Extracellular Cu/Zn superoxide dismutases (CSDs) that catalyze the conversion of superoxide to hydrogen peroxide have been suggested to be involved in lignification of secondary walls in spinach, pine and aspen. In cotton fibers, hydrogen peroxide was proposed to be involved in the induction of secondary cell wall biosynthesis. Recently, we identified extracellular CSDs from developing cotton fibers using both immunological and epitope tagging techniques. Since cotton fibers are not lignified, we suggested that extracellular CSDs may be involved in plant cell wall growth and development processes other than lignification. In this addendum, we have further characterized the extracellular CSD in cotton fiber. Immunoblots, enzyme activity assays, and transcript levels show that an extracellular CSD is present in elongating primary walls as well as thickening secondary walls of cotton fibers. Our working model proposes that extracellular hydrogen peroxide levels, regulated by redox status-related enzymes including extracellular CSDs and peroxidases, may affect the processes of wall loosening and wall tightening.
Collapse
Affiliation(s)
- Hee Jin Kim
- University of New Orleans; New Orleans, Louisiana USA
| | - Barbara Triplett
- United States Department of Agriculture—Agricultual Research Service; Southern Regional Research Center; New Orleans, Louisiana USA
| |
Collapse
|
24
|
Apostolakos P, Panteris E, Galatis B. The involvement of phospholipases C and D in the asymmetric division of subsidiary cell mother cells of Zea mays. ACTA ACUST UNITED AC 2008; 65:863-75. [PMID: 18785264 DOI: 10.1002/cm.20308] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
In the present study, the involvement of phospholipase C and D (PLC and PLD) pathways in the asymmetric divisions that produce the stomatal complexes of Zea mays was investigated. In particular, the polar organization of microtubules (MTs) and actin filaments (AFs) and the process of asymmetric division were studied in subsidiary cell mother cells (SMCs) treated with PLC and PLD modulators. In SMCs treated with butanol-1 (but-1), which blocks phosphatidic acid (PA) production via PLDs, AF-patch formation laterally to the inducing guard cell mother cell (GMC) and the subsequent asymmetric division were inhibited. In these SMCs, cell division plane determination, as expressed by MT preprophase band (MT-PPB) formation, was not disturbed. Exogenously applied PA partially relieved the but-1 effects on SMCs. In contrast to SMCs, but-1 did not affect the symmetric GMC division. Inhibition of the PLC catalytic activity by neomycin or U73122 resulted in inhibition of asymmetric SMC division, while AF-patch and MT-PPB were organized as in control SMCs. These data show that the PLC and PLD signaling pathways are involved in the transduction and/or perception of the inductive stimulus that is emitted by the GMCs and induces the polar AF organization and asymmetric SMC division. In contrast, division plane determination in SMCs, as expressed by MT-PPB formation, does not depend on PLC and PLD signaling pathways.
Collapse
|
25
|
Chinchilla D, Frugier F, Raices M, Merchan F, Giammaria V, Gargantini P, Gonzalez-Rizzo S, Crespi M, Ulloa R. A mutant ankyrin protein kinase from Medicago sativa affects Arabidopsis adventitious roots. FUNCTIONAL PLANT BIOLOGY : FPB 2008; 35:92-101. [PMID: 32688760 DOI: 10.1071/fp07209] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2007] [Accepted: 12/14/2007] [Indexed: 05/24/2023]
Abstract
A family of plant kinases containing ankyrin-repeats, the Ankyrin-Protein Kinases (APKs), shows structural resemblance to mammalian Integrin-Linked Kinases (ILKs), key regulators of mammalian cell adhesion. MsAPK1 expression is induced by osmotic stress in roots of Medicago sativa (L.) plants. The Escherichia coli-purified MsAPK1 could only phosphorylate tubulin among a variety of substrates and the enzymatic activity was strictly dependent on Mn2+. MsAPK1 is highly related to two APK genes in Arabidopsis thaliana (L.), AtAPK1 and AtAPK2. Promoter-GUS fusions assays revealed that the Arabidopsis APK genes show distinct expression patterns in roots and hypocotyls. Although Medicago truncatula (L.) plants affected in MsAPK1 expression could not be obtained using in vitro regeneration, A. thaliana plants expressing MsAPK1 or a mutant MsAPK1 protein, in which the conserved aspartate 315 of the kinase catalytic domain was replaced by asparagines (DN-lines), developed normally. The DN mutant lines showed increased capacity to develop adventitious roots when compared with control or MsAPK1-expressing plants. APK-mediated signalling may therefore link perception of external abiotic signals and the microtubule cytoskeleton, and influence adventitious root development.
