1
|
Cardamone A, Coppoletta AR, Macrì R, Nucera S, Ruga S, Scarano F, Mollace R, Mollace A, Maurotti S, Micotti E, Carresi C, Musolino V, Gliozzi M, Mollace V. Targeting leptin/CCL3-CCL4 axes in NAFLD/MAFLD: A novel role for BPF in counteracting thalamic inflammation and white matter degeneration. Pharmacol Res 2024; 209:107417. [PMID: 39276957 DOI: 10.1016/j.phrs.2024.107417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/11/2024] [Accepted: 09/11/2024] [Indexed: 09/17/2024]
Abstract
Non-alcoholic fatty liver disease (NAFLD), redefined as Metabolic Associated Fatty Liver Disease (MAFLD), is characterized by an extensive multi-organ involvement. MAFLD-induced systemic inflammatory status and peripheral metabolic alteration lead to an impairment of cerebral function. Herein, we investigated a panel of leptin-related inflammatory mediators as predictive biomarkers of neuroinflammation and evaluated the possible role of Bergamot Polyphenolic Fraction (BPF) in counteracting this MAFLD-induced inflammatory cascade. Male DIAMOND mice were randomly assigned to fed chow diet and tap water or high fat diet with sugar water. Starting from week 16, mice were further divided and treated with vehicle or BPF (50 mg/kg/day), via gavage, until week 30. Magnetic resonance imaging was performed at the baseline and at week 30. Correlation and regression analyses were performed to discriminate the altered lipid metabolism in the onset of cerebral alterations. Steatohepatitis led to an increase in leptin levels, resulting in a higher expression of proinflammatory mediators. The inflammatory biomarkers involved in leptin/CCL3-CCL4 axes were correlated with the altered thalamus energetic metabolism and the white matter degeneration. BPF administration restored leptin level, improved glucose and lipid metabolism, and reduced chronic low-grade inflammatory mediators, resulting in a prevention of white matter degeneration, alterations of thalamus metabolism and brain atrophy. The highlighted positive effect of BPF, mediated by the downregulation of the inflammatory biomarkers involved in leptin/CCL3-CCL4 axes, affording novel elements to candidate BPF for the development of a therapeutic strategy aimed at counteracting MAFLD-related brain inflammation.
Collapse
Affiliation(s)
- Antonio Cardamone
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Græcia of Catanzaro, Catanzaro 88100, Italy
| | - Anna Rita Coppoletta
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Græcia of Catanzaro, Catanzaro 88100, Italy
| | - Roberta Macrì
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Græcia of Catanzaro, Catanzaro 88100, Italy
| | - Saverio Nucera
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Græcia of Catanzaro, Catanzaro 88100, Italy
| | - Stefano Ruga
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Græcia of Catanzaro, Catanzaro 88100, Italy
| | - Federica Scarano
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Græcia of Catanzaro, Catanzaro 88100, Italy
| | - Rocco Mollace
- Department of Systems Medicine, University of Rome Tor Vergata, Italy
| | - Annachiara Mollace
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Græcia of Catanzaro, Catanzaro 88100, Italy
| | - Samantha Maurotti
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Edoardo Micotti
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Cristina Carresi
- Veterinary Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Græcia of Catanzaro, Catanzaro 88100, Italy
| | - Vincenzo Musolino
- Laboratory of Pharmaceutical Biology, Department of Health Sciences, Institute of Research for Food Safety & Health IRC-FSH, University "Magna Græcia" of Catanzaro, Catanzaro, 88100, Italy.
| | - Micaela Gliozzi
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Græcia of Catanzaro, Catanzaro 88100, Italy.
| | - Vincenzo Mollace
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Græcia of Catanzaro, Catanzaro 88100, Italy
| |
Collapse
|
2
|
Forbes C, Nierkens S, Cornel AM. Thymic NK-Cells and Their Potential in Cancer Immunotherapy. Immunotargets Ther 2024; 13:183-194. [PMID: 38558927 PMCID: PMC10979679 DOI: 10.2147/itt.s441639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 01/20/2024] [Indexed: 04/04/2024] Open
Abstract
Natural killer (NK)-cells are innate immune cells with potent anti-tumor capacity, capable of recognizing target cells without prior exposure. For this reason, NK-cells are recognized as a useful source of cell therapy. Although most NK-cells are derived from the bone marrow (BM), a separate developmental pathway in the thymus also exists, producing so-called thymic NK-cells. Unlike conventional NK-cells, thymic NK (tNK)-cells have a combined capacity for cytokine production and a natural ability to kill tumor cells in the presence of NK-cell receptor stimulatory ligands. Furthermore, tNK-cells are reported to express CD3 subunits intracellularly, without the presence of a rearranged T-cell receptor (TCR). This unique feature may enable harnessing of these cells with a TCR to combine NK- and T-cell effector properties in one cell type. The development, phenotype, and function of tNK-cells, and potential as a cell therapy is, however, poorly explored. In this review, we provide an overview of current literature on both murine and human tNK-cells in comparison to conventional BM-derived NK-cells, and discuss the potential applications of this cellular subset in the context of cancer immunotherapy.
Collapse
Affiliation(s)
- Caitlyn Forbes
- Princess Máxima Center for Pediatric Oncology, Utrecht University, Utrecht, the Netherlands
| | - Stefan Nierkens
- Princess Máxima Center for Pediatric Oncology, Utrecht University, Utrecht, the Netherlands
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Annelisa M Cornel
- Princess Máxima Center for Pediatric Oncology, Utrecht University, Utrecht, the Netherlands
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
3
|
Hu X, Hu Z, Zhang H, Zhang N, Feng H, Jia X, Zhang C, Cheng Q. Deciphering the tumor-suppressive role of PSMB9 in melanoma through multi-omics and single-cell transcriptome analyses. Cancer Lett 2024; 581:216466. [PMID: 37944578 DOI: 10.1016/j.canlet.2023.216466] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/14/2023] [Accepted: 10/24/2023] [Indexed: 11/12/2023]
Abstract
Skin cutaneous melanoma (SKCM) poses a significant challenge in skin cancers. Recent immunotherapy breakthroughs have revolutionized melanoma treamtment, yet tumor heterogeneity persists as an obstacle. Epigenetic modifications orchestrated by DNA methylation contributed to tumorigenesis, thus potentially unveiling melanoma prognosis. Here, we identified an interferon-gamma (IFN-g) sensitive subtype, which possesses favorable outcomes, robust infiltration CD8+T cells, and IFN-g score in bulk RNA-seq profile. Subsequently, we established an IFN-g sensitivity signature based on machine learning. We validated that PSMB9 is strongly correlated with immunotherapy response in both methylation and expression cohorts in this 10-probe signature. We assumed that PSMB9 acts as a putative melanoma suppressor, for its activation of CD8+T cell; capacity to modulate IFN-γ secretion; and dynamics altering IFN-g receptors in bulk tissue. We performed single-cell RNA-seq on immunotherapy patients' tissue to uncover the nuanced role of PSMB9 in activating CD8T + cells, enhancing IFN-g, and influencing malignant cells receptors and transcriptional factors. Overexpress PSMB9 in two SKCM cell lines to mimic the hypomethylated state to approve our conjecture. Strong cell proliferation and migration inhibition were detected on both cells, indicating that PSMB9 is present in tumor cells and that high expression is detrimental to tumor growth and migration. Overall, comprehensive integrated analysis shows that PSMB9 emerges as a vital prognostic marker, acting predictive potential regarding immunotherapy in melanoma. This evidence not only reveals the multifaceted impact of PSMB9 on both malignant and immune cells but also serves as a prospective target for undergoing immunotherapeutic strategies in the future.
Collapse
Affiliation(s)
- Xing Hu
- Department of Dermatology, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, Hunan, 410000, China
| | - Zhengang Hu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Hao Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China; Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, Chongqing, 400016, China
| | - Nan Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, Chongqing, 400016, China; College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Hao Feng
- Department of Dermatology, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, Hunan, 410000, China
| | - Xiaomin Jia
- Department of Pathology, Lhasa People's Hospital, Lhasa, Tibet Autonomous Region, 850001, China
| | - Chi Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.
| |
Collapse
|
4
|
Crawford JM, Bioulac-Sage P, Hytiroglou P. Structure, Function and Responses to Injury. MACSWEEN'S PATHOLOGY OF THE LIVER 2024:1-95. [DOI: 10.1016/b978-0-7020-8228-3.00001-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
5
|
Spolski R, Li P, Chandra V, Shin B, Goel S, Sakamoto K, Liu C, Oh J, Ren M, Enomoto Y, West EE, Christensen SM, Wan ECK, Ge M, Lin JX, Yan B, Kazemian M, Yu ZX, Nagao K, Vijayanand P, Rothenberg EV, Leonard WJ. Distinct use of super-enhancer elements controls cell type-specific CD25 transcription and function. Sci Immunol 2023; 8:eadi8217. [PMID: 37922339 PMCID: PMC10832512 DOI: 10.1126/sciimmunol.adi8217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 10/10/2023] [Indexed: 11/05/2023]
Abstract
The IL-2 receptor α chain (IL-2Rα/CD25) is constitutively expressed on double-negative (DN2/DN3 thymocytes and regulatory T cells (Tregs) but induced by IL-2 on T and natural killer (NK) cells, with Il2ra expression regulated by a STAT5-dependent super-enhancer. We investigated CD25 regulation and function using a series of mice with deletions spanning STAT5-binding elements. Deleting the upstream super-enhancer region mainly affected constitutive CD25 expression on DN2/DN3 thymocytes and Tregs, with these mice developing autoimmune alopecia, whereas deleting an intronic region decreased IL-2-induced CD25 on peripheral T and NK cells. Thus, distinct super-enhancer elements preferentially control constitutive versus inducible expression in a cell type-specific manner. The mediator-1 coactivator colocalized with specific STAT5-binding sites. Moreover, both upstream and intronic regions had extensive chromatin interactions, and deletion of either region altered the super-enhancer structure in mature T cells. These results demonstrate differential functions for distinct super-enhancer elements, thereby indicating previously unknown ways to manipulate CD25 expression in a cell type-specific fashion.
Collapse
Affiliation(s)
- Rosanne Spolski
- Laboratory of Molecular Immunology, Immunology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Peng Li
- Laboratory of Molecular Immunology, Immunology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Vivek Chandra
- La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Boyoung Shin
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Shubham Goel
- Cutaneous Leukocyte Biology Section, Dermatology Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Keiko Sakamoto
- Cutaneous Leukocyte Biology Section, Dermatology Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
- Hamamatsu University School of Medicine, Department of Dermatology, Hamamatsu, Japan
| | - Chengyu Liu
- Laboratory of Molecular Immunology, Immunology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jangsuk Oh
- Laboratory of Molecular Immunology, Immunology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Min Ren
- Laboratory of Molecular Immunology, Immunology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Yutaka Enomoto
- Laboratory of Molecular Immunology, Immunology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Erin E West
- Laboratory of Molecular Immunology, Immunology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Stephen M Christensen
- Laboratory of Molecular Immunology, Immunology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Edwin C K Wan
- Laboratory of Molecular Immunology, Immunology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Meili Ge
- Laboratory of Molecular Immunology, Immunology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jian-Xin Lin
- Laboratory of Molecular Immunology, Immunology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Bingyu Yan
- Department of Biochemistry, Purdue University, West Lafayette, IN, USA
| | - Majid Kazemian
- Department of Biochemistry, Purdue University, West Lafayette, IN, USA
| | - Zu-Xi Yu
- Pathology Core, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Keisuke Nagao
- Cutaneous Leukocyte Biology Section, Dermatology Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | | | - Ellen V Rothenberg
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Warren J Leonard
- Laboratory of Molecular Immunology, Immunology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
6
|
Fahrner R, Gröger M, Settmacher U, Mosig AS. Functional integration of natural killer cells in a microfluidically perfused liver on-a-chip model. BMC Res Notes 2023; 16:285. [PMID: 37865791 PMCID: PMC10590007 DOI: 10.1186/s13104-023-06575-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 10/13/2023] [Indexed: 10/23/2023] Open
Abstract
OBJECTIVE The liver acts as an innate immunity-dominant organ and natural killer (NK) cells, are the main lymphocyte population in the human liver. NK cells are in close interaction with other immune cells, acting as the first line of defense against pathogens, infections, and injury. A previously developed, three-dimensional, perfused liver-on-a-chip comprised of human cells was used to integrate NK cells, representing pivotal immune cells during liver injury and regeneration. The objective of this study was to integrate functional NK cells in an in vitro model of the human liver and assess utilization of the model for NK cell-dependent studies of liver inflammation. RESULTS NK cells from human blood and liver specimen were isolated by Percoll separation with subsequent magnetic cell separation (MACS), yielding highly purified blood and liver derived NK cells. After stimulation with toll-like-receptor (TLR) agonists (lipopolysaccharides, Pam3CSK4), isolated NK cells showed increased interferon (IFN)-gamma secretion. To study the role of NK cells in a complex hepatic environment, these cells were integrated in the vascular compartment of a microfluidically supported liver-on-a-chip model in close interaction with endothelial and resident macrophages. Successful, functional integration of NK cells was verified by immunofluorescence staining (NKp46), flow cytometry analysis and TLR agonist-dependent secretion of interleukin (IL)-6 and tumor necrosis factor (TNF)-alpha. Lastly, we observed that inflammatory activation of NK cells in the liver-on-a-chip led to a loss of vascular barrier integrity. Overall, our data shows the first successful, functional integration of NK cells in a liver-on-a-chip model that can be utilized to investigate NK cell-dependent effects on liver inflammation in vitro.
Collapse
Affiliation(s)
- René Fahrner
- Department of General, Visceral and Vascular Surgery, Jena University Hospital, 07747, Jena, Germany.
- Department of Vascular Surgery, University Hospital Bern, University of Bern, 3010, Bern, Switzerland.
