1
|
Herzog L, Reine F, Castille J, Passet B, Moudjou M, Bonnet R, Torres JM, Rezaei H, Vilotte JL, Béringue V, Igel A. Optimization and evaluation of new decontamination procedures inactivating human prions. J Hosp Infect 2025; 160:109-117. [PMID: 39952613 DOI: 10.1016/j.jhin.2024.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 11/30/2024] [Accepted: 12/19/2024] [Indexed: 02/17/2025]
Abstract
BACKGROUND Prions are protein-only infectious agents for which no prophylactic or curative treatment exists. There is a need for formulations effective against human prions and robust in-vitro and in-vivo evaluation protocols. AIM To compare infectivity bioassays with those of their protein misfolding cyclic amplification (PMCA) counterparts to propose a robust method for evaluating prionicide treatments against human prions. METHODS Stainless steel wires were contaminated with two humanized prion strains. The wires were then treated with different protocols based on a new formulation termed TFD Premium and World Health Organization (WHO) references. Residual prion seeding activity and infectivity on the wire and in wastewater were quantified using mb-PMCA and ad-hoc bioassays. For vCJD, PMCA compared humanized prions and a human-derived prion isolate. FINDINGS TFD Premium was more efficient at decontaminating humanized prions than 1 N NaOH for 1 h at room temperature. Tg650-sCJD-VV2 was more resistant to inactivation than vCJD prions. For vCJD, strain from both sources showed similar resistant profile against TFD Premium. Finally, there was perfect alignment between the highly sensitive PMCA cell-free assay and the bioassays. CONCLUSION This study identified a new formulation called TFD Premium, which outperforms or equals the WHO reference methods against human prions and is suitable for manual and automated reprocessing of medical devices in healthcare facilities.
Collapse
Affiliation(s)
- L Herzog
- Molecular Virology Immunology (VIM) Unit, Université Paris-Saclay, INRAE, UVSQ, Jouy-en-Josas, France
| | - F Reine
- Molecular Virology Immunology (VIM) Unit, Université Paris-Saclay, INRAE, UVSQ, Jouy-en-Josas, France
| | - J Castille
- Animal Genetics and Integrative Biology (GABI) Unit, Université Paris-Saclay, INRAE, UVSQ, Jouy-en-Josas, France
| | - B Passet
- Animal Genetics and Integrative Biology (GABI) Unit, Université Paris-Saclay, INRAE, UVSQ, Jouy-en-Josas, France
| | - M Moudjou
- Molecular Virology Immunology (VIM) Unit, Université Paris-Saclay, INRAE, UVSQ, Jouy-en-Josas, France
| | - R Bonnet
- FB Product, Torcé viviers en charnie, France
| | - J M Torres
- Centro de Investigación en Sanidad Animal (CISA-INIA-CSIC), Madrid, Spain
| | - H Rezaei
- Molecular Virology Immunology (VIM) Unit, Université Paris-Saclay, INRAE, UVSQ, Jouy-en-Josas, France
| | - J-L Vilotte
- Animal Genetics and Integrative Biology (GABI) Unit, Université Paris-Saclay, INRAE, UVSQ, Jouy-en-Josas, France
| | - V Béringue
- Molecular Virology Immunology (VIM) Unit, Université Paris-Saclay, INRAE, UVSQ, Jouy-en-Josas, France
| | - A Igel
- Molecular Virology Immunology (VIM) Unit, Université Paris-Saclay, INRAE, UVSQ, Jouy-en-Josas, France; FB Product, Torcé viviers en charnie, France.
| |
Collapse
|
2
|
Guo L, Yu Q, Wang D, Wu X, Wolynes PG, Chen M. Generating the polymorph landscapes of amyloid fibrils using AI: RibbonFold. Proc Natl Acad Sci U S A 2025; 122:e2501321122. [PMID: 40232799 PMCID: PMC12037047 DOI: 10.1073/pnas.2501321122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Accepted: 03/07/2025] [Indexed: 04/16/2025] Open
Abstract
The concept that proteins are selected to fold into a well-defined native state has been effectively addressed within the framework of energy landscapes, underpinning the recent successes of structure prediction tools like AlphaFold. The amyloid fold, however, does not represent a unique minimum for a given single sequence. While the cross-β hydrogen-bonding pattern is common to all amyloids, other aspects of amyloid fiber structures are sensitive not only to the sequence of the aggregating peptides but also to the experimental conditions. This polymorphic nature of amyloid structures challenges structure predictions. In this paper, we use AI to explore the landscape of possible amyloid protofilament structures composed of a single stack of peptides aligned in a parallel, in-register manner. This perspective enables a practical method for predicting protofilament structures of arbitrary sequences: RibbonFold. RibbonFold is adapted from AlphaFold2, incorporating parallel in-register constraints within AlphaFold2's template module, along with an appropriate polymorphism loss function to address the structural diversity of folds. RibbonFold outperforms AlphaFold2/3 on independent test sets, achieving a mean TM-score of 0.5. RibbonFold proves well-suited to study the polymorphic landscapes of widely studied sequences with documented polymorphisms. The resulting landscapes capture these observed polymorphisms effectively. We show that while well-known amyloid-forming sequences exhibit a limited number of plausible polymorphs on their "solubility" landscape, randomly shuffled sequences with the same composition appear to be negatively selected in terms of their relative solubility. RibbonFold is a valuable framework for structurally characterizing amyloid polymorphism landscapes.
Collapse
Affiliation(s)
| | - Qilin Yu
- Changping Laboratory, Beijing102206, China
| | - Di Wang
- Changping Laboratory, Beijing102206, China
| | - Xiaoyu Wu
- Changping Laboratory, Beijing102206, China
| | - Peter G. Wolynes
- Center for Theoretical Biological Physics, Rice University, Houston, TX77005
- Department of Chemistry, Rice University, Houston, TX77005
- Department of Physics and Astronomy, Rice University, Houston, TX77005
- Department of Biosciences, Rice University, Houston, TX77005
| | | |
Collapse
|
3
|
Salamat MKF, Hunter N, Houston EF. No evidence of subclinical infection in sheep surviving oral challenge with prions. J Gen Virol 2025; 106:002087. [PMID: 40116281 PMCID: PMC11928478 DOI: 10.1099/jgv.0.002087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 02/28/2025] [Indexed: 03/23/2025] Open
Abstract
Variant Creutzfeldt-Jakob disease (vCJD) is a fatal zoonotic disease caused by the ingestion of bovine spongiform encephalopathy (BSE)-infected meat products. Although the number of vCJD cases due to dietary exposure has significantly declined, the true burden of subclinical infections remains uncertain. Several large-scale surveys using appendix tissue samples have indicated the presence of abnormal prion protein (PrPSc; Sc for scrapie) in lymphoid tissue of a small proportion of the UK population. These may represent silent carriers of infection, with the potential to contribute to transmission, persistence and re-emergence of vCJD. Previously, we showed that subclinical infection is a frequent outcome of low-dose prion exposure by blood transfusion in sheep. To determine whether subclinical infection was also found following low-dose exposure by another clinically relevant route for humans, we screened archived tissues from sheep orally challenged with a range of doses of BSE, which did not show clinical or pathological signs of disease after several years of follow-up post-infection. Using a highly sensitive protein misfolding cyclic amplification assay, we were unable to detect PrPSc in the lymph node/tonsil of 15 sheep, or in a wider range of lymphoid tissues and brain (medulla oblongata) from a subset of 5 sheep. Our findings suggest that the route of infection/exposure may significantly influence the probability of establishing subclinical infection, with the oral route apparently much less efficient than intravenous infection by blood transfusion in sheep.
Collapse
Affiliation(s)
- M. Khalid F. Salamat
- Royal (Dick) School of Veterinary Studies, The Roslin Institute, The University of Edinburgh, Edinburgh, Midlothian, UK
| | - Nora Hunter
- Royal (Dick) School of Veterinary Studies, The Roslin Institute, The University of Edinburgh, Edinburgh, Midlothian, UK
| | - E. Fiona Houston
- Royal (Dick) School of Veterinary Studies, The Roslin Institute, The University of Edinburgh, Edinburgh, Midlothian, UK
| |
Collapse
|
4
|
Holm-Mercer L, Coysh T, Mok TH, Rudge P, Reisz Z, Troakes C, Al-Sarraj S, Campbell T, Hosszu LLP, Bieschke J, Zhang F, Wadsworth JDF, Smith C, Jenkinson J, Rittman T, Brandner S, Jaunmuktane Z, Collinge J, Mead S. The novel T107I Inherited prion disease can present as a clinical and biomarker mimic of familial Alzheimer's disease. J Neurogenet 2025; 39:16-22. [PMID: 39789805 DOI: 10.1080/01677063.2024.2440395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 12/05/2024] [Indexed: 01/12/2025]
Abstract
Inherited prion diseases (IPD) secondary to mutations of the prion protein gene, PRNP, exhibit diverse clinical phenotypes, capable of mimicking numerous primary neurodegenerative conditions. We describe the clinical phenotype and neuropathological findings in a family from County Limerick in Ireland presenting with Alzheimer's disease-like cognitive decline and motor symptoms caused by a novel missense mutation of PRNP. This mutation occurs in the PRNP central lysine cluster (CLC; codon 101-110), resulting in substitution of threonine with isoleucine at codon 107 (T107I). This case series highlights that IPD can be hard to distinguish from overlapping clinical syndromes seen in other neurodegenerative diseases. We also discuss similarities and differences of the novel mutation T107I to other pathogenic mutations of the CLC of PRNP.
Collapse
Affiliation(s)
- Leah Holm-Mercer
- Institute of Prion Diseases, MRC Prion Unit at University College London, London, UK
- NHS National Prion Clinic, Box 98, National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, London, UK
| | - Thomas Coysh
- Institute of Prion Diseases, MRC Prion Unit at University College London, London, UK
- NHS National Prion Clinic, Box 98, National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, London, UK
| | - Tze How Mok
- Institute of Prion Diseases, MRC Prion Unit at University College London, London, UK
- NHS National Prion Clinic, Box 98, National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, London, UK
| | - Peter Rudge
- Institute of Prion Diseases, MRC Prion Unit at University College London, London, UK
- NHS National Prion Clinic, Box 98, National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, London, UK
| | - Zita Reisz
- Department of Clinical Neuropathology, 1st Floor, Academic Neuroscience Centre, King's College Hospital, London, UK
| | - Claire Troakes
- London Neurodegenerative Diseases Brain Bank, King's College London, London, UK
| | - Safa Al-Sarraj
- Department of Clinical Neuropathology, 1st Floor, Academic Neuroscience Centre, King's College Hospital, London, UK
| | - Tracy Campbell
- Institute of Prion Diseases, MRC Prion Unit at University College London, London, UK
| | - Laszlo L P Hosszu
- Institute of Prion Diseases, MRC Prion Unit at University College London, London, UK
| | - Jan Bieschke
- Institute of Prion Diseases, MRC Prion Unit at University College London, London, UK
| | - Fuquan Zhang
- Institute of Prion Diseases, MRC Prion Unit at University College London, London, UK
| | | | - Colin Smith
- Academic Department of Neuropathology, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Jenna Jenkinson
- Academic Department of Neuropathology, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Timothy Rittman
- Cambridge University Hospitals, NHS Foundation Trust, Cambridge, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Sebastian Brandner
- Division of Neuropathology, The National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, London, UK
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
| | - Zane Jaunmuktane
- Division of Neuropathology, The National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, London, UK
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, Queen Square Brain Bank for Neurological Disorders, London, UK
| | - John Collinge
- Institute of Prion Diseases, MRC Prion Unit at University College London, London, UK
- NHS National Prion Clinic, Box 98, National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, London, UK
| | - Simon Mead
- Institute of Prion Diseases, MRC Prion Unit at University College London, London, UK
- NHS National Prion Clinic, Box 98, National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, London, UK
| |
Collapse
|
5
|
Pineau H, Sim VL. Distinct patterns of prion strain deposition and toxicity in a novel whole brain organotypic slice culture system. Sci Rep 2025; 15:4681. [PMID: 39920242 PMCID: PMC11805914 DOI: 10.1038/s41598-025-88861-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 01/31/2025] [Indexed: 02/09/2025] Open
Abstract
Prion diseases are fatal transmissible neurodegenerative diseases that affect many mammals, including humans, caused by the templated misfolding of the prion protein. Different conformations of misfolded prions can occur, leading to distinct disease phenotypes or strains and the accumulation of prions in distinct brain regions. How prion structure influences this brain tropism is not clear, but the transmissible nature of prion diseases has allowed for the development of ex vivo brain slice models of disease. To date, work has been done in cerebellar cultures, but prion diseases are known to differentially affect many other brain regions. We have adapted this approach to a coronally sliced whole brain organotypic culture and demonstrate distinct profiles of cytotoxicity and neuronal loss upon exposure to four mouse-adapted scrapie strains. We were able to induce infection both diffusely through submersion of slice cultures in infectious media and locally through contact with prion-coated stainless-steel wires. Moreover, we observed consistent strain-specific regional differences in prion deposition by 8 weeks of infection, recapitulating what is seen in vivo. We predict that coronal whole brain organotypic slice cultures can be a powerful tool for elucidating strain-specific mechanisms of prion spread and pathology.
Collapse
Affiliation(s)
- Hailey Pineau
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB, Canada
- Neurosciences and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
- Division of Neurology, Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Valerie L Sim
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB, Canada.
- Neurosciences and Mental Health Institute, University of Alberta, Edmonton, AB, Canada.
