1
|
Ramadoss A, Poosarla VG, Sadiya S, Shivshetty N. A novel active biopolymer coating of pectin, potato starch, and pyrogallol: Impact on postharvest quality of tomato (Solanum lycopersicum L.). J Food Sci 2025; 90:e70179. [PMID: 40183776 PMCID: PMC11970456 DOI: 10.1111/1750-3841.70179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 03/13/2025] [Accepted: 03/17/2025] [Indexed: 04/05/2025]
Abstract
Recently, there has been an increasing interest in biodegradable films for extending food's shelf life. This study developed pectin-potato starch-based films incorporating varying pyrogallol concentrations and evaluated shelf life their physical, antioxidant, mechanical, optical, antibacterial, structural, biodegradation, and shelf-life properties. Among the tested films (F1, pectin; F2, pectin + potato starch; F3, pectin + potato starch + 0.5%pyrogallol; and F4, pectin + potato starch + 1%pyrogallol), F4 exhibited superior antibacterial activity against Staphylococcus aureus (42 mm), Klebsiella pneumoniae (20.5 mm), and Escherichia coli (25.5 mm), antioxidant activity (AA) (95% (diphenylpicrylhydrazyl), 76% (metal chelating activity), and 87% (hydroxyl radical scavenging assay)), mechanical, and soil biodegradation. Fourier transform infrared spectroscopy and field emission scanning electron microscopy confirmed biocompatibility, whereas differential scanning calorimetry studies showed thermal stability. Shelf-life studies on tomatoes at 30°C demonstrated that F4 film coating extended shelf life to 21 days by reducing weight loss (14.5%), total phenolic content (25 mg/100 g), AA (53.5%), firmness (46 N), and titratable acidity (0.38%) while maintaining the total soluble solids, pH, lycopene content, color, and microbial inhibition. This study introduces a novel active biodegradable film with enhanced antimicrobial, mechanical, and antioxidant properties for sustainable food packaging applications. PRACTICAL APPLICATION: This study introduces an eco-friendly biopolymer coating formulated to extend the shelf life of food by reducing spoilage and maintaining quality during storage. The coating is cost-effective, easy to produce, and can be used for industrial-scale applications by giving a sustainable alternative to synthetic packaging. It can provide consumers with long-lasting produce by maintaining freshness, reducing food waste, and promoting environmentally conscious food preservation practices.
Collapse
Affiliation(s)
- Aparna Ramadoss
- Department of Life Sciences, GITAM School of ScienceGITAM (Deemed to be University)VisakhapatnamAndhra PradeshIndia
| | - Venkata Giridhar Poosarla
- Department of Life Sciences, GITAM School of ScienceGITAM (Deemed to be University)VisakhapatnamAndhra PradeshIndia
| | - Shaik Sadiya
- Department of Life Sciences, GITAM School of ScienceGITAM (Deemed to be University)VisakhapatnamAndhra PradeshIndia
| | - Nagaveni Shivshetty
- Department of Life Sciences, GITAM School of ScienceGITAM (Deemed to be University)VisakhapatnamAndhra PradeshIndia
| |
Collapse
|
2
|
Napo M, Kock A, Alayande KA, Sulyok M, Ezekiel CN, Uehling J, Pawlowska TE, Adeleke RA. Tomato rot by Rhizopus microsporus alters native fungal community composition and secondary metabolite production. Front Microbiol 2025; 16:1508519. [PMID: 39949627 PMCID: PMC11823476 DOI: 10.3389/fmicb.2025.1508519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 01/02/2025] [Indexed: 02/16/2025] Open
Abstract
Rhizopus rot is considered one of the most common diseases influencing global production and yield of horticulture commodities. However, the factors contributing to this pattern of prevalence are uncertain. Here, we focused on R. microsporus, which is known to rely on its endosymbiotic bacterium, Mycetohabitans, to produce toxins that interfere with plant development and inhibit the growth of other fungi. We assessed the impact of the symbiotic R. microsporus harboring its endosymbiont as well as the fungus cured of it on: (1) the magnitude of spoilage in tomato fruits, as evaluated by Koch's postulate for pathogenicity, (2) the shifts in native communities of endophytic fungi inhabiting these fruits, as examined by ITS rRNA gene metabarcoding and (3) secondary metabolites generated by these communities, as analyzed using multi-analyte LC-MS/MS. The pathogenicity test showed that the symbiotic endobacterium-containing R. microsporus W2-50 was able to cause tomato fruit spoilage. This was accompanied by decreased relative abundance of Alternaria spp. and an increase in the relative abundance of Penicillium spp. that may have facilitated the observed spoilage. In conclusion, symbiotic W2-50 appeared to facilitate fruit spoilage, possibly through successful colonization or toxin production by its endosymbiont.
Collapse
Affiliation(s)
- Mmanoko Napo
- Unit of Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| | - Alicia Kock
- Unit of Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| | - Kazeem A. Alayande
- Unit of Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| | - Michael Sulyok
- Department of Agrobiotechnology, Institute of Bioanalytics and Agro-Metabolomics, University of Natural Resources and Life Sciences Vienna, Tulln, Austria
- Feed and Food Quality, Safety and Innovation GmbH, Tulln, Austria
| | - Chibundu N. Ezekiel
- Department of Agrobiotechnology, Institute of Bioanalytics and Agro-Metabolomics, University of Natural Resources and Life Sciences Vienna, Tulln, Austria
| | - Jessie Uehling
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States
| | - Teresa E. Pawlowska
- School of Integrative Plant Science, Plant Pathology & Plant-Microbe Biology, Cornell University, Ithaca, NY, United States
| | - Rasheed A. Adeleke
- Unit of Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| |
Collapse
|
3
|
Singh H, Kamal YT, Pandohee J, Mishra AK, Biswas A, Mohanto S, Kumar A, Nag S, Mishra A, Singh M, Gupta H, Chopra H. Dietary phytochemicals alleviate the premature skin aging: A comprehensive review. Exp Gerontol 2025; 199:112660. [PMID: 39694450 DOI: 10.1016/j.exger.2024.112660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 11/27/2024] [Accepted: 12/14/2024] [Indexed: 12/20/2024]
Abstract
Skin aging, often called as premature skin aging, is the hastened deterioration of the skin resulting from multiple factors, including UV radiation, environmental contaminants, inadequate nutrition, stress, etc. Dietary phytochemicals, present in fruits, vegetables, and other plant-derived meals, have gained interest due to their efficiency to eradicate free radicals and lowering the release of inflammatory mediators which accounts for premature skin aging. Several dietary phytochemicals, i.e., carotenoids, polyphenols, flavonoids, terpenes, alkaloids, phytosterols, etc., exhibited potential anti-oxidant, anti-inflammatory, suppression of UV damage, and promote collagen synthesis. In addition, dietary phytochemicals include sulfur, present in various foods safeguard the skin against oxidative stress and inflammation. Thus, this article delves into the comprehension of various dietary phytochemicals investigated to alleviate the premature skin aging. The article further highlights specific phytochemicals and their sources, bioavailability, mechanisms, etc., in the context of safeguarding the skin against oxidative stress and inflammation. The present manuscript is a systematic comprehension of the available literature on dietary phytochemicals and skin aging in various database, i.e., PubMed, ScienceDirect, Google Scholar using the keywords, i.e., "dietary phytochemicals", "nutraceuticals", "skin aging" etc., via Boolean operator, i.e., "AND". The dietary guidelines presented in the manuscript is a unique summarization for a broad reader to understand the inclusion of various functional foods, nutrients, supplements, etc., to prevent premature skin aging. Thus, the utilization of dietary phytochemicals has shown a promising avenue in preventing skin aging, however, the future perspectives and challenges of such phytochemicals should be comprehended via clinical investigations.
Collapse
Affiliation(s)
- Harpreet Singh
- School of Pharmaceutical Sciences, IFTM University, Moradabad, Uttar Pradesh 244102, India.
| | - Y T Kamal
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha 611441, Saudi Arabia
| | - Jessica Pandohee
- Sydney Mass Spectrometry, University of Sydney, Camperdown, New South Wales 2006, Australia
| | - Arun Kumar Mishra
- SOS School of Pharmacy, IFTM University, Moradabad, Uttar Pradesh 244102, India.
| | - Aritra Biswas
- Department of Microbiology, Ramakrishna Mission Vivekananda Centenary College, Rahara Akhil Mukherjee Road, Khardaha, West Bengal 700118, India
| | - Sourav Mohanto
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka 575018, India
| | - Arvind Kumar
- School of Pharmaceutical Sciences, IFTM University, Moradabad, Uttar Pradesh 244102, India
| | - Sagnik Nag
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia
| | - Amrita Mishra
- School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi 110017, India
| | - Mhaveer Singh
- Pharmacy Academy, IFTM University, Moradabad, Uttar Pradesh 244102, India
| | - Himanshu Gupta
- Department of Chemistry, School of Sciences, IFTM University, Moradabad, Uttar Pradesh, India
| | - Hitesh Chopra
- Department of Biosciences, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai 602105, Tamil Nadu, India
| |
Collapse
|
4
|
Deleu S, Becherucci G, Godny L, Mentella MC, Petito V, Scaldaferri F. The Key Nutrients in the Mediterranean Diet and Their Effects in Inflammatory Bowel Disease: A Narrative Review. Nutrients 2024; 16:4201. [PMID: 39683595 DOI: 10.3390/nu16234201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 11/29/2024] [Accepted: 12/02/2024] [Indexed: 12/18/2024] Open
Abstract
The gut microbiome, a collection of gut microorganisms, is crucial in the development and progression of inflammatory bowel diseases (IBD). Therefore, diet and dietary interventions are promising strategies to shape the gut microbiota for IBD management. Of all the diets studied in the IBD field, the Mediterranean diet has the least restrictive nature, promoting long-term adherence. The Mediterranean diet is rich in plants, with a high daily intake of fruits and vegetables (high in fiber, antioxidants, and vitamins), olive oil, whole grains, legumes, and nuts. It includes the moderate consumption of animal products such as oily fish (rich in mono- and polyunsaturated fatty acids), dairy products, and poultry, with a limited intake of red meat and processed foods. This diet is associated with a decreased risk of chronic diseases, including IBD. However, the mechanisms of specific nutrients behind these effects in the Mediterranean diet remain under investigation. Therefore, in this review, we aim to provide an overview of the nutrients that are abundant in the Mediterranean diet and their effects on IBD, with a main focus on preclinical evidence. While several nutrients like fructo-oligosaccharide, chitosan, plant-derived protein, polyphenols, omega-3 polyunsaturated fatty acids, and resveratrol have shown potential beneficial effects in preclinical models, clinical evidence is often limited. However, understanding the complex interactions between specific nutrients and IBD is essential to developing a tailored, multidisciplinary, and personalized approach for disease management; therefore, further research is required.
Collapse
Affiliation(s)
- Sara Deleu
- CEMAD Translational Research Laboratories, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Guia Becherucci
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Lihi Godny
- Division of Gastroenterology and Nutrition Unit, Rabin Medical Center, Petah-Tikva 49100, Israel
| | - Maria Chiara Mentella
- UOC di Nutrizione Clinica, Dipartimento Scienze Mediche e Chirurgiche Addominali ed Endocrino-Metaboliche, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Valentina Petito
- CEMAD Translational Research Laboratories, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Franco Scaldaferri
- CEMAD Translational Research Laboratories, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| |
Collapse
|
5
|
Albadrani GM, Altyar AE, Kensara OA, Haridy MA, Sayed AA, Mohammedsaleh ZM, Al-Ghadi MQ, Saleem RM, Abdel-Daim MM. Lycopene alleviates 5-fluorouracil-induced nephrotoxicity by modulating PPAR-γ, Nrf2/HO-1, and NF-κB/TNF-α/IL-6 signals. Ren Fail 2024; 46:2423843. [PMID: 39540361 PMCID: PMC11565692 DOI: 10.1080/0886022x.2024.2423843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 10/05/2024] [Accepted: 10/26/2024] [Indexed: 11/16/2024] Open
Abstract
5-Fluorouracil (5-FU) is one of the most used anticancer drugs. However, its nephrotoxicity-associated drawback is of clinical concern. Lycopene (LYC) is a red carotenoid with remarkable anti-inflammatory and anti-oxidative properties. In this study, rats were divided randomly into five groups: control, lycopene (10 mg) (10 mg/kg/day; P.O), 5-FU (30 mg/kg/day; i.p.), Lycopene (5 mg) + 5-FU (5 mg/kg + 30 mg/kg/day), and lycopene (10 mg) + 5-FU (10 mg/kg + 30 mg/kg/day). LYC attenuated the loss of renal function induced by 5-FU in a dose-dependent manner. Rats co-treated with LYC had lower serum urea, creatinine, uric acid and KIM-1 levels, and a higher serum albumin level than those receiving 5-FU alone. Furthermore, co-treatment with the high dose of LYC maintained renal oxidant-antioxidant balance by ameliorating/preventing the loss of antioxidants and the elevation of malondialdehyde. Rats treated with 5-FU had markedly lower renal levels of PPAR-gamma, HO-1, Nfr2, and Il-10 and higher levels of NF-kB, TNF-alpha, and IL6 compared to the control rats. Co-treatment with LYC attenuated the reduction in PPAR-gamma, HO-1, Nfr2, and IL-10 levels and moderated the elevated levels of NF-kB, TNF-alpha, and IL-6. The kidneys from rats co-treated with lycopene (10 mg) + 5-FU did not show the degenerative changes in the glomerular tufts and tubules observed for the rats treated with 5-FU alone. In conclusion, LYC is a promising therapeutic strategy for attenuating 5-FU-induced nephrotoxicity through the restoration of antioxidant activities and inhibition of inflammatory responses by modulating PPAR-γ, Nrf2/HO-1, and NF-κB/TNF-α/IL-6, signals.