Collapse
Affiliation(s)
- Delphine Chinchilla
- Institut des Sciences du Végétal (ISV), CNRS, 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette, France
| | - Florian Frugier
- Institut des Sciences du Végétal (ISV), CNRS, 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette, France
| | - Marcela Raices
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, INGEBI, FCEN-UBA, Vuelta de Obligado 2490, 2do piso, Buenos Aires, 1428 Argentina
| | - Francisco Merchan
- Institut des Sciences du Végétal (ISV), CNRS, 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette, France
| | - Veronica Giammaria
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, INGEBI, FCEN-UBA, Vuelta de Obligado 2490, 2do piso, Buenos Aires, 1428 Argentina
| | - Pablo Gargantini
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, INGEBI, FCEN-UBA, Vuelta de Obligado 2490, 2do piso, Buenos Aires, 1428 Argentina
| | - Silvina Gonzalez-Rizzo
- Institut des Sciences du Végétal (ISV), CNRS, 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette, France
| | - Martin Crespi
- Institut des Sciences du Végétal (ISV), CNRS, 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette, France
| | - Rita Ulloa
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, INGEBI, FCEN-UBA, Vuelta de Obligado 2490, 2do piso, Buenos Aires, 1428 Argentina
| |
Collapse
|
26
|
Perroud PF, Quatrano RS. BRICK1 is required for apical cell growth in filaments of the moss Physcomitrella patens but not for gametophore morphology. THE PLANT CELL 2008; 20:411-22. [PMID: 18263777 PMCID: PMC2276446 DOI: 10.1105/tpc.107.053256] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2007] [Revised: 01/11/2008] [Accepted: 01/25/2008] [Indexed: 05/19/2023]
Abstract
When BRK1, a member of the Wave/SCAR complex, is deleted in Physcomitrella patens (Deltabrk1), we report a striking reduction of filament growth resulting in smaller and fewer cells with misplaced cross walls compared with the normal protonemal cells. Using an inducible green fluorescent protein-talin to detect actin in living tissue, a characteristic broad accumulation of actin is observed at the tip of wild-type apical cells, whereas in Deltabrk1, smaller, more distinct foci of actin are present. Insertion of brk1-yfp into Deltabrk1 rescues the mutant phenotype and results in BRK1 being localized only in the tip of apical cells, the exclusive site of cell extension and division in the filament. Like BRK1, ARPC4 and At RABA4d are normally localized at the tip of apical cells and their localization is correlated with rapid tip growth in filaments. However, neither marker accumulates in apical cells of Deltabrk1 filaments. Although the Deltabrk1 phenotypes in protonema are severe, the leafy shoots or gametophores are normally shaped but stunted. These and other results suggest that BRK1 functions directly or indirectly in the selective accumulation/stabilization of actin and other proteins required for polar cell growth of filaments but not for the basic structure of the gametophore.
Collapse
|
27
|
Abstract
The giant-celled algae, which consist of cells reaching millimeters in size, some even centimeters, exhibit unique cell architecture and physiological characteristics. Their cells display a variety of morphogenetic phenomena, that is, growth, division, differentiation, and reproductive cell formation, as well as wound-healing responses. Studies using immunofluorescence microscopy and pharmacological approaches have shown that microtubules and/or actin filaments are involved in many of these events through the generation of intracellular movement of cell components or entire protoplasmic contents and the spatial control of cell activities in specific areas of the giant cells. A number of environmental factors including physical stimuli, such as light and gravity, invoke localized but also generalized cellular reactions. These have been extensively investigated to understand the regulation of morphogenesis, in particular addressing cytoskeletal and endomembrane dynamics, electrophysiological elements affecting ion fluxes, and the synthesis and mechanical properties of the cell wall. Some of the regulatory pathways involve signal transduction and hormonal control, as in other organisms. The giant unicellular green alga Acetabularia, which has proven its usefulness as an experimental model in early amputation/grafting experiments, will potentially once again serve as a useful model organism for studying the role of gene expression in orchestrating cellular morphogenesis.
Collapse
|
28
|
Abstract
Cell polarization is intimately linked to plant development, growth, and responses to the environment. Major advances have been made in our understanding of the signaling pathways and networks that regulate cell polarity in plants owing to recent studies on several model systems, e.g., tip growth in pollen tubes, cell morphogenesis in the leaf epidermis, and polar localization of PINs. From these studies we have learned that plant cells use conserved mechanisms such as Rho family GTPases to integrate both plant-specific and conserved polarity cues and to coordinate the cytoskeketon dynamics/reorganization and vesicular trafficking required for polarity establishment and maintenance. This review focuses upon signaling mechanisms for cell polarity formation in Arabidopsis, with an emphasis on Rho GTPase signaling in polarized cell growth and how these mechanisms compare with those for cell polarity signaling in yeast and animal systems.
Collapse
Affiliation(s)
- Zhenbiao Yang
- Center for Plant Cell Biology, Department of Botany and Plant Sciences, University of California, Riverside, California 92521-0124, USA.
| |
Collapse
|
29
|
|
30
|
Bisgrove SR, Kropf DL. Asymmetric Cell Divisions: Zygotes of Fucoid Algae as a Model System. PLANT CELL MONOGRAPHS 2007. [DOI: 10.1007/7089_2007_134] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
31
|
Heidstra R. Asymmetric Cell Division in Plant Development. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2007; 45:1-37. [PMID: 17585494 DOI: 10.1007/978-3-540-69161-7_1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Plant embryogenesis creates a seedling with a basic body plan. Post-embryonically the seedling elaborates with a lifelong ability to develop new tissues and organs. As a result asymmetric cell divisions serve essential roles during embryonic and postembryonic development to generate cell diversity. This review highlights selective cases of asymmetric division in the model plant Arabidopsis thaliana and describes the current knowledge on fate determinants and mechanisms involved. Common themes that emerge are: 1. role of the plant hormone auxin and its polar transport machinery; 2. a MAP kinase signaling cascade and; 3. asymmetric segregating transcription factors that are involved in several asymmetric cell divisions.