- Integrated Research and Treatment Center, Center for Sepsis Control and Care (CSCC), Jena University Hospital, 07747, Jena, Germany.
| | - Marko Gröger
- Integrated Research and Treatment Center, Center for Sepsis Control and Care (CSCC), Jena University Hospital, 07747, Jena, Germany
| | - Utz Settmacher
- Department of General, Visceral and Vascular Surgery, Jena University Hospital, 07747, Jena, Germany
| | - Alexander S Mosig
- Integrated Research and Treatment Center, Center for Sepsis Control and Care (CSCC), Jena University Hospital, 07747, Jena, Germany
| |
Collapse
|
7
|
Bourel C, Mullins-Dansereau V, Al Khaldi M, Chabot-Roy G, Lombard-Vadnais F, Lesage S. Uncoupling of Natural Killer cell functional maturation and cytolytic function in NOD mice. Immunol Cell Biol 2023; 101:867-874. [PMID: 37536708 DOI: 10.1111/imcb.12676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 08/05/2023]
Abstract
NK cells are innate immune cells that target infected and tumor cells. Mature NK (mNK) cells undergo functional maturation characterized by four distinct stages, during which they acquire their cytotoxic properties. mNK cells from non-obese diabetic (NOD) mice exhibit a defect in functional maturation and have impaired cytotoxic functions. Hence, we tested whether the impaired cytotoxic function observed in mNK cells from NOD mice can be explained by their defect in functional maturation. By comparing the function of mNK cells from B6, B6g7 and NOD mice, we show that the expression of granzyme B is severely impaired in mNK cells from NOD mice, agreeing with their inability to control tumor growth in vivo. The low level of granzyme B expression in mNK cells from NOD mice is found at all stages of functional maturation and is therefore independent of their functional maturation defect. Consequently, this study demonstrates that phenotypic functional maturation of mNK cells can be uncoupled from the acquisition of cytotoxic functions.
Collapse
Affiliation(s)
- Capucine Bourel
- Immunologie-oncologie, Centre de Recherche de l'Hôpital Maisonneuve-Rosemont, Montréal, QC, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC, Canada
| | - Victor Mullins-Dansereau
- Immunologie-oncologie, Centre de Recherche de l'Hôpital Maisonneuve-Rosemont, Montréal, QC, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC, Canada
| | - Maher Al Khaldi
- Immunologie-oncologie, Centre de Recherche de l'Hôpital Maisonneuve-Rosemont, Montréal, QC, Canada
- Département de Médecine, Université de Montréal, Montréal, QC, Canada
| | - Geneviève Chabot-Roy
- Immunologie-oncologie, Centre de Recherche de l'Hôpital Maisonneuve-Rosemont, Montréal, QC, Canada
| | - Félix Lombard-Vadnais
- Immunologie-oncologie, Centre de Recherche de l'Hôpital Maisonneuve-Rosemont, Montréal, QC, Canada
| | - Sylvie Lesage
- Immunologie-oncologie, Centre de Recherche de l'Hôpital Maisonneuve-Rosemont, Montréal, QC, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
8
|
Shegarfi H. Recognition of Listeria monocytogenes infection by natural killer cells: Towards a complete picture by experimental studies in rats. Innate Immun 2023; 29:110-121. [PMID: 37285590 PMCID: PMC10468624 DOI: 10.1177/17534259231178223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 04/11/2023] [Accepted: 05/08/2023] [Indexed: 06/09/2023] Open
Abstract
The study of cellular immune responses in animal disease models demands detailed knowledge of development, function, and regulation of immune cells, including natural killer (NK) cells. Listeria monocytogenes (LM) bacterium has been explored in a large area of research fields, including the host pathogen interaction. Although the importance role of NK cells in controlling the first phase of LM burden has been investigated, the interaction between NK cells and infected cells in details are far from being comprehended. From in vivo and in vitro experiments, we can drive several important pieces of knowledge that hopefully contribute to illuminating the intercommunication between LM-infected cells and NK cells. Experimental studies performed in rats revealed that certain NK cell ligands are influenced in LM-infected cells. These ligands include both classical- and non-classical MHC class I molecules and C-type lectin related (Clr) molecules that are ligands for Ly49- and NKR-P1 receptors respectively. Interaction between these receptors:ligands during LM infection, demonstrated stimulation of rat NK cells. Hence, these studies provided additional knowledge to the mechanisms NK cells utilise to recognise and respond to LM infection outlined in the current review.
Collapse
|
9
|
The effects of encapsulation on NK cell differentiation potency of C-kit+ hematopoietic stem cells via identifying cytokine profiles. Transpl Immunol 2023; 77:101797. [PMID: 36720394 DOI: 10.1016/j.trim.2023.101797] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 01/09/2023] [Accepted: 01/26/2023] [Indexed: 01/30/2023]
Abstract
Natural killer cells (NK cells) can kill cancerous cells without prior sensitization. This feature makes them appealing candidates for cellular therapy. Due to the degradation rate and controlled release of these matrices, hydrogels hold great promise in cell differentiation. The study aims to investigate the effect of encapsulated alginate-gelatin on the differentiation potential of C-kit+ cells toward NK cells which are mediated by cytokines detection. Under both encapsulated and unencapsulated conditions, C-kit+ cells can differentiate into NK cells. In the following, real-time PCR and western blotting were done to investigate the mRNA and protein expression, respectively. Determine cytokine profiles from the collected culture medium conducted a Cytokine antibody array. The differentiated cells were then co-cultured with Molt-4 cells to examine the expression levels of INF-γ, TNF-α, and IL-10 using real-time-PCR. There was a substantial change in protein expression of the Notch pathway. Also, the encapsulation increased the mRNA expression of INF-γ and TNF-α in Molt-4 cells. Based on these findings, the encapsulation effects on the differentiation of C-kit+ cells toward NK cells could be related to the secreted cytokines such as interleukin-10 and INF-γ and the Notch protein expression.
Collapse
|
10
|
Mace EM. Human natural killer cells: Form, function, and development. J Allergy Clin Immunol 2023; 151:371-385. [PMID: 36195172 PMCID: PMC9905317 DOI: 10.1016/j.jaci.2022.09.022] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 08/22/2022] [Accepted: 09/02/2022] [Indexed: 02/07/2023]
Abstract
Human natural killer (NK) cells are innate lymphoid cells that mediate important effector functions in the control of viral infection and malignancy. Their ability to distinguish "self" from "nonself" and lyse virally infected and tumorigenic cells through germline-encoded receptors makes them important players in maintaining human health and a powerful tool for immunotherapeutic applications and fighting disease. This review introduces our current understanding of NK cell biology, including key facets of NK cell differentiation and the acquisition and execution of NK cell effector function. Further, it addresses the clinical relevance of NK cells in both primary immunodeficiency and immunotherapy. It is intended to provide an up-to-date and comprehensive overview of this important and interesting innate immune effector cell subset.
Collapse
Affiliation(s)
- Emily M Mace
- Division of Allergy, Immunology and Rheumatology, Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York.
| |
Collapse
|
11
|
Dutta S, Ganguly A, Chatterjee K, Spada S, Mukherjee S. Targets of Immune Escape Mechanisms in Cancer: Basis for Development and Evolution of Cancer Immune Checkpoint Inhibitors. BIOLOGY 2023; 12:biology12020218. [PMID: 36829496 PMCID: PMC9952779 DOI: 10.3390/biology12020218] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/22/2023] [Accepted: 01/27/2023] [Indexed: 02/03/2023]
Abstract
Immune checkpoint blockade (ICB) has emerged as a novel therapeutic tool for cancer therapy in the last decade. Unfortunately, a small number of patients benefit from approved immune checkpoint inhibitors (ICIs). Therefore, multiple studies are being conducted to find new ICIs and combination strategies to improve the current ICIs. In this review, we discuss some approved immune checkpoints, such as PD-L1, PD-1, and CTLA-4, and also highlight newer emerging ICIs. For instance, HLA-E, overexpressed by tumor cells, represents an immune-suppressive feature by binding CD94/NKG2A, on NK and T cells. NKG2A blockade recruits CD8+ T cells and activates NK cells to decrease the tumor burden. NKG2D acts as an NK cell activating receptor that can also be a potential ICI. The adenosine A2A and A2B receptors, CD47-SIRPα, TIM-3, LAG-3, TIGIT, and VISTA are targets that also contribute to cancer immunoresistance and have been considered for clinical trials. Their antitumor immunosuppressive functions can be used to develop blocking antibodies. PARPs, mARTs, and B7-H3 are also other potential targets for immunosuppression. Additionally, miRNA, mRNA, and CRISPR-Cas9-mediated immunotherapeutic approaches are being investigated with great interest. Pre-clinical and clinical studies project these targets as potential immunotherapeutic candidates in different cancer types for their robust antitumor modulation.
Collapse
Affiliation(s)
- Shovan Dutta
- The Center for Immunotherapy & Precision Immuno-Oncology (CITI), Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Anirban Ganguly
- Department of Biochemistry, All India Institute of Medical Sciences, Deoghar 814152, India
| | | | - Sheila Spada
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY 10065, USA
- Correspondence: (S.S.); (S.M.)
| | - Sumit Mukherjee
- Department of Cardiothoracic and Vascular Surgery, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Correspondence: (S.S.); (S.M.)
| |
Collapse
|
12
|
Hilton LR, Rätsep MT, VandenBroek MM, Jafri S, Laverty KJ, Mitchell M, Theilmann AL, Smart JA, Hawke LG, Moore SD, Renaud SJ, Soares MJ, Morrell NW, Ormiston ML. Impaired Interleukin-15 Signaling via BMPR2 Loss Drives Natural Killer Cell Deficiency and Pulmonary Hypertension. Hypertension 2022; 79:2493-2504. [PMID: 36043416 DOI: 10.1161/hypertensionaha.122.19178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 08/11/2022] [Indexed: 01/17/2023]
Abstract
BACKGROUND Natural killer (NK) cell impairment is a feature of pulmonary arterial hypertension (PAH) and contributes to vascular remodeling in animal models of disease. Although mutations in BMPR2, the gene encoding the BMP (bone morphogenetic protein) type-II receptor, are strongly associated with PAH, the contribution of BMPR2 loss to NK cell impairment remains unknown. We explored the impairment of IL (interleukin)-15 signaling, a central mediator of NK cell homeostasis, as both a downstream target of BMPR2 loss and a contributor to the pathogenesis of PAH. METHODS The expression, trafficking, and secretion of IL-15 and IL-15Rα (interleukin 15 α-type receptor) were assessed in human pulmonary artery endothelial cells, with or without BMPR2 silencing. NK cell development and IL-15/IL-15Rα levels were quantified in mice bearing a heterozygous knock-in of the R899X-BMPR2 mutation (bmpr2+/R899X). NK-deficient Il15-/- rats were exposed to the Sugen/hypoxia and monocrotaline models of PAH to assess the impact of impaired IL-15 signaling on disease severity. RESULTS BMPR2 loss reduced IL-15Rα surface presentation and secretion in human pulmonary artery endothelial cells via impaired trafficking through the trans-Golgi network. bmpr2+/R899X mice exhibited a decrease in NK cells, which was not attributable to impaired hematopoietic development but was instead associated with reduced IL-15/IL-15Rα levels in these animals. Il15-/- rats of both sexes exhibited enhanced disease severity in the Sugen/hypoxia model, with only male Il15-/- rats developing more severe PAH in response to monocrotaline. CONCLUSIONS This work identifies the loss of IL-15 signaling as a novel BMPR2-dependent contributor to NK cell impairment and pulmonary vascular disease.
Collapse
Affiliation(s)
- L Rhiannon Hilton
- Departments of Biomedical and Molecular Sciences, Medicine and Surgery, Queen's University, Kingston, Canada (L.B.H., M.T.R., M.M.V., K.J.L., M.M., A.L.T., J.A.S., L.G.H., M.L.O.)
| | - Matthew T Rätsep
- Departments of Biomedical and Molecular Sciences, Medicine and Surgery, Queen's University, Kingston, Canada (L.B.H., M.T.R., M.M.V., K.J.L., M.M., A.L.T., J.A.S., L.G.H., M.L.O.)
| | - M Martin VandenBroek
- Departments of Biomedical and Molecular Sciences, Medicine and Surgery, Queen's University, Kingston, Canada (L.B.H., M.T.R., M.M.V., K.J.L., M.M., A.L.T., J.A.S., L.G.H., M.L.O.)
| | - Salema Jafri
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom (S.J., S.D.M., N.W.M.)
| | - Kimberly J Laverty
- Departments of Biomedical and Molecular Sciences, Medicine and Surgery, Queen's University, Kingston, Canada (L.B.H., M.T.R., M.M.V., K.J.L., M.M., A.L.T., J.A.S., L.G.H., M.L.O.)
| | - Melissa Mitchell
- Departments of Biomedical and Molecular Sciences, Medicine and Surgery, Queen's University, Kingston, Canada (L.B.H., M.T.R., M.M.V., K.J.L., M.M., A.L.T., J.A.S., L.G.H., M.L.O.)
| | - Anne L Theilmann
- Departments of Biomedical and Molecular Sciences, Medicine and Surgery, Queen's University, Kingston, Canada (L.B.H., M.T.R., M.M.V., K.J.L., M.M., A.L.T., J.A.S., L.G.H., M.L.O.)
| | - James A Smart
- Departments of Biomedical and Molecular Sciences, Medicine and Surgery, Queen's University, Kingston, Canada (L.B.H., M.T.R., M.M.V., K.J.L., M.M., A.L.T., J.A.S., L.G.H., M.L.O.)
| | - Lindsey G Hawke
- Departments of Biomedical and Molecular Sciences, Medicine and Surgery, Queen's University, Kingston, Canada (L.B.H., M.T.R., M.M.V., K.J.L., M.M., A.L.T., J.A.S., L.G.H., M.L.O.)
| | - Stephen D Moore
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom (S.J., S.D.M., N.W.M.)
| | - Stephen J Renaud
- Department of Anatomy and Cell Biology, Western University, London, Canada (S.J.R.)
| | - Michael J Soares
- Departments of Pathology and Laboratory Medicine and Obstetrics and Gynecology, University of Kansas Medical Center, Kansas City (M.J.S.)
| | - Nicholas W Morrell
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom (S.J., S.D.M., N.W.M.)
| | - Mark L Ormiston
- Departments of Biomedical and Molecular Sciences, Medicine and Surgery, Queen's University, Kingston, Canada (L.B.H., M.T.R., M.M.V., K.J.L., M.M., A.L.T., J.A.S., L.G.H., M.L.O.)
| |
Collapse
|
13
|
Grottoli M, Carrega P, Zullo L, Dellepiane C, Rossi G, Parisi F, Barletta G, Zinoli L, Coco S, Alama A, Marconi S, Parodi M, Orecchia P, Bassi S, Vitale M, Mingari MC, Pfeffer U, Genova C, Pietra G. Immune Checkpoint Blockade: A Strategy to Unleash the Potential of Natural Killer Cells in the Anti-Cancer Therapy. Cancers (Basel) 2022; 14:cancers14205046. [PMID: 36291830 PMCID: PMC9599824 DOI: 10.3390/cancers14205046] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/09/2022] [Accepted: 10/12/2022] [Indexed: 12/02/2022] Open
Abstract
Simple Summary Immune checkpoint blockade (ICB) with antibodies targeting CTLA-4 (Cytotoxic Lymphocyte Antigen 4) and/or programmed death-1 protein (PD-1)/programmed death ligand-1 (PD-L1) has significantly modified the therapeutic landscape of a broad range of human tumor types, including advanced non-small-cell lung cancer (NSCLC). Despite great advances of checkpoint immunotherapies, a minority of NSCLC patients (<20%) respond and/or experience long-term clinical benefits from these treatments. Limited response rates of T cell–based checkpoint immunotherapies suggest the presence of other checkpoints able to inhibit effective anti-tumor immune responses. Natural Killer (NK) cells represent a promising target for tumor immunotherapies, particularly against tumors that escape T-cell-mediated control. Like T cell function, NK cell function is also regulated by inhibitory immune-checkpoint molecules. In this review, we will provide an overview of the rationale, mechanisms of action, and clinical efficacy of these NK cell-based checkpoint therapy approaches. Finally, the future directions and current enhancements planned will be discussed. Abstract Immune checkpoint inhibitors (ICIs) immunotherapy has represented a breakthrough in cancer treatment. Clinical use of ICIs has shown an acceptable safety profile and promising antitumor activity. Nevertheless, some patients do not obtain clinical benefits after ICIs therapy. In order to improve and cure an increasing number of patients, the field has moved toward the discovery of new ICIs expressed by cells of innate immunity with an elevated inherent antitumor activity, such as natural killer cells. This review will focus on the recent findings concerning the role of classical and non-classical immune checkpoint molecules and receptors that regulate natural killer cell function, as potential targets, and their future clinical application.
