1
|
Zhao J, Huangfu C, Chang Z, Zhou W, Grainger AT, Liu Z, Shi W. Inflammation and enhanced atherogenesis in the carotid artery with altered blood flow in an atherosclerosis-resistant mouse strain. Physiol Rep 2021; 9:e14829. [PMID: 34110700 PMCID: PMC8191400 DOI: 10.14814/phy2.14829] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 12/06/2020] [Accepted: 12/07/2020] [Indexed: 12/27/2022] Open
Abstract
Ligation of the common carotid artery near its bifurcation in apolipoprotein E-deficient (Apoe-/- ) mice leads to rapid atherosclerosis development, which is affected by genetic backgrounds. BALB/cJ (BALB) mice are resistant to atherosclerosis, developing much smaller aortic lesions than C57BL/6 (B6) mice. In this study, we examined cellular events leading to lesion formation in carotid arteries with or without blood flow restriction of B6 and BALB Apoe-/- mice. Blood flow was obstructed by ligating the left common carotid artery near its bifurcation in one group of mice, and other group received no surgical intervention. Without blood flow interruption, BALB-Apoe-/- mice formed much smaller atherosclerotic lesions than B6-Apoe-/- mice after 12 weeks of Western diet (3,325 ± 1,086 vs. 81,549 ± 9,983 µm2 /section; p = 2.1E-7). Lesions occurred at arterial bifurcations in both strains. When blood flow was obstructed, ligated carotid artery of both strains showed notable lipid deposition, inflammatory cell infiltration, and rapid plaque formation. Neutrophils and macrophages were observed in the arterial wall of BALB mice 3 days after ligation and 1 week after ligation in B6 mice. CD4 T cells were observed in intimal lesions of BALB but not B6 mice. By 4 weeks, both strains developed similar sizes of advanced lesions containing foam cells, smooth muscle cells, and neovessels. Atherosclerosis also occurred in straight regions of the contralateral common carotid artery where MCP-1 was abundantly expressed in the intima of BALB mice. These findings indicate that the disturbed blood flow is more prominent than high fat diet in promoting inflammation and atherosclerosis in hyperlipidemic BALB mice.
Collapse
Affiliation(s)
- Jian Zhao
- Departments of Radiology & Medical Imaging, University of Virginia, Charlottesville, VA, USA.,Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Chaoji Huangfu
- Departments of Radiology & Medical Imaging, University of Virginia, Charlottesville, VA, USA.,Center for Disease Control and Prevention, Western Theater Command, Lanzhou, China
| | - Zhihui Chang
- Departments of Radiology & Medical Imaging, University of Virginia, Charlottesville, VA, USA.,Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Wei Zhou
- Departments of Radiology & Medical Imaging, University of Virginia, Charlottesville, VA, USA.,Department of Nephrology, The Second Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Andrew T Grainger
- Biochemistry & Molecular Genetics, University of Virginia, Charlottesville, Virginia, USA
| | - Zhaoyu Liu
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Weibin Shi
- Departments of Radiology & Medical Imaging, University of Virginia, Charlottesville, VA, USA.,Biochemistry & Molecular Genetics, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
2
|
Abstract
AbstractOne of the benefits of the genomics revolution for animal production will be knowledge of genes that can be used to select more profitable livestock. Although it is possible to use genetic markers linked to genes of economic importance, tests for the genes themselves will be much more successful. Consequently finding genes of economic importance to livestock will be a major research aim for the future. Most traits of economic importance are quantitative traits affected by many genes. Mutations at many genes (e.g. 500) and at many positions within a gene (e.g. 1000 coding and non-coding bases) can affect a typical quantitative trait. The effect of these mutations on phenotype is usually small (e.g. 0·1 standard deviation) but occasionally large. Many mutations are lost from the population through genetic drift and selection, so that polymorphisms exist at only a subset of the relevant genes (e.g. 100 genes). Finding these genes, that have relatively small effects, is more difficult than finding genes for a classical Mendellian trait but, as the genomic tools become more powerful, it is becoming feasible and some successes have already occurred. The standard approach is to map a quantitative trait loci (QTL) to a chromosome region using linkage and linkage disequilibrium. Then test polymorphisms in positional candidate genes for an effect on the trait. Tools such as genomic sequence, EST collections and comparative maps make this approach feasible. Candidate genes can be selected based on functional data such as gene expression obtained from microarrays. At present the gain in rate of genetic improvement from use of DNA-based tests for QTL is small, because selection without them is already quite accurate, not enough QTL have been identified and genotyping is too expensive. However, in the future, with many QTL identified and inexpensive genotyping combined with decreased generation intervals, large gains are possible.
Collapse
|
3
|
Russo LM, Abdeltawab NF, O’Brien AD, Kotb M, Melton-Celsa AR. Mapping of genetic loci that modulate differential colonization by Escherichia coli O157:H7 TUV86-2 in advanced recombinant inbred BXD mice. BMC Genomics 2015; 16:947. [PMID: 26573818 PMCID: PMC4647490 DOI: 10.1186/s12864-015-2127-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 10/22/2015] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Shiga toxin (Stx)-producing E. coli (STEC) are responsible for foodborne outbreaks that can result in severe human disease. During an outbreak, differential disease outcomes are observed after infection with the same STEC strain. One question of particular interest is why some infected people resolve infection after hemorrhagic colitis whereas others progress to the hemolytic uremic syndrome (HUS). Host age and infection dose have been implicated; however, these parameters do not appear to fully account for all of the observed variation in disease severity. Therefore, we hypothesized that additional host genetic factors may play a role in progression to HUS. METHODS AND RESULTS To mimic the genetic diversity in the human response to infection by STEC, we measured the capacity of an O157:H7 outbreak isolate to colonize mouse strains from the advanced recombinant inbred (ARI) BXD panel. We first infected the BXD parental strains C57BL/6 J (B6) and DBA/2 J (D2) with either 86-24 (Stx2a+) or TUV86-2, an Stx2a-negative isogenic mutant. Colonization levels were determined in an intact commensal flora (ICF) infection model. We found a significant difference in colonization levels between the parental B6 and D2 strains after infection with TUV86-2 but not with 86-24. This observation suggested that a host factor that may be masked by Stx2a affects O157:H7 colonization in some genetic backgrounds. We then determined the TUV86-2 colonization levels of 24 BXD strains in the ICF model. We identified several quantitative trait loci (QTL) associated with variation in colonization by correlation analyses. We found a highly significant QTL on proximal chromosome 9 (12.5-26.7 Mb) that strongly predicts variation in colonization levels and accounts for 15-20 % of variance. Linkage, polymorphism and co-citation analyses of the mapped region revealed 36 candidate genes within the QTL, and we identified five genes that are most likely responsible for the differential colonization. CONCLUSIONS The identification of the QTL on chromosome 9 supports our hypothesis that individual genetic makeup affects the level of colonization after infection with STEC O157:H7.
Collapse
Affiliation(s)
- Lisa M. Russo
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD USA
| | - Nourtan F. Abdeltawab
- University of Cincinnati College of Medicine & Cincinnati VA Medical Center, Cincinnati, OH USA ,Department Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Alison D. O’Brien
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD USA
| | - Malak Kotb
- University of Cincinnati College of Medicine & Cincinnati VA Medical Center, Cincinnati, OH USA ,Department of Basic Biomedical Sciences, University of North Dakota, Grand Forks, ND USA
| | - Angela R. Melton-Celsa
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD USA
| |
Collapse
|
4
|
Östergren C, Shim J, Larsen JV, Nielsen LB, Bentzon JF. Genetic analysis of ligation-induced neointima formation in an F2 intercross of C57BL/6 and FVB/N inbred mouse strains. PLoS One 2015; 10:e0121899. [PMID: 25875831 PMCID: PMC4395357 DOI: 10.1371/journal.pone.0121899] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 02/05/2015] [Indexed: 11/26/2022] Open
Abstract
Objective Proliferation and migration of vascular smooth muscle cells (SMCs) are central for arterial diseases including atherosclerosis and restenosis. We hypothesized that the underlying mechanisms may be modeled by carotid ligation in mice. In FVB/N inbred mice, ligation leads to abundant neointima formation with proliferating media-derived SMCs, whereas in C57BL/6 mice hardly any neointima is formed. In the present study, we aimed to identify the chromosomal location of the causative gene variants in an F2 intercross between these two mouse strains. Methods and Results The neointimal cross-sectional area was significantly different between FVB/N, C57BL/6 and F1 female mice 4 weeks after ligation. Carotid artery ligation and a genome scan using 800 informative SNP markers were then performed in 157 female F2 mice. Using quantitative trait loci (QTL) analysis, we identified suggestive, but no genome-wide significant, QTLs on chromosomes 7 and 12 for neointimal cross-sectional area and on chromosome 14 for media area. Further analysis of the cross revealed 4 QTLs for plasma cholesterol, which combined explained 69% of the variation among F2 mice. Conclusions We identified suggestive QTLs for neointima and media area after carotid ligation in an intercross of FVB/N and C57BL/6 mice, but none that reached genome-wide significance indicating a complex genetic architecture of the traits. Genome-wide significant QTLs for total cholesterol levels were identified on chromosomes 1, 3, 9, and 12.
Collapse
Affiliation(s)
- Caroline Östergren
- Department of Clinical Medicine, Aarhus University, and Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark
| | - Jeong Shim
- Department of Clinical Medicine, Aarhus University, and Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark
| | - Jens Vinther Larsen
- Department of Clinical Medicine, Aarhus University, and Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark
| | - Lars Bo Nielsen
- Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- Department of Biomedical Sciences and Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Jacob F. Bentzon
- Department of Clinical Medicine, Aarhus University, and Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark
- * E-mail:
| |
Collapse
|
5
|
Abstract
Today’s laboratory mouse, Mus musculus, has its origins as the ‘house mouse’ of North America and Europe. Beginning with mice bred by mouse fanciers, laboratory stocks (outbred) derived from M. musculus musculus from eastern Europe and M. m. domesticus from western Europe were developed into inbred strains. Since the mid-1980s, additional strains have been developed from Asian mice (M. m. castaneus from Thailand and M. m. molossinus from Japan) and from M. spretus which originated from the western Mediterranean region.