Collapse
Affiliation(s)
- Renze Heidstra
- Department of Biology, Section Molecular Genetics, Utrecht University, Padualaan 8, 3584CH Utrecht, Netherlands.
| |
Collapse
|
32
|
Perroud PF, Quatrano RS. The role of ARPC4 in tip growth and alignment of the polar axis in filaments of Physcomitrella patens. ACTA ACUST UNITED AC 2006; 63:162-71. [PMID: 16450411 DOI: 10.1002/cm.20114] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
When the actin related protein 2/3 (Arp2/3) complex member arpc4 was deleted in Physcomitrella patens (moss), the resulting null mutant (Deltaarpc4) was viable and revealed no gross changes during morphogenesis of filaments into gametophores. However, we observed a striking reduction of filamentous tip growth, resulting in smaller, denser colonies. Although polar responses of Deltaarpc4 filaments to unilateral white light were unaffected, these mutant filaments were defective in their response to polarized white light. These observations strongly suggest a specific role of the Arp2/3 complex as a downstream target for signals regulating oriented tip growth. Insertion of YFP-ARPC4 into Deltaarpc4 rescued the mutant phenotypes and localized ARPC4 exclusively to the tip cell of filaments, the site of actin dynamics and polarized growth. The ability of Deltaarpc4 to perform some but not all cellular responses will allow the study of its function in orientation of tip growth in response to directional cues (e.g. light) in a viable but mutated background.
Collapse
Affiliation(s)
- Pierre-François Perroud
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri 63130-4899, USA
| | | |
Collapse
|
33
|
Katsaros C, Karyophyllis D, Galatis B. Cytoskeleton and morphogenesis in brown algae. ANNALS OF BOTANY 2006; 97:679-93. [PMID: 16467352 PMCID: PMC2803427 DOI: 10.1093/aob/mcl023] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2005] [Revised: 11/05/2005] [Accepted: 11/28/2005] [Indexed: 05/06/2023]
Abstract
BACKGROUND Morphogenesis on a cellular level includes processes in which cytoskeleton and cell wall expansion are strongly involved. In brown algal zygotes, microtubules (MTs) and actin filaments (AFs) participate in polarity axis fixation, cell division and tip growth. Brown algal vegetative cells lack a cortical MT cytoskeleton, and are characterized by centriole-bearing centrosomes, which function as microtubule organizing centres. SCOPE Extensive electron microscope and immunofluorescence studies of MT organization in different types of brown algal cells have shown that MTs constitute a major cytoskeletal component, indispensable for cell morphogenesis. Apart from participating in mitosis and cytokinesis, they are also involved in the expression and maintenance of polarity of particular cell types. Disruption of MTs after Nocodazole treatment inhibits cell growth, causing bulging and/or bending of apical cells, thickening of the tip cell wall, and affecting the nuclear positioning. Staining of F-actin using Rhodamine-Phalloidin, revealed a rich network consisting of perinuclear, endoplasmic and cortical AFs. AFs participate in mitosis by the organization of an F-actin spindle and in cytokinesis by an F-actin disc. They are also involved in the maintenance of polarity of apical cells, as well as in lateral branch initiation. The cortical system of AFs was found related to the orientation of cellulose microfibrils (MFs), and therefore to cell wall morphogenesis. This is expressed by the coincidence in the orientation between cortical AFs and the depositing MFs. Treatment with cytochalasin B inhibits mitosis and cytokinesis, as well as tip growth of apical cells, and causes abnormal deposition of MFs. CONCLUSIONS Both the cytoskeletal elements studied so far, i.e. MTs and AFs are implicated in brown algal cell morphogenesis, expressed in their relationship with cell wall morphogenesis, polarization, spindle organization and cytokinetic mechanism. The novelty is the role of AFs and their possible co-operation with MTs.
Collapse
Affiliation(s)
- Christos Katsaros
- University of Athens, Faculty of Biology, Department of Botany, Athens 157 84, Greece.
| | | | | |
Collapse
|
34
|
Hadley R, Hable WE, Kropf DL. Polarization of the endomembrane system is an early event in fucoid zygote development. BMC PLANT BIOLOGY 2006; 6:5. [PMID: 16504093 PMCID: PMC1397835 DOI: 10.1186/1471-2229-6-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2005] [Accepted: 02/23/2006] [Indexed: 05/06/2023]
Abstract
BACKGROUND Fucoid zygotes are excellent experimental organisms for investigating mechanisms that establish cell polarity and determine the site of tip growth. A common feature of polarity establishment is targeting endocytosis and exocytosis (secretion) to localized cortical domains. We have investigated the spatiotemporal development of endomembrane asymmetry in photopolarizing zygotes, and examined the underlying cellular physiology. RESULTS The vital dye FM4-64 was used to visualize endomembranes. The endomembrane system preferentially accumulated at the rhizoid (growth) pole within 4 h of fertilization. The polarized endomembrane array was initially labile and reoriented when the developmental axis changed direction in response to changing light cues. Pharmacological studies indicated that vesicle trafficking, actin and microtubules were needed to maintain endomembrane polarity. In addition, endocytosis required a functional cortical actin cytoskeleton. CONCLUSION Endomembrane polarization is an early event in polarity establishment, beginning very soon after photolocalization of cortical actin to the presumptive rhizoid site. Targeting of endocytosis and secretion to the rhizoid cortex contributes to membrane asymmetry. We suggest that microtubule-actin interactions, possibly involving microtubule capture and stabilization at actin-rich sites in the rhizoid, may organize the endomembrane array.
