1
|
Kumar SP, Nadendla EK, Malireddi RKS, Haque SA, Mall R, Neuwald AF, Kanneganti TD. Evolutionary and Functional Analysis of Caspase-8 and ASC Interactions to Drive Lytic Cell Death, PANoptosis. Mol Biol Evol 2025; 42:msaf096. [PMID: 40277230 PMCID: PMC12066828 DOI: 10.1093/molbev/msaf096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 04/09/2025] [Accepted: 04/15/2025] [Indexed: 04/26/2025] Open
Abstract
Caspases are evolutionarily conserved proteins essential for driving cell death in development and host defense. Caspase-8, a key member of the caspase family, is implicated in nonlytic apoptosis, as well as lytic forms of cell death. Recently, caspase-8 has been identified as an integral component of PANoptosomes, multiprotein complexes formed in response to innate immune sensor activation. Several innate immune sensors can nucleate caspase-8-containing PANoptosome complexes to drive inflammatory lytic cell death, PANoptosis. However, how the evolutionarily conserved and diverse functions of caspase-8 drive PANoptosis remains unclear. To address this, we performed evolutionary, sequence, structural, and functional analyses to decode caspase-8's complex-forming abilities and its interaction with the PANoptosome adaptor ASC. Our study distinguished distinct subgroups within the death domain superfamily based on their evolutionary and functional relationships, identified homotypic traits among subfamily members, and captured key events in caspase evolution. We also identified critical residues defining the heterotypic interaction between caspase-8's death effector domain and ASC's pyrin domain, validated through cross-species analyses, dynamic simulations, and in vitro experiments. Overall, our study elucidated recent evolutionary adaptations of caspase-8 that allowed it to interact with ASC, improving our understanding of critical molecular associations in PANoptosome complex formation and the underlying PANoptotic responses in host defense and inflammation. These findings have implications for understanding mammalian immune responses and developing new therapeutic strategies for inflammatory diseases.
Collapse
Affiliation(s)
- Sivakumar Prasanth Kumar
- Department of Immunology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Eswar Kumar Nadendla
- Department of Immunology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - R K Subbarao Malireddi
- Department of Immunology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Syed Asfarul Haque
- Cryo-Electron Microscopy Center, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Raghvendra Mall
- Department of Immunology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Andrew F Neuwald
- Institute for Genome Sciences and Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, 670 W. Baltimore Street, Baltimore, MD 21201, USA
| | - Thirumala-Devi Kanneganti
- Department of Immunology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| |
Collapse
|
2
|
Lichtenstein MA, Cao F, Lobnow F, Dirvanskyte P, Weyhenmeyer D, Kulesza A, Ziska E, Halfmann R, Taylor MJ. Bottom-up reconstruction of functional death fold signalosomes reveals a requirement for polymer stability and avidity. Science 2025; 388:415-422. [PMID: 40273247 DOI: 10.1126/science.adq3234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 03/14/2025] [Indexed: 04/26/2025]
Abstract
Protein polymer scaffolds composed of death fold (DF) proteins are critical to the formation of signalosomes in immune signaling. The biophysical properties that these polymeric scaffolds require for signal transduction are not clearly defined. Here, we engineered single-component DF signalosomes. We found that functionality depends on the stability provided by the DF polymer, which could also be achieved with a bacterial DF domain, a synthetic filament-forming domain, and amyloid-like sequences. This demonstrates the importance of polymer stability and inducibility irrespective of the motif's origin. By varying the number of included TRAF6 interaction motifs, we demonstrate that avidity is a tunable property that can control the amplitude of signaling outputs. This work lays out a reductionist framework to elucidate the required signaling properties through polymeric scaffolds by adjusting their assembly kinetics, stability, and avidity.
Collapse
Affiliation(s)
| | - Fakun Cao
- Max Planck Institute for Infection Biology, Berlin, Germany
| | - Finn Lobnow
- Max Planck Institute for Infection Biology, Berlin, Germany
| | | | | | - Anna Kulesza
- Max Planck Institute for Infection Biology, Berlin, Germany
| | - Elke Ziska
- Max Planck Institute for Infection Biology, Berlin, Germany
| | - Randal Halfmann
- Stowers Institute for Medical Research, Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, MO, USA
| | | |
Collapse
|
3
|
Song S, Wang J, Ouyang X, Huang R, Wang F, Xie J, Chen Q, Hu D. Therapeutic connections between pyroptosis and paclitaxel in anti-tumor effects: an updated review. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04036-8. [PMID: 40257490 DOI: 10.1007/s00210-025-04036-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Accepted: 03/06/2025] [Indexed: 04/22/2025]
Abstract
As a form of inflammation-associated cell death, pyroptosis has gained widespread attention in recent years. Accumulating evidence indicates that pyroptosis regulates tumor growth and is associated with autoimmune disorders and inflammatory response. Paclitaxel, a traditional Chinese medicine, usually induces death of cancer cells as a chemotherapeutic agent. Previous studies have revealed that paclitaxel can exert an anti-tumor effect through a variety of cell death mechanisms, of which pyroptosis plays a pivotal role in inhibiting tumor growth and enhancing anti-tumor immunity. In this review, we summarize the current advances in therapeutic connections between pyroptosis and paclitaxel in anti-tumor effects.
Collapse
Affiliation(s)
- Shuxin Song
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jingbo Wang
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiaohu Ouyang
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Renyin Huang
- Jingshan Union Hospital, Union Hospital, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Fang Wang
- Jingshan Union Hospital, Union Hospital, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Junke Xie
- Jingshan Union Hospital, Union Hospital, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Qianyun Chen
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Desheng Hu
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- China-Russia Medical Research Center for Stress Immunology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
4
|
Li Z, Xue Y, Duan Y, Yuan W, Chen C, Shi S, Su XC, Kisiswa L, Fan JS, Lin Z. Heterotypic interactions among members of the death domain superfamily with implications for p75 NTR-mediated co-signaling. Int J Biol Macromol 2025; 304:140791. [PMID: 39924025 DOI: 10.1016/j.ijbiomac.2025.140791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 02/01/2025] [Accepted: 02/06/2025] [Indexed: 02/11/2025]
Abstract
The death domain (DD) superfamily, a group of protein interaction modules, plays a crucial role in regulating downstream signaling pathways through the formation of specific complexes. However, the aggregation-prone behavior of many DD superfamily members in solution limits their interaction studies, and the structural mechanisms underlying oligomeric assembly involving different DD subfamilies are not fully understood. Here, we demonstrate that RIP2-CARD retains its native folding and protein function for interacting with the DD of p75 neurotrophin receptor (p75NTR) in pure water rather than under acidic conditions of pH 5.0 or lower. Leveraging this pure water system, we uncover the heterotypic interactions among p75NTR-DD, RIP2-CARD, and TRADD-DD, elucidate their ternary HADDOCK complex structure, and identify a new specific binding interface between RIP2-CARD and TRADD-DD. Using developing cortical neurons with endogenous p75NTR, we demonstrated that co-signaling of the p75NTR:TRADD:RIP2 tricomplex may shift the signaling balance towards survival by reducing the efficiency of death pathways. Our findings suggest a mechanism in which p75NTR serves as a molecular scaffold, assembling diverse signaling components to co-activate multiple signaling cascades at the receptor level.
Collapse
Affiliation(s)
- Zhen Li
- Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, Tianjin 300072, China
| | - Ying Xue
- Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, Tianjin 300072, China
| | - Yajing Duan
- Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, Tianjin 300072, China
| | - Wensu Yuan
- Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, Tianjin 300072, China
| | - Cheng Chen
- Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, Tianjin 300072, China
| | - Shuo Shi
- State Key Laboratory of Elemento-Organic Chemistry and College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xun-Cheng Su
- State Key Laboratory of Elemento-Organic Chemistry and College of Chemistry, Nankai University, Tianjin 300071, China
| | - Lilian Kisiswa
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark.
| | - Jing-Song Fan
- Department of Structural Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Pl, Memphis, TN 38105, USA.
| | - Zhi Lin
- Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
5
|
Ullah S, Feng F, Zhao M, Zhang J, Shao Q. Comparative Effects of Dietary Supplementations with Microencapsulated Sodium Butyrate, Glycerol Monolaurate and Tributyrin on Growth, Immunity, and Gut Health in Black Sea Bream. Animals (Basel) 2025; 15:810. [PMID: 40150339 PMCID: PMC11939239 DOI: 10.3390/ani15060810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 03/07/2025] [Accepted: 03/10/2025] [Indexed: 03/29/2025] Open
Abstract
This study investigates the effects of three dietary additives-microencapsulated sodium butyrate (MSB), glycerol monolaurate (GML), and tributyrin (TB)-on the growth performance, various physiological parameters, gene expression, intestinal morphology, and microflora in Acanthopagrus schlegelii (black sea bream). The experiment utilized a 43.5% soybean meal (SBM) inclusion diet with four isonitrogenous and isoenergetic formulations: a control diet, and diets supplemented with MSB (0.24%), GML (0.04%), or TB (0.22%). The growth trial spanned eight weeks, and triplicate tanks were randomly assigned to each diet, with each tank containing 30 fish, each having an initial weight of 1.55 ± 0.01 g. Key outcomes included measurements of weight gain, specific growth rate, digestive enzyme activity, serum immune markers, antioxidant status, and intestinal morphology and, gut microbiota. Additionally, gene expression and microbiota analysis were conducted on intestinal tissues to assess the impact of these additives on gut health and immune response. The findings revealed that all three additives enhanced growth performance and improved intestinal health and gut microbiota but GML exhibited the most pronounced effects on intestinal barrier function and immune modulation, gene expression, and microflora, followed by MSB and TB. This study provides a comprehensive comparison of MSB, GML, and TB as feed additives for black sea bream, offering insights into their potential for improving fish health and optimizing aquaculture feed formulations.
Collapse
Affiliation(s)
- Sami Ullah
- Zhejiang University Zhongyuan Institute, Zhengzhou 450001, China; (S.U.); (F.F.)
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China;
| | - Fengqin Feng
- Zhejiang University Zhongyuan Institute, Zhengzhou 450001, China; (S.U.); (F.F.)
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China;
| | - Minjie Zhao
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China;
| | - Jinzhi Zhang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qingjun Shao
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
6
|
Cao AB, Devant P, Wang C, Sun M, Kennedy SN, Ma W, Ruan J, Kagan JC. LPS binding caspase activation and recruitment domains (CARDs) are bipartite lipid binding modules. SCIENCE ADVANCES 2025; 11:eadt9027. [PMID: 40053584 PMCID: PMC11887843 DOI: 10.1126/sciadv.adt9027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 02/03/2025] [Indexed: 03/09/2025]
Abstract
Caspase-11 is an innate immune pattern recognition receptor (PRR) that detects cytosolic bacterial lipopolysaccharides (LPS) through its caspase activation and recruitment domain (CARD). Caspase-11 also detects eukaryotic (i.e., self) lipids. This observation raises the question of whether common or distinct mechanisms govern caspase interactions with self- and nonself-lipids. In this study, using biochemical, computational, and cell-based assays, we report that the caspase-11 CARD functions as a bipartite lipid-binding module. Distinct regions within the CARD bind to phosphate groups and long acyl chains of self- and nonself-lipids. Self-lipid binding capability is conserved across numerous caspase-11 homologs and orthologs. The symmetry in self- and nonself-lipid detection mechanisms enabled us to engineer an LPS-binding domain de novo, using an ancestral CARD-like domain present in the fish Amphilophus citrinellus. These findings offer insights into the molecular basis of LPS recognition by caspase-11 and highlight the fundamental and likely inseparable relationship between self and nonself discrimination.
Collapse
Affiliation(s)
- Anh B. Cao
- Division of Gastroenterology, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Pascal Devant
- Division of Gastroenterology, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Chengliang Wang
- Department of Immunology, UConn Health School of Medicine, 263 Farmington Ave., Farmington, CT 06030, USA
| | - Mengyu Sun
- Division of Gastroenterology, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Stephanie N. Kennedy
- Division of Gastroenterology, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Weiyi Ma
- Division of Gastroenterology, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Jianbin Ruan
- Department of Immunology, UConn Health School of Medicine, 263 Farmington Ave., Farmington, CT 06030, USA
| | - Jonathan C. Kagan
- Division of Gastroenterology, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| |
Collapse
|
7
|
Zhao L, Qiao Z, Jia Y, Fu J, Li T, Jia K, Zhao H, Bao J, Yang X, Pan H, Yang G. A Mutation in the ANK2 Gene Causing ASD and a Review of the Literature. Mol Genet Genomic Med 2025; 13:e70083. [PMID: 40035441 PMCID: PMC11877552 DOI: 10.1002/mgg3.70083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 01/17/2025] [Accepted: 02/04/2025] [Indexed: 03/05/2025] Open
Abstract
OBJECTIVE To investigate the clinical and genetic characteristics of patients with ANK2(HGNC:493)-associated autism spectrum disorders (ASDs) and epilepsy (EP). METHODS We identified a novel ANK2 variant in a patient with ASD and EP and summarized the clinical and genetic characteristics of ANK2 gene variants in this patient and those in previous reports. RESULTS A novel nonsense variant, ANK2 (NM_001148.6):c.3007C>T/p.R1003* in exon 27, was identified in one patient. We described the clinical features and molecular genetics of this patient and previously reported patients. This was discovered at a follow-up visit to the pediatric neurology department where genetic testing based on condition identified this rare genetic variant. He mainly presents with language delay, intellectual disability, limited learning, and communication skills, and later develops seizures, combined with common childhood neurological disorders such as hyperactivity, behavioral abnormalities, and even self-injury. The patient cohort included 16 patients with a complex array of neurological disabilities: ASD (9 patients); EP (10 patients); ASD with EP (4 patients); intellectual disability and developmental delay (5 patients); poor language communication (11 patients); language and learning impairment (11 patients); anxiety/agitation mood disorder (6 patients); attention-deficit/hyperactivity disorder (5 patients); cognitive, memory, and adaptability deficits (1 patient); tic disorder (1 patient); electrocardiogram and cardiac damage (1 patient); and abnormal electroencephalography (EEG) (9 patients). CONCLUSION For the first time, we identified a novel variant of the ANK2 gene in China, broadening the genetic spectrum of the ANK2 gene. ANK2 gene mutations can cause ASD, EP, ASD with EP, developmental delay and intellectual disability, poor language communication skills, language and learning disorders, anxiety/agitation mood disorder, and attention-deficit/hyperactivity disorder. Clinical ASD, EP, common EP should consider the ANK2 gene mutation.