Collapse
Affiliation(s)
- Ghadeer M. Albadrani
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Ahmed E. Altyar
- Department of Pharmacy Practice, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
- Pharmacy Program, Batterjee Medical College, Jeddah, Saudi Arabia
| | - Osama A. Kensara
- Department of Clinical Nutrition, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Mohie A.M Haridy
- Department of Pathology and Laboratory Diagnosis, College of Veterinary Medicine, Qassim University, Buraidah, Saudi Arabia
| | - Amany A. Sayed
- Zoology Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Zuhair M. Mohammedsaleh
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Muath Q. Al-Ghadi
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Rasha Mohammed Saleem
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Al-Baha University, Al-Baha, Saudi Arabia
| | - Mohamed M. Abdel-Daim
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, Jeddah, Saudi Arabia
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
6
|
Yoon KN, Yoon YS, Hong HJ, Yeom SJ, Park JH, Song BS, Eun JB, Kim JK. Improving storage duration of tomatoes (Solanum lycopersicum) through electron beam technology. J Food Sci 2024; 89:7928-7943. [PMID: 39415076 DOI: 10.1111/1750-3841.17446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/12/2024] [Accepted: 09/17/2024] [Indexed: 10/18/2024]
Abstract
Electron beam (EB) technology typically consists of high-energy electron streams produced by a linear accelerator. Although promising, the use of EB irradiation as a technique to delay ripening and prevent spoilage in tomatoes has not been extensively investigated. In this study, the effectiveness of EB irradiation in prolonging the shelf life of tomatoes postharvest was investigated. The results indicated that EB irradiation successfully reduced microbial contamination and decay, preserved key quality attributes (such as total soluble solids, titratable acidity, pH, and firmness), and significantly minimized weight loss. Notably, the treatment delayed the biosynthesis of lycopene, a key indicator of ripening, without adversely affecting phenolic content and antioxidant activity, which remained consistent regardless of irradiation. Additionally, different methods for detecting irradiation were evaluated. Thermoluminescence analysis proved to be the most dependable technique, especially for doses exceeding 600 Gy, due to its high sensitivity and specificity. In contrast, photostimulated luminescence and electron spin resonance analyses showed limitations in accurately identifying the irradiation status of foods with high moisture content, such as tomatoes. This study confirms that EB irradiation, while maintaining postharvest quality, extends the shelf life of tomatoes by 5-10 days, suggesting its potential for commercial application in food preservation.
Collapse
Affiliation(s)
- Ki-Nam Yoon
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si, Republic of Korea
- Department of Food Science and Technology, Graduate School of Chonnam National University, Gwangju, Republic of Korea
| | - Yeong-Seok Yoon
- Safety and Processing Research Division, National Institute of Fisheries Science, Busan, Republic of Korea
| | - Hae-Jung Hong
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si, Republic of Korea
| | - Seo-Joon Yeom
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si, Republic of Korea
| | - Jong-Heum Park
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si, Republic of Korea
| | - Beom-Seok Song
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si, Republic of Korea
| | - Jong-Bang Eun
- Department of Food Science and Technology, Graduate School of Chonnam National University, Gwangju, Republic of Korea
| | - Jae-Kyung Kim
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si, Republic of Korea
| |
Collapse
|
7
|
Sharma S, Dedha A, Gupta MM, Singh N, Gautam A, Kumari A. Green and sustainable technologies for extraction of carotenoids from natural sources: a comprehensive review. Prep Biochem Biotechnol 2024; 55:245-277. [PMID: 39427252 DOI: 10.1080/10826068.2024.2402905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2024]
Abstract
In recent years, driven by increasing consumer demand for natural and healthy convenient foods, the food industry has been shifting from synthetic to natural products. This shift is also reflected in the growing popularity of non-conventional extraction methods for pigments, which are favored for sustainability and environment-friendliness compared to conventional processes. This review aims to investigate the extraction of carotenoids from a variety of natural sources, including marine sources like fungus, microalgae, and crustaceans, as well as widely studied plants like tomatoes and carrots. Additionally, it delves into the recovery of valuable carotenoids from waste products like pomace and peels, highlighting the nutritional and environmental benefits. The review also emphasizes the role of green solvents such limonene, vegetable oils, ionic liquids, supercritical fluids, and natural deep eutectic solvents in effective and ecologically friendly carotenoid extraction. These technologies support the ideas of a circular and sustainable economy in addition to having a smaller negative impact on the environment. Overall, the present study highlights the crucial importance of green extraction technologies in achieving the dual goals of sustainability and public safety.
Collapse
Affiliation(s)
- Surbhi Sharma
- Amity Institute of Biotechnology, Amity University, Noida, India
| | - Anshika Dedha
- Amity Institute of Biotechnology, Amity University, Noida, India
| | - Manju M Gupta
- Sri Aurobindo College, Delhi University, Delhi, India
| | - Nahar Singh
- Council of Scientific and Industrial Research-National Physical Laboratory (CSIR-NPL), Delhi, India
| | - Arvind Gautam
- Council of Scientific and Industrial Research-National Physical Laboratory (CSIR-NPL), Delhi, India
| | - Abha Kumari
- Amity Institute of Biotechnology, Amity University, Noida, India
| |
Collapse
|
8
|
Lee YH, Lee JH, Jeon SM, Park IK, Jang HB, Kim SA, Park SD, Shim JJ, Hong SS, Lee JH. The Effect of Organic Vegetable Mixed Juice on Blood Circulation and Intestine Flora: Randomized, Double-Blinded, Placebo-Controlled Clinical Trial. Diseases 2024; 12:223. [PMID: 39329892 PMCID: PMC11431145 DOI: 10.3390/diseases12090223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/09/2024] [Accepted: 09/11/2024] [Indexed: 09/28/2024] Open
Abstract
Epidemiological evidence suggests that fruit and vegetable intake significantly positively affects cardiovascular health. Since vegetable juice is more accessible than raw vegetables, it attracts attention as a health functional food for circulatory diseases. Therefore, this study measured blood lipids, antioxidants, blood circulation indicators, and changes in the microbiome to confirm the effect of organic vegetable mixed juice (OVJ) on improving blood circulation. This 4-week, randomized, double-blinded, placebo-controlled study involved adult men and women with borderline total cholesterol (TC) and low-density lipoprotein (LDL) levels. As a result, blood lipid profile indicators, such as TC, triglycerides, LDL cholesterol, and apolipoprotein B, decreased (p < 0.05) in the OVJ group compared with those in the placebo group. Additionally, the antioxidant biomarker superoxide dismutase increased (p < 0.05). In contrast, systolic and diastolic blood viscosities, as blood circulation-related biomarkers, decreased (p < 0.05) in the OVJ group compared with those in the placebo group. After the intervention, a fecal microbiome analysis confirmed differences due to changes in the intestinal microbiome composition between the OVJ and placebo groups. In conclusion, our research results confirmed that consuming OVJ improves blood circulation by affecting the blood lipid profile, antioxidant enzymes, and microbiome changes.
Collapse
Affiliation(s)
- Yun-Ha Lee
- R&BD Center, Hy Co., Ltd., 22, Giheungdanji-ro 24beon-gil, Giheung-gu, Yongin-si 17086, Republic of Korea; (Y.-H.L.); (J.-H.L.); (S.-M.J.); (I.-K.P.); (H.-B.J.); (S.-A.K.); (S.-D.P.); (J.-J.S.)
| | - Jae-Ho Lee
- R&BD Center, Hy Co., Ltd., 22, Giheungdanji-ro 24beon-gil, Giheung-gu, Yongin-si 17086, Republic of Korea; (Y.-H.L.); (J.-H.L.); (S.-M.J.); (I.-K.P.); (H.-B.J.); (S.-A.K.); (S.-D.P.); (J.-J.S.)
| | - Soo-Min Jeon
- R&BD Center, Hy Co., Ltd., 22, Giheungdanji-ro 24beon-gil, Giheung-gu, Yongin-si 17086, Republic of Korea; (Y.-H.L.); (J.-H.L.); (S.-M.J.); (I.-K.P.); (H.-B.J.); (S.-A.K.); (S.-D.P.); (J.-J.S.)
| | - Il-Kyu Park
- R&BD Center, Hy Co., Ltd., 22, Giheungdanji-ro 24beon-gil, Giheung-gu, Yongin-si 17086, Republic of Korea; (Y.-H.L.); (J.-H.L.); (S.-M.J.); (I.-K.P.); (H.-B.J.); (S.-A.K.); (S.-D.P.); (J.-J.S.)
| | - Hyun-Bin Jang
- R&BD Center, Hy Co., Ltd., 22, Giheungdanji-ro 24beon-gil, Giheung-gu, Yongin-si 17086, Republic of Korea; (Y.-H.L.); (J.-H.L.); (S.-M.J.); (I.-K.P.); (H.-B.J.); (S.-A.K.); (S.-D.P.); (J.-J.S.)
| | - Soo-A Kim
- R&BD Center, Hy Co., Ltd., 22, Giheungdanji-ro 24beon-gil, Giheung-gu, Yongin-si 17086, Republic of Korea; (Y.-H.L.); (J.-H.L.); (S.-M.J.); (I.-K.P.); (H.-B.J.); (S.-A.K.); (S.-D.P.); (J.-J.S.)
| | - Soo-Dong Park
- R&BD Center, Hy Co., Ltd., 22, Giheungdanji-ro 24beon-gil, Giheung-gu, Yongin-si 17086, Republic of Korea; (Y.-H.L.); (J.-H.L.); (S.-M.J.); (I.-K.P.); (H.-B.J.); (S.-A.K.); (S.-D.P.); (J.-J.S.)
| | - Jae-Jung Shim
- R&BD Center, Hy Co., Ltd., 22, Giheungdanji-ro 24beon-gil, Giheung-gu, Yongin-si 17086, Republic of Korea; (Y.-H.L.); (J.-H.L.); (S.-M.J.); (I.-K.P.); (H.-B.J.); (S.-A.K.); (S.-D.P.); (J.-J.S.)
| | - Seong-Soo Hong
- Department of Gastroenterology, Vievis Namuh Hospital, 627, Nonhyeon-ro, Gangnam-gu, Seoul 06117, Republic of Korea
| | - Jae-Hwan Lee
- R&BD Center, Hy Co., Ltd., 22, Giheungdanji-ro 24beon-gil, Giheung-gu, Yongin-si 17086, Republic of Korea; (Y.-H.L.); (J.-H.L.); (S.-M.J.); (I.-K.P.); (H.-B.J.); (S.-A.K.); (S.-D.P.); (J.-J.S.)
| |
Collapse
|
9
|
Ro N, Oh H, Ko HC, Yi J, Na YW, Haile M. Genome-Wide Analysis of Fruit Color and Carotenoid Content in Capsicum Core Collection. PLANTS (BASEL, SWITZERLAND) 2024; 13:2562. [PMID: 39339537 PMCID: PMC11435234 DOI: 10.3390/plants13182562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/05/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024]
Abstract
This study investigated carotenoid content and fruit color variation in 306 pepper accessions from diverse Capsicum species. Red-fruited accessions were predominant (245 accessions), followed by orange (35) and yellow (20). Carotenoid profiles varied significantly across accessions, with capsanthin showing the highest mean concentration (239.12 μg/g), followed by β-cryptoxanthin (63.70 μg/g) and zeaxanthin (63.25 μg/g). Total carotenoid content ranged from 7.09 to 2566.67 μg/g, emphasizing the diversity within the dataset. Correlation analysis revealed complex relationships between carotenoids, with strong positive correlations observed between total carotenoids and capsanthin (r = 0.94 ***), β-cryptoxanthin (r = 0.87 ***), and zeaxanthin (r = 0.84 ***). Principal component analysis (PCA) identified two distinct carotenoid groups, accounting for 67.6% of the total variance. A genome-wide association study (GWAS) identified 91 significant single nucleotide polymorphisms (SNPs) associated with fruit color (15 SNPs) and carotenoid content (76 SNPs). These SNPs were distributed across all chromosomes, with varying numbers on each. Among individual carotenoids, α-carotene was associated with 28 SNPs, while other carotenoids showed different numbers of associated SNPs. Candidate genes encoding diverse proteins were identified near significant SNPs, potentially contributing to fruit color variation and carotenoid accumulation. These included pentatricopeptide repeat-containing proteins, mitochondrial proton/calcium exchangers, E3 ubiquitin-protein ligase SINAT2, histone-lysine N-methyltransferase, sucrose synthase, and various enzymes involved in metabolic processes. Seven SNPs exhibited pleiotropic effects on multiple carotenoids, particularly β-cryptoxanthin and capsanthin. The findings of this study provide insights into the genetic architecture of carotenoid biosynthesis and fruit color in peppers, offering valuable resources for targeted breeding programs aimed at enhancing the nutritional and sensory attributes of pepper varieties.
Collapse
Affiliation(s)
- Nayoung Ro
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Republic of Korea
| | - Hyeonseok Oh
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Republic of Korea
| | - Ho-Cheol Ko
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Republic of Korea
| | - Jungyoon Yi
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Republic of Korea
| | - Young-Wang Na
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Republic of Korea
| | - Mesfin Haile
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Republic of Korea
| |
Collapse
|
10
|
Wang S, Jiang H, Yang J, Ma X, Chen J, Li Z, Tang X. Lightweight tomato ripeness detection algorithm based on the improved RT-DETR. FRONTIERS IN PLANT SCIENCE 2024; 15:1415297. [PMID: 39036358 PMCID: PMC11257922 DOI: 10.3389/fpls.2024.1415297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 06/07/2024] [Indexed: 07/23/2024]
Abstract
Tomatoes, widely cherished for their high nutritional value, necessitate precise ripeness identification and selective harvesting of mature fruits to significantly enhance the efficiency and economic benefits of tomato harvesting management. Previous studies on intelligent harvesting often focused solely on identifying tomatoes as the target, lacking fine-grained detection of tomato ripeness. This deficiency leads to the inadvertent harvesting of immature and rotten fruits, resulting in economic losses. Moreover, in natural settings, uneven illumination, occlusion by leaves, and fruit overlap hinder the precise assessment of tomato ripeness by robotic systems. Simultaneously, the demand for high accuracy and rapid response in tomato ripeness detection is compounded by the need for making the model lightweight to mitigate hardware costs. This study proposes a lightweight model named PDSI-RTDETR to address these challenges. Initially, the PConv_Block module, integrating partial convolution with residual blocks, replaces the Basic_Block structure in the legacy backbone to alleviate computing load and enhance feature extraction efficiency. Subsequently, a deformable attention module is amalgamated with intra-scale feature interaction structure, bolstering the capability to extract detailed features for fine-grained classification. Additionally, the proposed slimneck-SSFF feature fusion structure, merging the Scale Sequence Feature Fusion framework with a slim-neck design utilizing GSConv and VoVGSCSP modules, aims to reduce volume of computation and inference latency. Lastly, by amalgamating Inner-IoU with EIoU to formulate Inner-EIoU, replacing the original GIoU to expedite convergence while utilizing auxiliary frames enhances small object detection capabilities. Comprehensive assessments validate that the PDSI-RTDETR model achieves an average precision mAP50 of 86.8%, marking a 3.9% enhancement over the original RT-DETR model, and a 38.7% increase in FPS. Furthermore, the GFLOPs of PDSI-RTDETR have been diminished by 17.6%. Surpassing the baseline RT-DETR and other prevalent methods regarding precision and speed, it unveils its considerable potential for detecting tomato ripeness. When applied to intelligent harvesting robots in the future, this approach can improve the quality of tomato harvesting by reducing the collection of immature and spoiled fruits.