Collapse
Affiliation(s)
- Rhett Hadley
- University of Utah, Department of Biology, 257 South 1400 East, Salt Lake City, Utah 84112-0840, USA
| | - Whitney E Hable
- University of Utah, Department of Biology, 257 South 1400 East, Salt Lake City, Utah 84112-0840, USA
- Department of Biology, University of Massachusetts Dartmouth, 285 Old Westport Road, North Dartmouth MA 02747, USA
| | - Darryl L Kropf
- University of Utah, Department of Biology, 257 South 1400 East, Salt Lake City, Utah 84112-0840, USA
| |
Collapse
|
35
|
Cole RA, Synek L, Zarsky V, Fowler JE. SEC8, a subunit of the putative Arabidopsis exocyst complex, facilitates pollen germination and competitive pollen tube growth. PLANT PHYSIOLOGY 2005; 138:2005-18. [PMID: 16040664 PMCID: PMC1183391 DOI: 10.1104/pp.105.062273] [Citation(s) in RCA: 138] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The exocyst, a complex of eight proteins, contributes to the morphogenesis of polarized cells in a broad range of eukaryotes. In these organisms, the exocyst appears to facilitate vesicle docking at the plasma membrane during exocytosis. Although we had identified orthologs for each of the eight exocyst components in Arabidopsis (Arabidopsis thaliana), no function has been demonstrated for any of them in plants. The gene encoding one exocyst component ortholog, AtSEC8, is expressed in pollen and vegetative tissues of Arabidopsis. Genetic studies utilizing an allelic series of six independent T-DNA mutations reveal a role for SEC8 in male gametophyte function. Three T-DNA insertions in SEC8 cause an absolute, male-specific transmission defect that can be complemented by expression of SEC8 from the LAT52 pollen promoter. Microscopic analysis shows no obvious abnormalities in the microgametogenesis of the SEC8 mutants, and the mutant pollen grains appear to respond to the signals that initiate germination. However, in vivo assays indicate that these mutant pollen grains are unable to germinate a pollen tube. The other three T-DNA insertions are associated with a partial transmission defect, such that the mutant allele is transmitted through the pollen at a reduced frequency. The partial transmission defect is only evident when mutant gametophytes must compete with wild-type gametophytes, and arises in part from a reduced pollen tube growth rate. These data support the hypothesis that one function of the putative plant exocyst is to facilitate the initiation and maintenance of the polarized growth of pollen tubes.
Collapse
Affiliation(s)
- Rex A Cole
- Department of Botany and Plant Pathology and Center for Gene Research and Biotechnology, Oregon State University, Corvallis, Oregon 97331, USA
| | | | | | | |
Collapse
|
36
|
Harries PA, Pan A, Quatrano RS. Actin-related protein2/3 complex component ARPC1 is required for proper cell morphogenesis and polarized cell growth in Physcomitrella patens. THE PLANT CELL 2005; 17:2327-39. [PMID: 16006580 PMCID: PMC1182492 DOI: 10.1105/tpc.105.033266] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2005] [Revised: 05/25/2005] [Accepted: 06/22/2005] [Indexed: 05/03/2023]
Abstract
The actin-related protein2/3 (Arp2/3) complex functions as a regulator of actin filament dynamics in a wide array of eukaryotic cells. Here, we focus on the role of the Arp2/3 complex subunit ARPC1 in elongating tip cells of protonemal filaments of the moss Physcomitrella patens. Using RNA interference (RNAi) to generate loss-of-function mutants, we show dramatic defects in cell morphology manifested as short, irregularly shaped cells with abnormal division patterns. The arpc1 RNAi plants lack the rapidly elongating caulonemal cell type found in wild-type protonemal tissue. The absence of this cell type prevents normal bud formation even in response to cytokinin treatment and results in filamentous colonies lacking leafy gametophores. In addition, arpc1 protoplasts show an increased sensitivity to osmotic shock and are defective in their ability to properly establish a polarized outgrowth during regeneration from a single cell. This failure of arpc1 protoplasts to undergo proper tip growth is rescued by ARPC1 overexpression and is phenocopied in wild-type protoplasts treated with Latrunculin B, a potent inhibitor of actin polymerization. We show in moss that ARPC1, and by inference the Arp2/3 complex, plays a critical role in controlling polarized growth and cell division patterning through its regulation of actin dynamics at the cell apex.