Collapse
|
6
|
Medeiros GFD, Corrêa FJ, Corvino ME, Izídio GDS, Ramos A. The Long Way from Complex Phenotypes to Genes: The Story of Rat Chromosome 4 and Its Behavioral Effects. ACTA ACUST UNITED AC 2014. [DOI: 10.4236/wjns.2014.43024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
7
|
Barth A, Bilkei-Gorzo A, Drews E, Otte DM, Diaz-Lacava A, Varadarajulu J, Turck CW, Wienker TF, Zimmer A. Analysis of quantitative trait loci in mice suggests a role of Enoph1 in stress reactivity. J Neurochem 2013; 128:807-17. [PMID: 24236849 DOI: 10.1111/jnc.12517] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 10/15/2013] [Accepted: 10/28/2013] [Indexed: 01/26/2023]
Abstract
Significant progress in elucidating the genetic etiology of anxiety and depression has been made during the last decade through a combination of human and animal studies. In this study, we aimed to discover genetic loci linked with anxiety as well as depression in order to reveal new candidate genes. Therefore, we initially tested the behavioral sensitivity of 543 F2 animals derived from an intercross of C57BL/6J and C3H/HeJ mice in paradigms for anxiety and depression. Next, all animals were genotyped with 269 microsatellite markers with a mean distance of 5.56 cM. Finally, a Quantitative Trait Loci (QTL) analysis was carried out, followed by selection of candidate genes. The QTL analysis revealed several new QTL on chromosome 5 with a common core interval of 19 Mb. We further narrowed this interval by comparative genomics to a region of 15 Mb. A database search and gene prioritization revealed Enoph1 as the most significant candidate gene on the prioritization list for anxiety and also for depression fulfilling our selection criteria. The Enoph1 gene, which is involved in polyamine biosynthesis, is differently expressed in parental strains, which have different brain spermidine levels and show distinct anxiety and depression-related phenotype. Our result suggests a significant role in polyamines in anxiety and depression-related behaviors.
Collapse
|
8
|
Genetic dissection of quantitative trait Loci for hemostasis and thrombosis on mouse chromosomes 11 and 5 using congenic and subcongenic strains. PLoS One 2013; 8:e77539. [PMID: 24147020 PMCID: PMC3798288 DOI: 10.1371/journal.pone.0077539] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Accepted: 09/06/2013] [Indexed: 12/25/2022] Open
Abstract
Susceptibility to thrombosis varies in human populations as well as many inbred mouse strains. Only a small portion of this variation has been identified, suggesting that there are unknown modifier genes. The objective of this study was to narrow the quantitative trait locus (QTL) intervals previously identified for hemostasis and thrombosis on mouse distal chromosome 11 (Hmtb6) and on chromosome 5 (Hmtb4 and Hmtb5). In a tail bleeding/rebleeding assay, a reporter assay for hemostasis and thrombosis, subcongenic strain (6A-2) had longer clot stability time than did C57BL/6J (B6) mice but a similar time to the B6-Chr11A/J consomic mice, confirming the Hmtb6 phenotype. Six congenic and subcongenic strains were constructed for chromosome 5, and the congenic strain, 2A-1, containing the shortest A/J interval (16.6 cM, 26.6 Mbp) in the Hmtb4 region, had prolonged clot stability time compared to B6 mice. In the 3A-2 and CSS-5 mice bleeding time was shorter than for B6, mice confirming the Hmtb5 QTL. An increase in bleeding time was identified in another congenic strain (3A-1) with A/J interval (24.8 cM, 32.9 Mbp) in the proximal region of chromosome 5, confirming a QTL for bleeding previously mapped to that region and designated as Hmtb10. The subcongenic strain 4A-2 with the A/J fragment in the proximal region had a long occlusion time of the carotid artery after ferric chloride injury and reduced dilation after injury to the abdominal aorta compared to B6 mice, suggesting an additional locus in the proximal region, which was designated Hmtb11 (5 cM, 21.4 Mbp). CSS-17 mice crossed with congenic strains, 3A-1 and 3A-2, modified tail bleeding. Using congenic and subcongenic analysis, candidate genes previously identified and novel genes were identified as modifiers of hemostasis and thrombosis in each of the loci Hmtb6, Hmtb4, Hmtb10, and Hmtb11.
Collapse
|
9
|
Johnson HL, Hanson LM, Chen Y, Bieber AJ, Buono RJ, Ferraro TN, Pirko I, Johnson AJ. Quantitative trait loci analysis reveals candidate genes implicated in regulating functional deficit and CNS vascular permeability in CD8 T cell-initiated blood-brain barrier disruption. BMC Genomics 2013; 14:678. [PMID: 24090483 PMCID: PMC3850781 DOI: 10.1186/1471-2164-14-678] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Accepted: 09/30/2013] [Indexed: 01/27/2023] Open
Abstract
Background Blood–brain barrier (BBB) disruption is an integral feature of numerous neurological disorders. However, there is a relative lack of knowledge regarding the underlying molecular mechanisms of immune-mediated BBB disruption. We have previously shown that CD8 T cells and perforin play critical roles in initiating altered permeability of the BBB in the peptide-induced fatal syndrome (PIFS) model developed by our laboratory. Additionally, despite having indistinguishable CD8 T cell responses, C57BL/6J (B6) mice are highly susceptible to PIFS, exhibiting functional motor deficits, increased astrocyte activation, and severe CNS vascular permeability, while 129S1/SvImJ (129S1) mice remain resistant. Therefore, to investigate the potential role of genetic factors, we performed a comprehensive genetic analysis of (B6 x 129S1) F2 progeny to define quantitative trait loci (QTL) linked to the phenotypic characteristics stated above that mediate CD8 T cell-initiated BBB disruption. Results Using single nucleotide polymorphism (SNP) markers and a 95% confidence interval, we identified one QTL (PIFS1) on chromosome 12 linked to deficits in motor function (SNP markers rs6292954, rs13481303, rs3655057, and rs13481324, LOD score = 3.3). In addition we identified a second QTL (PIFS2) on chromosome 17 linked to changes in CNS vascular permeability (SNP markers rs6196216 and rs3672065, LOD score = 3.7). Conclusions The QTL critical intervals discovered have allowed for compilation of a list of candidate genes implicated in regulating functional deficit and CNS vascular permeability. These genes encode for factors that may be potential targets for therapeutic approaches to treat disorders characterized by CD8 T cell-mediated BBB disruption.
Collapse
|
10
|
Ohno T, Okamoto M, Hara T, Hashimoto N, Imaizumi K, Matsushima M, Nishimura M, Shimokata K, Hasegawa Y, Kawabe T. Detection of loci for allergic asthma using SMXA recombinant inbred strains of mice. Immunogenetics 2012; 65:17-24. [PMID: 23081743 DOI: 10.1007/s00251-012-0656-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Accepted: 10/01/2012] [Indexed: 10/27/2022]
Abstract
Asthma is regarded as a multifactorial inflammatory disorder arising as a result of inappropriate immune responses in genetically susceptible individuals to common environmental antigens. However, the precise molecular basis is unknown. To identify genes for susceptibility to three asthma-related traits, airway hyperresponsiveness (AHR), eosinophil infiltration, and allergen-specific serum IgE levels, we conducted a genetic analysis using SMXA recombinant inbred (RI) strains of mice. Quantitative trait locus analysis detected a significant locus for AHR on chromosome 17. For eosinophil infiltration, significant loci were detected on chromosomes 9 and 16. Although we could not detect any significant loci for allergen-specific serum IgE, analysis of consomic strains showed that chromosomes 17 and 19 carried genes that affected this trait. We detected genetic susceptibility loci that separately regulated the three asthma-related phenotypes. Our results suggested that different genetic mechanisms regulate these asthma-related phenotypes. Genetic analyses using murine RI and consomic strains enhance understanding of the molecular mechanisms of asthma in human.
Collapse
Affiliation(s)
- Tamio Ohno
- Division of Experimental Animals, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Ohno T, Hata K, Baba T, Io F, Kobayashi M, Horio F, Nishimura M. Establishment of consomic strains derived from A/J and SM/J mice for genetic analysis of complex traits. Mamm Genome 2012; 23:764-9. [PMID: 23052825 DOI: 10.1007/s00335-012-9435-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Accepted: 09/07/2012] [Indexed: 10/27/2022]
Abstract
Consomic strains, in which one chromosome is derived from a donor strain and the other chromosomes are derived from the recipient strain, provide a powerful tool for the dissection of complex genetic traits. In this study we established ten consomic strains (A-2(SM), A-6(SM), A-11(SM), A-12(SM), A-13(SM), A-15(SM), A-17(SM), A-18(SM), A-19(SM), A-Y(SM)) using the SM/J strain as the donor and the A/J strain as the recipient; these are the parental strains of a set of SMXA recombinant inbred (RI) strains that we had developed previously. We analyzed body weights and blood lipid levels in the consomic and parental strains. The mean values for each trait showed a continuous range of variation in the consomic strains suggesting that they are controlled by multiple genes. We previously identified suggestive QTLs for body weight on chromosome 6 in SMXA RI strains and (SM/J × A/J)F(2) mice. The observation that the A-6(SM) consomic strain had a significantly lower mean body weight than the A/J strain supports the presence of this QTL on chromosome 6. Similarly, the higher blood triglyceride level in the A-11(SM) strain shows the existence of a previously mapped QTL on chromosome 11, and the A-12(SM) strain provides evidence of a QTL for blood total cholesterol level on chromosome 12. These consomic strains, along with the previously developed set of SMXA RI strains from A/J and SM/J mice, offer an invaluable and powerful resource for the analysis of complex genetic traits in mice.
Collapse
Affiliation(s)
- Tamio Ohno
- Division of Experimental Animals, Graduate School of Medicine, Nagoya University, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan.
| | | | | | | | | | | | | |
Collapse
|
12
|
Schauwecker PE. The relevance of individual genetic background and its role in animal models of epilepsy. Epilepsy Res 2011; 97:1-11. [PMID: 22001434 DOI: 10.1016/j.eplepsyres.2011.09.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Revised: 09/07/2011] [Accepted: 09/09/2011] [Indexed: 02/09/2023]
Abstract
Growing evidence has indicated that genetic factors contribute to the etiology of seizure disorders. Most epilepsies are multifactorial, involving a combination of additive and epistatic genetic variables. However, the genetic factors underlying epilepsy have remained unclear, partially due to epilepsy being a clinically and genetically heterogeneous syndrome. Similar to the human situation, genetic background also plays an important role in modulating both seizure susceptibility and its neuropathological consequences in animal models of epilepsy, which has too often been ignored or not been paid enough attention to in published studies. Genetic homogeneity within inbred strains and their general amenability to genetic manipulation have made them an ideal resource for dissecting the physiological function(s) of individual genes. However, the inbreeding that makes inbred mice so useful also results in genetic divergence between them. This genetic divergence is often unaccounted for but may be a confounding factor when comparing studies that have utilized distinct inbred strains. The purpose of this review is to discuss the effects of genetic background strain on epilepsy phenotypes of mice, to remind researchers that the background genetics of a knockout strain can have a profound influence on any observed phenotype, and outline the means by which to overcome potential genetic background effects in experimental models of epilepsy.
