1
|
Sanie-Jahromi F, Sadeghi N, Moayedfard Z, Gharegezloo Z, Nejabat M, Nowroozzadeh MH. Effects of exosomes derived from activated corneal stromal keratocytes on the inflammation, proliferation, neuroprotection and epithelial-mesenchymal transition in retinal pigment epithelium cells. Life Sci 2025; 371:123592. [PMID: 40174671 DOI: 10.1016/j.lfs.2025.123592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 03/04/2025] [Accepted: 03/24/2025] [Indexed: 04/04/2025]
Abstract
AIMS This study investigated the effects of activated keratocyte-derived exosomes (aKExo) on retinal pigment epithelial (RPE) cells in-vitro, focusing on cell viability, inflammatory cytokine expression, and neuroprotective properties. MATERIALS AND METHODS Keratocytes were cultured, and exosomes were extracted and characterized using transmission electron microscopy (TEM), scanning electron microscopy (SEM), flow cytometry, and dynamic light scattering (DLS). RPE cells, isolated from a human donor, were confirmed via RPE65 expression. aKExo effects on RPE cells were assessed using MTT assay at concentrations from 10-1 (35 μg/mL) to 10-5 (3.5 × 10-3 μg/mL). The optimal aKExo concentration (10-5) enhanced cell viability and exhibited the highest proliferative potential compared to the control group, making it the optimal dose for subsequent experiments including gene expression analysis, and ELISA. KEY FINDINGS aKExo downregulated IL-6 mRNA (0.70 ± 0.06, p = 0.0009) and marginally reduced TGF-β mRNA (0.75 ± 0.16, p = 0.0575). ELISA confirmed a reduction in IL-6 (31.33 ± 5.77 pg/mL vs. 50.22 ± 13.47 pg/mL, p = 0.0894) and TGF-β (8.91 ± 0.16 pg/mL vs. 11.39 ± 1.49 pg/mL, p = 0.0460). No significant changes were observed for IL-1β expression or other epithelial-mesenchymal transition (EMT)-related genes (α-SMA, ZEB-1, β-catenin). Neuroprotective genes NGF (4.34 ± 1.05, p = 0.0053) and CD90 (1.55 ± 0.25, p = 0.0184) were significantly upregulated, while VEGF-A was elevated (1.65 ± 0.15, p = 0.0018). SIGNIFICANCE These findings highlight aKExo's immunomodulatory, neuroprotective, and anti-EMT effects, suggesting potential therapeutic applications for retinal disorders, while noting that VEGF-A upregulation requires further investigation.
Collapse
Affiliation(s)
- Fatemeh Sanie-Jahromi
- Poostchi Ophthalmology Research Center, Department of Ophthalmology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Niloofar Sadeghi
- Poostchi Ophthalmology Research Center, Department of Ophthalmology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Moayedfard
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Gharegezloo
- Poostchi Ophthalmology Research Center, Department of Ophthalmology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahmood Nejabat
- Poostchi Ophthalmology Research Center, Department of Ophthalmology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - M Hossein Nowroozzadeh
- Poostchi Ophthalmology Research Center, Department of Ophthalmology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
2
|
Riza YM, Alzahrani FA. Rewiring the Spine-Cutting-Edge Stem Cell Therapies for Spinal Cord Repair. Int J Mol Sci 2025; 26:5048. [PMID: 40507858 PMCID: PMC12154377 DOI: 10.3390/ijms26115048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2025] [Revised: 05/11/2025] [Accepted: 05/21/2025] [Indexed: 06/16/2025] Open
Abstract
Spinal cord injury (SCI) is a debilitating neurological condition that leads to severe disabilities, significantly reducing patients' quality of life and imposing substantial societal and economic burdens. SCI involves a complex pathogenesis, including primary irreversible damage and secondary injury driven by neuroinflammation, apoptosis, and ischemia. Current treatments often provide limited efficacy, underscoring the urgent need for innovative therapeutic strategies. This paper aims to explore the potential use of stem cell (SC) therapy and exosome-based treatments as transformative approaches for managing SCI and mitigating associated disabilities. SCs, such as mesenchymal stem cells (MSCs), neural stem cells (NSCs), and embryonic stem cells (ESCs), demonstrate regenerative capabilities, including self-renewal, differentiation into neurons and glial cells, and modulation of the injury microenvironment. These properties enable SCs to reduce inflammation, inhibit apoptosis, and promote neuronal regeneration in preclinical models. Exosome-based therapies, derived from SCs, offer a novel alternative by addressing challenges like immune rejection and tumorigenicity. Exosomes deliver biomolecules, such as miRNAs, fostering anti-inflammatory, anti-apoptotic, and pro-regenerative effects. They have shown efficacy in improving motor function, reducing glial scarring, and enhancing axonal regrowth in SCI models. The objective of this paper is to provide a comprehensive review of SC therapy and exosome-based approaches, emphasizing their potential to revolutionize SCI management while addressing ethical concerns, immune rejection, and the need for large-scale clinical trials. These therapies hold promise for improving recovery outcomes and alleviating the profound disabilities associated with SCI.
Collapse
Affiliation(s)
- Yasir Mohamed Riza
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Department of Biochemistry, Faculty of Science, Embryonic Stem Cell Unit, King Fahad Center for Medical Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Faisal A. Alzahrani
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Department of Biochemistry, Faculty of Science, Embryonic Stem Cell Unit, King Fahad Center for Medical Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
3
|
Mendes AX, Volpe J, Aguilar LC, Luz RDCS, Damos FS, Souto DEP, Greene GW, Moulton SE, Silva SM. Lubricin (PRG4) antifouling coating enables the development of an immunosensor for the detection of nerve growth factor in cell culture media. Talanta 2025; 294:128143. [PMID: 40300472 DOI: 10.1016/j.talanta.2025.128143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 03/30/2025] [Accepted: 04/12/2025] [Indexed: 05/01/2025]
Abstract
Growth factors (GFs) are the unique signaling molecules that enable constant communication and feedback between cells, modulating cell behavior and maintaining the structure and function of tissues. Traditional methods to detect and quantify GFs, such as ELISA, offer high specificity but are usually costly, present lower limits of detection, typically require sample processing, and are time-consuming. Electrochemical sensing emerges as a promising alternative due to their rapid responses and easy operation; however, they are prone to biofouling when challenged in complex biological environments. This study introduces an antifouling agent, lubricin (LUB), into an electrochemical immunosensor for the detection nerve growth factor (NGF). Through the combination of a specific NGF antibody with LUB, the developed sensor presents a great sensitivity, achieving a limit detection of 0.59 ng mL-1 for the target NGF. Our results show that the proposed sensing configuration can detect NGF directly in unprocessed and undiluted cell culture media with much faster analytical responses when compared to ELISA.
Collapse
Affiliation(s)
- Alexandre Xavier Mendes
- School of Engineering, Swinburne University of Technology, Melbourne, Victoria, 3122, Australia; Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Melbourne, Victoria, 3065, Australia
| | - Jaqueline Volpe
- Laboratório de Espectrometria, Sensores e Biossensores - Department of Chemistry, Federal University of Paraná (UFPR), Curitiba, PR, 81530-900, Brazil
| | - Lilith Caballero Aguilar
- Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Melbourne, Victoria, 3065, Australia; The Graeme Clark Institute, Biomedical Engineering Department, Melbourne University, Victoria, Australia; Department of Biomedical Engineering, Faculty of Engineering and Information Technology, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | | | - Flavio Santos Damos
- Department of Chemistry, Federal University of Maranhão (UFMA), São Luís, MA, 65080-805, Brazil
| | - Dênio E P Souto
- Laboratório de Espectrometria, Sensores e Biossensores - Department of Chemistry, Federal University of Paraná (UFPR), Curitiba, PR, 81530-900, Brazil
| | - George W Greene
- The Biomedical and Environmental Sensor Technology (BEST) Research Centre, Biosensors Program, La Trobe Institute for Molecular Science (LIMS), La Trobe University, Melbourne, Victoria, 3086, Australia; Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, Victoria, 3086, Australia
| | - Simon E Moulton
- School of Engineering, Swinburne University of Technology, Melbourne, Victoria, 3122, Australia; Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Melbourne, Victoria, 3065, Australia; Iverson Health Innovation Research Institute, Swinburne University of Technology, Melbourne, Victoria, 3122, Australia
| | - Saimon Moraes Silva
- The Biomedical and Environmental Sensor Technology (BEST) Research Centre, Biosensors Program, La Trobe Institute for Molecular Science (LIMS), La Trobe University, Melbourne, Victoria, 3086, Australia; Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, Victoria, 3086, Australia
| |
Collapse
|
4
|
Xu J, Bang S, Chen O, Li Y, McGinnis A, Zhang Q, Ji RR. Neuroprotectin D1 and GPR37 protect against chemotherapy-induced peripheral neuropathy and the transition from acute to chronic pain. Pharmacol Res 2025; 216:107746. [PMID: 40287118 DOI: 10.1016/j.phrs.2025.107746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 04/20/2025] [Accepted: 04/22/2025] [Indexed: 04/29/2025]
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) significantly impacts patient's quality of life and complicates cancer treatment. Neuroprotectin D1 (NPD1)/protectin D1 (PD1), derived from docosahexaenoic acid (DHA), exhibits analgesic actions in animal models of inflammatory pain and neuropathic pain. GPR37, a receptor for NPD1/PD1, is known to regulate macrophage phagocytosis and inflammatory cytokine expression, but its role in primary sensory neurons and CIPN remains poorly understood. We found Gpr37 mRNA expression in both neurons and macrophages in mouse dorsal root ganglia (DRG), furthermore, GPR37 is downregulated by the chemotherapy agent paclitaxel. Gpr37 mRNA was notably high in neonatal mouse DRG neurons. In contrast, Gpr37l1 is primarily expressed by satellite glial cells in DRG. Chemotherapy-induced neuropathic pain symptom (mechanical allodynia) resolved within seven weeks in wild-type mice, but it persisted in Gpr37 knockout mice, highlighting GPR37's role in acute-to-chronic pain transition. Consistently, intra-DRG knockdown of Gpr37 in naive animals was sufficient to induce mechanical allodynia. In primary DRG cultures, NPD1 facilitated neurite outgrowth of sensory neurons in the presence of paclitaxel, in a GPR37-dependent manner. NPD1 treatment also mitigated mechanical allodynia and prevented the loss of intraepidermal nerve fibers in hind paw skins in wild-type mice undergoing chemotherapy, but these protective effects are absent in Gpr37 knockout mice. Finally, spatial transcriptomics analysis revealed macrophage and neuronal expression of GPR37 in human DRG. Our findings indicate that GPR37 deficiency drives pain chronicity in CIPN. This study also underscores the potential of NPD1 in safeguarding against sensory neuron degeneration and neuropathic pain in CIPN through GPR37.
Collapse
Affiliation(s)
- Jing Xu
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, United States
| | - Sangsu Bang
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, United States
| | - Ouyang Chen
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, United States
| | - Yize Li
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, United States
| | - Aidan McGinnis
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, United States
| | - Qin Zhang
- Department of Anesthesiology, Duke University, Durham, NC 27708, United States
| | - Ru-Rong Ji
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, United States; Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, United States; Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, United States.
| |
Collapse
|
5
|
Ospondpant D, Gao X, Lin S, Ho YM, Dong TTX, Tsim KWK. Pterostilbene Potentiates the NGF-TrkA Signaling Pathway, Enhancing Differentiation in PC12 Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:9595-9605. [PMID: 40204644 DOI: 10.1021/acs.jafc.4c10766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2025]
Abstract
Pterostilbene, a stilbenoid found in vegetables and natural products, has therapeutic potential due to its multiple pharmacological actions. In the brain, the nerve growth factor (NGF) is a pivotal neurotrophic factor, serving for neuronal survival and differentiation. The decline in NGF levels in aged individuals contributes to the development of neurodegenerative processes and cognitive impairment. Here, we aim to explore the effect of pterostilbene on promoting neuron-like differentiation in PC12 cells, a well-established model to study neuronal differentiation, by potentiating the functions of NGF. Molecular docking and ultrafiltration assays were performed to examine the direct binding of pterostilbene with NGF. The mechanisms underlying the stimulation of PC12 cell differentiation, characterized by enhanced neurite outgrowth and increased neurofilament expression, were determined through TrkA/Akt/CREB signaling pathways. The combined treatment of pterostilbene with a low dose of NGF significantly potentiated the NGF-induced neurite extension and neurofilament expression. Pterostilbene enhanced the effect of NGF on promoting neuron-like differentiation, which was related to increased activation of the TrkA signaling pathway. This upstream event was associated with increased phosphorylation of Akt and CREB. The selective inhibitors of TrkA (K252a) and PI3K/Akt (LY294002) were applied to validate the NGF/TrkA/Akt signaling pathways leading to diminished neurite outgrowth and reduced expression of neurofilaments in cells treated with pterostilbene and NGF. Taken together, the results indicate that pterostilbene could potentiate NGF/TrkA activity, enhancing neuron-like differentiation in PC12 cells under a low concentration of NGF. These findings suggest that the application of pterostilbene could be a promising alternative therapeutic strategy to improve NGF efficacy.
Collapse
Affiliation(s)
- Dusadee Ospondpant
- Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Clear Water Bay Road, Hong Kong 999077, China
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, Shenzhen Research Institute, The Hong Kong University of Science and Technology, Shenzhen 518000, China
| | - Xiong Gao
- Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Clear Water Bay Road, Hong Kong 999077, China
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, Shenzhen Research Institute, The Hong Kong University of Science and Technology, Shenzhen 518000, China
| | - Shengying Lin
- Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Clear Water Bay Road, Hong Kong 999077, China
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, Shenzhen Research Institute, The Hong Kong University of Science and Technology, Shenzhen 518000, China
| | - Yuen Man Ho
- Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Clear Water Bay Road, Hong Kong 999077, China
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, Shenzhen Research Institute, The Hong Kong University of Science and Technology, Shenzhen 518000, China
| | - Tina Ting Xia Dong
- Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Clear Water Bay Road, Hong Kong 999077, China
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, Shenzhen Research Institute, The Hong Kong University of Science and Technology, Shenzhen 518000, China
| | - Karl Wah Keung Tsim
- Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Clear Water Bay Road, Hong Kong 999077, China
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, Shenzhen Research Institute, The Hong Kong University of Science and Technology, Shenzhen 518000, China
| |
Collapse
|
6
|
Danos JA, Addemir M, McGettigan L, Summers DW. Nerve growth factor signaling tunes axon maintenance protein abundance and kinetics of Wallerian degeneration. Mol Biol Cell 2025; 36:ar46. [PMID: 39969989 PMCID: PMC12005098 DOI: 10.1091/mbc.e25-01-0005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 02/11/2025] [Accepted: 02/12/2025] [Indexed: 02/20/2025] Open
Abstract
Neurotrophic factors are critical for establishing functional connectivity in the nervous system and sustaining neuronal survival through adulthood. As the first neurotrophic factor purified, nerve growth factor (NGF) is extensively studied for its prolific role in axon outgrowth, pruning, and survival. Applying NGF to diseased neuronal tissue is an exciting therapeutic option and understanding how NGF regulates local axon susceptibility to pathological degeneration is critical for exploiting its full potential. Our study identifies surprising connections between NGF signaling and proteostasis of axon maintenance factors. NGF deprivation increases Nmnat2 and Stmn2 protein levels in axon segments with a corresponding delay in Wallerian degeneration. Conversely, acute NGF stimulation reduces local abundance of these axon maintenance factors and accelerates Wallerian degeneration. Pharmacological studies implicate phospholipase C as the key effector in tropomyosin-related kinase A (TrkA) activation, which drives degradation of palmitoylated Stmn2. While seemingly opposed to neuroprotective activities well-documented for NGF, downregulating Nmnat2 and Stmn2 favors axonal outgrowth over transient hypersusceptibility to Sarm1-dependent degeneration. This new facet of NGF biology has important implications for axonal remodeling during development and sustained integrity through adulthood.