Collapse
Affiliation(s)
- Lu Zhao
- Department of PediatricsThe Affiliated Hospital of Inner Mongolia Medical UniversityHohhotInner MongoliaChina
| | - Zhi‐Dong Qiao
- Department of PediatricsThe Affiliated Hospital of Inner Mongolia Medical UniversityHohhotInner MongoliaChina
| | - Yue‐Xin Jia
- Department of PediatricsThe Affiliated Hospital of Inner Mongolia Medical UniversityHohhotInner MongoliaChina
| | - Jun‐Xian Fu
- Department of PediatricsThe Affiliated Hospital of Inner Mongolia Medical UniversityHohhotInner MongoliaChina
| | - Tian‐Xia Li
- Department of PediatricsThe Affiliated Hospital of Inner Mongolia Medical UniversityHohhotInner MongoliaChina
| | - Kai‐Ru Jia
- Department of PediatricsThe Affiliated Hospital of Inner Mongolia Medical UniversityHohhotInner MongoliaChina
| | - Hong Zhao
- Department of PediatricsThe Affiliated Hospital of Inner Mongolia Medical UniversityHohhotInner MongoliaChina
| | - Jin‐Ping Bao
- Department of PediatricsThe Affiliated Hospital of Inner Mongolia Medical UniversityHohhotInner MongoliaChina
| | - Xiao‐Fan Yang
- Department of PediatricsThe Affiliated Hospital of Inner Mongolia Medical UniversityHohhotInner MongoliaChina
| | - Hao Pan
- Department of PediatricsThe Affiliated Hospital of Inner Mongolia Medical UniversityHohhotInner MongoliaChina
| | - Guang‐Lu Yang
- Department of PediatricsThe Affiliated Hospital of Inner Mongolia Medical UniversityHohhotInner MongoliaChina
- Inner Mongolia Science and Technology DepartmentInner Mongolia Autonomous Region Nervous System Disease Clinical Medical Research CenterHohhotChina
| |
Collapse
|
8
|
Qu F, Liu Z, Li X, Jin K, Peng R, Shi H, Liu X, Gao H, Bai S, He Y, Cheng Y, Fan J, Tang J, Liu Z. Factor associated suicide ligand (FasL) participates in the intestinal immune response to muramyl dipeptide challenge in grass carp Ctenopharyngodon idella. Int J Biol Macromol 2025; 292:139277. [PMID: 39743083 DOI: 10.1016/j.ijbiomac.2024.139277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 11/22/2024] [Accepted: 12/27/2024] [Indexed: 01/04/2025]
Abstract
Factor associated suicide ligand (FasL) is a multifunctional member of tumor necrosis factor ligand (TNF) superfamily, which exerts vital effects on maintaining homeostasis in the immune system. However, the functions of FasL in intestinal immunity of teleost fish are unknown. This study detected and characterized a fish FasL homolog (defined as CiFasL) in grass carp. The deduced CiFasL protein contained a conserved TNF homology domain (THD) and a representative transmembrane region. Expression profile analysis indicated that CiFasL was widely expressed in the tested tissues and developmental stages of grass carp, and that its mRNA level was significantly up-regulated after being challenged by Aeromonas hydrophila, A. veronii, and muramyl dipeptide (MDP) in vivo. Recombinant CisFasL (rCisFasL) was found to up-regulate pro-apoptotic genes (FasL, FADD, Caspase-8 and Caspase-3) expression in the intestine time-dependently. Moreover, rCisFasL protein effectively suppressed the expression of intestinal inflammatory cytokines (TNF-α, IL-1β, IL-6 and IL-8) and PepT1/NOD2 pathway signaling molecules (PepT1, NOD2, RIP2, p38MAPK and NF-κB) in response to MDP challenge. Finally, CiFasL silencing aggravated the MDP-mediated intestinal inflammation by inhibiting PepT1/NOD2 pathway activation in intestine of grass carp. Collectively, these findings provide the first experimental demonstration that CiFasL plays a negative regulatory role in MDP-induced intestinal inflammation.
Collapse
Affiliation(s)
- Fufa Qu
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Chemical Engineering, Changsha University, Changsha 410022, China
| | - Zhenzhen Liu
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Chemical Engineering, Changsha University, Changsha 410022, China
| | - Xiang Li
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Chemical Engineering, Changsha University, Changsha 410022, China
| | - Kelan Jin
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Chemical Engineering, Changsha University, Changsha 410022, China
| | - Ran Peng
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Chemical Engineering, Changsha University, Changsha 410022, China
| | - Huige Shi
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Chemical Engineering, Changsha University, Changsha 410022, China
| | - Xiaochun Liu
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Chemical Engineering, Changsha University, Changsha 410022, China
| | - Hongliang Gao
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Chemical Engineering, Changsha University, Changsha 410022, China
| | - Shuoting Bai
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Chemical Engineering, Changsha University, Changsha 410022, China
| | - Yuwen He
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Chemical Engineering, Changsha University, Changsha 410022, China
| | - Yi Cheng
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Chemical Engineering, Changsha University, Changsha 410022, China
| | - Junde Fan
- Yueyang Yumeikang Biotechnology Co., Ltd., Yueyang 414100, China
| | - Jianzhou Tang
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Chemical Engineering, Changsha University, Changsha 410022, China.
| | - Zhen Liu
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Chemical Engineering, Changsha University, Changsha 410022, China.
| |
Collapse
|
9
|
Wein T, Millman A, Lange K, Yirmiya E, Hadary R, Garb J, Melamed S, Amitai G, Dym O, Steinruecke F, Hill AB, Kranzusch PJ, Sorek R. CARD domains mediate anti-phage defence in bacterial gasdermin systems. Nature 2025; 639:727-734. [PMID: 39880956 DOI: 10.1038/s41586-024-08498-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 12/05/2024] [Indexed: 01/31/2025]
Abstract
Caspase recruitment domains (CARDs) and pyrin domains are important facilitators of inflammasome activity and pyroptosis1. Following pathogen recognition by nucleotide binding-domain, leucine-rich, repeat-containing (NLR) proteins, CARDs recruit and activate caspases, which, in turn, activate gasdermin pore-forming proteins to induce pyroptotic cell death2. Here we show that CARD domains are present in defence systems that protect bacteria against phage. The bacterial CARD domain is essential for protease-mediated activation of certain bacterial gasdermins, which promote cell death once phage infection is recognized. We further show that multiple anti-phage defence systems use CARD domains to activate a variety of cell death effectors, and that CARD domains mediate protein-protein interactions in these systems. We find that these systems are triggered by a conserved immune-evasion protein used by phages to overcome the bacterial defence system RexAB3, demonstrating that phage proteins inhibiting one defence system can activate another. Our results suggest that CARD domains represent an ancient component of innate immune systems conserved from bacteria to humans, and that CARD-dependent activation of gasdermins is shared in organisms across the tree of life.
Collapse
Affiliation(s)
- Tanita Wein
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Adi Millman
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Katharina Lange
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Erez Yirmiya
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Romi Hadary
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Jeremy Garb
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Sarah Melamed
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Gil Amitai
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Orly Dym
- Department of Life Science Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | | | - Aidan B Hill
- Department of Microbiology, Harvard Medical School, Boston, Ma, USA
- Deparment of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Philip J Kranzusch
- Department of Microbiology, Harvard Medical School, Boston, Ma, USA.
- Deparment of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Parker Institute for Cancer Immunotherapy at Dana-Farber Cancer Institute, Boston, MA, USA.
| | - Rotem Sorek
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
10
|
Wu EJ, Kandalkar AT, Ehrmann JF, Tong AB, Zhang J, Cong Q, Wu H. A structural atlas of death domain fold proteins reveals their versatile roles in biology and function. Proc Natl Acad Sci U S A 2025; 122:e2426986122. [PMID: 39977327 PMCID: PMC11874512 DOI: 10.1073/pnas.2426986122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Accepted: 01/23/2025] [Indexed: 02/22/2025] Open
Abstract
Death domain fold (DDF) superfamily proteins are critically important players in pathways of cell death and inflammation. DDFs are often essential scaffolding domains in receptors, adaptors, or effectors of these pathways by mediating homo- and hetero-oligomerization including helical filament assembly. At the downstream ends of these pathways, effector oligomerization by DDFs brings the enzyme domains into proximity for their dimerization and activation. Hundreds of structures of these domains have been solved. However, a comprehensive understanding of DDFs is lacking. In this article, we report the curation of a DDF structural atlas as a public website (deathdomain.org) and deduce the common and distinct principles of DDF-mediated oligomerization among the four families (death domain or DD, death effector domain or DED, caspase recruitment domain or CARD, and pyrin domain or PYD). We further annotate DDFs genome-wide based on AlphaFold-predicted models and protein sequences. These studies reveal mechanistic rules for this widely distributed domain superfamily.
Collapse
Affiliation(s)
- Emily J. Wu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA02115
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA02115
- Saratoga High School, Saratoga, CA95070
| | - Ankita T. Kandalkar
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA02115
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA02115
- Department of Biology, College of Science, Northeastern University, Boston, MA02115
| | - Julian F. Ehrmann
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA02115
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA02115
| | - Alexander B. Tong
- Jason L. Choy Laboratory of Single-Molecule Biophysics, Institute for Quantitative Biosciences, Chemistry Graduate Group, University of California, Berkeley, CA94720
| | - Jing Zhang
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX75390
- Eugene McDermott Center for Human Growth and Development, University of Texas, Southwestern Medical Center, Dallas, TX75390
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Qian Cong
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX75390
- Eugene McDermott Center for Human Growth and Development, University of Texas, Southwestern Medical Center, Dallas, TX75390
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Hao Wu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA02115
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA02115
- Department of Biology, College of Science, Northeastern University, Boston, MA02115
| |
Collapse
|
11
|
Giraud M, Peterson P. The Autoimmune Regulator (AIRE) Gene, The Master Activator of Self-Antigen Expression in the Thymus. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1471:199-221. [PMID: 40067588 DOI: 10.1007/978-3-031-77921-3_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2025]
Abstract
It has been more than 20 years since the AIRE gene was discovered. The mutations in the AIRE gene cause a rare and life-threatening autoimmune disease with severe manifestations against a variety of organs. Since the identification of the AIRE gene in 1997, more than two decades of investigations have revealed key insights into the role of AIRE and its mode of action. These studies have shown that AIRE uniquely induces the expression of thousands of tissue-restricted self-antigens in the thymus. These self-antigens are presented to developing T cells, resulting in the deletion of the self-reactive T cells and the generation of regulatory T cells. Thus, AIRE is a master guardian in establishing and maintaining central immune tolerance.
Collapse
Affiliation(s)
- Matthieu Giraud
- INSERM, Nantes Université, Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France.
| | - Pärt Peterson
- Molecular Pathology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia.
| |
Collapse
|
12
|
Song K, Wu Y, Tan S. Caspases in PANoptosis. Curr Res Transl Med 2025; 73:103502. [PMID: 39985853 DOI: 10.1016/j.retram.2025.103502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 02/13/2025] [Accepted: 02/19/2025] [Indexed: 02/24/2025]
Abstract
Recent studies prove that the three well-established cell death pathways-pyroptosis, apoptosis, and necroptosis-are not isolated but rather engage in extensive crosstalk. PANoptosis, a newly identified pathway of inflammatory regulated cell death (RCD), integrates characteristics of apoptosis, pyroptosis, and necroptosis. Caspases are a family of conserved cysteine proteases that play critical roles in pyroptosis, apoptosis, and necroptosis. Similarly, caspases also play a role in PANoptosis. In this paper, we review the molecular mechanisms of these three RCDs and the crosstalk between them. We also delineate the discovery of PANoptosis and its association with disease. Furthermore, we discuss the caspase function in PANoptosis, mainly focusing on caspase-6 and caspase-8 molecules. This review describes the key molecules, especially caspases, in the context of PANoptosis research, aiming to provide a foundation for targeted interventions in PANoptosis-associated diseases.
Collapse
Affiliation(s)
- Kaiyuan Song
- Department of Pathophysiology, Xiangya School of Basic Medicine Science, Central South University, Changsha, PR China; Sepsis Translational Medicine Key Laboratory of Hunan Province, Central South University, Changsha, PR China; National Medicine Functional Experimental Teaching Center, Central South University, Changsha, PR China
| | - Yongbin Wu
- Department of Pathophysiology, Xiangya School of Basic Medicine Science, Central South University, Changsha, PR China; Sepsis Translational Medicine Key Laboratory of Hunan Province, Central South University, Changsha, PR China; National Medicine Functional Experimental Teaching Center, Central South University, Changsha, PR China
| | - Sipin Tan
- Department of Pathophysiology, Xiangya School of Basic Medicine Science, Central South University, Changsha, PR China; Sepsis Translational Medicine Key Laboratory of Hunan Province, Central South University, Changsha, PR China; National Medicine Functional Experimental Teaching Center, Central South University, Changsha, PR China.
| |
Collapse
|
13
|
Yipeng Z, Chao C, Ranran L, Tingting P, Hongping Q. Metabolism: a potential regulator of neutrophil fate. Front Immunol 2024; 15:1500676. [PMID: 39697327 PMCID: PMC11652355 DOI: 10.3389/fimmu.2024.1500676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 11/13/2024] [Indexed: 12/20/2024] Open
Abstract
Neutrophils are essential components of the innate immune system that defend against the invading pathogens, such as bacteria, viruses, and fungi, as well as having regulatory roles in various conditions, including tissue repair, cancer immunity, and inflammation modulation. The function of neutrophils is strongly related to their mode of cell death, as different types of cell death involve various cellular and molecular alterations. Apoptosis, a non-inflammatory and programmed type of cell death, is the most common in neutrophils, while other modes of cell death, including NETOsis, necrosis, necroptosis, autophagy, pyroptosis, and ferroptosis, have specific roles in neutrophil function regulation. Immunometabolism refers to energy and substance metabolism in immune cells, and profoundly influences immune cell fate and immune system function. Intercellular and intracellular signal transduction modulate neutrophil metabolism, which can, in turn, alter their activities by influencing various cell signaling pathways. In this review, we compile an extensive body of evidence demonstrating the role of neutrophil metabolism in their various forms of cell death. The review highlights the intricate metabolic characteristics of neutrophils and their interplay with various types of cell death.
