1
|
Wang C, Zhang Y, Liu T, Mi Z, Shi P, Wang Z, Li W, Wang H, Liu H, Zhang F. Insufficient CXCL13 secretion in leprosy foamy macrophages attenuates lymphocyte recruitment and antimicrobial protein production. Front Immunol 2025; 16:1541954. [PMID: 40264781 PMCID: PMC12011874 DOI: 10.3389/fimmu.2025.1541954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 03/21/2025] [Indexed: 04/24/2025] Open
Abstract
Background Pathogens trigger metabolic reprogramming, leading to the formation of foamy macrophages (FMs). This process provides a favorable environment for bacterial proliferation and enables bacteria to evade immune killing. Objective To elucidate the mechanisms by which pathogens escape immune surveillance and elimination via the formation of FMs. Methods We constructed a FM model using monocyte-derived macrophages (MDMs) that were incubated with oxidized low-density lipoprotein (oxLDL). Subsequently, we employed bulk RNA-sequencing (bulk RNA-seq) to comprehensively analyze the immune responses in MDMs and FMs against Mycobacterium leprae (M. leprae) infection in samples from 10 healthy individuals. Results We found that CXCL13, a component of the cytokine-cytokine receptor interaction pathway, was specifically upregulated in M. leprae infected MDMs, when compared with M. leprae infected FMs. Significantly, further functional analyses revealed that in vitro treatment with CXCL13 could enhance the expression of CXCR5, thereby promoting lymphocyte migration and secretion of antimicrobial proteins. Additionally, NLRP12 was found to be specifically and highly expressed in the NOD-like receptor signaling pathway, which was enriched in infected FMs. In macrophages, M. leprae infection increased CXCL13 expression via NF-κB signal pathway. Conversely, in FMs, mycobacteria induced upregulation of CXCL13 was suppressed by NLRP12 through the inhibition of p52 factor expression. Conclusion In conclusion, the NLRP12/NF-κB/CXCL13 axis is crucial for the immune response of FMs after mycobacterial infection. These findings contribute to a deeper understanding of the pathological mechanisms of mycobacterial infection.
Collapse
Affiliation(s)
- Chuan Wang
- Hospital for Skin Diseases, Shandong First Medical University, Jinan, Shandong, China
- Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Yuan Zhang
- Hospital for Skin Diseases, Shandong First Medical University, Jinan, Shandong, China
- Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Tingting Liu
- Hospital for Skin Diseases, Shandong First Medical University, Jinan, Shandong, China
- Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Zihao Mi
- Hospital for Skin Diseases, Shandong First Medical University, Jinan, Shandong, China
- Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Peidian Shi
- Hospital for Skin Diseases, Shandong First Medical University, Jinan, Shandong, China
- Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Zhenzhen Wang
- Hospital for Skin Diseases, Shandong First Medical University, Jinan, Shandong, China
- Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Wenchao Li
- Hospital for Skin Diseases, Shandong First Medical University, Jinan, Shandong, China
- Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Honglei Wang
- Hospital for Skin Diseases, Shandong First Medical University, Jinan, Shandong, China
- Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Hong Liu
- Hospital for Skin Diseases, Shandong First Medical University, Jinan, Shandong, China
- Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Furen Zhang
- Hospital for Skin Diseases, Shandong First Medical University, Jinan, Shandong, China
- Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Jinan, Shandong, China
| |
Collapse
|
2
|
Klawon DE, Pagane N, Walker MT, Ganci NK, Miller CH, Gai E, Rodriguez DM, Ryan-Payseur BK, Duncombe RK, Adams EJ, Maienschein-Cline M, Freitag NE, Germain RN, Wong HS, Savage PA. Regulatory T cells constrain T cells of shared specificity to enforce tolerance during infection. Science 2025; 387:eadk3248. [PMID: 40014689 PMCID: PMC12006836 DOI: 10.1126/science.adk3248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/16/2024] [Accepted: 12/17/2024] [Indexed: 03/01/2025]
Abstract
During infections, CD4+ Foxp3+ regulatory T (Treg) cells must control autoreactive CD4+ conventional T (Tconv) cell responses against self-peptide antigens while permitting those against pathogen-derived "nonself" peptides. We defined the basis of this selectivity using mice in which Treg cells reactive to a single prostate-specific self-peptide were selectively depleted. We found that self-peptide-specific Treg cells were dispensable for the control of Tconv cells of matched specificity at homeostasis. However, they were required to control such Tconv cells and prevent autoimmunity toward the prostate after exposure to elevated self-peptide during infection. Notably, the Treg cell response to self-peptide did not affect protective Tconv cell responses to a pathogen-derived peptide. Thus, self-peptide-specific Treg cells promoted self-nonself discrimination during infection by selectively controlling Tconv cells of shared self-specificity.
Collapse
Affiliation(s)
- David E.J. Klawon
- Department of Pathology, University of Chicago; Chicago, IL 60637, USA
- Present address: Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Nicole Pagane
- The Ragon Institute of Mass General, MIT and Harvard; Cambridge, MA 02139, USA
- Program in Computational and Systems Biology, Massachusetts Institute of Technology; Cambridge, MA 02139, USA
| | - Matthew T. Walker
- Department of Pathology, University of Chicago; Chicago, IL 60637, USA
| | - Nicole K. Ganci
- Department of Pathology, University of Chicago; Chicago, IL 60637, USA
| | - Christine H. Miller
- Department of Pathology, University of Chicago; Chicago, IL 60637, USA
- Interdisciplinary Scientist Training Program, University of Chicago; Chicago, IL 60637, USA
- Present address: Department of Pathology, University of California, San Francisco School of Medicine, San Francisco, CA 94117, USA
| | - Eric Gai
- The Ragon Institute of Mass General, MIT and Harvard; Cambridge, MA 02139, USA
- Program in Computational and Systems Biology, Massachusetts Institute of Technology; Cambridge, MA 02139, USA
| | - Donald M. Rodriguez
- Department of Pathology, University of Chicago; Chicago, IL 60637, USA
- Interdisciplinary Scientist Training Program, University of Chicago; Chicago, IL 60637, USA
| | - Bridgett K. Ryan-Payseur
- Department of Microbiology and Immunology, University of Illinois Chicago; Chicago, Illinois 60612 USA
| | - Ryan K. Duncombe
- Department of Biochemistry and Molecular Biology, University of Chicago; Chicago, IL 60637, USA
| | - Erin J. Adams
- Department of Biochemistry and Molecular Biology, University of Chicago; Chicago, IL 60637, USA
| | - Mark Maienschein-Cline
- Research Informatics Core, Research Resources Center, University of Illinois Chicago; Chicago, IL 60612 USA
| | - Nancy E. Freitag
- Department of Pharmaceutical Sciences, University of Illinois Chicago; Chicago, IL 60612, USA
| | - Ronald N. Germain
- Lymphocyte Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health; Bethesda, MD 20892, USA
| | - Harikesh S. Wong
- The Ragon Institute of Mass General, MIT and Harvard; Cambridge, MA 02139, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Peter A. Savage
- Department of Pathology, University of Chicago; Chicago, IL 60637, USA
| |
Collapse
|
3
|
Brisse ME, Hickman HD. Viral Infection and Dissemination Through the Lymphatic System. Microorganisms 2025; 13:443. [PMID: 40005808 PMCID: PMC11858409 DOI: 10.3390/microorganisms13020443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 02/11/2025] [Accepted: 02/15/2025] [Indexed: 02/27/2025] Open
Abstract
Many viruses induce viremia (virus in the blood) and disseminate throughout the body via the bloodstream from the initial infection site. However, viruses must often pass through the lymphatic system to reach the blood. The lymphatic system comprises a network of vessels distinct from blood vessels, along with interconnected lymph nodes (LNs). The complex network has become increasingly appreciated as a crucial host factor that contributes to both the spread and control of viral infections. Viruses can enter the lymphatics as free virions or along with migratory cells. Once virions arrive in the LN, sinus-resident macrophages remove infectious virus from the lymph. Depending on the virus, macrophages can eliminate infection or propagate the virus. A virus released from an LN is eventually deposited into the blood. This unique pathway highlights LNs as targets for viral infection control and for modulation of antiviral response development. Here, we review the lymphatic system and viruses that disseminate through this network. We discuss infection of the LN, the generation of adaptive antiviral immunity, and current knowledge of protection within the infected node. We conclude by sharing insights from ongoing efforts to optimize lymphatic targeting by vaccines and pharmaceuticals. Understanding the lymphatic system's role during viral infection enhances our knowledge of antiviral immunity and virus-host interactions and reveals potential targets for next-generation therapies.
Collapse
Affiliation(s)
| | - Heather D. Hickman
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20852, USA;
| |
Collapse
|
4
|
Coulombeau R, Selck C, Giang N, Al‐Mohammad A, Ng N, Maher AK, Argüello R, Scalfari A, Varley J, Nicholas R, Dominguez‐Villar M. Sphingosine-1-Phosphate Signalling Inhibition Suppresses Th1-Like Treg Generation by Reversing Mitochondrial Uncoupling. Immunology 2025; 174:153-166. [PMID: 39444366 PMCID: PMC11652410 DOI: 10.1111/imm.13870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 10/04/2024] [Accepted: 10/09/2024] [Indexed: 10/25/2024] Open
Abstract
Inflammatory environments induce the generation of dysfunctional IFNγ+T-bet+FOXP3+ Th1-like Tregs, which show defective function and are found in autoimmune conditions including multiple sclerosis (MS). The pathways that control the generation of Th1-like Tregs are not well understood. Sphingosine-1-phosphate (S1P) signalling molecules are upregulated in Th1-like Tregs, and in vivo S1P inhibition with Fingolimod (FTY720) inhibits the expression of genes responsible for Treg plasticity in MS patients. However, the underlying mechanisms are unknown. Here we show that S1P signalling inhibition by FTY720 inhibits the generation of Th1-like Tregs and rescues their suppressive function. These effects are mediated by a decrease in mTORC1 signalling and reversal of the mitochondrial uncoupling that Tregs undergo during their reprogramming into Th1-like Tregs in vitro. Finally, these results are validated in in vivo-generated Th1-like Tregs, as Tregs from MS patients treated with FTY720 display decreased Th1-like Treg frequency, increased suppressive function and mitochondrial metabolism rebalance. These results highlight the involvement of mitochondrial uncoupling in Treg reprogramming and identify S1P signalling inhibition as a target to suppress the generation of dysfunctional Th1-like Tregs.
Collapse
Affiliation(s)
- Rachel Coulombeau
- Department of Infectious Disease, Faculty of MedicineImperial College LondonLondonUK
| | - Claudia Selck
- Department of Infectious Disease, Faculty of MedicineImperial College LondonLondonUK
| | - Nicolas Giang
- Department of Infectious Disease, Faculty of MedicineImperial College LondonLondonUK
| | | | - Natalie Ng
- Department of Infectious Disease, Faculty of MedicineImperial College LondonLondonUK
| | - Allison K. Maher
- Department of Infectious Disease, Faculty of MedicineImperial College LondonLondonUK
| | - Rafael Argüello
- Immunometabolism and TranslationAix Marseille Université, CNRS, INSERM, Centre d'Immunologie de Marseille‐LuminyMarseilleFrance
| | - Antonio Scalfari
- Centre of Neuroscience, Department of MedicineCharing Cross HospitalLondonUK
| | - James Varley
- Centre of NeuroscienceImperial College Healthcare NHS TrustLondonUK
| | - Richard Nicholas
- Centre of NeuroscienceImperial College Healthcare NHS TrustLondonUK
| | | |
Collapse
|
5
|
Li C, Zhang L, Jin Q, Jiang H, Wu C. Role and application of chemokine CXCL13 in central nervous system lymphoma. Ann Hematol 2024; 103:2671-2680. [PMID: 38010409 DOI: 10.1007/s00277-023-05560-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 11/20/2023] [Indexed: 11/29/2023]
Abstract
Chemokine ligand 13 (CXCL13) and its chemokine receptor 5 (CXCR5) both play significant roles in the tumor microenvironment (TME). CXCL13 in cerebrospinal fluid (CSF) has recently been found to have significant diagnostic and prognostic value in primary and secondary central nervous system (CNS) diffuse large B-cell lymphoma (DLBCL), and the CXCL13-CXCR5 axis has been shown to play an important chemotactic role in the TME of CNS-DLBCL. In this review, we first describe the clinical value of CXCL13 in CSF as a prognostic and diagnostic biomarker for CNS-DLBCL. In addition, this review also discusses the specific mechanisms associated with the CXCL13-CXCR5 axis in tumor immunity of primary diffuse large B cell lymphoma of the central nervous system (PCNS-DLBCL) by reviewing the specific mechanisms of this axis in the immune microenvironment of DLBCL and CNS inflammation, as well as the prospects for the use of CXCL13-CXCR5 axis in immunotherapy in PCNS-DLBCL.
Collapse
Affiliation(s)
- Cuicui Li
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China
| | - Litian Zhang
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China
| | - Qiqi Jin
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China
| | - Haoyun Jiang
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China
| | - Chongyang Wu
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China.
| |
Collapse
|
6
|
Gribonika I, Strömberg A, Chandode RK, Schön K, Lahl K, Bemark M, Lycke N. Migratory CD103 +CD11b + cDC2s in Peyer's patches are critical for gut IgA responses following oral immunization. Mucosal Immunol 2024; 17:509-523. [PMID: 38492746 DOI: 10.1016/j.mucimm.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 03/06/2024] [Accepted: 03/07/2024] [Indexed: 03/18/2024]
Abstract
Induction and regulation of specific intestinal immunoglobulin (Ig)A responses critically depend on dendritic cell (DC) subsets and the T cells they activate in the Peyer's patches (PP). We found that oral immunization with cholera toxin (CT) as an adjuvant resulted in migration-dependent changes in the composition and localization of PP DC subsets with increased numbers of cluster of differentiation (CD)103- conventional DC (cDC)2s and lysozyme-expressing DC (LysoDCs) in the subepithelial dome and of CD103+ cDC2s that expressed CD101 in the T cell zones, while oral ovalbumin (OVA) tolerization was instead associated with greater accumulation of cDC1s and peripherally induced regulatory T cells (pTregs) in this area. Decreased IgA responses were observed after CT-adjuvanted immunization in huCD207DTA mice lacking CD103+ cDC2s, while oral OVA tolerization was inefficient in cDC1-deficient Batf3-/- mice. Using OVA transgenic T cell receptor CD4 T cell adoptive transfer models, we found that co-transferred endogenous wildtype CD4 T cells can hinder the induction of OVA-specific IgA responses through secretion of interleukin-10. CT could overcome this blocking effect, apparently through a modulating effect on pTregs while promoting an expansion of follicular helper T cells. The data support a model where cDC1-induced pTreg normally suppresses PP responses for any given antigen and where CT's oral adjuvanticity effect is dependent on promoting follicular helper T cell responses through induction of CD103+ cDC2s.
Collapse
Affiliation(s)
- Inta Gribonika
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden.
| | - Anneli Strömberg
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Rakesh K Chandode
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Karin Schön
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Katharina Lahl
- Immunology Section, Lund University, Lund, Sweden; Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada; Department of Microbiology, Immunology, and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Section for Experimental and Translational Immunology, Institute for Health Technology, Technical University of Denmark (DTU), Kongens Lyngby, Denmark
| | - Mats Bemark
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden; Department of Clinical Immunology and Transfusion Medicine, Sahlgrenska University Hospital, Gothenburg, Sweden; Department of Translational Medicine - Human Immunology, Lund University, Malmö, Sweden.
| | - Nils Lycke
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
7
|
Okabe Y. Development and organization of omental milky spots. Immunol Rev 2024; 324:68-77. [PMID: 38662554 DOI: 10.1111/imr.13337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 04/09/2024] [Indexed: 07/23/2024]
Abstract
The milky spots in omentum are atypical lymphoid tissues that play a pivotal role in regulating immune responses in the peritoneal cavity. The milky spots act as central hubs for collecting antigens and particles from the peritoneal cavity, regulating lymphocyte trafficking, promoting the differentiation and self-renewal of immune cells, and supporting the local germinal centre response. In addition, the milky spots exhibit unique developmental characteristics that combine the features of secondary and tertiary lymphoid tissues. These structures are innately programmed to form during foetal development; however, they can also be formed postnatally in response to peritoneal irritation such as inflammation, infection, obesity, or tumour metastasis. In this review, I discuss emerging perspectives on homeostatic development and organization of the milky spots.