Collapse
Affiliation(s)
- Joseph A. Danos
- Department of Biology, University of Iowa, Iowa City, IA 52242
| | - Merve Addemir
- Department of Biology, University of Iowa, Iowa City, IA 52242
| | - Lily McGettigan
- Department of Biology, University of Iowa, Iowa City, IA 52242
| | - Daniel W. Summers
- Department of Biology, University of Iowa, Iowa City, IA 52242
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA 52242
| |
Collapse
|
7
|
Kanduri M, Subhash S, Putino R, Mahale S, Kanduri C. IER3: exploring its dual function as an oncogene and tumor suppressor. Cancer Gene Ther 2025; 32:450-463. [PMID: 40090972 PMCID: PMC11976266 DOI: 10.1038/s41417-025-00891-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 02/10/2025] [Accepted: 03/07/2025] [Indexed: 03/19/2025]
Abstract
The IER3 gene has a complex role in cancer biology, acting either as a tumor suppressor or an oncogene, depending on the cancer type. This duality underscores the complexity and importance of molecular pathways in modulating cancer behavior. Despite its significance in cancer development, there is a dearth of studies elucidating the exact mechanisms underlying IER3's involvement in modulating cancer behavior. Here, utilizing cervical carcinoma and neuroblastoma (NB) cell lines as model systems we characterized the pathways that mediate the functional switch between the oncogenic and tumor suppressor roles of IER3. In HeLa cells, IER3 expression promotes an oncogenic program that includes immediate early response pathway genes such as EGR2, FOS, and JUN. However, in NB cells, IER3 suppresses the EGR2-dependent oncogenic program. This differential regulation of EGR2 by IER3 involves epigenetic modulation of the EGR2 promoter. IER3 dependent tumor suppressor pathway in NB cells relies on ADAM19 gene. Thus, our findings uncover the molecular pathways that dictate the context-dependent roles of IER3 in cancer, providing insights into its dual functionality in different cancer types.
Collapse
Affiliation(s)
- Meena Kanduri
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| | - Santhilal Subhash
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
- Department of Biosciences and Bioengineering, Indian Institute of Technology Jammu, Jammu, India
| | - Rossana Putino
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Sagar Mahale
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Chandrasekhar Kanduri
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
8
|
Zeng CW. Stem Cell-Based Approaches for Spinal Cord Injury: The Promise of iPSCs. BIOLOGY 2025; 14:314. [PMID: 40136570 PMCID: PMC11940451 DOI: 10.3390/biology14030314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 03/09/2025] [Accepted: 03/19/2025] [Indexed: 03/27/2025]
Abstract
Spinal cord injury (SCI) is a life-altering condition that leads to severe neurological deficits and significantly impacts patients' quality of life. Despite advancements in medical care, current treatment options remain largely palliative, with limited ability to promote meaningful functional recovery. Induced pluripotent stem cells (iPSCs) have emerged as a promising avenue for regenerative medicine, offering patient-specific, cell-based therapeutic potential for SCI repair. This review provides a comprehensive overview of recent advancements in iPSC-based approaches for SCI, detailing the strategies used to generate neural cell types, including neural progenitor cells, oligodendrocytes, astrocytes, and microglia, and their roles in promoting neuroprotection and regeneration. Additionally, we examine key preclinical and clinical studies, highlighting functional recovery assessments and discussing both standardized and debated evaluation metrics. Furthermore, we address critical challenges related to safety, tumorigenicity, immune response, survival, integration, and overcoming the inhibitory microenvironment of the injured spinal cord. We also explore emerging approaches in biomaterial scaffolds, gene editing, and rehabilitation strategies that may enhance the clinical applicability of iPSC-based therapies. By addressing these challenges and refining translational strategies, iPSC-based interventions hold significant potential to revolutionize SCI treatment and improve outcomes for affected individuals.
Collapse
Affiliation(s)
- Chih-Wei Zeng
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
9
|
Mucci F, Arone A, Gurrieri R, Weiss F, Russomanno G, Marazziti D. Third-Generation Antipsychotics: The Quest for the Key to Neurotrophism. Life (Basel) 2025; 15:391. [PMID: 40141736 PMCID: PMC11944073 DOI: 10.3390/life15030391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 02/24/2025] [Accepted: 02/26/2025] [Indexed: 03/28/2025] Open
Abstract
Antipsychotic drugs (APs) have profoundly changed the treatment landscape for psychiatric disorders, yet their impact on neuroplasticity and neurotrophism remains only partially understood. While second-generation antipsychotics (SGAs) are associated with a better side effect profile than their predecessors, the emergence of third-generation antipsychotics (TGAs)-such as brexpiprazole, cariprazine, lurasidone, iloperidone, lumateperone, pimavanserin, and roluperidone-has prompted renewed interest in their potential neuroprotective and pro-cognitive effects. This review attempts to carefully examine the evidence on the neurotrophic properties of TGAs and their role in modulating brain plasticity by analyzing studies published between 2010 and 2024. Although data remain limited and focused primarily on earlier SGAs, emerging findings suggest that some TGAs may exert positive effects on neuroplastic processes, including the modulation of brain-derived neurotrophic factors (BDNFs) and synaptic architecture. However, robust clinical data on their long-term effects and comparative efficacy are lacking; therefore, further research is necessary to validate their role in preventing neurodegenerative changes and improving cognitive outcomes in patients with psychiatric conditions.
Collapse
Affiliation(s)
- Federico Mucci
- Department of Psychiatry, Lucca Zone, Azienda USL Toscana Nord Ovest, 55100 Lucca, Italy;
| | - Alessandro Arone
- Department of Clinical and Experimental Medicine, Section of Psychiatry, University of Pisa, 56100 Pisa, Italy; (A.A.); (R.G.); (F.W.); (G.R.)
| | - Riccardo Gurrieri
- Department of Clinical and Experimental Medicine, Section of Psychiatry, University of Pisa, 56100 Pisa, Italy; (A.A.); (R.G.); (F.W.); (G.R.)
| | - Francesco Weiss
- Department of Clinical and Experimental Medicine, Section of Psychiatry, University of Pisa, 56100 Pisa, Italy; (A.A.); (R.G.); (F.W.); (G.R.)
| | - Gerardo Russomanno
- Department of Clinical and Experimental Medicine, Section of Psychiatry, University of Pisa, 56100 Pisa, Italy; (A.A.); (R.G.); (F.W.); (G.R.)
| | - Donatella Marazziti
- Department of Clinical and Experimental Medicine, Section of Psychiatry, University of Pisa, 56100 Pisa, Italy; (A.A.); (R.G.); (F.W.); (G.R.)
| |
Collapse
|
10
|
Pelegrino ADF, Attarha M, Toussaint PJ, Ouellet L, Grant SJ, Van Vleet T, de Villers-Sidani E. Cholinergic neurotransmission in the anterior cingulate cortex is associated with cognitive performance in healthy older adults: Baseline characteristics of the Improving Neurological Health in Aging via Neuroplasticity-based Computerized Exercise (INHANCE) trial. NEUROIMAGE. REPORTS 2025; 5:100234. [PMID: 40191405 PMCID: PMC11970925 DOI: 10.1016/j.ynirp.2025.100234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Aging is associated with dysfunction in the cholinergic system, including degeneration of basal forebrain cholinergic terminals that innervate the cortex, which directly contributes to age- and disease-related cognitive decline. In this study, we used [18F]fluoroethoxybenzovesamicol ([18F]FEOBV) positron emission tomography (PET) imaging to assess the effect of age on cholinergic terminal integrity in predefined regions of interest and its relationship to cognitive performance in healthy older adults who underwent neuropsychological assessment and FEOBV PET brain imaging. Our results showed age-related reductions in FEOBV binding, particularly in the anterior cingulate cortex-the primary region of interest-as well as in the striatum, posterior cingulate cortex, and primary auditory cortex. Notably, FEOBV binding in the anterior cingulate cortex was positively correlated with cognitive performance on the NIH EXAMINER Executive Composite Score. These findings suggest that [18F] FEOBV PET imaging can be used as a reliable biomarker to assess cholinergic changes in the human brain and indicate that preserving the cholinergic integrity of the basal forebrain may help maintain cognitive function and protect against age-related cognitive decline.
Collapse
Affiliation(s)
- Ana de Figueiredo Pelegrino
- McGill University, Montreal Neurological Institute and Hospital, 3801 University Street, Montréal, Quebec, H3A 2B4, Canada
| | - Mouna Attarha
- Posit Science Corporation, 160 Pine St Suite 200, San Francisco, CA, 94111, United States
| | - Paule-Joanne Toussaint
- McGill University, Montreal Neurological Institute and Hospital, 3801 University Street, Montréal, Quebec, H3A 2B4, Canada
| | - Lydia Ouellet
- McGill University, Montreal Neurological Institute and Hospital, 3801 University Street, Montréal, Quebec, H3A 2B4, Canada
| | - Sarah-Jane Grant
- Posit Science Corporation, 160 Pine St Suite 200, San Francisco, CA, 94111, United States
| | - Thomas Van Vleet
- Posit Science Corporation, 160 Pine St Suite 200, San Francisco, CA, 94111, United States
| | - Etienne de Villers-Sidani
- McGill University, Montreal Neurological Institute and Hospital, 3801 University Street, Montréal, Quebec, H3A 2B4, Canada
| |
Collapse
|
11
|
Fan X, Wang H, Lv X, Wang Q, Yu B, Li X, Li L, Zhang Y, Ma N, Lu Q, Qian A, Gao J. The pCREB/BDNF Pathway in the Hippocampus Is Involved in the Therapeutic Effect of Selective 5-HT Reuptake Inhibitors in Adult Male Rats Exposed to Blast Traumatic Brain Injury. Brain Sci 2025; 15:236. [PMID: 40149758 PMCID: PMC11940387 DOI: 10.3390/brainsci15030236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 02/18/2025] [Accepted: 02/19/2025] [Indexed: 03/29/2025] Open
Abstract
BACKGROUND Blast traumatic brain injury (bTBI) can result in depression-like behaviors in the acute and chronic phases. SSRIs have been shown to significantly alleviate depression-like behaviors in animal models of traumatic brain injury (TBI) by increasing serotonin (5-HT) and brain-derived neurotrophic factor (BDNF) in the hippocampus. However, the therapeutic effects of SSRIs on depression caused by bTBI remain unclear. OBJECTIVE Therefore, this study was aimed at investigating the therapeutic effects of SSRIs on depression-like behaviors in bTBI models. METHODS We created a rat model to study mild TBI by subjecting rats to increased blast overpressures (BOP) and injecting fluoxetine and escitalopram SSRIs intraperitoneally for 28 days. RESULTS On day 14 post-BOP exposure, rats treated with SSRIs showed decreased depression-like behaviors. This finding was accompanied by higher 5-HT levels in the hippocampus and increased numbers of Nestin-positive cells in the dentate gyrus. Furthermore, rats treated with SSRIs exhibited increased pCREB and BDNF protein expression in the hippocampus on days 7, 14, and 28 after bTBI. CONCLUSIONS Overall, our findings indicate that SSRI-induced recovery from depression-like behaviors after mild bTBI is associated with the upregulation of 5-HT levels, pCREB and BDNF expression, and neurogenesis in the hippocampus.
Collapse
Affiliation(s)
- Xiaolin Fan
- Laboratory for Bone Metabolism, Xi’an Key Laboratory of Special Medicine and Health Engineering, Key Laboratory for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, No. 127 Youyi West Road, Beilin District, Xi’an 710072, China;
- Xi’an Key Laboratory of Toxicology and Biological Effect, Institute for Hygiene of Ordnance Industry, Xi’an 710065, China
| | - Hong Wang
- Xi’an Key Laboratory of Toxicology and Biological Effect, Institute for Hygiene of Ordnance Industry, Xi’an 710065, China
| | - Xiaoqiang Lv
- Xi’an Key Laboratory of Toxicology and Biological Effect, Institute for Hygiene of Ordnance Industry, Xi’an 710065, China
| | - Qi Wang
- Xi’an Key Laboratory of Toxicology and Biological Effect, Institute for Hygiene of Ordnance Industry, Xi’an 710065, China
| | - Boya Yu
- Xi’an Key Laboratory of Toxicology and Biological Effect, Institute for Hygiene of Ordnance Industry, Xi’an 710065, China
| | - Xiao Li
- Xi’an Key Laboratory of Toxicology and Biological Effect, Institute for Hygiene of Ordnance Industry, Xi’an 710065, China
| | - Liang Li
- Xi’an Key Laboratory of Toxicology and Biological Effect, Institute for Hygiene of Ordnance Industry, Xi’an 710065, China
| | - Yuhao Zhang
- Xi’an Key Laboratory of Toxicology and Biological Effect, Institute for Hygiene of Ordnance Industry, Xi’an 710065, China
| | - Ning Ma
- Xi’an Key Laboratory of Toxicology and Biological Effect, Institute for Hygiene of Ordnance Industry, Xi’an 710065, China
| | - Qing Lu
- Xi’an Key Laboratory of Toxicology and Biological Effect, Institute for Hygiene of Ordnance Industry, Xi’an 710065, China
| | - Airong Qian
- Laboratory for Bone Metabolism, Xi’an Key Laboratory of Special Medicine and Health Engineering, Key Laboratory for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, No. 127 Youyi West Road, Beilin District, Xi’an 710072, China;
| | - Junhong Gao
- Xi’an Key Laboratory of Toxicology and Biological Effect, Institute for Hygiene of Ordnance Industry, Xi’an 710065, China
| |
Collapse
|
12
|
Gu CL, Zhang L, Zhu Y, Bao TY, Zhu YT, Chen YT, Pang HQ. Exploring the cellular and molecular basis of nerve growth factor in cerebral ischemia recovery. Neuroscience 2025; 566:190-197. [PMID: 39742942 DOI: 10.1016/j.neuroscience.2024.12.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/19/2024] [Accepted: 12/26/2024] [Indexed: 01/04/2025]
Abstract
Vascular obstruction often causes inadequate oxygen and nutrient supply to the brain. This deficiency results in cerebral ischemic injury, which significantly impairs neurological function. This review aimed to explore the neuroprotective and regenerative effects of nerve growth factor (NGF) in cerebral ischemic injury. NGF, a crucial neurotrophic factor, could inhibit neuronal apoptosis, reduce inflammatory responses, and promote axon regeneration and angiogenesis through its interaction with TrkA, a high-affinity receptor. These functions were closely related to the activation of Phosphatidylinositol 3-kinase/Protein kinase B (PI3K/AKT) and Mitogen-Activated Protein Kinase (MAPK) pathways. Moreover, the mechanisms of NGF in the acute and recovery phases, along with the strategies to enhance its therapeutic effects using delivery systems (such as intranasal administration, nanovesicles, and gene therapy) were also summarized. Although NGF shows great potential for clinical application, its delivery efficiency and long-term safety still need more research and improvements. Future research should focus on exploring the specific action mechanism of NGF, optimizing the delivery strategy, and evaluating its long-term efficacy and safety to facilitate its clinical transformation in cerebral ischemic stroke.