- Division of Neurology, Department of Medicine, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
6
|
Zhang F, Joiner S, Linehan JM, Pintilii F, Nazari T, Argentina F, Preston C, Taema M, Cunningham TJ, Asante EA, Mok T, Mead S, Brandner S, Collinge J, Wadsworth JD. Isolation of a novel human prion strain from a PRNP codon 129 heterozygous vCJD patient. PLoS Pathog 2025; 21:e1012904. [PMID: 39977481 PMCID: PMC11841882 DOI: 10.1371/journal.ppat.1012904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 01/13/2025] [Indexed: 02/22/2025] Open
Abstract
The epizootic prion disease of cattle, bovine spongiform encephalopathy (BSE), caused variant Creutzfeldt-Jakob disease (vCJD) in humans following dietary exposure. Codon 129 polymorphism of the human prion protein gene (PRNP), encoding either methionine (M) or valine (V), dictates the propagation of distinct human prion strains and up to now all but one neuropathologically confirmed vCJD patients have had a 129MM genotype. Concordant with this genetic association, transgenic modelling has established that human PrP 129V is incompatible with the vCJD prion strain and that depending on codon 129 genotype, primary human infection with BSE prions may, in addition to vCJD, result in sporadic CJD-like or novel phenotypes. In 2016 we saw the first neuropathologically confirmed case of vCJD in a patient with a codon 129MV genotype. This patient's neuropathology and molecular strain type were pathognomonic of vCJD but their clinical presentation and neuroradiological features were more typical of sporadic CJD, suggestive of possible co-propagation of another prion strain. Here we report the transmission properties of prions from the brain and lymphoreticular tissues of the 129MV vCJD patient. Primary transmissions into transgenic mice expressing human PrP with different codon 129 genotypes mainly produced neuropathological and molecular phenotypes congruent to those observed in the same lines of mice challenged with prions from 129MM vCJD patient brain, indicative that the vCJD prion strain was the dominant propagating prion strain in the patient's brain. Remarkably however, some transgenic mice challenged with 129MV vCJD patient brain propagated a novel prion strain type which at secondary passage was uniformly lethal in mice of all three PRNP codon 129 genotypes after similar short mean incubation periods. These findings establish that cattle BSE prions can trigger the co-propagation of distinct prion strains in humans.
Collapse
Affiliation(s)
- Fuquan Zhang
- MRC Prion Unit at UCL, Institute of Prion Diseases, University College London, London, United Kingdom
| | - Susan Joiner
- MRC Prion Unit at UCL, Institute of Prion Diseases, University College London, London, United Kingdom
| | - Jacqueline M. Linehan
- MRC Prion Unit at UCL, Institute of Prion Diseases, University College London, London, United Kingdom
| | - Florin Pintilii
- MRC Prion Unit at UCL, Institute of Prion Diseases, University College London, London, United Kingdom
| | - Tamsin Nazari
- MRC Prion Unit at UCL, Institute of Prion Diseases, University College London, London, United Kingdom
| | - Fabio Argentina
- MRC Prion Unit at UCL, Institute of Prion Diseases, University College London, London, United Kingdom
| | - Connor Preston
- MRC Prion Unit at UCL, Institute of Prion Diseases, University College London, London, United Kingdom
| | - Maged Taema
- MRC Prion Unit at UCL, Institute of Prion Diseases, University College London, London, United Kingdom
| | - Thomas J. Cunningham
- MRC Prion Unit at UCL, Institute of Prion Diseases, University College London, London, United Kingdom
| | - Emmanuel A. Asante
- MRC Prion Unit at UCL, Institute of Prion Diseases, University College London, London, United Kingdom
| | - Tzehow Mok
- MRC Prion Unit at UCL, Institute of Prion Diseases, University College London, London, United Kingdom
- National Prion Clinic, National Hospital For Neurology and Neurosurgery, University College London NHS Foundation Trust, London, United Kingdom
| | - Simon Mead
- MRC Prion Unit at UCL, Institute of Prion Diseases, University College London, London, United Kingdom
- National Prion Clinic, National Hospital For Neurology and Neurosurgery, University College London NHS Foundation Trust, London, United Kingdom
| | - Sebastian Brandner
- MRC Prion Unit at UCL, Institute of Prion Diseases, University College London, London, United Kingdom
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology and Division of Neuropathology, the National Hospital For Neurology and Neurosurgery, University College London NHS Foundation Trust, London, United Kingdom
| | - John Collinge
- MRC Prion Unit at UCL, Institute of Prion Diseases, University College London, London, United Kingdom
- National Prion Clinic, National Hospital For Neurology and Neurosurgery, University College London NHS Foundation Trust, London, United Kingdom
| | - Jonathan D.F. Wadsworth
- MRC Prion Unit at UCL, Institute of Prion Diseases, University College London, London, United Kingdom
| |
Collapse
|
7
|
Burato A, Legname G. Comparing Prion Proteins Across Species: Is Zebrafish a Useful Model? Mol Neurobiol 2025; 62:832-845. [PMID: 38918277 PMCID: PMC11711791 DOI: 10.1007/s12035-024-04324-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 06/19/2024] [Indexed: 06/27/2024]
Abstract
Despite the considerable body of research dedicated to the field of neurodegeneration, the gap in knowledge on the prion protein and its intricate involvement in brain diseases remains substantial. However, in the past decades, many steps forward have been taken toward a better understanding of the molecular mechanisms underlying both the physiological role of the prion protein and the misfolding event converting it into its pathological counterpart, the prion. This review aims to provide an overview of the main findings regarding this protein, highlighting the advantages of many different animal models that share a conserved amino acid sequence and/or structure with the human prion protein. A particular focus will be given to the species Danio rerio, a compelling research organism for the investigation of prion biology, thanks to its conserved orthologs, ease of genetic manipulation, and cost-effectiveness of high-throughput experimentation. We will explore its potential in filling some of the gaps on physiological and pathological aspects of the prion protein, with the aim of directing the future development of therapeutic interventions.
Collapse
Affiliation(s)
- Anna Burato
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore Di Studi Avanzati (SISSA), Trieste, Italy
| | - Giuseppe Legname
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore Di Studi Avanzati (SISSA), Trieste, Italy.
| |
Collapse
|
8
|
Hogg R, Centola J, McDermott EA, Mastaglio F, Grundy A, Awe T, Carey M, Miller M, Chin CA, Quibell R, Bajorek T, Pal S, Bradley V. Prion diseases motor and neuropsychiatric symptom cluster pharmacotherapy: structured scoping review. BMJ Support Palliat Care 2024; 14:e2397-e2410. [PMID: 39060092 DOI: 10.1136/spcare-2024-005027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 06/12/2024] [Indexed: 07/28/2024]
Abstract
BACKGROUND Prion diseases are a group of rare, neurodegenerative conditions that are invariably fatal and cause a variety of symptoms, which can prove challenging to control. Through this paper, we aim to review the current evidence regarding pharmacological management of neuropsychiatric and motor symptoms of prion disease as well as draw on experts' and relatives' experience, to evaluate the current evidence and provide recommendations moving forwards. METHODS A scoping review of the literature for pharmacological management of symptoms was conducted using the systematic review tool, COVIDENCE, with searches conducted through four databases. 120 papers were selected for inclusion, and data extraction was carried out by two independent reviewers. Given the lack of high-quality data and small numbers, no further attempt at statistical analysis was made, and results are presented in a thematic synthesis. RESULTS Although a broad range of approaches and pharmacotherapies are trialled to manage these challenging symptoms, there are patterns emerging of some efficacy seen with the use of benzodiazepines, antipsychotic and anticonvulsant medications in both motor and neuropsychiatric symptoms in prion disease. These approaches and associated challenges were reflected in international expert opinion that was gathered via online survey. CONCLUSION There continues to be a paucity of good-quality evidence and we suggest a need for longitudinal, population-based and standardised research to allow a robust evidence base, which in turn will guide excellent symptom control and end of life care for this group of complex patients.
Collapse
Affiliation(s)
- Roseanagh Hogg
- Oxford University Hospitals NHS Foundation Trust Palliative Care, Oxford, Oxfordshire, UK
| | | | - Eugene Ace McDermott
- University of Edinburgh, National CJD Research and Surveillance Unit, Edinburgh, UK
| | | | - Anna Grundy
- Palliative Medicine, North Tees and Hartlepool NHS Foundation Trust, Hartlepool, UK
| | - Terri Awe
- University of Edinburgh, National CJD Research and Surveillance Unit, Edinburgh, UK
- Department of Clinical Neurosciences, NHS Lothian, Edinburgh, UK
| | - Matthew Carey
- Palliative Care, Sir Michael Sobell House Hospice, Oxford, Oxfordshire, UK
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Mary Miller
- Palliative Care, Oxford University Hospitals NHS Foundation Trust, Oxford, Oxfordshire, UK
| | - Chloe Antoinette Chin
- Palliative Medicine, Cambridge University Hospitals NHS Foundation Trust, Cambridge, Cambridgeshire, UK
| | - Rachel Quibell
- RVI Palliative Care, Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle Upon Tyne, UK
| | - Tomasz Bajorek
- Psychological Medicine, Oxford University Hospitals NHS Foundation Trust, Oxford, Oxfordshire, UK
| | - Suvankar Pal
- University of Edinburgh, National CJD Research and Surveillance Unit, Edinburgh, UK
| | - Victoria Bradley
- Sobell House, Oxford University Hospitals NHS Foundation Trust, Oxford, Oxfordshire, UK
| |
Collapse
|
9
|
Erdenebat T, Komatsu Y, Uwamori N, Tanaka M, Hoshika T, Yamasaki T, Shimakura A, Suzuki A, Sato T, Horiuchi M. Excitatory neuron-prone prion propagation and excitatory neuronal loss in prion-infected mice. Front Mol Neurosci 2024; 17:1498142. [PMID: 39726739 PMCID: PMC11669680 DOI: 10.3389/fnmol.2024.1498142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 11/28/2024] [Indexed: 12/28/2024] Open
Abstract
The accumulation of a disease-specific isoform of prion protein (PrPSc) and histopathological lesions, such as neuronal loss, are unevenly distributed in the brains of humans and animals affected with prion diseases. This distribution varies depending on the diseases and/or the combinations of prion strain and experimental animal. The brain region-dependent distribution of PrPSc and neuropathological lesions suggests a neuronal cell-type-dependent prion propagation and vulnerability to prion infection. However, the underlying mechanism is largely unknown. In this study, we provided evidence that the prion 22L strain propagates more efficiently in excitatory neurons than inhibitory neurons and that excitatory neurons in the thalamus are vulnerable to prion infection. PrPSc accumulation was less intense in the striatum, where GABAergic inhibitory neurons predominate, compared to the cerebral cortex and thalamus, where glutamatergic excitatory neurons are predominant, in mice intracerebrally or intraperitoneally inoculated with the 22L strain. PrPSc stains were observed along the needle track after stereotaxic injection into the striatum, whereas they were also observed away from the needle track in the thalamus. Consistent with inefficient prion propagation in the striatum, the 22L prion propagated more efficiently in glutamatergic neurons than GABAergic neurons in primary neuronal cultures. RNAscope in situ hybridization revealed a decrease in Vglut1- and Vglut2-expressing neurons in the ventral posterolateral nuclei of the thalamus in 22L strain-infected mice, whereas no decrease in Vgat-expressing neurons was observed in the adjacent reticular nucleus, mainly composed of Vgat-expressing interneurons. The excitatory neuron-prone prion propagation and excitatory neuronal loss in 22L strain-infected mice shed light on the neuropathological mechanism of prion diseases.
Collapse
Affiliation(s)
- Temuulen Erdenebat
- Laboratory of Veterinary Hygiene, Faculty of Veterinary Medicine, Graduate School of Infectious Diseases, Hokkaido University, Sapporo, Japan
| | - Yusuke Komatsu
- Laboratory of Veterinary Hygiene, Faculty of Veterinary Medicine, Graduate School of Infectious Diseases, Hokkaido University, Sapporo, Japan
| | - Nozomi Uwamori
- Laboratory of Veterinary Hygiene, Faculty of Veterinary Medicine, Graduate School of Infectious Diseases, Hokkaido University, Sapporo, Japan
| | - Misaki Tanaka
- Laboratory of Veterinary Hygiene, Faculty of Veterinary Medicine, Graduate School of Infectious Diseases, Hokkaido University, Sapporo, Japan
| | - Takashi Hoshika
- Laboratory of Veterinary Hygiene, Faculty of Veterinary Medicine, Graduate School of Infectious Diseases, Hokkaido University, Sapporo, Japan
| | - Takeshi Yamasaki
- Laboratory of Veterinary Hygiene, Faculty of Veterinary Medicine, Graduate School of Infectious Diseases, Hokkaido University, Sapporo, Japan
| | - Ayano Shimakura
- Laboratory of Veterinary Hygiene, Faculty of Veterinary Medicine, Graduate School of Infectious Diseases, Hokkaido University, Sapporo, Japan
| | - Akio Suzuki
- Laboratory of Veterinary Hygiene, Faculty of Veterinary Medicine, Graduate School of Infectious Diseases, Hokkaido University, Sapporo, Japan
- One Health Research Center, Hokkaido University, Sapporo, Japan
| | - Toyotaka Sato
- Laboratory of Veterinary Hygiene, Faculty of Veterinary Medicine, Graduate School of Infectious Diseases, Hokkaido University, Sapporo, Japan
- One Health Research Center, Hokkaido University, Sapporo, Japan
| | - Motohiro Horiuchi
- Laboratory of Veterinary Hygiene, Faculty of Veterinary Medicine, Graduate School of Infectious Diseases, Hokkaido University, Sapporo, Japan
- One Health Research Center, Hokkaido University, Sapporo, Japan
- Global Station for Zoonosis Control, Global Institute for Collaborative Research and Education, Hokkaido University, Sapporo, Japan
| |
Collapse
|
10
|
Pal S, Udgaonkar JB. Rigidifying the β2-α2 Loop in the Mouse Prion Protein Slows down Formation of Misfolded Oligomers. Biochemistry 2024; 63:3114-3125. [PMID: 39565640 DOI: 10.1021/acs.biochem.4c00435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
Transmissible Spongiform Encephalopathies are fatal neurodegenerative diseases caused by the misfolding of the cellular prion protein (PrPC) into its pathological isoform (PrPSc). Efficient transmission of PrPSc occurs within the same species, but a species barrier limits interspecies transmission. While PrP structure is largely conserved among mammals, variations at the β2-α2 loop are observed, and even minor changes in the amino acid sequence of the β2-α2 loop can significantly affect transmission efficiency. The present study shows that the introduction of the elk/deer-specific amino acid substitutions at positions 169 (Ser to Asn) and 173 (Asn to Thr) into the mouse prion protein, which are associated with the structural rigidity of the β2-α2 loop, has a substantial impact on protein dynamics as well as on the misfolding pathways of the protein. Native state hydrogen-deuterium exchange studies coupled with mass spectrometry, show that the rigid loop substitutions stabilize not only the β2-α2 loop but also the C-terminal end of α3, suggesting that molecular interactions between these two segments are strengthened. Moreover, the energy difference between the native state and multiple misfolding-prone partially unfolded forms (PUFs) present at equilibrium, is increased. The decreased accessibility of the PUFs from the native state leads to a slowing down of the misfolding of the protein. The results of this study provide important insights into the early events of conformational conversion of prion protein into β-rich oligomers, and add to the evidence that the β2-α2 loop is a key determinant in prion protein aggregation.