Collapse
Affiliation(s)
| | | | - Ralph S. Quatrano
- Department of Biology, Washington University, St. Louis, Missouri 63130-4899
| |
Collapse
|
37
|
Galatis B, Apostolakos P. The role of the cytoskeleton in the morphogenesis and function of stomatal complexes. THE NEW PHYTOLOGIST 2004; 161:613-639. [PMID: 33873710 DOI: 10.1046/j.1469-8137.2003.00986.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Microtubules (MTs) and actin filaments (AFs) form highly organized arrays in stomatal cells that play key roles in the morphogenesis of stomatal complexes. The cortical MTs controlling the orientation of the depositing cellulose microfibrils (CMs) and affecting the pattern of local wall thickenings define the mechanical properties of the walls of stomatal cells, thus regulating accurately their shape. Besides, they are involved in determination of the cell division plane. Substomatal cavity and stomatal pore formation are also MT-dependent processes. Among the cortical MT arrays, the radial ones lining the periclinal walls are of particular morphogenetic importance. Putative MT organizing centers (MTOCs) function at their focal regions, at least in guard cells (GCs), or alternatively, these regions either organize or nucleate cortical MTs. AFs are involved in cell polarization preceding asymmetrical divisions, in determination of the cell division plane and final cell plate alignment and probably in transduction of stimuli implicated in stomatal complex morphogenesis. Mature kidney-shaped GCs display radial AF arrays, undergoing definite organization cycles during stomatal movement. They are involved in stomatal movement, probably by controlling plasmalemma ion-channel activities. Radial MT arrays also persist in mature GCs, but a role in stomatal function cannot yet be attributed to them. Contents Summary 613 I. Introduction 614 II. Cytoskeleton and development of the stomatal complexes 614 III. Cytoskeleton and stomatal cell shaping 620 IV. Stomatal pore formation 624 V. Substomatal cavity formation 625 VI. Stomatal complex morphogenesis in mutants 626 VII. Cytoskeleton dynamics in functioning stomata 628 VIII. Mechanisms of microtubule organization in stomatal cells 631 IX. Conclusions-perspectives 634 References 635.
Collapse
Affiliation(s)
- Basil Galatis
- Department of Botany, Faculty of Biology, University of Athens, Athens 157 81 Greece
| | | |
Collapse
|
38
|
Shimmen T, Yonemura S, Negoro M, Lucas WJ. Studies on Alkaline Band Formation in Chara corallina: Ameliorating Effect of Ca2+ on Inhibition Induced by Osmotic Shock. ACTA ACUST UNITED AC 2003; 44:957-60. [PMID: 14519778 DOI: 10.1093/pcp/pcg120] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Although the decrease in cell turgor by application of sorbitol to the external medium did not inhibit the alkaline band formation in Chara corallina, recovery of normal turgor severely inhibited it. Alkaline-loading analysis suggested that the inhibition of alkaline band formation was caused by inhibition of HCO(3)(-) influx but not that of OH(-) efflux. In the presence of 10 mM CaCl(2), the capacity of alkaline band formation was maintained during osmotic treatment. Cells could not form alkaline bands, when plasmolysis was induced by application of sorbitol at a higher concentration. Addition of 10 mM CaCl(2) could ameliorate the inhibition caused by plasmolyis.
Collapse
Affiliation(s)
- Teruo Shimmen
- Department of Life Science, Graduate School of Science, Himeji Institute of Technology, Harima Science Park City, Hyogo, 678-1297 Japan.
| | | | | | | |
Collapse
|
39
|
Drummond R. Does a structural bridge exist between the DNA and the specialized cytoplasmic organelles during the early part of their development? A mechanism for the positioning of flagella and possibly other cytoplasmic organelles. J Theor Biol 2003; 223:309-12. [PMID: 12850451 DOI: 10.1016/s0022-5193(03)00100-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Cell differentiation involves the development of a new cytoplasm containing a set of specialized organelles such as cilia and flagella which are placed in the cell with a predetermined orientation. Arguments are put forward to show that the orientation of the flagellar apparatus could be brought about by a macromolecular structural bridge between the nucleoid and the assembling flagellar apparatus, the orientation being determined by the spatial geometry inherent in the folding of the DNA. An analysis of differentiation in unicelled eukaryotes suggests that the same basic mechanism of a structural bridge could also apply to the orientation of their cilia and flagella and perhaps may have a more general application in the positioning of cytoplasmic organelles.