Collapse
Affiliation(s)
- Sen Wang
- School of Information Engineering, Minzu University of China, Beijing, China
- Key Laboratory of Ethnic Language Intelligent Analysis and Security Governance of MOE, Minzu University of China, Beijing, China
| | - Huiping Jiang
- School of Information Engineering, Minzu University of China, Beijing, China
- Key Laboratory of Ethnic Language Intelligent Analysis and Security Governance of MOE, Minzu University of China, Beijing, China
| | - Jixiang Yang
- School of Information Engineering, Minzu University of China, Beijing, China
- Key Laboratory of Ethnic Language Intelligent Analysis and Security Governance of MOE, Minzu University of China, Beijing, China
| | - Xuan Ma
- School of Information Engineering, Minzu University of China, Beijing, China
- Key Laboratory of Ethnic Language Intelligent Analysis and Security Governance of MOE, Minzu University of China, Beijing, China
| | - Jiamin Chen
- School of Information Engineering, Minzu University of China, Beijing, China
- Key Laboratory of Ethnic Language Intelligent Analysis and Security Governance of MOE, Minzu University of China, Beijing, China
| | - Zhongjie Li
- School of Information Engineering, Minzu University of China, Beijing, China
- Key Laboratory of Ethnic Language Intelligent Analysis and Security Governance of MOE, Minzu University of China, Beijing, China
| | - Xingqun Tang
- School of Information Engineering, Minzu University of China, Beijing, China
- Key Laboratory of Ethnic Language Intelligent Analysis and Security Governance of MOE, Minzu University of China, Beijing, China
| |
Collapse
|
11
|
Frumuzachi O, Babotă M, Tanase C, Mocan A. A systematic review of randomized controlled trials on the health effects of chocolate enriched/fortified/supplemented with functional components. Food Funct 2024; 15:6883-6899. [PMID: 38864465 DOI: 10.1039/d4fo01574f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
The most significant contributor to global mortality are cardiovascular diseases. Dietary factors significantly impact the risk, advancement, and treatment of cardiometabolic conditions. Chocolate, known for its adaptability and capacity to stimulate pleasure centers, emerges as a promising vehicle for integrating different bioactive elements. This systematic review analyzed 10 randomized controlled trials investigating the health effects of consuming enriched, fortified, or supplemented chocolate. These trials varied in chocolate intake amounts (ranging from 5 to 101 g day-1), incorporated bioactive components (co-crystalized astaxanthin, lycopene, wood-based phytosterol-phytostanol mixture, canola sterol esters, etc.), and duration (from 2 weeks to 1 year). Some enriched chocolates were found to reduce total and LDL cholesterol and influence markers of oxidative damage, inflammation, immune function, and skin parameters. However, certain trials showed a minimal impact on health outcomes. Therefore, while enriched chocolate holds promise as a carrier for beneficial bioactive compounds, rigorous scientific inquiry and methodological rigor are crucial to fully substantiate these claims. Comprehensive evaluations covering cardiovascular health, metabolic function, immune response, and other aspects are needed to understand its potential benefits and limitations. Advancing robust research initiatives could help realize the full potential of enriched chocolate in promoting human health and well-being.
Collapse
Affiliation(s)
- Oleg Frumuzachi
- Department of Pharmaceutical Botany, "Iuliu Haţieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Mihai Babotă
- Department of Pharmaceutical Botany, Faculty of Pharmacy, "George Emil Palade" University of Medicine, Pharmacy, Sciences and Technology of Târgu Mures, Târgu Mures, Romania.
| | - Corneliu Tanase
- Department of Pharmaceutical Botany, Faculty of Pharmacy, "George Emil Palade" University of Medicine, Pharmacy, Sciences and Technology of Târgu Mures, Târgu Mures, Romania.
- Research Center of Medicinal and Aromatic Plants, "George Emil Palade" University of Medicine, Pharmacy, Sciences and Technology of Târgu Mures, Târgu Mures, Romania
| | - Andrei Mocan
- Research Center of Medicinal and Aromatic Plants, "George Emil Palade" University of Medicine, Pharmacy, Sciences and Technology of Târgu Mures, Târgu Mures, Romania
| |
Collapse
|
12
|
Barathan M, Vellasamy KM, Mariappan V, Venkatraman G, Vadivelu J. Naturally Occurring Phytochemicals to Target Breast Cancer Cell Signaling. Appl Biochem Biotechnol 2024; 196:4644-4660. [PMID: 37773580 DOI: 10.1007/s12010-023-04734-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/15/2023] [Indexed: 10/01/2023]
Abstract
Almost 70% of clinically used antineoplastic drugs are originated from natural products such as plants, marine organism, and microorganisms and some of them are also structurally modified natural products. The naturally occurring drugs may specifically act as inducers of selective cytotoxicity, anti-metastatic, anti-mutagenic, anti-angiogenesis, antioxidant accelerators, apoptosis inducers, autophagy inducers, and cell cycle inhibitors in cancer therapy. Precisely, several reports have demonstrated the involvement of naturally occurring anti-breast cancer drugs in regulating the expression of oncogenic and tumor suppressors associated with carcinogen metabolism and signaling pathways. Anticancer therapies based on nanotechnology have the potential to improve patient outcomes through targeted therapy, improved drug delivery, and combination therapies. This paper has reviewed the current treatment for breast cancer and the potential disadvantages of those therapies, besides the various mechanism used by naturally occurring phytochemicals to induce apoptosis in different types of breast cancer. Along with this, the contribution of nanotechnology in improving the effectiveness of anticancer drugs was also reviewed. With the development of sciences and technologies, phytochemicals derived from natural products are continuously discovered; however, the search for novel natural products as chemoprevention drugs is still ongoing, especially for the advanced stage of breast cancer. Continued research and development in this field hold great promise for advancing cancer care and improving patient outcomes.
Collapse
Affiliation(s)
- Muttiah Barathan
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Lembah Pantai, 50603, Kuala Lumpur, Malaysia.
| | - Kumutha Malar Vellasamy
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Lembah Pantai, 50603, Kuala Lumpur, Malaysia
| | - Vanitha Mariappan
- Center of Toxicology and Health Risk Studies (CORE), Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Aziz, 50300, Kuala Lumpur, Malaysia
| | - Gopinath Venkatraman
- Universiti Malaya Centre for Proteomics Research, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
- Department of Biochemistry, Saveetha Dental College, Saveetha Institute of Medical & Technical Sciences, Saveetha University, Chennai 600 077, India
| | - Jamuna Vadivelu
- MERDU, Faculty of Medicine, Universiti Malaya, Lembah Pantai, 50603, Kuala Lumpur, Malaysia.
| |
Collapse
|
13
|
Hu J, Wang J, Muhammad T, Yang T, Li N, Yang H, Yu Q, Wang B. Integrative Analysis of Metabolome and Transcriptome of Carotenoid Biosynthesis Reveals the Mechanism of Fruit Color Change in Tomato ( Solanum lycopersicum). Int J Mol Sci 2024; 25:6493. [PMID: 38928199 PMCID: PMC11204166 DOI: 10.3390/ijms25126493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/31/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
Tomato fruit ripening is accompanied by carotenoid accumulation and color changes. To elucidate the regulatory mechanisms underlying carotenoid synthesis during fruit ripening, a combined transcriptomic and metabolomic analysis was conducted on red-fruited tomato (WP190) and orange-fruited tomato (ZH108). A total of twenty-nine (29) different carotenoid compounds were identified in tomato fruits at six different stages. The abundance of the majority of the carotenoids was enhanced significantly with fruit ripening, with higher levels of lycopene; (E/Z)-lycopene; and α-, β- and γ-carotenoids detected in the fruits of WP190 at 50 and 60 days post anthesis (DPA). Transcriptome analysis revealed that the fruits of two varieties exhibited the highest number of differentially expressed genes (DEGs) at 50 DPA, and a module of co-expressed genes related to the fruit carotenoid content was established by WGCNA. qRT-PCR analysis validated the transcriptome result with a significantly elevated transcript level of lycopene biosynthesis genes (including SlPSY2, SlZCIS, SlPDS, SlZDS and SlCRTSO2) observed in WP190 at 50 DPA in comparison to ZH108. In addition, during the ripening process, the expression of ethylene biosynthesis (SlACSs and SlACOs) and signaling (SlEIN3 and SlERF1) genes was also increased, and these mechanisms may regulate carotenoid accumulation and fruit ripening in tomato. Differential expression of several key genes in the fruit of two tomato varieties at different stages regulates the accumulation of carotenoids and leads to differences in color between the two varieties of tomato. The results of this study provide a comprehensive understanding of carotenoid accumulation and ethylene biosynthesis and signal transduction pathway regulatory mechanisms during tomato fruit development.
Collapse
Affiliation(s)
- Jiahui Hu
- College of Horticulture, Xinjiang Agricultural University, Urumqi 830052, China
- Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830000, China; (J.W.)
| | - Juan Wang
- Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830000, China; (J.W.)
| | - Tayeb Muhammad
- Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830000, China; (J.W.)
| | - Tao Yang
- Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830000, China; (J.W.)
| | - Ning Li
- Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830000, China; (J.W.)
| | - Haitao Yang
- Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830000, China; (J.W.)
| | - Qinghui Yu
- College of Horticulture, Xinjiang Agricultural University, Urumqi 830052, China
- Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830000, China; (J.W.)
| | - Baike Wang
- Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830000, China; (J.W.)
| |
Collapse
|
14
|
Shafe MO, Gumede NM, Nyakudya TT, Chivandi E. Lycopene: A Potent Antioxidant with Multiple Health Benefits. J Nutr Metab 2024; 2024:6252426. [PMID: 38883868 PMCID: PMC11179732 DOI: 10.1155/2024/6252426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 05/14/2024] [Accepted: 05/20/2024] [Indexed: 06/18/2024] Open
Abstract
Lycopene is a naturally occurring carotenoid predominantly found in tomatoes and tomato-based products. Like other phytochemicals, it exhibits health beneficial biological activities that can be exploited when it is used as a dietary supplement. In vitro and in vivo, lycopene has been demonstrated to mitigate oxidative stress-induced metabolic dysfunctions and diseases including inflammation, obesity, and diabetes mellitus. Lycopene has been shown to alleviate metabolic diseases that affect the bone, eye, kidney, liver, lungs, heart, and nervous system. This review presents the state of the art regarding lycopene's health benefits and its potential applications in health system delivery. Furthermore, lycopene's protective effects against toxins, safety in its use, and possible toxicity are explored.
Collapse
Affiliation(s)
- Mercy Omoye Shafe
- School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa
- Department of Human Physiology, Faculty of Basic Medical Sciences, College of Medicine and Allied Health Sciences, Bingham University, P.M.B. 005, New Karu, Nasarawa 961002, Nigeria
| | - Nontobeko Myllet Gumede
- Department of Physiology, School of Medicine, Faculty of Health Sciences, University of Pretoria, Private Bag X323, Gezina, Pretoria 0031, South Africa
| | - Trevor Tapiwa Nyakudya
- Department of Physiology, School of Medicine, Faculty of Health Sciences, University of Pretoria, Private Bag X323, Gezina, Pretoria 0031, South Africa
| | - Eliton Chivandi
- School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa
| |
Collapse
|
15
|
Kulczyński B, Sidor A, Brzozowska A, Gramza-Michałowska A. The role of carotenoids in bone health-A narrative review. Nutrition 2024; 119:112306. [PMID: 38211461 DOI: 10.1016/j.nut.2023.112306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/12/2023] [Accepted: 11/21/2023] [Indexed: 01/13/2024]
Abstract
Osteoporosis constitutes a serious challenge for public health. Dietary patterns belong to important, modifiable risk factors of this disease. Therefore, what and in what quantities we consume on a daily basis are extremely relevant. It is commonly known that bone health is positively affected by vitamins (e.g., vitamin D and vitamin K) as well as mineral components (e.g., calcium and magnesium). However, the human diet consists of many other groups of compounds that exhibit a potential antiosteoporotic and supporting bone-building effect. These dietary components include carotenoids. This paper presents a broad review of studies on the influence of particular carotenoids (β-carotene, lutein, zeaxanthin, β-cryptoxanthin, and lycopene) on bones. The paper discusses up-to-date in vitro experiments and research on animal models and presents how the results translate into clinical effect in humans.
Collapse
Affiliation(s)
- Bartosz Kulczyński
- Department of Gastronomy Science and Functional Foods, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Poznań, Poland
| | - Andrzej Sidor
- Department of Gastronomy Science and Functional Foods, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Poznań, Poland
| | - Anna Brzozowska
- Department of Gastronomy Science and Functional Foods, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Poznań, Poland
| | - Anna Gramza-Michałowska
- Department of Gastronomy Science and Functional Foods, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Poznań, Poland.
| |
Collapse
|
16
|
Chabi IB, Zannou O, Dedehou ES, Ayegnon BP, Oscar Odouaro OB, Maqsood S, Galanakis CM, Pierre Polycarpe Kayodé A. Tomato pomace as a source of valuable functional ingredients for improving physicochemical and sensory properties and extending the shelf life of foods: A review. Heliyon 2024; 10:e25261. [PMID: 38327467 PMCID: PMC10847943 DOI: 10.1016/j.heliyon.2024.e25261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 01/18/2024] [Accepted: 01/23/2024] [Indexed: 02/09/2024] Open
Abstract
Due to its nutritional and bioactive content, tomato pomace (TP) remains among the world's richest fruits and vegetables. Tomatoes and TP (generated coproduct) are a very rich source of lycopene and other carotenoid compounds and contain an essential amount of polyphenols, policosanol, phytosterols, organic acids, dietary fibers, minerals, and vitamins. TP is a promising source of significant bioactive compounds with antioxidant and antimicrobial potential. Therefore, their consumption is known to be effective in preventing certain chronic diseases. For example, lycopene prevents prostate cancer and acts as a hepatoprotector and genoprotector against mycotoxins, pesticide residues, and heavy metals. Thus, the valorization of TP as a food ingredient can be of great health, economic and environmental interest and contribute to improving nutrition and food security. During the last decades, considerable efforts have been made to valorize TP as a crucial functional ingredient in improving: (i) the nutritional and functional properties, (ii) sensory characteristics and (iii) the shelf life of many foods. The current review aims to update and summarize the knowledge on the recent food applications of TP, particularly its use as a functional ingredient to improve the functional properties and shelf life of foods.