Collapse
Affiliation(s)
- P Elyse Schauwecker
- Department of Cell and Neurobiology, USC Keck School of Medicine, 1333 San Pablo Street, BMT 403, Los Angeles, CA 90089-9112, United States.
| |
Collapse
|
13
|
Murawski IJ, Watt CL, Gupta IR. Vesico-ureteric reflux: using mouse models to understand a common congenital urinary tract defect. Pediatr Nephrol 2011; 26:1513-22. [PMID: 21424527 DOI: 10.1007/s00467-011-1821-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Revised: 12/22/2010] [Accepted: 01/25/2011] [Indexed: 11/30/2022]
Abstract
Vesico-ureteric reflux (VUR) is a common congenital urinary tract defect in which urine flows retrogradely from the bladder to the kidneys because of an abnormally formed uretero-vesical junction. It is associated with recurrent urinary tract infections, renal hypo/dysplasia, reflux nephropathy, hypertension, and end-stage renal disease. In humans, VUR is genetically and phenotypically heterogeneous, encompassing diverse renal and urinary tract phenotypes. To understand the significance of these phenotypes, we and others have used the mouse as a model organism and this has led to the identification of new candidate genes. Through careful phenotypic analysis of these models, a new understanding of the genetics and biology of VUR is now underway.
Collapse
Affiliation(s)
- Inga J Murawski
- Department of Human Genetics, Montreal Children's Hospital, McGill University, 2300 Tupper Street, Montreal, QC, H3Z 2Z3, Canada
| | | | | |
Collapse
|
14
|
Stewart TP, Kim HY, Saxton AM, Kim JH. Genetic and genomic analysis of hyperlipidemia, obesity and diabetes using (C57BL/6J × TALLYHO/JngJ) F2 mice. BMC Genomics 2010; 11:713. [PMID: 21167066 PMCID: PMC3022919 DOI: 10.1186/1471-2164-11-713] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2010] [Accepted: 12/19/2010] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Type 2 diabetes (T2D) is the most common form of diabetes in humans and is closely associated with dyslipidemia and obesity that magnifies the mortality and morbidity related to T2D. The genetic contribution to human T2D and related metabolic disorders is evident, and mostly follows polygenic inheritance. The TALLYHO/JngJ (TH) mice are a polygenic model for T2D characterized by obesity, hyperinsulinemia, impaired glucose uptake and tolerance, hyperlipidemia, and hyperglycemia. RESULTS In order to determine the genetic factors that contribute to these T2D related characteristics in TH mice, we interbred TH mice with C57BL/6J (B6) mice. The parental, F1, and F2 mice were phenotyped at 8, 12, 16, 20, and 24 weeks of age for 4-hour fasting plasma triglyceride, cholesterol, insulin, and glucose levels and body, fat pad and carcass weights. The F2 mice were genotyped genome-wide and used for quantitative trait locus (QTL) mapping. We also applied a genetical genomic approach using a subset of the F2 mice to seek candidate genes underlying the QTLs. Major QTLs were detected on chromosomes (Chrs) 1, 11, 4, and 8 for hypertriglyceridemia, 1 and 3 for hypercholesterolemia, 4 for hyperglycemia, 11 and 1 for body weight, 1 for fat pad weight, and 11 and 14 for carcass weight. Most alleles, except for Chr 3 and 14 QTLs, increased phenotypic values when contributed by the TH strain. Fourteen pairs of interacting loci were detected, none of which overlapped the major QTLs. The QTL interval linked to hypercholesterolemia and hypertriglyceridemia on distal Chr 1 contains Apoa2 gene. Sequencing analysis revealed polymorphisms of Apoa2 in TH mice, suggesting Apoa2 as the candidate gene for the hyperlipidemia QTL. Gene expression analysis added novel information and aided in selection of candidates underlying the QTLs. CONCLUSIONS We identified several genetic loci that affect the quantitative variations of plasma lipid and glucose levels and obesity traits in a TH × B6 intercross. Polymorphisms in Apoa2 gene are suggested to be responsible for the Chr 1 QTL linked to hypercholesterolemia and hypertriglyceridemia. Further, genetical genomic analysis led to potential candidate genes for the QTLs.
Collapse
Affiliation(s)
- Taryn P Stewart
- Department of Pharmacology, Physiology and Toxicology, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA
| | - Hyoung Yon Kim
- Department of Nutrition, The University of Tennessee, Knoxville, TN 37996, USA
| | - Arnold M Saxton
- Department of Animal Science, The University of Tennessee, Knoxville, TN 37996, USA
| | - Jung Han Kim
- Department of Pharmacology, Physiology and Toxicology, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA
| |
Collapse
|
15
|
Nganga JK, Soller M, Iraqi FA. High resolution mapping of trypanosomosis resistance loci Tir2 and Tir3 using F12 advanced intercross lines with major locus Tir1 fixed for the susceptible allele. BMC Genomics 2010; 11:394. [PMID: 20569426 PMCID: PMC2898758 DOI: 10.1186/1471-2164-11-394] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2010] [Accepted: 06/22/2010] [Indexed: 11/29/2022] Open
Abstract
Background Trypanosomosis is the most economically important disease constraint to livestock productivity in Africa. A number of trypanotolerant cattle breeds are found in West Africa, and identification of the genes conferring trypanotolerance could lead to effective means of genetic selection for trypanotolerance. In this context, high resolution mapping in mouse models are a promising approach to identifying the genes associated with trypanotolerance. In previous studies, using F2 C57BL/6J × A/J and C57BL/6J × BALB/cJ mouse resource populations, trypanotolerance QTL were mapped within a large genomic intervals of 20-40 cM to chromosomes MMU17, 5 and 1, and denoted Tir1, Tir2 and Tir3 respectively. Subsequently, using F6 C57BL/6J × A/J and C57BL/6J × BALB/cJ F6 advanced intercross lines (AIL), Tir1 was fine mapped to a confidence interval (CI) of less than 1 cM, while Tir2 and Tir3, were mapped within 5-12 cM. Tir1 represents the major trypanotolerance QTL. Results In order to improve map resolutions of Tir2 and Tir3, an F12 C57BL/6J × A/J AIL population fixed for the susceptible alleles at Tir1 QTL was generated. An F12 C57BL/6J × A/J AIL population, fixed for the resistant alleles at Tir1 QTL was also generated to provide an additional estimate of the gene effect of Tir1. The AIL populations homozygous for the resistant and susceptible Tir1 alleles and the parental controls were challenged with T. congolense and followed for survival times over 180 days. Mice from the two survival extremes of the F12 AIL population fixed for the susceptible alleles at Tir1 were genotyped with a dense panel of microsatellite markers spanning the Tir2 and Tir3 genomic regions and QTL mapping was performed. Tir2 was fine mapped to less than 1 cM CI while Tir3 was mapped to three intervals named Tir3a, Tir3b and Tir3c with 95% confidence intervals (CI) of 6, 7.2 and 2.2 cM, respectively. Conclusions The mapped QTL regions encompass genes that are vital to innate immune response and can be potential candidate genes for the underlying QTL.
Collapse
Affiliation(s)
- Joseph K Nganga
- International Livestock Research Institute, PO Box 30709, Nairobi, Kenya
| | | | | |
Collapse
|
16
|
Dulude G, Cheynier R, Gauchat D, Abdallah A, Kettaf N, Sékaly RP, Gratton S. The magnitude of thymic output is genetically determined through controlled intrathymic precursor T cell proliferation. THE JOURNAL OF IMMUNOLOGY 2008; 181:7818-24. [PMID: 19017971 DOI: 10.4049/jimmunol.181.11.7818] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The thymus plays a crucial role in providing the immune system with naive T cells showing a diverse TCR repertoire. Whereas the diversity of thymic production is mainly ensured by TCR rearrangement at both the TRA and TRB loci, the number of cells reaching the double-positive differentiation stage defines the extent of thymic output. A quantitative analysis of TCR excision circles (TREC; signal-joint TRECs and DJbetaTRECs) produced at different stages of thymopoiesis was performed in nine laboratory mouse strains. The results clearly demonstrate that the magnitude of thymic output is directly proportional to the extent of proliferation in the double-negative 4 thymocyte subset. Strikingly, intrathymic precursor T cell proliferation was found to be strain dependent, thus suggesting a genetic regulation of thymic output. The inherited character of thymic output was further confirmed by the transmission of the phenotype in a recessive fashion in F(1) progeny of the different parental strains. Our results provide the first demonstration of the genetic regulation of thymic output.
Collapse
Affiliation(s)
- Gaël Dulude
- Laboratoire d'Immunologie, Centre de Recherches du Centre Hospitalier de l'Université Montréal, Saint-Luc, Montréal, Québec, Canada
| | | | | | | | | | | | | |
Collapse
|
17
|
Practical applications of the bioinformatics toolbox for narrowing quantitative trait loci. Genetics 2008; 180:2227-35. [PMID: 18845850 DOI: 10.1534/genetics.108.090175] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Dissecting the genes involved in complex traits can be confounded by multiple factors, including extensive epistatic interactions among genes, the involvement of epigenetic regulators, and the variable expressivity of traits. Although quantitative trait locus (QTL) analysis has been a powerful tool for localizing the chromosomal regions underlying complex traits, systematically identifying the causal genes remains challenging. Here, through its application to plasma levels of high-density lipoprotein cholesterol (HDL) in mice, we demonstrate a strategy for narrowing QTL that utilizes comparative genomics and bioinformatics techniques. We show how QTL detected in multiple crosses are subjected to both combined cross analysis and haplotype block analysis; how QTL from one species are mapped to the concordant regions in another species; and how genomewide scans associating haplotype groups with their phenotypes can be used to prioritize the narrowed regions. Then we illustrate how these individual methods for narrowing QTL can be systematically integrated for mouse chromosomes 12 and 15, resulting in a significantly reduced number of candidate genes, often from hundreds to <10. Finally, we give an example of how additional bioinformatics resources can be combined with experiments to determine the most likely quantitative trait genes.