Collapse
Affiliation(s)
- Yasutaka Okabe
- Laboratory of Immune Homeostasis, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
- Center for Infectious Disease Education and Research (CiDER), Osaka University, Osaka, Japan
| |
Collapse
|
8
|
Dominguez-Mozo MI, Galán V, Ramió-Torrentà L, Quiroga A, Quintana E, Villar LM, Costa-Frossard L, Fernández-Velasco JI, Villarrubia N, Garcia-Martinez MA, Arroyo R, Alvarez-Lafuente R. A two-years real-word study with fingolimod: early predictors of efficacy and an association between EBNA-1 IgG titers and multiple sclerosis progression. Front Immunol 2024; 15:1384411. [PMID: 38911861 PMCID: PMC11190074 DOI: 10.3389/fimmu.2024.1384411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 05/23/2024] [Indexed: 06/25/2024] Open
Abstract
Background Although fingolimod, a sphingosine 1-phosphate receptor agonist, has shown to be an effective treatment reducing relapse rate and also slowing down the disability progression in relapsing-remitting multiple sclerosis (RRMS) patients, it is important to quickly identify those suboptimal responders. Objective The main objective was to assess different clinical, radiological, genetic and environmental factors as possible early predictors of response in MS patients treated with fingolimod for 24 months. The secondary objective was to analyze the possible contribution of the environmental factors analyzed to the progression and activity of the disease along the 2-years of follow-up. Methods A retrospective study with 151 patients diagnosed with MS, under fingolimod treatment for 24 months, with serum samples at initiation and six months later, and with clinical and radiological data at initiation and 24 months later, were included in the study. Clinical and radiological variables were collected to establish NEDA-3 (no evidence of disease activity: patients without relapses, disability progression and new T2 lesions or Gd+ lesions) and EDA (evidence of disease activity: patients with relapses and/or progression and/or new T2 lesions or gadolinium-positive [Gd+] lesions) conditions. Human leukocyte antigen II (HLA-II), EBNA-1 IgG and VCA IgG from Epstein-Barr virus (EBV) and antibody titers against Human herpesvirus 6A/B (HHV-6A/B) were also analyzed. Results A total of 151 MS patients fulfilled the inclusion criteria: 27.8% was NEDA-3 (37.5% among those previously treated with high efficacy therapies >24 months). The following early predictors were statistically significantly associated with NEDA-3 condition: sex (male; p=0.002), age at baseline (older; p=0.009), relapses 2-years before fingolimod initiation ≤1 (p=0.010), and absence of Gd+ lesions at baseline (p=0.006). Regarding the possible contribution of the environmental factors included in the study to the activity or the progression of the disease, we only found that EBNA-1 IgG titers decreased in 20.0% of PIRA (progression independent from relapse activity) patients vs. 73.3% of RAW (relapse-associated worsening) patients (p=0.006; O.R. = 11.0). Conclusion MS patients that are male, older, and with a low clinical and radiological activity at fingolimod initiation have a greater probability to reach NEDA-3 condition after two years with this therapy. An intriguing association of EBV with the progression of the disease has also been described, but it should be further study in a larger cohort to confirm these results.
Collapse
Affiliation(s)
- Maria Inmaculada Dominguez-Mozo
- Grupo de Investigación de Factores Ambientales en Enfermedades Degenerativas, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Red de Enfermedades Inflamatorias (REI), Madrid, Spain
| | - Victoria Galán
- Servicio de Neurología, Hospital Universitario de Toledo, Toledo, Spain
| | - Lluís Ramió-Torrentà
- Neuroimmunology and Multiple Sclerosis Unit, Girona Biomedical Research Institute (IDIBGI), Doctor Josep Trueta University Hospital and Santa Caterina Hospital, Department of Medical Sciences, University of Girona, Red de Enfermedades Inflamatorias (REI), Girona, Spain
| | - Ana Quiroga
- Neuroimmunology and Multiple Sclerosis Unit (UNIEM), Girona Biomedical Research Institute (IDIBGI), Red de Enfermedades Inflamatorias (REI), Girona, Spain
| | - E. Quintana
- Girona Neuroimmunology and Multiple Sclerosis Unit (UNIEM), Girona Biomedical Research Institute (IDIBGI), Department of Medical Sciences, University of Girona, Girona, Spain
| | - Luisa María Villar
- Servicio de Inmunología, Hospital Universitario Ramón y Cajal, Red de Enfermedades Inflamatorias (REI), Madrid, Spain
| | - Lucienne Costa-Frossard
- Servicio de Neurología, Hospital Universitario Ramón y Cajal, Red de Enfermedades Inflamatorias (REI), Madrid, Spain
| | | | - Noelia Villarrubia
- Servicio de Inmunología, Hospital Universitario Ramón y Cajal, Red de Enfermedades Inflamatorias (REI), Madrid, Spain
| | - María Angel Garcia-Martinez
- Grupo de Investigación de Factores Ambientales en Enfermedades Degenerativas, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Red de Enfermedades Inflamatorias (REI), Madrid, Spain
| | - Rafael Arroyo
- Departamento de Neurología, Hospital Universitario Quironsalud Madrid, Red Española de Esclerosis Múltiple (REEM), Madrid, Spain
| | - Roberto Alvarez-Lafuente
- Grupo de Investigación de Factores Ambientales en Enfermedades Degenerativas, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Red de Enfermedades Inflamatorias (REI), Madrid, Spain
| |
Collapse
|
9
|
Jiang T, Li Y, Huang X, Jayakumar P, Billiar TR, Deng M. Activation of TLR9 signaling suppresses the immunomodulating functions of CD55 lo fibroblastic reticular cells during bacterial peritonitis. Front Immunol 2024; 15:1337384. [PMID: 38827745 PMCID: PMC11140099 DOI: 10.3389/fimmu.2024.1337384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 04/18/2024] [Indexed: 06/04/2024] Open
Abstract
Fibroblastic reticular cells (FRCs) are a subpopulation of stromal cells modulating the immune environments in health and disease. We have previously shown that activation of TLR9 signaling in FRC in fat-associated lymphoid clusters (FALC) regulate peritoneal immunity via suppressing immune cell recruitment and peritoneal resident macrophage (PRM) retention. However, FRCs are heterogeneous across tissues and organs. The functions of each FRC subset and the regulation of TLR9 in distinct FRC subsets are unknown. Here, we confirmed that specific deletion of TLR9 in FRC improved bacterial clearance and survival during peritoneal infection. Furthermore, using single-cell RNA sequencing, we found two subsets of FRCs (CD55hi and CD55lo) in the mesenteric FALC. The CD55hi FRCs were enriched in gene expression related to extracellular matrix formation. The CD55lo FRCs were enriched in gene expression related to immune response. Interestingly, we found that TLR9 is dominantly expressed in the CD55lo subset. Activation of TLR9 signaling suppressed proliferation, cytokine production, and retinoid metabolism in the CD55lo FRC, but not CD55hi FRC. Notably, we found that adoptive transfer of Tlr9 -/-CD55lo FRC from mesenteric FALC more effectively improved the survival during peritonitis compared with WT-FRC or Tlr9 -/-CD55hi FRC. Furthermore, we identified CD55hi and CD55lo subsets in human adipose tissue-derived FRC and confirmed the suppressive effect of TLR9 on the proliferation and cytokine production in the CD55lo subset. Therefore, inhibition of TLR9 in the CD55lo FRCs from adipose tissue could be a useful strategy to improve the therapeutic efficacy of FRC-based therapy for peritonitis.
Collapse
Affiliation(s)
- Ting Jiang
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Yiming Li
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Xingping Huang
- Institute of Molecular Medicine, Feinstein Institutes for Medical Research, New York, NY, United States
| | - Preethi Jayakumar
- Institute of Molecular Medicine, Feinstein Institutes for Medical Research, New York, NY, United States
| | - Timothy R. Billiar
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Meihong Deng
- Institute of Molecular Medicine, Feinstein Institutes for Medical Research, New York, NY, United States
- Departments of Molecular Medicine and Surgery, Zucker School of Medicine at Hofstra University/Northwell, New York, NY, United States
| |
Collapse
|
10
|
Ito T, Ishida Y, Zhang Y, Guichard V, Zhang W, Han R, Guckian K, Chun J, Que J, Smith A, Urban JF, Huang Y. ILC2s navigate tissue redistribution during infection using stage-specific S1P receptors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.12.592576. [PMID: 38798480 PMCID: PMC11118432 DOI: 10.1101/2024.05.12.592576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Lymphocytes can circulate as well as take residence within tissues. While the mechanisms by which circulating populations are recruited to infection sites have been extensively characterized, the molecular basis for the recirculation of tissue-resident cells is less understood. Here, we show that helminth infection- or IL-25-induced redistribution of intestinal group 2 innate lymphoid cells (ILC2s) requires access to the lymphatic vessel network. Although the secondary lymphoid structure is an essential signal hub for adaptive lymphocyte differentiation and dispatch, it is redundant for ILC2 migration and effector function. Upon IL-25 stimulation, a dramatic change in epigenetic landscape occurs in intestinal ILC2s, leading to the expression of sphingosine-1-phosphate receptors (S1PRs). Among the various S1PRs, we found that S1PR5 is critical for ILC2 exit from intestinal tissue to lymph. By contrast, S1PR1 plays a dominant role in ILC2 egress from mesenteric lymph nodes to blood circulation and then to distal tissues including the lung where the redistributed ILC2s contribute to tissue repair. The requirement of two S1PRs for ILC2 migration is largely due to the dynamic expression of the tissue-retention marker CD69, which mediates S1PR1 internalization. Thus, our study demonstrates a stage-specific requirement of different S1P receptors for ILC2 redistribution during infection. We therefore propose a fundamental paradigm that innate and adaptive lymphocytes utilize a shared vascular network frame and specialized navigation cues for migration.
Collapse
|
11
|
Naser IH, Hamza AA, Alhili A, Faisal AN, Ali MS, Kadhim NA, Suliman M, Alshahrani MY, Alawadi A. Atypical chemokine receptor 4 (ACKR4/CCX-CKR): A comprehensive exploration across physiological and pathological landscapes in contemporary research. Cell Biochem Funct 2024; 42:e4009. [PMID: 38597217 DOI: 10.1002/cbf.4009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/02/2024] [Accepted: 03/31/2024] [Indexed: 04/11/2024]
Abstract
Atypical chemokine receptor 4 (ACKR4), also known as CCX-CKR, is a member of the chemokine receptor family that lacks typical G protein signaling activity. Instead, ACKR4 functions as a scavenger receptor that can bind and internalize a wide range of chemokines, influencing their availability and activity in the body. ACKR4 is involved in various physiological processes, such as immune cell trafficking and the development of thymus, spleen, and lymph nodes. Moreover, ACKR4 has been implicated in several pathological conditions, including cancer, heart and lung diseases. In cancer, ACKR4 plays a complex role, acting as a tumor suppressor or promoter depending on the type of cancer and the stage of the disease. For instance, ACKR4 may inhibit the growth and metastasis of breast cancer, but it may also promote the progression of hepatocellular carcinoma and gastric cancer. In inflammatory situations, ACKR4 has been found to modulate the recruitment and activation of immune cells, contributing to the pathogenesis of diseases such as myocardial infraction and pulmonary sarcoidosis. The study of ACKR4 is still ongoing, and further research is needed to fully understand its role in different physiological and pathological contexts. Nonetheless, ACKR4 represents a promising target for the development of novel therapeutic strategies for various diseases.
Collapse
Affiliation(s)
- Israa Habeeb Naser
- Medical Laboratories Techniques Department, AL-Mustaqbal University College, Hillah, Babil, Iraq
| | - Asia Ali Hamza
- Department of Pharmaceutics, Faculty of pharmacy, University of Al-Ameed, Karbala, Iraq
| | - Ahmed Alhili
- Medical Technical College, Al-Farahidi University, Baghdad, Iraq
| | | | | | | | - Muath Suliman
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Mohammad Y Alshahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Ahmed Alawadi
- College of Technical Engineering, The Islamic University, Najaf, Iraq
- College of Technical Engineering, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- College of Technical Engineering, The Islamic University of Babylon, Babylon, Iraq
| |
Collapse
|
12
|
Lin Y, Wan Z, Liu B, Yao J, Li T, Yang F, Sui J, Zhao Y, Liu W, Zhou X, Wang J, Qi H. B cell-reactive triad of B cells, follicular helper and regulatory T cells at homeostasis. Cell Res 2024; 34:295-308. [PMID: 38326478 PMCID: PMC10978943 DOI: 10.1038/s41422-024-00929-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 01/08/2024] [Indexed: 02/09/2024] Open
Abstract
Autoreactive B cells are silenced through receptor editing, clonal deletion and anergy induction. Additional autoreactive B cells are ignorant because of physical segregation from their cognate autoantigen. Unexpectedly, we find that follicular B cell-derived autoantigen, including cell surface molecules such as FcγRIIB, is a class of homeostatic autoantigen that can induce spontaneous germinal centers (GCs) and B cell-reactive autoantibodies in non-autoimmune animals with intact T and B cell repertoires. These B cell-reactive B cells form GCs in a manner dependent on spontaneous follicular helper T (TFH) cells, which preferentially recognize B cell-derived autoantigen, and in a manner constrained by spontaneous follicular regulatory T (TFR) cells, which also carry specificities for B cell-derived autoantigen. B cell-reactive GC cells are continuously generated and, following immunization or infection, become intermixed with foreign antigen-induced GCs. Production of plasma cells and antibodies derived from B cell-reactive GC cells are markedly enhanced by viral infection, potentially increasing the chance for autoimmunity. Consequently, immune homeostasis in healthy animals not only involves classical tolerance of silencing and ignoring autoreactive B cells but also entails a reactive equilibrium attained by a spontaneous B cell-reactive triad of B cells, TFH cells and TFR cells.
Collapse
Affiliation(s)
- Yihan Lin
- Tsinghua-Peking Center for Life Sciences, Beijing, China
- Laboratory of Dynamic Immunobiology, Institute for Immunology, Tsinghua University, Beijing, China
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Zurong Wan
- Tsinghua-Peking Center for Life Sciences, Beijing, China
- Laboratory of Dynamic Immunobiology, Institute for Immunology, Tsinghua University, Beijing, China
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
- Weill Cornell Medical College, Cornell University, Ithaca, NY, USA
| | - Bo Liu
- Tsinghua-Peking Center for Life Sciences, Beijing, China
- Laboratory of Dynamic Immunobiology, Institute for Immunology, Tsinghua University, Beijing, China
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
- Changping Laboratory, Beijing, China
| | - Jiacheng Yao
- Changping Laboratory, Beijing, China
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Tianqi Li
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Fang Yang
- National Institute of Biological Sciences, Beijing, China
| | - Jianhua Sui
- National Institute of Biological Sciences, Beijing, China
| | - Yongshan Zhao
- Tsinghua-Peking Center for Life Sciences, Beijing, China
- Laboratory of Dynamic Immunobiology, Institute for Immunology, Tsinghua University, Beijing, China
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Wanli Liu
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Xuyu Zhou
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Jianbin Wang
- Changping Laboratory, Beijing, China.
- School of Life Sciences, Tsinghua University, Beijing, China.
| | - Hai Qi
- Tsinghua-Peking Center for Life Sciences, Beijing, China.
- Laboratory of Dynamic Immunobiology, Institute for Immunology, Tsinghua University, Beijing, China.
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China.
- Changping Laboratory, Beijing, China.