Collapse
Affiliation(s)
- Chen-Lin Gu
- Institute of Translational Medicine, School of Medicine, Yangzhou University, Yangzhou 225009, China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou 225009, China
| | - Lu Zhang
- The Radiology Department of Shanxi Provincial People's Hospital Affiliated to Shanxi Medical University, Taiyuan 030001, China
| | - Yan Zhu
- Institute of Translational Medicine, School of Medicine, Yangzhou University, Yangzhou 225009, China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou 225009, China
| | - Ting-Yu Bao
- Institute of Translational Medicine, School of Medicine, Yangzhou University, Yangzhou 225009, China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou 225009, China
| | - Yu-Ting Zhu
- Institute of Translational Medicine, School of Medicine, Yangzhou University, Yangzhou 225009, China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou 225009, China
| | - Yu-Tong Chen
- Institute of Translational Medicine, School of Medicine, Yangzhou University, Yangzhou 225009, China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou 225009, China
| | - Han-Qing Pang
- Institute of Translational Medicine, School of Medicine, Yangzhou University, Yangzhou 225009, China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
13
|
Al Mamun A, Shao C, Geng P, Wang S, Xiao J. Recent advances in the role of neuroregulation in skin wound healing. BURNS & TRAUMA 2025; 13:tkae072. [PMID: 39872039 PMCID: PMC11770601 DOI: 10.1093/burnst/tkae072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 10/24/2024] [Accepted: 11/01/2024] [Indexed: 01/29/2025]
Abstract
Neuroregulation during skin wound healing involves complex interactions between the nervous system and intricate tissue repair processes. The skin, the largest organ, depends on a complex system of nerves to manage responses to injury. Recent research has emphasized the crucial role of neuroregulation in maximizing wound healing outcomes. Recently, researchers have also explained the interactive contact between the peripheral nervous system and skin cells during the different phases of wound healing. Neurotransmitters and neuropeptides, once observed as simple signalling molecules, have since been recognized as effective regulators of inflammation, angiogenesis, and cell proliferation. The significance of skin innervation and neuromodulators is underscored by the delayed wound healing observed in patients with diabetes and the regenerative capabilities of foetal skin. Foetal skin regeneration is influenced by the neuroregulatory environment, immature immune system, abundant growth factors, and increased pluripotency of cells. Foetal skin cells exhibit greater flexibility and specialized cell types, and the extracellular matrix composition promotes regeneration. The extracellular matrix composition of foetal skin promotes regeneration, making it more capable than adult skin because neuroregulatory signals affect skin regeneration. The understanding of these systems can facilitate the development of therapeutic strategies to alter the nerve supply to the skin to enhance the process of wound healing. Neuroregulation is being explored as a potential therapeutic strategy for enhancing skin wound repair. Bioelectronic strategies and neuromodulation techniques can manipulate neural signalling, optimize the neuroimmune axis, and modulate inflammation. This review describes the function of skin innervation in wound healing, emphasizing the importance of neuropeptides released by sensory and autonomic nerve fibres. This article discusses significant discoveries related to neuroregulation and its impact on skin wound healing.
Collapse
Affiliation(s)
- Abdullah Al Mamun
- Central Laboratory of The Lishui Hospital of Wenzhou Medical University, The First Affiliated Hospital of Lishui University, Lishui People's Hospital, Lishui, Zhejiang 323000, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Chuxiao Shao
- Central Laboratory of The Lishui Hospital of Wenzhou Medical University, The First Affiliated Hospital of Lishui University, Lishui People's Hospital, Lishui, Zhejiang 323000, China
| | - Peiwu Geng
- Central Laboratory of The Lishui Hospital of Wenzhou Medical University, The First Affiliated Hospital of Lishui University, Lishui People's Hospital, Lishui, Zhejiang 323000, China
| | - Shuanghu Wang
- Central Laboratory of The Lishui Hospital of Wenzhou Medical University, The First Affiliated Hospital of Lishui University, Lishui People's Hospital, Lishui, Zhejiang 323000, China
| | - Jian Xiao
- Central Laboratory of The Lishui Hospital of Wenzhou Medical University, The First Affiliated Hospital of Lishui University, Lishui People's Hospital, Lishui, Zhejiang 323000, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
- Department of Wound Healing, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| |
Collapse
|
14
|
Yan L, Xu K, Liu C, Yu F, Guo J, Hou L, Feng Y, Yang M, Gong Q, Qin D, Qin M, Wang Y, Su H, Lu Y. Polymer-Formulated Nerve Growth Factor Shows Effective Therapeutic Efficacy for Cerebral Microinfarcts. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2412843. [PMID: 39601176 DOI: 10.1002/adma.202412843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/04/2024] [Indexed: 11/29/2024]
Abstract
Cerebral microinfarcts represent the most prevalent form of ischemic brain injury in the elderly, particularly among those suffering from dementia, Alzheimer's disease, and vascular risk factors. Despite their commonality, effective treatments have remained elusive. Herein, a novel treatment utilizing a polymer-formulated nerve growth factor capable of crossing the blood-brain barrier is reported, which effectively reduced oxidative stress and neuronal apoptosis, reshaped microglia polarization at infarct sites, and decreased the overall microinfarct burden, leading to notable improvements in behavioral and cognitive functions in a mouse model. This work provides a promising new avenue for the treatment of cerebral microinfarcts and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Lingli Yan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, 999078, China
| | - Kunyao Xu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Chaoyong Liu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Feng Yu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, 999078, China
| | - Jimin Guo
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Lihua Hou
- Beijing Institute of Biotechnology, Beijing, 102206, China
| | - Yicheng Feng
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Mo Yang
- Department of Neurology, Beijing Tiantan Hospital, Beijing, 100071, China
| | - Qihai Gong
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563000, China
| | - Dajiang Qin
- Center for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong, 999077, China
| | - Meng Qin
- Mental Health Center and Center for Preclinical Safety Evaluation of Drugs, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yilong Wang
- Department of Neurology, Beijing Tiantan Hospital, Beijing, 100071, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, 100069, China
| | - Huanxing Su
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, 999078, China
| | - Yunfeng Lu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
15
|
Danos JA, Addemir M, McGettigan L, Summers DW. Nerve Growth Factor Signaling Tunes Axon Maintenance Protein Abundance and Kinetics of Wallerian Degeneration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.12.31.630780. [PMID: 39803444 PMCID: PMC11722262 DOI: 10.1101/2024.12.31.630780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Neurotrophic factors are critical for establishing functional connectivity in the nervous system and sustaining neuronal survival through adulthood. As the first neurotrophic factor purified, nerve growth factor (NGF) is extensively studied for its prolific role in axon outgrowth, pruning, and survival. Applying NGF to diseased neuronal tissue is an exciting therapeutic option and understanding how NGF regulates local axon susceptibility to pathological degeneration is critical for exploiting its full potential. Our study identifies surprising connections between NGF signaling and proteostasis of axon maintenance factors. NGF deprivation increases Nmnat2 and Stmn2 protein levels in axon segments with a corresponding delay in Wallerian degeneration. Conversely, acute NGF stimulation reduces local abundance of these axon maintenance factors and accelerates Wallerian degeneration. Pharmacological studies implicate phospholipase C as the key effector in TrkA activation, which drives degradation of palmitoylated Stmn2. While seemingly opposed to neuroprotective activities well-documented for NGF, downregulating Nmnat2 and Stmn2 favors axonal outgrowth over transient hyper-susceptibility to Sarm1-dependent degeneration. This new facet of NGF biology has important implications for axonal remodeling during development and sustained integrity through adulthood.
Collapse
Affiliation(s)
- Joseph A Danos
- Department of Biology, University of Iowa, Iowa City, IA 52242 USA
| | - Merve Addemir
- Department of Biology, University of Iowa, Iowa City, IA 52242 USA
| | - Lily McGettigan
- Department of Biology, University of Iowa, Iowa City, IA 52242 USA
| | - Daniel W Summers
- Department of Biology, University of Iowa, Iowa City, IA 52242 USA
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA 52242 USA
| |
Collapse
|
16
|
Mufson EJ, Perez SE. The cholinotrophic system in Down syndrome. HANDBOOK OF CLINICAL NEUROLOGY 2025; 211:185-213. [PMID: 40340061 DOI: 10.1016/b978-0-443-19088-9.00017-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2025]
Abstract
Cholinergic basal forebrain (CBF) projection neurons within the nucleus basalis and striatal cholinergic interneurons degenerate in individuals with Down syndrome (DS). However, the neuropathobiology of these diverse cholinergic phenotypes remains underinvestigated. This review summarizes the alterations of cholinergic, neurotrophic survival and cell death factors as well as tau pathology and amyloidopathy, and their effects upon these cell types in DS. In trisomy, the developing cholinergic system remains stable, whereas the neurotrophic receptors are compromised between control and DS cases. Both cholinergic neuronal phenotypes display severe cellular degeneration in both adult and the aged people with DS. Although developing cholinergic striatal neurons display a similar morphology between phenotypes, cholinergic striatal neurons appear dystrophic in adults with DS. Both cholinergic cell types display tau tangle pathology in elders with DS. Novel findings suggest that alterations in plasma and cerebral spinal fluid levels of proNGF, NGF metabolites, and select classes of neuronal genes are potential biomarkers to distinguish nondemented from demented people with DS. Compounds that target cholinergic pathways, TrkA agonists, p75NTR/proNGF small molecular antagonists, NGF metabolites, and select gene ontology classes are potential targets to slow degeneration of the CBF memory connectome in DS with translation to AD.
Collapse
Affiliation(s)
- Elliott J Mufson
- Department of Translational Neuroscience, St. Joseph's Hospital and Medical Center, Barrow Neurological Institute, Phoenix, AZ, United States; Department of Neurology, St. Joseph's Hospital and Medical Center, Barrow Neurological Institute, Phoenix, AZ, United States.
| | - Sylvia E Perez
- Department of Translational Neuroscience, St. Joseph's Hospital and Medical Center, Barrow Neurological Institute, Phoenix, AZ, United States
| |
Collapse
|
17
|
Moss DE, Perez RG. The phospho-tau cascade, basal forebrain neurodegeneration, and dementia in Alzheimer's disease: Anti-neurodegenerative benefits of acetylcholinesterase inhibitors. J Alzheimers Dis 2024; 102:617-626. [PMID: 39533696 DOI: 10.1177/13872877241289602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
A conundrum in Alzheimer's disease (AD) is why the long-term use of acetylcholinesterase (AChE) inhibitors, intended for treatment of dementia, results in slowing neurodegeneration in the cholinergic basal forebrain, hippocampus, and cortex. The phospho-tau cascade hypothesis presented here attempts to answer that question by unifying three hallmark features of AD into a specific sequence of events. It is proposed that the hyperphosphorylation of tau protein leads to the AD-associated deficit of nerve growth factor (NGF), then to atrophy of the cholinergic basal forebrain and dementia. Because the release of pro-nerve growth factor (pro-NGF) is activity-dependent and is controlled by basal forebrain projections to the hippocampus and cortex, our hypothesis is that AChE inhibitors act by increasing acetylcholine-dependent pro-NGF release and, thus, augmenting the availability of mature NGF and improving basal forebrain survival. If correct, improved central nervous system-selective AChE inhibitor therapy started prophylactically, before AD-associated basal forebrain atrophy and cognitive impairment onset, has the potential to delay not only the onset of dementia but also its rate of advancement. The phospho-tau hypothesis thus suggests that preventing hyperphosphorylation of tau protein, early should be a high priority as a strategy to help reduce dementia and its associated widespread social and economic suffering.
Collapse
Affiliation(s)
- Donald E Moss
- Professor Emeritus, University of Texas at El Paso, El Paso, TX, USA
| | | |
Collapse
|
18
|
Kim Y, Je MA, Jeong M, Kwon H, Jang A, Kim J, Choi GE. Upregulation of NGF/TrkA-Related Proteins in Dorsal Root Ganglion of Paclitaxel-Induced Peripheral Neuropathy Animal Model. J Pain Res 2024; 17:3919-3932. [PMID: 39588524 PMCID: PMC11586490 DOI: 10.2147/jpr.s470671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 10/25/2024] [Indexed: 11/27/2024] Open
Abstract
Background Paclitaxel (PTX) can induce chemotherapy-induced peripheral neuropathy (CIPN) as a side effect. The aim of this study was to understand the neurochemical changes induced by NGF/TrkA signaling in PTX-induced neuropathic pain. Methods The PTX-induced CIPN mouse model was evaluated using nerve conduction velocity (NCV) and behavioral tests. Protein expression in mouse DRG was observed by Western blotting and immunohistochemistry. Nerve growth factor (NGF), IL-6, and IL-1β mRNA levels were determined using qRT-PCR by isolating total RNA from whole blood. Results PTX showed low amplitude and high latency values in NCV in mice, and induced cold allodynia and thermal hyperalgesia in behavioral assessment. Activating transcription factor 3 (ATF3) and MAPK pathway related proteins (ERK1/2), tropomyosin receptor kinase A (TrkA), calcitonin gene related peptide (CGRP) and transient receptor potential vanilloid 1 (TRPV1) were upregulated 7th and 14th days after 2 mg/kg and 10 mg/kg of PTX administration. Protein kinase C (PKC) was upregulated 7th days after 10 mg/kg PTX treatment and 14th days after 2 mg/kg and 10 mg/kg PTX administration. NGF, IL-6, and IL-1β fold change values also showed a time- and dose-dependent increase. Conclusion Taken together, our findings may improve our understanding of the nociceptive symptoms associated with PTX-induced neuropathic pain and lead to the development of new treatments for peripheral neuropathy.
Collapse
Affiliation(s)
- Yeeun Kim
- Department of Clinical Laboratory Science, College of Health Sciences, Catholic University of Pusan, Busan, 46252, Republic of Korea
- Next-Generation Industrial Field-Based Specialist Program for Molecular Diagnostics, Brain Busan 21 Plus Project, Graduate School, Catholic University of Pusan, Busan, 46252, Republic of Korea
| | - Min-A Je
- Department of Clinical Laboratory Science, College of Health Sciences, Catholic University of Pusan, Busan, 46252, Republic of Korea
- Next-Generation Industrial Field-Based Specialist Program for Molecular Diagnostics, Brain Busan 21 Plus Project, Graduate School, Catholic University of Pusan, Busan, 46252, Republic of Korea
| | - Myeongguk Jeong
- Department of Clinical Laboratory Science, College of Health Sciences, Catholic University of Pusan, Busan, 46252, Republic of Korea
- Next-Generation Industrial Field-Based Specialist Program for Molecular Diagnostics, Brain Busan 21 Plus Project, Graduate School, Catholic University of Pusan, Busan, 46252, Republic of Korea
| | - Hyeokjin Kwon
- Department of Clinical Laboratory Science, College of Health Sciences, Catholic University of Pusan, Busan, 46252, Republic of Korea
- Next-Generation Industrial Field-Based Specialist Program for Molecular Diagnostics, Brain Busan 21 Plus Project, Graduate School, Catholic University of Pusan, Busan, 46252, Republic of Korea
| | - Aelee Jang
- Department of Nursing, University of Ulsan, Ulsan, 44610, Republic of Korea
| | - Jungho Kim
- Department of Clinical Laboratory Science, College of Health Sciences, Catholic University of Pusan, Busan, 46252, Republic of Korea
- Next-Generation Industrial Field-Based Specialist Program for Molecular Diagnostics, Brain Busan 21 Plus Project, Graduate School, Catholic University of Pusan, Busan, 46252, Republic of Korea
| | - Go-Eun Choi
- Department of Clinical Laboratory Science, College of Health Sciences, Catholic University of Pusan, Busan, 46252, Republic of Korea
- Next-Generation Industrial Field-Based Specialist Program for Molecular Diagnostics, Brain Busan 21 Plus Project, Graduate School, Catholic University of Pusan, Busan, 46252, Republic of Korea
| |
Collapse
|
19
|
de Figueiredo Pelegrino A, Attarha M, Toussaint PJ, Ouellet L, Grant SJ, Van Vleet T, de Villers-Sidani E. Cholinergic neurotransmission in the anterior cingulate cortex is associated with cognitive performance in healthy older adults: Baseline characteristics of the Improving Neurological Health in Aging via Neuroplasticity-based Computerized Exercise (INHANCE) trial. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.10.30.24316439. [PMID: 39574863 PMCID: PMC11581060 DOI: 10.1101/2024.10.30.24316439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2025]
Abstract
Aging is associated with dysfunction in the cholinergic system, including degeneration of basal forebrain cholinergic terminals that innervate the cortex, which directly contributes to age- and disease-related cognitive decline. In this study, we used [18F]fluoroethoxybenzovesamicol ([18F]FEOBV) positron emission tomography (PET) imaging to assess the effect of age on cholinergic terminal integrity in predefined regions of interest and its relationship to cognitive performance in healthy older adults who underwent neuropsychological assessment and FEOBV PET brain imaging. Our results showed age-related reductions in FEOBV binding, particularly in the anterior cingulate cortex-our primary region of interest-as well as in the striatum, posterior cingulate cortex, and primary auditory cortex. Notably, FEOBV binding in the anterior cingulate cortex was positively correlated with cognitive performance on the NIH EXAMINER Executive Composite Score. These findings suggest that [18F]FEOBV PET imaging can be used as a reliable biomarker to assess cholinergic changes in the human brain and indicate that preserving the cholinergic integrity of the basal forebrain may help maintain cognitive function and protect against age-related cognitive decline.