Collapse
Affiliation(s)
| | | | | | - Pan Tingting
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University
School of Medicine, Shanghai, China
| | - Qu Hongping
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University
School of Medicine, Shanghai, China
| |
Collapse
|
14
|
Gu F, Wang Z, Ding H, Tao X, Zhang J, Dai K, Li X, Shen H, Li H, Chen Z, Wang Z. Microglial mitochondrial DNA release contributes to neuroinflammation after intracerebral hemorrhage through activating AIM2 inflammasome. Exp Neurol 2024; 382:114950. [PMID: 39278588 DOI: 10.1016/j.expneurol.2024.114950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/02/2024] [Accepted: 09/09/2024] [Indexed: 09/18/2024]
Abstract
Intracerebral hemorrhage (ICH) is a severe disease that often leads to disability and death. Neuroinflammatory response is a key causative factor of early secondary brain injury after ICH. AIM2 is a DNA-sensing protein that recognizes cytosolic double-stranded DNA and take a significant part in neuroinflammation. Mitochondrial DNA participates in the translation of proteins such as the respiratory chain in the mitochondria. Whether mtDNA is involved in forming AIM2 inflammasome after ICH remains unclear. We used mice to construct ICH model in vivo and we used BV2 microglial cells treated with oxyhemoglobin to simulate ICH in vitro. Following lentiviral transfection to overexpress AIM2 antagonist P202, a notable decrease was observed in the levels of AIM2 inflammasome-associated proteins, leading to a reduction in dead neurons surrounding the hematoma and an enhancement in long-term and short-term behavior of neurological deficits. We further explored whether mtDNA took part in the AIM2 activation after ICH. The cytosolic mtDNA level was down-regulated by the mitochondrial division protector Mdivi-1 and up-regulated by transfection of mtDNA into cytoplasm. We found the expression level of AIM2 inflammasome-related proteins and inflammatory cytokines release were regulated by the cytosolic mtDNA level. In conclusion, after ICH, the mtDNA content in the cytoplasm of microglia around the hematoma rises, causing AIM2 inflammation leading to neuronal apoptosis, which leads to neurological deficits in mice. On the other hand, P202 was able to block inflammatory vesicle activation and improve neurological function by preventing the interaction between AIM2 protein and mitochondrial DNA.
Collapse
Affiliation(s)
- Feng Gu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Institute of Stroke Research, Soochow University, Suzhou 215006, China
| | - Zongqi Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Institute of Stroke Research, Soochow University, Suzhou 215006, China
| | - Haojie Ding
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Institute of Stroke Research, Soochow University, Suzhou 215006, China
| | - Xinyu Tao
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Institute of Stroke Research, Soochow University, Suzhou 215006, China
| | - Juyi Zhang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Institute of Stroke Research, Soochow University, Suzhou 215006, China
| | - Kun Dai
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Institute of Stroke Research, Soochow University, Suzhou 215006, China
| | - Xiang Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Institute of Stroke Research, Soochow University, Suzhou 215006, China
| | - Haitao Shen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Institute of Stroke Research, Soochow University, Suzhou 215006, China
| | - Haiying Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Institute of Stroke Research, Soochow University, Suzhou 215006, China
| | - Zhouqing Chen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Institute of Stroke Research, Soochow University, Suzhou 215006, China.
| | - Zhong Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Institute of Stroke Research, Soochow University, Suzhou 215006, China.
| |
Collapse
|
15
|
Betancourt JL, Rodríguez-Ramos T, Dixon B. Pattern recognition receptors in Crustacea: immunological roles under environmental stress. Front Immunol 2024; 15:1474512. [PMID: 39611155 PMCID: PMC11602452 DOI: 10.3389/fimmu.2024.1474512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 10/28/2024] [Indexed: 11/30/2024] Open
Abstract
Innate immunity is the first line of defense against infections and the only known available strategy for invertebrates. Crustaceans, being mostly aquatic invertebrates, are constantly exposed to potential pathogens in the surrounding water. Their immune system abolishes most microbes that enter and are recognized as a threat. However, the stress produced by high population densities and abiotic changes, in aquaculture, disrupts the host-pathogen balance, leading to severe economic losses in this industry. Consequently, crustacean immunology has become a prime area of research where significant progress has been made. This review provides our current understanding of the key pattern recognition receptors in crustaceans, with special focus on Decapoda, and their roles in triggering an immune response. We discuss recent developments in the field of signal transduction pathways such as Toll-like receptors (TLRs) and the immune deficiency (IMD) pathway, and examine the role of antimicrobial peptides (AMPs) in pathogen defense. Additionally, we analyze how environmental stressors-such as temperature fluctuations, ammonia levels, and pollution-impact immune responses and increase susceptibility to diseases. Finally, we highlight future research directions, emphasizing the need to explore the interactions between environmental stressors and immune signaling pathways and to develop strategies to enhance immune responses in crustaceans within aquaculture settings. Altogether, these advancements deepen our understanding of pathogen recognition in invertebrates and the specific defense mechanisms employed by crustaceans, particularly in response to infections triggered by pathogens under abiotic stressors.
Collapse
Affiliation(s)
| | | | - Brian Dixon
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| |
Collapse
|
16
|
Wang C, Du M, Jiang Z, Cong R, Wang W, Zhang T, Chen J, Zhang G, Li L. PI3K-AKT-mediated phosphorylation of Thr260 in CgCaspase-3/6/7 regulates heat-induced activation in oysters. Commun Biol 2024; 7:1459. [PMID: 39511363 PMCID: PMC11543851 DOI: 10.1038/s42003-024-07184-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 10/31/2024] [Indexed: 11/15/2024] Open
Abstract
Cysteine-aspartic proteases (caspases) are critical drivers of apoptosis, exhibiting expansion and domain shuffling in mollusks. However, the functions and regulatory mechanisms of these caspases remain unclear. In this study, we identified a group of Caspase-3/6/7 in Bivalvia and Gastropoda with a long inter-subunit linker (IL) that inhibits cleavage activation. Within this region, we found that conserved phosphorylation at Thr260 in oysters, mediated by the PI3K-AKT pathway, suppresses heat-induced activation. This mechanism is involved in divergent temperature adaptation between two allopatric congeneric oyster species, the relatively cold-adapted Crassostrea gigas and warm-adapted Crassostrea angulata. Our study elucidates the role of these effector caspase members and their long IL in bivalves, revealing that the PI3K-AKT pathway phosphorylates Thr260 on CgCASP3/6/7's linker to inhibit heat-induced activation. These findings provide insights into the evolution and function of apoptotic regulatory mechanisms in bivalves.
Collapse
Affiliation(s)
- Chaogang Wang
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture(CAS), Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China
- Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- National and Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao, China
| | - Mingyang Du
- Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- National and Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhuxiang Jiang
- Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- National and Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Rihao Cong
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China
- Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- National and Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, China
| | - Wei Wang
- Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- National and Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, China
| | - Taiping Zhang
- Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- National and Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jincheng Chen
- Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- National and Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Guofan Zhang
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture(CAS), Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China
- Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- National and Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, China
- Shandong Technology Innovation Center of Oyster Seed Industry, Qingdao, China
| | - Li Li
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture(CAS), Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.
- Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.
- National and Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao, China.
- University of Chinese Academy of Sciences, Beijing, China.
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, China.
- Shandong Technology Innovation Center of Oyster Seed Industry, Qingdao, China.
| |
Collapse
|
17
|
Mustafa M, Ahmad R, Tantry IQ, Ahmad W, Siddiqui S, Alam M, Abbas K, Moinuddin, Hassan MI, Habib S, Islam S. Apoptosis: A Comprehensive Overview of Signaling Pathways, Morphological Changes, and Physiological Significance and Therapeutic Implications. Cells 2024; 13:1838. [PMID: 39594587 PMCID: PMC11592877 DOI: 10.3390/cells13221838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/16/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024] Open
Abstract
Cell survival and death are intricately governed by apoptosis, a meticulously controlled programmed cell death. Apoptosis is vital in facilitating embryonic development and maintaining tissue homeostasis and immunological functioning. It is a complex interplay of intrinsic and extrinsic signaling pathways that ultimately converges on executing the apoptotic program. The extrinsic pathway is initiated by the binding of death ligands such as TNF-α and Fas to their respective receptors on the cell surface. In contrast, the intrinsic pathway leads to increased permeability of the outer mitochondrial membrane and the release of apoptogenic factors like cytochrome c, which is regulated by the Bcl-2 family of proteins. Once activated, these pathways lead to a cascade of biochemical events, including caspase activation, DNA fragmentation, and the dismantling of cellular components. Dysregulation of apoptosis is implicated in various disorders, such as cancer, autoimmune diseases, neurodegenerative disorders, and cardiovascular diseases. This article focuses on elucidating the molecular mechanisms underlying apoptosis regulation, to develop targeted therapeutic strategies. Modulating apoptotic pathways holds immense potential in cancer treatment, where promoting apoptosis in malignant cells could lead to tumor regression. This article demonstrates the therapeutic potential of targeting apoptosis, providing options for treating cancer and neurological illnesses. The safety and effectiveness of apoptosis-targeting drugs are being assessed in ongoing preclinical and clinical trials (phase I-III), opening the door for more effective therapeutic approaches and better patient outcomes.
Collapse
Affiliation(s)
- Mohd Mustafa
- Department of Biochemistry, Faculty of Medicine, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh 202002, India; (M.M.); (R.A.); (S.S.); (M.)
| | - Rizwan Ahmad
- Department of Biochemistry, Faculty of Medicine, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh 202002, India; (M.M.); (R.A.); (S.S.); (M.)
| | - Irfan Qadir Tantry
- Department of Biochemistry, School of Biological Sciences, University of Kashmir, Srinagar 190006, India;
| | - Waleem Ahmad
- Department of Medicine, Faculty of Medicine, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh 202002, India;
| | - Sana Siddiqui
- Department of Biochemistry, Faculty of Medicine, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh 202002, India; (M.M.); (R.A.); (S.S.); (M.)
| | - Mudassir Alam
- Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202001, India; (M.A.); (K.A.)
| | - Kashif Abbas
- Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202001, India; (M.A.); (K.A.)
| | - Moinuddin
- Department of Biochemistry, Faculty of Medicine, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh 202002, India; (M.M.); (R.A.); (S.S.); (M.)
| | - Md. Imtaiyaz Hassan
- Center for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India;
| | - Safia Habib
- Department of Biochemistry, Faculty of Medicine, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh 202002, India; (M.M.); (R.A.); (S.S.); (M.)
| | - Sidra Islam
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
18
|
Hu B, Zhang J, Huang J, Luo B, Zeng X, Jia J. NLRP3/1-mediated pyroptosis: beneficial clues for the development of novel therapies for Alzheimer's disease. Neural Regen Res 2024; 19:2400-2410. [PMID: 38526276 DOI: 10.4103/1673-5374.391311if:] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 11/14/2023] [Indexed: 11/16/2024] Open
Abstract
The inflammasome is a multiprotein complex involved in innate immunity that mediates the inflammatory response leading to pyroptosis, which is a lytic, inflammatory form of cell death. There is accumulating evidence that nucleotide-binding domain and leucine-rich repeat pyrin domain containing 3 (NLRP3) inflammasome-mediated microglial pyroptosis and NLRP1 inflammasome-mediated neuronal pyroptosis in the brain are closely associated with the pathogenesis of Alzheimer's disease. In this review, we summarize the possible pathogenic mechanisms of Alzheimer's disease, focusing on neuroinflammation. We also describe the structures of NLRP3 and NLRP1 and the role their activation plays in Alzheimer's disease. Finally, we examine the neuroprotective activity of small-molecule inhibitors, endogenous inhibitor proteins, microRNAs, and natural bioactive molecules that target NLRP3 and NLRP1, based on the rationale that inhibiting NLRP3 and NLRP1 inflammasome-mediated pyroptosis can be an effective therapeutic strategy for Alzheimer's disease.
Collapse
Affiliation(s)
- Bo Hu
- Department of Pathology and Municipal Key-Innovative Discipline of Molecular Diagnostics, Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing University, Jiaxing, Zhejiang Province, China
| | - Jiaping Zhang
- Research Center of Neuroscience, Jiaxing University Medical College, Jiaxing, Zhejiang Province, China
| | - Jie Huang
- Research Center of Neuroscience, Jiaxing University Medical College, Jiaxing, Zhejiang Province, China
| | - Bairu Luo
- Department of Clinical Pathology, Jiaxing University Master Degree Cultivation Base, Zhejiang Chinese Medical University, Jiaxing, Zhejiang Province, China
| | - Xiansi Zeng
- Research Center of Neuroscience, Jiaxing University Medical College, Jiaxing, Zhejiang Province, China
| | - Jinjing Jia
- Research Center of Neuroscience, Jiaxing University Medical College, Jiaxing, Zhejiang Province, China
| |
Collapse
|
19
|
Aravind L, Nicastro GG, Iyer LM, Burroughs AM. The Prokaryotic Roots of Eukaryotic Immune Systems. Annu Rev Genet 2024; 58:365-389. [PMID: 39265037 DOI: 10.1146/annurev-genet-111523-102448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2024]
Abstract
Over the past two decades, studies have revealed profound evolutionary connections between prokaryotic and eukaryotic immune systems, challenging the notion of their unrelatedness. Immune systems across the tree of life share an operational framework, shaping their biochemical logic and evolutionary trajectories. The diversification of immune genes in the prokaryotic superkingdoms, followed by lateral transfer to eukaryotes, was central to the emergence of innate immunity in the latter. These include protein domains related to nucleotide second messenger-dependent systems, NAD+/nucleotide degradation, and P-loop NTPase domains of the STAND and GTPase clades playing pivotal roles in eukaryotic immunity and inflammation. Moreover, several domains orchestrating programmed cell death, ultimately of prokaryotic provenance, suggest an intimate link between immunity and the emergence of multicellularity in eukaryotes such as animals. While eukaryotes directly adopted some proteins from bacterial immune systems, they repurposed others for new immune functions from bacterial interorganismal conflict systems. These emerging immune components hold substantial biotechnological potential.