Collapse
Affiliation(s)
- Suman Pal
- Indian Institute of Science Education and Research Pune Pune 411008, India
| | - Jayant B Udgaonkar
- Indian Institute of Science Education and Research Pune Pune 411008, India
| |
Collapse
|
11
|
Zhang Y, Yan R, Zhang X, Ma J. Disease-Associated Q159X Mutant Prion Protein Is Sufficient to Cause Fatal Degenerative Disease in Mice. Mol Neurobiol 2024; 61:10517-10528. [PMID: 38743210 DOI: 10.1007/s12035-024-04224-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 05/06/2024] [Indexed: 05/16/2024]
Abstract
PRNP Q160X is one of the five dominantly inheritable nonsense mutations causing familial prion diseases. Till now, it remains unclear how this type of nonsense mutations causes familial prion diseases with unique clinical and pathological characteristics. Human prion protein (PrP) Q160X mutation is equivalent to Q159X in mouse PrP, which produces the mutant fragment PrP1-158. Through intracerebroventricular injection of recombinant adeno-associated virus in newborn mice, we successfully overexpressed mouse PrP1-158-FLAG in the central nervous system. Interestingly, high level PrP1-158-FLAG expression in the brain caused death in these mice with an average survival time of 60 ± 9.1 days. Toxicity correlated with levels of PrP1-158-FLAG but was independent of endogenous PrP. Histopathological analyses showed microgliosis and astrogliosis in mouse brains expressing PrP1-158-FLAG and most of PrP1-158-FLAG staining appeared intracellular. Biochemical characterization revealed that the majority of PrP1-158-FLAG were insoluble and a significant part of PrP1-158-FLAG appeared to contain an un-cleaved signal peptide that may contribute to its cytoplasmic localization. Importantly, an ~10-kDa proteinase K-resistant PrP fragment was detected, which was the same as those observed in patients suffering from this type of prion diseases. To our knowledge, this is the first animal study of familial prion disease caused by Q159X that recapitulates key features of human disease. It will be a valuable tool for investigating the pathogenic mechanisms underlying familial prion diseases caused by nonsense mutations.
Collapse
Affiliation(s)
- Yan Zhang
- School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
- Chinese Institute for Brain Research, Beijing, 102206, China
| | - Runchuan Yan
- College of Biological Sciences, China Agricultural University, Beijing, 100193, China
- Chinese Institute for Brain Research, Beijing, 102206, China
| | - Xiangyi Zhang
- Chinese Institute for Brain Research, Beijing, 102206, China
| | - Jiyan Ma
- School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China.
- Chinese Institute for Brain Research, Beijing, 102206, China.
| |
Collapse
|
12
|
Rezaei H, Martin D, Herzog L, Reine F, Marín Moreno A, Moudjou M, Aron N, Igel A, Klute H, Youssafi S, Moog JB, Sibille P, Andréoletti O, Torrent J, Béringue V. Species barrier as molecular basis for adaptation of synthetic prions with N-terminally truncated PrP. FEBS J 2024; 291:5051-5076. [PMID: 39396118 DOI: 10.1111/febs.17291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 07/04/2024] [Accepted: 09/24/2024] [Indexed: 10/14/2024]
Abstract
Mammalian prions are neurotropic pathogens formed from PrPSc assemblies, a misfolded variant of the host-encoded prion protein PrPC. Multiple PrPSc conformations or strains self-propagate in host populations or mouse models of prion diseases, exhibiting distinct biological and biochemical phenotypes. Constrained interactions between PrPSc and PrPC conformations confer species specificity and regulate cross-species transmission. The pathogenicity of fibrillar assemblies derived from bacterially expressed recombinant PrP (rPrP) has been instrumental in demonstrating the protein-only nature of prions. Yet, their ability to encode different strains and transmit between species remains poorly studied, hampering their use in exploring structure-to-strain relationships. Fibrillar assemblies from rPrP with hamster, mouse, human, and bovine primary structures were generated and tested for transmission and adaptation in tg7 transgenic mice expressing hamster PrPC. All assemblies, except the bovine ones, were fully pathogenic on the primary passage, causing clinical disease, PrPSc brain deposition, and spongiform degeneration. They exhibited divergent adaptation processes and strain properties upon subsequent passage. Assemblies of hamster origin propagated without apparent need for adaptation, those of mouse origin adapted abruptly, and those of human origin required serial passages for optimal fitness. Molecular analyses revealed the presence of endogenously truncated PrPSc species in the resulting synthetic strains that lack the 90-140 amino acid region considered crucial for infectivity. In conclusion, rPrP assemblies provide a facile means of generating novel prion strains with adaptative/evolutive properties mimicking genuine prions. The PrP amino acid backbone is sufficient to encode different strains with specific adaptative properties, offering insights into prion transmission and strain diversity.
Collapse
Affiliation(s)
- Human Rezaei
- Université Paris-Saclay, INRAE, UVSQ, VIM, Jouy-en-Josas, France
| | - Davy Martin
- Université Paris-Saclay, INRAE, UVSQ, VIM, Jouy-en-Josas, France
| | - Laetitia Herzog
- Université Paris-Saclay, INRAE, UVSQ, VIM, Jouy-en-Josas, France
| | - Fabienne Reine
- Université Paris-Saclay, INRAE, UVSQ, VIM, Jouy-en-Josas, France
| | | | - Mohammed Moudjou
- Université Paris-Saclay, INRAE, UVSQ, VIM, Jouy-en-Josas, France
| | | | - Angélique Igel
- Université Paris-Saclay, INRAE, UVSQ, VIM, Jouy-en-Josas, France
| | - Hannah Klute
- Université Paris-Saclay, INRAE, UVSQ, VIM, Jouy-en-Josas, France
| | - Stella Youssafi
- Université Paris-Saclay, INRAE, UVSQ, VIM, Jouy-en-Josas, France
| | | | - Pierre Sibille
- Université Paris-Saclay, INRAE, UVSQ, VIM, Jouy-en-Josas, France
| | | | - Joan Torrent
- Université Paris-Saclay, INRAE, UVSQ, VIM, Jouy-en-Josas, France
- INM, Univ Montpellier, INSERM, CNRS, France
| | - Vincent Béringue
- Université Paris-Saclay, INRAE, UVSQ, VIM, Jouy-en-Josas, France
| |
Collapse
|
13
|
Thomas CM, Salamat MKF, Almela F, Cooper JK, Ladhani K, Arnold ME, Bougard D, Andréoletti O, Houston EF. Longitudinal detection of prion infection in preclinical sheep blood samples compared using 3 assays. Blood 2024; 144:1962-1973. [PMID: 39172756 DOI: 10.1182/blood.2024024649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 07/15/2024] [Accepted: 07/31/2024] [Indexed: 08/24/2024] Open
Abstract
ABSTRACT Variant Creutzfeldt-Jakob disease (vCJD) is a devastating disease caused by transmission of bovine spongiform encephalopathy to humans. Although vCJD cases are now rare, evidence from appendix surveys suggests that a small proportion of the United Kingdom population may be infected without showing signs of disease. These "silent" carriers could present a risk of iatrogenic vCJD transmission through medical procedures or blood/organ donation, and currently there are no validated tests to identify infected asymptomatic individuals using easily accessible samples. To address this issue, we evaluated the performance of 3 blood-based assays in a blinded study, using longitudinal sample series from a well-established large animal model of vCJD. The assays rely on amplification of misfolded prion protein (PrPSc; a marker of prion infection) and include real-time quaking-induced conversion (RT-QuIC), and 2 versions of protein misfolding cyclic amplification (PMCA). Although diagnostic sensitivity was higher for both PMCA assays (100%) than RT-QuIC (61%), all 3 assays detected prion infection in blood samples collected 26 months before the onset of clinical signs and gave no false-positive results. Parallel estimation of blood prion infectivity titers in a sensitive transgenic mouse line showed positive correlation of infectivity with PrPSc detection by the assays, suggesting that they are suitable for detection of asymptomatic vCJD infection in the human population. This study represents, to our knowledge, the largest comparison to date of preclinical prion detection in blood samples from a relevant animal model. The outcomes will guide efforts to improve early detection of prion disease and reduce infection risks in humans.
Collapse
Affiliation(s)
- Charlotte M Thomas
- The Roslin Institute, The Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Edinburgh, United Kingdom
| | - M Khalid F Salamat
- The Roslin Institute, The Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Edinburgh, United Kingdom
| | | | - Jillian K Cooper
- Medicines and Healthcare Products Regulatory Agency, South Mimms, United Kingdom
| | - Kaetan Ladhani
- Medicines and Healthcare Products Regulatory Agency, South Mimms, United Kingdom
| | - Mark E Arnold
- Animal and Plant Health Agency, New Haw, United Kingdom
| | | | - Olivier Andréoletti
- Unité Mixte de Recherche INRAe/ENVT 1225 Interactions Hôtes Agents Pathogènes, École Nationale Vétérinaire de Toulouse, Toulouse, France
| | - E Fiona Houston
- The Roslin Institute, The Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
14
|
Pal S, Udgaonkar JB. Slow Misfolding of a Molten Globule form of a Mutant Prion Protein Variant into a β-rich Dimer. J Mol Biol 2024; 436:168736. [PMID: 39097185 DOI: 10.1016/j.jmb.2024.168736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/13/2024] [Accepted: 07/30/2024] [Indexed: 08/05/2024]
Abstract
Misfolding of the prion protein is linked to multiple neurodegenerative diseases. A better understanding of the process requires the identification and structural characterization of intermediate conformations via which misfolding proceeds. In this study, three conserved aromatic residues (Tyr168, Phe174, and Tyr217) located in the C-terminal domain of mouse PrP (wt moPrP) were mutated to Ala. The resultant mutant protein, 3A moPrP, is shown to adopt a molten globule (MG)-like native conformation. Hydrogen-deuterium exchange studies coupled with mass spectrometry revealed that for 3A moPrP, the free energy gap between the MG-like native conformation and misfolding-prone partially unfolded forms is reduced. Consequently, 3A moPrP misfolds in native conditions even in the absence of salt, unlike wt moPrP, which requires the addition of salt to misfold. 3A moPrP misfolds to a β-rich dimer in the absence of salt, which can rapidly form an oligomer upon the addition of salt. In the presence of salt, 3A moPrP misfolds to a β-rich oligomer about a thousand-fold faster than wt moPrP. Importantly, the misfolded structure of the dimer is similar to that of the salt-induced oligomer. Misfolding to oligomer seems to be induced at the level of the dimeric unit by monomer-monomer association, and the oligomer grows by accretion of misfolded dimeric units. Additionally, it is shown that the conserved aromatic residues collectively stabilize not only monomeric protein, but also the structural core of the β-rich oligomers. Finally, it is also shown that 3A moPrP misfolds much faster to amyloid-fibrils than does the wt protein.
Collapse
Affiliation(s)
- Suman Pal
- Indian Institute of Science Education and Research Pune, Pune 411008, India
| | - Jayant B Udgaonkar
- Indian Institute of Science Education and Research Pune, Pune 411008, India.
| |
Collapse
|
15
|
Jiang D, Nan H, Chen Z, Zou WQ, Wu L. Genetic insights into drug targets for sporadic Creutzfeldt-Jakob disease: Integrative multi-omics analysis. Neurobiol Dis 2024; 199:106599. [PMID: 38996988 DOI: 10.1016/j.nbd.2024.106599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/07/2024] [Accepted: 07/08/2024] [Indexed: 07/14/2024] Open
Abstract
OBJECTIVE Sporadic Creutzfeldt-Jakob disease (sCJD) is a fatal rapidly progressive neurodegenerative disorder with no effective therapeutic interventions. We aimed to identify potential genetically-supported drug targets for sCJD by integrating multi-omics data. METHODS Multi-omics-wide association studies, Mendelian randomization, and colocalization analyses were employed to explore potential therapeutic targets using expression, single-cell expression, DNA methylation, and protein quantitative trait locus data from blood and brain tissues. Outcome data was from a case-control genome-wide association study, which included 4110 sCJD patients and 13,569 controls. Further investigations encompassed druggability, potential side effects, and associated biological pathways of the identified targets. RESULTS Integrative multi-omics analysis identified 23 potential therapeutic targets for sCJD, with five targets (STX6, XYLT2, PDIA4, FUCA2, KIAA1614) having higher levels of evidence. One target (XYLT2) shows promise for repurposing, two targets (XYLT2, PDIA4) are druggable, and three (STX6, KIAA1614, and FUCA2) targets represent potential future breakthrough points. The expression level of STX6 and XYLT2 in neurons and oligodendrocytes was closely associated with an increased risk of sCJD. Brain regions with high expression of STX6 or causal links to sCJD were often those areas commonly affected by sCJD. CONCLUSIONS Our study identified five potential therapeutic targets for sCJD. Further investigations are warranted to elucidate the mechanisms underlying the new targets for developing disease therapies or initiate clinical trials.