Collapse
|
20
|
Nawrotek K, Chyb M, Gatkowska J, Rudnicka K, Michlewska S, Jóźwiak P. Effect of sodium L-lactate on bioactive properties of chitosan-hydroxyapatite/polycaprolactone conduits for peripheral nerve tissue engineering. Int J Biol Macromol 2024; 281:136254. [PMID: 39366606 DOI: 10.1016/j.ijbiomac.2024.136254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 09/26/2024] [Accepted: 10/01/2024] [Indexed: 10/06/2024]
Abstract
Biomaterials and synthetic polymers have been widely used to replicate the regenerative microenvironment of the peripheral nervous system. Chitosan-based conduits have shown promise in the regeneration of nerve injuries. However, to mimic the regenerative microenvironment, the scaffold structure should possess bioactive properties. This can be achieved by the incorporation of biomolecules (e.g., proteins, peptides) or trophic factors that should preferably be aligned and/or released with controlled kinetics to activate the process of positive axon chemotaxis. In this study, sodium L-lactate has been used to enhance the bioactive properties of chitosan-hydroxyapatite/polycaprolactone electrodeposits. Next, two methods have been developed to incorporate NGF-loaded microspheres - Method 1 involves entrapment and co-deposition of NGF-loaded microspheres, while Method 2 is based on absorption of NGF-loaded microspheres. The study shows that modification of chitosan-hydroxyapatite/polycaprolactone conduits by sodium L-lactate significantly improves their bioactive, biological, and physicochemical properties. The obtained implants are cytocompatible, enhancing the neurite regeneration process by stimulating its elongation. The absorption of NGF-loaded microspheres into the conduit structure may be considered more favorable for the stimulation of axonal elongation compared to entrapment, as it allows for trophic factor dose-dependent controlled release. The developed conduits possess properties essential for the successful treatment of peripheral nerve discontinuities.
Collapse
Affiliation(s)
- Katarzyna Nawrotek
- Lodz University of Technology, Faculty of Process and Environmental Engineering, Department of Environmental Engineering, Wolczanska 213, 93-005 Lodz, Poland; Lodz University of Technology, International Centre for Research on Innovative Bio-based Materials, 2/22 Stefanowskiego, 90-537, Poland; Warsaw University of Technology, Centre for Advanced Materials and Technology (CEZAMAT), 19 Poleczki, 02-822 Warsaw, Poland.
| | - Maciej Chyb
- University of Lodz, Faculty of Biology and Environmental Protection, Department of Molecular Microbiology, 12/16 Banacha, 90-237 Lodz, Poland; Bio-Med-Chem Doctoral School of the University of Lodz and Lodz Institutes of the Polish Academy of Sciences Banacha 12/16, 90-237 Lodz, Poland.
| | - Justyna Gatkowska
- University of Lodz, Faculty of Biology and Environmental Protection, Department of Molecular Microbiology, 12/16 Banacha, 90-237 Lodz, Poland.
| | - Karolina Rudnicka
- University of Lodz, Faculty of Biology and Environmental Protection, Department of Immunology and Infectious Biology, 90-237 Lodz, Poland.
| | - Sylwia Michlewska
- University of Lodz, Faculty of Biology and Environmental Protection, Laboratory of Microscopic Imaging and Specialized Biological Techniques, Banacha 12/16, 90-237 Lodz, Poland.
| | - Piotr Jóźwiak
- University of Lodz, Faculty of Biology and Environmental Protection, Department of Invertebrates Zoology and Hydrobiology, Banacha 12/16, 90-324 Lodz, Poland.
| |
Collapse
|
21
|
Ranglani S, Hasan S, Komorowska J, Medina NM, Mahfooz K, Ashton A, Garcia-Ratés S, Greenfield S. A Novel Peptide Driving Neurodegeneration Appears Exclusively Linked to the α7 Nicotinic Acetylcholine Receptor. Mol Neurobiol 2024; 61:8206-8218. [PMID: 38483654 DOI: 10.1007/s12035-024-04079-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 02/28/2024] [Indexed: 09/21/2024]
Abstract
T14, a 14mer peptide, is significantly increased in the pre-symptomatic Alzheimer's disease brain, and growing evidence implies its pivotal role in neurodegeneration. Here, we explore the subsequent intracellular events following binding of T14 to its target α7 nicotinic acetylcholine receptor (nAChR). Specifically, we test how various experimental manipulations of PC12 cells impact T14-induced functional outcomes. Three preparations were compared: (i) undifferentiated vs. NGF-differentiated cells; (ii) cells transfected with an overexpression of the target α7 nAChR vs. wild type cells; (iii) cells transfected with a mutant α7 nAChR containing a mutation in the G protein-binding cluster, vs. cells transfected with an overexpression of the target α7 nAChR, in three functional assays - calcium influx, cell viability, and acetylcholinesterase release. NGF-differentiated PC12 cells were less sensitive than undifferentiated cells to the concentration-dependent T14 treatment, in all the functional assays performed. The overexpression of α7 nAChR in PC12 cells promoted enhanced calcium influx when compared with the wild type PC12 cells. The α7345-348 A mutation effectively abolished the T14-triggered responses across all the readouts observed. The close relationship between T14 and the α7 nAChR was further evidenced in the more physiological preparation of ex vivo rat brain, where T30 increased α7 nAChR mRNA, and finally in human brain post-mortem, where levels of T14 and α7 nAChR exhibited a strong correlation, reflecting the progression of neurodegeneration. Taken together these data would make it hard to account for T14 binding to any other receptor, and thus interception at this binding site would make a very attractive and remarkably specific therapeutic strategy.
Collapse
Affiliation(s)
- Sanskar Ranglani
- Culham Science Centre, Neuro-Bio Ltd, Building F5, Abingdon, OX14 3DB, UK
| | - Sibah Hasan
- Culham Science Centre, Neuro-Bio Ltd, Building F5, Abingdon, OX14 3DB, UK.
| | - Joanna Komorowska
- Culham Science Centre, Neuro-Bio Ltd, Building F5, Abingdon, OX14 3DB, UK
| | | | - Kashif Mahfooz
- Culham Science Centre, Neuro-Bio Ltd, Building F5, Abingdon, OX14 3DB, UK
| | - Anna Ashton
- Culham Science Centre, Neuro-Bio Ltd, Building F5, Abingdon, OX14 3DB, UK
| | - Sara Garcia-Ratés
- Culham Science Centre, Neuro-Bio Ltd, Building F5, Abingdon, OX14 3DB, UK
| | - Susan Greenfield
- Culham Science Centre, Neuro-Bio Ltd, Building F5, Abingdon, OX14 3DB, UK
| |
Collapse
|
22
|
Hassan LF, Sen R, O'Shea TM. Trehalose-based coacervates for local bioactive protein delivery to the central nervous system. Biomaterials 2024; 309:122594. [PMID: 38701641 DOI: 10.1016/j.biomaterials.2024.122594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 03/30/2024] [Accepted: 04/25/2024] [Indexed: 05/05/2024]
Abstract
Therapeutic outcomes of local biomolecule delivery to the central nervous system (CNS) using bulk biomaterials are limited by inadequate drug loading, neuropil disruption, and severe foreign body responses. Effective CNS delivery requires addressing these issues and developing well-tolerated, highly-loaded carriers that are dispersible within local neural parenchyma. Here, we synthesized biodegradable trehalose-based polyelectrolyte oligomers using facile A2:B3:AR thiol-ene Michael addition reactions that form complex coacervates upon mixing of oppositely charged oligomers. Coacervates permit high concentration loading and controlled release of bioactive growth factors, enzymes, and antibodies, with modular formulation parameters that confer tunable release kinetics. Coacervates are cytocompatible with cultured neural cells in vitro and can be formulated to either direct intracellular protein delivery or sequester media containing proteins and remain extracellular. Coacervates serve as effective vehicles for precisely delivering biomolecules, including bioactive neurotrophins, to the mouse striatum following intraparenchymal injection. These results support the use of trehalose-based coacervates as part of therapeutic protein delivery strategies for CNS disorders.
Collapse
Affiliation(s)
- Laboni F Hassan
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215-2407, USA
| | - Riya Sen
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215-2407, USA
| | - Timothy M O'Shea
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215-2407, USA.
| |
Collapse
|
23
|
Wolf D, Ayon-Olivas M, Sendtner M. BDNF-Regulated Modulation of Striatal Circuits and Implications for Parkinson's Disease and Dystonia. Biomedicines 2024; 12:1761. [PMID: 39200225 PMCID: PMC11351984 DOI: 10.3390/biomedicines12081761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/26/2024] [Accepted: 08/01/2024] [Indexed: 09/02/2024] Open
Abstract
Neurotrophins, particularly brain-derived neurotrophic factor (BDNF), act as key regulators of neuronal development, survival, and plasticity. BDNF is necessary for neuronal and functional maintenance in the striatum and the substantia nigra, both structures involved in the pathogenesis of Parkinson's Disease (PD). Depletion of BDNF leads to striatal degeneration and defects in the dendritic arborization of striatal neurons. Activation of tropomyosin receptor kinase B (TrkB) by BDNF is necessary for the induction of long-term potentiation (LTP), a form of synaptic plasticity, in the hippocampus and striatum. PD is characterized by the degeneration of nigrostriatal neurons and altered striatal plasticity has been implicated in the pathophysiology of PD motor symptoms, leading to imbalances in the basal ganglia motor pathways. Given its essential role in promoting neuronal survival and meditating synaptic plasticity in the motor system, BDNF might have an important impact on the pathophysiology of neurodegenerative diseases, such as PD. In this review, we focus on the role of BDNF in corticostriatal plasticity in movement disorders, including PD and dystonia. We discuss the mechanisms of how dopaminergic input modulates BDNF/TrkB signaling at corticostriatal synapses and the involvement of these mechanisms in neuronal function and synaptic plasticity. Evidence for alterations of BDNF and TrkB in PD patients and animal models are reviewed, and the potential of BDNF to act as a therapeutic agent is highlighted. Advancing our understanding of these mechanisms could pave the way toward innovative therapeutic strategies aiming at restoring neuroplasticity and enhancing motor function in these diseases.
Collapse
Affiliation(s)
| | | | - Michael Sendtner
- Institute of Clinical Neurobiology, University Hospital Wuerzburg, 97078 Wuerzburg, Germany (M.A.-O.)
| |
Collapse
|
24
|
Legault-Denis C, Aumont É, Onuska KM, Schmitz TW, Bussy A, Chakravarty M, Soucy JP, Bédard MA. Parkinson's disease CA2-CA3 hippocampal atrophy is accompanied by increased cholinergic innervation in patients with normal cognition but not in patients with mild cognitive impairment. Brain Imaging Behav 2024; 18:783-793. [PMID: 38478257 DOI: 10.1007/s11682-024-00872-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/06/2024] [Indexed: 08/31/2024]
Abstract
Although brain cholinergic denervation has been largely associated with cognitive decline in patients with Parkinson's disease (PD), new evidence suggests that cholinergic upregulation occurs in the hippocampus of PD patients without cognitive deficits. The specific hippocampal sectors and potential mechanisms of this cholinergic compensatory process have been further studied here, using MRI volumetry and morphometry coupled with molecular imaging using the PET radiotracer [18F]-Fluoroethoxybenzovesamicol ([18F]-FEOBV). Following a thorough screening procedure, 18 participants were selected and evenly distributed in three groups, including cognitively normal PD patients (PD-CN), PD patients with mild cognitive impairment (PD-MCI), and healthy volunteers (HV). Participants underwent a detailed neuropsychological assessment, structural MRI, and PET imaging with [18F]-FEOBV. Basal forebrain Ch1-Ch2 volumes were measured using stereotaxic mapping. Hippocampal subfields were automatically defined using the MAGeT-Brain segmentation algorithm. Cholinergic innervation density was quantified using [18F]-FEOBV uptake. Compared with HV, both PD-CN and PD-MCI displayed significantly reduced volumes in CA2-CA3 bilaterally. We found no other hippocampal subfield nor Ch1-Ch2 volume differences between the three groups. PET imaging revealed higher [18F]-FEOBV uptake in CA2-CA3 of the PD-CN compared with HV or PD-MCI. A positive correlation was observed between cognitive performances and [18F]-FEOBV uptake in the right CA2-CA3 subfield. Reduced volume, together with increased [18F]-FEOBV uptake, were observed specifically in the CA2-CA3 hippocampal subfields. However, while the volume change was observed in both PD-CN and PD-MCI, increased [18F]-FEOBV uptake was present only in the PD-CN group. This suggests that a cholinergic compensatory process takes place in the atrophied CA2-CA3 hippocampal subfields and might underlie normal cognition in PD.
Collapse
Affiliation(s)
- Camille Legault-Denis
- NeuroQAM Research Center, Université du Québec à Montréal (UQAM), Montreal, QC, Canada
- McConnell Brain Imaging Center, Montreal Neurological Institute (MNI), Montreal, QC, Canada
| | - Étienne Aumont
- NeuroQAM Research Center, Université du Québec à Montréal (UQAM), Montreal, QC, Canada
- McConnell Brain Imaging Center, Montreal Neurological Institute (MNI), Montreal, QC, Canada
| | - Kate M Onuska
- Schulich Medicine and Dentistry, Western University, London, ON, Canada
| | - Taylor W Schmitz
- Schulich Medicine and Dentistry, Western University, London, ON, Canada
- Department of Physiology and Pharmacology, Western University, London, ON, Canada
| | - Aurélie Bussy
- Computational Brain Anatomy Laboratory (CoBrA Lab), Douglas Mental Health University Institute, Montreal, QC, Canada
| | - Mallar Chakravarty
- Computational Brain Anatomy Laboratory (CoBrA Lab), Douglas Mental Health University Institute, Montreal, QC, Canada
| | - Jean-Paul Soucy
- McConnell Brain Imaging Center, Montreal Neurological Institute (MNI), Montreal, QC, Canada
| | - Marc-André Bédard
- NeuroQAM Research Center, Université du Québec à Montréal (UQAM), Montreal, QC, Canada.
- McConnell Brain Imaging Center, Montreal Neurological Institute (MNI), Montreal, QC, Canada.
| |
Collapse
|
25
|
Hino M, Nakanishi M, Nomoto H. The expression system affects the binding affinity between p75NTR and proNGF. Biochem Biophys Rep 2024; 38:101702. [PMID: 38596407 PMCID: PMC11001769 DOI: 10.1016/j.bbrep.2024.101702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/13/2024] [Accepted: 03/28/2024] [Indexed: 04/11/2024] Open
Abstract
ProNGF (nerve growth factor) is a precursor of NGF and a signaling peptide exerting opposite effects on neuronal cells, i.e., apoptotic or neuritogenic. The conflicting biological activity of proNGF depends on the relative levels of two membrane receptors, TrkA and p75NTR. The effect of proNGF depends on the expression levels of these receptor proteins and their affinity to proNGF. Since the affinity of proteins has been studied with various recombinant proteins, it is worth comparing the affinity of these proteins within one experiment with the same method. This study examined the affinity between a recombinant proNGF and p75NTR expressed in common systems: bacterial, insect, and mammalian cells. The extracellular domain of p75NTR expressed in the insect or mammalian systems bound to native mature NGF, with a higher affinity for the insect receptor. The uncleavable proNGF was expressed in the three systems and they showed neuritogenic activity in PC12 cells. These recombinant proteins were used to compare their binding affinity to p75NTR. The insect p75NTR showed a higher binding affinity to proNGF than the mammalian p75NTR. The insect p75NTR bound proNGF from the insect system with the highest affinity, then from the mammalian system, and the lowest from the bacterial system. Conversely, the mammalian p75NTR showed no such preference for proNGF. Because the recombinant proNGF and p75NTR from different expression systems are supposed to have the same amino acid sequences, these differences in the affinity depend likely on their post-translational modifications, most probably on their glycans. Each recombinant proNGF and p75NTR in various expression systems exhibited different mobilities on SDS-PAGE and reactivities with glycosidases and lectins.