Collapse
Affiliation(s)
- R Drummond
- 2/1Patty Street, Mentone, Victoria 3194, Australia.
| |
Collapse
|
40
|
Sivaguru M, Ezaki B, He ZH, Tong H, Osawa H, Baluska F, Volkmann D, Matsumoto H. Aluminum-induced gene expression and protein localization of a cell wall-associated receptor kinase in Arabidopsis. PLANT PHYSIOLOGY 2003; 132:2256-66. [PMID: 12913180 PMCID: PMC181309 DOI: 10.1104/pp.103.022129] [Citation(s) in RCA: 161] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Here, we report the aluminum (Al)-induced organ-specific expression of a WAK1 (cell wall-associated receptor kinase 1) gene and cell type-specific localization of WAK proteins in Arabidopsis. WAK1-specific reverse transcriptase-polymerase chain reaction analysis revealed an Al-induced WAK1 gene expression in roots. Short- and long-term analysis of gene expression in root fractions showed a typical "on" and "off" pattern with a first peak at 3 h of Al exposure followed by a sharp decline at 6 h and a complete disappearance after 9 h of Al exposure, suggesting the WAK1 is a further representative of Al-induced early genes. In shoots, upon root Al exposure, an increased but stable WAK1 expression was observed. Using confocal microscopy, we visualized Al-induced closure of leaf stomata, consistent with previous suggestions that the Al stress primarily experienced in roots associated with the transfer of root-shoot signals. Elevated levels of WAK protein in root cells were observed through western blots after 6 h of Al exposure, indicating a lag time between the Al-induced WAK transcription and translation. WAK proteins are localized abundantly to peripheries of cortex cells within the elongation zone of the root apex. In these root cells, disintegration of cortical microtubules was observed after Al treatment but not after the Al analog lanthanum treatments. Tip-growing control root hairs, stem stomata, and leaf stomatal pores are characterized with high amounts of WAKs, suggesting WAKs are accumulating at plasma membrane domains, which suffer from mechanical stress and lack dense arrays of supporting cortical microtubules. Further, transgenic plants overexpressing WAK1 showed an enhanced Al tolerance in terms of root growth when compared with the wild-type plants, making the WAK1 one of the important candidates for plant defense against Al toxicity.
Collapse
Affiliation(s)
- Mayandi Sivaguru
- Molecular Cytology Core Facility, Molecular Biology Program, 2 Tucker Hall, University of Missouri, Columbia, Missouri 65211-7400, USA
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Schwab B, Mathur J, Saedler R, Schwarz H, Frey B, Scheidegger C, Hülskamp M. Regulation of cell expansion by the DISTORTED genes in Arabidopsis thaliana: actin controls the spatial organization of microtubules. Mol Genet Genomics 2003; 269:350-60. [PMID: 12690443 DOI: 10.1007/s00438-003-0843-1] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2002] [Accepted: 03/19/2003] [Indexed: 10/26/2022]
Abstract
The control of the directionality of cell expansion was investigated using a class of eight genes, the so-called DISTORTED (DIS) genes, that are required for proper expansion of leaf trichomes in Arabidopsis thaliana. By tracing the separation of latex beads placed on the trichome surface, we demonstrate that trichomes grow by diffuse rather than tip growth, and that in dis mutants deviations from the normal orientation of growth can occur in all possible directions. We could not detect any differences in intracellular organization between wild-type and dis-group mutants by electron microscopy. The analysis of double mutants showed that although the expression of the dis phenotype is generally independent of branching and endoreduplication, dis mutations act synthetically in combination lesions in the ZWI gene, which encodes a kinesin motor protein. Using a MAP4:GFP marker line, we show that the organization of cortical microtubules is affected in dis-group mutants. The finding that most dis-group mutants have actin defects suggested to us that actin is involved in organizing the orientation of microtubules. By analyzing the microtubule organization in plants treated with drugs that bind to actin, we verified that actin is involved in the positioning of cortical microtubules and thereby in plant cell expansion.
Collapse
Affiliation(s)
- B Schwab
- Zentrum für Molekularbiologie der Pflanzen, Institut für Entwicklungsgenetik, Universität Tübingen, 72070 Tübingen, Germany
| | | | | | | | | | | | | |
Collapse
|
42
|
Baluska F, Wojtaszek P, Volkmann D, Barlow P. The architecture of polarized cell growth: the unique status of elongating plant cells. Bioessays 2003; 25:569-76. [PMID: 12766946 DOI: 10.1002/bies.10282] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Polarity is an inherent feature of almost all prokaryotic and eukaryotic cells. In most eukaryotic cells, growth polarity is due to the assembly of actin-based growing domains at particular locations on the cell periphery. A contrasting scenario is that growth polarity results from the establishment of non-growing domains, which are actively maintained at opposite end-poles of the cell. This latter mode of growth is common in rod-shaped bacteria and, surprisingly, also in the majority of plant cells, which elongate along the apical-basal axes of plant organs. The available data indicate that the non-growing end-pole domains of plant cells are sites of intense endocytosis and recycling. These actin-enriched end-poles serve also as signaling platforms, allowing bidirectional exchange of diverse signals along the supracellular domains of longitudinal cell files. It is proposed that these actively remodeled end-poles of elongating plant cells remotely resemble neuronal synapses.