Collapse
|
18
|
Itoi-Babaya M, Ikegami H, Fujisawa T, Ueda H, Nojima K, Babaya N, Kobayashi M, Noso S, Kawaguchi Y, Yamaji K, Shibata M, Ogihara T. Fatty liver and obesity: phenotypically correlated but genetically distinct traits in a mouse model of type 2 diabetes. Diabetologia 2007; 50:1641-8. [PMID: 17549450 DOI: 10.1007/s00125-007-0700-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2007] [Accepted: 03/29/2007] [Indexed: 01/14/2023]
Abstract
AIMS/HYPOTHESIS Obesity and fatty liver are commonly associated with type 2 diabetes, but the genetic and functional bases linking fatty liver with obesity and diabetes are largely unknown. Our aim was to investigate the association of fatty liver with obesity and other diabetes-related phenotypes and to define the genetic control of obesity and fatty liver. MATERIALS AND METHODS We established 306 F2 mice by crossing Nagoya-Shibata-Yasuda (NSY) mice, an animal model of type 2 diabetes, with control C3H mice, and analysed their phenotypes. Whole-genome screening of F2 mice was performed to identify the loci responsible for fatty liver and obesity. RESULTS A strong association of fatty liver with obesity, hyperinsulinaemia and hyperglycaemia was observed in F2 mice. Using whole-genome screening in 306 F2 mice, we mapped a new locus for fatty liver (Fl1n) on chromosome 6 (maximum logarithm of odds score [MLS] 10.0) and one for body weight (Bw1n) on chromosome 7 (MLS 5.1). Fl1n was linked to epididymal fat weight as well as fatty liver, but its effects were opposite in the two tissues in that the NSY allele increased liver fat but decreased epididymal fat, suggesting a role of Fl1n in partitioning of fat mass. The sequence of peroxisome proliferator-activated receptor gamma (Pparg), a candidate for Fl1n, showed allelic variation between NSY and C3H mice. CONCLUSIONS/INTERPRETATION These data suggest that fatty liver and obesity are phenotypically related but genetically independent. Loci homologous to Fl1n and Bw1n are good candidate genes for susceptibility to fatty liver and obesity in humans.
Collapse
Affiliation(s)
- M Itoi-Babaya
- Department of Geriatric Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Lightfoot JT, Turner MJ, Knab AK, Jedlicka AE, Oshimura T, Marzec J, Gladwell W, Leamy LJ, Kleeberger SR. Quantitative trait loci associated with maximal exercise endurance in mice. J Appl Physiol (1985) 2007; 103:105-10. [PMID: 17412788 DOI: 10.1152/japplphysiol.01328.2006] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The role of genetics in the determination of maximal exercise endurance is unclear. Six- to nine-week-old F2 mice (n = 99; 60 female, 39 male), derived from an intercross of two inbred strains that had previously been phenotyped as having high maximal exercise endurance (Balb/cJ) and low maximal exercise endurance (DBA/2J), were treadmill tested to estimate exercise endurance. Selective genotyping of the F2 cohort (n = 12 high exercise endurance; n = 12 low exercise endurance) identified a significant quantitative trait locus (QTL) on chromosome X (53.7 cM, DXMit121) in the entire cohort and a suggestive QTL on chromosome 8 (36.1 cM, D8Mit359) in the female mice. Fine mapping with the entire F2 cohort and additional informative markers confirmed and narrowed the QTLs. The chromosome 8 QTL (EE8(F)) is homologous with two suggestive human QTLs and one significant rat QTL previously linked with exercise endurance. No effect of sex (P = 0.33) or body weight (P = 0.79) on exercise endurance was found in the F2 cohort. These data indicate that genetic factors in distinct chromosomal regions may affect maximal exercise endurance in the inbred mouse. Whereas multiple genes are located in the identified QTL that could functionally affect exercise endurance, this study serves as a foundation for further investigations delineating the identity of genetic factors influencing maximum exercise endurance.
Collapse
Affiliation(s)
- J Timothy Lightfoot
- Department of Kinesiology, University of North Carolina-Charlotte, Charlotte, North Carolina 28223, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Baran AA, Silverman KA, Zeskand J, Koratkar R, Palmer A, McCullen K, Curran WJ, Edmonston TB, Siracusa LD, Buchberg AM. The modifier of Min 2 (Mom2) locus: embryonic lethality of a mutation in the Atp5a1 gene suggests a novel mechanism of polyp suppression. Genome Res 2007; 17:566-76. [PMID: 17387143 PMCID: PMC1855180 DOI: 10.1101/gr.6089707] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Inactivation of the APC gene is considered the initiating event in human colorectal cancer. Modifier genes that influence the penetrance of mutations in tumor-suppressor genes hold great potential for preventing the development of cancer. The mechanism by which modifier genes alter adenoma incidence can be readily studied in mice that inherit mutations in the Apc gene. We identified a new modifier locus of ApcMin-induced intestinal tumorigenesis called Modifier of Min 2 (Mom2). The polyp-resistant Mom2R phenotype resulted from a spontaneous mutation and linkage analysis localized Mom2 to distal chromosome 18. To obtain recombinant chromosomes for use in refining the Mom2 interval, we generated congenic DBA.B6 ApcMin/+, Mom2R/+ mice. An intercross revealed that Mom2R encodes a recessive embryonic lethal mutation. We devised an exclusion strategy for mapping the Mom2 locus using embryonic lethality as a method of selection. Expression and sequence analyses of candidate genes identified a duplication of four nucleotides within exon 3 of the alpha subunit of the ATP synthase (Atp5a1) gene. Tumor analyses revealed a novel mechanism of polyp suppression by Mom2R in Min mice. Furthermore, we show that more adenomas progress to carcinomas in Min mice that carry the Mom2R mutation. The absence of loss of heterozygosity (LOH) at the Apc locus, combined with the tendency of adenomas to progress to carcinomas, indicates that the sequence of events leading to tumors in ApcMin/+ Mom2R/+ mice is consistent with the features of human tumor initiation and progression.
Collapse
Affiliation(s)
- Amy A. Baran
- Kimmel Cancer Center, Thomas Jefferson University, Jefferson Medical College, Philadelphia, Pennsylvania 19107, USA
| | - Karen A. Silverman
- Kimmel Cancer Center, Thomas Jefferson University, Jefferson Medical College, Philadelphia, Pennsylvania 19107, USA
| | - Joseph Zeskand
- Kimmel Cancer Center, Thomas Jefferson University, Jefferson Medical College, Philadelphia, Pennsylvania 19107, USA
| | - Revati Koratkar
- Kimmel Cancer Center, Thomas Jefferson University, Jefferson Medical College, Philadelphia, Pennsylvania 19107, USA
| | - Ashley Palmer
- Kimmel Cancer Center, Thomas Jefferson University, Jefferson Medical College, Philadelphia, Pennsylvania 19107, USA
| | - Kristen McCullen
- Department of Obstetrics and Gynecology, Thomas Jefferson University, Jefferson Medical College, Philadelphia, Pennsylvania 19107, USA
| | - Walter J. Curran
- Kimmel Cancer Center, Thomas Jefferson University, Jefferson Medical College, Philadelphia, Pennsylvania 19107, USA
| | - Tina Bocker Edmonston
- Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Jefferson Medical College, Philadelphia, Pennsylvania 19107, USA
| | - Linda D. Siracusa
- Kimmel Cancer Center, Thomas Jefferson University, Jefferson Medical College, Philadelphia, Pennsylvania 19107, USA
| | - Arthur M. Buchberg
- Kimmel Cancer Center, Thomas Jefferson University, Jefferson Medical College, Philadelphia, Pennsylvania 19107, USA
- Corresponding author.E-mail ; fax (215) 923-4153
| |
Collapse
|
21
|
Abstract
Inbred mouse strains provide genetic diversity comparable to that of the human population. Like humans, mice have a wide range of diabetes-related phenotypes. The inbred mouse strains differ in the response of their critical physiological functions, such as insulin sensitivity, insulin secretion, beta-cell proliferation and survival, and fuel partitioning, to diet and obesity. Most of the critical genes underlying these differences have not been identified, although many loci have been mapped. The dramatic improvements in genomic and bioinformatics resources are accelerating the pace of gene discovery. This review describes how mouse genetics can be used to discover diabetes-related genes, summarizes how the mouse strains differ in their diabetes-related phenotypes, and describes several examples of how loci identified in the mouse may directly relate to human diabetes.
Collapse
Affiliation(s)
- Susanne M Clee
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, Wisconsin 53706-1544, USA
| | | |
Collapse
|
22
|
Wang Z, Armando I, Asico LD, Escano C, Wang X, Lu Q, Felder RA, Schnackenberg CG, Sibley DR, Eisner GM, Jose PA. The elevated blood pressure of human GRK4gamma A142V transgenic mice is not associated with increased ROS production. Am J Physiol Heart Circ Physiol 2007; 292:H2083-92. [PMID: 17259440 DOI: 10.1152/ajpheart.00944.2006] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
G protein-coupled receptor (GPCR) kinases (GRKs) regulate the sensitivity of GPCRs, including dopamine receptors. The GRK4 locus is linked to, and some of its polymorphisms are associated with, human essential hypertension. Transgenic mice overexpressing human (h) GRK4gamma A142V on a mixed genetic background (C57BL/6J and SJL/J) have impaired renal D(1)-dopamine receptor (D(1)R) function and increased blood pressure. We now report that hGRK4gamma A142V transgenic mice, in C57BL/6J background, are hypertensive and have higher blood pressures than hGRK4gamma wild-type transgenic and nontransgenic mice. The hypertensive phenotype is stable because blood pressures in transgenic founders and F6 offspring are similarly increased. To determine whether the hypertension is associated with increased production of reactive oxygen species (ROS), we measured renal NADPH oxidase (Nox2 and Nox4) and heme oxygenase (HO-1 and HO-2) protein expressions and urinary excretion of 8-isoprostane and compared the effect of Tempol on blood pressure in hGRK4gamma A142V transgenic mice and D(5)R knockout (D(5)(-/-)) mice in which hypertension is mediated by increased ROS. The expressions of Nox isoforms and HO-2 and the urinary excretion of 8-isoprostane were similar in hGRK4gamma A142V transgenic mice and their controls. HO-1 expression was increased in hGRK4gamma A142V relative to hGRK4gamma wild-type transgenic mice. In contrast with the hypotensive effect of Tempol in D(5)(-/-) mice, it had no effect in hGRK4gamma A142V transgenic mice. We conclude that the elevated blood pressure of hGRK4gamma A142V transgenic mice is due mainly to the effect of hGRK4gamma A142V transgene acting via D(1)R and increased ROS production is not a contributor.