- New Cornerstone Science Laboratory, School of Medicine, Tsinghua University, Beijing, China.
- Beijing Key Laboratory for Immunological Research on Chronic Diseases, Tsinghua University, Beijing, China.
- Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing, China.
- SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, Shanxi Medical University, Taiyuan, Shanxi, China.
| |
Collapse
|
13
|
Vahidian F, Lamaze FC, Bouffard C, Coulombe F, Gagné A, Blais F, Tonneau M, Orain M, Routy B, Manem VSK, Joubert P. CXCL13 Positive Cells Localization Predict Response to Anti-PD-1/PD-L1 in Pulmonary Non-Small Cell Carcinoma. Cancers (Basel) 2024; 16:708. [PMID: 38398098 PMCID: PMC10887067 DOI: 10.3390/cancers16040708] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 01/25/2024] [Accepted: 01/29/2024] [Indexed: 02/25/2024] Open
Abstract
Background: Immune checkpoint inhibitors (ICIs) have revolutionized non-small cell lung cancers (NSCLCs) treatment, but only 20-30% of patients benefit from these treatments. Currently, PD-L1 expression in tumor cells is the only clinically approved predictor of ICI response in lung cancer, but concerns arise due to its low negative and positive predictive value. Recent studies suggest that CXCL13+ T cells in the tumor microenvironment (TME) may be a good predictor of response. We aimed to assess if CXCL13+ cell localization within the TME can predict ICI response in advanced NSCLC patients. Methods: This retrospective study included 65 advanced NSCLC patients treated with Nivolumab/Pembrolizumab at IUCPQ or CHUM and for whom a pretreatment surgical specimen was available. Good responders were defined as having a complete radiologic response at 1 year, and bad responders were defined as showing cancer progression at 1 year. IHC staining for CXCL13 was carried out on a representative slide from a resection specimen, and CXCL13+ cell density was evaluated in tumor (T), invasive margin (IM), non-tumor (NT), and tertiary lymphoid structure (TLS) compartments. Cox models were used to analyze progression-free survival (PFS) and overall survival (OS) probability, while the Mann-Whitney test was used to compare CXCL13+ cell density between responders and non-responders. Results: We showed that CXCL13+ cell density localization within the TME is associated with ICI efficacy. An increased density of CXCL13+ cells across all compartments was associated with a poorer prognostic (OS; HR = 1.22; 95%CI = 1.04-1.42; p = 0.01, PFS; HR = 1.16; p = 0.02), or a better prognostic when colocalized within TLSs (PFS; HR = 0.84, p = 0.03). Conclusion: Our results support the role of CXCL13+ cells in advanced NSCLC patients, with favorable prognosis when localized within TLSs and unfavorable prognosis when present elsewhere. The concomitant proximity of CXCL13+ and CD20+ cells within TLSs may favor antigen presentation to T cells, thus enhancing the effect of PD-1/PD-L1 axis inhibition. Further validation is warranted to confirm the potential relevance of this biomarker in a clinical setting.
Collapse
Affiliation(s)
- Fatemeh Vahidian
- Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec (IUCPQ), Quebec City, QC G1V 4G5, Canada (F.C.L.); (M.O.)
- Faculty of Medicine, Laval University, Quebec City, QC G1V 4G5, Canada (F.B.)
| | - Fabien C. Lamaze
- Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec (IUCPQ), Quebec City, QC G1V 4G5, Canada (F.C.L.); (M.O.)
| | - Cédrik Bouffard
- Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec (IUCPQ), Quebec City, QC G1V 4G5, Canada (F.C.L.); (M.O.)
- Faculty of Medicine, Laval University, Quebec City, QC G1V 4G5, Canada (F.B.)
| | - François Coulombe
- Faculty of Medicine, Laval University, Quebec City, QC G1V 4G5, Canada (F.B.)
| | - Andréanne Gagné
- Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec (IUCPQ), Quebec City, QC G1V 4G5, Canada (F.C.L.); (M.O.)
- Faculty of Medicine, Laval University, Quebec City, QC G1V 4G5, Canada (F.B.)
| | - Florence Blais
- Faculty of Medicine, Laval University, Quebec City, QC G1V 4G5, Canada (F.B.)
| | - Marion Tonneau
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC H2X 0A9, Canada; (M.T.)
| | - Michèle Orain
- Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec (IUCPQ), Quebec City, QC G1V 4G5, Canada (F.C.L.); (M.O.)
| | - Bertrand Routy
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC H2X 0A9, Canada; (M.T.)
| | - Venkata S. K. Manem
- Centre de Recherche du CHU de Québec—Université Laval, Quebec City, QC G1V 4G5, Canada
- Department of Mathematics and Computer Science, Université du Québec à Trois-Rivières, Trois-Rivières, QC G8Z 4M3, Canada
| | - Philippe Joubert
- Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec (IUCPQ), Quebec City, QC G1V 4G5, Canada (F.C.L.); (M.O.)
- Faculty of Medicine, Laval University, Quebec City, QC G1V 4G5, Canada (F.B.)
| |
Collapse
|
14
|
DiToro D, Murakami N, Pillai S. T-B Collaboration in Autoimmunity, Infection, and Transplantation. Transplantation 2024; 108:386-398. [PMID: 37314442 PMCID: PMC11345790 DOI: 10.1097/tp.0000000000004671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
We have attempted here to provide an up-to-date review of the collaboration between helper T cells and B cells in response to protein and glycoprotein antigens. This collaboration is essential as it not only protects from many pathogens but also contributes to a litany of autoimmune and immune-mediated diseases.
Collapse
Affiliation(s)
- Daniel DiToro
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard, Cambridge, MA
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA
| | - Naoka Murakami
- Department of Medicine, Brigham and Women’s Hospital, Boston, MA
| | - Shiv Pillai
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard, Cambridge, MA
| |
Collapse
|
15
|
Engblom C, Thrane K, Lin Q, Andersson A, Toosi H, Chen X, Steiner E, Lu C, Mantovani G, Hagemann-Jensen M, Saarenpää S, Jangard M, Saez-Rodriguez J, Michaëlsson J, Hartman J, Lagergren J, Mold JE, Lundeberg J, Frisén J. Spatial transcriptomics of B cell and T cell receptors reveals lymphocyte clonal dynamics. Science 2023; 382:eadf8486. [PMID: 38060664 DOI: 10.1126/science.adf8486] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 10/23/2023] [Indexed: 12/18/2023]
Abstract
The spatial distribution of lymphocyte clones within tissues is critical to their development, selection, and expansion. We have developed spatial transcriptomics of variable, diversity, and joining (VDJ) sequences (Spatial VDJ), a method that maps B cell and T cell receptor sequences in human tissue sections. Spatial VDJ captures lymphocyte clones that match canonical B and T cell distributions and amplifies clonal sequences confirmed by orthogonal methods. We found spatial congruency between paired receptor chains, developed a computational framework to predict receptor pairs, and linked the expansion of distinct B cell clones to different tumor-associated gene expression programs. Spatial VDJ delineates B cell clonal diversity and lineage trajectories within their anatomical niche. Thus, Spatial VDJ captures lymphocyte spatial clonal architecture across tissues, providing a platform to harness clonal sequences for therapy.
Collapse
Affiliation(s)
- Camilla Engblom
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Kim Thrane
- SciLifeLab, Department of Gene Technology, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Qirong Lin
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Alma Andersson
- SciLifeLab, Department of Gene Technology, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Hosein Toosi
- SciLifeLab, Computational Science and Technology department, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Xinsong Chen
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Embla Steiner
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Chang Lu
- Heidelberg University, Faculty of Medicine and Heidelberg University Hospital, Institute for Computational Biomedicine, Heidelberg, Germany
| | - Giulia Mantovani
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | | | - Sami Saarenpää
- SciLifeLab, Department of Gene Technology, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Mattias Jangard
- ENT Unit, Sophiahemmet University Research Laboratory and Sophiahemmet Hospital, Stockholm, Sweden
| | - Julio Saez-Rodriguez
- Heidelberg University, Faculty of Medicine and Heidelberg University Hospital, Institute for Computational Biomedicine, Heidelberg, Germany
| | - Jakob Michaëlsson
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Johan Hartman
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Pathology and Cancer Diagnostics, Karolinska University Hospital, Stockholm, Sweden
| | - Jens Lagergren
- SciLifeLab, Computational Science and Technology department, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Jeff E Mold
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Joakim Lundeberg
- SciLifeLab, Department of Gene Technology, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Jonas Frisén
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
16
|
Jiang H, Zhang Z. Immune response in influenza virus infection and modulation of immune injury by viral neuraminidase. Virol J 2023; 20:193. [PMID: 37641134 PMCID: PMC10463456 DOI: 10.1186/s12985-023-02164-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 08/16/2023] [Indexed: 08/31/2023] Open
Abstract
Influenza A viruses cause severe respiratory illnesses in humans and animals. Overreaction of the innate immune response to influenza virus infection results in hypercytokinemia, which is responsible for mortality and morbidity. The influenza A virus surface glycoprotein neuraminidase (NA) plays a vital role in viral attachment, entry, and virion release from infected cells. NA acts as a sialidase, which cleaves sialic acids from cell surface proteins and carbohydrate side chains on nascent virions. Here, we review progress in understanding the role of NA in modulating host immune response to influenza virus infection. We also discuss recent exciting findings targeting NA protein to interrupt influenza-induced immune injury.
Collapse
Affiliation(s)
- Hongyu Jiang
- The People's Hospital of Dayi Country, Chengdu, Sichuan, China
- Inflammation and Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| | - Zongde Zhang
- The People's Hospital of Dayi Country, Chengdu, Sichuan, China.
- Inflammation and Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China.
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China.
| |
Collapse
|
17
|
Yokomizo T, Shimizu T. The leukotriene B 4 receptors BLT1 and BLT2 as potential therapeutic targets. Immunol Rev 2023; 317:30-41. [PMID: 36908237 DOI: 10.1111/imr.13196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
Leukotriene B4 (LTB4 ) was recognized as an arachidonate-derived chemotactic factor for inflammatory cells and an important drug target even before the molecular identification of its receptors. We cloned the high- and low-affinity LTB4 receptors, BLT1 and BLT2, respectively, and examined their functions by generating and studying gene-targeted mice. BLT1 is involved in the pathogenesis of various inflammatory and immune diseases, including asthma, psoriasis, contact dermatitis, allergic conjunctivitis, age-related macular degeneration, and immune complex-mediated glomerulonephritis. Meanwhile, BLT2 is a high-affinity receptor for 12-hydroxyheptadecatrienoic acid, which is involved in the maintenance of dermal and intestinal barrier function, and the acceleration of skin and corneal wound healing. Thus, BLT1 antagonists and BLT2 agonists are promising candidates in the treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Takehiko Yokomizo
- Department of Biochemistry, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Takao Shimizu
- Institute of Microbial Chemistry, Tokyo, Japan
- Department of Lipid Signaling, National Center for Global Health and Medicine, Tokyo, Japan
| |
Collapse
|
18
|
Medrano-Bosch M, Simón-Codina B, Jiménez W, Edelman ER, Melgar-Lesmes P. Monocyte-endothelial cell interactions in vascular and tissue remodeling. Front Immunol 2023; 14:1196033. [PMID: 37483594 PMCID: PMC10360188 DOI: 10.3389/fimmu.2023.1196033] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 06/21/2023] [Indexed: 07/25/2023] Open
Abstract
Monocytes are circulating leukocytes of innate immunity derived from the bone marrow that interact with endothelial cells under physiological or pathophysiological conditions to orchestrate inflammation, angiogenesis, or tissue remodeling. Monocytes are attracted by chemokines and specific receptors to precise areas in vessels or tissues and transdifferentiate into macrophages with tissue damage or infection. Adherent monocytes and infiltrated monocyte-derived macrophages locally release a myriad of cytokines, vasoactive agents, matrix metalloproteinases, and growth factors to induce vascular and tissue remodeling or for propagation of inflammatory responses. Infiltrated macrophages cooperate with tissue-resident macrophages during all the phases of tissue injury, repair, and regeneration. Substances released by infiltrated and resident macrophages serve not only to coordinate vessel and tissue growth but cellular interactions as well by attracting more circulating monocytes (e.g. MCP-1) and stimulating nearby endothelial cells (e.g. TNF-α) to expose monocyte adhesion molecules. Prolonged tissue accumulation and activation of infiltrated monocytes may result in alterations in extracellular matrix turnover, tissue functions, and vascular leakage. In this review, we highlight the link between interactions of infiltrating monocytes and endothelial cells to regulate vascular and tissue remodeling with a special focus on how these interactions contribute to pathophysiological conditions such as cardiovascular and chronic liver diseases.
Collapse
Affiliation(s)
- Mireia Medrano-Bosch
- Department of Biomedicine, School of Medicine, University of Barcelona, Barcelona, Spain
| | - Blanca Simón-Codina
- Department of Biomedicine, School of Medicine, University of Barcelona, Barcelona, Spain
| | - Wladimiro Jiménez
- Department of Biomedicine, School of Medicine, University of Barcelona, Barcelona, Spain
- Biochemistry and Molecular Genetics Service, Hospital Clínic Universitari, Instituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
| | - Elazer R. Edelman
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Pedro Melgar-Lesmes
- Department of Biomedicine, School of Medicine, University of Barcelona, Barcelona, Spain
- Biochemistry and Molecular Genetics Service, Hospital Clínic Universitari, Instituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, United States
| |
Collapse
|
19
|
Koizumi H, Fujii W, Sanjoba C, Goto Y. BAFF induces CXCR5 expression during B cell differentiation in bone marrow. Biochem Biophys Rep 2023; 34:101451. [PMID: 36926279 PMCID: PMC10011739 DOI: 10.1016/j.bbrep.2023.101451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/22/2023] [Accepted: 03/03/2023] [Indexed: 03/09/2023] Open
Abstract
B cell activating factor (BAFF) plays an important role in antibody production through differentiation and maturation of B cells mainly in secondary lymphoid organs. On the other hand, the role of BAFF in the bone marrow, the primary lymphoid organ of B cell development, has not been well elucidated. Here, effects of BAFF in bone marrow B cell development were examined by using BAFF-deficient mice. When mRNA expression levels of B cell differentiation markers including Cd19, Bcl2, Igμ, Il7r and Cxcr5 were compared between bone marrow of wild-type and BAFF-KO mice, a lower level of Cxcr5 expression was found in the KO mice. Additionally, protein expression of CXCR5 on IgM+ cells in the bone marrow was decreased by BAFF deficiency. In vitro studies also confirmed the effect of BAFF on CXCR5 by IgM+ cells; culturing bone marrow cells from BAFF-KO mice with BAFF in vitro increased the proportion of CXCR5+ cells in IgM+ cells compared with non-treated bone marrow cells. In addition, BAFF synergized with TNF-α and IL-6 to increase the expression of CXCR5+ on IgM+ cells. The BAFF-mediated up-regulation of CXCR5 expression was reproduced by using CD19+ cells purified from BAFF-KO bone marrow cells, suggesting that BAFF directly affects B-lineage cells in bone marrow to promote CXCR5 expression. Together, this study suggests that BAFF has an important role in B cell differentiation in bone marrow by directly inducing CXCR5 expression which affect their migration to secondary lymphoid organs.