Collapse
Affiliation(s)
- Melania Grottoli
- UO Immunologia IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Paolo Carrega
- Laboratory of Immunology and Biotherapy, Department of Human Pathology, University of Messina, 98122 Messina, Italy
| | - Lodovica Zullo
- UO Oncologia Medica 2 IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Chiara Dellepiane
- UO Oncologia Medica 2 IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Giovanni Rossi
- UO Oncologia Medica 2 IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Francesca Parisi
- UO Oncologia Medica 2 IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Giulia Barletta
- UO Oncologia Medica 2 IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Linda Zinoli
- DiMI, Department of Internal Medicine and Medical Specialties, University of Genova, 16132 Genova, Italy
| | - Simona Coco
- UOS Tumori Polmonari IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Angela Alama
- UOS Tumori Polmonari IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Silvia Marconi
- UOS Tumori Polmonari IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Monica Parodi
- UO Immunologia IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Paola Orecchia
- UO Immunologia IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Sara Bassi
- UO Immunologia IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Massimo Vitale
- UO Immunologia IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Maria Cristina Mingari
- UO Immunologia IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
- DiMES, Department of Experimental Medicine, University of Genova, 16132 Genova, Italy
| | - Ulrich Pfeffer
- Laboratory of Tumor Epigenetics IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Carlo Genova
- DiMI, Department of Internal Medicine and Medical Specialties, University of Genova, 16132 Genova, Italy
- UO Clinica di Oncologia Medica IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
- Correspondence: (C.G.); (G.P.)
| | - Gabriella Pietra
- UO Immunologia IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
- DiMES, Department of Experimental Medicine, University of Genova, 16132 Genova, Italy
- Correspondence: (C.G.); (G.P.)
| |
Collapse
|
14
|
Wickström SL, Wagner AK, Fuchs S, Elemans M, Kritikou J, Mehr R, Kärre K, Johansson MH, Brauner H. MHC Class I–Dependent Shaping of the NK Cell Ly49 Receptor Repertoire Takes Place Early during Maturation in the Bone Marrow. THE JOURNAL OF IMMUNOLOGY 2022; 209:751-759. [DOI: 10.4049/jimmunol.2100775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 05/27/2022] [Indexed: 01/04/2023]
Abstract
Abstract
MHC class I (MHC I) expression in the host influences NK cells in a process termed education. The result of this education is reflected in the responsiveness of NK cells at the level of individual cells as well as in the repertoire of inhibitory MHC I–specific receptors at the NK cell system level. The presence of MHC I molecules in the host environment gives rise to a skewed receptor repertoire in spleen NK cells where subsets expressing few (one or two) inhibitory receptors are expanded whereas subsets with many (three or more) receptors are contracted. It is not known whether this MHC I–dependent skewing is imposed during development or after maturation of NK cells. In this study, we tested the hypothesis that the NK cell receptor repertoire is shaped already early during NK cell development in the bone marrow. We used mice with a repertoire imposed by a single MHC I allele, as well as a C57BL/6 mutant strain with exaggerated repertoire skewing, to investigate Ly49 receptor repertoires at different stages of NK cell differentiation. Our results show that NK cell inhibitory receptor repertoire skewing can indeed be observed in the bone marrow, even during the earliest developmental steps where Ly49 receptors are expressed. This may partly be accounted for by selective proliferation of certain NK cell subsets, but other mechanisms must also be involved. We propose a model for how repertoire skewing is established during a developmental phase in the bone marrow, based on sequential receptor expression as well as selective proliferation.
Collapse
Affiliation(s)
- Stina L. Wickström
- *Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- †Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Arnika K. Wagner
- *Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- ‡Department of Medicine, Huddinge, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Sina Fuchs
- §Division of Rheumatology, Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden
| | - Marjet Elemans
- *Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- ¶Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Joanna Kritikou
- *Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Ramit Mehr
- ‖Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel; and
| | - Klas Kärre
- *Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Maria H. Johansson
- *Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Hanna Brauner
- *Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- §Division of Rheumatology, Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden
- #Dermatology Clinic, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
15
|
Dizaji Asl K, Mazloumi Z, Majidi G, Kalarestaghi H, Sabetkam S, Rafat A. NK cell dysfunction is linked with disease severity in SARS-CoV-2 patients. Cell Biochem Funct 2022; 40:559-568. [PMID: 35833321 PMCID: PMC9350078 DOI: 10.1002/cbf.3725] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 05/16/2022] [Accepted: 06/02/2022] [Indexed: 12/13/2022]
Abstract
SARS-CoV-2 first raised from Wuhan City, Hubei Province in November 2019. The respiratory disorder, cough, weakness, fever are the main clinical symptoms of coronavirus disease 2019 (COVID-19) patients. Natural Killer (NK) cells as a first defense barrier of innate immune system have an essential role in early defense against pulmonary virus. They kill the infected cells by inducing apoptosis or the degranulation of perforin and granzymes. Collectively, NK cells function are coordinated by the transmitted signals from activating and inhibitory receptors. It is clear that the cytotoxic function of NK cells is disrupted in COVID-19 patients due to the dysregulation of activating and inhibitory receptors. Therefore, better understanding of the activating and inhibitory receptors mechanism could facilitate the treatment strategy in clinic. To improve the efficacy of immunotherapy in COVID-19 patients, the functional detail of NK cell and manipulation of their key checkpoints are gathered in current review.
Collapse
Affiliation(s)
- Khadijeh Dizaji Asl
- Clinical Research Development Unit of Tabriz Valiasr HospitalTabriz University of Medical SciencesTabrizIran
- Department of Histopathology and Anatomy, Faculty of Medicine, Tabriz BranchIslamic Azad UniversityTabrizIran
| | - Zeinab Mazloumi
- Department of Medical Applied Cell Sciences, Faculty of Advanced Medical SciencesTabriz University of Medical SciencesTabrizIran
| | - Ghazal Majidi
- Faculty of MedicineTabriz University of Medical SciencesTabrizIran
| | - Hossein Kalarestaghi
- Research Laboratory for Embryology and Stem Cell, Department of Anatomical Sciences, School of MedicineArdabil University of Medical SciencesArdabilIran
| | - Shahnaz Sabetkam
- Department of Histopathology and Anatomy, Faculty of Medicine, Tabriz BranchIslamic Azad UniversityTabrizIran
| | - Ali Rafat
- Department of Anatomical SciencesTabriz University of Medical SciencesTabrizIran
- Anatomical Sciences Research CenterKashan University of Medical SciencesKashanIran
| |
Collapse
|
16
|
Jin X, Mao L, Zhao W, Liu L, Li Y, Li D, Zhang Y, Du M. Decidualization-derived cAMP promotes decidual NK cells to be angiogenic phenotype. Am J Reprod Immunol 2022; 88:e13540. [PMID: 35348271 DOI: 10.1111/aji.13540] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 03/02/2022] [Accepted: 03/21/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND During early pregnancy, a large number of CD56bright natural killer cells (NKs) are accumulated in the decidua; unlike peripheral and cord blood NK cells (pNK and cNK), these decidual NK cells (dNK) display a great capacity to secrete a series of angiogenic/vascular factors, which are essential for placental development. However, the mechanism underlying the formation of dNK cells with an angiogenic phenotype remains unclear. METHODS First, we compared the difference between dNK and cNK/pNK cells in terms of the expression of CD56 and VEGF, and the regulation of the tube formation. The effect of cAMP on the differentiation of NK cells was evaluated by its analog and inhibitor stimulation. We further analyzed the differences in the phenotype of dNK cells and the expression of VEGF in dNK cells from normal pregnancies and miscarriages. RESULTS Different from cNK and pNK, dNK cells displayed high expression of CD56 and VEGF. And dNK cells showed a higher capacity of inducing tube formation of HUVEC by trophoblast. Meanwhile, we observed that cAMP-analogue increased the percentage of CD56bright NK population in cNK cells with up-regulated VEGF secretion and tube formation of HUVEC by trophoblast, which could be inhibited by pretreatment with VEGFR neutralizing antibody. Similar changes occurred when co-culturing cNK cells with DSCs but not ESCs. Interestingly, the inhibitor of cAMP signaling (Metadoxine, META) could significantly inhibit the upregulation of VEGF in cNK cells by DSCs. Furthermore, DSCs could secret much more cAMP than ESCs. Notably, decreased CD56bright NK population and VEGF secretion by dNK were related to pregnancy loss. CONCLUSIONS These findings suggest that dNK cells display an angiogenic phenotype that can be induced by decidualized cAMP signaling. Our study indicates the significance of decidualization-derived cAMP in regulating angiogenesis of decidual NKs and reveals complex crosstalk between different cell types in a critical period during early pregnancy.
Collapse
Affiliation(s)
- Xueling Jin
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - Lie Mao
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - Weijie Zhao
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - Lu Liu
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - Yanhong Li
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - Dajin Li
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - Ying Zhang
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - Meirong Du
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China.,Department of Obstetrics and Gynecology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China.,State Key Laboratory of Quality Research in Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macau SAR, Macau, China
| |
Collapse
|
17
|
Masrori P, Beckers J, Gossye H, Van Damme P. The role of inflammation in neurodegeneration: novel insights into the role of the immune system in C9orf72 HRE-mediated ALS/FTD. Mol Neurodegener 2022; 17:22. [PMID: 35303907 PMCID: PMC8932121 DOI: 10.1186/s13024-022-00525-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 02/25/2022] [Indexed: 12/13/2022] Open
Abstract
Neuroinflammation is an important hallmark of amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). An inflammatory reaction to neuronal injury is deemed vital for neuronal health and homeostasis. However, a continued activation of the inflammatory response can be detrimental to remaining neurons and aggravate the disease process. Apart from a disease modifying role, some evidence suggests that neuroinflammation may also contribute to the upstream cause of the disease. In this review, we will first focus on the role of neuroinflammation in the pathogenesis of chromosome 9 open reading frame 72 gene (C9orf72) hexanucleotide repeat expansions (HRE)-mediated ALS/FTD (C9-ALS/FTD). Additionally, we will discuss evidence from ex vivo and in vivo studies and finally, we briefly summarize the trials and progress of anti-inflammatory therapies.
Collapse
Affiliation(s)
- Pegah Masrori
- Department of Neurosciences, Experimental Neurology, and Leuven Brain Institute (LBI), KU Leuven-University of Leuven, 3000, Leuven, Belgium.,Laboratory of Neurobiology, Experimental Neurology, Center for Brain and Disease Research, VIB, Campus Gasthuisberg, O&N5, Herestraat 49, 602, 3000, Leuven, PB, Belgium.,Neurology Department, University Hospitals Leuven, Campus Gasthuisberg, Herestraat 49, 3000, Leuven, Belgium.,Department of Neurology, University Hospital Antwerp, 2650, Edegem, Belgium
| | - Jimmy Beckers
- Department of Neurosciences, Experimental Neurology, and Leuven Brain Institute (LBI), KU Leuven-University of Leuven, 3000, Leuven, Belgium.,Laboratory of Neurobiology, Experimental Neurology, Center for Brain and Disease Research, VIB, Campus Gasthuisberg, O&N5, Herestraat 49, 602, 3000, Leuven, PB, Belgium
| | - Helena Gossye
- Department of Neurology, University Hospital Antwerp, 2650, Edegem, Belgium.,VIB Center for Molecular Neurology, Neurodegenerative Brain Diseases, University of Antwerp, 2000, Antwerp, Belgium.,Department of Biomedical Sciences, University of Antwerp, 2000, Antwerp, Belgium
| | - Philip Van Damme
- Department of Neurosciences, Experimental Neurology, and Leuven Brain Institute (LBI), KU Leuven-University of Leuven, 3000, Leuven, Belgium. .,Laboratory of Neurobiology, Experimental Neurology, Center for Brain and Disease Research, VIB, Campus Gasthuisberg, O&N5, Herestraat 49, 602, 3000, Leuven, PB, Belgium. .,Neurology Department, University Hospitals Leuven, Campus Gasthuisberg, Herestraat 49, 3000, Leuven, Belgium.
| |
Collapse
|
18
|
Du X, Zhu H, Jiao D, Nian Z, Zhang J, Zhou Y, Zheng X, Tong X, Wei H, Fu B. Human-Induced CD49a+ NK Cells Promote Fetal Growth. Front Immunol 2022; 13:821542. [PMID: 35185911 PMCID: PMC8854499 DOI: 10.3389/fimmu.2022.821542] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 01/19/2022] [Indexed: 01/27/2023] Open
Abstract
CD49a+ natural killer (NK) cells play a critical role in promoting fetal development and maintaining immune tolerance at the maternal-fetal interface during the early stages of pregnancy. However, given their residency in human tissue, thorough studies and clinical applications are difficult to perform. It is still unclear as to how functional human CD49a+ NK cells can be induced to benefit pregnancy outcomes. In this study, we established three no-feeder cell induction systems to induce human CD49a+ NK cells from umbilical cord blood hematopoietic stem cells (HSCs), bone marrow HSCs, and peripheral blood NK cells in vitro. These induced NK cells (iNKs) from three cell induction systems display high levels of CD49a, CD9, CD39, CD151 expression, low levels of CD16 expression, and no obvious cytotoxic capability. They are phenotypically and functionally similar to decidual NK cells. Furthermore, these iNKs display a high expression of growth-promoting factors and proangiogenic factors and can promote fetal growth and improve uterine artery blood flow in a murine pregnancy model in vivo. This research demonstrates the ability of human-induced CD49a+ NK cells to promote fetal growth via three cell induction systems, which could eventually be used to treat patients experiencing adverse pregnancy outcomes.