Collapse
Affiliation(s)
- Zheng Wang
- Georgetown University School of Medicine, 4000 Reservoir Road NW, Washington, DC 20057, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Rosen GD, Chesler EJ, Manly KF, Williams RW. An informatics approach to systems neurogenetics. Methods Mol Biol 2007; 401:287-303. [PMID: 18368372 DOI: 10.1007/978-1-59745-520-6_16] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
We outline the theory behind complex trait analysis and systems genetics and describe web-accessible resources including GeneNetwork (GN) that can be used for rapid exploratory analysis and hypothesis testing. GN, in particular, is a tightly integrated suite of bioinformatics tools and data sets, which supports the investigation of complex networks of gene variants, molecules, and cellular processes that modulate complex traits, including behavior and disease susceptibility. Using various statistical tools, users are able to analyze gene expression in various brain regions and tissues, map loci that modulate these traits, and explore genetic covariance among traits. Taken together, these tools enable the user to begin to assess complex interactions of gene networks, and facilitate analysis of traits using a systems approach.
Collapse
Affiliation(s)
- Glenn D Rosen
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | | | | | | |
Collapse
|
24
|
Lyons MA, Wittenburg H. Cholesterol gallstone susceptibility loci: a mouse map, candidate gene evaluation, and guide to human LITH genes. Gastroenterology 2006; 131:1943-70. [PMID: 17087948 DOI: 10.1053/j.gastro.2006.10.024] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2006] [Accepted: 08/15/2006] [Indexed: 12/11/2022]
Affiliation(s)
- Malcolm A Lyons
- Centre for Medical Research, University of Western Australia, Western Australian Institute for Medical Research, Perth, Australia.
| | | |
Collapse
|
25
|
Kurc T, Janies DA, Johnson AD, Langella S, Oster S, Hastings S, Habib F, Camerlengo T, Ervin D, Catalyurek UV, Saltz JH. An XML-based system for synthesis of data from disparate databases. J Am Med Inform Assoc 2006; 13:289-301. [PMID: 16501185 PMCID: PMC1513665 DOI: 10.1197/jamia.m1848] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2005] [Accepted: 01/29/2006] [Indexed: 11/10/2022] Open
Abstract
Diverse data sets have become key building blocks of translational biomedical research. Data types captured and referenced by sophisticated research studies include high throughput genomic and proteomic data, laboratory data, data from imagery, and outcome data. In this paper, the authors present the application of an XML-based data management system to support integration of data from disparate data sources and large data sets. This system facilitates management of XML schemas and on-demand creation and management of XML databases that conform to these schemas. They illustrate the use of this system in an application for genotype-phenotype correlation analyses. This application implements a method of phenotype-genotype correlation based on phylogenetic optimization of large data sets of mouse SNPs and phenotypic data. The application workflow requires the management and integration of genomic information and phenotypic data from external data repositories and from the results of phenotype-genotype correlation analyses. Our implementation supports the process of carrying out a complex workflow that includes large-scale phylogenetic tree optimizations and application of Maddison's concentrated changes test to large phylogenetic tree data sets. The data management system also allows collaborators to share data in a uniform way and supports complex queries that target data sets.
Collapse
Affiliation(s)
- Tahsin Kurc
- Biomedical Informatics Department, Ohio State University, 3184 Graves Hall, 333 West 10th Avenue, Columbus, OH 43210, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Armstrong NJ, Brodnicki TC, Speed TP. Mind the gap: analysis of marker-assisted breeding strategies for inbred mouse strains. Mamm Genome 2006; 17:273-87. [PMID: 16596449 DOI: 10.1007/s00335-005-0123-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2005] [Accepted: 12/14/2005] [Indexed: 10/24/2022]
Abstract
The development of congenic mouse strains is the principal approach for confirming and fine mapping quantitative trait loci, as well as for comparing the phenotypic effect of a transgene or gene-targeted disruption between different inbred mouse strains. The traditional breeding scheme calls for at least nine consecutive backcrosses before establishing a congenic mouse strain. Recent availability of genome sequence and high-throughput genotyping now permit the use of polymorphic DNA markers to reduce this number of backcrosses, and empirical data suggest that marker-assisted breeding may require as few as four backcrosses. We used simulation studies to investigate the efficiency of different marker-assisted breeding schemes by examining the trade-off between the number of backcrosses, the number of mice produced per generation, and the number of genotypes per mouse required to achieve a quality congenic mouse strain. An established model of crossover interference was also incorporated into these simulations. The quality of the strain produced was assessed by the probability of an undetected region of heterozygosity (i.e., "gaps") in the recipient genetic background, while maintaining the desired donor-derived interval. Somewhat surprisingly, we found that there is a relatively high probability for undetected gaps in potential breeders for establishing a congenic mouse strain. Marker-assisted breeding may decrease the number of backcross generations required to generate a congenic strain, but only additional backcrossing will guarantee a reduction in the number and length of undetected gaps harboring contaminating donor alleles.
Collapse
Affiliation(s)
- Nicola J Armstrong
- Division of Molecular Biology, Netherlands Cancer Institute, Amsterdam, 1066 CX, The Netherlands.
| | | | | |
Collapse
|
27
|
Kumar R, Langer JC, Snoeck HW. Transforming growth factor-beta2 is involved in quantitative genetic variation in thymic involution. Blood 2005; 107:1974-9. [PMID: 16282338 PMCID: PMC1895709 DOI: 10.1182/blood-2005-04-1495] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The mechanisms regulating thymic involution are unclear. In inbred mouse strains the rate of thymic involution and the function of the hematopoietic stem cell (HSC) compartment are subject to quantitative genetic variation. We have shown previously that transforming growth factor-beta2 (TGF-beta2) is a genetically determined positive regulator of HSCs. Here, we demonstrate that genetic variation in the rate of thymic involution correlates with genetic variation in the responsiveness of hematopoietic stem and progenitor cells to TGF-beta2. Corroborating these correlations, thymic cellularity and peripheral naive T-cell frequency were higher in old Tgfb2+/- mice than in wild-type littermates. The frequency of early T-cell precursors was increased in Tgfb2+/- mice, suggesting that TGF-beta2 affects the earliest stages of T-cell development in old mice. Reciprocal transplantation experiments indicated that TGF-beta2 expressed both in the (micro)environment and in the hematopoietic system can accelerate thymic involution; however, the age of the stem cells appeared irrelevant. Thus, although thymic involution is largely determined by the aged environment, TGF-beta2 plays a major modulatory role that is subject to genetic variation and is possibly mediated through its regulatory effects on early hematopoiesis.
Collapse
Affiliation(s)
- Ritu Kumar
- Department of Cell and Gene Medicine, Mount Sinai School of Medicine, Box 1496, Gustave L. Levy Pl, New York, NY 10029, USA
| | | | | |
Collapse
|
28
|
Peters LL, Zhang W, Lambert AJ, Brugnara C, Churchill GA, Platt OS. Quantitative trait loci for baseline white blood cell count, platelet count, and mean platelet volume. Mamm Genome 2005; 16:749-63. [PMID: 16261417 DOI: 10.1007/s00335-005-0063-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2005] [Accepted: 06/29/2005] [Indexed: 11/29/2022]
Abstract
A substantial genetic contribution to baseline peripheral blood counts has been established. We performed quantitative trait locus/loci (QTL) analyses to identify chromosome (Chr) regions harboring genes influencing the baseline white blood cell (WBC) count, platelet (Plt) count, and mean platelet volume (MPV) in F(2) intercrosses between NZW/LacJ, SM/J, and C57BLKS/J inbred mice. We identified six significant WBC QTL: Wbcq1 (peak LOD score at 38 cM, Chr 1), Wbcq2 (42 cM, Chr 3), Wbcq3 (0 cM, Chr 15), Wbcq4 (58 cM, Chr 1), Wbcq5 (82 cM, Chr 1), and Wbcq6 (8 cM, Chr 14). Three significant Plt QTL were identified: Pltq1 (24 cM, Chr 2), Pltq2 (36 cM, Chr 7), and Pltq3 (10 cM, Chr 12). Two significant MPV QTL were identified, Mpvq1 (62 cM, Chr 15) and Mpvq2 (44 cM, Chr 8). In total, the WBC QTL accounted for up to 31% of the total variance in baseline WBC count, while the Plt and MPV QTL accounted for up to 30% and 49% of the total variance, respectively. These analyses underscore the genetic complexity underlying these traits in normal populations and provide the basis for future studies to identify novel genes involved in the regulation of mammalian hematopoiesis.
Collapse
Affiliation(s)
- Luanne L Peters
- The Jackson Laboratory, 600 Main Street, Bar Harbor, Maine 04609, USA.
| | | | | | | | | | | |
Collapse
|
29
|
Cheung CC, Martin ICA, Zenger KR, Donald JA, Thomson PC, Moran C, Buckley MF. Quantitative trait loci for steady-state platelet count in mice. Mamm Genome 2005; 15:784-97. [PMID: 15520881 DOI: 10.1007/s00335-004-2408-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2004] [Accepted: 06/08/2004] [Indexed: 01/06/2023]
Abstract
Platelet count in humans is a strongly genetically regulated trait, with approximately 85% of the interindividual variance in platelet numbers attributable to genetic factors. Inbred mouse strains also have strain-specific platelet count ranges. As part of a project to identify novel factors that regulate platelet count, we identified two inbred mouse strains, CBA/CaH and QSi5, with substantial differences in platelet count (mean values of 581 vs. 1062 x 10(9)/L). An F(2) intercross resource of 1126 animals was bred from these two parental strains for a genomewide scan for quantitative trait loci (QTL) for platelet count. QTL were identified on MMU1 (LOD 6.8, p < 0.0005) and MMU11 (LOD 11.2, p < 0.0005) by selectively genotyping animals from the extremes of the F(2) platelet count distribution. Three other QTL of suggestive statistical significance were also detected on MMU7, 13, and 17. It is noteworthy that no QTL were detected in the vicinity of the genes encoding thrombopoietin ( Thpo), and its receptor ( c-Mpl), both known to influence platelet production. Comparison of gene expression levels between the parental mouse strains by microarrays also showed little difference in the mRNA levels of these known candidate genes. These results represent the first published use of a genetic linkage-based approach in a mouse model toward the identification of genetic factors that regulate platelet count.