Collapse
Affiliation(s)
- Hajime Koizumi
- Laboratory of Molecular Immunology, Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Japan
| | - Wataru Fujii
- Laboratory of Biomedical Science, Department of Veterinary Medical Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Japan
| | - Chizu Sanjoba
- Laboratory of Molecular Immunology, Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Japan
| | - Yasuyuki Goto
- Laboratory of Molecular Immunology, Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Japan
| |
Collapse
|
20
|
Ebrahimian T, Dierick F, Ta V, Kotsiopriftis M, O'Connor Miranda J, Mann KK, Orthwein A, Lehoux S. B cell-specific knockout of AID protects against atherosclerosis. Sci Rep 2023; 13:8723. [PMID: 37253865 DOI: 10.1038/s41598-023-35980-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 05/26/2023] [Indexed: 06/01/2023] Open
Abstract
Antigen-naive IgM-producing B cells are atheroprotective, whereas mature B cells producing class-switched antibodies promote atherosclerosis. Activation-induced cytidine deaminase (AID), which mediates class switch recombination (CSR), would thus be expected to foster atherosclerosis. Yet, AID also plays a major role in the establishment of B cell tolerance. We sought to define whether AID affects atherosclerotic plaque formation. We generated Ldlr-/- chimeras transplanted with bone marrow from Aicda-/- or wild-type (WT) mice, fed a HFD for 14 weeks. Decreased B cell maturation in Ldlr-/-Aicda-/- mice was demonstrated by 50% reduction in splenic and aortic BAFFR expression, a key signaling component of B2 cell maturation. This was associated with increased plasma IgM in Ldlr-/-Aicda-/- compared with Ldlr-/-WT animals. Importantly, Ldlr-/-Aicda-/- mice had reduced atherosclerotic lesion area (0.20 ± 0.03mm2) compared with Ldlr-/-WT (0.30 ± 0.04mm2, P < 0.05), although no differences in plaque composition were noted between groups. In addition, immunofluorescence analysis revealed increased splenic B and T cell areas independent of cell number. AID depletion directly inhibits atherosclerotic plaque formation.
Collapse
Affiliation(s)
- Talin Ebrahimian
- Lady Davis Institute for Medical Research, 3755, Cote Ste Catherine, Montreal, QC, H3T 1E2, Canada.
| | - France Dierick
- Lady Davis Institute for Medical Research, 3755, Cote Ste Catherine, Montreal, QC, H3T 1E2, Canada
| | - Vincent Ta
- Lady Davis Institute for Medical Research, 3755, Cote Ste Catherine, Montreal, QC, H3T 1E2, Canada
| | - Maria Kotsiopriftis
- Lady Davis Institute for Medical Research, 3755, Cote Ste Catherine, Montreal, QC, H3T 1E2, Canada
| | | | - Koren K Mann
- Lady Davis Institute for Medical Research, 3755, Cote Ste Catherine, Montreal, QC, H3T 1E2, Canada
| | - Alexandre Orthwein
- Lady Davis Institute for Medical Research, 3755, Cote Ste Catherine, Montreal, QC, H3T 1E2, Canada
| | - Stephanie Lehoux
- Lady Davis Institute for Medical Research, 3755, Cote Ste Catherine, Montreal, QC, H3T 1E2, Canada.
| |
Collapse
|
21
|
Lim VY, Feng X, Miao R, Zehentmeier S, Ewing-Crystal N, Lee M, Tumanov AV, Oh JE, Iwasaki A, Wang A, Choi J, Pereira JP. Mature B cells and mesenchymal stem cells control emergency myelopoiesis. Life Sci Alliance 2023; 6:e202301924. [PMID: 36717247 PMCID: PMC9889502 DOI: 10.26508/lsa.202301924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 01/20/2023] [Accepted: 01/23/2023] [Indexed: 01/31/2023] Open
Abstract
Systemic inflammation halts lymphopoiesis and prioritizes myeloid cell production. How blood cell production switches from homeostasis to emergency myelopoiesis is incompletely understood. Here, we show that lymphotoxin-β receptor (LTβR) signaling in combination with TNF and IL-1 receptor signaling in bone marrow mesenchymal stem cells (MSCs) down-regulates Il7 expression to shut down lymphopoiesis during systemic inflammation. LTβR signaling in MSCs also promoted CCL2 production during systemic inflammation. Pharmacological or genetic blocking of LTβR signaling in MSCs partially enabled lymphopoiesis and reduced monocyte numbers in the spleen during systemic inflammation, which correlated with reduced survival during systemic bacterial and viral infections. Interestingly, lymphotoxin-α1β2 delivered by B-lineage cells, and specifically by mature B cells, contributed to promote Il7 down-regulation and reduce MSC lymphopoietic activity. Our studies revealed an unexpected role of LTβR signaling in MSCs and identified recirculating mature B cells as an important regulator of emergency myelopoiesis.
Collapse
Affiliation(s)
- Vivian Y Lim
- Department of Immunobiology, School of Medicine, Yale University, New Haven, CT, USA
| | - Xing Feng
- Department of Immunobiology, School of Medicine, Yale University, New Haven, CT, USA
| | - Runfeng Miao
- Department of Immunobiology, School of Medicine, Yale University, New Haven, CT, USA
| | - Sandra Zehentmeier
- Department of Immunobiology, School of Medicine, Yale University, New Haven, CT, USA
| | - Nathan Ewing-Crystal
- Department of Immunobiology, School of Medicine, Yale University, New Haven, CT, USA
| | - Moonyoung Lee
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, South Korea
| | - Alexei V Tumanov
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Ji Eun Oh
- Department of Immunobiology, School of Medicine, Yale University, New Haven, CT, USA
| | - Akiko Iwasaki
- Department of Immunobiology, School of Medicine, Yale University, New Haven, CT, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Andrew Wang
- Department of Immunobiology, School of Medicine, Yale University, New Haven, CT, USA
- Department of Medicine (Rheumatology), School of Medicine, Yale University, New Haven, CT, USA
| | - Jungmin Choi
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, South Korea
- Department of Genetics, School of Medicine, Yale University, New Haven, CT, USA
| | - João P Pereira
- Department of Immunobiology, School of Medicine, Yale University, New Haven, CT, USA
| |
Collapse
|
22
|
Revisiting the Role of the CXCL13/CXCR5-Associated Immune Axis in Melanoma: Potential Implications for Anti-PD-1-Related Biomarker Research. Life (Basel) 2023; 13:life13020553. [PMID: 36836910 PMCID: PMC9958642 DOI: 10.3390/life13020553] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023] Open
Abstract
CXCL13 is a potent chemoattractant cytokine that promotes the migration of cells expressing its cognate receptor, CXCR5. Accordingly, T follicular helper cells and B cells migrate towards B cell follicles in lymph nodes, where the resulting spatial proximity promotes B cell/T cell interaction and antibody formation. Moreover, effector cells of the CXCL13/CXCR5-associated immune axis express PD-1, with corresponding circulating cells occurring in the blood. The formation of so-called ectopic or tertiary lymphoid structures, recently detected in different cancer types, represents an integral part of this axis, particularly in the context of its emerging role in anti-tumor defense. These aspects of the CXCL13/CXCR5-associated immune axis are highlighted in this review, which focuses on cutaneous malignant melanoma. Specifically, we elaborate on the role of this important immune axis as a possible ancillary target of immune checkpoint inhibition with anti-PD-1 antibodies in different therapeutic settings and as a potential source of predictive biomarkers regarding treatment efficacy.
Collapse
|
23
|
Gui Y, Cheng H, Zhou J, Xu H, Han J, Zhang D. Development and function of natural TCR + CD8αα + intraepithelial lymphocytes. Front Immunol 2022; 13:1059042. [PMID: 36569835 PMCID: PMC9768216 DOI: 10.3389/fimmu.2022.1059042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/24/2022] [Indexed: 12/12/2022] Open
Abstract
The complexity of intestinal homeostasis results from the ability of the intestinal epithelium to absorb nutrients, harbor multiple external and internal antigens, and accommodate diverse immune cells. Intestinal intraepithelial lymphocytes (IELs) are a unique cell population embedded within the intestinal epithelial layer, contributing to the formation of the mucosal epithelial barrier and serving as a first-line defense against microbial invasion. TCRαβ+ CD4- CD8αα+ CD8αβ- and TCRγδ+ CD4- CD8αα+ CD8αβ- IELs are the two predominant subsets of natural IELs. These cells play an essential role in various intestinal diseases, such as infections and inflammatory diseases, and act as immune regulators in the gut. However, their developmental and functional patterns are extremely distinct, and the mechanisms underlying their development and migration to the intestine are not fully understood. One example is that Bcl-2 promotes the survival of thymic precursors of IELs. Mature TCRαβ+ CD4- CD8αα+ CD8αβ- IELs seem to be involved in immune regulation, while TCRγδ+ CD4- CD8αα+ CD8αβ- IELs might be involved in immune surveillance by promoting homeostasis of host microbiota, protecting and restoring the integrity of mucosal epithelium, inhibiting microbiota invasion, and limiting excessive inflammation. In this review, we elucidated and organized effectively the functions and development of these cells to guide future studies in this field. We also discussed key scientific questions that need to be addressed in this area.
Collapse
Affiliation(s)
- Yuanyuan Gui
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Hao Cheng
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Jingyang Zhou
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Hao Xu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jiajia Han
- Precision Research Center for Refractory Diseases, Institute for Clinical Research, Shanghai General Hospital, Shanghai Jiao Tong University of Medicine, Shanghai, China,*Correspondence: Jiajia Han, ; Dunfang Zhang,
| | - Dunfang Zhang
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China,*Correspondence: Jiajia Han, ; Dunfang Zhang,
| |
Collapse
|
24
|
Zhang Z, Ernst PB, Kiyono H, Kurashima Y. Utilizing mast cells in a positive manner to overcome inflammatory and allergic diseases. Front Immunol 2022; 13:937120. [PMID: 36189267 PMCID: PMC9518231 DOI: 10.3389/fimmu.2022.937120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 07/26/2022] [Indexed: 01/10/2023] Open
Abstract
Mast cells (MCs) are immune cells widely distributed in the body, accompanied by diverse phenotypes and functions. Committed mast cell precursors (MCPs) leave the bone marrow and enter the blood circulation, homing to peripheral sites under the control of various molecules from different microenvironments, where they eventually differentiate and mature. Partly attributable to the unique maturation mechanism, MCs display high functional heterogeneity and potentially plastic phenotypes. High plasticity also means that MCs can exhibit different subtypes to cope with different microenvironments, which we call “the peripheral immune education system”. Under the peripheral immune education system, MCs showed a new character from previous cognition in some cases, namely regulation of allergy and inflammation. In this review, we focus on the mucosal tissues, such as the gastrointestinal tract, to gain insights into the mechanism underlying the migration of MCs to the gut or other organs and their heterogeneity, which is driven by different microenvironments. In particular, the immunosuppressive properties of MCs let us consider that positively utilizing MCs may be a new way to overcome inflammatory and allergic disorders.
Collapse
Affiliation(s)
- Zhongwei Zhang
- Department of Innovative Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Peter B Ernst
- Division of Comparative Pathology and Medicine, Department of Pathology, University of California, San Diego, San Diego, CA, United States
- Center for Veterinary Sciences and Comparative Medicine, University of California, San Diego, San Diego, CA, United States
- Department of Medicine, School of Medicine and Chiba University-University of California San Diego Center for Mucosal Immunology, Allergy and Vaccine (CU-UCSD), University of California, San Diego, San Diego, CA, United States
| | - Hiroshi Kiyono
- Department of Medicine, School of Medicine and Chiba University-University of California San Diego Center for Mucosal Immunology, Allergy and Vaccine (CU-UCSD), University of California, San Diego, San Diego, CA, United States
- Future Medicine Education and Research Organization, Chiba University, Chiba, Japan
- Division of Mucosal Immunology, IMSUT Distinguished Professor Unit, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Department of Human Mucosal Vaccinology, Chiba University Hospital, Chiba, Japan
- HanaVax Inc., Tokyo, Japan
- Mucosal Immunology and Allergy Therapeutics, Institute for Global Prominent Research, Chiba University, Chiba, Japan
- Research Institute of Disaster Medicine, Chiba University, Chiba, Japan
| | - Yosuke Kurashima
- Department of Innovative Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
- Division of Mucosal Immunology, IMSUT Distinguished Professor Unit, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Mucosal Immunology and Allergy Therapeutics, Institute for Global Prominent Research, Chiba University, Chiba, Japan
- Research Institute of Disaster Medicine, Chiba University, Chiba, Japan
- Institute for Advanced Academic Research, Chiba University, Chiba, Japan
- Empowering Next Generation Allergist/immunologist toward Global Excellence Task Force toward 2030 (ENGAGE)-Task Force, Tokyo, Japan
| |
Collapse
|
25
|
Harrer C, Otto F, Radlberger RF, Moser T, Pilz G, Wipfler P, Harrer A. The CXCL13/CXCR5 Immune Axis in Health and Disease—Implications for Intrathecal B Cell Activities in Neuroinflammation. Cells 2022; 11:cells11172649. [PMID: 36078057 PMCID: PMC9454489 DOI: 10.3390/cells11172649] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/21/2022] [Accepted: 08/22/2022] [Indexed: 11/16/2022] Open
Abstract
The chemokine C-X-C- ligand 13 (CXCL13) is a major B cell chemoattractant to B cell follicles in secondary lymphoid organs (SLO) that proposedly recruits B cells to the cerebrospinal fluid (CSF) during neuroinflammation. CXCR5, the cognate receptor of CXCL13, is expressed on B cells and certain T cell subsets, in particular T follicular helper cells (Tfh cells), enabling them to follow CXCL13 gradients towards B cell follicles for spatial proximity, a prerequisite for productive T cell–B cell interaction. Tfh cells are essential contributors to B cell proliferation, differentiation, and high-affinity antibody synthesis and are required for germinal center formation and maintenance. Circulating Tfh cells (cTfh) have been observed in the peripheral blood and CSF. Furthermore, CXCL13/CXCR5-associated immune activities organize and shape adaptive B cell-related immune responses outside of SLO via the formation of ectopic lymphoid structures in inflamed tissues, including the central nervous system (CNS). This review summarizes the recent advances in our understanding of the CXCL13/CXCR5 immune axis and its role in vaccination, autoimmunity, and infection with a special focus on its relevance for intrathecal B cell activities in inflammatory CNS diseases.
Collapse
Affiliation(s)
- Christine Harrer
- Department of Neurology, Christian Doppler University Hospital, Paracelsus Medical University and Center for Cognitive Neuroscience, 5020 Salzburg, Austria
- Clinical Division of Social Psychiatry, Department of Psychiatry and Psychotherapy, Medical University of Vienna, 1090 Vienna, Austria
| | - Ferdinand Otto
- Department of Neurology, Christian Doppler University Hospital, Paracelsus Medical University and Center for Cognitive Neuroscience, 5020 Salzburg, Austria
| | - Richard Friedrich Radlberger
- Department of Neurology, Christian Doppler University Hospital, Paracelsus Medical University and Center for Cognitive Neuroscience, 5020 Salzburg, Austria
| | - Tobias Moser
- Department of Neurology, Christian Doppler University Hospital, Paracelsus Medical University and Center for Cognitive Neuroscience, 5020 Salzburg, Austria
| | - Georg Pilz
- Department of Neurology, Christian Doppler University Hospital, Paracelsus Medical University and Center for Cognitive Neuroscience, 5020 Salzburg, Austria
| | - Peter Wipfler
- Department of Neurology, Christian Doppler University Hospital, Paracelsus Medical University and Center for Cognitive Neuroscience, 5020 Salzburg, Austria
| | - Andrea Harrer
- Department of Neurology, Christian Doppler University Hospital, Paracelsus Medical University and Center for Cognitive Neuroscience, 5020 Salzburg, Austria
- Department of Dermatology and Allergology, Paracelsus Medical University Salzburg, 5020 Salzburg, Austria
- Correspondence:
| |
Collapse
|
26
|
Hwang I, Lee SW, Oh J, Lee S, Jang IJ, Yu KS. Dose-dependent reduction of lymphocyte count and heart rate after multiple administration of LC51-0255, a novel sphingosine-1-phosphate receptor 1 modulator, in healthy subjects. Front Pharmacol 2022; 13:930615. [PMID: 36071831 PMCID: PMC9442045 DOI: 10.3389/fphar.2022.930615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 07/13/2022] [Indexed: 11/13/2022] Open
Abstract
Aim: Sphingosine-1-phosphate receptor mediates the egress of lymphocytes from lymphoid organs, and its inhibition results in a decreased number of circulating lymphocytes. The aim of the current study was to investigate the safety and pharmacodynamic and pharmacokinetic characteristics of a novel sphingosine-1-phosphate receptor modulator, LC51-0255.Methods: A phase 1 randomized, double-blind, placebo-controlled, multiple dosing, dose-escalation study was conducted on healthy Korean male subjects.Results: After single and daily administration of LC51-0255 for 21 days, a dose-dependent decrease in lymphocyte count and heart rate was observed through 0.25–2 mg dose range of LC51-0255. The mean elimination half-life of LC51-0255 was 76–95 h. LC51-0255 was accumulated with a mean accumulation ratio of 5.17–6.64. During the study, LC51-0255 was generally well tolerated. The most common treatment-emergent adverse event was bradycardia. No clinically significant event of arrhythmia, including AV block, was observed. No clinically significant difference in blood pressure was observed between the dose groups. In other safety assessments, no clinically significant abnormalities were observed, except for bradycardia.Conclusion: Daily administration of LC51-0255 in the range of 0.25–2 mg resulted in a dose-dependent reduction of lymphocyte counts and heart rate. LC51-0255 is generally safe and well tolerated in healthy volunteers.