Collapse
Affiliation(s)
- L Aravind
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA;
| | - Gianlucca G Nicastro
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA;
| | - Lakshminarayan M Iyer
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA;
| | - A Maxwell Burroughs
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA;
| |
Collapse
|
20
|
Hu B, Zhang J, Huang J, Luo B, Zeng X, Jia J. NLRP3/1-mediated pyroptosis: beneficial clues for the development of novel therapies for Alzheimer's disease. Neural Regen Res 2024; 19:2400-2410. [PMID: 38526276 PMCID: PMC11090449 DOI: 10.4103/1673-5374.391311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/06/2023] [Accepted: 11/14/2023] [Indexed: 03/26/2024] Open
Abstract
The inflammasome is a multiprotein complex involved in innate immunity that mediates the inflammatory response leading to pyroptosis, which is a lytic, inflammatory form of cell death. There is accumulating evidence that nucleotide-binding domain and leucine-rich repeat pyrin domain containing 3 (NLRP3) inflammasome-mediated microglial pyroptosis and NLRP1 inflammasome-mediated neuronal pyroptosis in the brain are closely associated with the pathogenesis of Alzheimer's disease. In this review, we summarize the possible pathogenic mechanisms of Alzheimer's disease, focusing on neuroinflammation. We also describe the structures of NLRP3 and NLRP1 and the role their activation plays in Alzheimer's disease. Finally, we examine the neuroprotective activity of small-molecule inhibitors, endogenous inhibitor proteins, microRNAs, and natural bioactive molecules that target NLRP3 and NLRP1, based on the rationale that inhibiting NLRP3 and NLRP1 inflammasome-mediated pyroptosis can be an effective therapeutic strategy for Alzheimer's disease.
Collapse
Affiliation(s)
- Bo Hu
- Department of Pathology and Municipal Key-Innovative Discipline of Molecular Diagnostics, Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing University, Jiaxing, Zhejiang Province, China
| | - Jiaping Zhang
- Research Center of Neuroscience, Jiaxing University Medical College, Jiaxing, Zhejiang Province, China
| | - Jie Huang
- Research Center of Neuroscience, Jiaxing University Medical College, Jiaxing, Zhejiang Province, China
| | - Bairu Luo
- Department of Clinical Pathology, Jiaxing University Master Degree Cultivation Base, Zhejiang Chinese Medical University, Jiaxing, Zhejiang Province, China
| | - Xiansi Zeng
- Research Center of Neuroscience, Jiaxing University Medical College, Jiaxing, Zhejiang Province, China
| | - Jinjing Jia
- Research Center of Neuroscience, Jiaxing University Medical College, Jiaxing, Zhejiang Province, China
| |
Collapse
|
21
|
Sun J, Leng J, Song L. The Evolution of NLR Inflammasome and Its Mediated Pyroptosis in Metazoa. Int J Mol Sci 2024; 25:11167. [PMID: 39456947 PMCID: PMC11508797 DOI: 10.3390/ijms252011167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 10/14/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
Nucleotide-binding oligomerization domain (NOD)-like receptor (NLR) inflammasomes are multiprotein signaling platforms that control the inflammatory response and coordinate antimicrobial defense. In the present study, the distribution of NLR, Caspase-1, and gasdermin (GSDM) homologues and their structural characteristics and evolutionary relationships were systematically analyzed in metazoa according to the genomes of species. In invertebrates, there were only NLRC and/or NLRD presented from sponge to amphioxus, and according to the evolutionary tree, NLR from sponge located in the most primitive position. Caspase-1 existed in some metazoan phyla (Brachiopoda, Ectoprocta, Arthropoda, Mollusca, Annelia, Nematoda, Platyelminthes, Coelenterate, and Porifera) and its activation sites were relatively conserved. The amino acid sequences and three-dimensional structures of N-terminal CARD/Death domain of NLR and Caspase-1 were similar in species from sponge to human. NLR and Caspase-1 co-existed in species of Brachiopoda, Mollusca, Annelia, Coelenterate, and Porifera. There was only GSDME or PJVK found in some phyla of invertebrates and their cleavage sites were conserved (DxxD). And it was predicted that the NLR inflammasome in inducing pyroptosis could occur in species of Brachiopoda, Mollusca, Annelia, and Coelenterate. These studies indicated that NLR inflammasome emerged early in sponges of metazoa, and NLR inflammasome in inducing pyroptosis first appeared in Coelenterate, suggesting that inflammasome and its mediated pyroptosis had existed in the early stage of metazoa, but they had been lost in many species during evolution.
Collapse
Affiliation(s)
- Jiejie Sun
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China;
- Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian 116023, China
| | - Jinyuan Leng
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China;
- Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian 116023, China
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China;
- Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian 116023, China
- Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai 519000, China
| |
Collapse
|
22
|
Cao AB, Devant P, Wang C, Sun M, Kennedy SN, Ruan J, Kagan JC. LPS binding caspase activation and recruitment domains (CARDs) are bipartite lipid binding modules. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.07.617105. [PMID: 39416091 PMCID: PMC11482759 DOI: 10.1101/2024.10.07.617105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Caspase-11 is an innate immune pattern recognition receptor (PRR) that detects cytosolic bacterial lipopolysaccharides (LPS) through its caspase activation and recruitment domain (CARD), triggering inflammatory cell death known as pyroptosis. Caspase-11 also detects eukaryotic (i.e. self) lipids. This observation raises the question of whether common or distinct mechanisms govern the interactions with self and nonself lipids. In this study, using biochemical, computational, and cell-based assays, we report that the caspase-11 CARD functions as a bipartite lipid-binding module. Distinct regions within the CARD bind to phosphate groups and long acyl chains of self and nonself lipids. Self-lipid binding capability is conserved across numerous caspase-11 homologs and orthologs. The symmetry in self and nonself lipid detection mechanisms enabled us to engineer an LPS-binding domain de novo, using an ancestral CARD-like domain present in the fish Amphilophus citrinellus. These findings offer critical insights into the molecular basis of LPS recognition by caspase-11 and highlight the fundamental and likely inseparable relationship between self and nonself discrimination.
Collapse
Affiliation(s)
- Anh B. Cao
- Division of Gastroenterology, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Pascal Devant
- Division of Gastroenterology, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Chengliang Wang
- Department of Immunology, UConn Health School of Medicine, 263 Farmington Ave., Farmington, CT 06030, USA
| | - Mengyu Sun
- Division of Gastroenterology, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Stephanie N. Kennedy
- Division of Gastroenterology, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Jianbin Ruan
- Department of Immunology, UConn Health School of Medicine, 263 Farmington Ave., Farmington, CT 06030, USA
| | - Jonathan C. Kagan
- Division of Gastroenterology, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| |
Collapse
|
23
|
Liu Q, Liu C, He Q, Wang L, Song L. The involvement of CgRHIM-containing protein in regulating haemocyte apoptosis after high temperature stress in Pacific oyster Crassostrea gigas. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 159:105226. [PMID: 38992733 DOI: 10.1016/j.dci.2024.105226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 07/05/2024] [Accepted: 07/07/2024] [Indexed: 07/13/2024]
Abstract
The interactions induced by RIP homotypic interaction motif (RHIM) are essential for the activation of inflammatory signaling and certain cell death pathways. In the present study, a RHIM-containing protein was identified from Pacific oyster Crassostrea gigas, which harbored a RHIM domain and a Death domain (designated CgRHIM-containing protein). The mRNA transcripts of CgRHIM-containing protein were constitutively expressed in all the examined tissues of oysters, with the highest expression level in mantle. The CgRHIM-containing protein was mainly distributed in the cytoplasm of oyster haemocytes. After high temperature stress, the expression levels of CgRel and CgBcl-2 increased significantly, and reached the peak level at 12 h, then decreased gradually. The transcripts of CgRHIM-containing protein, Cgcaspase-8 and Cgcaspase-3 in haemocytes up-regulated at 12 h after high temperature stress. Moreover, the protein abundance of CgRHIM-containing protein increased significantly, and the ubiquitination level of CgRHIM-containing protein in haemocytes showed an increasing trend at first and then decreased. After the expression of CgRHIM-containing protein was knocked down by siRNA, the mRNA expression levels of CgRel and CgBcl-2 decreased significantly at 6 h after high temperature stress, and those of CgFADD-like, Cgcaspase-8 and Cgcaspase-3, as well as the apoptosis rate of haemocytes also decreased significantly at 24 h. These results indicated that CgRHIM-containing protein might regulate haemocyte apoptosis in oysters upon high temperature stress via mediating the expression of Rel, Bcl-2 and caspase-8/3.
Collapse
Affiliation(s)
- Qian Liu
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, China
| | - Chang Liu
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, China.
| | - Qianqian He
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, China
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China; Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, China.
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China; Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, China
| |
Collapse
|
24
|
Seyrek K, Ivanisenko NV, König C, Lavrik IN. Modulation of extrinsic apoptotic pathway by intracellular glycosylation. Trends Cell Biol 2024; 34:728-741. [PMID: 38336591 DOI: 10.1016/j.tcb.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/20/2023] [Accepted: 01/12/2024] [Indexed: 02/12/2024]
Abstract
The importance of post-translational modifications (PTMs), particularly O-GlcNAcylation, of cytoplasmic proteins in apoptosis has been neglected for quite a while. Modification of cytoplasmic proteins by a single N-acetylglucosamine sugar is a dynamic and reversible PTM exhibiting properties more like phosphorylation than classical O- and N-linked glycosylation. Due to the sparse information existing, we have only limited understanding of how GlcNAcylation affects cell death. Deciphering the role of GlcNAcylation in cell fate may provide further understanding of cell fate decisions. This review focus on the modulation of extrinsic apoptotic pathway via GlcNAcylation carried out by O-GlcNAc transferase (OGT) or by other bacterial effector proteins.
Collapse
Affiliation(s)
- Kamil Seyrek
- Translational Inflammation Research, Medical Faculty, Center of Dynamic Systems (CDS), Otto von Guericke University Magdeburg, 39106 Magdeburg, Germany
| | - Nikita V Ivanisenko
- Translational Inflammation Research, Medical Faculty, Center of Dynamic Systems (CDS), Otto von Guericke University Magdeburg, 39106 Magdeburg, Germany
| | - Corinna König
- Translational Inflammation Research, Medical Faculty, Center of Dynamic Systems (CDS), Otto von Guericke University Magdeburg, 39106 Magdeburg, Germany
| | - Inna N Lavrik
- Translational Inflammation Research, Medical Faculty, Center of Dynamic Systems (CDS), Otto von Guericke University Magdeburg, 39106 Magdeburg, Germany.
| |
Collapse
|
25
|
Xu Y, Lin F, Liao G, Sun J, Chen W, Zhang L. Ripks and Neuroinflammation. Mol Neurobiol 2024; 61:6771-6787. [PMID: 38349514 DOI: 10.1007/s12035-024-03981-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 01/20/2024] [Indexed: 08/22/2024]
Abstract
Neuroinflammation is an immune response in the central nervous system and poses a significant threat to human health. Studies have shown that the receptor serine/threonine protein kinase family (RIPK) family, a popular research target in inflammation, has been shown to play an essential role in neuroinflammation. It is significant to note that the previous reviews have only examined the link between RIPK1 and neuroinflammation. However, it has yet to systematically analyze the relationship between the RIPK family and neuroinflammation. Activation of RIPK1 promotes neuroinflammation. RIPK1 and RIPK3 are responsible for the control of cell death, including apoptosis, necrosis, and inflammation. RIPK1 and RIPK3 regulate inflammatory responses through the release of damage in necroptosis. RIPK1 and RIPK3 regulate inflammatory responses by releasing damage-associated molecular patterns (DAMPs) during necrosis. In addition, activated RIPK1 nuclear translocation and its interaction with the BAF complex leads to upregulation of chromatin modification and inflammatory gene expression, thereby triggering inflammation. Although RIPK2 is not directly involved in regulating cell death, it is considered an essential target for treating neurological inflammation. When the peptidoglycan receptor detects peptidoglycan IE-DAP or MDP in bacteria, it prompts NOD1 and NOD2 to recruit RIPK2 and activate the XIAP E3 ligase. This leads to the K63 ubiquitination of RIPK2. This is followed by LUBAC-mediated linear ubiquitination, which activates NF-KB and MAPK pathways to produce cytokines and chemokines. In conclusion, there are seven known members of the RIPK family, but RIPK4, RIPK5, RIPK6, and RIPK7 have not been linked to neuroinflammation. This article seeks to explore the potential of RIPK1, RIPK2, and RIPK3 kinases as therapeutic interventions for neuroinflammation, which is associated with Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), ischemic stroke, Parkinson's disease (PD), multiple sclerosis (MS), and traumatic brain injury (TBI).
Collapse
Affiliation(s)
- Yue Xu
- Department of Cerebrovascular Disease, Sun Yat-Sen University, The Fifth Affiliated Hospital, Zhuhai, 519000, Guangdong, People's Republic of China
| | - Feng Lin
- Department of Cerebrovascular Disease, Sun Yat-Sen University, The Fifth Affiliated Hospital, Zhuhai, 519000, Guangdong, People's Republic of China
| | - Guolei Liao
- Department of Cerebrovascular Disease, Sun Yat-Sen University, The Fifth Affiliated Hospital, Zhuhai, 519000, Guangdong, People's Republic of China
| | - Jiaxing Sun
- Department of Cerebrovascular Disease, Sun Yat-Sen University, The Fifth Affiliated Hospital, Zhuhai, 519000, Guangdong, People's Republic of China
| | - Wenli Chen
- Department of Pharmacy, Sun Yat-Sen University, The Fifth Affiliated Hospital, Zhuhai, 519000, Guangdong, People's Republic of China.
| | - Lei Zhang
- Department of Cerebrovascular Disease, Sun Yat-Sen University, The Fifth Affiliated Hospital, Zhuhai, 519000, Guangdong, People's Republic of China.
| |
Collapse
|
26
|
Goh Y, Sadikan MZ, Jaiprakash H, Nasir NAA, Agarwal R, Iezhitsa I, Ismail NM. Tocotrienol-rich fraction (TRF) protects against retinal cell apoptosis and preserves visual behavior in rats with streptozotocin-induced diabetic retinopathy. BMC Complement Med Ther 2024; 24:322. [PMID: 39215295 PMCID: PMC11365272 DOI: 10.1186/s12906-024-04614-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 08/14/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Tocotrienol is a vitamin E analogue that is known to exert anti-inflammatory and antioxidant effects. Hence, in the current study, the effects of TRF on the expression of pro- and anti-apoptotic proteins in the streptozotocin-induced diabetic rat retinas were investigated. The effect of TRF on the visual behaviour of rats was also studied. METHODS Diabetes was induced in rats by intraperitoneal injection of streptozotocin and was confirmed by a blood sugar level of at least 20 mmol/L, 48 h, post-injection. Diabetic rats were divided into a group treated with vehicle (DV) and the other treated with TRF (100 mg/kg; DT). A group of non-diabetic rats treated with vehicle (N) served as the control group. All treatments were administered orally for 12 weeks. Rats were then subjected to an assessment of general behaviour in an open field arena and a two-chamber mirror test to assess their visual behaviour. At the end of the experimental period, rats were sacrificed, and their retinas were isolated to measure the expression of pro- (Casp3, Bax) and anti-apoptotic (Bcl2) markers using RT-qPCR and ELISA. TUNEL staining was used to detect the apoptotic retinal cells. RESULTS Treatment with TRF lowered the retinal expression of Casp3 protein by 2.26-folds (p < 0.001) and Bax protein by 2.18-fold (p < 0.001) compared to vehicle-treated rats. The retinal anti-apoptotic protein Bcl2 expression was 1.87-fold higher in DT compared to DV rats (p < 0.001). Accordingly, the Bax/Bcl2 ratio in the TRF-treated group was significantly greater in DT compared to DV rats. Retinal Casp3, Bax, and Bcl2 gene expression, as determined by RT-qPCR, also showed changes corresponding to protein expression. In the open field test, DV rats showed greater anxiety-related behaviour than group N, while the behaviour of DT rats was similar to the N group of rats. DT rats and group N rats preferred the inverse mirror chamber over the mirror-containing chamber in the two-mirror chamber test (p < 0.01). CONCLUSION Oral TRF therapy for 12 weeks lowers retinal cell apoptosis by decreasing pro- and increasing anti-apoptotic markers. The preservation of visual behaviour in a two-chamber mirror test supported these retinal molecular alterations in diabetic rats.