Collapse
Affiliation(s)
- Ifagbémi Bienvenue Chabi
- Laboratory of Human Nutrition and Valorization of Food Bio-Ingredients, Faculty of Agricultural Sciences, University of Abomey-Calavi, 03 BP 2819, Jericho Cotonou, Benin
| | - Oscar Zannou
- Laboratory of Human Nutrition and Valorization of Food Bio-Ingredients, Faculty of Agricultural Sciences, University of Abomey-Calavi, 03 BP 2819, Jericho Cotonou, Benin
| | - Emmanuelle S.C.A. Dedehou
- Ecole des Sciences et Techniques de Conservation et de Transformation des Produits Agricoles, Université Nationale d’Agriculture (UNA), BP 114, Sakété, Benin
| | - Bernolde Paul Ayegnon
- Laboratory of Human Nutrition and Valorization of Food Bio-Ingredients, Faculty of Agricultural Sciences, University of Abomey-Calavi, 03 BP 2819, Jericho Cotonou, Benin
| | - Oloudé B. Oscar Odouaro
- Laboratory of Human Nutrition and Valorization of Food Bio-Ingredients, Faculty of Agricultural Sciences, University of Abomey-Calavi, 03 BP 2819, Jericho Cotonou, Benin
| | - Sajid Maqsood
- Food Science Department, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al-Ain, 15551, United Arab Emirates
- National Water and Energy Center, United Arab Emirates University, Al-Ain, 15551, United Arab Emirates
| | - Charis M. Galanakis
- Research & Innovation Department, Galanakis Laboratories, Chania, Greece
- Food Waste Recovery Group, ISEKI Food Association, Vienna, Austria
- College of Science, Taif University, Taif, Saudi Arabia
| | - Adéchola Pierre Polycarpe Kayodé
- Laboratory of Human Nutrition and Valorization of Food Bio-Ingredients, Faculty of Agricultural Sciences, University of Abomey-Calavi, 03 BP 2819, Jericho Cotonou, Benin
| |
Collapse
|
17
|
Bajetto G, Arnodo D, Biolatti M, Trifirò L, Albano C, Pasquero S, Gugliesi F, Campo E, Spyrakis F, Prandi C, De Andrea M, Dell’Oste V, Visentin I, Blangetti M. Antiherpetic Activity of a Root Exudate from Solanum lycopersicum. Microorganisms 2024; 12:373. [PMID: 38399777 PMCID: PMC10892521 DOI: 10.3390/microorganisms12020373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/05/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
The rise of drug resistance to antivirals poses a significant global concern for public health; therefore, there is a pressing need to identify novel compounds that can effectively counteract strains resistant to current antiviral treatments. In light of this, researchers have been exploring new approaches, including the investigation of natural compounds as alternative sources for developing potent antiviral therapies. Thus, this work aimed to evaluate the antiviral properties of the organic-soluble fraction of a root exudate derived from the tomato plant Solanum lycopersicum in the context of herpesvirus infections. Our findings demonstrated that a root exudate from Solanum lycopersicum exhibits remarkable efficacy against prominent members of the family Herpesviridae, specifically herpes simplex virus type 1 (HSV-1) (EC50 25.57 µg/mL, SI > 15.64) and human cytomegalovirus (HCMV) (EC50 9.17 µg/mL, SI 32.28) by inhibiting a molecular event during the herpesvirus replication phase. Moreover, the phytochemical fingerprint of the Solanum lycopersicum root exudate was characterized through mass spectrometry. Overall, these data have unveiled a novel natural product with antiherpetic activity, presenting a promising and valuable alternative to existing drugs.
Collapse
Affiliation(s)
- Greta Bajetto
- Department of Public Health and Pediatric Sciences, University of Turin, 10126 Turin, Italy; (G.B.); (M.B.); (L.T.); (C.A.); (S.P.); (F.G.); (M.D.A.)
- Center for Translational Research on Autoimmune and Allergic Disease (CAAD), 28100 Novara, Italy
| | - Davide Arnodo
- Department of Chemistry, University of Turin, 10125 Turin, Italy; (D.A.); (C.P.)
| | - Matteo Biolatti
- Department of Public Health and Pediatric Sciences, University of Turin, 10126 Turin, Italy; (G.B.); (M.B.); (L.T.); (C.A.); (S.P.); (F.G.); (M.D.A.)
| | - Linda Trifirò
- Department of Public Health and Pediatric Sciences, University of Turin, 10126 Turin, Italy; (G.B.); (M.B.); (L.T.); (C.A.); (S.P.); (F.G.); (M.D.A.)
| | - Camilla Albano
- Department of Public Health and Pediatric Sciences, University of Turin, 10126 Turin, Italy; (G.B.); (M.B.); (L.T.); (C.A.); (S.P.); (F.G.); (M.D.A.)
| | - Selina Pasquero
- Department of Public Health and Pediatric Sciences, University of Turin, 10126 Turin, Italy; (G.B.); (M.B.); (L.T.); (C.A.); (S.P.); (F.G.); (M.D.A.)
| | - Francesca Gugliesi
- Department of Public Health and Pediatric Sciences, University of Turin, 10126 Turin, Italy; (G.B.); (M.B.); (L.T.); (C.A.); (S.P.); (F.G.); (M.D.A.)
| | - Eva Campo
- Department of Agricultural, Forestry, and Food Sciences, University of Turin, 10095 Turin, Italy; (E.C.); (I.V.)
| | - Francesca Spyrakis
- Department of Drug Science and Technology, University of Turin, 10125 Turin, Italy;
| | - Cristina Prandi
- Department of Chemistry, University of Turin, 10125 Turin, Italy; (D.A.); (C.P.)
| | - Marco De Andrea
- Department of Public Health and Pediatric Sciences, University of Turin, 10126 Turin, Italy; (G.B.); (M.B.); (L.T.); (C.A.); (S.P.); (F.G.); (M.D.A.)
- Center for Translational Research on Autoimmune and Allergic Disease (CAAD), 28100 Novara, Italy
| | - Valentina Dell’Oste
- Department of Public Health and Pediatric Sciences, University of Turin, 10126 Turin, Italy; (G.B.); (M.B.); (L.T.); (C.A.); (S.P.); (F.G.); (M.D.A.)
| | - Ivan Visentin
- Department of Agricultural, Forestry, and Food Sciences, University of Turin, 10095 Turin, Italy; (E.C.); (I.V.)
| | - Marco Blangetti
- Department of Chemistry, University of Turin, 10125 Turin, Italy; (D.A.); (C.P.)
| |
Collapse
|
18
|
Breniere T, Fanciullino AL, Dumont D, Le Bourvellec C, Riva C, Borel P, Landrier JF, Bertin N. Effect of long-term deficit irrigation on tomato and goji berry quality: from fruit composition to in vitro bioaccessibility of carotenoids. FRONTIERS IN PLANT SCIENCE 2024; 15:1339536. [PMID: 38328704 PMCID: PMC10847359 DOI: 10.3389/fpls.2024.1339536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 01/08/2024] [Indexed: 02/09/2024]
Abstract
Drought is a persistent challenge for horticulture, affecting various aspects of fruit development and ultimately fruit quality, but the effect on nutritional value has been under-investigated. Here, fruit quality was studied on six tomato genotypes and one goji cultivar under deficit irrigation (DI), from fruit composition to in vitro bioaccessibility of carotenoids. For both species, DI concentrated most health-related metabolites in fresh fruit. On a dry mass basis, DI increased total phenolic and sugar concentration, but had a negative or insignificant impact on fruit ascorbic acid, organic acid, and alcohol-insoluble matter contents. DI also reduced total carotenoids content in tomato (-18.7% on average), especially β-carotene (-32%), but not in goji berry DW (+15.5% and +19.6%, respectively). DI reduced the overall in vitro bioaccessibility of carotenoids to varying degrees depending on the compound and plant species. Consequently, mixed micelles produced by digestion of fruits subjected to DI contained either the same or lesser quantities of carotenoids, even though fresh fruits could contain similar or higher quantities. Thus, DI effects on fruit composition were species and genotype dependent, but an increase in the metabolite concentration did not necessarily translate into greater bioaccessibility potentially due to interactions with the fruit matrix.
Collapse
Affiliation(s)
- Thomas Breniere
- INRAE, PSH UR1115, Avignon, France
- Aix-Marseille Université, INSERM, INRAE, C2VN, Marseille, France
- Avignon Université, UPR4278 LaPEC, Avignon, France
| | - Anne-Laure Fanciullino
- INRAE, PSH UR1115, Avignon, France
- Univ Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, Angers, France
| | | | | | | | - Patrick Borel
- Aix-Marseille Université, INSERM, INRAE, C2VN, Marseille, France
| | | | | |
Collapse
|
19
|
Kirk H, Tufuor TA, Shaver AL, Nie J, Devarshi PP, Marshall K, Mitmesser SH, Noyes K. The association of the Affordable Care Act with nutrient consumption in adults in the United States. Front Public Health 2023; 11:1244042. [PMID: 38186698 PMCID: PMC10768893 DOI: 10.3389/fpubh.2023.1244042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 12/05/2023] [Indexed: 01/09/2024] Open
Abstract
The Patient Protection and Affordable Care Act, more commonly known as the ACA, was legislation passed in the United States in 2010 to expand access to health insurance coverage for millions of Americans with a key emphasis on preventive care. Nutrition plays a critical role in overall wellness, disease prevention and resilience to chronic illness but prior to the ACA many Americans did not have adequate health insurance coverage to ensure proper nutrition. With passage of the ACA, more individuals received access to nutritional counseling through their primary care physicians as well as prescription vitamins and supplements free of charge. The objective of this study was to evaluate the impact of a national health insurance reform on nutrient intake among general population, including more vulnerable low-income individuals and patients with chronic conditions. Using data from the National Health and Nutrition Examination Survey (NHANES), we identified 8,443 adults aged 21 years and older who participated in the survey before (2011-2012) and after the ACA (2015-2016) implementation and conducted a subgroup analysis of 952 respondents who identified as Medicaid beneficiaries and 719 patients with a history of cancer. Using pre-post study design and bivariate and multivariable logistic analyses, we compared nutrient intake from food and supplementation before and after the ACA and identified risk factors for inadequate intake. Our results suggest that intake of micronutrients found in nutrient-dense foods, mainly fruit and vegetables, has not changed significantly after the ACA. However, overall use of nutritional supplements increased after the ACA (p = 0.05), particularly magnesium (OR = 1.02), potassium (OR = 0.76), vitamin D (both D2, and D3, OR = 1.34), vitamin K (OR = 1.15) and zinc (OR = 0.83), for the general population as well as those in our subgroup analysis Cancer Survivors and Medicaid Recipients. Given the association of increased use of nutritional supplements and expansion of insurance access, particularly in our subgroup analysis, more research is necessary to understand the effect of increasing access to nutritional supplements on the overall intake of micro- and macronutrients to meet daily nutritional recommended allowances.
Collapse
Affiliation(s)
- Hilary Kirk
- Division of Health Services Policy and Practice, Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY, United States
| | - Theresa A. Tufuor
- Department of Pharmacy Practice, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, Buffalo, NY, United States
| | - Amy L. Shaver
- Division of Health Services Policy and Practice, Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY, United States
| | - Jing Nie
- Division of Health Services Policy and Practice, Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY, United States
| | | | | | | | - Katia Noyes
- Division of Health Services Policy and Practice, Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY, United States
| |
Collapse
|
20
|
Landrier JF, Breniere T, Sani L, Desmarchelier C, Mounien L, Borel P. Effect of tomato, tomato-derived products and lycopene on metabolic inflammation: from epidemiological data to molecular mechanisms. Nutr Res Rev 2023:1-17. [PMID: 38105560 DOI: 10.1017/s095442242300029x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
The goal of this narrative review is to summarise the current knowledge and limitations related to the anti-inflammatory effects of tomato, tomato-derived products and lycopene in the context of metabolic inflammation associated to cardiometabolic diseases. The potential of tomato and tomato-derived product supplementation is supported by animal and in vitro studies. In addition, intervention studies provide arguments in favour of a limitation of metabolic inflammation. This is also the case for observational studies depicting inverse association between plasma lycopene levels and inflammation. Nevertheless, current data of intervention studies are mixed concerning the anti-inflammatory effect of tomato and tomato-derived products and are not in favour of an anti-inflammatory effect of pure lycopene in humans. From epidemiological to mechanistic studies, this review aims to identify limitations of the current knowledge and gaps that remain to be filled to improve our comprehension in contrasted anti-inflammatory effects of tomato, tomato-derived products and pure lycopene.
Collapse
Affiliation(s)
| | - Thomas Breniere
- Aix-Marseille Université, C2VN, INRAE, INSERM, Marseille, France
- INRAE-Centre d'Avignon UR1115 Plantes et Systèmes de Culture Horticoles, Avignon, France
- Laboratoire de Physiologie Expérimentale Cardiovasculaire (LAPEC), UPR-4278, Université d'Avignon, 84029 Avignon, France
| | - Léa Sani
- Aix-Marseille Université, C2VN, INRAE, INSERM, Marseille, France
| | | | - Lourdes Mounien
- Aix-Marseille Université, C2VN, INRAE, INSERM, Marseille, France
| | - Patrick Borel
- Aix-Marseille Université, C2VN, INRAE, INSERM, Marseille, France
| |
Collapse
|
21
|
Hernández-Carranza P, Avila-Sosa R, Vera-López O, Navarro-Cruz AR, Ruíz-Espinosa H, Ruiz-López II, Ochoa-Velasco CE. Uncovering the Role of Hormones in Enhancing Antioxidant Defense Systems in Stressed Tomato ( Solanum lycopersicum) Plants. PLANTS (BASEL, SWITZERLAND) 2023; 12:3648. [PMID: 37896111 PMCID: PMC10610232 DOI: 10.3390/plants12203648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/11/2023] [Accepted: 09/14/2023] [Indexed: 10/29/2023]
Abstract
Tomato is one of the most important fruits worldwide. It is widely consumed due to its sensory and nutritional attributes. However, like many other industrial crops, it is affected by biotic and abiotic stress factors, reducing its metabolic and physiological processes. Tomato plants possess different mechanisms of stress responses in which hormones have a pivotal role. They are responsible for a complex signaling network, where the antioxidant system (enzymatic and non-enzymatic antioxidants) is crucial for avoiding the excessive damage caused by stress factors. In this sense, it seems that hormones such as ethylene, auxins, brassinosteroids, and salicylic, jasmonic, abscisic, and gibberellic acids, play important roles in increasing antioxidant system and reducing oxidative damage caused by different stressors. Although several studies have been conducted on the stress factors, hormones, and primary metabolites of tomato plants, the effect of endogenous and/or exogenous hormones on the secondary metabolism is still poorly studied, which is paramount for tomato growing management and secondary metabolites production. Thus, this review offers an updated overview of both endogenous biosynthesis and exogenous hormone application in the antioxidant system of tomato plants as a response to biotic and abiotic stress factors.