Collapse
Affiliation(s)
- Inyoung Hwang
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, South Korea
| | - Sang Won Lee
- Department of Clinical Pharmacology and Therapeutics, Hanyang University Seoul Hospital, Seoul, South Korea
| | - Jaeseong Oh
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, South Korea
| | - SeungHwan Lee
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, South Korea
| | - In-Jin Jang
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, South Korea
| | - Kyung-Sang Yu
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, South Korea
- *Correspondence: Kyung-Sang Yu,
| |
Collapse
|
27
|
Shen Y, Zhou C, Cao Y, Li Q, Deng H, Gu S, Wu Y, Shen Z. Expression profile and prognostic value of CXCR family members in head and neck squamous cell carcinoma. World J Surg Oncol 2022; 20:259. [PMID: 35978426 PMCID: PMC9382762 DOI: 10.1186/s12957-022-02713-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 07/22/2022] [Indexed: 12/24/2022] Open
Abstract
Background CXC chemokine receptor gene family consists of seven well-established members which are broadly involved in biological functions of various cancers. Currently, limited studies have shed light on the expression profile of CXCR family members (CXCRs), as well as their prognostic value, in head and neck squamous cells carcinoma (HNSCC). Methods The data for this study were retrieved from the Cancer Genome Atlas database and other publicly available databases, including gene expression, methylation profiles, clinical information, immunological features, and prognoses. The expression pattern and prognostic values of CXCRs were identified, and the potential mechanism underlying CXCRs function in HNSCC was investigated by gene set enrichment analysis (GSEA). Results CXCRs were differentially expressed in HNSCC. As shown by Kaplan–Meier analysis, high CXCR3-6 expression was significantly associated with better prognostic outcomes of HNSCC patients, including overall survival and progression-free survival. According to the results of univariate and multivariate Cox proportional risk regression analysis, it was demonstrated that upregulation of CXCR3-6 was an independent factor for better prognosis, while the two other clinical features, age and stage, were factors for worse prognosis. A significant positive correlation between CXCR3-6 and tumor-infiltrated immune cells was revealed by results from Tumor Immune Estimation Resource and CIBERSORT analysis database. The main involvement of CXCRs in immune and inflammatory responses was further confirmed by GSEA. Conclusions Overall, this study provided a rationale for targeting CXCRs as a promising therapeutic strategy of HNSCC. Supplementary Information The online version contains supplementary material available at 10.1186/s12957-022-02713-z.
Collapse
Affiliation(s)
- Yiming Shen
- Department of Otolaryngology, Head and Neck Surgery, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China.,Department of Otolaryngology, Head and Neck Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo, China.,Medical School of Ningbo University, Ningbo, 315000, China
| | - Chongchang Zhou
- Department of Otolaryngology, Head and Neck Surgery, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China.,Department of Otolaryngology, Head and Neck Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo, China
| | - Yujie Cao
- Department of Otolaryngology, Head and Neck Surgery, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China.,Department of Otolaryngology, Head and Neck Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo, China.,Medical School of Ningbo University, Ningbo, 315000, China
| | - Qun Li
- Department of Otolaryngology, Head and Neck Surgery, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China.,Department of Otolaryngology, Head and Neck Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo, China
| | - Hongxia Deng
- Department of Otolaryngology, Head and Neck Surgery, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China.,Department of Otolaryngology, Head and Neck Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo, China
| | - Shanshan Gu
- Department of Otolaryngology, Head and Neck Surgery, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China.,Department of Otolaryngology, Head and Neck Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo, China
| | - Yidong Wu
- Department of Otolaryngology, Head and Neck Surgery, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China.,Department of Otolaryngology, Head and Neck Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo, China
| | - Zhisen Shen
- Department of Otolaryngology, Head and Neck Surgery, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China. .,Department of Otolaryngology, Head and Neck Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo, China. .,Medical School of Ningbo University, Ningbo, 315000, China.
| |
Collapse
|
28
|
Uhl B, Prochazka KT, Pansy K, Wenzl K, Strobl J, Baumgartner C, Szmyra MM, Waha JE, Wolf A, Tomazic PV, Steinbauer E, Steinwender M, Friedl S, Weniger M, Küppers R, Pichler M, Greinix HT, Stary G, Ramsay AG, Apollonio B, Feichtinger J, Beham-Schmid C, Neumeister P, Deutsch AJ. Distinct Chemokine Receptor Expression Profiles in De Novo DLBCL, Transformed Follicular Lymphoma, Richter's Trans-Formed DLBCL and Germinal Center B-Cells. Int J Mol Sci 2022; 23:7874. [PMID: 35887224 PMCID: PMC9316992 DOI: 10.3390/ijms23147874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/12/2022] [Accepted: 07/13/2022] [Indexed: 11/17/2022] Open
Abstract
Chemokine receptors and their ligands have been identified as playing an important role in the development of diffuse large B-cell lymphoma (DLBCL), follicular lymphoma, and Richter syndrome (RS). Our aim was to investigate the different expression profiles in de novo DLBCL, transformed follicular lymphoma (tFL), and RS. Here, we profiled the mRNA expression levels of 18 chemokine receptors (CCR1-CCR9, CXCR1-CXCR7, CX3CR1 and XCR1) using RQ-PCR, as well as immunohistochemistry of seven chemokine receptors (CCR1, CCR4-CCR8 and CXCR2) in RS, de novo DLBCL, and tFL biopsy-derived tissues. Tonsil-derived germinal center B-cells (GC-B) served as non-neoplastic controls. The chemokine receptor expression profiles of de novo DLBCL and tFL substantially differed from those of GC-B, with at least 5-fold higher expression of 15 out of the 18 investigated chemokine receptors (CCR1-CCR9, CXCR1, CXCR2, CXCR6, CXCR7, CX3CR1 and XCR1) in these lymphoma subtypes. Interestingly, the de novo DLBCL and tFL exhibited at least 22-fold higher expression of CCR1, CCR5, CCR8, and CXCR6 compared with RS, whereas no significant difference in chemokine receptor expression profile was detected when comparing de novo DLBCL with tFL. Furthermore, in de novo DLBCL and tFLs, a high expression of CCR7 was associated with a poor overall survival in our study cohort, as well as in an independent patient cohort. Our data indicate that the chemokine receptor expression profile of RS differs substantially from that of de novo DLBCL and tFL. Thus, these multiple dysregulated chemokine receptors could represent novel clinical markers as diagnostic and prognostic tools. Moreover, this study highlights the relevance of chemokine signaling crosstalk in the tumor microenvironment of aggressive lymphomas.
Collapse
Affiliation(s)
- Barbara Uhl
- Division of Hematology, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria; (B.U.); (K.T.P.); (K.P.); (K.W.); (M.M.S.); (H.T.G.)
| | - Katharina T. Prochazka
- Division of Hematology, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria; (B.U.); (K.T.P.); (K.P.); (K.W.); (M.M.S.); (H.T.G.)
| | - Katrin Pansy
- Division of Hematology, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria; (B.U.); (K.T.P.); (K.P.); (K.W.); (M.M.S.); (H.T.G.)
| | - Kerstin Wenzl
- Division of Hematology, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria; (B.U.); (K.T.P.); (K.P.); (K.W.); (M.M.S.); (H.T.G.)
- Division of Hematology, Mayo Clinic, Rochester, MN 55902, USA
| | - Johanna Strobl
- Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria; (J.S.); (G.S.)
| | - Claudia Baumgartner
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, 8036 Graz, Austria; (C.B.); (J.F.)
| | - Marta M. Szmyra
- Division of Hematology, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria; (B.U.); (K.T.P.); (K.P.); (K.W.); (M.M.S.); (H.T.G.)
| | - James E. Waha
- General, Visceral and Transplant Surgery, Medical University of Graz, 8036 Graz, Austria;
| | - Axel Wolf
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Graz, 8036 Graz, Austria; (A.W.); (P.V.T.)
| | - Peter V. Tomazic
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Graz, 8036 Graz, Austria; (A.W.); (P.V.T.)
| | - Elisabeth Steinbauer
- Institute of Pathology, Medical University of Graz, 8036 Graz, Austria; (E.S.); (M.S.); (S.F.); (C.B.-S.)
| | - Maria Steinwender
- Institute of Pathology, Medical University of Graz, 8036 Graz, Austria; (E.S.); (M.S.); (S.F.); (C.B.-S.)
| | - Sabine Friedl
- Institute of Pathology, Medical University of Graz, 8036 Graz, Austria; (E.S.); (M.S.); (S.F.); (C.B.-S.)
| | - Marc Weniger
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, 45122 Essen, Germany; (M.W.); (R.K.)
| | - Ralf Küppers
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, 45122 Essen, Germany; (M.W.); (R.K.)
- German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
| | - Martin Pichler
- Division of Oncology, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria;
| | - Hildegard T. Greinix
- Division of Hematology, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria; (B.U.); (K.T.P.); (K.P.); (K.W.); (M.M.S.); (H.T.G.)
| | - Georg Stary
- Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria; (J.S.); (G.S.)
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, 1090 Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Alan G. Ramsay
- Faculty of Life Sciences & Medicine, School of Cancer & Pharmaceutical Sciences, King’s College London, London WC2R 2LS, UK; (A.G.R.); (B.A.)
| | - Benedetta Apollonio
- Faculty of Life Sciences & Medicine, School of Cancer & Pharmaceutical Sciences, King’s College London, London WC2R 2LS, UK; (A.G.R.); (B.A.)
| | - Julia Feichtinger
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, 8036 Graz, Austria; (C.B.); (J.F.)
| | - Christine Beham-Schmid
- Institute of Pathology, Medical University of Graz, 8036 Graz, Austria; (E.S.); (M.S.); (S.F.); (C.B.-S.)
| | - Peter Neumeister
- Division of Hematology, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria; (B.U.); (K.T.P.); (K.P.); (K.W.); (M.M.S.); (H.T.G.)
| | - Alexander J. Deutsch
- Division of Hematology, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria; (B.U.); (K.T.P.); (K.P.); (K.W.); (M.M.S.); (H.T.G.)
| |
Collapse
|
29
|
Zhang Y, Wang L, Pan Q, Yang X, Cao Y, Yan J, Wang Y, Tao Y, Fan R, Sun X, Li L. Selective sphingosine-1-phosphate receptor 1 modulator attenuates blood-brain barrier disruption following traumatic brain injury by inhibiting vesicular transcytosis. Fluids Barriers CNS 2022; 19:57. [PMID: 35820896 PMCID: PMC9277863 DOI: 10.1186/s12987-022-00356-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 06/29/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Traumatic brain injury (TBI) provokes secondary pathological damage, such as damage to the blood-brain barrier (BBB), ischaemia and inflammation. Major facilitator superfamily domain-containing 2a (Mfsd2a) has been demonstrated to be critical in limiting the increase in BBB vesicle transcytosis following brain injury. Recent studies suggest that a novel and selective modulator of the sphingosine-1-phosphate receptor 1 (S1P1), CYM-5442, maintains the integrity of the BBB by restricting vesicle transcytosis during acute ischaemic stroke. In the current study, we investigated whether CYM-5442, evaluated in a short-term study, could protect the brains of mice with acute-stage TBI by reversing the increase in vesicle transport due to reduced Mfsd2a expression after TBI. METHODS We used the well-characterized model of TBI caused by controlled cortical impact. CYM-5442 (0.3, 1, 3 mg/kg) was intraperitoneally injected 30 min after surgery for 7 consecutive days. To investigate the effect of CYM-5442 on vesicle transcytosis, we downregulated and upregulated Mfsd2a expression using a specific AAV prior to evaluation of the TBI model. MRI scanning, cerebral blood flow, circulating blood counts, ELISA, TEM, WB, and immunostaining evaluations were performed after brain injury. RESULTS CYM-5442 significantly attenuated neurological deficits and reduced brain oedema in TBI mice. CYM-5442 transiently suppressed lymphocyte trafficking but did not induce persistent lymphocytopenia. After TBI, the levels of Mfsd2a were decreased significantly, while the levels of CAV-1 and albumin were increased. In addition, Mfsd2a deficiency caused inadequate sphingosine-1-phosphate (S1P) transport in the brain parenchyma, and the regulation of BBB permeability by Mfsd2a after TBI was shown to be related to changes in vesicle transcytosis. Downregulation of Mfsd2a in mice markedly increased the BBB permeability, neurological deficit scores, and brain water contents after TBI. Intervention with CYM-5442 after TBI protected the BBB by significantly reducing the vesicle transcytosis of cerebrovascular endothelial cells. CONCLUSION In addition to transiently suppressing lymphocytes, CYM-5442 alleviated the neurological deficits, cerebral edema and protective BBB permeability in TBI mice by reducing the vesicle transcytosis of cerebrovascular endothelial cells.
Collapse
Affiliation(s)
- Yuan Zhang
- Department of Neurosurgery, Neural Injury and Protection Laboratory, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- Department of Neurosurgery, Nanchong Central Hospital, The Second Clinical Medical College of North Sichuan Medical College, Nanchong, China
| | - Lin Wang
- Department of Neurosurgery, Neural Injury and Protection Laboratory, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- Department of Neurosurgery, Nanchong Central Hospital, The Second Clinical Medical College of North Sichuan Medical College, Nanchong, China
| | - Qiuling Pan
- Department of Neurosurgery, Neural Injury and Protection Laboratory, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Xiaomin Yang
- Department of Neurosurgery, Neural Injury and Protection Laboratory, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Yunchuan Cao
- Department of Neurosurgery, Neural Injury and Protection Laboratory, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Jin Yan
- Department of Neurosurgery, Neural Injury and Protection Laboratory, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Yingwen Wang
- Department of Neurosurgery, Neural Injury and Protection Laboratory, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Yihao Tao
- Department of Neurosurgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Runjin Fan
- Department of Neurosurgery, Nanchong Central Hospital, The Second Clinical Medical College of North Sichuan Medical College, Nanchong, China
| | - Xiaochuan Sun
- Department of Neurosurgery, Neural Injury and Protection Laboratory, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| | - Lin Li
- Department of Neurosurgery, Neural Injury and Protection Laboratory, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
30
|
Ran GH, Lin YQ, Tian L, Zhang T, Yan DM, Yu JH, Deng YC. Natural killer cell homing and trafficking in tissues and tumors: from biology to application. Signal Transduct Target Ther 2022; 7:205. [PMID: 35768424 PMCID: PMC9243142 DOI: 10.1038/s41392-022-01058-z] [Citation(s) in RCA: 138] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/24/2022] [Accepted: 06/14/2022] [Indexed: 02/06/2023] Open
Abstract
Natural killer (NK) cells, a subgroup of innate lymphoid cells, act as the first line of defense against cancer. Although some evidence shows that NK cells can develop in secondary lymphoid tissues, NK cells develop mainly in the bone marrow (BM) and egress into the blood circulation when they mature. They then migrate to and settle down in peripheral tissues, though some special subsets home back into the BM or secondary lymphoid organs. Owing to its success in allogeneic adoptive transfer for cancer treatment and its "off-the-shelf" potential, NK cell-based immunotherapy is attracting increasing attention in the treatment of various cancers. However, insufficient infiltration of adoptively transferred NK cells limits clinical utility, especially for solid tumors. Expansion of NK cells or engineered chimeric antigen receptor (CAR) NK cells ex vivo prior to adoptive transfer by using various cytokines alters the profiles of chemokine receptors, which affects the infiltration of transferred NK cells into tumor tissue. Several factors control NK cell trafficking and homing, including cell-intrinsic factors (e.g., transcriptional factors), cell-extrinsic factors (e.g., integrins, selectins, chemokines and their corresponding receptors, signals induced by cytokines, sphingosine-1-phosphate (S1P), etc.), and the cellular microenvironment. Here, we summarize the profiles and mechanisms of NK cell homing and trafficking at steady state and during tumor development, aiming to improve NK cell-based cancer immunotherapy.