Collapse
Affiliation(s)
- Carol C Cheung
- Centre for Vascular Research, University of New South Wales, Kensington 2052, Sydney, Australia
| | | | | | | | | | | | | |
Collapse
|
30
|
Kim EH, Lee CH, Hyun BH, Suh JG, Oh YS, Namikawa T, Ishikawa A. Quantitative trait Loci for glomerulosclerosis, kidney weight and body weight in the focal glomerulosclerosis mouse model. Exp Anim 2005; 54:319-25. [PMID: 16093645 DOI: 10.1538/expanim.54.319] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
In 183 male progeny derived from a backcross between the FGS/Kist strain, a new mouse model for focal glomerulosclerosis (FGS) in humans, and the standard normal strain, C57BL/6J, we performed a genome-wide scan for quantitative trait loci (QTLs) affecting the glomerulosclerosis index (GSI) based on histological observation as well as kidney and body weights. Two QTLs for GSI (Gsi1-2) located on chromosomes (Chrs) 8 and 10, a kidney weight QTL (Kdw1) on Chr 19, and a body weight QTL (Bdw1) on Chr 13 were detected at the genome-wide 5% or less level. The allele derived from FGS/Kist increased GSI at Gsi1, but decreased it at Gsi2. The mice homozygous for the FGS/Kist allele decreased body and kidney weights. The identified QTLs accounted for 5-8% of the phenotypic variance.
Collapse
Affiliation(s)
- Eun-Hee Kim
- Laboratory of Animal Genetics, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, Japan
| | | | | | | | | | | | | |
Collapse
|
31
|
Olsson T, Piehl F, Swanberg M, Lidman O. Genetic dissection of neurodegeneration and CNS inflammation. J Neurol Sci 2005; 233:99-108. [PMID: 15894332 DOI: 10.1016/j.jns.2005.03.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Inflammation and neurodegeneration characterize multiple sclerosis, as well as many other diseases of the central nervous system (CNS). The understanding of the molecular pathways that regulate these processes is of fundamental importance for the development of new therapies. Nerve lesions paradigms in animals can serve as important tools to dissect central features of human CNS disease and by using these models certain key regulators have also been identified. However, our knowledge of how aspects of neurodegeneration and CNS inflammation are regulated on a genomic level is very limited. Such knowledge may help to unravel disease mechanisms. By using a standardized nerve trauma model, ventral root avulsion (VRA), in a series of inbred rat strains we here demonstrate a potent genetic regulation of the degree of neuron death and glial activation. Genome wide mapping of these phenotypes in experimental rat strain crosses identifies several quantitative trait loci (QTLs) controlling nerve lesion-induced nerve cell death, local T cell accumulation and expression of MHC class II on microglia. This approach may lead to the identification of evolutionary conserved genetic polymorphisms in key controlling genes, which can serve as prime candidates for association studies in several human CNS diseases.
Collapse
Affiliation(s)
- Tomas Olsson
- Neuroimmunology Unit, Department of Clinical Neurosciences, CMM L8:04, Karolinska University Hospital-Solna, SE-17176, Stockholm, Sweden.
| | | | | | | |
Collapse
|
32
|
Palsson A, Dodgson J, Dworkin I, Gibson G. Tests for the replication of an association between Egfr and natural variation in Drosophila melanogaster wing morphology. BMC Genet 2005; 6:44. [PMID: 16102176 PMCID: PMC1208880 DOI: 10.1186/1471-2156-6-44] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2005] [Accepted: 08/15/2005] [Indexed: 11/25/2022] Open
Abstract
Background Quantitative differences between individuals stem from a combination of genetic and environmental factors, with the heritable variation being shaped by evolutionary forces. Drosophila wing shape has emerged as an attractive system for genetic dissection of multi-dimensional traits. We utilize several experimental genetic methods to validation of the contribution of several polymorphisms in the Epidermal growth factor receptor (Egfr) gene to wing shape and size, that were previously mapped in populations of Drosophila melanogaster from North Carolina (NC) and California (CA). This re-evaluation utilized different genetic testcrosses to generate heterozygous individuals with a variety of genetic backgrounds as well as sampling of new alleles from Kenyan stocks. Results Only one variant, in the Egfr promoter, had replicable effects in all new experiments. However, expanded genotyping of the initial sample of inbred lines rendered the association non-significant in the CA population, while it persisted in the NC sample, suggesting population specific modification of the quantitative trait nucleotide QTN effect. Conclusion Dissection of quantitative trait variation to the nucleotide level can identify sites with replicable effects as small as one percent of the segregating genetic variation. However, the testcross approach to validate QTNs is both labor intensive and time-consuming, and is probably less useful than resampling of large independent sets of outbred individuals.
Collapse
Affiliation(s)
- Arnar Palsson
- Department of Genetics' North Carolina State University, Raleigh, NC 27695, USA
- Department of Ecology and Evolution, University of Chicago, Chicago, IL 60637, USA
| | - James Dodgson
- Department of Genetics' North Carolina State University, Raleigh, NC 27695, USA
- The Department of Biochemistry, University of Sussex, Brighton, BN1 9QG, UK
| | - Ian Dworkin
- Department of Genetics' North Carolina State University, Raleigh, NC 27695, USA
| | - Greg Gibson
- Department of Genetics' North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
33
|
Lyons MA, Korstanje R, Li R, Sheehan SM, Walsh KA, Rollins JA, Carey MC, Paigen B, Churchill GA. Single and interacting QTLs for cholesterol gallstones revealed in an intercross between mouse strains NZB and SM. Mamm Genome 2005; 16:152-63. [PMID: 15834632 DOI: 10.1007/s00335-004-2446-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2004] [Accepted: 11/30/2004] [Indexed: 10/25/2022]
Abstract
Quantitative trait locus (QTL) mapping was employed to investigate the genetic determinants of cholesterol gallstone formation in a large intercross between mouse strains SM/J (resistant) and NZB/B1NJ (susceptible). Animals consumed a gallstone-promoting diet for 18 weeks. QTL analyses were performed using gallstone weight and gallstone absence/presence as phenotypes; various models were explored for genome scans. We detected seven single QTLs: three new, significant QTLs were named Lith17 [chromosome (Chr) 5, peak=60 cM, LOD=5.4], Lith18 (Chr 5, 76 cM, LOD=4.3), and Lith19 (Chr 8, 0 cM, LOD=5.3); two confirmed QTLs identified previously and were named Lith20 (Chr 9, 44 cM, LOD=2.7) and Lith21 (Chr 10, 24 cM, LOD=2.9); one new, suggestive QTL (Chr 17) remains unnamed. Upon searching for epistatic interactions that contributed to gallstone susceptibility, the final suggestive QTL on Chr 7 was determined to interact significantly with Lith18 and, therefore, was named Lith22 (65 cM). A second interaction was identified between Lith19 and a locus on Chr 11; this QTL was named Lith23 (13 cM). mRNA expression analyses and amino acid haplotype analyses likely eliminated Slc10a2 as a candidate gene for Lith19. The QTLs identified herein largely contributed to gallstone formation rather than gallstone severity. Cloning the genes underlying these murine QTLs should facilitate prediction and cloning of the orthologous human genes.
Collapse
|
34
|
Koudandé OD, van Arendonk JAM, Iraqi F. Marker-assisted introgression of trypanotolerance QTL in mice. Mamm Genome 2005; 16:112-9. [PMID: 15859356 DOI: 10.1007/s00335-004-2314-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A marker-assisted introgression (MAI) experiment was conducted to use genetic markers to transfer each of the three trypanotolerance QTL from a donor mouse strain, C57BL/6, into a recipient mouse strain, A/J. We used a backcross strategy that consisted of selecting two lines, each carrying two of the donor QTL alleles through the backcross (BC) phase. At the fourth BC generation, single-carrier animals were selected for the production of homozygous animal in the intercross phase. The QTL regions (QTLR) were located on chromosomes MMU1, MMU5, and MMU17. Groups of mice with different genotypes and the parental lines were subjected to a challenge with Trypanosoma congolense. The results show that trypanotolerance QTL was successfully moved into the recipient background genotype, yielding a longer survival time. The mean estimated survival time was 57.9, 49.5, and 46.8 days for groups of mice carrying the donor QTL on MMU1, MMU5, and MMU17 on A/J background. The mean estimated survival time was 29.7 days for the susceptible A/J line and 68.8 days for the resistant C57BL/6 line. The estimated QTLR effects are close to 30% smaller than those in the original mapping population which was likely caused by the difference in the background on which the effects of QTLR are tested. This is the first report of successful marker-assisted introgression of QTL in animals. It is experimental proof of the use of genetic markers for marker-assisted introgression in animal breeding.
Collapse
Affiliation(s)
- O Delphin Koudandé
- Animal Breeding and Genetics Group, Wageningen Institute of Animal Sciences, Wageningen University, Wageningen, The Netherlands
| | | | | |
Collapse
|
35
|
Abstract
Disappointments in replicating initial findings in gene mapping for complex traits are often attributed to small sample sizes and inadequate techniques to determine the threshold value. This is clearly not the whole truth. More fundamental reasons lie in the inherent heterogeneity related to disease, including genetic heterogeneity, differences in allele frequencies, and context-dependency in genetic architecture. There are also other reasons related to the data collection and analysis. Replication may remain a source of frustration unless more emphasis is put on controlling these sources of heterogeneity between studies.
Collapse
Affiliation(s)
- M J Sillanpää
- Rolf Nevanlinna Institute, Department of Mathematics and Statistics, P.O. Box 68, FIN-00014 University of Helsinki, Finland.
| | | |
Collapse
|
36
|
Lee GS, Cantor RM, Abnoosian A, Park E, Yamamoto ML, Hovland DN, Collins MD. A gene(s) for all-trans-retinoic acid-induced forelimb defects mapped and confirmed to murine chromosome 11. Genetics 2005; 170:345-53. [PMID: 15781699 PMCID: PMC1449723 DOI: 10.1534/genetics.104.038620] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
All-trans-retinoic acid (RA) induces various anatomical limb dysmorphologies in mice dependent on the time of exposure. During early limb development, RA induces forelimb ectrodactyly (digital absence) with varying susceptibilities for different inbred mouse strains; C57BL/6N are highly susceptible while SWV are resistant. To isolate the genetic basis of this defect, a full-genome scan was performed in 406 backcross fetuses of F(1) males to C57BL/6N females. Fetuses were exposed via a maternal injection of 75 mg of RA per kilogram of body weight on gestational day 9.25. The genome-wide analysis revealed significant linkage to a chromosome 11 locus near D11Mit39 with a maximum LOD score of 9.0 and to a chromosome 4 locus near D4Mit170. An epistatic interaction was detected between loci on chromosome 11 (D11Mit39) and chromosome 18 (D18Mit64). Linkage to the chromosome 11 locus (D11Mit39) was confirmed in RA-treated backcross fetuses of F(1) females to C57BL/6N males. Loci associated with bone density/mass in both human and mouse were previously detected in the same region, suggesting a mechanistic linkage with bone homeostasis. The human syntenic region of this locus has been previously linked to Meckel syndrome; the phenotype includes postaxial polydactyly, an ectopic digital defect hypothesized to be induced by a common molecular pathway with ectrodactyly.