Collapse
Affiliation(s)
- Paola Hernández-Carranza
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Av. San Claudio y 18 Sur. Ciudad Universitaria, Puebla C.P. 72570, Mexico; (P.H.-C.); (R.A.-S.)
| | - Raúl Avila-Sosa
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Av. San Claudio y 18 Sur. Ciudad Universitaria, Puebla C.P. 72570, Mexico; (P.H.-C.); (R.A.-S.)
| | - Obdulia Vera-López
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Av. San Claudio y 18 Sur. Ciudad Universitaria, Puebla C.P. 72570, Mexico; (P.H.-C.); (R.A.-S.)
| | - Addí R. Navarro-Cruz
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Av. San Claudio y 18 Sur. Ciudad Universitaria, Puebla C.P. 72570, Mexico; (P.H.-C.); (R.A.-S.)
| | - Héctor Ruíz-Espinosa
- Facultad de Ingeniería Química, Benemérita Universidad Autónoma de Puebla, Av. San Claudio y 18 Sur. Ciudad Universitaria, Puebla C.P. 72570, Mexico; (H.R.-E.); (I.I.R.-L.)
| | - Irving I. Ruiz-López
- Facultad de Ingeniería Química, Benemérita Universidad Autónoma de Puebla, Av. San Claudio y 18 Sur. Ciudad Universitaria, Puebla C.P. 72570, Mexico; (H.R.-E.); (I.I.R.-L.)
| | - Carlos E. Ochoa-Velasco
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Av. San Claudio y 18 Sur. Ciudad Universitaria, Puebla C.P. 72570, Mexico; (P.H.-C.); (R.A.-S.)
| |
Collapse
|
22
|
Abir MH, Mahamud AGMSU, Tonny SH, Anu MS, Hossain KHS, Protic IA, Khan MSU, Baroi A, Moni A, Uddin MJ. Pharmacological potentials of lycopene against aging and aging-related disorders: A review. Food Sci Nutr 2023; 11:5701-5735. [PMID: 37823149 PMCID: PMC10563689 DOI: 10.1002/fsn3.3523] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 03/25/2023] [Accepted: 06/13/2023] [Indexed: 10/13/2023] Open
Abstract
Aging and aging-related chronic disorders are one of the principal causes of death worldwide. The prevalence of these disorders is increasing gradually and globally. Considering this unwavering acceleration of the global burden, seeking alternatives to traditional medication to prevent the risk of aging disorders is needed. Among them, lycopene, a carotenoid, is abundant in many fruits and vegetables, including tomatoes, grapefruits, and watermelons, and it has a unique chemical structure to be a potent antioxidant compound. This nutraceutical also possesses several anti-aging actions, including combating aging biomarkers and ameliorating several chronic disorders. However, no systematic evaluation has yet been carried out that can comprehensively elucidate the effectiveness of lycopene in halting the course of aging and the emergence of chronic diseases linked to aging. This review, therefore, incorporates previous pre-clinical, clinical, and epidemiological studies on lycopene to understand its potency in treating aging disorders and its role as a mimic of caloric restriction. Lycopene-rich foods are found to prevent or attenuate aging disorders in various research. Based on the evidence, this review suggests the clinical application of lycopene to improve human health and alleviate the prevalence of aging and aging disorders.
Collapse
Affiliation(s)
- Mehedy Hasan Abir
- ABEx Bio‐Research CenterDhakaBangladesh
- Faculty of Food Science and TechnologyChattogram Veterinary and Animal Sciences UniversityChattogramBangladesh
| | - A. G. M. Sofi Uddin Mahamud
- ABEx Bio‐Research CenterDhakaBangladesh
- Department of Food Safety and Regulatory ScienceChung‐Ang UniversityAnseong‐siGyeonggi‐doRepublic of Korea
| | - Sadia Haque Tonny
- Faculty of AgricultureBangladesh Agricultural UniversityMymensinghBangladesh
| | - Mithila Saha Anu
- Department of Fisheries Biology and GeneticsFaculty of Fisheries, Bangladesh Agricultural UniversityMymensinghBangladesh
| | | | - Ismam Ahmed Protic
- Department of Plant PathologyFaculty of Agriculture, Bangladesh Agricultural UniversityMymensinghBangladesh
| | - Md Shihab Uddine Khan
- ABEx Bio‐Research CenterDhakaBangladesh
- Department of Crop BotanyFaculty of Agriculture, Bangladesh Agricultural UniversityMymensinghBangladesh
| | - Artho Baroi
- ABEx Bio‐Research CenterDhakaBangladesh
- Department of Crop BotanyFaculty of Agriculture, Bangladesh Agricultural UniversityMymensinghBangladesh
| | - Akhi Moni
- ABEx Bio‐Research CenterDhakaBangladesh
| | | |
Collapse
|
23
|
Henley Ms K, Reeder Ms N, Persell Bs A, Tolar-Peterson Edd T. Fruit and vegetable liking and intake among college students: a cross-sectional study. JOURNAL OF AMERICAN COLLEGE HEALTH : J OF ACH 2023; 71:1815-1821. [PMID: 34242142 DOI: 10.1080/07448481.2021.1947834] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 03/25/2021] [Accepted: 06/20/2021] [Indexed: 06/13/2023]
Abstract
ObjectiveThis study examined the liking of fruits and vegetables among college students and the relationship between skin carotenoid levels and liking of fruits and vegetables. Participants: Sixty-six undergraduate students enrolled at a university in the southeastern United States participated in this study beginning August 2019. Methods: Skin carotenoid levels were measured using the Veggie Meter® reflection spectroscopy device. Liking of individual fruits and vegetables was measured using a hedonic general Labeled Magnitude Scale. Results: There were significant differences in mean skin carotenoid levels by year of study and age group. Students had a very strong liking for potatoes and pineapple. Veggie Meter scores and overall liking for fruits and vegetables were positively correlated. Conclusions: In order to encourage the consumption of fruits and vegetables, preferences for specific fruits and vegetables as well as accessibility should be considered to better serve and accommodate college students.
Collapse
Affiliation(s)
- Kentauria Henley Ms
- Department of Food Science, Nutrition, and Health Promotion, Mississippi State University, Mississippi State, Mississippi, USA
| | - Nicole Reeder Ms
- Department of Food Science, Nutrition, and Health Promotion, Mississippi State University, Mississippi State, Mississippi, USA
| | - Anna Persell Bs
- Department of Food Science, Nutrition, and Health Promotion, Mississippi State University, Mississippi State, Mississippi, USA
| | - Terezie Tolar-Peterson Edd
- Department of Food Science, Nutrition, and Health Promotion, Mississippi State University, Mississippi State, Mississippi, USA
| |
Collapse
|
24
|
Panova IG, Tatikolov AS. Endogenous and Exogenous Antioxidants as Agents Preventing the Negative Effects of Contrast Media (Contrast-Induced Nephropathy). Pharmaceuticals (Basel) 2023; 16:1077. [PMID: 37630992 PMCID: PMC10458090 DOI: 10.3390/ph16081077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/20/2023] [Accepted: 07/24/2023] [Indexed: 08/27/2023] Open
Abstract
The use of conventional contrast media for diagnostic purposes (in particular, Gd-containing and iodinated agents) causes a large number of complications, the most common of which is contrast-induced nephropathy. It has been shown that after exposure to contrast agents, oxidative stress often occurs in patients, especially in people suffering from various diseases. Antioxidants in the human body can diminish the pathological consequences of the use of contrast media by suppressing oxidative stress. This review considers the research studies on the role of antioxidants in preventing the negative consequences of the use of contrast agents in diagnostics (mainly contrast-induced nephropathy) and the clinical trials of different antioxidant drugs against contrast-induced nephropathy. Composite antioxidant/contrast systems as theranostic agents are also considered.
Collapse
Affiliation(s)
- Ina G. Panova
- International Scientific and Practical Center of Tissue Proliferation, 29/14 Prechistenka Str., 119034 Moscow, Russia;
| | - Alexander S. Tatikolov
- N.M. Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4 Kosygin Str., 119334 Moscow, Russia
| |
Collapse
|
25
|
Divyadharsini V, Uma Maheswari TN, S R. Assessment of Antimicrobial Activity of Lycopene, Vitamin E, and Lycopene-Vitamin E Combination Against Staphylococcus aureus, Streptococcus mutans, Enterococcus faecalis, and Candida albicans: An In Vitro Study. Cureus 2023; 15:e42419. [PMID: 37637570 PMCID: PMC10448004 DOI: 10.7759/cureus.42419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/25/2023] [Indexed: 08/29/2023] Open
Abstract
Background Lycopene is a naturally occurring compound classified as a carotenoid, a group of pigments responsible for the vibrant colors observed in many fruits and vegetables. It is most commonly associated with red-colored fruits and vegetables, such as tomatoes, watermelon, pink grapefruit, and papaya. Vitamin E encompasses a group of chemical compounds that share a structural relationship with alpha-tocopherol and are essential for the proper functioning of the human body. It is a fat-soluble vitamin and is known for its antioxidant properties. The aim of this study is to evaluate the antimicrobial activity of lycopene extract, vitamin E extract, and their combination against oral pathogens for their potential application in the treatment of oral diseases. Materials and methods The potential antimicrobial effects of extracts derived from lycopene, vitamin E, and their combination were evaluated against oral commensals like Staphylococcus aureus, Streptococcus mutans, Enterococcus faecalis, and Candida albicans. Three concentrations (25 μl, 50 μl, and 100 μl) of the extract were tested. Mueller-Hinton agar (MHA) and Rose Bengal agar (RBA) bases were utilized to determine the zone of inhibition. And the experiments were repeated in triplicate for each group. Results The identification and assessment of the antimicrobial activity of lycopene extract, vitamin E extract, and their combination revealed the greatest efficacy at the highest concentration (100 μl) against all tested microbial strains. Notably, C. albicans exhibited the highest susceptibility compared to the other strains. Vitamin E had the least antimicrobial effect and combination had the highest antimicrobial effect. Conclusion The results of our study demonstrated substantial antimicrobial activity of lycopene and vitamin E. These findings suggest that lycopene and vitamin E can be harnessed in the development of diverse drug formulations for the treatment of oral diseases.
Collapse
Affiliation(s)
- V Divyadharsini
- Oral Medicine and Radiology, Saveetha Dental College and Hospitals, Chennai, IND
| | - T N Uma Maheswari
- Oral Medicine and Radiology, Saveetha Dental College and Hospitals, Chennai, IND
| | - Rajeshkumar S
- Pharmacology, Saveetha Dental College and Hospitals, Chennai, IND
| |
Collapse
|
26
|
Chaudhary P, Janmeda P, Docea AO, Yeskaliyeva B, Abdull Razis AF, Modu B, Calina D, Sharifi-Rad J. Oxidative stress, free radicals and antioxidants: potential crosstalk in the pathophysiology of human diseases. Front Chem 2023; 11:1158198. [PMID: 37234200 PMCID: PMC10206224 DOI: 10.3389/fchem.2023.1158198] [Citation(s) in RCA: 207] [Impact Index Per Article: 103.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 04/26/2023] [Indexed: 05/27/2023] Open
Abstract
Introduction: Free radicals are reactive oxygen species that constantly circulate through the body and occur as a side effect of many reactions that take place in the human body. Under normal conditions, they are removed from the body by antioxidant processes. If these natural mechanisms are disrupted, radicals accumulate in excess and contribute to the development of many diseases. Methodology: Relevant recent information on oxidative stress, free radicals, reactive oxidative species, and natural and synthetic antioxidants was collected by researching electronic databases such as PubMed / Medline, Web of Science, and Science Direct. Results: According to the analysed studies, this comprehensive review provided a recent update on oxidative stress, free radicals and antioxidants and their impact on the pathophysiology of human diseases. Discussion: To counteract the condition of oxidative stress, synthetic antioxidants must be provided from external sources to supplement the antioxidant defense mechanism internally. Because of their therapeutic potential and natural origin, medicinal plants have been reported as the main source of natural antioxidants phytocompounds. Some non-enzymatic phytocompounds such as flavonoids, polyphenols, and glutathione, along with some vitamins have been reported to possess strong antioxidant activities in vivo and in vitro studies. Thus, the present review describes, in brief, the overview of oxidative stress-directed cellular damage and the unction of dietary antioxidants in the management of different diseases. The therapeutic limitations in correlating the antioxidant activity of foods to human health were also discussed.
Collapse
Affiliation(s)
- Priya Chaudhary
- Department of Bioscience and Biotechnology, Banasthali University Vanasthali, Rajasthan, India
| | - Pracheta Janmeda
- Department of Bioscience and Biotechnology, Banasthali University Vanasthali, Rajasthan, India
| | - Anca Oana Docea
- Department of Toxicology, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | - Balakyz Yeskaliyeva
- Al-Farabi Kazakh National University, Faculty of Chemistry and Chemical Technology, Almaty, Kazakhstan
| | - Ahmad Faizal Abdull Razis
- Department of Food Science, Faculty of Food` Science and Technology, Universiti Putra Malaysia, Selangor, Malaysia
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Selangor, Malaysia
| | - Babagana Modu
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Selangor, Malaysia
- Department of Biochemistry, Faculty of Science, University of Maiduguri, Maiduguri, Nigeria
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | | |
Collapse
|
27
|
Doddrell NH, Lawson T, Raines CA, Wagstaff C, Simkin AJ. Feeding the world: impacts of elevated [CO 2] on nutrient content of greenhouse grown fruit crops and options for future yield gains. HORTICULTURE RESEARCH 2023; 10:uhad026. [PMID: 37090096 PMCID: PMC10116952 DOI: 10.1093/hr/uhad026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 02/13/2023] [Indexed: 05/03/2023]
Abstract
Several long-term studies have provided strong support demonstrating that growing crops under elevated [CO2] can increase photosynthesis and result in an increase in yield, flavour and nutritional content (including but not limited to Vitamins C, E and pro-vitamin A). In the case of tomato, increases in yield by as much as 80% are observed when plants are cultivated at 1000 ppm [CO2], which is consistent with current commercial greenhouse production methods in the tomato fruit industry. These results provide a clear demonstration of the potential for elevating [CO2] for improving yield and quality in greenhouse crops. The major focus of this review is to bring together 50 years of observations evaluating the impact of elevated [CO2] on fruit yield and fruit nutritional quality. In the final section, we consider the need to engineer improvements to photosynthesis and nitrogen assimilation to allow plants to take greater advantage of elevated CO2 growth conditions.