Collapse
Affiliation(s)
- Xianghui Du
- The Department of Obstetrics and Gynecology, First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Institute of Immunology, University of Science and Technology of China, Hefei, China
| | - Huaiping Zhu
- The Section of Experimental Hematology, First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- *Correspondence: Huaiping Zhu, ; Haiming Wei, ; Binqing Fu,
| | - Defeng Jiao
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Institute of Immunology, University of Science and Technology of China, Hefei, China
| | - Zhigang Nian
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Institute of Immunology, University of Science and Technology of China, Hefei, China
| | - Jinghe Zhang
- The Department of Obstetrics and Gynecology, First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Institute of Immunology, University of Science and Technology of China, Hefei, China
| | - Yonggang Zhou
- The Department of Obstetrics and Gynecology, First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Institute of Immunology, University of Science and Technology of China, Hefei, China
| | - Xiaohu Zheng
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Institute of Immunology, University of Science and Technology of China, Hefei, China
| | - Xianhong Tong
- The Department of Obstetrics and Gynecology, First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Haiming Wei
- The Department of Obstetrics and Gynecology, First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Institute of Immunology, University of Science and Technology of China, Hefei, China
- *Correspondence: Huaiping Zhu, ; Haiming Wei, ; Binqing Fu,
| | - Binqing Fu
- The Department of Obstetrics and Gynecology, First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Institute of Immunology, University of Science and Technology of China, Hefei, China
- *Correspondence: Huaiping Zhu, ; Haiming Wei, ; Binqing Fu,
| |
Collapse
|
19
|
Tarannum M, Romee R. Cytokine-induced memory-like natural killer cells for cancer immunotherapy. Stem Cell Res Ther 2021; 12:592. [PMID: 34863287 PMCID: PMC8642969 DOI: 10.1186/s13287-021-02655-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 09/25/2021] [Indexed: 12/12/2022] Open
Abstract
Natural killer cells are an important part of the innate immune system mediating robust responses to virus-infected and malignant cells without needing prior antigen priming. NK cells have always been thought to be short-lived and with no antigen specificity; however, recent data support the presence of NK cell memory including in the hapten-specific contact hypersensitivity model and in certain viral infections. The memory-like features can also be generated by short-term activation of both murine and human NK cells with cytokine combination of IL-12, IL-15 and IL-18, imparting increased longevity and enhanced anticancer functionality. Preclinical studies and very early clinical trials demonstrate safety and very promising clinical activity of these cytokine-induced memory-like (CIML) NK cells, making them an attractive cell type for developing novel adoptive cellular immunotherapy strategies. Furthermore, efforts are on to arm them with novel gene constructs for enhanced tumor targeting and function.
Collapse
Affiliation(s)
- Mubin Tarannum
- Division of Cellular Therapy and Stem Cell Transplantation, Dana Farber Cancer Institute, Harvard Medical School, 450 Brookline Ave, Boston, MA, 02215, USA
| | - Rizwan Romee
- Division of Cellular Therapy and Stem Cell Transplantation, Dana Farber Cancer Institute, Harvard Medical School, 450 Brookline Ave, Boston, MA, 02215, USA.
| |
Collapse
|
20
|
Abstract
Extensive interest in cancer immunotherapy is reported according to the clinical importance of CTLA-4 and (PD-1/PD-L1) [programmed death (PD) and programmed death-ligand (PD-L1)] in immune checkpoint therapies. AXL is a receptor tyrosine kinase expressed in different types of cancer and in relation to resistance against various anticancer therapeutics due to poor clinical prognosis. AXL and its ligand, i.e., growth arrest-specific 6 (GAS6) proteins, are expressed on many cancer cells, and the GAS6/AXL pathway is reported to promote cancer cell proliferation, survival, migration, invasion, angiogenesis, and immune evasion. AXL is an attractive and novel therapeutic target for impairing tumor progression from immune cell contracts in the tumor microenvironment. The GAS6/AXL pathway is also of interest immunologically because it targets fewer antitumor immune responses. In effect, several targeted therapies are selective and nonselective for AXL, which are in preclinical and clinical development in multiple cancer types. Therefore, this review focuses on the role of the GAS6/AXL signaling pathway in triggering the immunosuppressive tumor microenvironment as immune evasion. This includes regulating its composition and activating T-cell exclusion with the immune-suppressive activity of regulatory T cells, which is related to one of the hallmarks of cancer survival. Finally, this article discusses the GAS6/AXL signaling pathway in the context of several immune responses such as NK cell activation, apoptosis, and tumor-specific immunity, especially PD-1/PDL-1 signaling.
Collapse
Affiliation(s)
- Hye-Youn Son
- Department of Breast and Endocrine Surgery, Center for Medical Innovation, Seoul National University Hospital, Seoul, South Korea
| | - Hwan-Kyu Jeong
- School of Biosystems and Biomedical Sciences, Korea University, Seoul, South Korea
| |
Collapse
|
21
|
Lobo de Figueiredo-Pontes L, Adamcova MK, Grusanovic S, Kuzmina M, Aparecida Lopes I, Fernandes de Oliveira Costa A, Zhang H, Strnad H, Lee S, Moudra A, Jonasova AT, Zidka M, Welner RS, Tenen DG, Alberich-Jorda M. Improved hematopoietic stem cell transplantation upon inhibition of natural killer cell-derived interferon-gamma. Stem Cell Reports 2021; 16:1999-2013. [PMID: 34242616 PMCID: PMC8365098 DOI: 10.1016/j.stemcr.2021.06.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 06/10/2021] [Accepted: 06/10/2021] [Indexed: 12/11/2022] Open
Abstract
Hematopoietic stem cell transplantation (HSCT) is a frequent therapeutic approach to restore hematopoiesis in patients with hematologic diseases. Patients receive a hematopoietic stem cell (HSC)-enriched donor cell infusion also containing immune cells, which may have a beneficial effect by eliminating residual neoplastic cells. However, the effect that donor innate immune cells may have on the donor HSCs has not been deeply explored. Here, we evaluate the influence of donor natural killer (NK) cells on HSC fate, concluded that NK cells negatively affect HSC frequency and function, and identified interferon-gamma (IFNγ) as a potential mediator. Interestingly, improved HSC fitness was achieved by NK cell depletion from murine and human donor infusions or by blocking IFNγ activity. Thus, our data suggest that suppression of inflammatory signals generated by donor innate immune cells can enhance engraftment and hematopoietic reconstitution during HSCT, which is particularly critical when limited HSC numbers are available and the risk of engraftment failure is high.
Collapse
Affiliation(s)
- Lorena Lobo de Figueiredo-Pontes
- Hematology Division, Department of Medical Images, Hematology, and Clinical Oncology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP 14048-900, Brazil
| | - Miroslava K Adamcova
- Department of Hemato-oncology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague 142 00, Czech Republic; Childhood Leukaemia Investigation Prague, Department of Pediatric Haematology and Oncology, 2nd Faculty of Medicine, Charles University in Prague, University Hospital Motol, Prague 150 06, Czech Republic
| | - Srdjan Grusanovic
- Department of Hemato-oncology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague 142 00, Czech Republic; Childhood Leukaemia Investigation Prague, Department of Pediatric Haematology and Oncology, 2nd Faculty of Medicine, Charles University in Prague, University Hospital Motol, Prague 150 06, Czech Republic; Faculty of Science, Charles University, Prague 128 00, Czech Republic
| | - Maria Kuzmina
- Department of Hemato-oncology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague 142 00, Czech Republic; Faculty of Science, Charles University, Prague 128 00, Czech Republic
| | - Izabela Aparecida Lopes
- Hematology Division, Department of Medical Images, Hematology, and Clinical Oncology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP 14048-900, Brazil
| | - Amanda Fernandes de Oliveira Costa
- Hematology Division, Department of Medical Images, Hematology, and Clinical Oncology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP 14048-900, Brazil
| | - Hong Zhang
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Hynek Strnad
- Department of Genomics and Bioinformatics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague 142 00, Czech Republic
| | - Sanghoon Lee
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Alena Moudra
- 1(st) Department of Medicine - Department of Haematology, First Faculty of Medicine, Charles University in Prague and General University Hospital, Prague 120 00, Czech Republic
| | - Anna T Jonasova
- 1(st) Department of Medicine - Department of Haematology, First Faculty of Medicine, Charles University in Prague and General University Hospital, Prague 120 00, Czech Republic
| | - Michal Zidka
- Orthopaedic Department CLPA-Mediterra, Prague 190 00, Czech Republic; 3(rd) Medical Faculty, Charles University, Prague 100 00, Czech Republic
| | - Robert S Welner
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115, USA; Department of Medicine, Division Hematology/Oncology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Daniel G Tenen
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115, USA; Cancer Science Institute, National University of Singapore, Singapore 117599, Singapore.
| | - Meritxell Alberich-Jorda
- Department of Hemato-oncology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague 142 00, Czech Republic; Childhood Leukaemia Investigation Prague, Department of Pediatric Haematology and Oncology, 2nd Faculty of Medicine, Charles University in Prague, University Hospital Motol, Prague 150 06, Czech Republic.
| |
Collapse
|
22
|
Zalfa C, Paust S. Natural Killer Cell Interactions With Myeloid Derived Suppressor Cells in the Tumor Microenvironment and Implications for Cancer Immunotherapy. Front Immunol 2021; 12:633205. [PMID: 34025641 PMCID: PMC8133367 DOI: 10.3389/fimmu.2021.633205] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 02/12/2021] [Indexed: 12/17/2022] Open
Abstract
The tumor microenvironment (TME) is a complex and heterogeneous environment composed of cancer cells, tumor stroma, a mixture of tissue-resident and infiltrating immune cells, secreted factors, and extracellular matrix proteins. Natural killer (NK) cells play a vital role in fighting tumors, but chronic stimulation and immunosuppression in the TME lead to NK cell exhaustion and limited antitumor functions. Myeloid-derived suppressor cells (MDSCs) are a heterogeneous group of myeloid cells with potent immunosuppressive activity that gradually accumulate in tumor tissues. MDSCs interact with innate and adaptive immune cells and play a crucial role in negatively regulating the immune response to tumors. This review discusses MDSC-mediated NK cell regulation within the TME, focusing on critical cellular and molecular interactions. We review current strategies that target MDSC-mediated immunosuppression to enhance NK cell cytotoxic antitumor activity. We also speculate on how NK cell-based antitumor immunotherapy could be improved.
Collapse
Affiliation(s)
| | - Silke Paust
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, United States
| |
Collapse
|
23
|
Fathi E, Farahzadi R, Valipour B. Alginate/gelatin encapsulation promotes NK cells differentiation potential of bone marrow resident C-kit + hematopoietic stem cells. Int J Biol Macromol 2021; 177:317-327. [PMID: 33621568 DOI: 10.1016/j.ijbiomac.2021.02.131] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 01/16/2021] [Accepted: 02/16/2021] [Indexed: 02/06/2023]
Abstract
The ability of natural killer (NK) cells to destroy cancerous cells with no prior sensitization has made them attractive candidates for cell therapy. The application of hydrogels must be notified as cell delivery vehicles in cell differentiation. The present study was conducted to investigate the effect of alginate-gelatin encapsulation on NK cell differentiation potential of C-kit+ cells. C-kit+ cells were differentiated to NK cells under both encapsulated and un-encapsulated conditions. Next, the cells were subjected to real-time polymerase chain reaction (PCR) and western blotting for the assessment of their telomere length and protein expressions, respectively. Afterward, culture medium was collected to measure cytokines levels. Thereafter, the differentiated NK cells were co-cultured with Molt-4 cells to investigate the potency of cell apoptosis by Annexin V/PI assay. A significant change was observed in the protein expression of Janus kinase/Signal transducers (JAK/STAT) pathway components. Additionally, the encapsulation caused an increase in the apoptosis of Molt-4 cells and telomere length of NK cells differentiated C-kit+ cells. Therefore, it can be concluded that the effects of encapsulation on NK cell's differentiation of C-kit+ cells could be resulted from the secreted cytokines of interleukin (IL)-2, IL-3, IL-7, and IL-12 as well as the increased telomere length.
Collapse
Affiliation(s)
- Ezzatollah Fathi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Raheleh Farahzadi
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Behnaz Valipour
- Department of Histopathology and Anatomy, Faculty of Medicine, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| |
Collapse
|
24
|
Wang X, Zhao XY. Transcription Factors Associated With IL-15 Cytokine Signaling During NK Cell Development. Front Immunol 2021; 12:610789. [PMID: 33815365 PMCID: PMC8013977 DOI: 10.3389/fimmu.2021.610789] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 03/01/2021] [Indexed: 12/16/2022] Open
Abstract
Natural killer (NK) cells are lymphocytes primarily involved in innate immunity and possess important functional properties in anti-viral and anti-tumor responses; thus, these cells have broad potential for clinical utilization. NK cells originate from hematopoietic stem cells (HSCs) through the following two independent and continuous processes: early commitment from HSCs to IL-15-responsive NK cell progenitors (NKPs) and subsequent differentiation into mature NK cells in response to IL-15. IL-15 is the most important cytokine for NK cell development, is produced by both hematopoietic and nonhematopoietic cells, and functions through a distinct delivery process termed transpresentation. Upon being transpresented to NK cells, IL-15 contributes to NK cell development via the activation of several downstream signaling pathways, including the Ras-MEK-MAPK, JAK-STAT5, and PI3K-ATK-mTOR pathways. Nonetheless, the exact role of IL-15 in NK cell development has not been discussed in a consecutive and comprehensive manner. Here, we review current knowledge about the indispensable role of IL-15 in NK cell development and address which cells produce IL-15 to support NK cell development and when IL-15 exerts its function during multiple developmental stages. Specifically, we highlight how IL-15 supports NK cell development by elucidating the distinct transpresentation of IL-15 to NK cells and revealing the downstream target of IL-15 signaling during NK cell development.