Collapse
Affiliation(s)
- Deming Jiang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Haitian Nan
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Zhongyun Chen
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Wen-Quan Zou
- Institute of Neurology, Jiangxi Academy of Clinical Medical Sciences, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China
| | - Liyong Wu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
16
|
Norton J, Seah N, Santiago F, Sindi SS, Serio TR. Multiple aspects of amyloid dynamics in vivo integrate to establish prion variant dominance in yeast. Front Mol Neurosci 2024; 17:1439442. [PMID: 39139213 PMCID: PMC11319303 DOI: 10.3389/fnmol.2024.1439442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 07/15/2024] [Indexed: 08/15/2024] Open
Abstract
Prion variants are self-perpetuating conformers of a single protein that assemble into amyloid fibers and confer unique phenotypic states. Multiple prion variants can arise, particularly in response to changing environments, and interact within an organism. These interactions are often competitive, with one variant establishing phenotypic dominance over the others. This dominance has been linked to the competition for non-prion state protein, which must be converted to the prion state via a nucleated polymerization mechanism. However, the intrinsic rates of conversion, determined by the conformation of the variant, cannot explain prion variant dominance, suggesting a more complex interaction. Using the yeast prion system [PSI+ ], we have determined the mechanism of dominance of the [PSI+ ]Strong variant over the [PSI+ ]Weak variant in vivo. When mixed by mating, phenotypic dominance is established in zygotes, but the two variants persist and co-exist in the lineage descended from this cell. [PSI+ ]Strong propagons, the heritable unit, are amplified at the expense of [PSI+ ]Weak propagons, through the efficient conversion of soluble Sup35 protein, as revealed by fluorescence photobleaching experiments employing variant-specific mutants of Sup35. This competition, however, is highly sensitive to the fragmentation of [PSI+ ]Strong amyloid fibers, with even transient inhibition of the fragmentation catalyst Hsp104 promoting amplification of [PSI+ ]Weak propagons. Reducing the number of [PSI+ ]Strong propagons prior to mating, similarly promotes [PSI+ ]Weak amplification and conversion of soluble Sup35, indicating that template number and conversion efficiency combine to determine dominance. Thus, prion variant dominance is not an absolute hierarchy but rather an outcome arising from the dynamic interplay between unique protein conformations and their interactions with distinct cellular proteostatic niches.
Collapse
Affiliation(s)
- Jennifer Norton
- Department of Molecular and Cellular Biology, The University of Arizona, Tucson, AZ, United States
| | - Nicole Seah
- Department of Biochemistry, The University of Washington, Seattle, WA, United States
| | - Fabian Santiago
- Department of Applied Mathematics, The University of California, Merced, Merced, CA, United States
| | - Suzanne S. Sindi
- Department of Applied Mathematics, The University of California, Merced, Merced, CA, United States
| | - Tricia R. Serio
- Department of Biochemistry, The University of Washington, Seattle, WA, United States
| |
Collapse
|
17
|
Cuadrado-Corrales N, Lopez-de-Andres A, Hernández-Barrera V, De-Miguel-Díez J, Jimenez-Sierra A, Carabantes-Alarcon D, Zamorano-Leon JJ, Jimenez-Garcia R. Creutzfeldt-Jakob Disease and Fatal Familial Insomnia: Demographics and In-Hospital Mortality in Spain. J Clin Med 2024; 13:4401. [PMID: 39124670 PMCID: PMC11312717 DOI: 10.3390/jcm13154401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/19/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024] Open
Abstract
Background: Creutzfeldt-Jakob disease (CJD) and fatal familial insomnia (FFI) are prion diseases characterized by severe neurodegenerative conditions and a short duration of illness. Methods: This study explores the characteristics of hospitalizations for CJD and FFI in Spain from 2016 to 2022 using the Spanish National Hospital Discharge Database (SNHDD). Results: We identified a total of 1063 hospital discharges, including 1020 for CJD and 43 for FFI. Notably, the number of hospitalized patients with FFI showed a significant peak in 2017. The average length of hospital stay (LOHS) was 13 days for CJD and 6 days for FFI, with in-hospital mortality rates (IHM) of 36.37% for CJD and 32.56% for FFI. Among CJD patients, the average LOHS was 14 days, with a significantly longer duration for those who experienced IHM. Conclusions: The presence of sepsis or pneumonia and older age were associated with a higher IHM rate among CJD patients. The total estimated cost for managing CJD and FFI patients over the study period was EUR 6,346,868. This study offers new insights into the epidemiology and healthcare resource utilization of CJD and FFI patients, which may inform future research directions and public health strategies.
Collapse
Affiliation(s)
- Natividad Cuadrado-Corrales
- Department of Public Health & Maternal and Child Health, Faculty of Medicine, Universidad Complutense de Madrid, 28040 Madrid, Spain; (N.C.-C.); (D.C.-A.); (J.J.Z.-L.); (R.J.-G.)
| | - Ana Lopez-de-Andres
- Department of Public Health & Maternal and Child Health, Faculty of Medicine, Universidad Complutense de Madrid, 28040 Madrid, Spain; (N.C.-C.); (D.C.-A.); (J.J.Z.-L.); (R.J.-G.)
| | - Valentín Hernández-Barrera
- Preventive Medicine and Public Health Teaching and Research Unit, Health Sciences Faculty, Rey Juan Carlos University, 28922 Alcorcón, Spain;
| | - Javier De-Miguel-Díez
- Respiratory Care Department, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Universidad Complutense de Madrid, 28007 Madrid, Spain;
| | | | - David Carabantes-Alarcon
- Department of Public Health & Maternal and Child Health, Faculty of Medicine, Universidad Complutense de Madrid, 28040 Madrid, Spain; (N.C.-C.); (D.C.-A.); (J.J.Z.-L.); (R.J.-G.)
| | - Jose J. Zamorano-Leon
- Department of Public Health & Maternal and Child Health, Faculty of Medicine, Universidad Complutense de Madrid, 28040 Madrid, Spain; (N.C.-C.); (D.C.-A.); (J.J.Z.-L.); (R.J.-G.)
| | - Rodrigo Jimenez-Garcia
- Department of Public Health & Maternal and Child Health, Faculty of Medicine, Universidad Complutense de Madrid, 28040 Madrid, Spain; (N.C.-C.); (D.C.-A.); (J.J.Z.-L.); (R.J.-G.)
| |
Collapse
|
18
|
Chauhan R, Navale GR, Saini S, Panwar A, Kukreti P, Saini R, Roy P, Ghosh K. Modulating the aggregation of human prion protein PrP 106-126 by an indole-based cyclometallated palladium complex. Dalton Trans 2024; 53:11995-12006. [PMID: 38963284 DOI: 10.1039/d4dt00704b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
The spontaneous aggregation of infectious or misfolded forms of prion protein is known to be responsible for neurotoxicity in brain cells, which ultimately leads to the progression of prion disorders. Bovine spongiform encephalopathy (BSE) in animals and Creutzfeldt-Jakob disease (CJD) in humans are glaring examples in this regard. Square-planar complexes with labile ligands and indole-based compounds are found to be efficiently inhibitory against protein aggregation. Herein, we report the synthesis of an indole-based cyclometallated palladium complex. The ligand and complex were characterized by various spectroscopic techniques such as UV-visible, NMR, IR, and HRMS. The molecular structure of the complex was confirmed by single-crystal X-ray crystallography. The interaction of the complex with PrP106-126 was studied using UV-visible spectroscopy, CD spectroscopy, MALDI-TOF MS, and molecular docking. The inhibition effects of the complex on the PrP106-126 aggregation, fibrillization and amyloid formation phenomena were analysed through the ThT assay, CD, TEM and AFM. The effect of the complex on the aggregation process of PrP106-126 was determined kinetically through the ThT assay. The complex presented high binding affinity with the peptide and influenced the peptide's conformation and aggregation in different modes of binding. Furthermore, the MTT assay on neuronal HT-22 cells showed considerable protective properties of the complex against PrP106-126-mediated cytotoxicity. These findings suggest that the compound influences peptide aggregation in different ways, and the anti-aggregation action is primarily associated with the metal's physicochemical properties and the reactivity rather than the ligand. As a result, we propose that this compound be investigated as a potential therapeutic molecule in metallopharmaceutical research to treat prion disease (PD).
Collapse
Affiliation(s)
- Rahul Chauhan
- Department of Chemistry, Indian Institute of Technology, Roorkee 247667, Uttarakhand, India.
| | - Govinda R Navale
- Department of Chemistry, Indian Institute of Technology, Roorkee 247667, Uttarakhand, India.
| | - Saakshi Saini
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Roorkee 247667, Uttarakhand, India
| | - Abhishek Panwar
- Department of Chemistry, National Institute of Technology Manipur, Langol 795004, India
| | - Prashant Kukreti
- Department of Chemistry, Indian Institute of Technology, Roorkee 247667, Uttarakhand, India.
| | - Rajat Saini
- Department of Chemistry, Indian Institute of Technology, Roorkee 247667, Uttarakhand, India.
| | - Partha Roy
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Roorkee 247667, Uttarakhand, India
| | - Kaushik Ghosh
- Department of Chemistry, Indian Institute of Technology, Roorkee 247667, Uttarakhand, India.
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Roorkee 247667, Uttarakhand, India
| |
Collapse
|
19
|
Song F, Kovac V, Mohammadi B, Littau JL, Scharfenberg F, Matamoros Angles A, Vanni I, Shafiq M, Orge L, Galliciotti G, Djakkani S, Linsenmeier L, Černilec M, Hartman K, Jung S, Tatzelt J, Neumann JE, Damme M, Tschirner SK, Lichtenthaler SF, Ricklefs FL, Sauvigny T, Schmitz M, Zerr I, Puig B, Tolosa E, Ferrer I, Magnus T, Rupnik MS, Sepulveda-Falla D, Matschke J, Šmid LM, Bresjanac M, Andreoletti O, Krasemann S, Foliaki ST, Nonno R, Becker-Pauly C, Monzo C, Crozet C, Haigh CL, Glatzel M, Curin Serbec V, Altmeppen HC. Cleavage site-directed antibodies reveal the prion protein in humans is shed by ADAM10 at Y226 and associates with misfolded protein deposits in neurodegenerative diseases. Acta Neuropathol 2024; 148:2. [PMID: 38980441 PMCID: PMC11233397 DOI: 10.1007/s00401-024-02763-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/28/2024] [Accepted: 07/03/2024] [Indexed: 07/10/2024]
Abstract
Proteolytic cell surface release ('shedding') of the prion protein (PrP), a broadly expressed GPI-anchored glycoprotein, by the metalloprotease ADAM10 impacts on neurodegenerative and other diseases in animal and in vitro models. Recent studies employing the latter also suggest shed PrP (sPrP) to be a ligand in intercellular communication and critically involved in PrP-associated physiological tasks. Although expectedly an evolutionary conserved event, and while soluble forms of PrP are present in human tissues and body fluids, for the human body neither proteolytic PrP shedding and its cleavage site nor involvement of ADAM10 or the biological relevance of this process have been demonstrated thus far. In this study, cleavage site prediction and generation (plus detailed characterization) of sPrP-specific antibodies enabled us to identify PrP cleaved at tyrosin 226 as the physiological and apparently strictly ADAM10-dependent shed form in humans. Using cell lines, neural stem cells and brain organoids, we show that shedding of human PrP can be stimulated by PrP-binding ligands without targeting the protease, which may open novel therapeutic perspectives. Site-specific antibodies directed against human sPrP also detect the shed form in brains of cattle, sheep and deer, hence in all most relevant species naturally affected by fatal and transmissible prion diseases. In human and animal prion diseases, but also in patients with Alzheimer`s disease, sPrP relocalizes from a physiological diffuse tissue pattern to intimately associate with extracellular aggregated deposits of misfolded proteins characteristic for the respective pathological condition. Findings and research tools presented here will accelerate novel insight into the roles of PrP shedding (as a process) and sPrP (as a released factor) in neurodegeneration and beyond.
Collapse
Affiliation(s)
- Feizhi Song
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Valerija Kovac
- Centre for Immunology and Development, Blood Transfusion Centre of Slovenia (BTCS), Ljubljana, Slovenia
| | - Behnam Mohammadi
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Jessica L Littau
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | | | - Andreu Matamoros Angles
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Ilaria Vanni
- Department of Food Safety and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| | - Mohsin Shafiq
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Leonor Orge
- National Institute for Agricultural and Veterinary Research (INIAV), Oeiras, Portugal
- Animal and Veterinary Research Centre (CECAV), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| | - Giovanna Galliciotti
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Salma Djakkani
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Luise Linsenmeier
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Maja Černilec
- Centre for Immunology and Development, Blood Transfusion Centre of Slovenia (BTCS), Ljubljana, Slovenia
| | - Katrina Hartman
- Centre for Immunology and Development, Blood Transfusion Centre of Slovenia (BTCS), Ljubljana, Slovenia
| | - Sebastian Jung
- Department of Biochemistry of Neurodegenerative Diseases, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum, Germany
| | - Jörg Tatzelt
- Department of Biochemistry of Neurodegenerative Diseases, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum, Germany
- Cluster of Excellence RESOLV, Ruhr University Bochum, Bochum, Germany
| | - Julia E Neumann
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
- Center for Molecular Neurobiology Hamburg (ZMNH), UKE, Hamburg, Germany
| | - Markus Damme
- Institute of Biochemistry, University of Kiel, Kiel, Germany
| | - Sarah K Tschirner
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Neuroproteomics, School of Medicine and Health, Klinikum rechts der Isar, Technical University Munich, 81675, Munich, Germany
| | - Stefan F Lichtenthaler
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Neuroproteomics, School of Medicine and Health, Klinikum rechts der Isar, Technical University Munich, 81675, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Franz L Ricklefs
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Thomas Sauvigny
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Matthias Schmitz
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Inga Zerr
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Berta Puig
- Department of Neurology, Experimental Research in Stroke and Inflammation (ERSI), UKE, Hamburg, Germany
| | - Eva Tolosa
- Department of Immunology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Isidro Ferrer
- Department of Pathology and Experimental Therapeutics, University of Barcelona, IDIBELL, Hospitalet de Llobregat, Spain
| | - Tim Magnus
- Department of Neurology, Experimental Research in Stroke and Inflammation (ERSI), UKE, Hamburg, Germany
| | - Marjan S Rupnik
- Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Diego Sepulveda-Falla
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Jakob Matschke
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Lojze M Šmid
- LNPR, Institute of Pathophysiology and Prion Laboratory, Institute of Pathology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Mara Bresjanac
- LNPR, Institute of Pathophysiology and Prion Laboratory, Institute of Pathology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Olivier Andreoletti
- UMR INRAE ENVT 1225, Interactions Hôtes-Agents Pathogènes, École Nationale Vétérinaire de Toulouse, Toulouse, France
| | - Susanne Krasemann
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Simote T Foliaki
- Laboratory of Persistent Viral Diseases, Division of Intramural Research, Rocky Mountain Laboratories, National Institutes of Health, Hamilton, MT, USA
| | - Romolo Nonno
- Department of Food Safety and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| | | | - Cecile Monzo
- Institute for Regenerative Medicine and Biotherapies (IRMB), Neural Stem Cell, MSC and Neurodegenerative Diseases, INSERM, Montpellier, France
| | - Carole Crozet
- Institute for Regenerative Medicine and Biotherapies (IRMB), Neural Stem Cell, MSC and Neurodegenerative Diseases, INSERM, Montpellier, France
| | - Cathryn L Haigh
- Laboratory of Persistent Viral Diseases, Division of Intramural Research, Rocky Mountain Laboratories, National Institutes of Health, Hamilton, MT, USA
| | - Markus Glatzel
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Vladka Curin Serbec
- Centre for Immunology and Development, Blood Transfusion Centre of Slovenia (BTCS), Ljubljana, Slovenia.