Collapse
Affiliation(s)
- Nicholas H Doddrell
- NIAB, New Road, East Malling, Kent, ME19 6BJ UK
- Department of Food and Nutritional Sciences, University of Reading, Whiteknights, Reading, Berkshire RG6 6DZ, UK
| | - Tracy Lawson
- School of Life Sciences, University of Essex, Colchester CO4 4SQ, UK
| | | | - Carol Wagstaff
- Department of Food and Nutritional Sciences, University of Reading, Whiteknights, Reading, Berkshire RG6 6DZ, UK
| | - Andrew J Simkin
- NIAB, New Road, East Malling, Kent, ME19 6BJ UK
- School of Biosciences, University of Kent, Canterbury, United Kingdom CT2 7NJ, UK
| |
Collapse
|
28
|
Potential Role of Natural Antioxidant Products in Oncological Diseases. Antioxidants (Basel) 2023; 12:antiox12030704. [PMID: 36978952 PMCID: PMC10045077 DOI: 10.3390/antiox12030704] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/09/2023] [Accepted: 03/10/2023] [Indexed: 03/14/2023] Open
Abstract
Nutrition has a significant effect and a crucial role in disease prevention. Low consumption of fruit and vegetables and a sedentary lifestyle are closely related with the onset and development of many types of cancer. Recently, nutraceuticals have gained much attention in cancer research due to their pleiotropic effects and relatively non-toxic behavior. In fact, although in the past there have been conflicting results on the role of some antioxidant compounds as allies against cancer, numerous recent clinical studies highlight the efficacy of dietary phytochemicals in the prevention and treatment of cancer. However, further investigation is necessary to gain a deeper understanding of the potential anticancer capacities of dietary phytochemicals as well as the mechanisms of their action. Therefore, this review examined the current literature on the key properties of the bioactive components present in the diet, such as carotenoids, polyphenols, and antioxidant compounds, as well as their use in cancer therapy. The review focused on potential chemopreventive properties, evaluating their synergistic effects with anticancer drugs and, consequently, the side effects associated with current cancer treatments.
Collapse
|
29
|
Colado-Velázquez JI, Mailloux-Salinas P, Arias-Chávez DJ, Ledesma-Aparicio J, Gómez-Viquez NL, Cano-Europa E, Sarabia GN, Bravo G. Lipidic extract of whole tomato reduces hyperplasia, oxidative stress and inflammation on testosterone-induced BPH in obese rats. Int Urol Nephrol 2023; 55:529-539. [PMID: 36464759 DOI: 10.1007/s11255-022-03383-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/29/2022] [Indexed: 12/05/2022]
Abstract
PURPOSE Tomato is an important source of lycopene, a carotenoid that has been emerging as a natural preventive agent for prostate disease. Moreover, tomato contains other components with a wide range of physiological properties, but their potential beneficial effects on prostatic hyperplasia (PH) during obesity have not been completely established. In this study, we compared the effect of a lipidic extract of tomato saladette (STE) with Serenoa repens (SR) on obese rats with PH. METHODS Forty-eight Wistar rats were divided in Control (C) and Obese (Ob) treated without (n = 12) and with (n = 36) testosterone enanthate (TE), once a week for 8 weeks to induce PH. After 4 weeks, SR and STE were administered. Biochemical parameters, oxidative stress markers and inflammatory cytokines production were determined. RESULTS TE increased prostate weight and caused prostatic hyperplasia in C group, and these effects were exacerbated by obesity. SR and STE reverted the increase in prostate weight and hyperplasia caused by TE in C and Ob groups. Obesity increased LDL, TGs, NOx and MAD, but decreased HDLc, GSx, SOD and CAT. SR reverted the effects of obesity, but these were significantly reduced and HDLc increased with STE. Obesity and TE increased TNFα, IL-1β and IL-6 levels, but these were partially reverted by STE compared with SR. CONCLUSIONS Excess of fat tissue increases the alterations by PH. STE diminishes these alterations compared with SR, suggesting its beneficial effect to improve prostate function. Whole tomato lipid extract could serve as sole therapy or as an adjunct to pharmacological treatment for PH.
Collapse
Affiliation(s)
- Juventino Iii Colado-Velázquez
- Depto. Farmacobiología, Cinvestav-IPN, Calz. de los Tenorios 235, Col. Granjas Coapa, 14330, México, Mexico
- Autonomous University of the West, Unidad Regional Culiacán, Sinaloa, Mexico
| | - Patrick Mailloux-Salinas
- Depto. Farmacobiología, Cinvestav-IPN, Calz. de los Tenorios 235, Col. Granjas Coapa, 14330, México, Mexico
| | - David Julian Arias-Chávez
- Depto. Farmacobiología, Cinvestav-IPN, Calz. de los Tenorios 235, Col. Granjas Coapa, 14330, México, Mexico
| | - Jessica Ledesma-Aparicio
- Depto. Farmacobiología, Cinvestav-IPN, Calz. de los Tenorios 235, Col. Granjas Coapa, 14330, México, Mexico
| | - Norma Leticia Gómez-Viquez
- Depto. Farmacobiología, Cinvestav-IPN, Calz. de los Tenorios 235, Col. Granjas Coapa, 14330, México, Mexico
| | - Edgard Cano-Europa
- Lab. de Metabolismo I, Departamento de Fisiología "Dr. Mauricio Russek Berman", Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, México, Mexico
| | | | - Guadalupe Bravo
- Depto. Farmacobiología, Cinvestav-IPN, Calz. de los Tenorios 235, Col. Granjas Coapa, 14330, México, Mexico.
| |
Collapse
|
30
|
Casperson SL, Roemmich JN, Larson KJ, Hess JM, Palmer DG, Jahns L. Sensitivity of Pressure-Mediated Reflection Spectroscopy to Detect Changes in Skin Carotenoids in Adults Without Obesity in Response to Increased Carotenoid Intake: A Randomized Controlled Trial. J Nutr 2023; 153:588-597. [PMID: 36894250 DOI: 10.1016/j.tjnut.2023.01.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 12/19/2022] [Accepted: 01/04/2023] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND The sensitivity of commercially available devices to detect changes in skin carotenoids is not known. OBJECTIVES We aimed to determine the sensitivity of pressure-mediated reflection spectroscopy (RS) to detect changes in skin carotenoids in response to increasing carotenoid intake. METHODS Nonobese adults were randomly assigned to a control (water; n = 20; females = 15 (75%); mean age: 31 ± 3 (SE) y; mean BMI: 26 ± 1 kg/m2) or one of 3 carotenoid intake levels: 1) LOW - 13.1 mg; n = 22; females = 18(82%); age: 33 ± 3 y; BMI: 25 ± 1 kg/m2; 2) MED - 23.9 mg; n = 22; females = 17 (77%); age: 30 ± 2 y; BMI: 26 ± 1 kg/m2); or 3) HIGH - 31.0 mg; n = 19; females = 9 (47%); age: 33 ± 3 y; BMI: 24 ± 1 kg/m2. A commercial vegetable juice was provided daily to ensure that the additional carotenoid intake was achieved. Skin carotenoids (RS intensity [RSI]) were measured weekly. Plasma carotenoid concentrations were assessed at wk 0, 4, and 8. Mixed models were used to test the effect of treatment, time, and their interaction. Correlation matrices from mixed models were used to determine the correlation between plasma and skin carotenoids. RESULTS A correlation was observed between skin and plasma carotenoids (r = 0.65; P < 0.001). Skin carotenoids were greater than baseline starting at week 1 in the HIGH (290 ± 20 vs. 321 ± 24 RSI; P ≤ 0.01), week 2 in the MED (274 ± 18 vs. 290 ± 23 RSI; P ≤ 0.03), and week 3 in the LOW (261 ± 18 vs. 288 ± 15 RSI; P ≤ 0.03). Compared with control, differences in skin carotenoids were observed starting at week 2 in the HIGH ([268 ± 16 vs. 338 ± 26 RSI; P ≤ 0.01] except for week 3 [287 ± 20 vs. 335 ± 26 RSI; P = 0.08]) and week 6 in the MED (303 ± 26 vs. 363 ± 27 RSI; P ≤ 0.03). No differences were observed between the control and LOW. CONCLUSIONS These findings demonstrate that RS can detect changes in skin carotenoids in adults without obesity when daily carotenoid intake is increased by 13.1 mg for a minimum of 3 wk. However, a minimum difference in intake of 23.9 mg of carotenoids is needed to detect group differences. This trial was registered at ClinicalTrials.gov as NCT03202043.
Collapse
Affiliation(s)
- Shanon L Casperson
- USDA Agricultural Research Services, Grand Forks Human Nutrition Research Center, Grand Forks, ND, USA.
| | - James N Roemmich
- USDA Agricultural Research Services, Grand Forks Human Nutrition Research Center, Grand Forks, ND, USA
| | - Kate J Larson
- USDA Agricultural Research Services, Grand Forks Human Nutrition Research Center, Grand Forks, ND, USA
| | - Julie M Hess
- USDA Agricultural Research Services, Grand Forks Human Nutrition Research Center, Grand Forks, ND, USA
| | - Daniel G Palmer
- USDA Agricultural Research Services, Grand Forks Human Nutrition Research Center, Grand Forks, ND, USA
| | - Lisa Jahns
- USDA National Institute of Food and Agriculture Institute of Food Safety and Nutrition, Division of Nutrition, Kansas City, MO, USA
| |
Collapse
|
31
|
Tsouvaltzis P, Gkountina S, Siomos AS. Quality Traits and Nutritional Components of Cherry Tomato in Relation to the Harvesting Period, Storage Duration and Fruit Position in the Truss. PLANTS (BASEL, SWITZERLAND) 2023; 12:315. [PMID: 36679028 PMCID: PMC9863825 DOI: 10.3390/plants12020315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/23/2022] [Accepted: 01/05/2023] [Indexed: 06/17/2023]
Abstract
It is well known that the harvesting period and the storage duration have a significant effect on the quality characteristics of cherry tomato fruits. On the other hand, the effect of the fruit position in the truss has not been studied, as well as the relative contribution of each one of these factors on fruit quality. For this purpose, cherry tomato (Genio F1) whole trusses were harvested at the fruit red ripe stage during three periods. At each harvesting period, the first four (at the base of the truss) and the last four (at the top) fruits from each truss that was previously trimmed to 10 fruits, were stored at 12 °C for 0, 4 and 10 days. At the end of each storage duration, the external color, firmness, antioxidant capacity, pH and titratable acidity, as well as dry matter, soluble solid, total soluble phenol, lycopene, total carotenoid and β-carotene content, were determined. Analysis of variance (ANOVA) indicated that the harvesting period had the most significant effect on skin color parameters L * and C * and β-carotene, as well as on antioxidant capacity, total soluble phenols, dry matter and total soluble solids, while it also had an appreciable effect on titratable acidity. The storage duration had a dominant effect on firmness, total carotenoids and lycopene, while it had an appreciable effect on skin color parameter L * as well. On the other hand, the fruit position in the truss exerted an exclusive effect on ho and a */b * ratio skin color parameters and pH and an appreciable effect on titratable acidity.
Collapse
Affiliation(s)
- Pavlos Tsouvaltzis
- Department of Horticulture, Aristotle University, 54124 Thessaloniki, Greece
| | - Stela Gkountina
- Department of Horticulture, Aristotle University, 54124 Thessaloniki, Greece
- New South Wales Department of Primary Industries, Ourimbah, NSW 2258, Australia
| | | |
Collapse
|
32
|
de Lima Silva V, Leite BS, do Espírito Santo de Jesus F, Martins LD, Assunção LS, Leal IL, Colauto NB, Colauto GAL, Souza Machado BA, Ferreira Ribeiro CD. Tomato as a Natural Source of Dyes in the Food Industry: A Patent Data Analysis. RECENT PATENTS ON NANOTECHNOLOGY 2023; 17:243-258. [PMID: 35616679 DOI: 10.2174/1872210516666220523114141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 02/18/2022] [Accepted: 02/22/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Foods that promote health benefits are being increasingly used. Innovative techniques, such as nanotechnology, have been used to improve functional properties, sensory characteristics, or the conservation of foods. OBJECTIVE The objective of this study was to identify the technological domain of patents for tomato products with or without nanotechnology and elucidate the technological advances associated with the recent use of tomatoes as a natural food dye in the food industry by exploring patent documents. METHODS AND RESULTS The search was conducted using the Espacenet and INPI databases. There was an increase in patent document applications employing nanotechnology in 2013, with a peak between 2017 and 2018. China is the lead country in the number of patent applications. In Brazil, the patent applications are variable, and the food industry is most involved in studies on tomatoes as a natural food dye. Most patent deposits using nanotechnology were from companies, and the main sources of the patent application were the food and pharmaceutical industries. CONCLUSION There is an increasing trend for the use of tomatoes as natural food dyes, produced with or without nanotechnology, and number of patents filed yearly. New technologies are being developed in several application areas.