Collapse
Affiliation(s)
- Grace S Lee
- Molecular Toxicology Interdepartmental Program, UCLA School of Public Health, Los Angeles, California 90095, USA
| | | | | | | | | | | | | |
Collapse
|
37
|
Jerez-Timaure NC, Eisen EJ, Pomp D. Fine mapping of a QTL region with large effects on growth and fatness on mouse chromosome 2. Physiol Genomics 2005; 21:411-22. [PMID: 15769905 DOI: 10.1152/physiolgenomics.00256.2004] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We combined the use of a congenic line and recombinant progeny testing (RPT) to characterize and fine map a previously identified region of distal mouse chromosome 2 (MMU2) harboring quantitative trait loci (QTL) with large effects on growth and fatness. The congenic line [M16i.B6-(D2Mit306-D2Mit52); MB2] was created using an inbred line (M16i) derived from a line that had undergone long-term selection for rapid weight gain (M16) as the recipient for an approximately 38-cM region on MMU2 from the inbred line C57BL/6J. A large F2 cohort (1,200 mice) originating from a cross between MB2 and M16i was created, and 40 F2 males with defined recombinations within the QTL region were used to produce 665 segregating progeny. Linkage analysis of the F2 population detected QTL with very large effects on body weight, body fat, lean tissue mass, bone mineral density, and liver weight. Confidence intervals of the QTL were narrowed to regions of 1.5-4.5 cM. Analysis of progeny of the recombinant F2 males confirmed the existence of the QTL and further contributed to localization of their map positions. These efforts confirmed the presence of QTL with major effect on MMU2, narrowed the estimated region harboring the QTL from 38 to 12 cM, and further characterized phenotypic effects of the QTL, effectively culminating in a significantly decreased pool of positional candidate genes potentially representing these genes controlling predisposition to growth and fatness.
Collapse
Affiliation(s)
- Nancy C Jerez-Timaure
- Department of Animal Science, University of Nebraska, Lincoln, Nebraska 68583-0908, USA
| | | | | |
Collapse
|
38
|
Rocha JL, Eisen EJ, Siewerdt F, Van Vleck LD, Pomp D. A large-sample QTL study in mice: III. Reproduction. Mamm Genome 2005; 15:878-86. [PMID: 15672592 DOI: 10.1007/s00335-004-2364-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Using lines of mice having undergone long-term selection for high and low growth, a large-sample (n approximately to 1000 F2) experiment was conducted to gain further understanding of the genetic architecture of complex polygenic traits. Composite interval mapping on data from 10-week-old F2 females (n = 439) detected 15 quantitative trait loci (QTLs) on 5 chromosomes that influence reproduction traits characterized at day 16 of gestation. These QTL are broadly categorized into two groups: those where effects on the number of live fetuses (LF) were accompanied by parallel effects on the number of dead fetuses (DF), and those free of such undesirable effects. QTL for ovulation rate (OR) did not overlap with QTL for litter size, potentially indicating the importance of uterine capacity. Large dominance effects were identified for most QTL detected, and overdominance was also present. The QTL of largest effects were detected in regions of Chromosome 2, where large QTL effects for growth and fatness have also been found and where corroborating evidence from other studies exists. Considerable overlap between locations of QTL for reproductive traits and for growth traits corresponds well with the positive correlations usually observed among these sets of phenotypes. Some support for the relevance of QTL x genetic background interactions in reproduction was detected. Traits with low heritability demand considerably larger sample sizes to achieve effective power of QTL detection. This is unfortunate as traits with low heritability are among those that could most benefit from QTL-complemented breeding and selection strategies in food animal production.
Collapse
Affiliation(s)
- Joao L Rocha
- Department of Animal Science, University of Nebraska, Lincoln, Nebraska 68583-0908, USA
| | | | | | | | | |
Collapse
|
39
|
Abstract
Selection of mouse models of cancer is often based simply on availability of a mouse strain and a known compatible tumor. Frequently this results in use of tumor models long on history but short on homology and quality control. Other factors including genetics, sex, immunological status, method and site of tumor implantation, technical competence, biological activity of the tumor, protocol sequence and timing, and selection of endpoints interact to produce outcomes in tumor models. Common reliance on survival and tumor burden data in a single mouse model often skews expectations towards high remission and cure rates; a finding seldom duplicated in clinical trials. Inherent limitations of tumor models coupled with the advent of new therapeutic targets reinforce need for careful attention to design, conduct, and stringent selection of in vivo and ex vivo endpoints. Preclinical efficacy testing for anti-tumor therapies should progress through a series of models of increasing sophistication that includes incorporation of genetically engineered animals, and orthotopic and combination therapy models. Pharmacology and safety testing in tumor-bearing animals may also help to improve predictive value of these models for clinical efficacy. Trends in bioinformatics, genetic refinements, and specialized imaging techniques are helping to maintain mice as the most scientifically and economically powerful model of malignant neoplasms.
Collapse
Affiliation(s)
- JoAnn C L Schuh
- Applied Veterinary Pathobiology, Bainbridge Island, Washington 98110-3663, USA.
| |
Collapse
|
40
|
Langer JC, Henckaerts E, Orenstein J, Snoeck HW. Quantitative trait analysis reveals transforming growth factor-beta2 as a positive regulator of early hematopoietic progenitor and stem cell function. ACTA ACUST UNITED AC 2004; 199:5-14. [PMID: 14707111 PMCID: PMC1887726 DOI: 10.1084/jem.20030980] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Elucidation of pathways involved in mouse strain–dependent variation in the hematopoietic stem cell (HSC) compartment may reveal novel mechanisms relevant in vivo. Here, we demonstrate genetically determined variation in the proliferation of lin−Sca1++kit+ (LSK) primitive hematopoietic progenitor cells in response to transforming growth factor-β (TGF-β) 2, the dose response of which was biphasic with a stimulatory effect at low concentrations. In contrast, the dose responses of TGF-β1 or -β3 were inhibitory and did not show mouse strain–dependent variation. A quantitative trait locus (QTL) for the effect of TGF-β2 was identified on chromosome 4 overlapping with a QTL regulating the frequency of LSK cells. These overlapping QTL were corroborated by the observation that the frequency of LSK cells is lower in adult Tgfb2+/− mice than in wild-type littermates, indicating that TGF-β2 is a genetically determined positive regulator LSK number in vivo. Furthermore, adult Tgfb2+/− mice have a defect in competitive repopulation potential that becomes more pronounced upon serial transplantation. In fetal TGF-β2–deficient HSCs, a defect only appears after serial reconstitution. These data suggest that TGF-β2 can act cell autonomously and is important for HSCs that have undergone replicative stress. Thus, TGF-β2 is a novel, genetically determined positive regulator of adult HSCs.
Collapse
Affiliation(s)
- Jessica C Langer
- The Carl C. Icahn Center for Gene Therapy and Molecular Medicine, Mount Sinai School of Medicine, Box 1496, Gustave L. Levy Place, New York, NY 10029, USA
| | | | | | | |
Collapse
|
41
|
Henckaerts E, Langer JC, Orenstein J, Snoeck HW. The Positive Regulatory Effect of TGF-β2 on Primitive Murine Hemopoietic Stem and Progenitor Cells Is Dependent on Age, Genetic Background, and Serum Factors. THE JOURNAL OF IMMUNOLOGY 2004; 173:2486-93. [PMID: 15294963 DOI: 10.4049/jimmunol.173.4.2486] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
TGF-beta is considered a negative regulator of hemopoietic stem and progenitor cells. We have previously shown that one TGF-beta isoform, TGF-beta2, is, in fact, a positive regulator of murine hemopoietic stem cell function in vivo. In vitro, TGF-beta2, but not TGF-beta1 and TGF-beta3, had a biphasic dose response on the proliferation of purified lin-Sca1(++)kit(+) (LSK) cells, with a stimulatory effect at low concentrations, which was subject to mouse strain-dependent variation. In this study we report that the stimulatory effect of TGF-beta2 on the proliferation of LSK cells increases with age and after replicative stress in C57BL/6, but not in DBA/2, mice. The age-related changes in the TGF-beta2 effect correlated with life span in BXD recombinant strains. The stimulatory effect of TGF-beta2 on the proliferation of LSK cells requires one or more nonprotein, low m.w. factors present in fetal calf and mouse sera. The activity of this factor(s) in mouse serum increases with age. Taken together, our data suggest a role for TGF-beta2 and as yet unknown serum factors in the aging of the hemopoietic stem cell compartment and possibly in organismal aging.
Collapse
Affiliation(s)
- Els Henckaerts
- Carl C. Icahn Center for Gene Therapy and Molecular Medicine, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | | | |
Collapse
|
42
|
Nishant KT, Ravishankar H, Rao MRS. Characterization of a mouse recombination hot spot locus encoding a novel non-protein-coding RNA. Mol Cell Biol 2004; 24:5620-34. [PMID: 15169920 PMCID: PMC419864 DOI: 10.1128/mcb.24.12.5620-5634.2004] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Our current knowledge of recombination hot spot activity in mammalian systems implicates a role for both the primary DNA sequence and the nature of the chromatin domain around it. In mice, the only recombination hot spots mapped to date have been confined to a cluster within the major histocompatibility complex (MHC) region. We present a high resolution analysis of a new recombination hot spot in the mouse genome which maps to mouse chromosome 8 C-D. Haplotype diversity analysis across 40 different strains of mice has enabled us to map recombination breakpoints to a 1-kb interval. This hot spot has a recombination intensity that is 10- to 100-fold above the genome average and has a mean gene conversion tract length of 371 bp. This meiotically active locus happens to be flanked by a transcribed region encoding a non-protein-coding RNA polymerase II transcript and the previously characterized repair site. Many of the primary DNA sequence features that have been reported for the mouse MHC hot spots are also shared by this hot spot locus and in addition, along with three other MHC hot spot loci, we show a new parallel feature of association of the crossover sites with the nuclear matrix.