Collapse
Affiliation(s)
- Xiang Wang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, National Clinical Research Center for Hematologic Disease, Beijing, China
| | - Xiang-Yu Zhao
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, National Clinical Research Center for Hematologic Disease, Beijing, China.,Beijing Engineering Laboratory for Cellular Therapy, Beijing, China
| |
Collapse
|
25
|
Kucuksezer UC, Aktas Cetin E, Esen F, Tahrali I, Akdeniz N, Gelmez MY, Deniz G. The Role of Natural Killer Cells in Autoimmune Diseases. Front Immunol 2021; 12:622306. [PMID: 33717125 PMCID: PMC7947192 DOI: 10.3389/fimmu.2021.622306] [Citation(s) in RCA: 153] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 01/07/2021] [Indexed: 12/15/2022] Open
Abstract
Natural killer (NK) cells, the large granular lymphocytes differentiated from the common lymphoid progenitors, were discovered in early 1970's. They are members of innate immunity and were initially defined by their strong cytotoxicity against virus-infected cells and by their important effector functions in anti-tumoral immune responses. Nowadays, NK cells are classified among the recently discovered innate lymphoid cell subsets and have capacity to influence both innate and adaptive immune responses. Therefore, they can be considered as innate immune cells that stands between the innate and adaptive arms of immunity. NK cells don't express T or B cell receptors and are recognized by absence of CD3. There are two major subgroups of NK cells according to their differential expression of CD16 and CD56. While CD16+CD56dim subset is best-known by their cytotoxic functions, CD16-CD56bright NK cell subset produces a bunch of cytokines comparable to CD4+ T helper cell subsets. Another subset of NK cells with production of interleukin (IL)-10 was named as NK regulatory cells, which has suppressive properties and could take part in immune-regulatory responses. Activation of NK cells is determined by a delicate balance of cell-surface receptors that have either activating or inhibitory properties. On the other hand, a variety of cytokines including IL-2, IL-12, IL-15, and IL-18 influence NK cell activity. NK-derived cytokines and their cytotoxic functions through induction of apoptosis take part in regulation of the immune responses and could contribute to the pathogenesis of many immune mediated diseases including ankylosing spondylitis, Behçet's disease, multiple sclerosis, rheumatoid arthritis, psoriasis, systemic lupus erythematosus and type-1 diabetes. Dysregulation of NK cells in autoimmune disorders may occur through multiple mechanisms. Thanks to the rapid developments in biotechnology, progressive research in immunology enables better characterization of cells and their delicate roles in the complex network of immunity. As NK cells stand in between innate and adaptive arms of immunity and "bridge" them, their contribution in inflammation and immune regulation deserves intense investigations. Better understanding of NK-cell biology and their contribution in both exacerbation and regulation of inflammatory disorders is a requisite for possible utilization of these multi-faceted cells in novel therapeutic interventions.
Collapse
Affiliation(s)
- Umut Can Kucuksezer
- Department of Immunology, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Esin Aktas Cetin
- Department of Immunology, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Fehim Esen
- Department of Immunology, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
- Department of Ophthalmology, Medical Faculty, Istanbul Medeniyet University, Istanbul, Turkey
| | - Ilhan Tahrali
- Department of Immunology, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Nilgun Akdeniz
- Department of Immunology, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Metin Yusuf Gelmez
- Department of Immunology, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Gunnur Deniz
- Department of Immunology, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| |
Collapse
|
26
|
The immune potential of decidua-resident CD16 +CD56 + NK cells in human pregnancy. Hum Immunol 2021; 82:332-339. [PMID: 33583640 DOI: 10.1016/j.humimm.2021.01.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 01/05/2021] [Accepted: 01/21/2021] [Indexed: 12/22/2022]
Abstract
Human CD56+CD3- NK cells can be subdivided into two different subsets according to the expression pattern of CD56 and CD16. CD56+/brightCD16- (CD16-) NK cells are prominently cytokine producers with little cytotoxicity whereas CD56+/dimCD16+ (CD16+) NK cells are efficient killers with poorer cytokine production potential. In human pregnancy, CD56+ decidual (d)NK cells accumulate in the maternal fetal interface to regulate placental immunity and development. Unlike peripheral blood (pb)NK cells, the majority of dNK cells are CD56 positive with limited CD16 reactivity. Our results demonstrated that in normal and pathological pregnancies, CD16+ dNK cells are a unique population in comparison to CD16- dNK subset. The expression of NK activation receptors CD335, CD336, CD244 and CD314 on CD16+ dNK subpopulation was lower than that on CD16- dNK cells. Upon cytokine stimulation with rhIL-12/15/18 or TGFβ blockade, the CD16+ dNK subset exhibited more robust response on the expression of IFNG, IL-8 and CD107a, compared to that of the CD16- dNK subpopulation. Functions of the CD16+ dNK subset were shown to be independent of cellular interaction with trophoblast cells. Studies of preeclamptic patients revealed lower proportions of CD16+ dNK cells, suggesting potential protective roles of these cells during normal gestations.. Therefore, we suggest that the CD16+ dNK subset, through compensating CD16- dNK cell function, is an indispensable componentto regulate decidual immune response and to support placentation.
Collapse
|
27
|
Natural killer frequency determines natural killer cytotoxicity directly in accentuated zones and indirectly in "moderate-to-normal frequency" segment. Cent Eur J Immunol 2021; 45:315-324. [PMID: 33437184 DOI: 10.5114/ceji.2020.101263] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 07/10/2018] [Indexed: 11/17/2022] Open
Abstract
Natural killer (NK) frequency and NK cytotoxicity (NKc) are key determining factors of a clinical outcome. In our previous study, we showed the prognostic clinical significance of immune parameters when they are beyond the optimal range (accentuated). In this study, we attempted to explain the disparity of accentuated but physiologically and immunologically normal NK parameters that might serve as negative clinical prognostics indications of failed pregnancies. We have analyzed NK%, NKc levels, and their reciprocal correlation in 2,804 patients with reproductive failures. In the entire clinical population, NK% correlates with NKc. Interestingly, we found this relationship to be strongly dependent on NK level's status. NK%-NKc correlation was the strongest (r = 0.2021, p < 0.0001) in a patient group with high NK% (> 17.5%). Patients with NK% between 15-17.5% manifested lower but still significant correlation NK%-NKc (r = 0.1213, p = 0.0155). Additionally, significant correlation (r = 0.2689, p < < 0.0001) between NK% and NKc was observed in a group of patients with NK levels < 7% (1.7-7%). While patients' groups with NK% (7-15%) did not reveal NK%-NKc association. This led us to hypothesize that the qualitative-quantitative status of NK population is responsible for their cytotoxic activity. Consistent with our hypothesis, the "balanced zone" NK% is tightly controlled, and thus does not correlate directly with NKc. In contrast, the "accentuated zones" of NK% escape this control and directly affecting NKc. Demonstrated phenomena supports our idea about the clinical significance of immune accentuation and explains its novel physiological role.
Collapse
|
28
|
Yilmaz A, Cui H, Caligiuri MA, Yu J. Chimeric antigen receptor-engineered natural killer cells for cancer immunotherapy. J Hematol Oncol 2020; 13:168. [PMID: 33287875 PMCID: PMC7720606 DOI: 10.1186/s13045-020-00998-9] [Citation(s) in RCA: 120] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 11/12/2020] [Indexed: 12/13/2022] Open
Abstract
Natural killer (NK) cells are a critical component of the innate immune system. Chimeric antigen receptors (CARs) re-direct NK cells toward tumor cells carrying corresponding antigens, creating major opportunities in the fight against cancer. CAR NK cells have the potential for use as universal CAR cells without the need for human leukocyte antigen matching or prior exposure to tumor-associated antigens. Exciting data from recent clinical trials have renewed interest in the field of cancer immunotherapy due to the potential of CAR NK cells in the production of "off-the-shelf" anti-cancer immunotherapeutic products. Here, we provide an up-to-date comprehensive overview of the recent advancements in key areas of CAR NK cell research and identify under-investigated research areas. We summarize improvements in CAR design and structure, advantages and disadvantages of using CAR NK cells as an alternative to CAR T cell therapy, and list sources to obtain NK cells. In addition, we provide a list of tumor-associated antigens targeted by CAR NK cells and detail challenges in expanding and transducing NK cells for CAR production. We additionally discuss barriers to effective treatment and suggest solutions to improve CAR NK cell function, proliferation, persistence, therapeutic effectiveness, and safety in solid and liquid tumors.
Collapse
Affiliation(s)
- Ahmet Yilmaz
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, 43210, USA
| | - Hanwei Cui
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, 43210, USA
| | - Michael A Caligiuri
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, 1500 E. Duarte Road, KCRB, Bldg. 158, 3rd Floor, Room 3017, Los Angeles, CA, 91010, USA
- Hematologic Malignancies and Stem Cell Transplantation Institute, City of Hope National Medical Center, Los Angeles, CA, 91010, USA
- Department of Immuno-Oncology, City of Hope Beckman Research Institute, Los Angeles, CA, 91010, USA
- City of Hope Comprehensive Cancer Center and Beckman Research Institute, Los Angeles, CA, 91010, USA
| | - Jianhua Yu
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, 1500 E. Duarte Road, KCRB, Bldg. 158, 3rd Floor, Room 3017, Los Angeles, CA, 91010, USA.
- Hematologic Malignancies and Stem Cell Transplantation Institute, City of Hope National Medical Center, Los Angeles, CA, 91010, USA.
- Department of Immuno-Oncology, City of Hope Beckman Research Institute, Los Angeles, CA, 91010, USA.
- City of Hope Comprehensive Cancer Center and Beckman Research Institute, Los Angeles, CA, 91010, USA.
| |
Collapse
|
29
|
The role of natural killer cells in Parkinson's disease. Exp Mol Med 2020; 52:1517-1525. [PMID: 32973221 PMCID: PMC8080760 DOI: 10.1038/s12276-020-00505-7] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 08/03/2020] [Indexed: 02/06/2023] Open
Abstract
Numerous lines of evidence indicate an association between sustained inflammation and Parkinson's disease, but whether increased inflammation is a cause or consequence of Parkinson's disease remains highly contested. Extensive efforts have been made to characterize microglial function in Parkinson's disease, but the role of peripheral immune cells is less understood. Natural killer cells are innate effector lymphocytes that primarily target and kill malignant cells. Recent scientific discoveries have unveiled numerous novel functions of natural killer cells, such as resolving inflammation, forming immunological memory, and modulating antigen-presenting cell function. Furthermore, natural killer cells are capable of homing to the central nervous system in neurological disorders that exhibit exacerbated inflammation and inhibit hyperactivated microglia. Recently, a study demonstrated that natural killer cells scavenge alpha-synuclein aggregates, the primary component of Lewy bodies, and systemic depletion of natural killer cells results in exacerbated neuropathology in a mouse model of alpha-synucleinopathy, making them a highly relevant cell type in Parkinson's disease. However, the exact role of natural killer cells in Parkinson's disease remains elusive. In this review, we introduce the systemic inflammatory process seen in Parkinson's disease, with a particular focus on the direct and indirect modulatory capacity of natural killer cells in the context of Parkinson's disease.
Collapse
|
30
|
Guerrero B, Hassouneh F, Delgado E, Casado JG, Tarazona R. Natural killer cells in recurrent miscarriage: An overview. J Reprod Immunol 2020; 142:103209. [PMID: 32992208 DOI: 10.1016/j.jri.2020.103209] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 07/31/2020] [Accepted: 09/14/2020] [Indexed: 12/20/2022]
Abstract
Recurrent Miscarriage is an early pregnancy complication which affects about 1-3 % of child-bearing couples. The mechanisms involved in the occurrence of recurrent miscarriages are not clearly understood. In the last decade Natural Killer cells have been studied in peripheral blood and uterus in order to determine if there are specific characteristics of Natural Killer cells associated with miscarriage. Different authors have described an increased number of uterine and peripheral blood Natural Killer cells in women with recurrent miscarriages compared to control women. However, its relationship with miscarriage has not been confirmed. In patients with recurrent miscarriage a lack of inhibition of decidua Natural Killer cells can be observed, which leads to a more activated state characterized by higher levels of proinflammatory cytokines. In peripheral blood, it has been also reported a dysfunctional cytokine production by Natural Killer cells, with an increase of interferon-γ levels and a decrease of Interleukin-4. Significant progress has been made in the last decade in understanding the biology of Natural Killer cells, including the identification of new receptors that also contribute to the activation and regulation of Natural Killer cells. In this review, we summarize the current progress in the study of Natural Killer cells in recurrent miscarriage.
Collapse
Affiliation(s)
| | | | - Elena Delgado
- Clínica Norba, Ginecología y Reproducción, Cáceres, Spain
| | - Javier G Casado
- Stem Cell Therapy Unit, Jesús Usón Minimally Invasive Surgery Centre, Cáceres, Spain
| | | |
Collapse
|
31
|
Abdel-Latif M, Youness RA. Why natural killer cells in triple negative breast cancer? World J Clin Oncol 2020; 11:464-476. [PMID: 32821652 PMCID: PMC7407924 DOI: 10.5306/wjco.v11.i7.464] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/28/2020] [Accepted: 05/29/2020] [Indexed: 02/06/2023] Open
Abstract
The triple-negative subtype of breast cancer (TNBC) has the bleakest prognosis, owing to its lack of either hormone receptor as well as human epidermal growth factor receptor 2. Henceforth, immunotherapy has emerged as the front-runner for TNBC treatment, which avoids potentially damaging chemotherapeutics. However, despite its documented association with aggressive side effects and developed resistance, immune checkpoint blockade continues to dominate the TNBC immunotherapy scene. These immune checkpoint blockade drawbacks necessitate the exploration of other immunotherapeutic methods that would expand options for TNBC patients. One such method is the exploitation and recruitment of natural killer cells, which by harnessing the innate rather than adaptive immune system could potentially circumvent the downsides of immune checkpoint blockade. In this review, the authors will elucidate the advantageousness of natural killer cell-based immuno-oncology in TNBC as well as demonstrate the need to more extensively research such therapies in the future.
Collapse
Affiliation(s)
- Mustafa Abdel-Latif
- Biotechnology Program, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt
| | - Rana Ahmed Youness
- Pharmaceutical Biology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt
| |
Collapse
|
32
|
Yang C, Siebert JR, Burns R, Zheng Y, Mei A, Bonacci B, Wang D, Urrutia RA, Riese MJ, Rao S, Carlson KS, Thakar MS, Malarkannan S. Single-cell transcriptome reveals the novel role of T-bet in suppressing the immature NK gene signature. eLife 2020; 9:51339. [PMID: 32406817 PMCID: PMC7255804 DOI: 10.7554/elife.51339] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Accepted: 05/08/2020] [Indexed: 12/26/2022] Open
Abstract
The transcriptional activation and repression during NK cell ontology are poorly understood. Here, using single-cell RNA-sequencing, we reveal a novel role for T-bet in suppressing the immature gene signature during murine NK cell development. Based on transcriptome, we identified five distinct NK cell clusters and define their relative developmental maturity in the bone marrow. Transcriptome-based machine-learning classifiers revealed that half of the mTORC2-deficient NK cells belongs to the least mature NK cluster. Mechanistically, loss of mTORC2 results in an increased expression of signature genes representing immature NK cells. Since mTORC2 regulates the expression of T-bet through AktS473-FoxO1 axis, we further characterized the T-bet-deficient NK cells and found an augmented immature transcriptomic signature. Moreover, deletion of Foxo1 restores the expression of T-bet and corrects the abnormal expression of immature NK genes. Collectively, our study reveals a novel role for mTORC2-AktS473-FoxO1-T-bet axis in suppressing the transcriptional signature of immature NK cells.