Collapse
Affiliation(s)
- You Goh
- School of Medicine, International Medical University, Bukit Jalil, Kuala Lumpur, Malaysia
| | - Muhammad Zulfiqah Sadikan
- Department of Pharmacology, Faculty of Medicine, Manipal University College Malaysia, Bukit Baru, Melaka, 75150, Malaysia
- Centre for Neuroscience Research (NeuRon), Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh, Selangor, 47000, Malaysia
| | - Heethal Jaiprakash
- School of Medicine, International Medical University, Bukit Jalil, Kuala Lumpur, Malaysia.
| | - Nurul Alimah Abdul Nasir
- Centre for Neuroscience Research (NeuRon), Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh, Selangor, 47000, Malaysia
| | - Renu Agarwal
- School of Medicine, International Medical University, Bukit Jalil, Kuala Lumpur, Malaysia
| | - Igor Iezhitsa
- School of Medicine, International Medical University, Bukit Jalil, Kuala Lumpur, Malaysia
- Department of Pharmacology and Bioinformatics, Volgograd State Medical University, Pavshikh Bortsov sq. 1, Volgograd, 400131, Russian Federation
| | - Nafeeza Mohd Ismail
- Centre for Neuroscience Research (NeuRon), Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh, Selangor, 47000, Malaysia
| |
Collapse
|
27
|
Zhang C, Zhou Y, Xi S, Han D, Wang Z, Zhu J, Cai Y, Zhang H, Jin G, Mi Y. The TRIF-RIPK1-Caspase-8 signalling in the regulation of TLR4-driven gene expression. Immunology 2024; 172:566-576. [PMID: 38618995 DOI: 10.1111/imm.13795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 04/05/2024] [Indexed: 04/16/2024] Open
Abstract
The inflammatory response is tightly regulated to eliminate invading pathogens and avoid excessive production of inflammatory mediators and tissue damage. Caspase-8 is a cysteine protease that is involved in programmed cell death. Here we show the TRIF-RIPK1-Caspase-8 is required for LPS-induced CYLD degradation in macrophages. TRIF functions in the upstream of RIPK1. The homotypic interaction motif of TRIF and the death domain of RIPK1 are essential for Caspase-8 activation. Caspase-8 cleaves CYLD and the D235A mutant is resistant to the protease activity of Caspase-8. TRIF and RIPK1 serve as substrates of Capase-8 in vitro. cFLIP interacts with Caspase-8 to modulate its protease activity on CYLD and cell death. Deficiency in TRIF, Caspase-8 or CYLD can lead to a decrease or increase in the expression of genes encoding inflammatory cytokines. Together, the TRIF-Caspase-8 and CYLD play opposite roles in the regulation of TLR4 signalling.
Collapse
Affiliation(s)
- Chengyang Zhang
- Department of Biochemistry and molecular biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Yang Zhou
- Department of Biochemistry and molecular biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Shuangtong Xi
- Department of Biochemistry and molecular biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Danlin Han
- Department of Biochemistry and molecular biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Ziyu Wang
- Department of Biochemistry and molecular biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Jingwen Zhu
- Department of Biochemistry and molecular biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Yizhe Cai
- Department of Biochemistry and molecular biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Haifeng Zhang
- Department of Biochemistry and molecular biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Ge Jin
- Department of Biochemistry and molecular biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Yang Mi
- Department of Biochemistry and molecular biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
28
|
Lu HF, Zhou YC, Hu TY, Yang DH, Wang XJ, Luo DD, Qiu SQ, Cheng BH, Zeng XH. Unraveling the role of NLRP3 inflammasome in allergic inflammation: implications for novel therapies. Front Immunol 2024; 15:1435892. [PMID: 39131161 PMCID: PMC11310156 DOI: 10.3389/fimmu.2024.1435892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 07/15/2024] [Indexed: 08/13/2024] Open
Abstract
Allergic diseases like asthma, allergic rhinitis and dermatitis pose a significant global health burden, driving the search for novel therapies. The NLRP3 inflammasome, a key component of the innate immune system, is implicated in various inflammatory diseases. Upon exposure to allergens, NLRP3 undergoes a two-step activation process (priming and assembly) to form active inflammasomes. These inflammasomes trigger caspase-1 activation, leading to the cleavage of pro-inflammatory cytokines (IL-1β and IL-18) and GSDMD. This process induces pyroptosis and amplifies inflammation. Recent studies in humans and mice strongly suggest a link between the NLRP3 inflammasome, IL-1β, and IL-18, and the development of allergic diseases. However, further research is needed to fully understand NLRP3's specific mechanisms in allergies. This review aims to summarize the latest advances in NLRP3 activation and regulation. We will discuss small molecule drugs and natural products targeting NLRP3 as potential therapeutic strategies for allergic diseases.
Collapse
Affiliation(s)
- Hui-Fei Lu
- Zhuhai Campus of Zunyi Medical University, Zhuhai, China
- Department of Otolaryngology, Longgang Otolaryngology Hospital & Shenzhen Otolaryngology Research, Shenzhen, China
| | - Yi-Chi Zhou
- Department of Gastroenterology, Beijing University of Chinese Medicine Shenzhen Hospital (Longgang), Shenzhen, China
| | - Tian-Yong Hu
- Department of Otolaryngology, Longgang Otolaryngology Hospital & Shenzhen Otolaryngology Research, Shenzhen, China
| | - Dun-Hui Yang
- Department of Otolaryngology, Longgang Otolaryngology Hospital & Shenzhen Otolaryngology Research, Shenzhen, China
| | - Xi-Jia Wang
- Zhuhai Campus of Zunyi Medical University, Zhuhai, China
- Department of Otolaryngology, Longgang Otolaryngology Hospital & Shenzhen Otolaryngology Research, Shenzhen, China
| | - Dan-Dan Luo
- Zhuhai Campus of Zunyi Medical University, Zhuhai, China
- Department of Otolaryngology, Longgang Otolaryngology Hospital & Shenzhen Otolaryngology Research, Shenzhen, China
| | - Shu-Qi Qiu
- Zhuhai Campus of Zunyi Medical University, Zhuhai, China
- Department of Otolaryngology, Longgang Otolaryngology Hospital & Shenzhen Otolaryngology Research, Shenzhen, China
| | - Bao-Hui Cheng
- Zhuhai Campus of Zunyi Medical University, Zhuhai, China
- Department of Otolaryngology, Longgang Otolaryngology Hospital & Shenzhen Otolaryngology Research, Shenzhen, China
| | - Xian-Hai Zeng
- Department of Otolaryngology, Longgang Otolaryngology Hospital & Shenzhen Otolaryngology Research, Shenzhen, China
| |
Collapse
|
29
|
Wei B, Billman ZP, Nozaki K, Goodridge HS, Miao EA. NLRP3, NLRP6, and NLRP12 are inflammasomes with distinct expression patterns. Front Immunol 2024; 15:1418290. [PMID: 39076995 PMCID: PMC11284034 DOI: 10.3389/fimmu.2024.1418290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 07/01/2024] [Indexed: 07/31/2024] Open
Abstract
Inflammasomes are sensors that detect cytosolic microbial molecules or cellular damage, and in response they initiate a form of lytic regulated cell death called pyroptosis. Inflammasomes signal via homotypic protein-protein interactions where CARD or PYD domains are crucial for recruiting downstream partners. Here, we screened these domains from NLR family proteins, and found that the PYD domain of NLRP6 and NLRP12 could activate caspase-1 to induce cleavage of IL-1β and GSDMD. Inflammasome reconstitution verified that full length NLRP6 and NLRP12 formed inflammasomes in vitro, and NLRP6 was more prone to auto-activation. NLRP6 was highly expressed in intestinal epithelial cells (IEC), but not in immune cells. Molecular phylogeny analysis found that NLRP12 was closely related to NLRP3, but the activation mechanisms are different. NLRP3 was highly expressed in monocytes and macrophages, and was modestly but appreciably expressed in neutrophils. In contrast, NLRP12 was specifically expressed in neutrophils and eosinophils, but was not detectable in macrophages. NLRP12 mutations cause a periodic fever syndrome called NLRP12 autoinflammatory disease. We found that several of these patient mutations caused spontaneous activation of caspase-1 in vitro, which likely causes their autoinflammatory disease. Different cell types have unique cellular physiology and structures which could be perturbed by a pathogen, necessitating expression of distinct inflammasome sensors to monitor for signs of infection.
Collapse
Affiliation(s)
- Bo Wei
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC, United States
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, United States
| | - Zachary P. Billman
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC, United States
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, United States
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Kengo Nozaki
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC, United States
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, United States
| | - Helen S. Goodridge
- Research Division of Immunology in the Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Edward A. Miao
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC, United States
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, United States
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, United States
- Department of Pathology, Duke University School of Medicine, Durham, NC, United States
| |
Collapse
|
30
|
Kuo BJ, Lin SC, Tu YF, Huang PH, Lo YC. Study of individual domains contributing to MALT1 dimerization in BCL10-independent and dependent assembly. Biochem Biophys Res Commun 2024; 717:150029. [PMID: 38714015 DOI: 10.1016/j.bbrc.2024.150029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/17/2024] [Accepted: 04/28/2024] [Indexed: 05/09/2024]
Abstract
The CARMA-BCL10-MALT1 (CBM) signalosome functions as a pivotal supramolecular module, integrating diverse receptor-induced signaling pathways to regulate BCL10-dependent NF-kB activation in innate and adaptive immunity. Conversely, the API2-MALT1 fusion protein in t(11; 18)(q21; q21) MALT lymphoma constitutively induces BCL10-independent NF-kB activation. MALT1 dimer formation is indispensable for the requisite proteolytic activity and is critical for NF-kB activation regulation in both scenarios. However, the molecular assembly of MALT1 individual domains in CBM activation remains elusive. Here we report the crystal structure of the MALT1 death domain (DD) at a resolution of 2.1 Å, incorporating reconstructed residues in previously disordered loops 1 and 2. Additionally, we observe a conformational regulation element (CRE) regulating stem-helix formation in NLRPs pyrin (PYD) within the MALT1 DD structure. The structure reveals a stem-helix-mediated dimer further corroborated in solution. To elucidate how the BCL10 filament facilitates MALT1 dimerization, we reconstitute a BCL10-CARD-MALT1-DD-IG1-IG2 complex model. We propose a N+7 rule for BCL10-dependent MALT1 dimerization via the IG1-IG2 domain and for MALT1-dependent cleavage in trans. Biochemical data further indicates concentration-dependent dimerization of the MALT1 IG1-IG2 domain, facilitating MALT1 dimerization in BCL10-independent manner. Our findings provide a structural and biochemical foundation for understanding MALT1 dimeric mechanisms, shedding light on potential BCL10-independent MALT1 dimer formation and high-order BCL10-MALT1 assembly.
Collapse
Affiliation(s)
- Bai-Jiun Kuo
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Su-Chang Lin
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Yi-Fan Tu
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, 70101, Taiwan; Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Po-Hui Huang
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Yu-Chih Lo
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, 70101, Taiwan.
| |
Collapse
|
31
|
Elseweidy MM, Ali SI, Shaheen MA, Abdelghafour AM, Hammad SK. Enhancement of cardiac angiogenesis in a myocardial infarction rat model using selenium alone and in combination with PTXF: the role of Akt/HIF-1α signaling pathway. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:4677-4692. [PMID: 38112730 PMCID: PMC11166829 DOI: 10.1007/s00210-023-02904-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 12/11/2023] [Indexed: 12/21/2023]
Abstract
Ischemic heart diseases such as myocardial infarction (MI) are a global health problem and a leading cause of mortality worldwide. Angiogenesis is an important approach for myocardial healing following ischemia. Thus, this study aimed to explore the potential cardiac angiogenic effects of selenium (Se), alone and in combination with the tumor necrosis factor-alpha inhibitor, pentoxifylline (PTXF), via Akt/HIF-1α signaling. MI was induced in rats using two subcutaneous doses of isoprenaline (ISP) at a 24-h interval (150 mg/kg). One week later, rats were orally given Se (150 µg/kg/day), PTXF (50 mg/kg/day), or Se/PTXF combination. ISP-induced myocardial damage was evident by increased HW/TL ratios, ST segment elevation, and increased serum levels of CK-MB, LDH, and troponin-I. ISP increased the cardiac levels of the lipid peroxidation marker MDA; the pro-inflammatory cytokines IL-6, IL-1β, and TNF-α; and the pro-apoptotic protein Bax and caspase-3. In contrast, the cardiac levels of the antioxidant markers GSH and SOD and the anti-apoptotic marker Bcl-2 were reduced. Furthermore, ISP markedly increased the cardiac levels of p-Akt and HIF-1α proteins and the cardiac gene expression of ANGPT-1, VEGF, and FGF-2. Treatment with Se both alone and in combination with PTXF ameliorated the ISP-induced myocardial damage and further increased cardiac angiogenesis via Akt/HIF-1α signaling. Se/PTXF combined therapy was more beneficial than individual treatments. Our study revealed for the first time the cardiac angiogenic effects of Se both alone and in combination with PTXF in myocardial infarction, suggesting that both may be promising candidates for clinical studies.