Collapse
Affiliation(s)
- Guang He Ran
- Department of Immunology, School of Basic Medical, Jiamusi University, 154007, Jiamusi, China
- Institute of Materia Medica, College of Pharmacy, Army Medical University, 400038, Chongqing, China
| | - Yu Qing Lin
- Department of Immunology, School of Basic Medical, Jiamusi University, 154007, Jiamusi, China
- Institute of Materia Medica, College of Pharmacy, Army Medical University, 400038, Chongqing, China
| | - Lei Tian
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA, 91010, USA
| | - Tao Zhang
- Department of Immunology, School of Basic Medical, Jiamusi University, 154007, Jiamusi, China.
| | - Dong Mei Yan
- Department of Immunology, School of Basic Medical, Jiamusi University, 154007, Jiamusi, China.
| | - Jian Hua Yu
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA, 91010, USA.
| | - You Cai Deng
- Institute of Materia Medica, College of Pharmacy, Army Medical University, 400038, Chongqing, China.
- Department of Clinical Hematology, College of Pharmacy, Army Medical University, 400038, Chongqing, China.
| |
Collapse
|
31
|
Investigation of differentially expressed genes and dysregulated pathways involved in multiple sclerosis. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2022; 131:235-259. [PMID: 35871892 DOI: 10.1016/bs.apcsb.2022.05.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Multiple Sclerosis (MS) is a neurodegenerative autoimmune and organ-specific demyelinating disorder, known to affect the central nervous system (CNS). While genetic studies have revealed several critical genes and diagnostic biomarkers associated with MS, the etiology of the disease remains poorly understood. This study is aimed at screening and identifying the key genes and canonical pathways associated with MS. Gene expression profiling of the microarray dataset GSE38010 was used to analyze two control brain samples (control 1; GSM931812, control 2; GSM931813), active inflammation stage samples (CAP1; GSM931815, CAP2; GSM931816) and late subsided stage samples (CP1; GSM931817, CP2; GSM931818) collected from patients ranging between 23 and 54years and both genders. This analysis yielded a list of 58,866 DEGs (29,433 for active-inflammation stage and 29,433 for late-subsided Stage). The interactions between the DEGs were then studied using STRING, Cytoscape software, and MCODE was employed to find the genes that form clusters. Functional enrichment and integrative analysis were performed using ClueGO/CluePedia and MetaCore™. Our data revealed dysregulated key canonical pathways in MS patients. In addition, we identified three hub genes (SCN2A, HTR2A, and HCN1) that may serve as potential biomarkers for the prognosis of MS. Furthermore, the expression patterns of HPCA and PLCB1 provide insights into the progressive stages of MS, indicating that these genes could be used in predicting MS progression. We were able to map potential biomarkers that could be used for the prognosis and diagnosis of MS.
Collapse
|
32
|
Sphingosine 1-phosphate modulation and immune cell trafficking in inflammatory bowel disease. Nat Rev Gastroenterol Hepatol 2022; 19:351-366. [PMID: 35165437 DOI: 10.1038/s41575-021-00574-7] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/22/2021] [Indexed: 12/12/2022]
Abstract
Immune cell trafficking is a critical element of the intestinal immune response, both in homeostasis and in pathological conditions associated with inflammatory bowel disease (IBD). This process involves adhesion molecules, chemoattractants and receptors expressed on immune cell surfaces, blood vessels and stromal intestinal tissue as well as signalling pathways, including those modulated by sphingosine 1-phosphate (S1P). The complex biological processes of leukocyte recruitment, activation, adhesion and migration have been targeted by various monoclonal antibodies (vedolizumab, etrolizumab, ontamalimab). Promising preclinical and clinical data with several oral S1P modulators suggest that inhibition of lymphocyte egress from the lymph nodes to the bloodstream might be a safe and efficacious alternative mechanism for reducing inflammation in immune-mediated disorders, including Crohn's disease and ulcerative colitis. Although various questions remain, including the potential positioning of S1P modulators in treatment algorithms and their long-term safety, this novel class of compounds holds great promise. This Review summarizes the critical mediators and mechanisms involved in immune cell trafficking in IBD and the available evidence for efficacy, safety and pharmacokinetics of S1P receptor modulators in IBD and other immune-mediated disorders. Further, it discusses potential future approaches to incorporate S1P modulators into the treatment of IBD.
Collapse
|
33
|
Sonar SA, Uhrlaub JL, Coplen CP, Sempowski GD, Dudakov JA, van den Brink MRM, LaFleur BJ, Jergović M, Nikolich-Žugich J. Early age-related atrophy of cutaneous lymph nodes precipitates an early functional decline in skin immunity in mice with aging. Proc Natl Acad Sci U S A 2022; 119:e2121028119. [PMID: 35439062 PMCID: PMC9169949 DOI: 10.1073/pnas.2121028119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 03/09/2022] [Indexed: 11/18/2022] Open
Abstract
Secondary lymphoid organs (SLOs) (including the spleen and lymph nodes [LNs]) are critical both for the maintenance of naive T (TN) lymphocytes and for the initiation and coordination of immune responses. How they age, including the exact timing, extent, physiological relevance, and the nature of age-related changes, remains incompletely understood. We used “time stamping” to indelibly mark newly generated naive T cells (also known as recent thymic emigrants) (RTEs) in mice, and followed their presence, phenotype, and retention in SLOs. We found that SLOs involute asynchronously. Skin-draining LNs atrophied by 6 to 9 mo in life, whereas deeper tissue-draining LNs atrophied by 18 to 20 mo, as measured by the loss of both TN numbers and the fibroblastic reticular cell (FRC) network. Time-stamped RTEs at all ages entered SLOs and successfully completed postthymic differentiation, but the capacity of older SLOs to maintain TN numbers was reduced with aging, and that trait did not depend on the age of TNs. However, in SLOs of older mice, these cells exhibited an emigration phenotype (CCR7loS1P1hi), which correlated with an increase of the cells of the same phenotype in the blood. Finally, upon intradermal immunization, RTEs generated in mice barely participated in de novo immune responses and failed to produce well-armed effector cells detectable in blood as early as by 7 to 8 mo of age. These results highlight changes in structure and function of superficial secondary lymphoid organs in laboratory mice that are earlier than expected and are consistent with the long-appreciated reduction of cutaneous immunity with aging.
Collapse
Affiliation(s)
- Sandip Ashok Sonar
- Department of Immunobiology, University of Arizona College of Medicine-Tucson, Tucson, AZ 85724
- Arizona Center on Aging, University of Arizona College of Medicine-Tucson, Tucson, AZ 85724
| | - Jennifer L. Uhrlaub
- Department of Immunobiology, University of Arizona College of Medicine-Tucson, Tucson, AZ 85724
- Arizona Center on Aging, University of Arizona College of Medicine-Tucson, Tucson, AZ 85724
| | - Christopher P. Coplen
- Department of Immunobiology, University of Arizona College of Medicine-Tucson, Tucson, AZ 85724
- Arizona Center on Aging, University of Arizona College of Medicine-Tucson, Tucson, AZ 85724
| | | | - Jarrod A. Dudakov
- Program in Immunology, Fred Hutchinson Cancer Center, Department of Immunology, University of Washington, Seattle, WA 98109
| | | | | | - Mladen Jergović
- Department of Immunobiology, University of Arizona College of Medicine-Tucson, Tucson, AZ 85724
- Arizona Center on Aging, University of Arizona College of Medicine-Tucson, Tucson, AZ 85724
| | - Janko Nikolich-Žugich
- Department of Immunobiology, University of Arizona College of Medicine-Tucson, Tucson, AZ 85724
- Arizona Center on Aging, University of Arizona College of Medicine-Tucson, Tucson, AZ 85724
- BIO5 Institute, University of Arizona, Tucson, AZ 85719
| |
Collapse
|
34
|
Lim AR, Ghajar CM. Thorny ground, rocky soil: Tissue-specific mechanisms of tumor dormancy and relapse. Semin Cancer Biol 2022; 78:104-123. [PMID: 33979673 PMCID: PMC9595433 DOI: 10.1016/j.semcancer.2021.05.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 04/30/2021] [Accepted: 05/04/2021] [Indexed: 02/07/2023]
Abstract
Disseminated tumor cells (DTCs) spread systemically yet distinct patterns of metastasis indicate a range of tissue susceptibility to metastatic colonization. Distinctions between permissive and suppressive tissues are still being elucidated at cellular and molecular levels. Although there is a growing appreciation for the role of the microenvironment in regulating metastatic success, we have a limited understanding of how diverse tissues regulate DTC dormancy, the state of reversible quiescence and subsequent awakening thought to contribute to delayed relapse. Several themes of microenvironmental regulation of dormancy are beginning to emerge, including vascular association, co-option of pre-existing niches, metabolic adaptation, and immune evasion, with tissue-specific nuances. Conversely, DTC awakening is often associated with injury or inflammation-induced activation of the stroma, promoting a proliferative environment with DTCs following suit. We review what is known about tissue-specific regulation of tumor dormancy on a tissue-by-tissue basis, profiling major metastatic organs including the bone, lung, brain, liver, and lymph node. An aerial view of the barriers to metastatic growth may reveal common targets and dependencies to inform the therapeutic prevention of relapse.
Collapse
Affiliation(s)
- Andrea R Lim
- Public Health Sciences Division/Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, WA, USA; Graduate Program in Molecular and Cellular Biology, University of Washington/Fred Hutchinson Cancer Research Center, Seattle, WA, USA; Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.
| | - Cyrus M Ghajar
- Public Health Sciences Division/Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, WA, USA; Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.
| |
Collapse
|
35
|
Bergstresser S, Kulpa DA. TGF-β Signaling Supports HIV Latency in a Memory CD4+ T Cell Based In Vitro Model. Methods Mol Biol 2022; 2407:69-79. [PMID: 34985658 DOI: 10.1007/978-1-0716-1871-4_6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
During antiretroviral therapy (ART), HIV-1 persists as a latent reservoir in CD4+ T cell subsets in central (TCM), transitional (TTM) and effector memory (TEM) CD4+ T cells. Understanding the mechanisms that support HIV-1 latency in each of these subsets is essential to the identification of cure strategies to eliminate them. Due to the very low frequency of latently infected cells in vivo, model systems that can accurately reflect the heterogenous population of HIV-1 infected cells are a critical component in HIV cure discoveries. Here, we describe a novel primary cell-based model of HIV-1 latency that recapitulates the complex dynamics of the establishment and maintenance of the latent reservoir in different memory T cell subsets. The latency and reversion assay (LARA ) culture conditions uniquely retain phenotypically and transcriptionally distinct memory CD4+ T cell subsets that allow in a single assay to assess LRA activity in each memory subset and differential examination of the dynamics of HIV latency reversal.
Collapse
Affiliation(s)
- Sydney Bergstresser
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, and Yerkes National Primate Research Center, Atlanta, GA, USA
| | - Deanna A Kulpa
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, and Yerkes National Primate Research Center, Atlanta, GA, USA.
| |
Collapse
|
36
|
B Cells in Primary Membranous Nephropathy: Escape from Immune Tolerance and Implications for Patient Management. Int J Mol Sci 2021; 22:ijms222413560. [PMID: 34948358 PMCID: PMC8708506 DOI: 10.3390/ijms222413560] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 12/03/2022] Open
Abstract
Membranous nephropathy (MN) is an important cause of nephrotic syndrome and chronic kidney disease (CKD) in adults. The pathogenic significance of B cells in MN is increasingly recognized, especially following the discovery of various autoantibodies that target specific podocytic antigens and the promising treatment responses seen with B cell depleting therapies. The presence of autoreactive B cells and autoantibodies that bind to antigens on podocyte surfaces are characteristic features of MN, and are the result of breaches in central and peripheral tolerance of B lymphocytes. These perturbations in B cell tolerance include altered B lymphocyte subsets, dysregulation of genes that govern immunoglobulin production, aberrant somatic hypermutation and co-stimulatory signalling, abnormal expression of B cell-related cytokines, and increased B cell infiltrates and organized tertiary lymphoid structures within the kidneys. An understanding of the role of B cell tolerance and homeostasis may have important implications for patient management in MN, as conventional immunosuppressive treatments and novel B cell-targeted therapies show distinct effects on proliferation, differentiation and reconstitution in different B cell subsets. Circulating B lymphocytes and related cytokines may serve as potential biomarkers for treatment selection, monitoring of therapeutic response and prediction of disease relapse. These recent advances in the understanding of B cell tolerance in MN have provided greater insight into its immunopathogenesis and potential novel strategies for disease monitoring and treatment.
Collapse
|
37
|
Takeuchi A, Ozawa M, Cui G, Ikuta K, Katakai T. Lymph Node Stromal Cells: Diverse Meshwork Structures Weave Functionally Subdivided Niches. Curr Top Microbiol Immunol 2021; 434:103-121. [PMID: 34850284 DOI: 10.1007/978-3-030-86016-5_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Lymph nodes (LNs) are secondary lymphoid organs that function as the first line of defense against invasive foreign substances. Within the LNs, different types of immune cells are strategically localized to induce immune responses efficiently. Such a sophisticated tissue structure is a complex of functionally specialized niches, constructed by a variety of fibroblastic stromal cells. Elucidating the characteristics and functions of the niches and stromal cells will facilitate comprehension of the immune response induced in the LNs. Three recent studies offered novel insights into specialized stromal cells. In our discussion of these surprisingly diverse stromal cells, we will integrate information from these studies to improve knowledge about the structure and niches of LN.
Collapse
Affiliation(s)
- Arata Takeuchi
- Department of Immunology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, 951-8510, Japan
| | - Madoka Ozawa
- Department of Immunology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, 951-8510, Japan
| | - Guangwei Cui
- Laboratory of Immune Regulation, Department of Virus Research, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, 606-8507, Japan
| | - Koichi Ikuta
- Laboratory of Immune Regulation, Department of Virus Research, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, 606-8507, Japan
| | - Tomoya Katakai
- Department of Immunology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, 951-8510, Japan.
| |
Collapse
|
38
|
Gerossier E, Nayar S, Froidevaux S, Smith CG, Runser C, Iannizzotto V, Vezzali E, Pierlot G, Mentzel U, Murphy MJ, Martinic MM, Barone F. Cenerimod, a selective S1P 1 receptor modulator, improves organ-specific disease outcomes in animal models of Sjögren's syndrome. Arthritis Res Ther 2021; 23:289. [PMID: 34839819 PMCID: PMC8628476 DOI: 10.1186/s13075-021-02673-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 11/09/2021] [Indexed: 02/07/2023] Open
Abstract
Background Sjögren’s syndrome is a systemic autoimmune disease characterized by immune cells predominantly infiltrating the exocrine glands and frequently forming ectopic lymphoid structures. These structures drive a local functional immune response culminating in autoantibody production and tissue damage, associated with severe dryness of mucosal surfaces and salivary gland hypofunction. Cenerimod, a potent, selective and orally active sphingosine-1-phosphate receptor 1 modulator, inhibits the egress of lymphocytes into the circulation. Based on the mechanism of action of cenerimod, its efficacy was evaluated in two mouse models of Sjögren’s syndrome. Methods Cenerimod was administered in two established models of Sjögren’s syndrome; firstly, in an inducible acute viral sialadenitis model in C57BL/6 mice, and, secondly, in the spontaneous chronic sialadenitis MRL/lpr mouse model. The effects of cenerimod treatment were then evaluated by flow cytometry, immunohistochemistry, histopathology and immunoassays. Comparisons between groups were made using a Mann-Whitney test. Results In the viral sialadenitis model, cenerimod treatment reduced salivary gland immune infiltrates, leading to the disaggregation of ectopic lymphoid structures, reduced salivary gland inflammation and preserved organ function. In the MRL/lpr mouse model, cenerimod treatment decreased salivary gland inflammation and reduced T cells and proliferating plasma cells within salivary gland ectopic lymphoid structures, resulting in diminished disease-relevant autoantibodies within the salivary glands. Conclusions Taken together, these results suggest that cenerimod can reduce the overall autoimmune response and improve clinical parameters in the salivary glands in models of Sjögren’s syndrome and consequently may reduce histological and clinical parameters associated with the disease in patients. Supplementary Information The online version contains supplementary material available at 10.1186/s13075-021-02673-x.