| | - Hermann C Altmeppen
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany.
| |
Collapse
|
20
|
Soto C. α-Synuclein seed amplification technology for Parkinson's disease and related synucleinopathies. Trends Biotechnol 2024; 42:829-841. [PMID: 38395703 PMCID: PMC11223967 DOI: 10.1016/j.tibtech.2024.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 02/25/2024]
Abstract
Synucleinopathies are a group of neurodegenerative diseases (NDs) associated with cerebral accumulation of α-synuclein (αSyn) misfolded aggregates. At this time, there is no effective treatment to stop or slow down disease progression, which in part is due to the lack of an early and objective biochemical diagnosis. In the past 5 years, the seed amplification technology has emerged for highly sensitive identification of these diseases, even at the preclinical stage of the illness. Much research has been done in multiple laboratories to validate the efficacy and reproducibility of this assay. This article provides a comprehensive review of this technology, including its conceptual basis and its multiple applications for disease diagnosis, as well for understanding of the disease biology and therapeutic development.
Collapse
Affiliation(s)
- Claudio Soto
- Mitchell Center for Alzheimer's Disease and Related Brain Disorders, Department of Neurology, University of Texas McGovern Medical School, Houston, TX77030, USA.
| |
Collapse
|
21
|
Chang SC, Arifin MI, Tahir W, McDonald KJ, Zeng D, Schatzl HM, Hannaoui S, Gilch S. Extraneural infection route restricts prion conformational variability and attenuates the impact of quaternary structure on infectivity. PLoS Pathog 2024; 20:e1012370. [PMID: 38976748 PMCID: PMC11257401 DOI: 10.1371/journal.ppat.1012370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/18/2024] [Accepted: 06/25/2024] [Indexed: 07/10/2024] Open
Abstract
Prions can exist as different strains that consist of conformational variants of the misfolded, pathogenic prion protein isoform PrPSc. Defined by stably transmissible biological and biochemical properties, strains have been identified in a spectrum of prion diseases, including chronic wasting disease (CWD) of wild and farmed cervids. CWD is highly contagious and spreads via direct and indirect transmission involving extraneural sites of infection, peripheral replication and neuroinvasion of prions. Here, we investigated the impact of infection route on CWD prion conformational selection and propagation. We used gene-targeted mouse models expressing deer PrP for intracerebral or intraperitoneal inoculation with fractionated or unfractionated brain homogenates from white-tailed deer, harboring CWD strains Wisc-1 or 116AG. Upon intracerebral inoculation, Wisc-1 and 116AG-inoculated mice differed in conformational stability of PrPSc. In brains of mice infected intraperitoneally with either inoculum, PrPSc propagated with identical conformational stability and fewer PrPSc deposits in most brain regions than intracerebrally inoculated animals. For either inoculum, PrPSc conformational stability in brain and spinal cord was similar upon intracerebral infection but significantly higher in spinal cords of intraperitoneally infected animals. Inoculation with fractionated brain homogenates resulted in lower variance of survival times upon intraperitoneal compared to intracerebral infection. In summary, we demonstrate that extraneural infection mitigates the impact of PrPSc quaternary structure on infection and reduces conformational variability of PrPSc propagated in the brain. These findings provide new insights into the evolution of stable CWD strains in natural, extraneural transmissions.
Collapse
Affiliation(s)
- Sheng Chun Chang
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Canada
| | | | - Waqas Tahir
- Canadian and WOAH Reference Laboratory for BSE, Canadian Food Inspection Agency, Lethbridge, Canada
| | | | - Doris Zeng
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Canada
| | - Hermann M. Schatzl
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Canada
| | - Samia Hannaoui
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Canada
| | - Sabine Gilch
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Canada
| |
Collapse
|
22
|
Kumar S, Mohan A, Sharma NR, Kumar A, Girdhar M, Malik T, Verma AK. Computational Frontiers in Aptamer-Based Nanomedicine for Precision Therapeutics: A Comprehensive Review. ACS OMEGA 2024; 9:26838-26862. [PMID: 38947800 PMCID: PMC11209897 DOI: 10.1021/acsomega.4c02466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/09/2024] [Accepted: 05/28/2024] [Indexed: 07/02/2024]
Abstract
In the rapidly evolving landscape of nanomedicine, aptamers have emerged as powerful molecular tools, demonstrating immense potential in targeted therapeutics, diagnostics, and drug delivery systems. This paper explores the computational features of aptamers in nanomedicine, highlighting their advantages over antibodies, including selectivity, low immunogenicity, and a simple production process. A comprehensive overview of the aptamer development process, specifically the Systematic Evolution of Ligands by Exponential Enrichment (SELEX) process, sheds light on the intricate methodologies behind aptamer selection. The historical evolution of aptamers and their diverse applications in nanomedicine are discussed, emphasizing their pivotal role in targeted drug delivery, precision medicine and therapeutics. Furthermore, we explore the integration of artificial intelligence (AI), machine learning (ML), Internet of Things (IoT), Internet of Medical Things (IoMT), and nanotechnology in aptameric development, illustrating how these cutting-edge technologies are revolutionizing the selection and optimization of aptamers for tailored biomedical applications. This paper also discusses challenges in computational methods for advancing aptamers, including reliable prediction models, extensive data analysis, and multiomics data incorporation. It also addresses ethical concerns and restrictions related to AI and IoT use in aptamer research. The paper examines progress in computer simulations for nanomedicine. By elucidating the importance of aptamers, understanding their superiority over antibodies, and exploring the historical context and challenges, this review serves as a valuable resource for researchers and practitioners aiming to harness the full potential of aptamers in the rapidly evolving field of nanomedicine.
Collapse
Affiliation(s)
- Shubham Kumar
- School
of Bioengineering and Biosciences, Lovely
Professional University, Phagwara, Punjab 144001, India
| | - Anand Mohan
- School
of Bioengineering and Biosciences, Lovely
Professional University, Phagwara, Punjab 144001, India
| | - Neeta Raj Sharma
- School
of Bioengineering and Biosciences, Lovely
Professional University, Phagwara, Punjab 144001, India
| | - Anil Kumar
- Gene
Regulation Laboratory, National Institute
of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Madhuri Girdhar
- Division
of Research and Development, Lovely Professional
University, Phagwara 144401, Punjab, India
| | - Tabarak Malik
- Department
of Biomedical Sciences, Institute of Health, Jimma University, MVJ4+R95 Jimma, Ethiopia
| | - Awadhesh Kumar Verma
- School
of Bioengineering and Biosciences, Lovely
Professional University, Phagwara, Punjab 144001, India
| |
Collapse
|
23
|
Shelomi M. Mitigation Strategies against Food Safety Contaminant Transmission from Black Soldier Fly Larva Bioconversion. Animals (Basel) 2024; 14:1590. [PMID: 38891637 PMCID: PMC11171339 DOI: 10.3390/ani14111590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/16/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
The black soldier fly larva, Hermetia illucens, can efficiently convert organic waste into biomatter for use in animal feed. This circularity comes with a risk of contaminating downstream consumers of the larval products with microbes, heavy metals, and other hazards potentially present in the initial substrate. This review examines research on mitigation techniques to manage these contaminants, from pretreatment of the substrate to post-treatment of the larvae. While much research has been done on such techniques, little of it focused on their effects on food safety contaminants. Cheap and low-technology heat treatment can reduce substrate and larval microbial load. Emptying the larval gut through starvation is understudied but promising. Black soldier fly larvae accumulate certain heavy metals like cadmium, and their ability to process certain hazards is unknown, which is why some government authorities are erring on the side of caution regarding how larval bioconversion can be used within feed production. Different substrates have different risks and some mitigation strategies may affect larval rearing performance and the final products negatively, so different producers will need to choose the right strategy for their system to balance cost-effectiveness with sustainability and safety.
Collapse
Affiliation(s)
- Matan Shelomi
- Department of Entomology, National Taiwan University, 106319 Taipei, Taiwan
| |
Collapse
|
24
|
Quinn L, Whitfield J, Alpers MP, Campbell T, Hummerich H, Pomat W, Siba P, Koki G, Moltke I, Collinge J, Hellenthal G, Mead S. Population structure and migration in the Eastern Highlands of Papua New Guinea, a region impacted by the kuru epidemic. Am J Hum Genet 2024; 111:668-679. [PMID: 38508194 PMCID: PMC11023820 DOI: 10.1016/j.ajhg.2024.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/13/2024] [Accepted: 02/20/2024] [Indexed: 03/22/2024] Open
Abstract
Populations of the Eastern Highlands of Papua New Guinea (EHPNG, area 11,157 km2) lived in relative isolation from the rest of the world until the mid-20th century, and the region contains a wealth of linguistic and cultural diversity. Notably, several populations of EHPNG were devastated by an epidemic prion disease, kuru, which at its peak in the mid-twentieth century led to some villages being almost depleted of adult women. Until now, population genetic analyses to learn about genetic diversity, migration, admixture, and the impact of the kuru epidemic have been restricted to a small number of variants or samples. Here, we present a population genetic analysis of the region based on genome-wide genotype data of 943 individuals from 21 linguistic groups and 68 villages in EHPNG, including 34 villages in the South Fore linguistic group, the group most affected by kuru. We find a striking degree of genetic population structure in the relatively small region (average FST between linguistic groups 0.024). The genetic population structure correlates well with linguistic grouping, with some noticeable exceptions that reflect the clan system of community organization that has historically existed in EHPNG. We also detect the presence of migrant individuals within the EHPNG region and observe a significant excess of females among migrants compared to among non-migrants in areas of high kuru exposure (p = 0.0145, chi-squared test). This likely reflects the continued practice of patrilocality despite documented fears and strains placed on communities as a result of kuru and its associated skew in female incidence.
Collapse
Affiliation(s)
- Liam Quinn
- MRC Prion Unit at UCL, Institute of Prion Diseases, UCL, London, UK; The Bioinformatics Centre, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Jerome Whitfield
- MRC Prion Unit at UCL, Institute of Prion Diseases, UCL, London, UK
| | - Michael P Alpers
- Health Sciences, Curtin University, GPO Box U1987, Perth, WA 6845, Australia; Papua New Guinea Institute of Medical Research, PO Box 60, Goroka, Eastern Highlands Province, Papua New Guinea
| | - Tracy Campbell
- MRC Prion Unit at UCL, Institute of Prion Diseases, UCL, London, UK
| | - Holger Hummerich
- MRC Prion Unit at UCL, Institute of Prion Diseases, UCL, London, UK
| | - William Pomat
- Papua New Guinea Institute of Medical Research, PO Box 60, Goroka, Eastern Highlands Province, Papua New Guinea
| | - Peter Siba
- Papua New Guinea Institute of Medical Research, PO Box 60, Goroka, Eastern Highlands Province, Papua New Guinea
| | - George Koki
- Papua New Guinea Institute of Medical Research, PO Box 60, Goroka, Eastern Highlands Province, Papua New Guinea
| | - Ida Moltke
- The Bioinformatics Centre, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - John Collinge
- MRC Prion Unit at UCL, Institute of Prion Diseases, UCL, London, UK.
| | - Garrett Hellenthal
- University College London Genetics Institute, Darwin Building, Gower Street, London WC1E 6BT, UK
| | - Simon Mead
- MRC Prion Unit at UCL, Institute of Prion Diseases, UCL, London, UK
| |
Collapse
|
25
|
Liu F, Lü W, Liu L. New implications for prion diseases therapy and prophylaxis. Front Mol Neurosci 2024; 17:1324702. [PMID: 38500676 PMCID: PMC10944861 DOI: 10.3389/fnmol.2024.1324702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 02/19/2024] [Indexed: 03/20/2024] Open
Abstract
Prion diseases are rare, fatal, progressive neurodegenerative disorders that affect both animal and human. Human prion diseases mainly present as Creutzfeldt-Jakob disease (CJD). However, there are no curable therapies, and animal prion diseases may negatively affect the ecosystem and human society. Over the past five decades, scientists are devoting to finding available therapeutic or prophylactic agents for prion diseases. Numerous chemical compounds have been shown to be effective in experimental research on prion diseases, but with the limitations of toxicity, poor efficacy, and low pharmacokinetics. The earliest clinical treatments of CJD were almost carried out with anti-infectious agents that had little amelioration of the course. With the discovery of pathogenic misfolding prion protein (PrPSc) and increasing insights into prion biology, amounts of novel technologies have attempted to eliminate PrPSc. This review presents new perspectives on clinical and experimental prion diseases, including immunotherapy, gene therapy, small-molecule drug, and stem cell therapy. It further explores the prospects and challenge associated with these emerging therapeutic approaches for prion diseases.