Collapse
Affiliation(s)
- Mohamed M Elseweidy
- Biochemistry Department, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt.
| | - Sousou I Ali
- Biochemistry Department, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| | - Mohamed A Shaheen
- Histology and Cell Biology Department, Faculty of Human Medicine, Zagazig University, Zagazig, 44519, Egypt
| | - Asmaa M Abdelghafour
- Biochemistry Department, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| | - Sally K Hammad
- Biochemistry Department, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| |
Collapse
|
32
|
Bell RT, Sahakyan H, Makarova KS, Wolf YI, Koonin EV. CoCoNuTs are a diverse subclass of Type IV restriction systems predicted to target RNA. eLife 2024; 13:RP94800. [PMID: 38739430 PMCID: PMC11090510 DOI: 10.7554/elife.94800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024] Open
Abstract
A comprehensive census of McrBC systems, among the most common forms of prokaryotic Type IV restriction systems, followed by phylogenetic analysis, reveals their enormous abundance in diverse prokaryotes and a plethora of genomic associations. We focus on a previously uncharacterized branch, which we denote coiled-coil nuclease tandems (CoCoNuTs) for their salient features: the presence of extensive coiled-coil structures and tandem nucleases. The CoCoNuTs alone show extraordinary variety, with three distinct types and multiple subtypes. All CoCoNuTs contain domains predicted to interact with translation system components, such as OB-folds resembling the SmpB protein that binds bacterial transfer-messenger RNA (tmRNA), YTH-like domains that might recognize methylated tmRNA, tRNA, or rRNA, and RNA-binding Hsp70 chaperone homologs, along with RNases, such as HEPN domains, all suggesting that the CoCoNuTs target RNA. Many CoCoNuTs might additionally target DNA, via McrC nuclease homologs. Additional restriction systems, such as Type I RM, BREX, and Druantia Type III, are frequently encoded in the same predicted superoperons. In many of these superoperons, CoCoNuTs are likely regulated by cyclic nucleotides, possibly, RNA fragments with cyclic termini, that bind associated CARF (CRISPR-Associated Rossmann Fold) domains. We hypothesize that the CoCoNuTs, together with the ancillary restriction factors, employ an echeloned defense strategy analogous to that of Type III CRISPR-Cas systems, in which an immune response eliminating virus DNA and/or RNA is launched first, but then, if it fails, an abortive infection response leading to PCD/dormancy via host RNA cleavage takes over.
Collapse
Affiliation(s)
- Ryan T Bell
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of HealthBethesdaUnited States
| | - Harutyun Sahakyan
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of HealthBethesdaUnited States
| | - Kira S Makarova
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of HealthBethesdaUnited States
| | - Yuri I Wolf
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of HealthBethesdaUnited States
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of HealthBethesdaUnited States
| |
Collapse
|
33
|
Yang CY, Lien CI, Tseng YC, Tu YF, Kulczyk AW, Lu YC, Wang YT, Su TW, Hsu LC, Lo YC, Lin SC. Deciphering DED assembly mechanisms in FADD-procaspase-8-cFLIP complexes regulating apoptosis. Nat Commun 2024; 15:3791. [PMID: 38710704 PMCID: PMC11074299 DOI: 10.1038/s41467-024-47990-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 04/17/2024] [Indexed: 05/08/2024] Open
Abstract
Fas-associated protein with death domain (FADD), procaspase-8, and cellular FLICE-inhibitory proteins (cFLIP) assemble through death-effector domains (DEDs), directing death receptor signaling towards cell survival or apoptosis. Understanding their three-dimensional regulatory mechanism has been limited by the absence of atomic coordinates for their ternary DED complex. By employing X-ray crystallography and cryogenic electron microscopy (cryo-EM), we present the atomic coordinates of human FADD-procaspase-8-cFLIP complexes, revealing structural insights into these critical interactions. These structures illustrate how FADD and cFLIP orchestrate the assembly of caspase-8-containing complexes and offer mechanistic explanations for their role in promoting or inhibiting apoptotic and necroptotic signaling. A helical procaspase-8-cFLIP hetero-double layer in the complex appears to promote limited caspase-8 activation for cell survival. Our structure-guided mutagenesis supports the role of the triple-FADD complex in caspase-8 activation and in regulating receptor-interacting protein kinase 1 (RIPK1). These results propose a unified mechanism for DED assembly and procaspase-8 activation in the regulation of apoptotic and necroptotic signaling across various cellular pathways involved in development, innate immunity, and disease.
Collapse
Grants
- AS-TP-107-L16, AS-TP-107-L16-1, AS-102-TP-B14 and AS-102-TP-B14-2 Academia Sinica
- AS-TP-107-L16-2 and AS-102-TP-B14-1 Academia Sinica
- AS-TP-107-L16-3 Academia Sinica
- MoST 107-2320-B-001-018-, 108-2311-B-001-018-, 109-2311-B-001-016-, and 110-2311-B-001-015- Ministry of Science and Technology, Taiwan (Ministry of Science and Technology of Taiwan)
- MoST 107-2320-B-006-062-MY3, and 111-2311-B-006-005-MY3 Ministry of Science and Technology, Taiwan (Ministry of Science and Technology of Taiwan)
- MoST 108-2320-B-002-020-MY3, 111-2320-B-002-048-MY3, and 112-2326-B-002-007- Ministry of Science and Technology, Taiwan (Ministry of Science and Technology of Taiwan)
Collapse
Affiliation(s)
- Chao-Yu Yang
- Genomics Research Center, Academia Sinica, Taipei, 11529, Taiwan
| | - Chia-I Lien
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, 10002, Taiwan
| | - Yi-Chun Tseng
- Genomics Research Center, Academia Sinica, Taipei, 11529, Taiwan
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Yi-Fan Tu
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Arkadiusz W Kulczyk
- Institute for Quantitative Biomedicine, Rutgers University, Department of Biochemistry and Microbiology, Rutgers University, Piscataway, NJ, 08854, USA
| | - Yen-Chen Lu
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Yin-Ting Wang
- Genomics Research Center, Academia Sinica, Taipei, 11529, Taiwan
| | - Tsung-Wei Su
- Genomics Research Center, Academia Sinica, Taipei, 11529, Taiwan
| | - Li-Chung Hsu
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, 10002, Taiwan.
- Graduate Institute of Immunology, College of Medicine, National Taiwan University, Taipei, 10002, Taiwan.
| | - Yu-Chih Lo
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, 70101, Taiwan.
| | - Su-Chang Lin
- Genomics Research Center, Academia Sinica, Taipei, 11529, Taiwan.
| |
Collapse
|
34
|
Meng Y, Zhang M, Li X, Wang X, Dong Q, Zhang H, Zhai Y, Song Q, He F, Tian C, Sun A. Myeloid cell-expressed MNDA enhances M2 polarization to facilitate the metastasis of hepatocellular carcinoma. Int J Biol Sci 2024; 20:2814-2832. [PMID: 38904028 PMCID: PMC11186364 DOI: 10.7150/ijbs.91877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 04/27/2024] [Indexed: 06/22/2024] Open
Abstract
Stable infiltration of myeloid cells, especially tumor-associated M2 macrophages, acts as one of the essential features of the tumor immune microenvironment by promoting the malignant progression of hepatocellular carcinoma (HCC). However, the factors affecting the infiltration of M2 macrophages are not fully understood. In this study, we found the molecular subtypes of HCC with the worst prognosis are characterized by immune disorders dominated by myeloid cell infiltration. Myeloid cell nuclear differentiation antigen (MNDA) was significantly elevated in the most aggressive subtype and exhibited a positively correlation with M2 infiltration and HCC metastasis. Moreover, MNDA functioned as an independent prognostic predictor and has a good synergistic effect with some existing prognostic clinical indicators. We further confirmed that MNDA was primarily expressed in tumor M2 macrophages and contributed to the enhancement of its polarization by upregulating the expression of the M2 polarization enhancers. Furthermore, MNDA could drive the secretion of M2 macrophage-derived pro-metastasis proteins to accelerate HCC cells metastasis both in vivo and in vitro. In summary, MNDA exerts a protumor role by promoting M2 macrophages polarization and HCC metastasis, and can serve as a potential biomarker and therapeutic target for HCC.
Collapse
Affiliation(s)
- Yanru Meng
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong 266071, China
| | - Mengxin Zhang
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing 102206, China
| | - Xinli Li
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing 102206, China
| | - Xinxin Wang
- Department of Pathology, Beijing You'an Hospital, Capital Medical University, Beijing 100069, China
| | - Qian Dong
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing 102206, China
| | - Hu Zhang
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing 102206, China
| | - Yuanjun Zhai
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing 102206, China
| | - Qin Song
- College of Life Sciences, Hebei University, Baoding 071002, Hebei, China
| | - Fuchu He
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong 266071, China
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing 102206, China
- Research Unit of Proteomics Dirven Cancer Precision Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Chunyan Tian
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing 102206, China
- Research Unit of Proteomics Dirven Cancer Precision Medicine, Chinese Academy of Medical Sciences, Beijing, China
- College of Life Sciences, Hebei University, Baoding 071002, Hebei, China
| | - Aihua Sun
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing 102206, China
- Research Unit of Proteomics Dirven Cancer Precision Medicine, Chinese Academy of Medical Sciences, Beijing, China
- College of Life Sciences, Hebei University, Baoding 071002, Hebei, China
| |
Collapse
|
35
|
Toshchakov VY. Peptide-Based Inhibitors of the Induced Signaling Protein Interactions: Current State and Prospects. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:784-798. [PMID: 38880642 DOI: 10.1134/s000629792405002x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/29/2024] [Accepted: 03/12/2024] [Indexed: 06/18/2024]
Abstract
Formation of the transient protein complexes in response to activation of cellular receptors is a common mechanism by which cells respond to external stimuli. This article presents the concept of blocking interactions of signaling proteins by the peptide inhibitors, and describes the progress achieved to date in the development of signaling inhibitors that act by blocking the signal-dependent protein interactions.
Collapse
Affiliation(s)
- Vladimir Y Toshchakov
- Sirius University of Science and Technology, Sirius Federal Territory, Krasnodar Region, 354340, Russia.
| |
Collapse
|
36
|
Shen J, Bian N, Zhao L, Wei J. The role of T-lymphocytes in central nervous system diseases. Brain Res Bull 2024; 209:110904. [PMID: 38387531 DOI: 10.1016/j.brainresbull.2024.110904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 02/04/2024] [Accepted: 02/15/2024] [Indexed: 02/24/2024]
Abstract
The central nervous system (CNS) has been considered an immunologically privileged site. In the past few decades, research on inflammation in CNS diseases has mostly focused on microglia, innate immune cells that respond rapidly to injury and infection to maintain CNS homeostasis. Discoveries of lymphatic vessels within the dura mater and peripheral immune cells in the meningeal layer indicate that the peripheral immune system can monitor and intervene in the CNS. This review summarizes recent advances in the involvement of T lymphocytes in multiple CNS diseases, including brain injury, neurodegenerative diseases, and psychiatric disorders. It emphasizes that a deep understanding of the pathogenesis of CNS diseases requires intimate knowledge of T lymphocytes. Aiming to promote a better understanding of the relationship between the immune system and CNS and facilitate the development of therapeutic strategies targeting T lymphocytes in neurological diseases.
Collapse
Affiliation(s)
- Jianing Shen
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Ning Bian
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Lu Zhao
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China; Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan 650500, China.
| | - Jingkuan Wei
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China; Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan 650500, China.
| |
Collapse
|
37
|
Zhou X, Zhu Y, Gao L, Li Y, Li H, Huang C, Liu Y, Hu A, Ying C, Song Y. Binding of RAGE and RIPK1 induces cognitive deficits in chronic hyperglycemia-derived neuroinflammation. CNS Neurosci Ther 2024; 30:e14449. [PMID: 37665158 PMCID: PMC10916433 DOI: 10.1111/cns.14449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 07/08/2023] [Accepted: 08/16/2023] [Indexed: 09/05/2023] Open
Abstract
AIMS Chronic hyperglycemia-induced inflammation of the hippocampus is an important cause of cognitive deficits in diabetic patients. The receptor for advanced glycation end products (RAGE), which is widely expressed in the hippocampus, is a crucial factor in this inflammation and the associated cognitive deficits. We aimed to reveal the underlying mechanism by which RAGE regulates neuroinflammation in the pathogenesis of diabetes-induced cognitive impairment. METHODS We used db/db mice as a model for type 2 diabetes to investigate whether receptor-interacting serine/threonine protein kinase 1 (RIPK1), which is expressed in microglia in the hippocampal region, is a key protein partner for RAGE. GST pull-down assays and AutoDock Vina simulations were performed to identify the key structural domain in RAGE that binds to RIPK1. Western blotting, co-immunoprecipitation (Co-IP), and immunofluorescence (IF) were used to detect the levels of key proteins or interaction between RAGE and RIPK1. Cognitive deficits in the mice were assessed with the Morris water maze (MWM) and new object recognition (NOR) and fear-conditioning tests. RESULTS RAGE binds directly to RIPK1 via the amino acid sequence (AAs) 362-367, thereby upregulating phosphorylation of RIPK1, which results in activation of the NLRP3 inflammasome in microglia and ultimately leads to cognitive impairments in db/db mice. We mutated RAGE AAs 362-367 to reverse neuroinflammation in the hippocampus and improve cognitive function, suggesting that RAGE AAs 362-367 is a key structural domain that binds directly to RIPK1. These results also indicate that hyperglycemia-induced inflammation in the hippocampus is dependent on direct binding of RAGE and RIPK1. CONCLUSION Direct interaction of RAGE and RIPK1 via AAs 362-367 is an important mechanism for enhanced neuroinflammation in the hyperglycemic environment and is a key node in the development of cognitive deficits in diabetes.