Collapse
Affiliation(s)
- Estelle Gerossier
- Idorsia Pharmaceuticals Ltd., Hegenheimermattweg 91, 4123, Allschwil, Switzerland
| | - Saba Nayar
- Centre for Translational Inflammation Research, Institute of Inflammation and Ageing, College of Medical & Dental Sciences, University of Birmingham Research Laboratories, Queen Elizabeth Hospital, Birmingham, UK
| | - Sylvie Froidevaux
- Idorsia Pharmaceuticals Ltd., Hegenheimermattweg 91, 4123, Allschwil, Switzerland
| | - Charlotte G Smith
- Centre for Translational Inflammation Research, Institute of Inflammation and Ageing, College of Medical & Dental Sciences, University of Birmingham Research Laboratories, Queen Elizabeth Hospital, Birmingham, UK
| | - Celine Runser
- Idorsia Pharmaceuticals Ltd., Hegenheimermattweg 91, 4123, Allschwil, Switzerland
| | - Valentina Iannizzotto
- Centre for Translational Inflammation Research, Institute of Inflammation and Ageing, College of Medical & Dental Sciences, University of Birmingham Research Laboratories, Queen Elizabeth Hospital, Birmingham, UK
| | - Enrico Vezzali
- Idorsia Pharmaceuticals Ltd., Hegenheimermattweg 91, 4123, Allschwil, Switzerland
| | - Gabin Pierlot
- Idorsia Pharmaceuticals Ltd., Hegenheimermattweg 91, 4123, Allschwil, Switzerland
| | - Ulrich Mentzel
- Idorsia Pharmaceuticals Ltd., Hegenheimermattweg 91, 4123, Allschwil, Switzerland
| | - Mark J Murphy
- Idorsia Pharmaceuticals Ltd., Hegenheimermattweg 91, 4123, Allschwil, Switzerland.
| | - Marianne M Martinic
- Idorsia Pharmaceuticals Ltd., Hegenheimermattweg 91, 4123, Allschwil, Switzerland.
| | - Francesca Barone
- Centre for Translational Inflammation Research, Institute of Inflammation and Ageing, College of Medical & Dental Sciences, University of Birmingham Research Laboratories, Queen Elizabeth Hospital, Birmingham, UK.,Rheumatology Department, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| |
Collapse
|
39
|
Tse BCY, Ireland RA, Lee JY, Marsh-Wakefield F, Kok LF, Don AS, Byrne SN. Exposure to Systemic Immunosuppressive Ultraviolet Radiation Alters T Cell Recirculation through Sphingosine-1-Phosphate. THE JOURNAL OF IMMUNOLOGY 2021; 207:2278-2287. [PMID: 34561229 DOI: 10.4049/jimmunol.2001261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 08/25/2021] [Indexed: 11/19/2022]
Abstract
Systemic suppression of adaptive immune responses is a major way in which UV radiation contributes to skin cancer development. Immune suppression is also likely to explain how UV protects from some autoimmune diseases, such as multiple sclerosis. However, the mechanisms underlying UV-mediated systemic immune suppression are not well understood. Exposure of C57BL/6 mice to doses of UV known to suppress systemic autoimmunity led to the accumulation of cells within the skin-draining lymph nodes and away from non-skin-draining lymph nodes. Transfer of CD45.1+ cells from nonirradiated donors into CD45.2+ UV-irradiated recipients resulted in preferential accumulation of donor naive T cells and a decrease in activated T cells within skin-draining lymph nodes. A single dose of immune-suppressive UV was all that was required to cause a redistribution of naive and central memory T cells from peripheral blood to the skin-draining lymph nodes. Specifically, CD69-independent increases in sphingosine-1-phosphate (S1P) receptor 1-negative naive and central memory T cells occurred in these lymph nodes. Mass spectrometry analysis showed UV-mediated activation of sphingosine kinase 1 activity, resulting in an increase in S1P levels within the lymph nodes. Topical application of a sphingosine kinase inhibitor on the skin prior to UV irradiation eliminated the UV-induced increase in lymph node S1P and T cell numbers. Thus, exposure to immunosuppressive UV disrupts T cell recirculation by manipulating the S1P pathway.
Collapse
Affiliation(s)
- Benita C Y Tse
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Rachael A Ireland
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia.,Westmead Institute for Medical Research, Centre for Immunology and Allergy Research, Westmead, New South Wales, Australia; and
| | - Jun Yup Lee
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Felix Marsh-Wakefield
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Lai Fong Kok
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Anthony S Don
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia.,Centenary Institute, The University of Sydney, Sydney, New South Wales, Australia
| | - Scott N Byrne
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia; .,Westmead Institute for Medical Research, Centre for Immunology and Allergy Research, Westmead, New South Wales, Australia; and
| |
Collapse
|
40
|
Kanda Y, Okazaki T, Katakai T. Motility Dynamics of T Cells in Tumor-Draining Lymph Nodes: A Rational Indicator of Antitumor Response and Immune Checkpoint Blockade. Cancers (Basel) 2021; 13:4616. [PMID: 34572844 PMCID: PMC8465463 DOI: 10.3390/cancers13184616] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/12/2021] [Accepted: 09/13/2021] [Indexed: 01/22/2023] Open
Abstract
The migration status of T cells within the densely packed tissue environment of lymph nodes reflects the ongoing activation state of adaptive immune responses. Upon encountering antigen-presenting dendritic cells, actively migrating T cells that are specific to cognate antigens slow down and are eventually arrested on dendritic cells to form immunological synapses. This dynamic transition of T cell motility is a fundamental strategy for the efficient scanning of antigens, followed by obtaining the adequate activation signals. After receiving antigenic stimuli, T cells begin to proliferate, and the expression of immunoregulatory receptors (such as CTLA-4 and PD-1) is induced on their surface. Recent findings have revealed that these 'immune checkpoint' molecules control the activation as well as motility of T cells in various situations. Therefore, the outcome of tumor immunotherapy using checkpoint inhibitors is assumed to be closely related to the alteration of T cell motility, particularly in tumor-draining lymph nodes (TDLNs). In this review, we discuss the migration dynamics of T cells during their activation in TDLNs, and the roles of checkpoint molecules in T cell motility, to provide some insight into the effect of tumor immunotherapy via checkpoint blockade, in terms of T cell dynamics and the importance of TDLNs.
Collapse
Affiliation(s)
- Yasuhiro Kanda
- Department of Immunology, Niigata University Graduate School of Medical and Dental Sciences, Niigata 950-8510, Japan;
| | - Taku Okazaki
- Laboratory of Molecular Immunology, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo 113-0032, Japan;
| | - Tomoya Katakai
- Department of Immunology, Niigata University Graduate School of Medical and Dental Sciences, Niigata 950-8510, Japan;
| |
Collapse
|
41
|
Muscate F, Woestemeier A, Gagliani N. Functional heterogeneity of CD4 + T cells in liver inflammation. Semin Immunopathol 2021; 43:549-561. [PMID: 34463867 PMCID: PMC8443520 DOI: 10.1007/s00281-021-00881-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 07/14/2021] [Indexed: 12/24/2022]
Abstract
CD4+ T cells play an essential role in orchestrating adequate immunity, but their overactivity has been associated with the development of immune-mediated inflammatory diseases, including liver inflammatory diseases. These cells can be subclassified according to their maturation stage, cytokine profile, and pro or anti-inflammatory functions, i.e., functional heterogeneity. In this review, we summarize what has been discovered so far regarding the role of the different CD4+ T cell polarization states in the progression of two prominent and still different liver inflammatory diseases: non-alcoholic steatohepatitis (NASH) and autoimmune hepatitis (AIH). Finally, the potential of CD4+ T cells as a therapeutic target in both NASH and AIH is discussed.
Collapse
Affiliation(s)
- Franziska Muscate
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anna Woestemeier
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nicola Gagliani
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
- Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
42
|
Fransen MF, van Hall T, Ossendorp F. Immune Checkpoint Therapy: Tumor Draining Lymph Nodes in the Spotlights. Int J Mol Sci 2021; 22:9401. [PMID: 34502307 PMCID: PMC8431673 DOI: 10.3390/ijms22179401] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 01/22/2023] Open
Abstract
Tumor-draining lymph nodes play a paradoxical role in cancer. Surgeons often resect these sentinel lymph nodes to determine metastatic spread, thereby enabling prognosis and treatment. However, lymph nodes are vital organs for the orchestration of immune responses, due to the close encounters of dedicated immune cells. In view of the success of immunotherapy, the removal of tumor-draining lymph nodes needs to be re-evaluated and viewed in a different light. Recently, an important role for tumor-draining lymph nodes has been proposed in the immunotherapy of cancer. This new insight can change the use of immune checkpoint therapy, particularly with respect to the use in neoadjuvant settings in which lymph nodes are still operational.
Collapse
Affiliation(s)
- Marieke F. Fransen
- Department of Immunology, Leiden University Medical Center (LUMC), 2300 RC Leiden, The Netherlands;
- Department of Pulmonary Diseases, Amsterdam University Medical Center, 1081 HV Amsterdam, The Netherlands
| | - Thorbald van Hall
- Department of Medical Oncology, Leiden University Medical Center (LUMC), 2300 RC Leiden, The Netherlands;
| | - Ferry Ossendorp
- Department of Immunology, Leiden University Medical Center (LUMC), 2300 RC Leiden, The Netherlands;
| |
Collapse
|
43
|
Werth K, Hub E, Gutjahr JC, Bosjnak B, Zheng X, Bubke A, Russo S, Rot A, Förster R. Expression of ACKR4 demarcates the "peri-marginal sinus," a specialized vascular compartment of the splenic red pulp. Cell Rep 2021; 36:109346. [PMID: 34260918 DOI: 10.1016/j.celrep.2021.109346] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 01/11/2021] [Accepted: 06/15/2021] [Indexed: 11/16/2022] Open
Abstract
The spleen comprises defined microanatomical compartments that uniquely contribute to its diverse host defense functions. Here, we identify a vascular compartment within the red pulp of the spleen delineated by expression of the atypical chemokine receptor 4 (ACKR4) in endothelial cells. ACKR4-positive vessels form a three-dimensional sinusoidal network that connects via shunts to the marginal sinus and tightly surrounds the outer perimeter of the marginal zone. Endothelial cells lining this vascular compartment express ACKR4 as part of a distinct gene expression profile. We show that T cells enter the spleen largely through this peri-marginal sinus and initially localize extravascularly around these vessels. In the absence of ACKR4, homing of T cells into the spleen and subsequent migration into T cell areas is impaired, and organization of the marginal zone is severely affected. Our data delineate the splenic peri-marginal sinus as a compartment that supports spleen homing of T cells.
Collapse
Affiliation(s)
- Kathrin Werth
- Institute of Immunology, Hannover Medical School, 30625 Hannover, Germany
| | - Elin Hub
- Centre for Microvascular Research, The William Harvey Research Institute, Queen Mary University London, EC1M 6BQ London, UK; Centre for Inflammation and Therapeutic Innovation, Queen Mary University London, EC1M 6BQ London, UK
| | - Julia Christine Gutjahr
- Centre for Microvascular Research, The William Harvey Research Institute, Queen Mary University London, EC1M 6BQ London, UK
| | - Berislav Bosjnak
- Institute of Immunology, Hannover Medical School, 30625 Hannover, Germany
| | - Xiang Zheng
- Institute of Immunology, Hannover Medical School, 30625 Hannover, Germany
| | - Anja Bubke
- Institute of Immunology, Hannover Medical School, 30625 Hannover, Germany
| | - Stefan Russo
- Centre for Microvascular Research, The William Harvey Research Institute, Queen Mary University London, EC1M 6BQ London, UK
| | - Antal Rot
- Centre for Microvascular Research, The William Harvey Research Institute, Queen Mary University London, EC1M 6BQ London, UK; Centre for Inflammation and Therapeutic Innovation, Queen Mary University London, EC1M 6BQ London, UK; Institute for Cardiovascular Prevention, Ludwig-Maximilians University, 80336 Munich, Germany.
| | - Reinhold Förster
- Institute of Immunology, Hannover Medical School, 30625 Hannover, Germany; Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, 30625 Hannover, Germany.
| |
Collapse
|
44
|
Bellomo A, Gentek R, Golub R, Bajénoff M. Macrophage-fibroblast circuits in the spleen. Immunol Rev 2021; 302:104-125. [PMID: 34028841 DOI: 10.1111/imr.12979] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/30/2021] [Accepted: 04/30/2021] [Indexed: 12/22/2022]
Abstract
Macrophages are an integral part of all organs in the body, where they contribute to immune surveillance, protection, and tissue-specific homeostatic functions. This is facilitated by so-called niches composed of macrophages and their surrounding stroma. These niches structurally anchor macrophages and provide them with survival factors and tissue-specific signals that imprint their functional identity. In turn, macrophages ensure appropriate functioning of the niches they reside in. Macrophages thus form reciprocal, mutually beneficial circuits with their cellular niches. In this review, we explore how this concept applies to the spleen, a large secondary lymphoid organ whose primary functions are to filter the blood and regulate immunity. We first outline the splenic micro-anatomy, the different populations of splenic fibroblasts and macrophages and their respective contribution to protection of and key physiological processes occurring in the spleen. We then discuss firmly established and potential cellular circuits formed by splenic macrophages and fibroblasts, with an emphasis on the molecular cues underlying their crosstalk and their relevance to splenic functionality. Lastly, we conclude by considering how these macrophage-fibroblast circuits might be impaired by aging, and how understanding these changes might help identify novel therapeutic avenues with the potential of restoring splenic functions in the elderly.
Collapse
Affiliation(s)
- Alicia Bellomo
- CIRI, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, Univ Lyon, Lyon, France
| | - Rebecca Gentek
- Centre for Inflammation Research & Centre for Reproductive Health, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Rachel Golub
- Inserm U1223, Institut Pasteur, Paris, France.,Lymphopoiesis Unit, Institut Pasteur, Paris, France
| | - Marc Bajénoff
- Aix Marseille Univ, CNRS, INSERM, CIML, Marseille, France
| |
Collapse
|
45
|
Radice E, Ameti R, Melgrati S, Foglierini M, Antonello P, Stahl RAK, Thelen S, Jarrossay D, Thelen M. Marginal Zone Formation Requires ACKR3 Expression on B Cells. Cell Rep 2021; 32:107951. [PMID: 32755592 DOI: 10.1016/j.celrep.2020.107951] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 05/12/2020] [Accepted: 07/02/2020] [Indexed: 12/27/2022] Open
Abstract
The marginal zone (MZ) contributes to the highly organized spleen microarchitecture. We show that expression of atypical chemokine receptor 3 (ACKR3) defines two equal-sized populations of mouse MZ B cells (MZBs). ACKR3 is required for development of a functional MZ and for positioning of MZBs. Deletion of ACKR3 on B cells distorts the MZ, and MZBs fail to deliver antigens to follicles, reducing humoral responses. Reconstitution of MZ-deficient CD19ko mice shows that ACKR3- MZBs can differentiate into ACKR3+ MZBs, but not vice versa. The lack of a MZ is rescued by adoptive transfer of ACKR3-sufficient, and less by ACKR3-deficient, follicular B cells (FoBs); hence, ACKR3 expression is crucial for establishment of the MZ. The inability of CD19ko mice to respond to T-independent antigen is rescued when ACKR3-proficient, but not ACKR3-deficient, FoBs are transferred. Accordingly, ACKR3-deficient FoBs are able to reconstitute the MZ if the niche is pre-established by ACKR3-proficient MZBs.