Collapse
Affiliation(s)
- Chao Yang
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Blood Center of Wisconsin, Milwaukee, United States.,Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, United States
| | - Jason R Siebert
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Blood Center of Wisconsin, Milwaukee, United States.,Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, United States
| | - Robert Burns
- Bioinfomatics Core, Blood Research Institute, Blood Center of Wisconsin, Milwaukee, United States
| | - Yongwei Zheng
- Laboratory of B-Cell Lymphopoiesis, Blood Research Institute, Blood Center of Wisconsin, Milwaukee, United States
| | - Ao Mei
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Blood Center of Wisconsin, Milwaukee, United States.,Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, United States
| | - Benedetta Bonacci
- Flow Cytometry Core, Blood Research Institute, Blood Center of Wisconsin, Milwaukee, United States
| | - Demin Wang
- Laboratory of B-Cell Lymphopoiesis, Blood Research Institute, Blood Center of Wisconsin, Milwaukee, United States
| | - Raul A Urrutia
- Department of Surgery, Medical College of Wisconsin, Milwaukee, United States
| | - Matthew J Riese
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, United States.,Laboratory of Lymphocyte Biology, Blood Research Institute, Blood Center of Wisconsin, Milwaukee, United States.,Department of Medicine, Medical College of Wisconsin, Milwaukee, United States
| | - Sridhar Rao
- Laboratory of Stem Cell Transcriptional Regulation, Blood Research Institute, Blood Center of Wisconsin, Milwaukee, United States
| | - Karen-Sue Carlson
- Department of Medicine, Medical College of Wisconsin, Milwaukee, United States.,Laboratory of Coagulation Biology, Blood Research Institute, Blood Center of Wisconsin, Milwaukee, United States
| | - Monica S Thakar
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Blood Center of Wisconsin, Milwaukee, United States.,Department of Pediatrics, Medical College of Wisconsin, Milwaukee, United States
| | - Subramaniam Malarkannan
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Blood Center of Wisconsin, Milwaukee, United States.,Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, United States.,Department of Medicine, Medical College of Wisconsin, Milwaukee, United States.,Department of Pediatrics, Medical College of Wisconsin, Milwaukee, United States
| |
Collapse
|
33
|
Pesce S, Greppi M, Ferretti E, Obino V, Carlomagno S, Rutigliani M, Thoren FB, Sivori S, Castagnola P, Candiani S, Marcenaro E. miRNAs in NK Cell-Based Immune Responses and Cancer Immunotherapy. Front Cell Dev Biol 2020; 8:119. [PMID: 32161759 PMCID: PMC7053181 DOI: 10.3389/fcell.2020.00119] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 02/11/2020] [Indexed: 12/16/2022] Open
Abstract
The incidence of certain forms of tumors has increased progressively in recent years and is expected to continue growing as life expectancy continues to increase. Tumor-infiltrating NK cells may contribute to develop an anti-tumor response. Optimized combinations of different cancer therapies, including NK cell-based approaches for targeting tumor cells, have the potential to open new avenues in cancer immunotherapy. Functional inhibitory receptors on NK cells are needed to prevent their attack on healthy cells. Nevertheless, disruption of inhibitory receptors function on NK cells increases the cytotoxic capacity of NK cells against cancer cells. MicroRNAs (miRNAs) are small non-coding RNA molecules that target mRNA and thus regulate the expression of genes involved in the development, maturation, and effector functions of NK cells. Therapeutic strategies that target the regulatory effects of miRNAs have the potential to improve the efficiency of cancer immunotherapy. Interestingly, emerging evidence points out that some miRNAs can, directly and indirectly, control the surface expression of immune checkpoints on NK cells or that of their ligands on tumor cells. This suggests a possible use of miRNAs in the context of anti-tumor therapy. This review provides the current overview of the connections between miRNAs and regulation of NK cell functions and discusses the potential of these miRNAs as innovative biomarkers/targets for cancer immunotherapy.
Collapse
Affiliation(s)
- Silvia Pesce
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | - Marco Greppi
- Department of Experimental Medicine, University of Genoa, Genoa, Italy.,Center of Excellence for Biomedical Research, University of Genoa, Genoa, Italy
| | - Elisa Ferretti
- Department of Experimental Medicine, University of Genoa, Genoa, Italy.,Center of Excellence for Biomedical Research, University of Genoa, Genoa, Italy
| | - Valentina Obino
- Department of Experimental Medicine, University of Genoa, Genoa, Italy.,Center of Excellence for Biomedical Research, University of Genoa, Genoa, Italy
| | - Simona Carlomagno
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | - Mariangela Rutigliani
- Histological and Anatomical Pathology Unit, Department of Laboratory and Service, E.O. Galliera Hospital, Genova, Italy
| | - Fredrik B Thoren
- Tumor Immunology Laboratory (TIMM) Laboratory at Sahlgrenska Cancer Center, Department of Infectious Diseases, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Simona Sivori
- Department of Experimental Medicine, University of Genoa, Genoa, Italy.,Center of Excellence for Biomedical Research, University of Genoa, Genoa, Italy
| | | | - Simona Candiani
- Department of Earth Science, Environment and Life (DISTAV), University of Genoa, Genoa, Italy
| | - Emanuela Marcenaro
- Department of Experimental Medicine, University of Genoa, Genoa, Italy.,Center of Excellence for Biomedical Research, University of Genoa, Genoa, Italy
| |
Collapse
|
34
|
Lopez-Silva TL, Leach DG, Azares A, Li IC, Woodside DG, Hartgerink JD. Chemical functionality of multidomain peptide hydrogels governs early host immune response. Biomaterials 2020; 231:119667. [PMID: 31855625 PMCID: PMC7049098 DOI: 10.1016/j.biomaterials.2019.119667] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 12/03/2019] [Accepted: 12/03/2019] [Indexed: 12/21/2022]
Abstract
Multidomain Peptide (MDP) hydrogels are nanofibrous materials with many potential biomedical applications. The peptide sequence design of these materials offers high versatility and allows for the incorporation of various chemical functionalities into the nanofibrous scaffold. It is known that host response to biomaterials is strongly affected by factors such as size, shape, stiffness, and chemistry. However, there is a lack of fundamental understanding of the host response to different MDP hydrogels. In particular, it is unknown what effect the chemical functionality displayed on the nanofiber has on biological activity. Here we evaluated the early inflammatory host response to four MDP hydrogels displaying amines, guanidinium ions, and carboxylates in a subcutaneous injection model. While all the studied peptide materials possess similar nanostructure and physical properties, they trigger markedly different inflammatory responses. These were characterized by immunophenotyping of the cellular infiltrate using multi-color flow cytometry. The negatively-charged peptides elicit minimal inflammation characterized by tissue-resident macrophage infiltration, fast remodeling, and no collagen deposition or blood vessel formation within the implants. In contrast, the positively-charged peptides are highly infiltrated by immune cells, are remodeled at a slower rate, promote angiogenesis, and result in a high degree of collagen deposition. The presence of dynamic cell phenotypes characterizes the inflammation caused by the lysine-based peptide, including inflammatory monocytes, macrophages, and lymphoid cells, which is seen to be resolving over time. The arginine-based hydrogel shows higher inflammatory response with a persistent and significant infiltration of polymorphonuclear myeloid-derived cells, even ten days after implantation. This understanding of the immune response to peptide biomaterials improves our ability to design effective materials and to tailor their use for specific biomedical applications.
Collapse
Affiliation(s)
| | - David G Leach
- Department of Chemistry, Rice University, Houston, TX, 77005, USA
| | - Alon Azares
- Department of Molecular Cardiology, Texas Heart Institute, Houston, TX, 77030, USA
| | - I-Che Li
- Department of Chemistry, Rice University, Houston, TX, 77005, USA
| | - Darren G Woodside
- Department of Molecular Cardiology, Texas Heart Institute, Houston, TX, 77030, USA
| | - Jeffrey D Hartgerink
- Department of Chemistry, Rice University, Houston, TX, 77005, USA; Department of Bioengineering, Rice University, Houston, TX, 77005, USA.
| |
Collapse
|
35
|
Phung CD, Tran TH, Kim JO. Engineered nanoparticles to enhance natural killer cell activity towards onco-immunotherapy: a review. Arch Pharm Res 2020; 43:32-45. [DOI: 10.1007/s12272-020-01218-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 01/20/2020] [Indexed: 12/12/2022]
|
36
|
Böning MAL, Trittel S, Riese P, van Ham M, Heyner M, Voss M, Parzmair GP, Klawonn F, Jeron A, Guzman CA, Jänsch L, Schraven B, Reinhold A, Bruder D. ADAP Promotes Degranulation and Migration of NK Cells Primed During in vivo Listeria monocytogenes Infection in Mice. Front Immunol 2020; 10:3144. [PMID: 32038647 PMCID: PMC6987423 DOI: 10.3389/fimmu.2019.03144] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 12/27/2019] [Indexed: 12/18/2022] Open
Abstract
The adhesion and degranulation-promoting adaptor protein (ADAP) serves as a multifunctional scaffold and is involved in the formation of immune signaling complexes. To date only limited and moreover conflicting data exist regarding the role of ADAP in NK cells. To extend existing knowledge we investigated ADAP-dependency of NK cells in the context of in vivo infection with the intracellular pathogen Listeria monocytogenes (Lm). Ex vivo analysis of infection-primed NK cells revealed impaired cytotoxic capacity in NK cells lacking ADAP as indicated by reduced CD107a surface expression and inefficient perforin production. However, ADAP-deficiency had no global effect on NK cell morphology or intracellular distribution of CD107a-containing vesicles. Proteomic definition of ADAPko and wild type NK cells did not uncover obvious differences in protein composition during the steady state and moreover, similar early response patterns were induced in NK cells upon infection independent of the genotype. In line with protein network analyses that suggested an altered migration phenotype in naïve ADAPko NK cells, in vitro migration assays uncovered significantly reduced migration of both naïve as well as infection-primed ADAPko NK cells compared to wild type NK cells. Notably, this migration defect was associated with a significantly reduced expression of the integrin CD11a on the surface of splenic ADAP-deficient NK cells 1 day post-Lm infection. We propose that ADAP-dependent alterations in integrin expression might account at least in part for the fact that during in vivo infection significantly lower numbers of ADAPko NK cells accumulate in the spleen i.e., the site of infection. In conclusion, we show here that during systemic Lm infection in mice ADAP is essential for efficient cytotoxic capacity and migration of NK cells.
Collapse
Affiliation(s)
- Martha A L Böning
- Infection Immunology Group, Institute of Medical Microbiology, Infection Control and Prevention, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University Magdeburg, Magdeburg, Germany.,Institute of Molecular and Clinical Immunology, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University Magdeburg, Magdeburg, Germany.,Immune Regulation Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Stephanie Trittel
- Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Peggy Riese
- Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Marco van Ham
- Cellular Proteome Research, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Maxi Heyner
- Cellular Proteome Research, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Martin Voss
- Institute of Molecular and Clinical Immunology, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Gerald P Parzmair
- Institute of Molecular and Clinical Immunology, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University Magdeburg, Magdeburg, Germany.,Immune Regulation Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Frank Klawonn
- Cellular Proteome Research, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Andreas Jeron
- Infection Immunology Group, Institute of Medical Microbiology, Infection Control and Prevention, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University Magdeburg, Magdeburg, Germany.,Immune Regulation Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Carlos A Guzman
- Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Lothar Jänsch
- Cellular Proteome Research, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Burkhart Schraven
- Institute of Molecular and Clinical Immunology, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Annegret Reinhold
- Institute of Molecular and Clinical Immunology, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Dunja Bruder
- Infection Immunology Group, Institute of Medical Microbiology, Infection Control and Prevention, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University Magdeburg, Magdeburg, Germany.,Immune Regulation Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| |
Collapse
|
37
|
Minetto P, Guolo F, Pesce S, Greppi M, Obino V, Ferretti E, Sivori S, Genova C, Lemoli RM, Marcenaro E. Harnessing NK Cells for Cancer Treatment. Front Immunol 2019; 10:2836. [PMID: 31867006 PMCID: PMC6908847 DOI: 10.3389/fimmu.2019.02836] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 11/18/2019] [Indexed: 12/12/2022] Open
Abstract
In the last years, natural killer (NK) cell-based immunotherapy has emerged as a promising therapeutic approach for solid tumors and hematological malignancies. NK cells are innate lymphocytes with an array of functional competences, including anti-cancer, anti-viral, and anti-graft-vs.-host disease potential. The intriguing idea of harnessing such potent innate immune system effectors for cancer treatment led to the development of clinical trials based on the adoptive therapy of NK cells or on the use of monoclonal antibodies targeting the main NK cell immune checkpoints. Indeed, checkpoint immunotherapy that targets inhibitory receptors of T cells, reversing their functional blocking, marked a breakthrough in anticancer therapy, opening new approaches for cancer immunotherapy and resulted in extensive research on immune checkpoints. However, the clinical efficacy of T cell-based immunotherapy presents a series of limitations, including the inability of T cells to recognize and kill HLA-Ineg tumor cells. For these reasons, new strategies for cancer immunotherapy are now focusing on NK cells. Blockade with NK cell checkpoint inhibitors that reverse their functional block may overcome the limitations of T cell-based immunotherapy, mainly against HLA-Ineg tumor targets. Here, we discuss recent anti-tumor approaches based on mAb-mediated blocking of immune checkpoints (either restricted to NK cells or shared with T cells), used either as a single agent or in combination with other compounds, that have demonstrated promising clinical responses in both solid tumors and hematological malignancies.