Collapse
Affiliation(s)
- Mami Hino
- Laboratory of Biochemistry, School of Pharmaceutical Sciences, Matsuyama University, Matsuyama, Ehime, 790-8578, Japan
| | - Masayuki Nakanishi
- Laboratory of Biochemistry, School of Pharmaceutical Sciences, Matsuyama University, Matsuyama, Ehime, 790-8578, Japan
| | - Hiroshi Nomoto
- Laboratory of Biochemistry, School of Pharmaceutical Sciences, Matsuyama University, Matsuyama, Ehime, 790-8578, Japan
| |
Collapse
|
26
|
Abbasi N, Mirabzadeh Y, Khesali G, Ebrahimkhani Z, Karimi H, Vaseghi S. Chronic REM sleep deprivation leads to manic- and OCD-related behaviors, and decreases hippocampal BDNF expression in female rats. Psychopharmacology (Berl) 2024; 241:1345-1363. [PMID: 38430395 DOI: 10.1007/s00213-024-06566-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 02/22/2024] [Indexed: 03/03/2024]
Abstract
BACKGROUND Rapid-eye movement (REM) sleep deprivation (SD) can induce manic-like behaviors in rodents. On the other hand, lithium, as one of the oldest drugs used in neuropsychiatric disorders, is still one of the best drugs for the treatment and control of bipolar disorder. In this study, we aimed to investigate the role of chronic short-term REM SD in the induction of manic-like behaviors in female rats. METHODS The rats were exposed to REM SD for 14 days (6 hours/day). Lithium was intraperitoneally injected at the doses of 10, 50, and 100 mg/kg. RESULTS REM SD induced hyperactivity and OCD-like behavior, and decreased anxiety, depressive-like behavior, and pain subthreshold. REM SD also impaired passive avoidance memory and decreased hippocampal brain-derived neurotrophic factor (BDNF) expression level. Lithium at the doses of 50 and 100 mg/kg partly and completely abolished these effects, respectively. However, lithium (100 mg/kg) increased BDNF expression level in control and sham REM SD rats with no significant changes in behavior. CONCLUSIONS Chronic short-term REM SD may induce a mania-like model and lead to OCD-like behavior and irritability. In the present study, we demonstrated a putative rodent model of mania induced by chronic REM SD in female rats. We suggest that future studies should examine behavioral and mood changes following chronic REM SD in both sexes. Furthermore, the relationship between manic-like behaviors and chronic REM SD should be investigated.
Collapse
Affiliation(s)
- Nahal Abbasi
- Department of Health Psychology, Faculty of Medical Sciences, Karaj Branch, Islamic Azad University, Karaj, Iran
| | - Yasaman Mirabzadeh
- Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Golnaz Khesali
- Cognitive Neuroscience Lab, Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran
| | - Zahra Ebrahimkhani
- Cognitive Neuroscience Lab, Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran
| | - Hanie Karimi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Salar Vaseghi
- Cognitive Neuroscience Lab, Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran.
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran.
| |
Collapse
|
27
|
Ge S, Khachemoune A. Neuroanatomy of the Cutaneous Nervous System Regarding Wound Healing. INT J LOW EXTR WOUND 2024; 23:191-204. [PMID: 34779294 DOI: 10.1177/15347346211054598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Wound healing is an important topic in modern medicine across many disciplines. Healing of all cutaneous wounds, whether accidentally sustained or intentionally created, requires the common yet complex set of interactions between the immune, circulatory, nervous, endocrine, and integumentary systems. Deficits in any of these systems or the molecular factors that mediate their communications can contribute to impaired healing of cutaneous wounds. While the stages of wound repair, angiogenesis, growth factors, and cytokines involved have been extensively studied, the role of the cutaneous nervous system in wound healing has not been well outlined. We have provided a basic overview of cutaneous innervation and wound repair for the dermatologic surgeon by outlining the normal cutaneous nervous anatomy and function and discussing the most important neuropeptides that mediate the wound healing process.
Collapse
Affiliation(s)
| | - Amor Khachemoune
- Veterans Affairs Medical Center, Brooklyn, NY, USA
- SUNY Downstate, Brooklyn, NY USA
| |
Collapse
|
28
|
Tomasello B, Bellia F, Naletova I, Magrì A, Tabbì G, Attanasio F, Tomasello MF, Cairns WRL, Fortino M, Pietropaolo A, Greco V, La Mendola D, Sciuto S, Arena G, Rizzarelli E. BDNF- and VEGF-Responsive Stimulus to an NGF Mimic Cyclic Peptide with Copper Ionophore Capability and Ctr1/CCS-Driven Signaling. ACS Chem Neurosci 2024; 15:1755-1769. [PMID: 38602894 DOI: 10.1021/acschemneuro.3c00716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024] Open
Abstract
Neurotrophins are a family of growth factors that play a key role in the development and regulation of the functioning of the central nervous system. Their use as drugs is made difficult by their poor stability, cellular permeability, and side effects. Continuing our effort to use peptides that mimic the neurotrophic growth factor (NGF), the family model protein, and specifically the N-terminus of the protein, here we report on the spectroscopic characterization and resistance to hydrolysis of the 14-membered cyclic peptide reproducing the N-terminus sequence (SSSHPIFHRGEFSV (c-NGF(1-14)). Far-UV CD spectra and a computational study show that this peptide has a rigid conformation and left-handed chirality typical of polyproline II that favors its interaction with the D5 domain of the NGF receptor TrkA. c-NGF(1-14) is able to bind Cu2+ with good affinity; the resulting complexes have been characterized by potentiometric and spectroscopic measurements. Experiments on PC12 cells show that c-NGF(1-14) acts as an ionophore, influencing the degree and the localization of both the membrane transporter (Ctr1) and the copper intracellular transporter (CCS). c-NGF(1-14) induces PC12 differentiation, mimics the protein in TrkA phosphorylation, and activates the kinase cascade, inducing Erk1/2 phosphorylation. c-NGF(1-14) biological activities are enhanced when the peptide interacts with Cu2+ even with the submicromolar quantities present in the culture media as demonstrated by ICP-OES measurements. Finally, c-NGF(1-14) and Cu2+ concur to activate the cAMP response element-binding protein CREB that, in turn, induces the brain-derived neurotrophic factor (BDNF) and the vascular endothelial growth factor (VEGF) release.
Collapse
Affiliation(s)
- Barbara Tomasello
- Department of Drug and Health Sciences, University of Catania, V.le Andrea Doria 6, Catania 95125, Italy
| | - Francesco Bellia
- Institute of Crystallography, CNR, P. Gaifami 18, Catania 95126, Italy
| | - Irina Naletova
- Institute of Crystallography, CNR, P. Gaifami 18, Catania 95126, Italy
| | - Antonio Magrì
- Institute of Crystallography, CNR, P. Gaifami 18, Catania 95126, Italy
| | - Giovanni Tabbì
- Institute of Crystallography, CNR, P. Gaifami 18, Catania 95126, Italy
| | | | | | - Warren R L Cairns
- Istituto di Scienze Polari (ISP), c/o Campus Scientifico, Università Ca' Foscari Venezia Via Torino, Venezia Mestre 155-30170, Italy
| | - Mariagrazia Fortino
- Dipartimento di Scienze della Salute, Università di Catanzaro, Viale Europa, Catanzaro 88100, Italy
| | - Adriana Pietropaolo
- Dipartimento di Scienze della Salute, Università di Catanzaro, Viale Europa, Catanzaro 88100, Italy
| | - Valentina Greco
- Department of Chemical Sciences, University of Catania, A. Doria 6, Catania 95125, Italy
| | - Diego La Mendola
- Department of Pharmaceutical Sciences, University of Pisa, Bonanno Pisano 12, Pisa 56126, Italy
| | - Sebastiano Sciuto
- Department of Chemical Sciences, University of Catania, A. Doria 6, Catania 95125, Italy
| | - Giuseppe Arena
- Department of Chemical Sciences, University of Catania, A. Doria 6, Catania 95125, Italy
| | - Enrico Rizzarelli
- Institute of Crystallography, CNR, P. Gaifami 18, Catania 95126, Italy
- Department of Chemical Sciences, University of Catania, A. Doria 6, Catania 95125, Italy
| |
Collapse
|
29
|
Izhiman Y, Esfandiari L. Emerging role of extracellular vesicles and exogenous stimuli in molecular mechanisms of peripheral nerve regeneration. Front Cell Neurosci 2024; 18:1368630. [PMID: 38572074 PMCID: PMC10989355 DOI: 10.3389/fncel.2024.1368630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 02/29/2024] [Indexed: 04/05/2024] Open
Abstract
Peripheral nerve injuries lead to significant morbidity and adversely affect quality of life. The peripheral nervous system harbors the unique trait of autonomous regeneration; however, achieving successful regeneration remains uncertain. Research continues to augment and expedite successful peripheral nerve recovery, offering promising strategies for promoting peripheral nerve regeneration (PNR). These include leveraging extracellular vesicle (EV) communication and harnessing cellular activation through electrical and mechanical stimulation. Small extracellular vesicles (sEVs), 30-150 nm in diameter, play a pivotal role in regulating intercellular communication within the regenerative cascade, specifically among nerve cells, Schwann cells, macrophages, and fibroblasts. Furthermore, the utilization of exogenous stimuli, including electrical stimulation (ES), ultrasound stimulation (US), and extracorporeal shock wave therapy (ESWT), offers remarkable advantages in accelerating and augmenting PNR. Moreover, the application of mechanical and electrical stimuli can potentially affect the biogenesis and secretion of sEVs, consequently leading to potential improvements in PNR. In this review article, we comprehensively delve into the intricacies of cell-to-cell communication facilitated by sEVs and the key regulatory signaling pathways governing PNR. Additionally, we investigated the broad-ranging impacts of ES, US, and ESWT on PNR.
Collapse
Affiliation(s)
- Yara Izhiman
- Esfandiari Laboratory, Department of Biomedical Engineering, College of Engineering and Applied Sciences, University of Cincinnati, Cincinnati, OH, United States
| | - Leyla Esfandiari
- Esfandiari Laboratory, Department of Biomedical Engineering, College of Engineering and Applied Sciences, University of Cincinnati, Cincinnati, OH, United States
- Department of Environmental and Public Health Sciences, College of Medicine, University of Cincinnati, Cincinnati, OH, United States
- Department of Electrical and Computer Engineering, College of Engineering and Applied Sciences, University of Cincinnati, Cincinnati, OH, United States
| |
Collapse
|
30
|
Lian M, Qiao Z, Qiao S, Zhang X, Lin J, Xu R, Zhu N, Tang T, Huang Z, Jiang W, Shi J, Hao Y, Lai H, Dai K. Nerve Growth Factor-Preconditioned Mesenchymal Stem Cell-Derived Exosome-Functionalized 3D-Printed Hierarchical Porous Scaffolds with Neuro-Promotive Properties for Enhancing Innervated Bone Regeneration. ACS NANO 2024; 18:7504-7520. [PMID: 38412232 DOI: 10.1021/acsnano.3c11890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
The essential role of the neural network in enhancing bone regeneration has often been overlooked in biomaterial design, leading to delayed or compromised bone healing. Engineered mesenchymal stem cells (MSCs)-derived exosomes are becoming increasingly recognized as potent cell-free agents for manipulating cellular behavior and improving therapeutic effectiveness. Herein, MSCs are stimulated with nerve growth factor (NGF) to regulate exosomal cargoes to improve neuro-promotive potential and facilitate innervated bone regeneration. In vitro cell experiments showed that the NGF-stimulated MSCs-derived exosomes (N-Exos) obviously improved the cellular function and neurotrophic effects of the neural cells, and consequently, the osteogenic potential of the osteo-reparative cells. Bioinformatic analysis by miRNA sequencing and pathway enrichment revealed that the beneficial effects of N-Exos may partly be ascribed to the NGF-elicited multicomponent exosomal miRNAs and the subsequent regulation and activation of the MAPK and PI3K-Akt signaling pathways. On this basis, N-Exos were delivered on the micropores of the 3D-printed hierarchical porous scaffold to accomplish the sustained release profile and extended bioavailability. In a rat model with a distal femoral defect, the N-Exos-functionalized hierarchical porous scaffold significantly induced neurovascular structure formation and innervated bone regeneration. This study provided a feasible strategy to modulate the functional cargoes of MSCs-derived exosomes to acquire desirable neuro-promotive and osteogenic potential. Furthermore, the developed N-Exos-functionalized hierarchical porous scaffold may represent a promising neurovascular-promotive bone reparative scaffold for clinical translation.
Collapse
Affiliation(s)
- Meifei Lian
- Department of Oral and Maxillofacial Implantology, Shanghai PerioImplant Innovation Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai 200011, China
- Clinical and Translational Research Center for 3D Printing Technology, Medical 3D Printing Innovation Research Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, China
| | - Zhiguang Qiao
- Clinical and Translational Research Center for 3D Printing Technology, Medical 3D Printing Innovation Research Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, China
- Department of Bone and Joint Surgery, Department of Orthopedics, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200001, China
| | - Shichong Qiao
- Department of Oral and Maxillofacial Implantology, Shanghai PerioImplant Innovation Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai 200011, China
| | - Xing Zhang
- State Key Laboratory of Mechanical Systems and Vibration, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jieming Lin
- Department of Bone and Joint Surgery, Department of Orthopedics, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200001, China
| | - Ruida Xu
- Department of Bone and Joint Surgery, Department of Orthopedics, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200001, China
| | - Naifeng Zhu
- Department of Bone and Joint Surgery, Department of Orthopedics, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200001, China
| | - Tianhong Tang
- Department of Prosthodontics, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Zhuoli Huang
- Department of Oral and Maxillofacial Implantology, Shanghai PerioImplant Innovation Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai 200011, China
| | - Wenbo Jiang
- Clinical and Translational Research Center for 3D Printing Technology, Medical 3D Printing Innovation Research Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, China
| | - Junyu Shi
- Department of Oral and Maxillofacial Implantology, Shanghai PerioImplant Innovation Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai 200011, China
| | - Yongqiang Hao
- Clinical and Translational Research Center for 3D Printing Technology, Medical 3D Printing Innovation Research Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, China
- Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Hongchang Lai
- Department of Oral and Maxillofacial Implantology, Shanghai PerioImplant Innovation Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai 200011, China
| | - Kerong Dai
- Clinical and Translational Research Center for 3D Printing Technology, Medical 3D Printing Innovation Research Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, China
- Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| |
Collapse
|
31
|
Pereira PA, Tavares M, Laires M, Mota B, Madeira MD, Paula-Barbosa MM, Cardoso A. Effects of Aging and Nerve Growth Factor on Neuropeptide Expression and Cholinergic Innervation of the Rat Basolateral Amygdala. BIOLOGY 2024; 13:155. [PMID: 38534426 DOI: 10.3390/biology13030155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/22/2024] [Accepted: 02/23/2024] [Indexed: 03/28/2024]
Abstract
The basolateral amygdala (BLA) contains interneurons that express neuropeptide Y (NPY) and vasoactive intestinal polypeptide (VIP), both of which are involved in the regulation of functions and behaviors that undergo deterioration with aging. There is considerable evidence that, in some brain areas, the expression of NPY and VIP might be modulated by acetylcholine. Importantly, the BLA is one of the brain regions that has one of the densest cholinergic innervations, which arise mainly from the basal forebrain cholinergic neurons. These cholinergic neurons depend on nerve growth factor (NGF) for their survival, connectivity, and function. Thus, in this study, we sought to determine if aging alters the densities of NPY- and VIP-positive neurons and cholinergic varicosities in the BLA and, in the affirmative, if those changes might rely on insufficient trophic support provided by NGF. The number of NPY-positive neurons was significantly reduced in aged rats, whereas the number of VIP-immunoreactive neurons was unaltered. The decreased NPY expression was fully reversed by the infusion of NGF in the lateral ventricle. The density of cholinergic varicosities was similar in adult and old rats. On the other hand, the density of cholinergic varicosities is significantly higher in old rats treated with NGF than in adult and old rats. Our results indicate a dissimilar resistance of different populations of BLA interneurons to aging. Furthermore, the present data also show that the BLA cholinergic innervation is particularly resistant to aging effects. Finally, our results also show that the reduced NPY expression in the BLA of aged rats can be related to changes in the NGF neurotrophic support.