Collapse
Affiliation(s)
- Fangzhou Liu
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Wenqi Lü
- Department of Psychiatry and Mental Health Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ling Liu
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
26
|
Soto P, Bravo-Risi F, Kramm C, Gamez N, Benavente R, Bonilla DL, Reed JH, Lockwood M, Spraker TR, Nichols T, Morales R. Nasal bots carry relevant titers of CWD prions in naturally infected white-tailed deer. EMBO Rep 2024; 25:334-350. [PMID: 38191872 PMCID: PMC10883265 DOI: 10.1038/s44319-023-00003-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 10/31/2023] [Accepted: 11/07/2023] [Indexed: 01/10/2024] Open
Abstract
Chronic wasting disease (CWD) is a prion disease affecting farmed and free-ranging cervids. CWD is rapidly expanding across North America and its mechanisms of transmission are not completely understood. Considering that cervids are commonly afflicted by nasal bot flies, we tested the potential of these parasites to transmit CWD. Parasites collected from naturally infected white-tailed deer were evaluated for their prion content using the protein misfolding cyclic amplification (PMCA) technology and bioassays. Here, we describe PMCA seeding activity in nasal bot larvae collected from naturally infected, nonclinical deer. These parasites efficiently infect CWD-susceptible mice in ways suggestive of high infectivity titers. To further mimic environmental transmission, bot larvae homogenates were mixed with soils, and plants were grown on them. We show that both soils and plants exposed to CWD-infected bot homogenates displayed seeding activity by PMCA. This is the first report describing prion infectivity in a naturally occurring deer parasite. Our data also demonstrate that CWD prions contained in nasal bots interact with environmental components and may be relevant for disease transmission.
Collapse
Affiliation(s)
- Paulina Soto
- Department of Neurology, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Centro Integrativo de Biologia y Quimica Aplicada (CIBQA), Universidad Bernardo O'Higgins, Santiago, Chile
| | - Francisca Bravo-Risi
- Department of Neurology, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Centro Integrativo de Biologia y Quimica Aplicada (CIBQA), Universidad Bernardo O'Higgins, Santiago, Chile
| | - Carlos Kramm
- Department of Neurology, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Nazaret Gamez
- Department of Neurology, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Rebeca Benavente
- Department of Neurology, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Denise L Bonilla
- United States Department of Agriculture, Animal Plant Health Inspection Service, Veterinary Services, Fort Collins, CO, USA
| | - J Hunter Reed
- Texas Parks and Wildlife Department, Kerrville, TX, USA
| | | | - Terry R Spraker
- Colorado State University Diagnostic Medical Center, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Tracy Nichols
- United States Department of Agriculture, Animal Plant Health Inspection Service, Veterinary Services, Fort Collins, CO, USA
| | - Rodrigo Morales
- Department of Neurology, The University of Texas Health Science Center at Houston, Houston, TX, USA.
- Centro Integrativo de Biologia y Quimica Aplicada (CIBQA), Universidad Bernardo O'Higgins, Santiago, Chile.
| |
Collapse
|
27
|
Chang SC, Hannaoui S, Arifin MI, Huang YH, Tang X, Wille H, Gilch S. Propagation of PrP Sc in mice reveals impact of aggregate composition on prion disease pathogenesis. Commun Biol 2023; 6:1162. [PMID: 37964018 PMCID: PMC10645910 DOI: 10.1038/s42003-023-05541-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 11/03/2023] [Indexed: 11/16/2023] Open
Abstract
Infectious prions consist of PrPSc, a misfolded, aggregation-prone isoform of the host's prion protein. PrPSc assemblies encode distinct biochemical and biological properties. They harbor a specific profile of PrPSc species, from small oligomers to fibrils in different ratios, where the highest infectivity aligns with oligomeric particles. To investigate the impact of PrPSc aggregate complexity on prion propagation, biochemical properties, and disease pathogenesis, we fractionated elk prions by sedimentation velocity centrifugation, followed by sub-passages of individual fractions in cervidized mice. Upon first passage, different fractions generated PrPSc with distinct biochemical, biophysical, and neuropathological profiles. Notably, low or high molecular weight PrPSc aggregates caused different clinical signs of hyperexcitability or lethargy, respectively, which were retained over passage, whereas other properties converged. Our findings suggest that PrPSc quaternary structure determines an initial selection of a specific replication environment, resulting in transmissible features that are independent of PrPSc biochemical and biophysical properties.
Collapse
Affiliation(s)
- Sheng Chun Chang
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Samia Hannaoui
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Maria Immaculata Arifin
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Yuan-Hung Huang
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Xinli Tang
- Department of Biochemistry, Center for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB, Canada
| | - Holger Wille
- Department of Biochemistry, Center for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - Sabine Gilch
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada.
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
28
|
Thomas CM, Salamat MKF, de Wolf C, McCutcheon S, Blanco ARA, Manson JC, Hunter N, Houston EF. Development of a sensitive real-time quaking-induced conversion (RT-QuIC) assay for application in prion-infected blood. PLoS One 2023; 18:e0293845. [PMID: 37917783 PMCID: PMC10621866 DOI: 10.1371/journal.pone.0293845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 10/18/2023] [Indexed: 11/04/2023] Open
Abstract
Efforts to prevent human-to-human transmission of variant Creutzfeldt-Jakob disease (vCJD) by contaminated blood would be aided by the development of a sensitive diagnostic test that could be routinely used to screen blood donations. As blood samples from vCJD patients are extremely rare, here we describe the optimisation of real-time quaking-induced conversion (RT-QuIC) for detection of PrPSc (misfolded prion protein, a marker of prion infection) in blood samples from an established large animal model of vCJD, sheep experimentally infected with bovine spongiform encephalopathy (BSE). Comparative endpoint titration experiments with RT-QuIC, miniaturized bead protein misfolding cyclic amplification (mb-PMCA) and intracerebral inoculation of a transgenic mouse line expressing sheep PrP (tgOvARQ), demonstrated highly sensitive detection of PrPSc by RT-QuIC in a reference sheep brain homogenate. Upon addition of a capture step with iron oxide beads, the RT-QuIC assay was able to detect PrPSc in whole blood samples from BSE-infected sheep up to two years before disease onset. Both RT-QuIC and mb-PMCA also demonstrated sensitive detection of PrPSc in a reference vCJD-infected human brain homogenate, suggesting that either assay may be suitable for application to human blood samples. Our results support the further development and evaluation of RT-QuIC as a diagnostic or screening test for vCJD.
Collapse
Affiliation(s)
- Charlotte M. Thomas
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Midlothian, United Kingdom
| | - M. Khalid F. Salamat
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Midlothian, United Kingdom
| | - Christopher de Wolf
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Midlothian, United Kingdom
| | - Sandra McCutcheon
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Midlothian, United Kingdom
| | - A. Richard Alejo Blanco
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Midlothian, United Kingdom
| | - Jean C. Manson
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Midlothian, United Kingdom
| | - Nora Hunter
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Midlothian, United Kingdom
| | - E. Fiona Houston
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Midlothian, United Kingdom
| |
Collapse
|
29
|
Fan Q, Wu YZ, Jia XX, A R, Liu CM, Zhang WW, Chao ZY, Zhou DH, Wang Y, Chen J, Xiao K, Chen C, Shi Q, Dong XP. Increased Gal-3 Mediates Microglia Activation and Neuroinflammation via the TREM2 Signaling Pathway in Prion Infection. ACS Chem Neurosci 2023; 14:3772-3793. [PMID: 37769016 DOI: 10.1021/acschemneuro.3c00344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2023] Open
Abstract
Galectin 3 (Gal-3) is one of the major elements for activating microglia and mediating neuroinflammation in some types of neurodegenerative diseases. However, its role in the pathogenesis of prion disease is seldom addressed. In this study, markedly increased brain Gal-3 was identified in three scrapie-infected rodent models at the terminal stage. The increased Gal-3 was mainly colocalized with the activated microglia. Coincidental with the increased brain Gal-3 in prion-infected animals, the expression of brain trigger receptor expressed in myeloid cell 2 (TREM2), one of the Gal-3 receptors, and some components in the downstream pathway also significantly increased, whereas Toll-like receptor 4 (TLR4), another Gal-3 receptor, and the main components in its downstream signaling were less changed. The increased Gal-3 signals were distributed at the areas with PrPSc deposit but looked not to colocalize directly with PrPSc/PrP signals. Similar changing profiles of Gal-3, the receptors TREM2 and TLR4, as well as the proteins in the downstream pathways were also observed in prion-infected cell line SMB-S15. Removal of PrPSc replication in SMB-S15 cells reversed the upregulation of cellular Gal-3, TREM2, and the relevant proteins. Moreover, we presented data for interactions of Gal-3 with TREM2 and with TLR4 morphologically and molecularly in the cultured cells. Stimulation of prion-infected cells or their normal partner cells with recombinant mouse Gal-3 in vitro induced obvious responses for activation of TREM2 signaling and TLR4 signaling. Our data here strongly indicate that prion infection or PrPSc deposit induces remarkably upregulated brain Gal-3, which is actively involved in the microglia activation and neuroinflammation mainly via TREM2 signaling.
Collapse
Affiliation(s)
- Qin Fan
- National Key-Laboratory of Intelligent Tracing and Forecasting for Infectious Disease, NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Yue-Zhang Wu
- National Key-Laboratory of Intelligent Tracing and Forecasting for Infectious Disease, NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Xiao-Xi Jia
- National Key-Laboratory of Intelligent Tracing and Forecasting for Infectious Disease, NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Ruhan A
- National Key-Laboratory of Intelligent Tracing and Forecasting for Infectious Disease, NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Chu-Mou Liu
- National Key-Laboratory of Intelligent Tracing and Forecasting for Infectious Disease, NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Wei-Wei Zhang
- National Key-Laboratory of Intelligent Tracing and Forecasting for Infectious Disease, NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
- North China University of Science and Technology, Tangshan 063210 China
| | - Zhi-Yue Chao
- National Key-Laboratory of Intelligent Tracing and Forecasting for Infectious Disease, NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Dong-Hua Zhou
- National Key-Laboratory of Intelligent Tracing and Forecasting for Infectious Disease, NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Yuan Wang
- National Key-Laboratory of Intelligent Tracing and Forecasting for Infectious Disease, NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
- North China University of Science and Technology, Tangshan 063210 China
| | - Jia Chen
- National Key-Laboratory of Intelligent Tracing and Forecasting for Infectious Disease, NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Kang Xiao
- National Key-Laboratory of Intelligent Tracing and Forecasting for Infectious Disease, NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Cao Chen
- National Key-Laboratory of Intelligent Tracing and Forecasting for Infectious Disease, NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Qi Shi
- National Key-Laboratory of Intelligent Tracing and Forecasting for Infectious Disease, NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
- China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Xiao-Ping Dong
- National Key-Laboratory of Intelligent Tracing and Forecasting for Infectious Disease, NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
- Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
- China Academy of Chinese Medical Sciences, Beijing 100700, China
- Shanghai Institute of Infectious Disease and Biosafety, Shanghai 200032, China
| |
Collapse
|
30
|
Das BK, Singh O, Chakraborty D. Exploring the Barriers in the Aggregation of a Hexadecameric Human Prion Peptide through the Markov State Model. ACS Chem Neurosci 2023; 14:3622-3645. [PMID: 37705330 DOI: 10.1021/acschemneuro.3c00284] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023] Open
Abstract
The prefibrillar aggregation kinetics of prion peptides are still an enigma. In this perspective, we employ atomistic molecular dynamics (MD) simulations of the shortest human prion peptide (HPP) (127GYMLGS132) at various temperatures and peptide concentrations and apply the Markov state model to determine the various intermediates and lag phases. Our results reveal that the natural mechanism of prion peptide self-assembly in the aqueous phase is impeded by two significant kinetic barriers with oligomer sizes of 6-9 and 12-13 peptides, respectively. The first one is the aggregation of unstructured lower-order oligomers, and the second is fibril nucleation, which impedes the further growth of prion aggregates. Among these two activation barriers, the second one is found to be dominant irrespective of the increase in temperature and peptide concentration. These lag phases are captured in all three different force-field parameters, namely, GROMOS-54a7, AMBER-99SB-ILDN, and CHARMMS 36m, at different concentrations. The GROMOS-54a7 and AMBER-99SB-ILDN force fields showed a comparatively higher percentage of β-sheet formation in the metastable aggregate that evolved during the aggregation process. In contrast, the CHARMM-36m force field showed mostly coil or turn conformations. The addition of a novel catecholamine derivative (naphthoquinone dopamine (NQDA)) arrests the aggregation process between the lag phases by increasing the activation barrier for the Lag1 and Lag2 phases in all of the force fields, which further validates the existence of these lag phases. The preferential binding of NQDA with the peptides increases the hydration of peptides and eventually disrupts the organized morphology of prefibrillar aggregates. It reduces the dimer dissociation energy by -24.34 kJ/mol.