Collapse
Affiliation(s)
- Paola Minetto
- Clinic of Hematology, Department of Internal Medicine (DiMI), University of Genoa, Genova, Italy.,Ospedale Policlinico San Martino IRCCS, Genova, Italy
| | - Fabio Guolo
- Clinic of Hematology, Department of Internal Medicine (DiMI), University of Genoa, Genova, Italy.,Ospedale Policlinico San Martino IRCCS, Genova, Italy
| | - Silvia Pesce
- Department of Experimental Medicine, University of Genoa, Genova, Italy
| | - Marco Greppi
- Department of Experimental Medicine, University of Genoa, Genova, Italy.,Centre of Excellence for Biomedical Research, University of Genoa, Genova, Italy
| | - Valentina Obino
- Department of Experimental Medicine, University of Genoa, Genova, Italy.,Centre of Excellence for Biomedical Research, University of Genoa, Genova, Italy
| | - Elisa Ferretti
- Department of Experimental Medicine, University of Genoa, Genova, Italy.,Centre of Excellence for Biomedical Research, University of Genoa, Genova, Italy
| | - Simona Sivori
- Department of Experimental Medicine, University of Genoa, Genova, Italy.,Centre of Excellence for Biomedical Research, University of Genoa, Genova, Italy
| | - Carlo Genova
- Lung Cancer Unit, Ospedale Policlinico San Martino IRCCS, Genova, Italy
| | - Roberto Massimo Lemoli
- Clinic of Hematology, Department of Internal Medicine (DiMI), University of Genoa, Genova, Italy.,Ospedale Policlinico San Martino IRCCS, Genova, Italy
| | - Emanuela Marcenaro
- Department of Experimental Medicine, University of Genoa, Genova, Italy.,Centre of Excellence for Biomedical Research, University of Genoa, Genova, Italy
| |
Collapse
|
38
|
Wang Y, Zhang JH, Sheng J, Shao A. Immunoreactive Cells After Cerebral Ischemia. Front Immunol 2019; 10:2781. [PMID: 31849964 PMCID: PMC6902047 DOI: 10.3389/fimmu.2019.02781] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 11/13/2019] [Indexed: 12/20/2022] Open
Abstract
The immune system is rapidly activated after ischemic stroke. As immune cells migrate and infiltrate across the blood-brain barrier into the ischemic region, a cascade of cellular and molecular biological reactions occur, involving migrated immune cells, resident glial cells, and the vascular endothelium. These events regulate infarction evolution and thus influence the outcome of ischemic stroke. Most immune cells exert dual effects on cerebral ischemia, and some crucial cells may become central targets in ischemic stroke treatment and rehabilitation.
Collapse
Affiliation(s)
- Yijie Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - John H Zhang
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, United States
| | - Jifang Sheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Anwen Shao
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
39
|
Chen S, Dong Z. Concomitant deletion of SLAM-family receptors, NKG2D and DNAM-1 reveals gene redundancy of NK cell activating receptors in NK cell development and education. J Leukoc Biol 2019; 107:561-572. [PMID: 31729776 DOI: 10.1002/jlb.1ma1019-186r] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 10/14/2019] [Accepted: 10/16/2019] [Indexed: 11/11/2022] Open
Abstract
NK cells recognize "unwanted" cells using a variety of germline-encoded activating receptors, such as the seven members of signaling lymphocyte activating molecule (SLAM)-family receptors (SFRs), natural killer cell group 2D (NKG2D), and DNAX accessory molecule-1(DNAM-1). Whether these receptors redundantly or synergistically regulate NK cell development and effector function remains poorly understood. By generating mice lacking SFRs, NKG2D, and DNAM-1, separately or in combination, we found that SLAMF6, one of the SFR members, was associated with NK cell differentiation, but its absence had no severe effect on NK cell differentiation and function, likely due to SFR redundancy. Moreover, we revealed that SFRs might work with other NK cell activating receptors in regulating NK cell development and function. We found that SFR deficiency caused an increase in immature NK cell subsets (CD27+ CD11b- ), and this effect was further augmented by the additional deficiency of NKG2D but not DNAM-1. However, SFR-deficient NK cells exhibited elevated responsiveness against "missing-self" hematopoietic targets, whereas the deletion of either NKG2D or DNAM-1 could partially abrogate the elevated effect of SFR deficiency on NK cell activation. Therefore, our results reveal the complexity of activating receptors in regulating NK cell differentiation and activation, extending our insights into the gene redundancy and compensatory effect of NK cell activating receptors.
Collapse
Affiliation(s)
- Shasha Chen
- School of Medicine and Institute for Immunology, Beijing Key Lab for Immunological Research on Chronic Diseases, Tsinghua University, Beijing, China.,Tsinghua University-Peking University Joint Center for Life Sciences, Tsinghua University, Beijing, China
| | - Zhongjun Dong
- School of Medicine and Institute for Immunology, Beijing Key Lab for Immunological Research on Chronic Diseases, Tsinghua University, Beijing, China
| |
Collapse
|
40
|
Shinko D, McGuire HM, Diakos CI, Pavlakis N, Clarke SJ, Byrne SN, Charles KA. Mass Cytometry Reveals a Sustained Reduction in CD16 + Natural Killer Cells Following Chemotherapy in Colorectal Cancer Patients. Front Immunol 2019; 10:2584. [PMID: 31749810 PMCID: PMC6848231 DOI: 10.3389/fimmu.2019.02584] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 10/18/2019] [Indexed: 12/18/2022] Open
Abstract
The immune system and inflammation plays a significant role in tumour immune evasion enhancing disease progression and reducing survival in colorectal cancer (CRC). Patients with advanced stages of colorectal cancer will all undergo treatment with cytotoxic chemotherapy which may alter the complexity of immune cell populations. This study used mass cytometry to investigate the circulating immune cell profile of advanced CRC patients following acute and chronic doses of standard cytotoxic chemotherapy and analysed seven major immune cell populations and over 20 subpopulations. Unsupervised clustering analysis of the mass cytometry data revealed a decrease in NK cells following one cycle of cytotoxic chemotherapy. Investigation into the NK sub-population revealed a decline in the CD56dim CD16+ NK cell population following acute and chronic chemotherapy treatment. Further analysis into the frequency of the NK cell sub-populations during the long-term chemotherapy treatment revealed a shift in the sub-populations, with a decrease in the mature, cytotoxic CD56dim CD16+ accompanied by a significant increase in the less mature CD56dim CD16- and CD56bright NK cell populations. Furthermore, analysis of the phosphorylation status of signalling responses in the NK cells found significant differences in pERK, pP38, pSTAT3, and pSTAT5 between the patients and healthy volunteers and remained unchanged throughout the chemotherapy. Results from this study reveals that there is a sustained decrease in the mature CD16+ NK cell sub-population frequency following long-term chemotherapy which may have clinical implications in therapeutic decision making.
Collapse
Affiliation(s)
- Diana Shinko
- Discipline of Pharmacology, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Helen M McGuire
- Discipline of Pathology, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.,Ramaciotti Facility for Human Systems Biology, The University of Sydney, Sydney, NSW, Australia
| | - Connie I Diakos
- Northern Sydney Cancer Centre, Royal North Shore Hospital, St Leonards, NSW, Australia.,Faculty of Medicine and Health, Northern Clinical School, The University of Sydney, Sydney, NSW, Australia.,Bill Walsh Translational Research Laboratories, Kolling Institute of Medical Research, St Leonards, NSW, Australia
| | - Nick Pavlakis
- Northern Sydney Cancer Centre, Royal North Shore Hospital, St Leonards, NSW, Australia.,Faculty of Medicine and Health, Northern Clinical School, The University of Sydney, Sydney, NSW, Australia.,Bill Walsh Translational Research Laboratories, Kolling Institute of Medical Research, St Leonards, NSW, Australia
| | - Stephen J Clarke
- Northern Sydney Cancer Centre, Royal North Shore Hospital, St Leonards, NSW, Australia.,Faculty of Medicine and Health, Northern Clinical School, The University of Sydney, Sydney, NSW, Australia.,Bill Walsh Translational Research Laboratories, Kolling Institute of Medical Research, St Leonards, NSW, Australia
| | - Scott N Byrne
- Discipline of Infectious Diseases and Immunology, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.,Westmead Institute for Medical Research, Centre for Immunology and Allergy Research, Westmead, NSW, Australia
| | - Kellie A Charles
- Discipline of Pharmacology, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
41
|
Del Prete A, Sozio F, Schioppa T, Ponzetta A, Vermi W, Calza S, Bugatti M, Salvi V, Bernardini G, Benvenuti F, Vecchi A, Bottazzi B, Mantovani A, Sozzani S. The Atypical Receptor CCRL2 Is Essential for Lung Cancer Immune Surveillance. Cancer Immunol Res 2019; 7:1775-1788. [PMID: 31484658 DOI: 10.1158/2326-6066.cir-19-0168] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 06/25/2019] [Accepted: 08/28/2019] [Indexed: 12/13/2022]
Abstract
CCRL2 is a nonsignaling seven-transmembrane domain receptor. CCRL2 binds chemerin, a protein that promotes chemotaxis of leukocytes, including macrophages and natural killer (NK) cells. In addition, CCRL2 controls the inflammatory response in different pathologic settings, such as hypersensitivity, inflammatory arthritis, and experimental autoimmune encephalitis. Here, we investigated the role of CCRL2 in the regulation of lung cancer-related inflammation. The genetic deletion of Ccrl2 promoted tumor progression in urethane-induced and in Kras G12D/+/p53 LoxP lung tumor mouse models. Similarly, a Kras-mutant lung tumor displayed enhanced growth in Ccrl2-deficient mice. This phenotype was associated with a reduced inflammatory infiltrate characterized by the impaired recruitment of several leukocyte populations including NK cells. Bone marrow chimeras showed that CCRL2 expression by the nonhematopoietic cell compartment was responsible for the increased tumor formation observed in Kras-mutant Ccrl2-deficient mice. In human and mouse lungs, CCRL2 was expressed by a fraction of CD31+ endothelial cells, where it could control NK infiltration. Elevated CCRL2 expression in biopsies from human lung adenocarcinoma positively correlated with clinical outcome. These results provide evidence for a crucial role of CCRL2 in shaping an anti-lung tumor immune response.
Collapse
Affiliation(s)
- Annalisa Del Prete
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy.,IRCCS Humanitas Clinical and Research Center, Rozzano, Italy
| | - Francesca Sozio
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy.,IRCCS Humanitas Clinical and Research Center, Rozzano, Italy
| | - Tiziana Schioppa
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy.,IRCCS Humanitas Clinical and Research Center, Rozzano, Italy
| | - Andrea Ponzetta
- IRCCS Humanitas Clinical and Research Center, Rozzano, Italy
| | - William Vermi
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Stefano Calza
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy.,Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Mattia Bugatti
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Valentina Salvi
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Giovanni Bernardini
- Department of Molecular Medicine, Sapienza University of Rome, Laboratory Affiliated to Institute Pasteur-Italia, Rome, Italy.,IRCCS Neuromed, Pozzilli (IS), Italy
| | - Federica Benvenuti
- International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | | | | | - Alberto Mantovani
- IRCCS Humanitas Clinical and Research Center, Rozzano, Italy.,Humanitas University, Rozzano-Milano, Italy.,The William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Silvano Sozzani
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy.
| |
Collapse
|
42
|
Di Vito C, Mikulak J, Mavilio D. On the Way to Become a Natural Killer Cell. Front Immunol 2019; 10:1812. [PMID: 31428098 PMCID: PMC6688484 DOI: 10.3389/fimmu.2019.01812] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Accepted: 07/18/2019] [Indexed: 12/15/2022] Open
Abstract
Natural Killer (NK) cells are innate lymphocytes playing pivotal roles in host defense and immune-surveillance. The homeostatic modulation of germ-line encoded/non-rearranged activating and inhibitory NK cell receptors (NKRs) determines the capability of these innate lymphocytes to either spare "self" cells or to kill viral-infected, tumor-transformed and heterologous cell targets. However, despite being discovered more than 40 years ago, several aspects of NK cell biology remain unknown or are still being debated. In particular, our knowledge of human NK cell ontogenesis and differentiation is still in its infancy as the majority of our experimental evidence on this topic mainly comes from findings obtained in vitro or with animal models in vivo. Although both the generation and the maintenance of human NK cells are sustained by hematopoietic stem cells (HSCs), the precise site(s) of NK cell development are still poorly defined. Indeed, HSCs and hematopoietic precursors are localized in different anatomical compartments that also change their ontogenic commitments before and after birth as well as in aging. Currently, the main site of NK cell generation and maturation in adulthood is considered the bone marrow, where their interactions with stromal cells, cytokines, growth factors, and other soluble molecules support and drive maturation. Different sequential stages of NK cell development have been identified on the basis of the differential expression of specific markers and NKRs as well as on the acquisition of specific effector-functions. All these phenotypic and functional features are key in inducing and regulating homing, activation and tissue-residency of NK cells in different human anatomic sites, where different homeostatic mechanisms ensure a perfect balance between immune tolerance and immune-surveillance. The present review summarizes our current knowledge on human NK cell ontogenesis and on the related pathways orchestrating a proper maturation, functions, and distributions.