Collapse
Affiliation(s)
- Xiaoyan Zhou
- Xuzhou Engineering Research Center of Medical Genetics and Transformation, Department of GeneticsXuzhou Medical UniversityXuzhouJiangsuChina
| | - Yandong Zhu
- The Graduate SchoolXuzhou Medical UniversityXuzhouJiangsuChina
| | - Lin Gao
- The Graduate SchoolXuzhou Medical UniversityXuzhouJiangsuChina
| | - Yan Li
- The Graduate SchoolXuzhou Medical UniversityXuzhouJiangsuChina
| | - Hui Li
- The Graduate SchoolXuzhou Medical UniversityXuzhouJiangsuChina
| | - Chengyu Huang
- The Graduate SchoolXuzhou Medical UniversityXuzhouJiangsuChina
| | - Yan Liu
- The Graduate SchoolXuzhou Medical UniversityXuzhouJiangsuChina
| | - Ankang Hu
- Lab Animal CenterXuzhou Medical UniversityXuzhouChina
| | - Changjiang Ying
- Department of EndocrinologyAffiliated Hospital of Xuzhou Medical UniversityXuzhouJiangsuChina
| | - Yuanjian Song
- Xuzhou Engineering Research Center of Medical Genetics and Transformation, Department of GeneticsXuzhou Medical UniversityXuzhouJiangsuChina
| |
Collapse
|
38
|
Bell RT, Sahakyan H, Makarova KS, Wolf YI, Koonin EV. CoCoNuTs: A diverse subclass of Type IV restriction systems predicted to target RNA. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.07.31.551357. [PMID: 37790407 PMCID: PMC10542128 DOI: 10.1101/2023.07.31.551357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
A comprehensive census of McrBC systems, among the most common forms of prokaryotic Type IV restriction systems, followed by phylogenetic analysis, reveals their enormous abundance in diverse prokaryotes and a plethora of genomic associations. We focus on a previously uncharacterized branch, which we denote CoCoNuTs (coiled-coil nuclease tandems) for their salient features: the presence of extensive coiled-coil structures and tandem nucleases. The CoCoNuTs alone show extraordinary variety, with 3 distinct types and multiple subtypes. All CoCoNuTs contain domains predicted to interact with translation system components, such as OB-folds resembling the SmpB protein that binds bacterial transfer-messenger RNA (tmRNA), YTH-like domains that might recognize methylated tmRNA, tRNA, or rRNA, and RNA-binding Hsp70 chaperone homologs, along with RNases, such as HEPN domains, all suggesting that the CoCoNuTs target RNA. Many CoCoNuTs might additionally target DNA, via McrC nuclease homologs. Additional restriction systems, such as Type I RM, BREX, and Druantia Type III, are frequently encoded in the same predicted superoperons. In many of these superoperons, CoCoNuTs are likely regulated by cyclic nucleotides, possibly, RNA fragments with cyclic termini, that bind associated CARF (CRISPR-Associated Rossmann Fold) domains. We hypothesize that the CoCoNuTs, together with the ancillary restriction factors, employ an echeloned defense strategy analogous to that of Type III CRISPR-Cas systems, in which an immune response eliminating virus DNA and/or RNA is launched first, but then, if it fails, an abortive infection response leading to PCD/dormancy via host RNA cleavage takes over.
Collapse
Affiliation(s)
- Ryan T. Bell
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Harutyun Sahakyan
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Kira S. Makarova
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Yuri I. Wolf
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Eugene V. Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| |
Collapse
|
39
|
Akuma DC, Wodzanowski KA, Schwartz Wertman R, Exconde PM, Vázquez Marrero VR, Odunze CE, Grubaugh D, Shin S, Taabazuing C, Brodsky IE. Catalytic activity and autoprocessing of murine caspase-11 mediate noncanonical inflammasome assembly in response to cytosolic LPS. eLife 2024; 13:e83725. [PMID: 38231198 PMCID: PMC10794067 DOI: 10.7554/elife.83725] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 12/06/2023] [Indexed: 01/18/2024] Open
Abstract
Inflammatory caspases are cysteine protease zymogens whose activation following infection or cellular damage occurs within supramolecular organizing centers (SMOCs) known as inflammasomes. Inflammasomes recruit caspases to undergo proximity-induced autoprocessing into an enzymatically active form that cleaves downstream targets. Binding of bacterial LPS to its cytosolic sensor, caspase-11 (Casp11), promotes Casp11 aggregation within a high-molecular-weight complex known as the noncanonical inflammasome, where it is activated to cleave gasdermin D and induce pyroptosis. However, the cellular correlates of Casp11 oligomerization and whether Casp11 forms an LPS-induced SMOC within cells remain unknown. Expression of fluorescently labeled Casp11 in macrophages revealed that cytosolic LPS induced Casp11 speck formation. Unexpectedly, catalytic activity and autoprocessing were required for Casp11 to form LPS-induced specks in macrophages. Furthermore, both catalytic activity and autoprocessing were required for Casp11 speck formation in an ectopic expression system, and processing of Casp11 via ectopically expressed TEV protease was sufficient to induce Casp11 speck formation. These data reveal a previously undescribed role for Casp11 catalytic activity and autoprocessing in noncanonical inflammasome assembly, and shed new light on the molecular requirements for noncanonical inflammasome assembly in response to cytosolic LPS.
Collapse
Affiliation(s)
- Daniel C Akuma
- Department of Pathobiology, University of Pennsylvania School of Veterinary MedicinePhiladelphiaUnited States
| | - Kimberly A Wodzanowski
- Department of Microbiology, University of Pennsylvania Perelman School of MedicinePhiladelphiaUnited States
| | - Ronit Schwartz Wertman
- Department of Pathobiology, University of Pennsylvania School of Veterinary MedicinePhiladelphiaUnited States
| | - Patrick M Exconde
- Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of MedicinePhiladelphiaUnited States
| | - Víctor R Vázquez Marrero
- Department of Microbiology, University of Pennsylvania Perelman School of MedicinePhiladelphiaUnited States
| | | | - Daniel Grubaugh
- Department of Pathobiology, University of Pennsylvania School of Veterinary MedicinePhiladelphiaUnited States
| | - Sunny Shin
- Department of Microbiology, University of Pennsylvania Perelman School of MedicinePhiladelphiaUnited States
| | - Cornelius Taabazuing
- Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of MedicinePhiladelphiaUnited States
| | - Igor E Brodsky
- Department of Pathobiology, University of Pennsylvania School of Veterinary MedicinePhiladelphiaUnited States
| |
Collapse
|
40
|
Zhang L, Ma X, Tong P, Zheng B, Zhu M, Peng B, Wang J, Liu Y. RNA-Seq analysis of long non-coding RNA in human intestinal epithelial cells infected by Shiga toxin-producing Escherichia coli. Cytokine 2024; 173:156421. [PMID: 37944420 DOI: 10.1016/j.cyto.2023.156421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/28/2023] [Accepted: 11/01/2023] [Indexed: 11/12/2023]
Abstract
BACKGROUND The Shiga toxin-producing Escherichia coli (STEC) infects animals and induces acute intestinal inflammation. Long non-coding RNAs (lncRNAs) are known to play crucial roles in modulating inflammation response. However, it is not clear whether lncRNAs are involved in STEC-induced inflammation. METHODS AND RESULTS To understand the association of lncRNAs with STEC infection, we used RNA-seq technology to analyze the profiles of lncRNAs in Mock-infected and STEC-infected human intestinal epithelial cells (HIECs). We detected a total of 702 lncRNAs differentially expressed by STEC infection. 583 differentially expressed lncRNAs acted as competitive microRNAs (miRNAs) binding elements in regulating the gene expression involved in TNF signaling pathway, IL-17 signaling pathway, PI3K-Akt signaling pathway, and apoptosis pathways. We analyzed 3 targeted genes, TRADD, TRAF1 and TGFB2, which were differentially regulated by mRNA-miRNA-lncRNA interaction network, potentially involved in the inflammatory and apoptotic response to STEC infection. Functional analysis of up/downstream genes associated with differentially expressed lncRNAs revealed their role in adheres junction and endocytosis. We also used the qRT-PCR technique to validate 8 randomly selected differentially expressed lncRNAs and mRNAs in STEC-infected HIECs. CONCLUSION Our results, for the first time, revealed differentially expressed lncRNAs induced by STEC infection of HIECs. The results will help investigate the molecular mechanisms for the inflammatory responses induced by STEC.
Collapse
Affiliation(s)
- Liuqing Zhang
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
| | - Xuelian Ma
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
| | - Panpan Tong
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
| | - Baili Zheng
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
| | - Mingyue Zhu
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
| | - Bin Peng
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
| | - Jinquan Wang
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
| | - Yingyu Liu
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China.
| |
Collapse
|
41
|
Plantone D, Pardini M, Righi D, Manco C, Colombo BM, De Stefano N. The Role of TNF-α in Alzheimer's Disease: A Narrative Review. Cells 2023; 13:54. [PMID: 38201258 PMCID: PMC10778385 DOI: 10.3390/cells13010054] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/22/2023] [Accepted: 12/24/2023] [Indexed: 01/12/2024] Open
Abstract
This review analyzes the role of TNF-α and its increase in biological fluids in mild cognitive impairment, and Alzheimer's disease (AD). The potential inhibition of TNF-α with pharmacological strategies paves the way for preventing AD and improving cognitive function in people at risk for dementia. We conducted a narrative review to characterize the evidence in relation to the involvement of TNF-α in AD and its possible therapeutic inhibition. Several studies report that patients with RA and systemic inflammatory diseases treated with TNF-α blocking agents reduce the probability of emerging dementia compared with the general population. Animal model studies also showed interesting results and are discussed. An increasing amount of basic scientific data and clinical studies underscore the importance of inflammatory processes and subsequent glial activation in the pathogenesis of AD. TNF-α targeted therapy is a biologically plausible approach for cognition preservation and further trials are necessary to investigate the potential benefits of therapy in populations at risk of developing AD.
Collapse
Affiliation(s)
- Domenico Plantone
- Department of Medicine, Surgery and Neuroscience, University of Siena, Viale Bracci 2, 53100 Siena, Italy; (D.R.); (C.M.); (N.D.S.)
| | - Matteo Pardini
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, L.go P. Daneo 3, 16132 Genova, Italy;
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genova, Italy;
| | - Delia Righi
- Department of Medicine, Surgery and Neuroscience, University of Siena, Viale Bracci 2, 53100 Siena, Italy; (D.R.); (C.M.); (N.D.S.)
| | - Carlo Manco
- Department of Medicine, Surgery and Neuroscience, University of Siena, Viale Bracci 2, 53100 Siena, Italy; (D.R.); (C.M.); (N.D.S.)
| | - Barbara Maria Colombo
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genova, Italy;
| | - Nicola De Stefano
- Department of Medicine, Surgery and Neuroscience, University of Siena, Viale Bracci 2, 53100 Siena, Italy; (D.R.); (C.M.); (N.D.S.)
| |
Collapse
|
42
|
Gaspar-Morales EA, Waterston A, Sadqi M, Diaz-Parga P, Smith AM, Gopinath A, Andresen Eguiluz RC, de Alba E. Natural and Engineered Isoforms of the Inflammasome Adaptor ASC Form Noncovalent, pH-Responsive Hydrogels. Biomacromolecules 2023; 24:5563-5577. [PMID: 37930828 DOI: 10.1021/acs.biomac.3c00409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
The protein ASC polymerizes into intricate filament networks to assemble the inflammasome, a filamentous multiprotein complex that triggers the inflammatory response. ASC carries two Death Domains integrally involved in protein self-association for filament assembly. We have leveraged this behavior to create noncovalent, pH-responsive hydrogels of full-length, folded ASC by carefully controlling the pH as a critical factor in the polymerization process. We show that natural variants of ASC (ASC isoforms) involved in inflammasome regulation also undergo hydrogelation. To further demonstrate this general capability, we engineered proteins inspired by the ASC structure that also form hydrogels. We analyzed the structural network of the natural and engineered protein hydrogels using transmission and scanning electron microscopy and studied their viscoelastic behavior using shear rheology. Our results reveal one of the very few examples of hydrogels created by the self-assembly of globular proteins and domains in their native conformation and show that Death Domains can be used alone or as building blocks to engineer bioinspired hydrogels.
Collapse
|
43
|
Qin Y, Wan W, Li J, Wang Z, Yang Y, Li J, Ma H, Yu Z, Xiang Z, Zhang Y. A novel Fas ligand plays an important role in cell apoptosis of Crassostrea hongkongensis: molecular cloning, expression profiles and functional identification of ChFasL. Front Immunol 2023; 14:1267772. [PMID: 37868973 PMCID: PMC10585096 DOI: 10.3389/fimmu.2023.1267772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 09/06/2023] [Indexed: 10/24/2023] Open
Abstract
Background Apoptosis regulates normal development, homeostasis, immune tolerance and response to environmental stress by eliminating unwanted or diseased cells, and plays a key role in non-specific immunity of invertebrates. The exogenous pathway mediated by death receptors and death ligands is a very important pathway for cell apoptosis. Death ligands are mainly members of the tumour necrosis factor (TNF) family, of which FasL is an important member. The deep involvement of FasL in vertebrates cell apoptosis and immunity has been reported many times, but there is limited research on the FasL gene in shellfish, and its functional importance in oyster cell apoptosis and immunity remains unclear. Methods The full length of ChFasL was identified and cloned based on the genome of Crassostrea hongkongensis. Quantitative PCR was used to detect the relative expression of ChFasL in different developmental stages and tissues, as well as the changes of relative expression in hemocytes after bacterial infection. The expression position of ChFasL in HEK293T cells was also located by subcellular localization, and the effect of increased recombinant protein content on the activity of reporter genes p53 and p21 was studied by dual-fluorescence reporter gene. Finally, the changes of apoptosis rate in hemocytes after ChFasL silencing was identified by RNA interference technology. Results We identified a novel FasL gene from C. hongkongensis and named it ChFasL. We found that ChFasL has potential N-linked glycosylation site, a transmembrane domain and a TNF region, which was a typical characteristics of TNF family. ChFasL was expressed in all developmental stages of larvae and in all tissues of oysters. After stimulation by V. alginolyticus or S. haemolyticus, its relative expression in hemocytes increased significantly, suggesting that ChFasL was deeply engaged in the immune response process of C. hongkongensis to external microbial stimulation. The results of subcellular localization showed that ChFasL was mainly distributed in the cytoplasm of HEK293T cells. With the overexpression of the recombinant protein pcDNA3 1- ChFasL, the activity of p53 and p21 significantly increased, showing a positive regulatory effect. Moreover, after dsRNA successfully reduced the relative expression of ChFasL, the apoptosis rate of hemocytes was significantly lower than that the dsGFP group. Conclusion These results comprehensively confirmed the important role of ChFasL in the apoptosis process of C. hongkongensis, which provided the basis and premise for the in-depth understanding of the immune function of apoptosis in molluscs, and also contributed to the research on the pathogenic death mechanism and disease resistance breeding of marine bivalves.