Collapse
Affiliation(s)
- Bratin Kumar Das
- Biophysical and Computational Chemistry Laboratory, Department of Chemistry, National Institute of Technology Karnataka, Surathkal, Mangalore 575025, India
| | - Omkar Singh
- Biophysical and Computational Chemistry Laboratory, Department of Chemistry, National Institute of Technology Karnataka, Surathkal, Mangalore 575025, India
| | - Debashree Chakraborty
- Biophysical and Computational Chemistry Laboratory, Department of Chemistry, National Institute of Technology Karnataka, Surathkal, Mangalore 575025, India
| |
Collapse
|
31
|
Li J, Li S, Yu S, Yang J, Ke J, Li H, Chen H, Lu M, Sy MS, Gao Z, Li C. Persistent ER stress causes GPI anchor deficit to convert a GPI-anchored prion protein into pro-PrP via the ATF6-miR449c-5p-PIGV axis. J Biol Chem 2023; 299:104982. [PMID: 37390992 PMCID: PMC10388210 DOI: 10.1016/j.jbc.2023.104982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 06/21/2023] [Accepted: 06/22/2023] [Indexed: 07/02/2023] Open
Abstract
Endoplasmic reticulum (ER) stress and unfolded protein response are cells' survival strategies to thwart disruption of proteostasis. Tumor cells are continuously being challenged by ER stress. The prion protein, PrP, normally a glycosylphosphatidylinositol (GPI)-anchored protein exists as a pro-PrP retaining its GPI-peptide signal sequence in human pancreatic ductal cell adenocarcinoma (PDAC). Higher abundance of pro-PrP indicates poorer prognosis in PDAC patients. The reason why PDAC cells express pro-PrP is unknown. Here, we report that persistent ER stress causes conversion of GPI-anchored PrP to pro-PrP via a conserved ATF6-miRNA449c-5p-PIGV axis. Mouse neurons and AsPC-1, a PDAC cell line, express GPI-anchored PrP. However, continuous culture of these cells with the ER stress inducers thapsigargin or brefeldin A results in the conversion of a GPI-anchored PrP to pro-PrP. Such a conversion is reversible; removal of the inducers allows the cells to re-express a GPI-anchored PrP. Mechanistically, persistent ER stress increases the abundance of an active ATF6, which increases the level of miRNA449c-5p (miR449c-5p). By binding the mRNA of PIGV at its 3'-UTRs, miR449c-5p suppresses the level of PIGV, a mannosyltransferase pivotal in the synthesis of the GPI anchor. Reduction of PIGV leads to disruption of the GPI anchor assembly, causing pro-PrP accumulation and enhancing cancer cell migration and invasion. The importance of ATF6-miR449c-5p-PIGV axis is recapitulated in PDAC biopsies as the higher levels of ATF6 and miR449c-5p and lower levels of PIGV are markers of poorer outcome for patients with PDAC. Drugs targeting this axis may prevent PDAC progression.
Collapse
Affiliation(s)
- JingFeng Li
- Wuhan Institute of Virology, Chinese Academy of Sciences, State Key Laboratory of Virology, Wuhan, China; University of Chinese Academy of Sciences, Beijing, China
| | - SaSa Li
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangzhou, China
| | - ShuPei Yu
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangzhou, China
| | - Jie Yang
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangzhou, China
| | - JingRu Ke
- Department of Dermatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huan Li
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangzhou, China
| | - Heng Chen
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangzhou, China
| | - MingJian Lu
- Department of Interventional Radiology, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Man-Sun Sy
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - ZhenXing Gao
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangzhou, China.
| | - Chaoyang Li
- Wuhan Institute of Virology, Chinese Academy of Sciences, State Key Laboratory of Virology, Wuhan, China; University of Chinese Academy of Sciences, Beijing, China; Affiliated Cancer Hospital and Institute of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangzhou, China.
| |
Collapse
|
32
|
Mok TH, Nihat A, Majbour N, Sequeira D, Holm-Mercer L, Coysh T, Darwent L, Batchelor M, Groveman BR, Orr CD, Hughson AG, Heslegrave A, Laban R, Veleva E, Paterson RW, Keshavan A, Schott JM, Swift IJ, Heller C, Rohrer JD, Gerhard A, Butler C, Rowe JB, Masellis M, Chapman M, Lunn MP, Bieschke J, Jackson GS, Zetterberg H, Caughey B, Rudge P, Collinge J, Mead S. Seed amplification and neurodegeneration marker trajectories in individuals at risk of prion disease. Brain 2023; 146:2570-2583. [PMID: 36975162 PMCID: PMC10232278 DOI: 10.1093/brain/awad101] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 02/17/2023] [Accepted: 03/13/2023] [Indexed: 03/29/2023] Open
Abstract
Human prion diseases are remarkable for long incubation times followed typically by rapid clinical decline. Seed amplification assays and neurodegeneration biofluid biomarkers are remarkably useful in the clinical phase, but their potential to predict clinical onset in healthy people remains unclear. This is relevant not only to the design of preventive strategies in those at-risk of prion diseases, but more broadly, because prion-like mechanisms are thought to underpin many neurodegenerative disorders. Here, we report the accrual of a longitudinal biofluid resource in patients, controls and healthy people at risk of prion diseases, to which ultrasensitive techniques such as real-time quaking-induced conversion (RT-QuIC) and single molecule array (Simoa) digital immunoassays were applied for preclinical biomarker discovery. We studied 648 CSF and plasma samples, including 16 people who had samples taken when healthy but later developed inherited prion disease (IPD) ('converters'; range from 9.9 prior to, and 7.4 years after onset). Symptomatic IPD CSF samples were screened by RT-QuIC assay variations, before testing the entire collection of at-risk samples using the most sensitive assay. Glial fibrillary acidic protein (GFAP), neurofilament light (NfL), tau and UCH-L1 levels were measured in plasma and CSF. Second generation (IQ-CSF) RT-QuIC proved 100% sensitive and specific for sporadic Creutzfeldt-Jakob disease (CJD), iatrogenic and familial CJD phenotypes, and subsequently detected seeding activity in four presymptomatic CSF samples from three E200K carriers; one converted in under 2 months while two remain asymptomatic after at least 3 years' follow-up. A bespoke HuPrP P102L RT-QuIC showed partial sensitivity for P102L disease. No compatible RT-QuIC assay was discovered for classical 6-OPRI, A117V and D178N, and these at-risk samples tested negative with bank vole RT-QuIC. Plasma GFAP and NfL, and CSF NfL levels emerged as proximity markers of neurodegeneration in the typically slow IPDs (e.g. P102L), with significant differences in mean values segregating healthy control from IPD carriers (within 2 years to onset) and symptomatic IPD cohorts; plasma GFAP appears to change before NfL, and before clinical conversion. In conclusion, we show distinct biomarker trajectories in fast and slow IPDs. Specifically, we identify several years of presymptomatic seeding positivity in E200K, a new proximity marker (plasma GFAP) and sequential neurodegenerative marker evolution (plasma GFAP followed by NfL) in slow IPDs. We suggest a new preclinical staging system featuring clinical, seeding and neurodegeneration aspects, for validation with larger prion at-risk cohorts, and with potential application to other neurodegenerative proteopathies.
Collapse
Affiliation(s)
- Tze How Mok
- Medical Research Council Prion Unit at University College London, UCL Institute of Prion Diseases, London W1W 7FF, UK
- NHS National Prion Clinic, National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, Queen Square, London WC1N 3BG, UK
| | - Akin Nihat
- Medical Research Council Prion Unit at University College London, UCL Institute of Prion Diseases, London W1W 7FF, UK
- NHS National Prion Clinic, National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, Queen Square, London WC1N 3BG, UK
| | - Nour Majbour
- Medical Research Council Prion Unit at University College London, UCL Institute of Prion Diseases, London W1W 7FF, UK
| | - Danielle Sequeira
- Medical Research Council Prion Unit at University College London, UCL Institute of Prion Diseases, London W1W 7FF, UK
- NHS National Prion Clinic, National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, Queen Square, London WC1N 3BG, UK
| | - Leah Holm-Mercer
- Medical Research Council Prion Unit at University College London, UCL Institute of Prion Diseases, London W1W 7FF, UK
- NHS National Prion Clinic, National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, Queen Square, London WC1N 3BG, UK
| | - Thomas Coysh
- Medical Research Council Prion Unit at University College London, UCL Institute of Prion Diseases, London W1W 7FF, UK
- NHS National Prion Clinic, National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, Queen Square, London WC1N 3BG, UK
| | - Lee Darwent
- Medical Research Council Prion Unit at University College London, UCL Institute of Prion Diseases, London W1W 7FF, UK
| | - Mark Batchelor
- Medical Research Council Prion Unit at University College London, UCL Institute of Prion Diseases, London W1W 7FF, UK
| | - Bradley R Groveman
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute for Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Christina D Orr
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute for Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Andrew G Hughson
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute for Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Amanda Heslegrave
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
- United Kingdom Dementia Research Institute at University College London, London WC1E 6BT, UK
| | - Rhiannon Laban
- United Kingdom Dementia Research Institute at University College London, London WC1E 6BT, UK
| | - Elena Veleva
- United Kingdom Dementia Research Institute at University College London, London WC1E 6BT, UK
| | - Ross W Paterson
- United Kingdom Dementia Research Institute at University College London, London WC1E 6BT, UK
- Dementia Research Centre, Department of Neurodegenerative Disease, University College London Queen Square Institute of Neurology, London WC1N 3AR, UK
| | - Ashvini Keshavan
- United Kingdom Dementia Research Institute at University College London, London WC1E 6BT, UK
- Dementia Research Centre, Department of Neurodegenerative Disease, University College London Queen Square Institute of Neurology, London WC1N 3AR, UK
| | - Jonathan M Schott
- United Kingdom Dementia Research Institute at University College London, London WC1E 6BT, UK
- Dementia Research Centre, Department of Neurodegenerative Disease, University College London Queen Square Institute of Neurology, London WC1N 3AR, UK
| | - Imogen J Swift
- United Kingdom Dementia Research Institute at University College London, London WC1E 6BT, UK
- Dementia Research Centre, Department of Neurodegenerative Disease, University College London Queen Square Institute of Neurology, London WC1N 3AR, UK
| | - Carolin Heller
- United Kingdom Dementia Research Institute at University College London, London WC1E 6BT, UK
- Dementia Research Centre, Department of Neurodegenerative Disease, University College London Queen Square Institute of Neurology, London WC1N 3AR, UK
| | - Jonathan D Rohrer
- United Kingdom Dementia Research Institute at University College London, London WC1E 6BT, UK
- Dementia Research Centre, Department of Neurodegenerative Disease, University College London Queen Square Institute of Neurology, London WC1N 3AR, UK
| | - Alexander Gerhard
- Division of Neuroscience and Experimental Psychology, Wolfson Molecular Imaging Centre, University of Manchester, Manchester M13 9PL, UK
- Department of Geriatric Medicine, Center for Translational Neuro- and Behavioral Sciences, University Medicine Essen, 45147 Essen, Germany
- Department of Nuclear Medicine, Center for Translational Neuro- and Behavioral Sciences, University Medicine Essen, 45147 Essen, Germany
| | - Christopher Butler
- Nuffield Department of Clinical Neurosciences, Medical Sciences Division, University of Oxford, Oxford OX3 9DU, UK
| | - James B Rowe
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust and Medical Research Council Cognition and Brain Sciences Unit, University of Cambridge, Cambridge CB2 7EF, UK
| | - Mario Masellis
- Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, University of Toronto, Toronto, ON M4N 3M5, Canada
| | - Miles Chapman
- Neuroimmunology and CSF Laboratory, University College London Hospitals NHS Trust National Hospital of Neurology and Neurosurgery, London WC1N 3BG, UK
| | - Michael P Lunn
- Neuroimmunology and CSF Laboratory, University College London Hospitals NHS Trust National Hospital of Neurology and Neurosurgery, London WC1N 3BG, UK
| | - Jan Bieschke
- Medical Research Council Prion Unit at University College London, UCL Institute of Prion Diseases, London W1W 7FF, UK
| | - Graham S Jackson
- Medical Research Council Prion Unit at University College London, UCL Institute of Prion Diseases, London W1W 7FF, UK
| | - Henrik Zetterberg
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
- United Kingdom Dementia Research Institute at University College London, London WC1E 6BT, UK
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, S-43180 Mölndal, Sweden
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, S-431 80 Mölndal, Sweden
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53792-2420, USA
| | - Byron Caughey
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute for Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Peter Rudge
- Medical Research Council Prion Unit at University College London, UCL Institute of Prion Diseases, London W1W 7FF, UK
- NHS National Prion Clinic, National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, Queen Square, London WC1N 3BG, UK
| | - John Collinge
- Medical Research Council Prion Unit at University College London, UCL Institute of Prion Diseases, London W1W 7FF, UK
- NHS National Prion Clinic, National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, Queen Square, London WC1N 3BG, UK
| | - Simon Mead
- Medical Research Council Prion Unit at University College London, UCL Institute of Prion Diseases, London W1W 7FF, UK
- NHS National Prion Clinic, National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, Queen Square, London WC1N 3BG, UK
| |
Collapse
|
33
|
L P Hosszu L, Sangar D, Batchelor M, Risse E, Hounslow AM, Collinge J, Waltho JP, Bieschke J. Loss of residues 119 - 136, including the first β-strand of human prion protein, generates an aggregation-competent partially "open" form. J Mol Biol 2023:168158. [PMID: 37244570 DOI: 10.1016/j.jmb.2023.168158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 05/18/2023] [Accepted: 05/19/2023] [Indexed: 05/29/2023]
Abstract
In prion replication, the cellular form of prion protein (PrPC) must undergo a full conformational transition to its disease-associated fibrillar form. Transmembrane forms of PrP have been implicated in this structural conversion. The cooperative unfolding of a structural core in PrPC presents a substantial energy barrier to prion formation, with membrane insertion and detachment of parts of PrP presenting a plausible route to its reduction. Here, we examined the removal of residues 119 - 136 of PrP, a region which includes the first β-strand and a substantial portion of the conserved hydrophobic region of PrP, a region which associates with the ER membrane, on the structure, stability and self-association of the folded domain of PrPC. We see an "open" native-like conformer with increased solvent exposure which fibrilises more readily than the native state. These data suggest a stepwise folding transition, which is initiated by the conformational switch to this "open" form of PrPC.