Collapse
Affiliation(s)
- Vanessa de Lima Silva
- Department of Food Science, Nutrition School, Federal University of Bahia, Salvador, Bahia, Brazil
| | - Bruna Santos Leite
- Department of Food Science, Nutrition School, Federal University of Bahia, Salvador, Bahia, Brazil
| | | | - Lissa Daltro Martins
- Department of Food Science, Nutrition School, Federal University of Bahia, Salvador, Bahia, Brazil
| | | | - Ingrid Lessa Leal
- Faculty of Pharmacy, Federal University of Bahia, Salvador, Bahia, Brazil
- Food Technology Laboratory, University Center SENAI CIMATEC, Salvador, Bahia, Brazil
| | | | | | - Bruna Aparecida Souza Machado
- SENAI Institute of Innovation (ISI) in Advanced Health Systems, University Center SENAI CIMATEC, Salvador, Bahia, Brazil
| | - Camila Duarte Ferreira Ribeiro
- Department of Food Science, Nutrition School, Federal University of Bahia, Salvador, Bahia, Brazil
- Faculty of Pharmacy, Federal University of Bahia, Salvador, Bahia, Brazil
| |
Collapse
|
33
|
Sang K, Li J, Qian X, Yu J, Zhou Y, Xia X. The APETALA2a/DWARF/BRASSINAZOLE-RESISTANT 1 module contributes to carotenoid synthesis in tomato fruits. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 112:1238-1251. [PMID: 36271694 DOI: 10.1111/tpj.16009] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 10/11/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
Ethylene (ET) signaling plays a critical role in the ripening of climacteric fruits such as tomato. Brassinosteroids (BRs) were found to promote the ripening of both climacteric and non-climacteric fruits. However, the mechanism of interaction between ET and BRs during fruit ripening is unclear. Here, we found that BR synthesis and signaling increased after the onset of fruit ripening. Overexpression of the BR synthesis gene DWARF (DWF) promotedfruit softening, lycopene synthesis and ET production, whereas defect of DWF inhibited them. BRASSINAZOLE RESISTANT 1 (BZR1) as a key component of BR signaling, enhanced fruit lycopene content by directly activating the transcription of PSY1 gene. Interestingly, the increases in BR synthesis and BZR1 protein levels were dependent on ET signaling. Knocking out the ET-induced APETALA2a (AP2a) suppressed the expression of DWF and BR accumulation. Molecular assays demonstrated that AP2a was a positive regulator of DWF expression. Furthermore, 28-homobrassinolide, a bioactive BR, partially compensated the defects of lycopene accumulation and expression of PSY1 in ap2a mutant fruits. The results demonstrated that AP2a mediated ET signaling to regulate BR synthesis and signaling. BRs played critical roles in lycopene synthesis after onset of fruit ripening.
Collapse
Affiliation(s)
- Kangqi Sang
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Junjie Li
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Xiangjie Qian
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Jingquan Yu
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou, 310058, People's Republic of China
- Hainan Institute, Zhejiang University, Sanya, 572025, People's Republic of China
- Key Laboratory of Horticultural Plants Growth, Development and Quality Improvement, Agricultural Ministry of China, Hangzhou, 310058, People's Republic of China
| | - Yanhong Zhou
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou, 310058, People's Republic of China
- Hainan Institute, Zhejiang University, Sanya, 572025, People's Republic of China
| | - Xiaojian Xia
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou, 310058, People's Republic of China
- Hainan Institute, Zhejiang University, Sanya, 572025, People's Republic of China
| |
Collapse
|
34
|
Kapoor B, Gulati M, Rani P, Kochhar RS, Atanasov AG, Gupta R, Sharma D, Kapoor D. Lycopene: Sojourn from kitchen to an effective therapy in Alzheimer's disease. Biofactors 2022; 49:208-227. [PMID: 36318372 DOI: 10.1002/biof.1910] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/05/2022] [Indexed: 01/03/2023]
Abstract
Reports on a significant positive correlation between consumption of carotenoid-rich food and prevention of Alzheimer's disease (AD) led to the investigation of carotenoids for the treatment and prevention of AD. More than 1100 types of carotenoids are found naturally, out of which only around 50 are absorbed and metabolized in human body. Lycopene is one of the most commonly ingested members of fat-soluble carotenoid family that gives vegetables and fruits their red, yellow, or orange color. Lycopene has established itself as a promising therapy for AD owing to its neuroprotective activities, including antioxidant, anti-inflammatory, and antiamyloidogenic properties. In this review, we highlight the various in vitro and preclinical studies demonstrating the neuroprotective effect of lycopene. Also, some epidemiological and interventional studies investigating the protective effect of lycopene in AD have been discussed. Diving deeper, we also discuss various significant mechanisms, through which lycopene exerts its remissive effects in AD. Finally, to overcome the issue of poor chemical stability and bioavailability of lycopene, some of the novel delivery systems developed for lycopene have also been briefly highlighted.
Collapse
Affiliation(s)
- Bhupinder Kapoor
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Sydney, New South Wales, Australia
| | - Pooja Rani
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | | | - Atanas G Atanasov
- Ludwig Boltzmann Institute for Digital Health and Patient Safety, Medical University of Vienna, Vienna, Austria
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Magdalenka, Poland
- Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria
| | - Reena Gupta
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Deepika Sharma
- Institute of Nanoscience and Technology, Mohali, Punjab, India
| | - Deepak Kapoor
- University Institute of Biotechnology, Chandigarh University, Mohali, Punjab, India
- Punjab State Council for Science & Technology (PSCST), Chandigarh, India
| |
Collapse
|
35
|
Effect of Starters on Quality Characteristics of Hongsuantang, a Chinese Traditional Sour Soup. FERMENTATION 2022. [DOI: 10.3390/fermentation8110589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Hongsuantang (HST) is a traditional Chinese and famous sour soup. However, the quality of naturally fermented HST is not controllable. We investigated the effects of different lactic acid bacteria starters on HST acid production, color, antioxidant capacity, total phenols, total carotenoids, organic acids, volatile substances, and sensory properties to determine the most suitable strain for HST production. The results showed that among the seven lactic acid bacteria strains used to inoculate fermented HST, Lactiplantibacillus plantarum SQ-4 exhibited the most excellent fermentation characteristics. SQ-4 rapidly reduced the HST’s pH by 0.77. It significantly increased the HST’s color, organic acids, total phenols, carotenoids, lycopene, and free radical scavenging ability. Lactiplantibacillus plantarum SQ-4 was an excellent starter for preparing HST with good acid production capacity, moderate sourness and spiciness, and good sensory and other characteristics. Each starter produces its distinct flavor components. α-Pinene, myrcene, α-copaene, and guaiol were vital aroma compounds in HST fermentation by the starter. This study laid a foundation for selecting HST starters and potential industrial production.
Collapse
|
36
|
Effect of Lycopene Supplementation on Some Cardiovascular Risk Factors and Markers of Endothelial Function in Iranian Patients with Ischemic Heart Failure: A Randomized Clinical Trial. Cardiol Res Pract 2022; 2022:2610145. [PMID: 36337273 PMCID: PMC9635958 DOI: 10.1155/2022/2610145] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 10/01/2022] [Accepted: 10/14/2022] [Indexed: 11/17/2022] Open
Abstract
Aim This study aimed to explore if supplementary lycopene tablets may help heart failure (HF) patients improve their lipid profile, BP, and the flow-mediated dilation (FMD) index for endothelial function. Methods Fifty patients with ischemic HF with a reduced ejection fraction (HFrEF) were randomly assigned to one of two groups: the lycopene group which received 25 mg lycopene tablets once a day for 8 weeks and the control group which received placebo tablets containing starch once a day for 8 weeks. Results Our results showed that after two months, the amount of triglyceride (TG) and FMD improved significantly compared to the control, TG decreased (219.27 vs. 234.24), and the mean of FMD increased (5.68 vs. 2.95). Other variables, including total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), high-density cholesterol (HDL-C), systolic blood pressure (SBP), and diastolic blood pressure (DBP), showed no improvement. Also, only SBP and FMD showed intragroup improvement in the intervention group. In the intervention group, only SBP and FMD exhibited intragroup improvement. Conclusions It can be concluded that supplementing with lycopene can enhance endothelial function and reduce the TG levels in ischemic HFrEF patients. However, it had no positive effect on BP, TC, LDL-C, or HDL-C. Trial Registration. This clinical trial was registered at the Iranian Registry of Clinical Trials with IRCT registration number: IRCT20210614051574N4.
Collapse
|
37
|
Chen J, Yuan CHY, Li WC, Zhao L, Huang YB, Li HH, Liu G, Ni H, Raikos V. Physicochemical and nutritional properties of yogurt emulsion with lycopene during chilled storage. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2022; 59:4037-4044. [PMID: 36193361 PMCID: PMC9525556 DOI: 10.1007/s13197-022-05449-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 03/20/2022] [Accepted: 03/23/2022] [Indexed: 06/16/2023]
Abstract
Lycopene is a highly potent antioxidant that is prevalent among dietary carotenoids. However, its use in food formulations is restricted due to its poor water-solubility and proneness to oxidation. The aim of this research was to encapsulate lycopene in yogurt using emulsion technology for improving its stability during processing and storage, in order to diversify a widely consumed food product and enhance its nutritional value. Confocal laser microscopy data showed that the incorporation of oil droplets with emulsification did not have a negative effect on the formation and microstructure of yogurt. Syneresis of lycopene-fortified yogurt samples was approximately twice as high compared with plain yogurt at day 7; the ability to retain water was significantly improved with storage time for all emulsified samples. Additionally, storage reduced the Turbiscan Stability Indices (TSI) for all yogurt samples, which suggests that physical stability improved at 4 °C. Emulsification resulted in increased oxidation levels due to increased oil content. This effect was ameliorated by lycopene encapsulation, which effectively protected corn oil from oxidation and prevented degradation. This study indicates that emulsification is a promising method for lycopene encapsulation and can be used for developing yogurt with desirable nutritional properties.
Collapse
Affiliation(s)
- Jie Chen
- Guangdong Provincial Key Lab of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631 China
| | - Chen-Hai-Yue Yuan
- Guangdong Provincial Key Lab of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631 China
| | - Wei-Chao Li
- Department of Critical Care Medicine, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, 510120 China
| | - Lei Zhao
- College of Food Science, South China Agricultural University, Guangzhou, 510642 China
| | - Yan-Bo Huang
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, 510641 China
| | - Hai-Hang Li
- Guangdong Provincial Key Lab of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631 China
| | - Guang Liu
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, 510610 China
| | - He Ni
- Guangdong Provincial Key Lab of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631 China
| | - Vassilios Raikos
- Rowett Institute, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD Scotland, UK
| |
Collapse
|
38
|
Constantino LV, de Araujo SR, Suzuki Fukuji AS, Nogueira AF, de Lima Filho RB, Zeffa DM, Nicio TT, Oliveira C, Azeredo Gonçalves LS. Post-harvest characterization and sensory analysis of Roma tomato cultivars under organic cultivation: A strategy using consumers and chefs. Int J Gastron Food Sci 2022. [DOI: 10.1016/j.ijgfs.2022.100564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
39
|
Liu R, Deng Y, Zheng M, Liu Y, Wang Z, Yu S, Nie Y, Zhu W, Zhou Z, Diao J. Nano selenium repairs the fruit growth and flavor quality of tomato under the stress of penthiopyrad. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 184:126-136. [PMID: 35640519 DOI: 10.1016/j.plaphy.2022.05.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/27/2022] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Abstract
This study explored the repair effect of Selenium nanoparticles (Se-NPs) on tomato under the stress of Penthiopyrad (Pen), and expected to select out the optimal concentration and the application time of Se-NPs, to maximize the repair effect without causing phytotoxicity. The results showed that Pen induced severe oxidative stress on tomato and inhibited the growth and flavor quality of fruit. Compared with the control, the application of 1 mg/L Se-NPs at the immature green stage significantly improved the antioxidant capacity of tomato to reduce the MDA content. Besides, the plant hormones were synthesized normally, the contents of soluble sugars, volatile compounds and nutrients were increased, and the contents of organic acids were decreased in the 1 mg/L Se-NPs + Pen treatment group, which finally repaired the fruit flavor and quality. Therefore, the application of 1 mg/L Se-NPs and at the immature green stage represented a promising strategy for repairing the inhibitory effect of Pen on tomato fruit growth and flavor quality.
Collapse
Affiliation(s)
- Rui Liu
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2, Beijing, 100193, China
| | - Yue Deng
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2, Beijing, 100193, China
| | - Meiling Zheng
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2, Beijing, 100193, China
| | - Yuping Liu
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2, Beijing, 100193, China
| | - Zikang Wang
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2, Beijing, 100193, China
| | - Simin Yu
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2, Beijing, 100193, China
| | - Yufan Nie
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2, Beijing, 100193, China
| | - Wentao Zhu
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2, Beijing, 100193, China
| | - Zhiqiang Zhou
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2, Beijing, 100193, China
| | - Jinling Diao
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2, Beijing, 100193, China.
| |
Collapse
|
40
|
Magnesium Accumulation in Two Contrasting Varieties of Lycopersicum esculentum L. Fruits: Interaction with Calcium at Tissue Level and Implications on Quality. PLANTS 2022; 11:plants11141854. [PMID: 35890488 PMCID: PMC9318375 DOI: 10.3390/plants11141854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/28/2022] [Accepted: 07/12/2022] [Indexed: 11/16/2022]
Abstract
As the productivity and quality of tomato fruits are responsive to Mg applications, without surpassing the threshold of toxicity, the assessment of potential levels of Mg accumulation in tissues, as well as the interactions with Ca and physicochemical properties, prompt this study. An agronomic workflow for Mg enrichment, consisting of six foliar applications of MgSO4 with four concentrations (0%, 0.25%, 1% and 4%), equivalent to 0, 43.9, 175.5 and 702 g ha−1, was applied on two tomato (Lycopersicum esculentum L.) genotypes (Heinz1534 and Heinz9205). During fruit development, leaf gas exchange was screened, with only minor physiological deviations being found. At harvest, Mg contents among tissues and the interactions with Ca were analyzed, and it was found that in both varieties a higher Mg/Ca ratio prevailed in the most external part of the fruit sprayed with 4% MgSO4. However, Mg distribution prevailed relatively near the epidermis in H1534, while in H9205 the higher contents of this nutrient occurred in the core of the fruit, which indicated a decrease of the relative proportion of Ca. The morphologic (height and diameter), physical (dry weight and density) and colorimetric parameters, and the total soluble solids of fruits, did not reveal significant changes in both tomato varieties. It was further concluded that foliar application until 4% MgSO4 does not have physiological impacts in the fruit’s quality of both varieties, but in spite of the different patterns of Mg accumulation in tissues, if the mean value in the whole fruit is considered, this nutrient prevails in H1534. This study thus suggests that variety H1534 can be used to attain tomato fruits with added value, providing an option of further processing to achieve food products with functional properties, ultimately proving a beneficial option to producers, the food processing industry and consumers. Moreover, the study reinforces the importance of variety choice when designing enrichment workflows.