Collapse
Affiliation(s)
- Pedro A Pereira
- Unit of Anatomy, Department of Biomedicine, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
- NeuroGen Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Dr. Plácido da Costa, 4200-450 Porto, Portugal
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Marta Tavares
- Unit of Anatomy, Department of Biomedicine, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Miguel Laires
- Unit of Anatomy, Department of Biomedicine, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Bárbara Mota
- Unit of Anatomy, Department of Biomedicine, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Maria Dulce Madeira
- Unit of Anatomy, Department of Biomedicine, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
- NeuroGen Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Dr. Plácido da Costa, 4200-450 Porto, Portugal
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Manuel M Paula-Barbosa
- Unit of Anatomy, Department of Biomedicine, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Armando Cardoso
- Unit of Anatomy, Department of Biomedicine, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
- NeuroGen Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Dr. Plácido da Costa, 4200-450 Porto, Portugal
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
| |
Collapse
|
32
|
Shan Y, Xu L, Cui X, Wang E, Jiang F, Li J, Ouyang H, Yin T, Feng H, Luo D, Zhang Y, Li Z. A responsive cascade drug delivery scaffold adapted to the therapeutic time window for peripheral nerve injury repair. MATERIALS HORIZONS 2024; 11:1032-1045. [PMID: 38073476 DOI: 10.1039/d3mh01511d] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Peripheral nerve injury (PNI) is a common clinical challenge, requiring timely and orderly initiation of synergistic anti-inflammatory and reparative therapy. Although the existing cascade drug delivery system can realize sequential drug release through regulation of the chemical structure of drug carriers, it is difficult to adjust the release kinetics of each drug based on the patient's condition. Therefore, there is an urgent need to develop a cascade drug delivery system that can dynamically adjust drug release and realize personalized treatment. Herein, we developed a responsive cascade drug delivery scaffold (RCDDS) which can adapt to the therapeutic time window, in which Vitamin B12 is used in early controllable release to suppress inflammation and nerve growth factor promotes regeneration by cascade loading. The RCDDS exhibited the ability to modulate the drug release kinetics by hierarchically opening polymer chains triggered by ultrasound, enabling real-time adjustment of the anti-inflammatory and neuroregenerative therapeutic time window depending on the patient's status. In the rat sciatic nerve injury model, the RCDDS group was able to achieve neural repair effects comparable to the autograft group in terms of tissue structure and motor function recovery. The development of the RCDDS provides a useful route toward an intelligent cascade drug delivery system for personalized therapy.
Collapse
Affiliation(s)
- Yizhu Shan
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China.
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan 430060, China
- School of Nanoscience and Engineering, Chinese Academy of Sciences, Beijing 100049, China
| | - Lingling Xu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Xi Cui
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China.
- School of Nanoscience and Engineering, Chinese Academy of Sciences, Beijing 100049, China
| | - Engui Wang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China.
| | - Fengying Jiang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China.
- Center on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning 530004, China
| | - Jiaxuan Li
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China.
| | - Han Ouyang
- School of Nanoscience and Engineering, Chinese Academy of Sciences, Beijing 100049, China
| | - Tailang Yin
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Hongqing Feng
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China.
- School of Nanoscience and Engineering, Chinese Academy of Sciences, Beijing 100049, China
| | - Dan Luo
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China.
- School of Nanoscience and Engineering, Chinese Academy of Sciences, Beijing 100049, China
| | - Yan Zhang
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Zhou Li
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China.
- School of Nanoscience and Engineering, Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
33
|
Yin T, Wang G, Wang L, Mudgal P, Wang E, Pan CC, Alexander PB, Wu H, Cao C, Liang Y, Tan L, Huang D, Chong M, Chen R, Lim BJW, Xiang K, Xue W, Wan L, Hu H, Loh YH, Wang XF, Li QJ. Breaking NGF-TrkA immunosuppression in melanoma sensitizes immunotherapy for durable memory T cell protection. Nat Immunol 2024; 25:268-281. [PMID: 38195702 PMCID: PMC11377935 DOI: 10.1038/s41590-023-01723-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 11/29/2023] [Indexed: 01/11/2024]
Abstract
Melanoma cells, deriving from neuroectodermal melanocytes, may exploit the nervous system's immune privilege for growth. Here we show that nerve growth factor (NGF) has both melanoma cell intrinsic and extrinsic immunosuppressive functions. Autocrine NGF engages tropomyosin receptor kinase A (TrkA) on melanoma cells to desensitize interferon γ signaling, leading to T and natural killer cell exclusion. In effector T cells that upregulate surface TrkA expression upon T cell receptor activation, paracrine NGF dampens T cell receptor signaling and effector function. Inhibiting NGF, either through genetic modification or with the tropomyosin receptor kinase inhibitor larotrectinib, renders melanomas susceptible to immune checkpoint blockade therapy and fosters long-term immunity by activating memory T cells with low affinity. These results identify the NGF-TrkA axis as an important suppressor of anti-tumor immunity and suggest larotrectinib might be repurposed for immune sensitization. Moreover, by enlisting low-affinity T cells, anti-NGF reduces acquired resistance to immune checkpoint blockade and prevents melanoma recurrence.
Collapse
Affiliation(s)
- Tao Yin
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
- Department of Immunology, Duke University School of Medicine, Durham, NC, USA
| | - Guoping Wang
- Department of Immunology, Duke University School of Medicine, Durham, NC, USA
| | - Liuyang Wang
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA
| | | | - Ergang Wang
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
| | - Christopher C Pan
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
| | | | | | | | - Yaosi Liang
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
| | - Lianmei Tan
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
| | - De Huang
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
| | - Mengyang Chong
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
| | - Rui Chen
- Hervor Therapeutics, Hangzhou, China
| | - Bryan Jian Wei Lim
- Department of Immunology, Duke University School of Medicine, Durham, NC, USA
| | - Kun Xiang
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
| | - Wei Xue
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Lixin Wan
- Department of Molecular Oncology and Cutaneous Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Hailan Hu
- Zhejiang University School of Brain Science and Brain Medicine, Hangzhou, China
| | - Yuin-Han Loh
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Xiao-Fan Wang
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA.
| | - Qi-Jing Li
- Department of Immunology, Duke University School of Medicine, Durham, NC, USA.
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.
| |
Collapse
|
34
|
Ferraguti G, Terracina S, Tarani L, Fanfarillo F, Allushi S, Caronti B, Tirassa P, Polimeni A, Lucarelli M, Cavalcanti L, Greco A, Fiore M. Nerve Growth Factor and the Role of Inflammation in Tumor Development. Curr Issues Mol Biol 2024; 46:965-989. [PMID: 38392180 PMCID: PMC10888178 DOI: 10.3390/cimb46020062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/12/2024] [Accepted: 01/19/2024] [Indexed: 02/24/2024] Open
Abstract
Nerve growth factor (NGF) plays a dual role both in inflammatory states and cancer, acting both as a pro-inflammatory and oncogenic factor and as an anti-inflammatory and pro-apoptotic mediator in a context-dependent way based on the signaling networks and its interaction with diverse cellular components within the microenvironment. This report aims to provide a summary and subsequent review of the literature on the role of NGF in regulating the inflammatory microenvironment and tumor cell growth, survival, and death. The role of NGF in inflammation and tumorigenesis as a component of the inflammatory system, its interaction with the various components of the respective microenvironments, its ability to cause epigenetic changes, and its role in the treatment of cancer have been highlighted in this paper.
Collapse
Affiliation(s)
- Giampiero Ferraguti
- Department of Experimental Medicine, Sapienza University of Rome, 00185 Rome, Italy
| | - Sergio Terracina
- Department of Experimental Medicine, Sapienza University of Rome, 00185 Rome, Italy
| | - Luigi Tarani
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Francesca Fanfarillo
- Department of Experimental Medicine, Sapienza University of Rome, 00185 Rome, Italy
| | - Sara Allushi
- Department of Experimental Medicine, Sapienza University of Rome, 00185 Rome, Italy
| | - Brunella Caronti
- Department of Human Neurosciences, Sapienza University Hospital of Rome, 00185 Rome, Italy
| | - Paola Tirassa
- Institute of Biochemistry and Cell Biology (IBBC-CNR), Department of Sensory Organs, Sapienza University of Rome, 00185 Rome, Italy
| | - Antonella Polimeni
- Department of Odontostomatological and Maxillofacial Sciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Marco Lucarelli
- Department of Experimental Medicine, Sapienza University of Rome, 00185 Rome, Italy
- Pasteur Institute, Cenci Bolognetti Foundation, Sapienza University of Rome, 00185 Rome, Italy
| | - Luca Cavalcanti
- Department of Sensory Organs, Sapienza University of Rome, 00185 Rome, Italy
| | - Antonio Greco
- Department of Sensory Organs, Sapienza University of Rome, 00185 Rome, Italy
| | - Marco Fiore
- Institute of Biochemistry and Cell Biology (IBBC-CNR), Department of Sensory Organs, Sapienza University of Rome, 00185 Rome, Italy
| |
Collapse
|
35
|
Chaker SC, Saad M, Mayes T, Lineaweaver WC. Burn Injury-related Growth Factor Expressions and Their Potential Roles in Burn-related Neuropathies. J Burn Care Res 2024; 45:25-31. [PMID: 37978864 DOI: 10.1093/jbcr/irad184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Indexed: 11/19/2023]
Abstract
In the context of burn injury, growth factors (GFs) play a significant role in mediating the complex local and systematic processes that occur. Among the many systemic complications that arise following a burn injury, peripheral neuropathy remains one of the most common. Despite the broad understanding of the effects GFs have on multiple tissues, their potential implications in both wound healing and neuropathy remain largely unexplored. Therefore, this review aims to investigate the expression patterns of GFs prominent during the burn wound healing process and explore the potential contributions these GFs have on the development of burn-related peripheral neuropathy.
Collapse
Affiliation(s)
- Sara C Chaker
- Department of Plastic Surgery, Vanderbilt University Medical Center, Nashville, TN, 37232USA
| | - Mariam Saad
- Department of Plastic Surgery, Vanderbilt University Medical Center, Nashville, TN, 37232USA
| | - Taylor Mayes
- Middle Tennessee State University, Murfreesboro, TN, 37132USA
| | - William C Lineaweaver
- Department of Plastic Surgery, Vanderbilt University Medical Center, Nashville, TN, 37232USA
| |
Collapse
|
36
|
Zhao Y, Peng X, Wang Q, Zhang Z, Wang L, Xu Y, Yang H, Bai J, Geng D. Crosstalk Between the Neuroendocrine System and Bone Homeostasis. Endocr Rev 2024; 45:95-124. [PMID: 37459436 DOI: 10.1210/endrev/bnad025] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Indexed: 01/05/2024]
Abstract
The homeostasis of bone microenvironment is the foundation of bone health and comprises 2 concerted events: bone formation by osteoblasts and bone resorption by osteoclasts. In the early 21st century, leptin, an adipocytes-derived hormone, was found to affect bone homeostasis through hypothalamic relay and the sympathetic nervous system, involving neurotransmitters like serotonin and norepinephrine. This discovery has provided a new perspective regarding the synergistic effects of endocrine and nervous systems on skeletal homeostasis. Since then, more studies have been conducted, gradually uncovering the complex neuroendocrine regulation underlying bone homeostasis. Intriguingly, bone is also considered as an endocrine organ that can produce regulatory factors that in turn exert effects on neuroendocrine activities. After decades of exploration into bone regulation mechanisms, separate bioactive factors have been extensively investigated, whereas few studies have systematically shown a global view of bone homeostasis regulation. Therefore, we summarized the previously studied regulatory patterns from the nervous system and endocrine system to bone. This review will provide readers with a panoramic view of the intimate relationship between the neuroendocrine system and bone, compensating for the current understanding of the regulation patterns of bone homeostasis, and probably developing new therapeutic strategies for its related disorders.
Collapse
Affiliation(s)
- Yuhu Zhao
- Department of Orthopedics, The First Affiliated Hospital of Soochow University; Orthopedics Institute, Medical College, Soochow University, Suzhou, Jiangsu 215006, China
| | - Xiaole Peng
- Department of Orthopedics, The First Affiliated Hospital of Soochow University; Orthopedics Institute, Medical College, Soochow University, Suzhou, Jiangsu 215006, China
| | - Qing Wang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University; Orthopedics Institute, Medical College, Soochow University, Suzhou, Jiangsu 215006, China
| | - Zhiyu Zhang
- Department of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| | - Liangliang Wang
- Department of Orthopedics, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu 213000, China
| | - Yaozeng Xu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University; Orthopedics Institute, Medical College, Soochow University, Suzhou, Jiangsu 215006, China
| | - Huilin Yang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University; Orthopedics Institute, Medical College, Soochow University, Suzhou, Jiangsu 215006, China
| | - Jiaxiang Bai
- Department of Orthopedics, The First Affiliated Hospital of Soochow University; Orthopedics Institute, Medical College, Soochow University, Suzhou, Jiangsu 215006, China
- Department of Orthopedics, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei 230022, China
| | - Dechun Geng
- Department of Orthopedics, The First Affiliated Hospital of Soochow University; Orthopedics Institute, Medical College, Soochow University, Suzhou, Jiangsu 215006, China
| |
Collapse
|
37
|
Wang Y, Liang J, Xu B, Yang J, Wu Z, Cheng L. TrkB/BDNF signaling pathway and its small molecular agonists in CNS injury. Life Sci 2024; 336:122282. [PMID: 38008209 DOI: 10.1016/j.lfs.2023.122282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 10/19/2023] [Accepted: 11/18/2023] [Indexed: 11/28/2023]
Abstract
As one of the most prevalent neurotrophic factors in the central nervous system (CNS), brain-derived neurotrophic factor (BDNF) plays a significant role in CNS injury by binding to its specific receptor Tropomyosin-related kinase receptor B (TrkB). The BDNF/TrkB signaling pathway is crucial for neuronal survival, structural changes, and plasticity. BDNF acts as an axonal growth and extension factor, a pro-survival factor, and a synaptic modulator in the CNS. BDNF also plays an important role in the maintenance and plasticity of neuronal circuits. Several studies have demonstrated the importance of BDNF in the treatment and recovery of neurodegenerative and neurotraumatic disorders. By undertaking in-depth study on the mechanism of BDNF/TrkB function, important novel therapeutic strategies for treating neuropsychiatric disorders have been discovered. In this review, we discuss the expression patterns and mechanisms of the TrkB/BDNF signaling pathway in CNS damage and introduce several intriguing small molecule TrkB receptor agonists produced over the previous several decades.
Collapse
Affiliation(s)
- Yujin Wang
- Division of Spine, Department of Orthopedics, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China; Key Laboratory of Spine and Spinal cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Shanghai 200072, China; Medical School, Tongji University, Shanghai 200433, China
| | - Jing Liang
- Division of Spine, Department of Orthopedics, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China; Key Laboratory of Spine and Spinal cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Shanghai 200072, China; School of Stomatology, Tongji University, Shanghai 200072, China
| | - Boyu Xu
- Division of Spine, Department of Orthopedics, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China; Key Laboratory of Spine and Spinal cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Shanghai 200072, China; Medical School, Tongji University, Shanghai 200433, China
| | - Jin Yang
- Division of Spine, Department of Orthopedics, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China; Key Laboratory of Spine and Spinal cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Shanghai 200072, China; Medical School, Tongji University, Shanghai 200433, China
| | - Zhourui Wu
- Division of Spine, Department of Orthopedics, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China; Key Laboratory of Spine and Spinal cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Shanghai 200072, China.
| | - Liming Cheng
- Division of Spine, Department of Orthopedics, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China; Key Laboratory of Spine and Spinal cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Shanghai 200072, China.
| |
Collapse
|
38
|
Fanfarillo F, Ferraguti G, Lucarelli M, Francati S, Barbato C, Minni A, Ceccanti M, Tarani L, Petrella C, Fiore M. The Impact of ROS and NGF in the Gliomagenesis and their Emerging Implications in the Glioma Treatment. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:449-462. [PMID: 37016521 DOI: 10.2174/1871527322666230403105438] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 12/19/2022] [Accepted: 02/01/2023] [Indexed: 04/06/2023]
Abstract
Reactive oxygen species (ROS) are highly reactive molecules derived from molecular oxygen (O2). ROS sources can be endogenous, such as cellular organelles and inflammatory cells, or exogenous, such as ionizing radiation, alcohol, food, tobacco, chemotherapeutical agents and infectious agents. Oxidative stress results in damage of several cellular structures (lipids, proteins, lipoproteins, and DNA) and is implicated in various disease states such as atherosclerosis, diabetes, cancer, neurodegeneration, and aging. A large body of studies showed that ROS plays an important role in carcinogenesis. Indeed, increased production of ROS causes accumulation in DNA damage leading to tumorigenesis. Various investigations demonstrated the involvement of ROS in gliomagenesis. The most common type of primary intracranial tumor in adults is represented by glioma. Furthermore, there is growing attention on the role of the Nerve Growth Factor (NGF) in brain tumor pathogenesis. NGF is a growth factor belonging to the family of neurotrophins. It is involved in neuronal differentiation, proliferation and survival. Studies were conducted to investigate NGF pathogenesis's role as a pro- or anti-tumoral factor in brain tumors. It has been observed that NGF can induce both differentiation and proliferation in cells. The involvement of NGF in the pathogenesis of brain tumors leads to the hypothesis of a possible implication of NGF in new therapeutic strategies. Recent studies have focused on the role of neurotrophin receptors as potential targets in glioma therapy. This review provides an updated overview of the role of ROS and NGF in gliomagenesis and their emerging role in glioma treatment.