Collapse
Affiliation(s)
- Frantisek Baluska
- Institute of Botany, Department of Plant Cell Biology, Rheinische Friedrich-Wilhelms-University of Bonn, 53115 Bonn, Germany.
| | | | | | | |
Collapse
|
43
|
Katsaros C, Karyophyllis D, Galatis B. F-actin cytoskeleton and cell wall morphogenesis in brown algae. Cell Biol Int 2003; 27:209-10. [PMID: 12681310 DOI: 10.1016/s1065-6995(02)00312-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- C Katsaros
- Department of Botany, Faculty of Biology, University of Athens, Athens 157 84, Greece.
| | | | | |
Collapse
|
44
|
Abstract
In the turgid cells of plants, protists, fungi, and bacteria, walls resist swelling; they also confer shape on the cell. These two functions are not unrelated: cell physiologists have generally agreed that morphogenesis turns on the deformation of existing wall and the deposition of new wall, while turgor pressure produces the work of expansion. In 1990, I summed up consensus in a phrase: "localized compliance with the global force of turgor pressure." My purpose here is to survey the impact of recent discoveries on the traditional conceptual framework. Topics include the recognition of a cytoskeleton in bacteria; the tide of information and insight about budding in yeast; the role of the Spitzenkörper in hyphal extension; calcium ions and actin dynamics in shaping a tip; and the interplay of protons, expansins and cellulose fibrils in cells of higher plants.
Collapse
Affiliation(s)
- Franklin M Harold
- Department of Microbiology, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
45
|
Cho HT, Cosgrove DJ. Regulation of root hair initiation and expansin gene expression in Arabidopsis. THE PLANT CELL 2002; 14:3237-53. [PMID: 12468740 PMCID: PMC151215 DOI: 10.1105/tpc.006437] [Citation(s) in RCA: 296] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2002] [Accepted: 09/15/2002] [Indexed: 05/18/2023]
Abstract
The expression of two Arabidopsis expansin genes (AtEXP7 and AtEXP18) is tightly linked to root hair initiation; thus, the regulation of these genes was studied to elucidate how developmental, hormonal, and environmental factors orchestrate root hair formation. Exogenous ethylene and auxin, as well as separation of the root from the medium, stimulated root hair formation and the expression of these expansin genes. The effects of exogenous auxin and root separation on root hair formation required the ethylene signaling pathway. By contrast, blocking the endogenous ethylene pathway, either by genetic mutations or by a chemical inhibitor, did not affect normal root hair formation and expansin gene expression. These results indicate that the normal developmental pathway for root hair formation (i.e., not induced by external stimuli) is independent of the ethylene pathway. Promoter analyses of the expansin genes show that the same promoter elements that determine cell specificity also determine inducibility by ethylene, auxin, and root separation. Our study suggests that two distinctive signaling pathways, one developmental and the other environmental/hormonal, converge to modulate the initiation of the root hair and the expression of its specific expansin gene set.
Collapse
Affiliation(s)
- Hyung-Taeg Cho
- Department of Biology, Pennsylvania State University, 208 Mueller Laboratory, University Park, Pennsylvania 16802, USA.
| | | |
Collapse
|
46
|
Ringli C, Baumberger N, Diet A, Frey B, Keller B. ACTIN2 is essential for bulge site selection and tip growth during root hair development of Arabidopsis. PLANT PHYSIOLOGY 2002; 129:1464-72. [PMID: 12177460 PMCID: PMC166735 DOI: 10.1104/pp.005777] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2002] [Revised: 04/09/2002] [Accepted: 04/13/2002] [Indexed: 05/17/2023]
Abstract
Root hairs develop as long extensions from root epidermal cells. After the formation of an initial bulge at the distal end of the epidermal cell, the root hair structure elongates by tip growth. Because root hairs are not surrounded by other cells, root hair formation provides an excellent system for studying the highly complex process of plant cell growth. Pharmacological experiments with actin filament-interfering drugs have provided evidence that the actin cytoskeleton is an important factor in the establishment of cell polarity and in the maintenance of the tip growth machinery at the apex of the growing root hair. However, there has been no genetic evidence to directly support this assumption. We have isolated an Arabidopsis mutant, deformed root hairs 1 (der1), that is impaired in root hair development. The DER1 locus was cloned by map-based cloning and encodes ACTIN2 (ACT2), a major actin of the vegetative tissue. The three der1 alleles develop the mutant phenotype to different degrees and are all missense mutations, thus providing the means to study the effect of partially functional ACT2. The detailed characterization of the der1 phenotypes revealed that ACT2 is not only involved in root hair tip growth, but is also required for correct selection of the bulge site on the epidermal cell. Thus, the der1 mutants are useful tools to better understand the function of the actin cytoskeleton in the process of root hair formation.
Collapse
Affiliation(s)
- Christoph Ringli
- Institute of Plant Biology, University of Zurich, 8008 Zurich, Switzerland.
| | | | | | | | | |
Collapse
|
47
|
Komis G, Apostolakos P, Galatis B. Hyperosmotic stress induces formation of tubulin macrotubules in root-tip cells of Triticum turgidum: their probable involvement in protoplast volume control. PLANT & CELL PHYSIOLOGY 2002; 43:911-22. [PMID: 12198194 DOI: 10.1093/pcp/pcf114] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Treatment of root-tip cells of Triticum turgidum with 1 M mannitol solution for 30 min induces microtubule (Mt) disintegration in the plasmolyzed protoplasts. Interphase plasmolyzed cells possess many cortical, perinuclear and endoplasmic macrotubules, 35 nm in mean diameter, forming prominent arrays. In dividing cells macrotubules assemble into aberrant mitotic and cytokinetic apparatuses resulting in the disturbance of cell division. Putative tubulin paracrystals were occasionally observed in plasmolyzed cells. The quantity of polymeric tubulin in plasmolyzed cells exceeds that in control cells. Root-tip cells exposed for 2-8 h to plasmolyticum recover partially, although the volume of the plasmolyzed protoplast does not change detectably. Among other events, the macrotubules are replaced by Mts, chromatin assumes its typical appearance and the cells undergo typical cell divisions. Additionally, polysaccharidic material is found in the periplasmic space. Oryzalin and colchicine treatment induced macrotubule disintegration and a significant reduction of protoplast volume in every plasmolyzed cell type examined, whereas cytochalasin B had only minor effects restricted to differentiated cells. These results suggest that Mt destruction by hyperosmotic stress, and their replacement by tubulin macrotubules and putative tubulin paracrystals is a common feature among angiosperms and that macrotubules are involved in the mechanism of protoplast volume regulation.