Collapse
Affiliation(s)
- Egle Radice
- Università della Svizzera Italiana, Faculty of Biomedical Sciences, Institute for Research in Biomedicine, 6500 Bellinzona, Switzerland; Graduate School of Cellular and Molecular Sciences, University of Bern, 3012 Bern, Switzerland
| | - Rafet Ameti
- Università della Svizzera Italiana, Faculty of Biomedical Sciences, Institute for Research in Biomedicine, 6500 Bellinzona, Switzerland; Graduate School of Cellular and Molecular Sciences, University of Bern, 3012 Bern, Switzerland
| | - Serena Melgrati
- Università della Svizzera Italiana, Faculty of Biomedical Sciences, Institute for Research in Biomedicine, 6500 Bellinzona, Switzerland; Graduate School of Cellular and Molecular Sciences, University of Bern, 3012 Bern, Switzerland
| | - Mathilde Foglierini
- Università della Svizzera Italiana, Faculty of Biomedical Sciences, Institute for Research in Biomedicine, 6500 Bellinzona, Switzerland; Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Paola Antonello
- Università della Svizzera Italiana, Faculty of Biomedical Sciences, Institute for Research in Biomedicine, 6500 Bellinzona, Switzerland; Graduate School of Cellular and Molecular Sciences, University of Bern, 3012 Bern, Switzerland
| | - Rolf A K Stahl
- III Medizinische Klinik, University Hospital Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Sylvia Thelen
- Università della Svizzera Italiana, Faculty of Biomedical Sciences, Institute for Research in Biomedicine, 6500 Bellinzona, Switzerland
| | - David Jarrossay
- Università della Svizzera Italiana, Faculty of Biomedical Sciences, Institute for Research in Biomedicine, 6500 Bellinzona, Switzerland
| | - Marcus Thelen
- Università della Svizzera Italiana, Faculty of Biomedical Sciences, Institute for Research in Biomedicine, 6500 Bellinzona, Switzerland.
| |
Collapse
|
46
|
Riese J, Gromann A, Lührs F, Kleinwort A, Schulze T. Sphingosine-1-Phosphate Receptor Type 4 (S1P 4) Is Differentially Regulated in Peritoneal B1 B Cells upon TLR4 Stimulation and Facilitates the Egress of Peritoneal B1a B Cells and Subsequent Accumulation of Splenic IRA B Cells under Inflammatory Conditions. Int J Mol Sci 2021; 22:ijms22073465. [PMID: 33801658 PMCID: PMC8037865 DOI: 10.3390/ijms22073465] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/16/2021] [Accepted: 03/25/2021] [Indexed: 02/08/2023] Open
Abstract
Background: Gram-negative infections of the peritoneal cavity result in profound modifications of peritoneal B cell populations and induce the migration of peritoneal B cells to distant secondary lymphoid organs. However, mechanisms controlling the egress of peritoneal B cells from the peritoneal cavity and their subsequent trafficking remain incompletely understood. Sphingosine-1-phosphate (S1P)-mediated signaling controls migratory processes in numerous immune cells. The present work investigates the role of S1P-mediated signaling in peritoneal B cell trafficking under inflammatory conditions. Methods: Differential S1P receptor expression after peritoneal B cell activation was assessed semi‑quantitatively using RT-PCR in vitro. The functional implications of differential S1P1 and S1P4 expression were assessed by transwell migration in vitro, by adoptive peritoneal B cell transfer in a model of sterile lipopolysaccharide (LPS)‑induced peritonitis and in the polymicrobial colon ascendens stent peritonitis (CASP) model. Results: The two sphingosine-1-phosphate receptors (S1PRs) expressed in peritoneal B cell subsets S1P1 and S1P4 are differentially regulated upon stimulation with the TLR4 agonist LPS, but not upon PMA/ionomycin or B cell receptor (BCR) crosslinking. S1P4 deficiency affects both the trafficking of activated peritoneal B cells to secondary lymphoid organs and the positioning of these cells within the functional compartments of the targeted organ. S1P4 deficiency in LPS-activated peritoneal B cells results in significantly reduced numbers of splenic innate response activator B cells. Conclusions: The S1P-S1PR system is implicated in the trafficking of LPS-activated peritoneal B cells. Given the protective role of peritoneal B1a B cells in peritoneal sepsis, further experiments to investigate the impact of S1P4-mediated signaling on the severity and mortality of peritoneal sepsis are warranted.
Collapse
Affiliation(s)
- Janik Riese
- Experimental Surgical Research Laboratory, Department of General Surgery, Visceral, Thoracic and Vascular Surgery, Universitätsmedizin Greifswald, 17475 Greifswald, Germany
| | - Alina Gromann
- Experimental Surgical Research Laboratory, Department of General Surgery, Visceral, Thoracic and Vascular Surgery, Universitätsmedizin Greifswald, 17475 Greifswald, Germany
| | - Felix Lührs
- Experimental Surgical Research Laboratory, Department of General Surgery, Visceral, Thoracic and Vascular Surgery, Universitätsmedizin Greifswald, 17475 Greifswald, Germany
| | - Annabel Kleinwort
- Experimental Surgical Research Laboratory, Department of General Surgery, Visceral, Thoracic and Vascular Surgery, Universitätsmedizin Greifswald, 17475 Greifswald, Germany
| | - Tobias Schulze
- Experimental Surgical Research Laboratory, Department of General Surgery, Visceral, Thoracic and Vascular Surgery, Universitätsmedizin Greifswald, 17475 Greifswald, Germany
| |
Collapse
|
47
|
Studstill CJ, Pritzl CJ, Seo YJ, Kim DY, Xia C, Wolf JJ, Nistala R, Vijayan M, Cho YB, Kang KW, Lee SM, Hahm B. Sphingosine kinase 2 restricts T cell immunopathology but permits viral persistence. J Clin Invest 2021; 130:6523-6538. [PMID: 32897877 DOI: 10.1172/jci125297] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 09/02/2020] [Indexed: 01/04/2023] Open
Abstract
Chronic viral infections are often established by the exploitation of immune-regulatory mechanisms that result in nonfunctional T cell responses. Viruses that establish persistent infections remain a serious threat to human health. Sphingosine kinase 2 (SphK2) generates sphingosine 1-phosphate, which is a molecule known to regulate multiple cellular processes. However, little is known about SphK2's role during the host immune responses to viral infection. Here, we demonstrate that SphK2 functions during lymphocytic choriomeningitis virus Cl 13 (LCMV Cl 13) infection to limit T cell immune pathology, which subsequently aids in the establishment of virus-induced immunosuppression and the resultant viral persistence. The infection of Sphk2-deficient (Sphk2-/-) mice with LCMV Cl 13 led to the development of nephropathy and mortality via T cell-mediated immunopathology. Following LCMV infection, Sphk2-/- CD4+ T cells displayed increased activity and proliferation, and these cells promoted overactive LCMV Cl 13-specific CD8+ T cell responses. Notably, oral instillation of an SphK2-selective inhibitor promoted protective T cell responses and accelerated the termination of LCMV Cl 13 persistence in mice. Thus, SphK2 is indicated as an immunotherapeutic target for the control of persistent viral infections.
Collapse
Affiliation(s)
- Caleb J Studstill
- Departments of Surgery and Molecular Microbiology and Immunology, University of Missouri-Columbia, Columbia, Missouri, USA
| | - Curtis J Pritzl
- Departments of Surgery and Molecular Microbiology and Immunology, University of Missouri-Columbia, Columbia, Missouri, USA
| | - Young-Jin Seo
- Department of Life Science, Chung-Ang University, Seoul, Korea
| | - Dae Young Kim
- Veterinary Medical Diagnostic Laboratory, College of Veterinary Medicine
| | - Chuan Xia
- Departments of Surgery and Molecular Microbiology and Immunology, University of Missouri-Columbia, Columbia, Missouri, USA
| | - Jennifer J Wolf
- Departments of Surgery and Molecular Microbiology and Immunology, University of Missouri-Columbia, Columbia, Missouri, USA
| | - Ravi Nistala
- Division of Nephrology, Department of Medicine, University of Missouri-Columbia, Columbia, Missouri, USA
| | - Madhuvanthi Vijayan
- Departments of Surgery and Molecular Microbiology and Immunology, University of Missouri-Columbia, Columbia, Missouri, USA
| | - Yong-Bin Cho
- Department of Life Science, Chung-Ang University, Seoul, Korea
| | - Kyung Won Kang
- Division of Biotechnology, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, Korea
| | - Sang-Myeong Lee
- Division of Biotechnology, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, Korea.,College of Veterinary Medicine, Chungbuk National University, Cheongju, Korea
| | - Bumsuk Hahm
- Departments of Surgery and Molecular Microbiology and Immunology, University of Missouri-Columbia, Columbia, Missouri, USA
| |
Collapse
|
48
|
Cheng J, Lucas PC, McAllister-Lucas LM. Canonical and Non-Canonical Roles of GRK2 in Lymphocytes. Cells 2021; 10:cells10020307. [PMID: 33546162 PMCID: PMC7913175 DOI: 10.3390/cells10020307] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/25/2021] [Accepted: 01/26/2021] [Indexed: 12/18/2022] Open
Abstract
G protein-coupled receptor kinase 2 (GRK2) is emerging as a key integrative signaling node in a variety of biological processes ranging from cell growth and proliferation to migration and chemotaxis. As such, GRK2 is now implicated as playing a role in the molecular pathogenesis of a broad group of diseases including heart failure, cancer, depression, neurodegenerative disease, and others. In addition to its long-known canonical role in the phosphorylation and desensitization of G protein-coupled receptors (GPCRs), recent studies have shown that GRK2 also modulates a diverse array of other molecular processes via newly identified GRK2 kinase substrates and via a growing number of protein-protein interaction binding partners. GRK2 belongs to the 7-member GRK family. It is a multidomain protein containing a specific N-terminal region (referred to as αN), followed by a regulator of G protein signaling homology (RH) domain, an AGC (Protein kinase A, G, C serine/threonine kinase family) kinase domain, and a C-terminal pleckstrin homology (PH) domain. GPCRs mediate the activity of many regulators of the immune system such as chemokines and leukotrienes, and thus GRK proteins may play key roles in modulating the lymphocyte response to these factors. As one of the predominant GRK family members expressed in immune cells, GRK2's canonical and noncanonical actions play an especially significant role in normal immune cell function as well as in the development and progression of disorders of the immune system. This review summarizes our current state of knowledge of the roles of GRK2 in lymphocytes. We highlight the diverse functions of GRK2 and discuss how ongoing investigation of GRK2 in lymphocytes may inform the development of new therapies for diseases associated with lymphocyte dysregulation.
Collapse
Affiliation(s)
- Jing Cheng
- Division of Hematology-Oncology, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA;
- Correspondence:
| | - Peter C. Lucas
- Divisions of Molecular Genomic Pathology and Experimental Pathology, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA;
- UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA
| | - Linda M. McAllister-Lucas
- Division of Hematology-Oncology, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA;
- UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA
| |
Collapse
|
49
|
Nakawesi J, Konjit GM, Dasoveanu DC, Johansson-Lindbom B, Lahl K. Rotavirus infection causes mesenteric lymph node hypertrophy independently of type I interferon or TNF-α in mice. Eur J Immunol 2021; 51:1143-1152. [PMID: 33354817 PMCID: PMC8247885 DOI: 10.1002/eji.202048990] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/24/2020] [Accepted: 12/21/2020] [Indexed: 12/21/2022]
Abstract
Lymphoid organ hypertrophy is a characteristic feature of acute infection and is considered to enable efficient induction of adaptive immune responses. Accordingly, oral infection with rotavirus induced a robust increase in cellularity in the mesenteric LNs, whose kinetics correlated with viral load and was caused by halted lymphocyte egress and increased recruitment of cells without altered cellular proliferation. Lymphocyte sequestration and mesenteric LN hypertrophy were independent of type 1 IFN receptor signaling or the continuous presence of TNF-α. Our results support previous findings that adaptive immunity toward rotavirus is initiated primarily in the mesenteric LNs and show that type I IFN or TNF-α are not required to coordinate the events involved in the LN response.
Collapse
Affiliation(s)
- Joy Nakawesi
- Immunology Section, Lund University, Lund, Sweden
| | | | | | - Bengt Johansson-Lindbom
- Immunology Section, Lund University, Lund, Sweden.,Division of Biopharma, Institute for Health Technology, Technical University of Denmark (DTU), Kongens, Denmark
| | - Katharina Lahl
- Immunology Section, Lund University, Lund, Sweden.,Division of Biopharma, Institute for Health Technology, Technical University of Denmark (DTU), Kongens, Denmark
| |
Collapse
|
50
|
Lee DS, Lee KL, Jeong JB, Shin S, Kim SH, Kim JW. Expression of Chemokine CCL28 in Ulcerative Colitis Patients. Gut Liver 2021; 15:70-76. [PMID: 32102131 PMCID: PMC7817927 DOI: 10.5009/gnl19273] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 12/05/2019] [Accepted: 12/06/2019] [Indexed: 12/14/2022] Open
Abstract
Background/Aims Ulcerative colitis (UC) is an inflammatory bowel disease for which new serological markers are required. The purpose of this study was to assess the role of the mucosa-associated epithelial chemokine CCL28 in UC. Methods The study included 50 patients; of these, 25 were patients with UC, and 25 were healthy controls. The levels of serum CCL28 were analyzed using enzyme-linked immunosorbent assay. CCL28 expression was analyzed by immunohistochemistry (IHC) in 15 representative colon tissues biopsied based on disease activity (UC patients with severe activity, five samples; UC patients with mild activity, five samples; healthy controls, five samples). Results The serum CCL28 levels were remarkably higher (p<0.05) in patients with UC (median, 235.7 pg/mL; IQR, 63.8 to 117.2 pg/mL) than in healthy controls (median, 48.9, pg/mL; IQR, 35.9 to 42.0 pg/mL). However, there was no significant difference in serum CCL28 according to disease extent or activity. In contrast, IHC analysis revealed a significant difference in CCL28 consistent with disease status, disease extent, and disease activity. Conclusions CCL28 could be useful for diagnosing UC. However, further validations of CCL28 on disease activity and severity are needed.
Collapse
Affiliation(s)
- Dong Seok Lee
- Departments of Gastroenterology, SMG-SNU Boramae Medical Center, Seoul National University of College of Medicine, Seoul, Korea
| | - Kook Lae Lee
- Departments of Gastroenterology, SMG-SNU Boramae Medical Center, Seoul National University of College of Medicine, Seoul, Korea
| | - Ji Bong Jeong
- Departments of Gastroenterology, SMG-SNU Boramae Medical Center, Seoul National University of College of Medicine, Seoul, Korea
| | - Sue Shin
- Departments of Laboratory Medicine, SMG-SNU Boramae Medical Center, Seoul National University of College of Medicine, Seoul, Korea
| | - Su Hwan Kim
- Departments of Gastroenterology, SMG-SNU Boramae Medical Center, Seoul National University of College of Medicine, Seoul, Korea
| | - Ji Won Kim
- Departments of Gastroenterology, SMG-SNU Boramae Medical Center, Seoul National University of College of Medicine, Seoul, Korea
| |
Collapse
|