Collapse
|
41
|
Wang C, Li M, Duan X, Abu-Izneid T, Rauf A, Khan Z, Mitra S, Emran TB, Aljohani ASM, Alhumaydhi FA, Thiruvengadam M, Suleria HAR. Phytochemical and Nutritional Profiling of Tomatoes; Impact of Processing on Bioavailability - A Comprehensive Review. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2097692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Chuqi Wang
- Faculty of Veterinary and Agricultural Sciences, School of Agriculture and Food, The University of Melbourne, Parkville, Victoria, Australia
| | - Minhao Li
- Faculty of Veterinary and Agricultural Sciences, School of Agriculture and Food, The University of Melbourne, Parkville, Victoria, Australia
| | - Xinyu Duan
- Faculty of Veterinary and Agricultural Sciences, School of Agriculture and Food, The University of Melbourne, Parkville, Victoria, Australia
| | - Tareq Abu-Izneid
- Pharmaceutical Sciences Program, College of Pharmacy, Al Ain University, Al Ain Campus, United Arab Emirates
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Anbar, Khyber Pakhtunkhwa, Pakistan
| | - Zidan Khan
- Department of Pharmacy, International Islamic University Chittagong, Chittagong, Bangladesh
| | - Saikat Mitra
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka, Bangladesh
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, Bangladesh
| | - Abdullah S. M. Aljohani
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah, Saudi Arabia
| | - Fahad A. Alhumaydhi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Muthu Thiruvengadam
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul, Republic of Korea
- Department of Microbiology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, India
| | - Hafiz A. R. Suleria
- Faculty of Veterinary and Agricultural Sciences, School of Agriculture and Food, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
42
|
Mohammad Azmin SNH, Sulaiman NS, Mat Nor MS, Abdullah PS, Abdul Kari Z, Pati S. A Review on Recent Advances on Natural Plant Pigments in Foods: Functions, Extraction, Importance and Challenges. Appl Biochem Biotechnol 2022; 194:4655-4672. [DOI: 10.1007/s12010-022-04050-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2022] [Indexed: 11/30/2022]
|
43
|
Cabrera-Díaz E, Castillo A, Martínez-Chávez L, Beltrán-Huerta J, Gutiérrez-González P, Orozco-García AG, García-Frutos R, Martínez-Gonzáles NE. Attachment and Survival of Salmonella enterica and Listeria monocytogenes on Tomatoes (Solanum lycopersicum) as Affected by Relative Humidity, Temperature, and Storage Time. J Food Prot 2022; 85:1044-1052. [PMID: 35512125 DOI: 10.4315/jfp-21-370] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 05/01/2022] [Indexed: 11/11/2022]
Abstract
ABSTRACT Tomatoes (Solanum lycopersicum) are one of the most commonly consumed fruits worldwide. The fruit can become contaminated with Salmonella and Listeria monocytogenes at various stages of the production and supply chain, and these pathogens may survive under various storage conditions. The effects of relative humidity, temperature, and duration of storage on the attachment and survival of both pathogens on the surface of tomatoes were investigated. Fresh whole Roma tomatoes were inoculated with a cocktail of Salmonella or L. monocytogenes strains and stored at 5, 12, 25, 30, or 35°C for up to 10 days. Every day during storage, relative humidity and temperature were measured and tomatoes were removed to enumerate pathogens cells that were loosely attached (LA; cells were detached from the tomato surface by rinsing) and strongly attached (SA; sonication was required to detach cells from the tomato surface). The attachment strength (SR) was calculated to express the proportion of surviving SA cells on the tomato surface. The initial levels of Salmonella and L. monocytogenes on the tomato surface after inoculation were 6.6 and 6.5 log CFU per tomato for LA cells and 5.1 and 5.6 log CFU per tomato for SA cells, respectively. For both pathogens, the LA levels were higher (P < 0.05) than the SA levels. The LA and SA levels differed significantly as a function of temperature, relative humidity, and duration of storage. The SR for Salmonella was affected by storage time but not temperature, whereas the SR for L. monocytogenes was affected by storage time and temperature and relative humidity (P < 0.05). An understanding of the attachment and survival of Salmonella and L. monocytogenes on tomatoes stored under various temperature conditions may be useful for preventing or reducing the establishment of pathogens and for designing improved decontamination methods. HIGHLIGHTS
Collapse
Affiliation(s)
- E Cabrera-Díaz
- Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Camino Ramón Padilla Sánchez 2100, Zapopan, Jalisco, México C.P. 45200
| | - A Castillo
- Department of Food Science and Technology, Texas A&M University, 2256 TAMU, College Station, Texas 77843, USA
| | - L Martínez-Chávez
- Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Marcelino García Barragán 1451, Guadalajara, Jalisco, México, C.P. 44430
| | - J Beltrán-Huerta
- Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Marcelino García Barragán 1451, Guadalajara, Jalisco, México, C.P. 44430
| | - P Gutiérrez-González
- Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Marcelino García Barragán 1451, Guadalajara, Jalisco, México, C.P. 44430
| | - A G Orozco-García
- Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Camino Ramón Padilla Sánchez 2100, Zapopan, Jalisco, México C.P. 45200
| | - R García-Frutos
- Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Marcelino García Barragán 1451, Guadalajara, Jalisco, México, C.P. 44430
| | - N E Martínez-Gonzáles
- Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Marcelino García Barragán 1451, Guadalajara, Jalisco, México, C.P. 44430
| |
Collapse
|
44
|
Cheng T, Wang L, Sun C, Xie C. Optimizing the downstream MVA pathway using a combination optimization strategy to increase lycopene yield in Escherichia coli. Microb Cell Fact 2022; 21:121. [PMID: 35718767 PMCID: PMC9208136 DOI: 10.1186/s12934-022-01843-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 06/01/2022] [Indexed: 11/20/2022] Open
Abstract
Background Lycopene is increasing in demand due to its widespread use in the pharmaceutical and food industries. Metabolic engineering and synthetic biology technologies have been widely used to overexpress the heterologous mevalonate pathway and lycopene pathway in Escherichia coli to produce lycopene. However, due to the tedious metabolic pathways and complicated metabolic background, optimizing the lycopene synthetic pathway using reasonable design approaches becomes difficult. Results In this study, the heterologous lycopene metabolic pathway was introduced into E. coli and divided into three modules, with mevalonate and DMAPP serving as connecting nodes. The module containing the genes (MVK, PMK, MVD, IDI) of downstream MVA pathway was adjusted by altering the expression strength of the four genes using the ribosome binding sites (RBSs) library with specified strength to improve the inter-module balance. Three RBS libraries containing variably regulated MVK, PMK, MVD, and IDI were constructed based on different plasmid backbones with the variable promoter and replication origin. The RBS library was then transformed into engineered E. coli BL21(DE3) containing pCLES and pTrc-lyc to obtain a lycopene producer library and employed high-throughput screening based on lycopene color to obtain the required metabolic pathway. The shake flask culture of the selected high-yield strain resulted in a lycopene yield of 219.7 mg/g DCW, which was 4.6 times that of the reference strain. Conclusion A strain capable of producing 219.7 mg/g DCW with high lycopene metabolic flux was obtained by fine-tuning the expression of the four MVA pathway enzymes and visual selection. These results show that the strategy of optimizing the downstream MVA pathway through RBS library design can be effective, which can improve the metabolic flux and provide a reference for the synthesis of other terpenoids. Supplementary Information The online version contains supplementary material available at 10.1186/s12934-022-01843-z.
Collapse
Affiliation(s)
- Tao Cheng
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, No. 53 Zhengzhou Road, Qingdao, 266042, China. .,CAS Key Laboratory of Bio-Based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Laoshan District, Qingdao, 266101, China.
| | - Lili Wang
- Department of Pathology, the Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266000, China
| | - Chao Sun
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, No. 53 Zhengzhou Road, Qingdao, 266042, China.,CAS Key Laboratory of Bio-Based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Laoshan District, Qingdao, 266101, China
| | - Congxia Xie
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, No. 53 Zhengzhou Road, Qingdao, 266042, China.
| |
Collapse
|
45
|
Mediterranean Diet: The Beneficial Effects of Lycopene in Non-Alcoholic Fatty Liver Disease. J Clin Med 2022; 11:jcm11123477. [PMID: 35743545 PMCID: PMC9225137 DOI: 10.3390/jcm11123477] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/10/2022] [Accepted: 06/15/2022] [Indexed: 02/07/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) presents the most common chronic liver disease globally; it is estimated that 25.24% of the world’s population has NAFLD. NAFLD is a multi-factorial disease whose development involves various processes, such as insulin resistance, lipotoxicity, inflammation, cytokine imbalance, the activation of innate immunity, microbiota and environmental and genetic factors. Numerous clinical studies have shown that the Mediterranean diet produces beneficial effects in NAFLD patients. The aim of this review is to summarize the beneficial effects of lycopene, a soluble pigment found in fruit and vegetables, in NAFLD.
Collapse
|
46
|
Yadav A, Kumar N, Upadhyay A, Sethi S, Singh A. Edible coating as postharvest management strategy for shelf-life extension of fresh tomato (Solanum lycopersicum L.): An overview. J Food Sci 2022; 87:2256-2290. [PMID: 35502679 DOI: 10.1111/1750-3841.16145] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 03/12/2022] [Accepted: 03/15/2022] [Indexed: 01/01/2023]
Abstract
Tomato is considered as one of the most grown horticultural crops having a short shelf-life due to its climacteric nature of ripening, susceptibility to postharvest microbial decay, and mechanical damage, resulting in huge postharvest losses. Recently, the use of edible coatings has been seen as a promising environment friendly and sustainable technology for preserving the quality attributes and prolonging the shelf-life of tomato during storage. Although a lot of literature is available on the aspects of edible coating for fresh produce, especially stone and tropical fruits, but there is no dedicated comprehensive review that specifically addresses the requirements of edible coatings for whole fresh tomato. This review aims to provide the information about the desirable coating property requirements specific to tomato and summarizes or analyzes the recent studies conducted on the application of edible coating on tomato. The article also deals with recent trends on utilization of bioactive compounds as well as nanotechnological approaches for improving the performance and functionality of coating materials used for tomato. However, the edible coating technology for tomato is still at infancy state, and adoption of technology on a commercial scale requires economic viability and large-scale consumer acceptability.
Collapse
Affiliation(s)
- Ajay Yadav
- Agro Produce Processing Division, ICAR-Central Institute if Agricultural Engineering, Bhopal, Madhya Pradesh, India.,Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management, Sonipat, Haryana, India
| | - Nishant Kumar
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management, Sonipat, Haryana, India
| | - Ashutosh Upadhyay
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management, Sonipat, Haryana, India
| | - Shruti Sethi
- Division of Food Science and Postharvest Technology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Anurag Singh
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management, Sonipat, Haryana, India
| |
Collapse
|
47
|
Kim JK, Park SU. Recent insights into the biological and pharmacological activity of lycopene. EXCLI JOURNAL 2022; 21:415-425. [PMID: 35391916 PMCID: PMC8983849 DOI: 10.17179/excli2022-4714] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 02/10/2022] [Indexed: 12/27/2022]
Affiliation(s)
- Jae Kwang Kim
- Division of Life Sciences and Bio?Resource and Environmental Center, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Korea
| | - Sang Un Park
- Department of Crop Science, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea.,Department of Smart Agriculture Systems, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea
| |
Collapse
|
48
|
Wang Q, Yang C, Liu Y, Zhang J, Zhang L. Efficient E/Z conversion of (all-E)-lycopene to Z-isomers with a high proportion of (5Z)-lycopene by metal salts. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
49
|
Angwa LM, Jiang Y, Pei J, Sun D. Antioxidant Phytochemicals for the Prevention of Fluoride-Induced Oxidative Stress and Apoptosis: a Review. Biol Trace Elem Res 2022; 200:1418-1441. [PMID: 34003450 DOI: 10.1007/s12011-021-02729-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 04/16/2021] [Indexed: 02/07/2023]
Abstract
Fluorosis is a major public health problem globally. The non-availability of specific treatment and the irreversible nature of dental and skeletal lesions poses a challenge in the management of fluorosis. Oxidative stress is known to be one of the most important mechanisms of fluoride toxicity. Fluoride promotes the accumulation of reactive oxygen species by inhibiting the activity of antioxidant enzymes, resulting in the excessive production of reactive oxygen species at the cellular level which further leads to activation of cell death processes such as apoptosis. Phytochemicals that act as antioxidants have the potential to protect cells from oxidative stress. Evidence confirms that clinical symptoms of fluorosis can be mitigated to some extent or prevented by long-term intake of antioxidants and plant products. The primary purpose of this review is to examine recent findings that focus on the amelioration of fluoride-induced oxidative stress and apoptosis by natural and synthetic phytochemicals and their molecular mechanisms of action.
Collapse
Affiliation(s)
- Linet M Angwa
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, 150081, China
- Department of Clinical Medicine, Kabarak University, Nakuru, 20157, Kenya
| | - Yuting Jiang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, 150081, China
| | - Junrui Pei
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, 150081, China
| | - Dianjun Sun
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, 150081, China.
| |
Collapse
|
50
|
Przybylska S, Tokarczyk G. Lycopene in the Prevention of Cardiovascular Diseases. Int J Mol Sci 2022; 23:1957. [PMID: 35216071 PMCID: PMC8880080 DOI: 10.3390/ijms23041957] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/01/2022] [Accepted: 02/07/2022] [Indexed: 02/04/2023] Open
Abstract
Cardiovascular diseases (CVDs) are the leading cause of human mortality worldwide. Oxidative stress and inflammation are pathophysiological processes involved in the development of CVD. That is why bioactive food ingredients, including lycopene, are so important in their prevention, which seems to be a compound increasingly promoted in the diet of people with cardiovascular problems. Lycopene present in tomatoes and tomato products is responsible not only for their red color but also for health-promoting properties. It is characterized by a high antioxidant potential, the highest among carotenoid pigments. Mainly for this reason, epidemiological studies show a number of favorable properties between the consumption of lycopene in the diet and a reduced risk of cardiovascular disease. While there is also some controversy in research into its protective effects on the cardiovascular system, growing evidence supports its beneficial role for the heart, endothelium, blood vessels, and health. The mechanisms of action of lycopene are now being discovered and may explain some of the contradictions observed in the literature. This review aims to present the current knowledge in recent years on the preventive role of lycopene cardiovascular disorders.
Collapse
Affiliation(s)
- Sylwia Przybylska
- Department of Fish, Plant and Gastronomy Technology, West Pomeranian University of Technology in Szczecin, 71-459 Szczecin, Poland;
| | | |
Collapse
|