Collapse
Affiliation(s)
- George Komis
- Faculty of Biology, Department of Botany, University of Athens, Athens 157 84, Greece
| | | | | |
Collapse
|
48
|
Abstract
The functions of microtubules and actin filaments during various processes that are essential for the growth, reproduction and survival of single plant cells have been well characterized. A large number of plant structural cytoskeletal or cytoskeleton-associated proteins, as well as genes encoding such proteins, have been identified. Although many of these genes and proteins have been partially characterized with respect to their functions, a coherent picture of how they interact to execute cytoskeletal functions in plant cells has yet to emerge. Cytoskeleton-controlled cellular processes are expected to play crucial roles during plant cell differentiation and organogenesis, but what exactly these roles are has only been investigated in a limited number of studies in the whole plant context. The intent of this review is to discuss the results of these studies in the light of what is known about the cellular functions of the plant cytoskeleton, and about the proteins and genes that are required for them. Directions are outlined for future work to advance our understanding of how the cytoskeleton contributes to plant organogenesis and development.
Collapse
Affiliation(s)
- Benedikt Kost
- Laboratory of Plant Cell Biology, Institute of Molecular Biology, National University of Singapore, 1 Research Link, Singapore 117 604
| | | | | |
Collapse
|
49
|
Serna L, Torres-Contreras J, Fenoll C. Specification of stomatal fate in Arabidopsis: evidences for cellular interactions. THE NEW PHYTOLOGIST 2002; 153:399-404. [PMID: 33863214 DOI: 10.1046/j.0028-646x.2001.00343.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Stomata are bi-celled epidermal structures distributed in predictable patterns providing plants with pathways for gas exchange with the atmosphere. In Arabidopsis thaliana, stomatal formation is emerging as an elegant and powerful model system to study the genetic and molecular control of cell fate specification and pattern formation in multicellular organisms. In this review, we describe the mechanisms that regulate stomatal distribution in this model plant. The emerging view indicates that cellular interactions play a relevant role during stomatal pattern formation. These cellular interactions are not restricted to a cell layer and signalling within the epidermis, between the epidermis and the underlying tissues and between organs seem to play a relevant role during stomatal formation. Whatever the nature of the different signals, the stomatal pattern must arise as the result of the integration by the epidermal cells of multiple inputs. Uncovering the molecular nature of such signals and understanding the specific role during stomatal development provides a formidable task for the future.
Collapse
Affiliation(s)
- Laura Serna
- Facultad de Ciencias del Medio Ambiente, Universidad de Castilla-La Mancha, E-45071 Toledo, Spain
| | - Javier Torres-Contreras
- Facultad de Ciencias del Medio Ambiente, Universidad de Castilla-La Mancha, E-45071 Toledo, Spain
| | - Carmen Fenoll
- Facultad de Ciencias del Medio Ambiente, Universidad de Castilla-La Mancha, E-45071 Toledo, Spain
| |
Collapse
|
50
|
Bisgrove SR, Kropf DL. Asymmetric cell division in fucoid algae: a role for cortical adhesions in alignment of the mitotic apparatus. J Cell Sci 2001; 114:4319-28. [PMID: 11739663 DOI: 10.1242/jcs.114.23.4319] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The first cell division in zygotes of the fucoid brown alga Pelvetia compressa is asymmetric and we are interested in the mechanism controlling the alignment of this division. Since the division plane bisects the mitotic apparatus, we investigated the timing and mechanism of spindle alignments. Centrosomes, which give rise to spindle poles, aligned with the growth axis in two phases--a premetaphase rotation of the nucleus and centrosomes followed by a postmetaphase alignment that coincided with the separation of the mitotic spindle poles during anaphase and telophase. The roles of the cytoskeleton and cell cortex in the two phases of alignment were analyzed by treatment with pharmacological agents. Treatments that disrupted cytoskeleton or perturbed cortical adhesions inhibited pre-metaphase alignment and we propose that this rotational alignment is effected by microtubules anchored at cortical adhesion sites. Postmetaphase alignment was not affected by any of the treatments tested, and may be dependent on asymmetric cell morphology.
Collapse
Affiliation(s)
- S R Bisgrove
- University of Utah, Department of Biology, 257 South 1400 East, Salt Lake City, UT 84112-0840, USA.
| | | |
Collapse
|