Collapse
Affiliation(s)
- K T Nishant
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | | | | |
Collapse
|
43
|
Abstract
By use of long-term selection lines for high and low growth, a large-sample (n = approximately 1,000 F2) experiment was conducted in mice to further understand the genetic architecture of complex polygenic traits. In combination with previous work, we conclude that QTL analysis has reinforced classic polygenic paradigms put in place prior to molecular analysis. Composite interval mapping revealed large numbers of QTL for growth traits with an exponential distribution of magnitudes of effects and validated theoretical expectations regarding gene action. Of particular significance, large effects were detected on Chromosome (Chr) 2. Regions on Chrs 1, 3, 6, 10, 11, and 17 also harbor loci with significant contributions to phenotypic variation for growth. Despite the large sample size, average confidence intervals of approximately 20 cM exhibit the poor resolution for initial estimates of QTL location. Analysis with genome-wide and chromosomal polygenic models revealed that, under certain assumptions, large fractions of the genome may contribute little to phenotypic variation for growth. Only a few epistatic interactions among detected QTL, little statistical support for gender-specific QTL, and significant age effects on genetic architecture were other primary observations from this study.
Collapse
Affiliation(s)
- Joao L Rocha
- Department of Animal Science, University of Nebraska, Lincoln, Nebraska 68583-0908, USA
| | | | | | | |
Collapse
|
44
|
Lyons MA, Korstanje R, Li R, Walsh KA, Churchill GA, Carey MC, Paigen B. Genetic contributors to lipoprotein cholesterol levels in an intercross of 129S1/SvImJ and RIIIS/J inbred mice. Physiol Genomics 2004; 17:114-21. [PMID: 14872007 DOI: 10.1152/physiolgenomics.00168.2003] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
To determine the genetic contribution to variation among lipoprotein cholesterol levels, we performed quantitative trait locus (QTL) analyses on an intercross between mouse strains RIIIS/J and 129S1/SvImJ. Male mice of the parental strains and the reciprocal F1and F2populations were fed a high-cholesterol, cholic acid-containing diet for 8–12 wk. At the end of the feeding period, plasma total, high-density lipoprotein (HDL), and non-HDL cholesterol were determined. For HDL cholesterol, we identified three significant QTLs on chromosomes (Chrs) 1 ( D1Mit507, 88 cM, 72–105 cM, 4.8 LOD), 9 ( D11Mit149, 14 cM, 10–25 cM, 9.4 LOD), and 12 ( D12Mit60, 20 cM, 0–50 cM, 5.0 LOD). These QTLs were considered identical to QTLs previously named Hdlq5, Hdlq17, and Hdlq18, respectively, in crosses sharing strain 129. For total cholesterol, we identified two significant QTLs on Chrs 1 and 9, which were named Chol10 ( D1Mit507, 88 cM, 10–105 cM, 3.9 LOD) and Chol11 ( D11Mit149, 14 cM, 0–30 cM, 4.4 LOD), respectively. In addition, for total cholesterol, we identified two suggestive QTLs on Chrs 12 (distal) and 17, which remain unnamed. For non-HDL cholesterol, we identified and named one new QTL on Chr 17, Nhdlq3 ( D17Mit221, 58 cM, 45–60 cM, 3.4 LOD). Nhdlq3 colocalized with orthologous human QTLs for lipoprotein phenotypes, and with Abcg5 and Abcg8. Overall, we detected eight QTLs for lipoprotein cholesterol concentrations on Chrs 1, 9, 12, and 17 (each two per chromosome), including a new QTL for non-HDL cholesterol, Nhdlq3, on Chr 17.
Collapse
|
45
|
Lyons MA, Wittenburg H, Li R, Walsh KA, Korstanje R, Churchill GA, Carey MC, Paigen B. Quantitative trait loci that determine lipoprotein cholesterol levels in an intercross of 129S1/SvImJ and CAST/Ei inbred mice. Physiol Genomics 2004; 17:60-8. [PMID: 14701919 DOI: 10.1152/physiolgenomics.00142.2003] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
To identify genetic determinants of lipoprotein levels, we are performing quantitative trait locus (QTL) analysis on a series of mouse intercrosses in a "daisy chain" experimental design, to increase the power of detecting QTL and to identify common variants that should segregate in multiple intercrosses. In this study, we intercrossed strains CAST/Ei and 129S1/SvImJ, determined HDL, total, and non-HDL cholesterol levels, and performed QTL mapping using Pseudomarker software. For HDL cholesterol, we identified two significant QTL on chromosome (Chr) 1 (Hdlq5, 82 cM, 60-100 cM) and Chr 4 (Hdlq10, 20 cM, 10-30 cM). For total cholesterol, we identified three significant QTL on Chr 1 (Chol7, 74 cM, 65-80 cM), Chr 4 (Chol8, 12 cM, 0-30 cM), and Chr 17 (Chol9, 54 cM, 20-60 cM). For non-HDL cholesterol, we identified significant QTL on Chr 8 (Nhdlq1, 34 cM, 20-60 cM) and Chr X (Nhdlq2, 6 cM, 0-18 cM). Hdlq10 was the only QTL detected in two intercrosses involving strain CAST/Ei. Hdlq5, Hdlq10, Nhdlq1, and two suggestive QTL at D7Mit246 and D15Mit115 coincided with orthologous human lipoprotein QTL. Our analysis furthers the knowledge of the genetic control of lipoprotein levels and points to the importance of Hdlq10, which was detected repeatedly in multiple studies.
Collapse
|
46
|
Abstract
In this article, we consider the problem of the estimation of quantitative trait loci (QTL), those chromosomal regions at which genetic information affecting some quantitative trait is encoded. Generally the number of such encoding sites is unknown, and associations between neutral molecular marker genotypes and observed trait phenotypes are sought to locate them. We consider a Bayesian model for simple experimental designs, and discuss the existing approaches to inference for this problem. In particular, we focus on locating positions of the best candidate markers segregating for the trait, a situation which is of primary interest in comparative mapping. We introduce a loss function for estimating both the number of QTL and their location, and we illustrate its application via simulated and real data.
Collapse
Affiliation(s)
- S A Sisson
- Department of Mathematics and Computer Science, University of Puerto Rico, Río Piedras, Puerto Rico.
| | | |
Collapse
|
47
|
Henckaerts E, Langer JC, Snoeck HW. Quantitative genetic variation in the hematopoietic stem cell and progenitor cell compartment and in lifespan are closely linked at multiple loci in BXD recombinant inbred mice. Blood 2004; 104:374-9. [PMID: 14988159 DOI: 10.1182/blood-2003-12-4304] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The number of bone marrow hematopoietic stem and progenitor cells as defined by the lineage(-), Sca1(++), c-kit(+) (LSK) phenotype and their proliferative capacity in vitro are subject to quantitative genetic variation, and several quantitative trait loci (QTL) have been identified in young mice. Because some traits affecting hematopoiesis also change with age in a mouse strain-dependent fashion, we performed quantitative trait analysis in aged BXD recombinant inbred (RI) mice for the number and frequency of LSK cells, and for their proliferative capacity in vitro. Several novel QTL were identified. The number and frequency of LSK cells in old mice correlated inversely with lifespan. Furthermore, 4 of 7 lifespan QTL overlap with QTL contributing to the number, frequency, or proliferative capacity of LSK cells in young or old mice. Taken together, these data establish a close genetic, and perhaps functional, link between genetic variation in lifespan and characteristics of stem and progenitor cells.
Collapse
Affiliation(s)
- Els Henckaerts
- Carl C. Icahn Center for Gene Therapy and Molecular Medicine, Mount Sinai School of Medicine, Box 1496, One Gustave L. Levy Place, New York, NY 10029, USA
| | | | | |
Collapse
|
48
|
Murphy DL, Uhl GR, Holmes A, Ren-Patterson R, Hall FS, Sora I, Detera-Wadleigh S, Lesch KP. Experimental gene interaction studies with SERT mutant mice as models for human polygenic and epistatic traits and disorders. GENES BRAIN AND BEHAVIOR 2004; 2:350-64. [PMID: 14653307 DOI: 10.1046/j.1601-1848.2003.00049.x] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Current evidence indicates that virtually all neuropsychiatric disorders, like many other common medical disorders, are genetically complex, with combined influences from multiple interacting genes, as well as from the environment. However, additive or epistatic gene interactions have proved quite difficult to detect and evaluate in human studies. Mouse phenotypes, including behaviors and drug responses, can provide relevant models for human disorders. Studies of gene-gene interactions in mice could thus help efforts to understand the molecular genetic bases of complex human disorders. The serotonin transporter (SERT, 5-HTT, SLC6A4) provides a relevant model for studying such interactions for several reasons: human variants in SERT have been associated with several neuropsychiatric and other medical disorders and quantitative traits; SERT blockers are effective treatments for a number of neuropsychiatric disorders; there is a good initial understanding of the phenotypic features of heterozygous and homozygous SERT knockout mice; and there is an expanding understanding of the interactions between variations in SERT expression and variations in the expression of a number of other genes of interest for neuropsychiatry and neuropharmacology. This paper provides examples of experimentally-obtained interactions between quantitative variations in SERT gene expression and variations in the expression of five other mouse genes: DAT, NET, MAOA, 5-HT(1B) and BDNF. In humans, all six of these genes possess polymorphisms that have been independently investigated as candidates for neuropsychiatric and other disorders in a total of > 500 reports. In the experimental studies in mice reviewed here, gene-gene interactions resulted in either synergistic, antagonistic (including 'rescue' or 'complementation') or more complex, quantitative alterations. These were identified in comparisons of the behavioral, physiological and neurochemical phenotypes of wildtype mice vs. mice with single allele or single gene targeted disruptions and mice with partial or complete disruptions of multiple genes. Several of the descriptive phenotypes could be best understood on the basis of intermediate, quantitative alterations such as brain serotonin differences. We discuss the ways in which these interactions could provide models for studies of gene-gene interactions in complex human neuropsychiatric and other disorders to which SERT may contribute, including developmental disorders, obesity, polysubstance abuse and others.
Collapse
Affiliation(s)
- D L Murphy
- Laboratory of Clinical Science, Building 10, Room 3D41, 10 Center Drive, NIMH, NIH/ DHHS, Bethesda, MD 20892-1264, USA.
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Lowenstein PR. Immunological needles in the gene therapy haystack: applying a genetic paradigm to gene therapy. Gene Ther 2003; 11:1-3. [PMID: 14681691 DOI: 10.1038/sj.gt.3302186] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
50
|
Abstract
A negative correlation between fitness and recombination rates seems to exist in various organisms. In this article we suggest that a correlation of that kind may play an important role in the evolution of complex traits. We study the effects of such fitness-associated recombination (FAR) in a simple two-locus deterministic model, as well as in a multi-loci NK rugged adaptive landscape. In both models studied, FAR results in faster adaptation and higher average population fitness, compared with uniform-rate recombination.
Collapse
Affiliation(s)
- L Hadany
- Department of Biological Sciences, Stanford University, Stanford, CA 94305, USA.
| | | |
Collapse
|