Collapse
Affiliation(s)
| | - Giampiero Ferraguti
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Marco Lucarelli
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Silvia Francati
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | | | - Antonio Minni
- Department of Sensory Organs, Sapienza University of Rome, Rome, Italy
| | - Mauro Ceccanti
- SITAC, Società Italiana per il Trattamento dell'Alcolismo e le sue Complicanze, Rome, Italy
| | - Luigi Tarani
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, Rome, Italy
| | - Carla Petrella
- Institute of Biochemistry and Cell Biology, IBBC-CNR, Rome, Italy
| | - Marco Fiore
- Institute of Biochemistry and Cell Biology, IBBC-CNR, Rome, Italy
| |
Collapse
|
39
|
Sanie-Jahromi F, Nowroozzadeh MH, Shaabanian M, Khademi B, Owji N, Mehrabani D. Characterization of Central and Nasal Orbital Adipose Stem Cells and their Neural Differentiation Footprints. Curr Stem Cell Res Ther 2024; 19:1111-1119. [PMID: 37670706 DOI: 10.2174/1574888x19666230905114246] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 07/05/2023] [Accepted: 07/14/2023] [Indexed: 09/07/2023]
Abstract
BACKGROUND The unique potential of stem cells to restore vision and regenerate damaged ocular cells has led to the increased attraction of researchers and ophthalmologists to ocular regenerative medicine in recent decades. In addition, advantages such as easy access to ocular tissues, non-invasive follow-up, and ocular immunologic privilege have enhanced the desire to develop ocular regenerative medicine. OBJECTIVE This study aimed to characterize central and nasal orbital adipose stem cells (OASCs) and their neural differentiation potential. METHODS The central and nasal orbital adipose tissues extracted during an upper blepharoplasty surgery were explant-cultured in Dulbecco's Modified Eagle Medium (DMEM)/F12 supplemented with 10% fetal bovine serum (FBS). Cells from passage 3 were characterized morphologically by osteogenic and adipogenic differentiation potential and by flow cytometry for expression of mesenchymal (CD73, CD90, and CD105) and hematopoietic (CD34 and CD45) markers. The potential of OASCs for the expression of NGF, PI3K, and MAPK and to induce neurogenesis was assessed by real-time PCR. RESULTS OASCs were spindle-shaped and positive for adipogenic and osteogenic induction. They were also positive for mesenchymal and negative for hematopoietic markers. They were positive for NGF expression in the absence of any significant alteration in the expression of PI3K and MAPK genes. Nasal OASCs had higher expression of CD90, higher potential for adipogenesis, a higher level of NGF expression under serum-free supplementation, and more potential for neuron-like morphology. CONCLUSION We suggested the explant method of culture as an easy and suitable method for the expansion of OASCs. Our findings denote mesenchymal properties of both central and nasal OASCs, while mesenchymal and neural characteristics were expressed stronger in nasal OASCs when compared to central ones. These findings can be added to the literature when cell transplantation is targeted in the treatment of neuro-retinal degenerative disorders.
Collapse
Affiliation(s)
- Fatemeh Sanie-Jahromi
- Poostchi Ophthalmology Research Center, Department of Ophthalmology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - M Hossein Nowroozzadeh
- Poostchi Ophthalmology Research Center, Department of Ophthalmology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mina Shaabanian
- Poostchi Ophthalmology Research Center, Department of Ophthalmology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Behzad Khademi
- Poostchi Ophthalmology Research Center, Department of Ophthalmology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Naser Owji
- Poostchi Ophthalmology Research Center, Department of Ophthalmology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Davood Mehrabani
- Stem Cell Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
40
|
Schindowski K. Differential Regulation of Neurotrophic Factors During Pathogenic Tau-Aggregation in a Tau Transgenic Mouse Model for Alzheimer's Disease: A Protocol for Double-Labeling mRNA by In Situ Hybridization and Protein Epitopes by Immunohistochemistry. Methods Mol Biol 2024; 2754:361-385. [PMID: 38512677 DOI: 10.1007/978-1-0716-3629-9_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
Alzheimer's disease (AD), most tauopathies, and other neurodegenerative diseases are highly associated to impaired neurotrophin regulation and imbalanced neurotrophin transport and distribution. Neurotrophins are crucial for the survival and maintenance of distinct neuronal population therefore their supply is essential for a healthy brain. Tau phosphorylation occurs at different sites of the tau protein and some phospho-epitopes are highly associated to AD (e.g., abnormally phosphorylated tau at Thr212/Ser214). Though the importance of neurotrophins is well known, their analysis in tissue is not trivial and needs careful consideration. Here a detailed protocol is presented, which combines in situ hybridization (ISH) with immunohistochemistry (IHC) to analyze neurotrophin mRNA expression during tau neuropathology and the results were confirmed by immunological methods.With this protocol, it was demonstrated that Brain-Derived Neurotrophic Factor (BDNF) and its receptor Tropomyosin receptor kinase B (TrkB) were significantly decreased in tau-transgenic mice compared to their age-matched littermates. Neurotrophin-3 (NT-3) and its receptor TrkC were not altered with statistical significance, but a tendency for decreased NT-3 and slightly increased TrkC expression was observed in tau transgenic mice. The loss of BDNF-ISH signal was predominantly observed in hippocampus (CA1 and CA3) and cortex (layer II-VI) and verified by BDNF-immunoreactivity. Decreased BDNF and TrkB mRNA was negatively correlated with abnormal tau phosphorylation at Thr212/Ser214 in cortical neurons in transgenic mice. Strikingly, no correlation was observed with age-related phospho-epitopes such as Ser202/Thr205. Interestingly, both, the mRNA and protein levels of Nerve Growth Factor (NGF) were significantly increased in hippocampal neurons in the tau models as demonstrated by ISH, immunofluorescence, and Western Blotting. Here, some co-localization of NGF mRNA and phospho-tau (Thr212/Ser214) was observed but was a rare event. Since there is growing evidence for the relevance of neurotrophic factor distribution in the pathogenesis of neurodegeneration, this technique is a useful tool to investigate the underlying mechanisms and potential therapeutic intervention.
Collapse
Affiliation(s)
- Katharina Schindowski
- Institute of Applied Biotechnology, University of Applied Science Biberach, Biberach, Germany.
| |
Collapse
|
41
|
Čechová B, Mihalčíková L, Vaculin Š, Šandera Š, Šlamberová R. Levels of BDNF and NGF in adolescent rat hippocampus neonatally exposed to methamphetamine along with environmental alterations. Physiol Res 2023; 72:S559-S571. [PMID: 38165760 PMCID: PMC10861250 DOI: 10.33549/physiolres.935216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 09/07/2023] [Indexed: 02/01/2024] Open
Abstract
Neurotrophins are proteins included in development and functioning of various processed in mammalian organisms. They are important in early development but as well as during adulthood. Brain - derived neurotrophic factor (BDNF) and nerve growth factor (NGF) have been previously linked with many psychiatric disorders such as depression and addiction. Since during postnatal development, brain undergoes various functional and anatomical changes, we included preweaning environment enrichment (EE), since enrichment has been linked with improved function and development of the several brain structure such as hippocampus (HP), in which we monitored these changes. On the other hand, social isolation has been linked with depression and anxiety-like behavior, therefore postweaning social isolation has been added to this model as well and animal were exposed to this condition till adolescence. We examined if all these three factors had impact on BDNF and NGF levels during three phases of adolescence - postnatal days (PDs) 28, 35 and 45. Our results show that EE did not increase BDNF levels neither in control or MA exposed animals and these results are similar for both direct and indirect exposure. On the other side, social separation after weaning did reduce BDNF levels in comparison to standard housing animals but this effect was reversed by direct MA exposure. In terms of NGF, EE environment increased its levels only in indirectly exposed controls and MA animals during late adolescence. On the other hand, social separation increased NGF levels in majority of animals.
Collapse
Affiliation(s)
- B Čechová
- Department of Physiology, Third Faculty of Medicine, Charles University, Prague, Czech Republic.
| | | | | | | | | |
Collapse
|
42
|
Mei H, Tan J, Hu Y, Shi X, Liu Y, Jia F, Xu F. Developing a trans-multisynaptic tracer to map the neural circuit of recovered sciatic nerve after treatment with nerve growth factor. IBRO Neurosci Rep 2023; 15:235-241. [PMID: 37841085 PMCID: PMC10570716 DOI: 10.1016/j.ibneur.2023.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/19/2023] [Accepted: 09/30/2023] [Indexed: 10/17/2023] Open
Abstract
Nerve growth factor (NGF) has been shown to support the survival and differentiation of neurons. In this study, we first developed a retrograde trans-multisynaptic tracer PRV580 expressing the mCherry fluorescent protein based on pseudorabies virus Bartha strain to map the neural circuit of sciatic nerve. Secondly, the newly developed PRV580 was used to map the neural circuit of the recovering sciatic nerve upon treatment with NGF. Our results showed that red signals from PRV580 were observed in various brain regions. Among these regions, many areas of the pyramidal system and the extra-pyramidal system had been mapped, accounting for as much as 56.8 % of the total inputs. Furthermore, we found that NGF could significantly increase the ratio of total input (29.05 %) compared to PBS (3.65 %), indicating that NGF indeed can aid in the repair of injured sciatic nerve. These findings indicated that NGF has therapeutic ability for the treatment of peripheral nerve injuries and virus-based tracers can be used to monitor the recovery.
Collapse
Affiliation(s)
- Hongjun Mei
- Department of Orthopaedics, The Fifth hospital of Wuhan, Wuhan 430050, China
| | - Junfeng Tan
- Department of Orthopaedics, The Fifth hospital of Wuhan, Wuhan 430050, China
| | - You Hu
- Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Xiangwei Shi
- Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- NMPA Key Laboratory for Research and Evaluation of Viral Vector Technology in Cell and Gene Therapy Medicinal Products, Shenzhen Key Laboratory of Viral Vectors for Biomedicine, Key Laboratory of Quality Control Technology for Virus-Based Therapeutics, Guangdong Provincial Medical Products Administration, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Liu
- Department of Orthopaedics, The Fifth hospital of Wuhan, Wuhan 430050, China
| | - Fan Jia
- Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- NMPA Key Laboratory for Research and Evaluation of Viral Vector Technology in Cell and Gene Therapy Medicinal Products, Shenzhen Key Laboratory of Viral Vectors for Biomedicine, Key Laboratory of Quality Control Technology for Virus-Based Therapeutics, Guangdong Provincial Medical Products Administration, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fuqiang Xu
- Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- NMPA Key Laboratory for Research and Evaluation of Viral Vector Technology in Cell and Gene Therapy Medicinal Products, Shenzhen Key Laboratory of Viral Vectors for Biomedicine, Key Laboratory of Quality Control Technology for Virus-Based Therapeutics, Guangdong Provincial Medical Products Administration, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
43
|
Wang T, Song Z, Zhao X, Wu Y, Wu L, Haghparast A, Wu H. Spatial transcriptomic analysis of the mouse brain following chronic social defeat stress. EXPLORATION (BEIJING, CHINA) 2023; 3:20220133. [PMID: 38264685 PMCID: PMC10742195 DOI: 10.1002/exp.20220133] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 09/03/2023] [Indexed: 01/25/2024]
Abstract
Depression is a highly prevalent and disabling mental disorder, involving numerous genetic changes that are associated with abnormal functions in multiple regions of the brain. However, there is little transcriptomic-wide characterization of chronic social defeat stress (CSDS) to comprehensively compare the transcriptional changes in multiple brain regions. Spatial transcriptomics (ST) was used to reveal the spatial difference of gene expression in the control, resilient (RES) and susceptible (SUS) mouse brains, and annotated eight anatomical brain regions and six cell types. The gene expression profiles uncovered that CSDS leads to gene synchrony changes in different brain regions. Then it was identified that inhibitory neurons and synaptic functions in multiple regions were primarily affected by CSDS. The brain regions Hippocampus (HIP), Isocortex, and Amygdala (AMY) present more pronounced transcriptional changes in genes associated with depressive psychiatric disorders than other regions. Signalling communication between these three brain regions may play a critical role in susceptibility to CSDS. Taken together, this study provides important new insights into CSDS susceptibility at the ST level, which offers a new approach for understanding and treating depression.
Collapse
Affiliation(s)
- Ting Wang
- Department of NeurobiologyBeijing Institute of Basic Medical SciencesBeijingChina
| | - Zhihong Song
- Department of NeurobiologyBeijing Institute of Basic Medical SciencesBeijingChina
| | - Xin Zhao
- Department of NeurobiologyBeijing Institute of Basic Medical SciencesBeijingChina
| | - Yan Wu
- Department of NeurobiologyBeijing Institute of Basic Medical SciencesBeijingChina
| | - Liying Wu
- Department of NeurobiologyBeijing Institute of Basic Medical SciencesBeijingChina
| | - Abbas Haghparast
- Neuroscience Research Center, School of MedicineShahid Beheshti University of Medical SciencesTehranIran
| | - Haitao Wu
- Department of NeurobiologyBeijing Institute of Basic Medical SciencesBeijingChina
- Key Laboratory of Neuroregeneration, Co‐innovation Center of NeuroregenerationNantong UniversityNantongChina
- Chinese Institute for Brain ResearchBeijingChina
| |
Collapse
|
44
|
Gao X, Murphy MM, Peyer JG, Ni Y, Yang M, Zhang Y, Guo J, Kara N, Embree C, Tasdogan A, Ubellacker JM, Crane GM, Fang S, Zhao Z, Shen B, Morrison SJ. Leptin receptor + cells promote bone marrow innervation and regeneration by synthesizing nerve growth factor. Nat Cell Biol 2023; 25:1746-1757. [PMID: 38012403 PMCID: PMC10709146 DOI: 10.1038/s41556-023-01284-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 10/09/2023] [Indexed: 11/29/2023]
Abstract
The bone marrow contains peripheral nerves that promote haematopoietic regeneration after irradiation or chemotherapy (myeloablation), but little is known about how this is regulated. Here we found that nerve growth factor (NGF) produced by leptin receptor-expressing (LepR+) stromal cells is required to maintain nerve fibres in adult bone marrow. In nerveless bone marrow, steady-state haematopoiesis was normal but haematopoietic and vascular regeneration were impaired after myeloablation. LepR+ cells, and the adipocytes they gave rise to, increased NGF production after myeloablation, promoting nerve sprouting in the bone marrow and haematopoietic and vascular regeneration. Nerves promoted regeneration by activating β2 and β3 adrenergic receptor signalling in LepR+ cells, and potentially in adipocytes, increasing their production of multiple haematopoietic and vascular regeneration growth factors. Peripheral nerves and LepR+ cells thus promote bone marrow regeneration through a reciprocal relationship in which LepR+ cells sustain nerves by synthesizing NGF and nerves increase regeneration by promoting the production of growth factors by LepR+ cells.