Collapse
Affiliation(s)
- Clara Di Vito
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center, Milan, Italy
| | - Joanna Mikulak
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center, Milan, Italy.,Department of Medical Biotechnologies and Translational Medicine (BioMeTra), University of Milan, Milan, Italy
| | - Domenico Mavilio
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center, Milan, Italy.,Department of Medical Biotechnologies and Translational Medicine (BioMeTra), University of Milan, Milan, Italy
| |
Collapse
|
43
|
Sasaki T, Moro K, Kubota T, Kubota N, Kato T, Ohno H, Nakae S, Saito H, Koyasu S. Innate Lymphoid Cells in the Induction of Obesity. Cell Rep 2019; 28:202-217.e7. [DOI: 10.1016/j.celrep.2019.06.016] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Revised: 04/16/2019] [Accepted: 06/04/2019] [Indexed: 12/21/2022] Open
|
44
|
Kumar V. Natural killer cells in sepsis: Underprivileged innate immune cells. Eur J Cell Biol 2019; 98:81-93. [DOI: 10.1016/j.ejcb.2018.12.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 12/15/2018] [Accepted: 12/17/2018] [Indexed: 02/06/2023] Open
|
45
|
Valipour B, Velaei K, Abedelahi A, Karimipour M, Darabi M, Charoudeh HN. NK cells: An attractive candidate for cancer therapy. J Cell Physiol 2019; 234:19352-19365. [DOI: 10.1002/jcp.28657] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 03/17/2019] [Accepted: 03/19/2019] [Indexed: 12/15/2022]
Affiliation(s)
- Behnaz Valipour
- Stem Cell Research Centre Tabriz University of Medical Sciences Tabriz Iran
- Department of Anatomical Sciences, Faculty of Medicine Tabriz University of Medical Sciences Tabriz Iran
| | - Kobra Velaei
- Department of Anatomical Sciences, Faculty of Medicine Tabriz University of Medical Sciences Tabriz Iran
| | - Ali Abedelahi
- Department of Anatomical Sciences, Faculty of Medicine Tabriz University of Medical Sciences Tabriz Iran
| | - Mohammad Karimipour
- Department of Anatomical Sciences, Faculty of Medicine Tabriz University of Medical Sciences Tabriz Iran
| | - Masoud Darabi
- Biochemistry Department, Faculty of Medicine Tabriz University of Medical Sciences Tabriz Iran
| | | |
Collapse
|
46
|
Peñín I, Figueroa-Cabañas ME, Guerrero-de la Rosa F, Soto-García LA, Álvarez-Martínez R, Flores-Morán A, Acevedo-Whitehouse K. Transcriptional Profiles of California Sea Lion Peripheral NK and CD +8 T Cells Reflect Ecological Regionalization and Infection by Oncogenic Viruses. Front Immunol 2019; 10:413. [PMID: 30915075 PMCID: PMC6422979 DOI: 10.3389/fimmu.2019.00413] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Accepted: 02/15/2019] [Indexed: 12/12/2022] Open
Abstract
The California sea lion is one of the few wild mammals prone to develop cancer, particularly urogenital carcinoma (UGC), whose prevalence is currently estimated at 25% of dead adult sea lions stranded along the California coastline. Genetic factors, viruses and organochlorines have been identified as factors that increase the risk of occurrence of this pathology. Given that no cases of UGC have as yet been reported for the species along its distribution in Mexican waters, the potential relevance of contaminants for the development of urogenital carcinoma is highlighted even more as blubber levels of organochlorines are more than two orders of magnitude lower in the Gulf of California and Mexican Pacific than in California. In vitro studies have shown that organochlorines can modulate anti-viral and tumor-surveillance activities of NK and cytotoxic T-cells of marine mammals, but little is known about the activity of these effectors in live, free-living sea lions. Here, we examine leukocyte transcriptional profiles of free-ranging adult California sea lions for eight genes (Eomes, Granzyme B, Perforin, Ly49, STAT1, Tbx21, GATA3, and FoxP3) selected for their key role in anti-viral and tumor-surveillance, and investigate patterns of transcription that could be indicative of differences in ecological variables and exposure to two oncogenic viruses: sea lion type one gammaherpesvirus (OtHV-1) and sea lion papillomavirus type 1 (ZcPV-1) and systemic inflammation. We observed regional differences in the expression of genes related to Th1 responses and immune modulation, and detected clear patterns of differential regulation of gene expression in sea lions infected by genital papillomavirus compared to those infected by genital gammaherpesvirus or for simultaneous infections, similar to what is known about herpesvirus and papillomavirus infections in humans. Our study is a first approach to profile the transcriptional patterns of key immune effectors of free-ranging California sea lions and their association with ecological regions and oncogenic viruses. The observed results add insight to our understanding of immune competence of marine mammals, and may help elucidate the marked difference in the number of cases of urogenital carcinoma in sea lions from US waters and other areas of their distribution.
Collapse
Affiliation(s)
- Ignacio Peñín
- Unit for Basic and Applied Microbiology, School of Natural Sciences, Autonomous University of Queretaro, Santiago de Queretaro, Mexico
| | - Mónica E Figueroa-Cabañas
- Unit for Basic and Applied Microbiology, School of Natural Sciences, Autonomous University of Queretaro, Santiago de Queretaro, Mexico
| | - Fabiola Guerrero-de la Rosa
- Unit for Basic and Applied Microbiology, School of Natural Sciences, Autonomous University of Queretaro, Santiago de Queretaro, Mexico
| | - Luis A Soto-García
- Unit for Basic and Applied Microbiology, School of Natural Sciences, Autonomous University of Queretaro, Santiago de Queretaro, Mexico
| | - Roberto Álvarez-Martínez
- Unit for Basic and Applied Microbiology, School of Natural Sciences, Autonomous University of Queretaro, Santiago de Queretaro, Mexico
| | - Adriana Flores-Morán
- Unit for Basic and Applied Microbiology, School of Natural Sciences, Autonomous University of Queretaro, Santiago de Queretaro, Mexico
| | - Karina Acevedo-Whitehouse
- Unit for Basic and Applied Microbiology, School of Natural Sciences, Autonomous University of Queretaro, Santiago de Queretaro, Mexico.,The Marine Mammal Center, Sausalito, CA, United States
| |
Collapse
|
47
|
Millan AJ, Elizaldi SR, Lee EM, Aceves JO, Murugesh D, Loots GG, Manilay JO. Sostdc1 Regulates NK Cell Maturation and Cytotoxicity. THE JOURNAL OF IMMUNOLOGY 2019; 202:2296-2306. [PMID: 30814306 DOI: 10.4049/jimmunol.1801157] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 02/06/2019] [Indexed: 01/08/2023]
Abstract
NK cells are innate-like lymphocytes that eliminate virally infected and cancerous cells, but the mechanisms that control NK cell development and cytotoxicity are incompletely understood. We identified roles for sclerostin domain-containing-1 (Sostdc1) in NK cell development and function. Sostdc1-knockout (Sostdc1 -/-) mice display a progressive accumulation of transitional NK cells (tNKs) (CD27+CD11b+) with age, indicating a partial developmental block. The NK cell Ly49 repertoire in Sostdc1 -/- mice is also changed. Lower frequencies of Sostdc1 -/- splenic tNKs express inhibitory Ly49G2 receptors, but higher frequencies express activating Ly49H and Ly49D receptors. However, the frequencies of Ly49I+, G2+, H+, and D+ populations were universally decreased at the most mature (CD27-CD11b+) stage. We hypothesized that the Ly49 repertoire in Sostdc1 -/- mice would correlate with NK killing ability and observed that Sostdc1-/- NK cells are hyporesponsive against MHC class I-deficient cell targets in vitro and in vivo, despite higher CD107a surface levels and similar IFN-γ expression to controls. Consistent with Sostdc1's known role in Wnt signaling regulation, Tcf7 and Lef1 levels were higher in Sostdc1 -/- NK cells. Expression of the NK development gene Id2 was decreased in Sostdc1-/- immature NK and tNK cells, but Eomes and Tbx21 expression was unaffected. Reciprocal bone marrow transplant experiments showed that Sostdc1 regulates NK cell maturation and expression of Ly49 receptors in a cell-extrinsic fashion from both nonhematopoietic and hematopoietic sources. Taken together, these data support a role for Sostdc1 in the regulation of NK cell maturation and cytotoxicity, and identify potential NK cell niches.
Collapse
Affiliation(s)
- Alberto J Millan
- Department of Molecular Cell Biology, School of Natural Sciences, University of California, Merced, Merced, CA 95343; and
| | - Sonny R Elizaldi
- Department of Molecular Cell Biology, School of Natural Sciences, University of California, Merced, Merced, CA 95343; and
| | - Eric M Lee
- Department of Molecular Cell Biology, School of Natural Sciences, University of California, Merced, Merced, CA 95343; and
| | - Jeffrey O Aceves
- Department of Molecular Cell Biology, School of Natural Sciences, University of California, Merced, Merced, CA 95343; and
| | - Deepa Murugesh
- Department of Molecular Cell Biology, School of Natural Sciences, University of California, Merced, Merced, CA 95343; and
| | - Gabriela G Loots
- Department of Molecular Cell Biology, School of Natural Sciences, University of California, Merced, Merced, CA 95343; and.,Physical and Life Sciences Directorate, Lawrence Livermore National Laboratories, Livermore, CA 94550
| | - Jennifer O Manilay
- Department of Molecular Cell Biology, School of Natural Sciences, University of California, Merced, Merced, CA 95343; and
| |
Collapse
|
48
|
Ramírez-Ramírez D, Padilla-Castañeda S, Galán-Enríquez CS, Vadillo E, Prieto-Chávez JL, Jiménez-Hernández E, Vilchis-Ordóñez A, Sandoval A, Balandrán JC, Pérez-Tapia SM, Ortiz-Navarrete V, Pelayo R. CRTAM + NK cells endowed with suppressor properties arise in leukemic bone marrow. J Leukoc Biol 2019; 105:999-1013. [PMID: 30791148 DOI: 10.1002/jlb.ma0618-231r] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 01/07/2019] [Accepted: 02/04/2019] [Indexed: 12/19/2022] Open
Abstract
Due to their increasing rates of morbidity and mortality, childhood malignancies are considered a global health priority, with acute lymphoblastic leukemias (ALLs) showing the highest incidence worldwide. Control of malignant clone emergence and the subsequent normal-leukemic hematopoietic cell out-competition require antitumor monitoring mechanisms. Investigation of cancer surveillance innate cells may be critical to understand the mechanisms contributing in either disease progression or relapse, and to promote displacement of leukemic hematopoiesis by the normal counterpart. We report here that NK cell production is less and low hematopoietic progenitor numbers contribute to this defect. By investigating the expression of the activation molecule class I restricted T-cell associated molecule (CRTAM) along the hematopoietic lineage differentiation pathway, we have identified lymphoid precursor populations coexpressing CD34, CD56/CD3/CD19, and CRTAM as the earliest developmental stage where activation may take place in specialized niches that display the ligand nectin-like-2. Of note, bone marrow (BM) from patients with ALL revealed high contents of preactivated CD56high NK cells expressing CRTAM and endowed with an exhaustion-like phenotype and the functional capability of producing IL-10 and TGF-β in vitro. Our findings suggest, for the first time, that the tumor microenvironment in ALL directly contribute to exhaustion of NK cell functions by the CRTAM/Necl-2 interaction, and that the potential regulatory role of exhausted-like NK cells may favor malignant progression at the expense of anti-tumor responses. Phenotypic and functional identity of this unique suppressor-like NK cell population within the leukemic BM would be of special interest for the pathobiology of ALL and development of targeting strategies.
Collapse
Affiliation(s)
- Dalia Ramírez-Ramírez
- Unidad de Investigación Médica en Enfermedades Oncológicas, UMAE Hospital Oncología, Instituto Mexicano del Seguro Social, Mexico City, Mexico.,Centro de Investigación Biomédica de Oriente, Delegación Puebla, Instituto Mexicano del Seguro Social, Puebla, Mexico.,National School of Biological Sciences ENCB, Instituto Politécnico Nacional (IPN), Mexico City, Mexico
| | - Sandra Padilla-Castañeda
- Unidad de Investigación Médica en Enfermedades Oncológicas, UMAE Hospital Oncología, Instituto Mexicano del Seguro Social, Mexico City, Mexico.,Centro de Investigación Biomédica de Oriente, Delegación Puebla, Instituto Mexicano del Seguro Social, Puebla, Mexico.,Departament of Molecular Biomedicine, CINVESTAV, IPN. Av. Instituto Politecnico Nacional 2508, Mexico City, Mexico
| | - Carlos Samuel Galán-Enríquez
- Departament of Molecular Biomedicine, CINVESTAV, IPN. Av. Instituto Politecnico Nacional 2508, Mexico City, Mexico
| | - Eduardo Vadillo
- Unidad de Investigación Médica en Enfermedades Oncológicas, UMAE Hospital Oncología, Instituto Mexicano del Seguro Social, Mexico City, Mexico.,Departament of Molecular Biomedicine, CINVESTAV, IPN. Av. Instituto Politecnico Nacional 2508, Mexico City, Mexico
| | - Jessica Lakshmi Prieto-Chávez
- Unidad de Investigación Médica en Inmunoquímica, UMAE Hospital de Especialidades, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Elva Jiménez-Hernández
- Hospital Pediátrico Moctezuma, Secretaria de Salud, Calle Oriente 158-189, Mexico City, Mexico
| | | | - Antonio Sandoval
- Hospital para el Niño, Instituto Materno Infantil del Estado de México, Toluca, State of Mexico, Mexico
| | - Juan Carlos Balandrán
- Unidad de Investigación Médica en Enfermedades Oncológicas, UMAE Hospital Oncología, Instituto Mexicano del Seguro Social, Mexico City, Mexico.,Centro de Investigación Biomédica de Oriente, Delegación Puebla, Instituto Mexicano del Seguro Social, Puebla, Mexico
| | - Sonia Mayra Pérez-Tapia
- National School of Biological Sciences ENCB, Instituto Politécnico Nacional (IPN), Mexico City, Mexico.,Unidad de Desarrollo e Investigación en Bioprocesos (UDIBI) and Unidad de Investigación, Desarrollo e Innovación Médica y Biotecnológica (UDIMEB), National School of Biological Sciences (ENCB), National Polytechnic Institute (IPN), Mexico City, Mexico
| | - Vianney Ortiz-Navarrete
- Departament of Molecular Biomedicine, CINVESTAV, IPN. Av. Instituto Politecnico Nacional 2508, Mexico City, Mexico
| | - Rosana Pelayo
- Unidad de Investigación Médica en Enfermedades Oncológicas, UMAE Hospital Oncología, Instituto Mexicano del Seguro Social, Mexico City, Mexico.,Centro de Investigación Biomédica de Oriente, Delegación Puebla, Instituto Mexicano del Seguro Social, Puebla, Mexico
| |
Collapse
|
49
|
Brillantes M, Beaulieu AM. Transcriptional control of natural killer cell differentiation. Immunology 2018; 156:111-119. [PMID: 30450565 DOI: 10.1111/imm.13017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 10/24/2018] [Accepted: 10/24/2018] [Indexed: 01/01/2023] Open
Abstract
Natural killer (NK) cells are highly specialized cytotoxic lymphocytes that provide protection against pathogens and malignant cells. They develop from common lymphoid progenitors via a multi-stage lineage commitment and differentiation process that gives rise to mature NK cells with potent cytotoxic functionality. Although generally considered cells of the innate immune system, recent studies have demonstrated that NK cells have the capacity to mount immune responses with features of adaptive immunity, including robust antigen-specific clonal-like expansion and the generation of long-lived memory cells that mediate enhanced recall responses. Here, we discuss specific transcription factors that have been shown to commonly and uniquely regulate NK cell development and effector and memory responses in experimental mouse models.
Collapse
Affiliation(s)
- Marc Brillantes
- Rutgers Graduate School of Biomedical Sciences, Rutgers - The State University of New Jersey, Newark, NJ, USA
| | - Aimee M Beaulieu
- Center for Immunity and Inflammation, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Rutgers - The State University of New Jersey, Newark, NJ, USA.,Department of Microbiology, Biochemistry, and Molecular Genetics, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Rutgers - The State University of New Jersey, Newark, NJ, USA
| |
Collapse
|
50
|
Abstract
Aging is a key aspect of neoplasia at the level of cells, individuals and populations. Unrestrained expression and production of inflammatory mediators is a key feature of aging at the cellular and organism level. Inflammatory cells and mediators are a key component of the tumor microenvironment and drive tumor progression. Non-resolving smoldering inflammation increases the risk of cancer (the extrinsic pathway connecting inflammation and cancer). In the intrinsic pathway, genetic events that cause neoplasia (oncogenes and oncosupressor genes) orchestrate the construction of cancer-related inflammation. We argue that uncontrolled smoldering inflammation drives carcinogenesis in aging and acts as a common denominator linking aging and cancer.
Collapse
|