Collapse
Affiliation(s)
- Yanping Qin
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Hainan Provincial Key Laboratory of Tropical Marine Biology Technology, Sanya Research Institute of Marine Ecological Environment Engineering, Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, Sanya, China
- Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, China
| | - Weitao Wan
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jiangwei Li
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Zhongyu Wang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Yue Yang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Jun Li
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Hainan Provincial Key Laboratory of Tropical Marine Biology Technology, Sanya Research Institute of Marine Ecological Environment Engineering, Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, Sanya, China
- Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, China
| | - Haitao Ma
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Hainan Provincial Key Laboratory of Tropical Marine Biology Technology, Sanya Research Institute of Marine Ecological Environment Engineering, Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, Sanya, China
- Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, China
| | - Ziniu Yu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Hainan Provincial Key Laboratory of Tropical Marine Biology Technology, Sanya Research Institute of Marine Ecological Environment Engineering, Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, Sanya, China
- Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhiming Xiang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Hainan Provincial Key Laboratory of Tropical Marine Biology Technology, Sanya Research Institute of Marine Ecological Environment Engineering, Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, Sanya, China
- Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yuehuan Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Hainan Provincial Key Laboratory of Tropical Marine Biology Technology, Sanya Research Institute of Marine Ecological Environment Engineering, Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, Sanya, China
- Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
44
|
Rousset F, Yirmiya E, Nesher S, Brandis A, Mehlman T, Itkin M, Malitsky S, Millman A, Melamed S, Sorek R. A conserved family of immune effectors cleaves cellular ATP upon viral infection. Cell 2023; 186:3619-3631.e13. [PMID: 37595565 DOI: 10.1016/j.cell.2023.07.020] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 05/18/2023] [Accepted: 07/12/2023] [Indexed: 08/20/2023]
Abstract
During viral infection, cells can deploy immune strategies that deprive viruses of molecules essential for their replication. Here, we report a family of immune effectors in bacteria that, upon phage infection, degrade cellular adenosine triphosphate (ATP) and deoxyadenosine triphosphate (dATP) by cleaving the N-glycosidic bond between the adenine and sugar moieties. These ATP nucleosidase effectors are widely distributed within multiple bacterial defense systems, including cyclic oligonucleotide-based antiviral signaling systems (CBASS), prokaryotic argonautes, and nucleotide-binding leucine-rich repeat (NLR)-like proteins, and we show that ATP and dATP degradation during infection halts phage propagation. By analyzing homologs of the immune ATP nucleosidase domain, we discover and characterize Detocs, a family of bacterial defense systems with a two-component phosphotransfer-signaling architecture. The immune ATP nucleosidase domain is also encoded within diverse eukaryotic proteins with immune-like architectures, and we show biochemically that eukaryotic homologs preserve the ATP nucleosidase activity. Our findings suggest that ATP and dATP degradation is a cell-autonomous innate immune strategy conserved across the tree of life.
Collapse
Affiliation(s)
- Francois Rousset
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel.
| | - Erez Yirmiya
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Shahar Nesher
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Alexander Brandis
- Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Tevie Mehlman
- Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Maxim Itkin
- Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Sergey Malitsky
- Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Adi Millman
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Sarah Melamed
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Rotem Sorek
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel.
| |
Collapse
|
45
|
Vallée N, Dugrenot E, Desruelle AV, Richard S, Coupé S, Ramdani C, Guieu R, Risso JJ, Gaillard S, Guerrero F. Highlighting of the interactions of MYD88 and NFKB1 SNPs in rats resistant to decompression sickness: toward an autoimmune response. Front Physiol 2023; 14:1253856. [PMID: 37664439 PMCID: PMC10470123 DOI: 10.3389/fphys.2023.1253856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 08/04/2023] [Indexed: 09/05/2023] Open
Abstract
Decompression sickness (DCS) with neurological disorders includes an inappropriate inflammatory response which degenerates slowly, even after the disappearance of the bubbles. There is high inter-individual variability in terms of the occurrence of DCS that could have been mastered by the selection and then the breeding of DCS-resistant rats. We hypothesized the selection of single-nucleotide polymorphisms (SNPs) linked to autoimmunity operated upon a generation of a DCS-resistant strain of rats. We used the candidate gene approach and targeted SNPs linked to the signaling cascade that directly regulates inflammation of innate immunity transiting by the Toll-like receptors. Twenty candidate SNPs were investigated in 36 standard rats and 33 DCS-resistant rats. For the first time, we identify a diplotype (i.e., with matched haplotypes)-when coinherited-that strengthens protection against DCS, which is not strictly homozygous and suggests that a certain tolerance may be considered. We deduced an ideal haplotype of six variants from it (MyD88_50-T, _49-A, _97-C coupled to NFKB_85-T, _69-T, _45-T) linked to the resistant phenotype. Four among the six identified variants are located in pre- and/or post-transcriptional areas regulating MyD88 or NFKB1 expression. Because of missense mutations, the other two variants induce a structural change in the NFKB1 protein complex including one damage alteration according to the Missense3D algorithm. In addition to the MyD88/NFKB1 haplotype providing rats with a strong resistance to DCS, this also highlights the importance that the immune response, here linked to the genetic heritage, can have in the development of DCS and offer a new perspective for therapeutic strategies.
Collapse
Affiliation(s)
- Nicolas Vallée
- Institut de Recherche Biomédicale des Armées, Equipe de Recherche Subaquatique Opérationnelle, Toulon, France
| | | | - Anne-Virginie Desruelle
- Institut de Recherche Biomédicale des Armées, Equipe de Recherche Subaquatique Opérationnelle, Toulon, France
| | | | | | - Céline Ramdani
- Institut de Recherche Biomédicale des Armées, Equipe de Recherche Subaquatique Opérationnelle, Toulon, France
| | - Régis Guieu
- Université d’Aix-Marseille, Marseille, France
| | - Jean-Jacques Risso
- Institut de Recherche Biomédicale des Armées, Equipe de Recherche Subaquatique Opérationnelle, Toulon, France
| | | | | |
Collapse
|
46
|
Li Y, Zhang C, Samad A, Zheng P, Li Y, Chen F, Jin T. Structural mechanism of dsDNA recognition by the hMNDA HIN domain: New insights into the DNA-binding model of a PYHIN protein. Int J Biol Macromol 2023; 245:125461. [PMID: 37348588 DOI: 10.1016/j.ijbiomac.2023.125461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/07/2023] [Accepted: 06/11/2023] [Indexed: 06/24/2023]
Abstract
The hematopoietic interferon-inducible nuclear (HIN) domain of the PYHIN family of proteins recognizes double-stranded DNA (dsDNA) through different dsDNA-binding modes. These modes apparently confer different roles upon these proteins in the regulation of innate immune responses, gene transcription, and apoptosis. Myeloid cell nuclear differentiation antigen (MNDA), a member of the human PYHIN family, binds DNA and regulates gene transcription in monocytes. However, the mechanism of DNA recognition and DNA-binding modes of human MNDA (hMNDA) remain unclear. Here, we determined the crystal structure of the hMNDA-HIN domain in complex with dsDNA at 2.4 Å resolution, and reveal that hMNDA-HIN binds to dsDNA in a sequence-independent manner. Structure and mutation studies indicated that hMNDA-HIN binds to dsDNA through a unique mode, involving two dsDNA-binding interfaces. Interface I exhibits an AIM2-like dsDNA-binding mode, and interface II has a previously unreported mode of dsDNA-binding. These results provide new insights into the DNA-binding modes of this PYHIN protein.
Collapse
Affiliation(s)
- Yuelong Li
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Caiying Zhang
- Laboratory of Structural Immunology, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Abdus Samad
- Laboratory of Structural Immunology, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Peiyi Zheng
- Laboratory of Structural Immunology, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Yajuan Li
- Laboratory of Structural Immunology, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Feng Chen
- Laboratory of Structural Immunology, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Tengchuan Jin
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China; Laboratory of Structural Immunology, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China; Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, Anhui, China; Biomedical Sciences and Health Laboratory of Anhui Province, University of Science & Technology of China, Hefei 230027, China; Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei 230001, China.
| |
Collapse
|
47
|
Wein T, Johnson AG, Millman A, Lange K, Yirmiya E, Hadary R, Garb J, Steinruecke F, Hill AB, Kranzusch PJ, Sorek R. CARD-like domains mediate anti-phage defense in bacterial gasdermin systems. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.28.542683. [PMID: 37398489 PMCID: PMC10312443 DOI: 10.1101/2023.05.28.542683] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Caspase recruitment domains (CARDs) and pyrin domains are important facilitators of inflammasome activity and pyroptosis. Upon pathogen recognition by NLR proteins, CARDs recruit and activate caspases, which, in turn, activate gasdermin pore forming proteins to and induce pyroptotic cell death. Here we show that CARD-like domains are present in defense systems that protect bacteria against phage. The bacterial CARD is essential for protease-mediated activation of certain bacterial gasdermins, which promote cell death once phage infection is recognized. We further show that multiple anti-phage defense systems utilize CARD-like domains to activate a variety of cell death effectors. We find that these systems are triggered by a conserved immune evasion protein that phages use to overcome the bacterial defense system RexAB, demonstrating that phage proteins inhibiting one defense system can activate another. We also detect a phage protein with a predicted CARD-like structure that can inhibit the CARD-containing bacterial gasdermin system. Our results suggest that CARD domains represent an ancient component of innate immune systems conserved from bacteria to humans, and that CARD-dependent activation of gasdermins is conserved in organisms across the tree of life.
Collapse
Affiliation(s)
- Tanita Wein
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Alex G. Johnson
- Department of Microbiology, Harvard Medical School, Boston, Ma, USA
- Deparment of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Adi Millman
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Katharina Lange
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Erez Yirmiya
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Romi Hadary
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Jeremy Garb
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Felix Steinruecke
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Aidan B. Hill
- Deparment of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Philip J. Kranzusch
- Department of Microbiology, Harvard Medical School, Boston, Ma, USA
- Deparment of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA
- Parker Institute for Cancer Immunotherapy at Dana-Farber Cancer Institute, Boston, MA, USA
| | - Rotem Sorek
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
48
|
Gaspar-Morales EA, Waterston A, Diaz-Parga P, Smith AM, Sadqi M, Gopinath A, Andresen Eguiluz RC, de Alba E. Natural and engineered isoforms of the inflammasome adaptor ASC form non-covalent, pH-responsive hydrogels. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.03.539154. [PMID: 37205378 PMCID: PMC10187214 DOI: 10.1101/2023.05.03.539154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The protein ASC polymerizes into intricate filament networks to assemble the inflammasome, a filamentous multiprotein complex that triggers the inflammatory response. ASC carries two Death Domains integrally involved in protein self-association for filament assembly. We have leveraged this behavior to create non-covalent, pH-responsive hydrogels of full-length, folded ASC by carefully controlling the pH as a critical factor in the polymerization process. We show that natural variants of ASC (ASC isoforms) involved in inflammasome regulation also undergo hydrogelation. To further demonstrate this general capability, we engineered proteins inspired in the ASC structure that successfully form hydrogels. We analyzed the structural network of the natural and engineered protein hydrogels using transmission and scanning electron microscopy, and studied their viscoelastic behavior by shear rheology. Our results reveal one of the very few examples of hydrogels created by the self-assembly of globular proteins and domains in their native conformation and show that Death Domains can be used alone or as building blocks to engineer bioinspired hydrogels.
Collapse
|
49
|
Abstract
As an important sensor in the innate immune system, NLRP3 detects exogenous pathogenic invasions and endogenous cellular damage and responds by forming the NLRP3 inflammasome, a supramolecular complex that activates caspase-1. The three major components of the NLRP3 inflammasome are NLRP3, which captures the danger signals and recruits downstream molecules; caspase-1, which elicits maturation of the cytokines IL-1β and IL-18 and processing of gasdermin D to mediate cytokine release and pyroptosis; and ASC (apoptosis-associated speck-like protein containing a caspase recruitment domain), which functions as a bridge connecting NLRP3 and caspase-1. In this article, we review the structural information that has been obtained on the NLRP3 inflammasome and its components or subcomplexes, with special focus on the inactive NLRP3 cage, the active NLRP3-NEK7 (NIMA-related kinase 7)-ASC inflammasome disk, and the PYD-PYD and CARD-CARD homotypic filamentous scaffolds of the inflammasome. We further implicate structure-derived mechanisms for the assembly and activation of the NLRP3 inflammasome.
Collapse
Affiliation(s)
- Jianing Fu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA;
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Hao Wu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA;
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, Massachusetts, USA
| |
Collapse
|
50
|
Ha HJ, Park HH. Molecular basis of neurodevelopmental disorders caused by pathogenic variants of PIDD. Biochem Biophys Res Commun 2023; 645:147-153. [PMID: 36689811 DOI: 10.1016/j.bbrc.2023.01.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 01/16/2023] [Indexed: 01/19/2023]
Abstract
PIDDosome formation followed by caspase-2 activation is critical for genotoxic stress-induced apoptotic cell death. Failure of proper caspase-2 activation causes a neurodevelopmental disorder and intellectual disability. R815W, R862W, and Q863stop mutations in p53-induced protein with a death domain (PIDD), a component of the PIDDosome, also lead to this disorder. However, the molecular mechanisms underlying this pathogenesis remain elusive. In this study, we analyzed the molecular mechanisms underlying the pathogenesis of the PIDD DD pathogenic variants R815W, R862W, and Q863stop. We determined that these mutations prevented the interaction between PIDD and RIP-associated Ich-1/Ced-3 homologous protein with a death domain (RAIDD), a molecule that mediates PIDDosome formation. The disruption of this interaction affects PIDDosome formation and caspase-2 activation.
Collapse
Affiliation(s)
- Hyun Ji Ha
- College of Pharmacy, Chung-Ang University, Seoul, 06974, South Korea
| | - Hyun Ho Park
- College of Pharmacy, Chung-Ang University, Seoul, 06974, South Korea.
| |
Collapse
|