Collapse
Affiliation(s)
- Xiang Gao
- National Institute of Biological Sciences, Beijing, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Malea M Murphy
- Children's Research Institute and the Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Integrated Microscopy and Imaging Laboratory, Texas A&M Health Science Center, Texas A&M University, College Station, TX, USA
| | - James G Peyer
- Children's Research Institute and the Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Cambrian Bio, Inc., New York, NY, USA
| | - Yuehan Ni
- National Institute of Biological Sciences, Beijing, China
- College of Life Sciences, Beijing Normal University, Beijing, China
| | - Min Yang
- National Institute of Biological Sciences, Beijing, China
- College of Life Sciences, Beijing Normal University, Beijing, China
| | - Yixuan Zhang
- National Institute of Biological Sciences, Beijing, China
| | - Jiaming Guo
- National Institute of Biological Sciences, Beijing, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Nergis Kara
- Children's Research Institute and the Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Ensoma, Inc., Boston, MA, USA
| | - Claire Embree
- Children's Research Institute and the Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Alpaslan Tasdogan
- Children's Research Institute and the Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Dermatology, University Hospital Essen and German Cancer Consortium, Essen, Germany
| | - Jessalyn M Ubellacker
- Children's Research Institute and the Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Genevieve M Crane
- Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Shentong Fang
- School of Biopharmacy, China Pharmaceutical University, Nanjing, China
| | - Zhiyu Zhao
- Children's Research Institute and the Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Bo Shen
- National Institute of Biological Sciences, Beijing, China.
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China.
- Children's Research Institute and the Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | - Sean J Morrison
- Children's Research Institute and the Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Howard Hughes Medical Institute, UT Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
45
|
Calvo-Enrique L, Lisa S, Vicente-García C, Deogracias R, Arévalo JC. Enhanced TrkA signaling impairs basal forebrain-dependent behavior. Front Mol Neurosci 2023; 16:1266983. [PMID: 37808473 PMCID: PMC10556247 DOI: 10.3389/fnmol.2023.1266983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 09/07/2023] [Indexed: 10/10/2023] Open
Abstract
Basal forebrain cholinergic neurons (BFCNs) modulate cognitive functions such as attention, learning and memory. The NGF/TrkA pathway plays an important role in the development and function of BFCNs, although two mouse models conditionally deleting TrkA expression in the central nervous system (CNS) have shown contradictory results. To shed light into this discrepancy, we used a mouse model with a gain-of-function in TrkA receptor signaling. Our results indicate that enhanced TrkA signaling did not alter hippocampal cholinergic innervation, general locomotion or anxiety-related behaviors, but it increases ChAT expression, the number of cholinergic neurons at early postnatal stages and, mutant mice showed impaired motor learning and memory functions. These data demonstrate that proper functioning of the cholinergic system in CNS requires a balanced NGF/TrkA signaling.
Collapse
Affiliation(s)
- Laura Calvo-Enrique
- Department of Cell Biology and Pathology, Instituto de Neurociencias de Castilla y León (INCyL), Universidad de Salamanca, Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| | - Silvia Lisa
- Department of Cell Biology and Pathology, Instituto de Neurociencias de Castilla y León (INCyL), Universidad de Salamanca, Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| | - Cristina Vicente-García
- Department of Cell Biology and Pathology, Instituto de Neurociencias de Castilla y León (INCyL), Universidad de Salamanca, Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| | - Ruben Deogracias
- Department of Cell Biology and Pathology, Instituto de Neurociencias de Castilla y León (INCyL), Universidad de Salamanca, Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| | - Juan Carlos Arévalo
- Department of Cell Biology and Pathology, Instituto de Neurociencias de Castilla y León (INCyL), Universidad de Salamanca, Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| |
Collapse
|
46
|
Yan X, Zheng R, Chen J, Li M. scNCL: transferring labels from scRNA-seq to scATAC-seq data with neighborhood contrastive regularization. Bioinformatics 2023; 39:btad505. [PMID: 37584660 PMCID: PMC10457667 DOI: 10.1093/bioinformatics/btad505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/17/2023] [Accepted: 08/12/2023] [Indexed: 08/17/2023] Open
Abstract
MOTIVATION scATAC-seq has enabled chromatin accessibility landscape profiling at the single-cell level, providing opportunities for determining cell-type-specific regulation codes. However, high dimension, extreme sparsity, and large scale of scATAC-seq data have posed great challenges to cell-type identification. Thus, there has been a growing interest in leveraging the well-annotated scRNA-seq data to help annotate scATAC-seq data. However, substantial computational obstacles remain to transfer information from scRNA-seq to scATAC-seq, especially for their heterogeneous features. RESULTS We propose a new transfer learning method, scNCL, which utilizes prior knowledge and contrastive learning to tackle the problem of heterogeneous features. Briefly, scNCL transforms scATAC-seq features into gene activity matrix based on prior knowledge. Since feature transformation can cause information loss, scNCL introduces neighborhood contrastive learning to preserve the neighborhood structure of scATAC-seq cells in raw feature space. To learn transferable latent features, scNCL uses a feature projection loss and an alignment loss to harmonize embeddings between scRNA-seq and scATAC-seq. Experiments on various datasets demonstrated that scNCL not only realizes accurate and robust label transfer for common types, but also achieves reliable detection of novel types. scNCL is also computationally efficient and scalable to million-scale datasets. Moreover, we prove scNCL can help refine cell-type annotations in existing scATAC-seq atlases. AVAILABILITY AND IMPLEMENTATION The source code and data used in this paper can be found in https://github.com/CSUBioGroup/scNCL-release.
Collapse
Affiliation(s)
- Xuhua Yan
- School of Computer Science and Engineering, Central South University, Changsha 410083, China
| | - Ruiqing Zheng
- School of Computer Science and Engineering, Central South University, Changsha 410083, China
| | - Jinmiao Chen
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore 138648, Singapore
- Immunology Translational Research Program, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore 117545, Singapore
| | - Min Li
- School of Computer Science and Engineering, Central South University, Changsha 410083, China
| |
Collapse
|
47
|
Sadanandan J, Sathyanesan M, Liu Y, Tiwari NK, Newton SS. Carbamoylated Erythropoietin-Induced Cerebral Blood Perfusion and Vascular Gene Regulation. Int J Mol Sci 2023; 24:11507. [PMID: 37511274 PMCID: PMC10380798 DOI: 10.3390/ijms241411507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/06/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
Cerebral hypoperfusion is associated with enhanced cognitive decline and increased risk of neuropsychiatric disorders. Erythropoietin (EPO) is a neurotrophic factor known to improve cognitive function in preclinical and clinical studies of neurodegenerative and psychiatric disorders. However, the clinical application of EPO is limited due to its erythropoietic activity that can adversely elevate hematocrit in non-anemic populations. Carbamoylated erythropoietin (CEPO), a chemically engineered non-erythropoietic derivative of EPO, does not alter hematocrit and maintains neurotrophic and behavioral effects comparable to EPO. Our study aimed to investigate the role of CEPO in cerebral hemodynamics. Magnetic resonance imaging (MRI) analysis indicated increased blood perfusion in the hippocampal and striatal region without altering tight junction integrity. In vitro and in vivo analyses indicated that hippocampal neurotransmission was unaltered and increased cerebral perfusion was likely due to EDRF, CGRP, and NOS-mediated vasodilation. In vitro analysis using human umbilical vein endothelial cells (HUVEC) and hippocampal vascular gene expression analysis showed CEPO to be a non-angiogenic agent which regulates the MEOX2 gene expression. The results from our study demonstrate a novel role of CEPO in modulating cerebral vasodilation and blood perfusion.
Collapse
Affiliation(s)
- Jayanarayanan Sadanandan
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, USA
| | - Monica Sathyanesan
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, USA
| | - Yutong Liu
- Radiology Research Division, Department of Radiology, Nebraska Medical Center, Omaha, NE 68198, USA
| | | | - Samuel S Newton
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, USA
| |
Collapse
|
48
|
Kehrer A, Hollmann KS, Klein SM, Anker AM, Tamm ER, Prantl L, Engelmann S, Knoedler S, Knoedler L, Ruewe M. Histomorphometry of the Sural Nerve for Use as a CFNG in Facial Reanimation Procedures. J Clin Med 2023; 12:4627. [PMID: 37510742 PMCID: PMC10380239 DOI: 10.3390/jcm12144627] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/06/2023] [Accepted: 07/08/2023] [Indexed: 07/30/2023] Open
Abstract
Facial palsy (FP) is a debilitating nerve pathology. Cross Face Nerve Grafting (CFNG) describes a surgical technique that uses nerve grafts to reanimate the paralyzed face. The sural nerve has been shown to be a reliable nerve graft with little donor side morbidity. Therefore, we aimed to investigate the microanatomy of the sural nerve. Biopsies were obtained from 15 FP patients who underwent CFNG using sural nerve grafts. Histological cross-sections were fixated, stained with PPD, and digitized. Histomorphometry and a validated software-based axon quantification were conducted. The median age of the operated patients was 37 years (5-62 years). There was a significant difference in axonal capacity decrease towards the periphery when comparing proximal vs. distal biopsies (p = 0.047), while the side of nerve harvest showed no significant differences in nerve caliber (proximal p = 0.253, distal p = 0.506) and axonal capacity for proximal and distal biopsies (proximal p = 0.414, distal p = 0.922). Age did not correlate with axonal capacity (proximal: R = -0.201, p = 0.603; distal: R = 0.317, p = 0.292). These novel insights into the microanatomy of the sural nerve may help refine CFNG techniques and individualize FP patient treatment plans, ultimately improving overall patient outcomes.
Collapse
Affiliation(s)
- Andreas Kehrer
- Department of Plastic, Hand, and Reconstructive Surgery, University Hospital Regensburg, 93053 Regensburg, Germany
- Division of Plastic and Facial Palsy Surgery, Hospital Ingolstadt, 85049 Ingolstadt, Germany
| | - Katharina S Hollmann
- Department of Molecular Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Silvan M Klein
- Department of Plastic, Hand, and Reconstructive Surgery, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Alexandra M Anker
- Department of Plastic, Hand, and Reconstructive Surgery, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Ernst R Tamm
- Department of Human Anatomy and Embryology, University of Regensburg, 93053 Regensburg, Germany
| | - Lukas Prantl
- Department of Plastic, Hand, and Reconstructive Surgery, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Simon Engelmann
- Department of Plastic, Hand, and Reconstructive Surgery, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Samuel Knoedler
- Department of Plastic, Hand, and Reconstructive Surgery, University Hospital Regensburg, 93053 Regensburg, Germany
- Department of Plastic Surgery and Hand Surgery, Klinikum Rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| | - Leonard Knoedler
- Department of Plastic, Hand, and Reconstructive Surgery, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Marc Ruewe
- Department of Plastic, Hand, and Reconstructive Surgery, University Hospital Regensburg, 93053 Regensburg, Germany
| |
Collapse
|
49
|
Berry AS, Harrison TM. New perspectives on the basal forebrain cholinergic system in Alzheimer's disease. Neurosci Biobehav Rev 2023; 150:105192. [PMID: 37086935 PMCID: PMC10249144 DOI: 10.1016/j.neubiorev.2023.105192] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/27/2023] [Accepted: 03/28/2023] [Indexed: 04/24/2023]
Abstract
The basal forebrain cholinergic system (BFCS) has long been implicated in age-related cognitive changes and the pathophysiology of Alzheimer's disease (AD). Limitations of cholinergic interventions helped to inspire a shift away from BFCS in AD research. A resurgence in interest in the BFCS following methodological and analytical advances has resulted in a call for the BFCS to be examined in novel frameworks. We outline the basic structure and function of the BFCS, its role in supporting cognitive and affective function, and its vulnerability to aging and AD. We consider the BFCS in the context of the amyloid hypothesis and evolving concepts in AD research: resilience and resistance to pathology, selective neuronal vulnerability, trans-synaptic pathology spread and sleep health. We highlight 1) the potential role of the BFCS in cognitive resilience, 2) recent work refining understanding about the selective vulnerability of BFCS to AD, 3) BFCS connectivity that suggests it is related to tau spreading and neurodegeneration and 4) the gap between BFCS involvement in AD and sleep-wake cycles.
Collapse
Affiliation(s)
| | - Theresa M Harrison
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
50
|
Sirico A, Simonelli S, Pignatiello S, Fulgione C, Sarno L, Chiuso F, Maruotti GM, Sansone M, Guida M, Insabato L. BDNF and NGF Expression in Preneoplastic Cervical Disease According to HIV Status. Int J Mol Sci 2023; 24:10729. [PMID: 37445902 DOI: 10.3390/ijms241310729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/18/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
BACKGROUND Neurotrophins, such as BDNF and NGF, are overexpressed in tumor cells in cervical cancer, and HIV infection is associated with the upregulation of neurotrophin expression. Therefore, we aimed to investigate whether BDNF and NGF are overexpressed in preneoplastic cervical disease from HIV-infected women. METHODS Women with preneoplastic cervical lesions (cervical intraepithelial neoplasia grade 2 or 3) were prospectively enrolled and grouped according to their HIV status. Samples from Loop Electrosurgical Excision Procedure (LEEP) for suspected cervical cancer were obtained, and immunohistochemistry was performed to evaluate BDNF and NGF expression. RESULTS We included in our analysis 12 HIV-infected patients who were matched with 23 HIV-negative patients as a control group. Immunohistochemistry analysis showed that BDNF expression was significantly higher in cervical preneoplastic lesions from HIV-positive women than in the lesions from the control group. In particular, BDNF was expressed in 8/12 HIV-positive patients and 7/23 HIV-negative patients (66.7% vs. 30.4%, χ2 = 4.227; p = 0.040). NGF expression was not significantly higher in cervical preneoplastic lesions from HIV-positive women compared with that in the lesions from the control group. In particular, NGF was expressed in 8/12 HIV-positive patients and in 12/23 HIV-negative patients (66.7% vs. 52.2% χ2 = 0.676; p = 0.411). Logistic regression analysis showed that the HIV status is an independent predictor of BDNF expression in pre-invasive preneoplastic cervical disease when considered alone (crude OR 4.6, 95% CI 0.027-20.347; p = 0.046) and when analyzed with other co-factors (adjusted OR 6.786, 95% CI 1.084-42.476; p = 0.041). CONCLUSIONS In preneoplastic cervical disease, BDNF expression is higher in HIV-infected women than in non-infected controls, and this is independent of the clinical features of the patients and from the presence of the HPV-HR genotype. BDNF can play a key role as a link between the pathways by which HIV and HPV interact to accelerate cervical cancer progression and invasion. These data can be useful to better understand the role of neurotrophins in the cancerogenesis of cervical cancer and the possible therapeutic strategies to improve disease outcomes.
Collapse
Affiliation(s)
- Angelo Sirico
- Department of Neuroscience, Reproductive Sciences and Dentistry, University of Naples Federico II, 80131 Naples, Italy
| | - Saverio Simonelli
- Pathology Unit, Department of Advanced Biomedical Sciences, University of Naples Federico II, 80131 Naples, Italy
| | | | - Caterina Fulgione
- Department of Neuroscience, Reproductive Sciences and Dentistry, University of Naples Federico II, 80131 Naples, Italy
| | - Laura Sarno
- Department of Neuroscience, Reproductive Sciences and Dentistry, University of Naples Federico II, 80131 Naples, Italy
| | - Francesco Chiuso
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy
| | - Giuseppe Maria Maruotti
- Department of Neuroscience, Reproductive Sciences and Dentistry, University of Naples Federico II, 80131 Naples, Italy
| | - Matilde Sansone
- Department of Neuroscience, Reproductive Sciences and Dentistry, University of Naples Federico II, 80131 Naples, Italy
| | - Maurizio Guida
- Department of Neuroscience, Reproductive Sciences and Dentistry, University of Naples Federico II, 80131 Naples, Italy
| | - Luigi Insabato
- Pathology Unit, Department of Advanced Biomedical Sciences, University of Naples Federico II, 80131 Naples, Italy
| |
Collapse
|