Collapse
Affiliation(s)
- Laszlo L P Hosszu
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, 33 Cleveland Street, London, W1W 7FF, UK
| | - Daljit Sangar
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, 33 Cleveland Street, London, W1W 7FF, UK
| | - Mark Batchelor
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, 33 Cleveland Street, London, W1W 7FF, UK
| | - Emmanuel Risse
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, 33 Cleveland Street, London, W1W 7FF, UK
| | - Andrea M Hounslow
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK
| | - John Collinge
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, 33 Cleveland Street, London, W1W 7FF, UK
| | - Jonathan P Waltho
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK; Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Jan Bieschke
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, 33 Cleveland Street, London, W1W 7FF, UK.
| |
Collapse
|
34
|
Wang F, Pritzkow S, Soto C. PMCA for ultrasensitive detection of prions and to study disease biology. Cell Tissue Res 2023; 392:307-321. [PMID: 36567368 PMCID: PMC9790818 DOI: 10.1007/s00441-022-03727-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 12/08/2022] [Indexed: 12/27/2022]
Abstract
The emergence of a novel class of infectious agent composed exclusively of a misfolded protein (termed prions) has been a challenge in modern biomedicine. Despite similarities on the behavior of prions with respect to conventional pathogens, the many uncertainties regarding the biology and virulence of prions make them a worrisome paradigm. Since prions do not contain nucleic acids and rely on a very different way of replication and spreading, it was necessary to invent a novel technology to study them. In this article, we provide an overview of such a technology, termed protein misfolding cyclic amplification (PMCA), and summarize its many applications to detect prions and understand prion biology.
Collapse
Affiliation(s)
- Fei Wang
- Mitchell Center for Alzheimer's Disease and Related Brain Disorders, Department of Neurology, University of Texas McGovern Medical School, Houston, TX, 77030, USA
| | - Sandra Pritzkow
- Mitchell Center for Alzheimer's Disease and Related Brain Disorders, Department of Neurology, University of Texas McGovern Medical School, Houston, TX, 77030, USA
| | - Claudio Soto
- Mitchell Center for Alzheimer's Disease and Related Brain Disorders, Department of Neurology, University of Texas McGovern Medical School, Houston, TX, 77030, USA.
| |
Collapse
|
35
|
Cook M, Hensley-McBain T, Grindeland A. Mouse models of chronic wasting disease: A review. FRONTIERS IN VIROLOGY 2023. [DOI: 10.3389/fviro.2023.1055487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Animal models are essential tools for investigating and understanding complex prion diseases like chronic wasting disease (CWD), an infectious prion disease of cervids (elk, deer, moose, and reindeer). Over the past several decades, numerous mouse models have been generated to aid in the advancement of CWD knowledge and comprehension. These models have facilitated the investigation of pathogenesis, transmission, and potential therapies for CWD. Findings have impacted CWD management and disease outcomes, though much remains unknown, and a cure has yet to be discovered. Studying wildlife for CWD effects is singularly difficult due to the long incubation time, subtle clinical signs at early stages, lack of convenient in-the-field live testing methods, and lack of reproducibility of a controlled laboratory setting. Mouse models in many cases is the first step to understanding the mechanisms of disease in a shortened time frame. Here, we provide a comprehensive review of studies with mouse models in CWD research. We begin by reviewing studies that examined the use of mouse models for bioassays for tissues, bodily fluids, and excreta that spread disease, then address routes of infectivity and infectious load. Next, we delve into studies of genetic factors that influence protein structure. We then move on to immune factors, possible transmission through environmental contamination, and species barriers and differing prion strains. We conclude with studies that make use of cervidized mouse models in the search for therapies for CWD.
Collapse
|
36
|
Rigogliuso S, Campora S, Notarbartolo M, Ghersi G. Recovery of Bioactive Compounds from Marine Organisms: Focus on the Future Perspectives for Pharmacological, Biomedical and Regenerative Medicine Applications of Marine Collagen. Molecules 2023; 28:molecules28031152. [PMID: 36770818 PMCID: PMC9920902 DOI: 10.3390/molecules28031152] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/05/2023] [Accepted: 01/17/2023] [Indexed: 01/27/2023] Open
Abstract
Marine environments cover more than 70% of the Earth's surface and are among the richest and most complex ecosystems. In terms of biodiversity, the ocean represents an important source, still not widely exploited, of bioactive products derived from species of bacteria, plants, and animals. However, global warming, in combination with multiple anthropogenic practices, represents a serious environmental problem that has led to an increase in gelatinous zooplankton, a phenomenon referred to as jellyfish bloom. In recent years, the idea of "sustainable development" has emerged as one of the essential elements of green-economy initiatives; therefore, the marine environment has been re-evaluated and considered an important biological resource. Several bioactive compounds of marine origin are being studied, and among these, marine collagen represents one of the most attractive bio-resources, given its use in various disciplines, such as clinical applications, cosmetics, the food sector, and many other industrial applications. This review aims to provide a current overview of marine collagen applications in the pharmacological and biomedical fields, regenerative medicine, and cell therapy.
Collapse
Affiliation(s)
- Salvatrice Rigogliuso
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, Ed. 16, 90128 Palermo, Italy
| | - Simona Campora
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, Ed. 16, 90128 Palermo, Italy
- Correspondence: (S.C.); (M.N.); Tel.: +39-091-238-62813 (S.C.); +39-091-238-97426 (M.N.)
| | - Monica Notarbartolo
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, Ed. 16, 90128 Palermo, Italy
- Correspondence: (S.C.); (M.N.); Tel.: +39-091-238-62813 (S.C.); +39-091-238-97426 (M.N.)
| | - Giulio Ghersi
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, Ed. 16, 90128 Palermo, Italy
- Abiel s.r.l., c/o Department STEBICEF, University of Palermo, Viale delle Scienze, Ed. 16, 90128 Palermo, Italy
| |
Collapse
|
37
|
Matsubayashi T, Sanjo N. Systematic Review of Clinical and Pathophysiological Features of Genetic Creutzfeldt-Jakob Disease Caused by a Val-to-Ile Mutation at Codon 180 in the Prion Protein Gene. Int J Mol Sci 2022; 23:15172. [PMID: 36499498 PMCID: PMC9737045 DOI: 10.3390/ijms232315172] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 11/28/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022] Open
Abstract
Genetic Creutzfeldt-Jakob disease (gCJD) is a subtype of genetic prion diseases (gPrDs) caused by the accumulation of mutated pathological prion proteins (PrPSc). gCJD has a phenotypic similarity with sporadic CJD (sCJD). In Japan, gCJD with a Val to Ile substitution at codon 180 (V180I-gCJD) is the most frequent gPrD, while the mutation is extremely rare in countries other than Japan and Korea. In this article, we aim to review previously elucidated clinical and biochemical features of V180I-gCJD, expecting to advance the understanding of this unique subtype in gCJD. Compared to classical sCJD, specific clinical features of V180I-gCJD include older age at onset, a relatively slow progression of dementia, and a lower positivity for developing myoclonus, cerebellar, pyramidal signs, and visual disturbance. Diffuse edematous ribboning hyperintensity of the cerebral cortex, without occipital lobes in diffusion-weighted magnetic resonance imaging, is also specific. Laboratory data reveal the low positivity of PrPSc in the cerebrospinal fluid and periodic sharp wave complexes on an electroencephalogram. Most patients with V180I-gCJD have been reported to have no family history, probably due to the older age at onset, and clinical and biochemical features indicate the specific phenotype associated with the prion protein gene mutation.
Collapse
Affiliation(s)
| | - Nobuo Sanjo
- Department of Neurology and Neurological Science, Tokyo Medical and Dental University Graduate School of Medical and Dental Sciences, 1-5-45 Yushima Bunkyo-ku, Tokyo 113-8510, Japan
| |
Collapse
|
38
|
Igel A, Fornara B, Rezaei H, Béringue V. Prion assemblies: structural heterogeneity, mechanisms of formation, and role in species barrier. Cell Tissue Res 2022; 392:149-166. [PMID: 36399162 PMCID: PMC10113350 DOI: 10.1007/s00441-022-03700-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 11/03/2022] [Indexed: 11/19/2022]
Abstract
AbstractPrions are proteinaceous pathogens responsible for a wide range of neurodegenerative diseases in animal and human. Prions are formed from misfolded, ß-sheet rich, and aggregated conformers (PrPSc) of the host-encoded prion protein (PrPC). Prion replication stems from the capacity of PrPSc to self-replicate by templating PrPC conversion and polymerization. The question then arises about the molecular mechanisms of prion replication, host invasion, and capacity to contaminate other species. Studying these mechanisms has gained in recent years further complexity with evidence that PrPSc is a pleiomorphic protein. There is indeed compelling evidence for PrPSc structural heterogeneity at different scales: (i) within prion susceptible host populations with the existence of different strains with specific biological features due to different PrPSc conformers, (ii) within a single infected host with the co-propagation of different strains, and (iii) within a single strain with evidence for co-propagation of PrPSc assemblies differing in their secondary to quaternary structure. This review summarizes current knowledge of prion assembly heterogeneity, potential mechanisms of formation during the replication process, and importance when crossing the species barrier.
Collapse
|
39
|
Gamez N, Bravo-Alegria J, Huang Y, Perez-Urrutia N, Dongarwar D, Soto C, Morales R. Altering Brain Amyloidosis by Intra-Lingual and Extra-Nasal Exposure of Aβ Aggregates. Cells 2022; 11:3442. [PMID: 36359840 PMCID: PMC9654398 DOI: 10.3390/cells11213442] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/21/2022] [Accepted: 10/26/2022] [Indexed: 10/13/2023] Open
Abstract
Extensive experimental and human-derived evidence suggest that misfolded Aβ particles spread similarly to infectious prions. Moreover, peripheral administration of Aβ seeds accelerates brain amyloidosis in both susceptible experimental animals and humans. The mechanisms and elements governing the transport of misfolded Aβ from the periphery to the brain are not fully understood, although circulation and retrograde axonal transport have been proposed. Here, we demonstrate that injection of Aβ seeds in the tongue, a highly innervated organ, substantially accelerates the appearance of plaques in Tg2576 mice. In addition, the extra-nasal exposure of Aβ aggregates increased amyloid pathology in the olfactory bulb. Our results show that exposing highly innervated tissues to Aβ seeds accelerates AD-like pathological features, and suggest that Aβ seeds can be transported from peripheral compartments to the brain by retrograde axonal transport. Research in this direction may be relevant on different fronts, including disease mechanisms, diagnosis, and risk-evaluation of potential iatrogenic transmission of Aβ misfolding.
Collapse
Affiliation(s)
- Nazaret Gamez
- Department of Neurology, The University of Texas Health Science Center at Houston, 6431 Fannin St., Houston, TX 77030, USA
- Dpto. Biología Celular, Genética y Fisiología, Instituto de Investigación Biomédica de Málaga-IBIMA, Facultad de Ciencias, Universidad of Malaga, 29010 Malaga, Spain
| | - Javiera Bravo-Alegria
- Department of Neurology, The University of Texas Health Science Center at Houston, 6431 Fannin St., Houston, TX 77030, USA
- Universidad de los Andes, Facultad de Medicina, Av. San Carlos de Apoquindo 2200, Las Condes, Santiago 7620001, Chile
| | - Yumeng Huang
- Department of Neurology, The University of Texas Health Science Center at Houston, 6431 Fannin St., Houston, TX 77030, USA
| | - Nelson Perez-Urrutia
- Department of Neurology, The University of Texas Health Science Center at Houston, 6431 Fannin St., Houston, TX 77030, USA
- Facultad de Ciencias de la Salud, Universidad San Sebastian, Lientur 1456, Concepcion 4080871, Chile
| | - Deepa Dongarwar
- Department of Neurology, The University of Texas Health Science Center at Houston, 6431 Fannin St., Houston, TX 77030, USA
| | - Claudio Soto
- Department of Neurology, The University of Texas Health Science Center at Houston, 6431 Fannin St., Houston, TX 77030, USA
| | - Rodrigo Morales
- Department of Neurology, The University of Texas Health Science Center at Houston, 6431 Fannin St., Houston, TX 77030, USA
- Centro Integrativo de Biologia y Quimica Aplicada (CIBQA), Universidad Bernardo O’Higgins, Santiago 8370993, Chile
| |
Collapse
|
40
|
Lai MY, Li J, Zhang XX, Wu W, Li ZP, Sun ZX, Zhao MY, Yang DM, Wang DD, Li W, Zhao DM, Zhou XM, Yang LF. SARM1 participates in axonal degeneration and mitochondrial dysfunction in prion disease. Neural Regen Res 2022; 17:2293-2299. [PMID: 35259852 PMCID: PMC9083142 DOI: 10.4103/1673-5374.337051] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Prion disease represents a group of fatal neurogenerative diseases in humans and animals that are associated with energy loss, axonal degeneration, and mitochondrial dysfunction. Axonal degeneration is an early hallmark of neurodegeneration and is triggered by SARM1. We found that depletion or dysfunctional mutation of SARM1 protected against NAD+ loss, axonal degeneration, and mitochondrial functional disorder induced by the neurotoxic peptide PrP106-126. NAD+ supplementation rescued prion-triggered axonal degeneration and mitochondrial dysfunction and SARM1 overexpression suppressed this protective effect. NAD+ supplementation in PrP106-126-incubated N2a cells, SARM1 depletion, and SARM1 dysfunctional mutation each blocked neuronal apoptosis and increased cell survival. Our results indicate that the axonal degeneration and mitochondrial dysfunction triggered by PrP106-126 are partially dependent on SARM1 NADase activity. This pathway has potential as a therapeutic target in the early stages of prion disease.
Collapse
Affiliation(s)
- Meng-Yu Lai
- National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jie Li
- National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xi-Xi Zhang
- National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Wei Wu
- National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Zhi-Ping Li
- National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Zhi-Xin Sun
- National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Meng-Yang Zhao
- National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Dong-Ming Yang
- National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Dong-Dong Wang
- National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Wen Li
- National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - De-Ming Zhao
- National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xiang-Mei Zhou
- National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Li-Feng Yang
- National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
41
|
Nakaie M, Katayama F, Nakagaki T, Yoshida S, Kawasaki M, Nishi K, Ogawa K, Toriba A, Nishida N, Nakayama M, Fuchigami T. Synthesis and Biological Evaluation of Novel 2-(Benzofuran-2-yl)-chromone Derivatives for In Vivo Imaging of Prion Deposits in the Brain. ACS Infect Dis 2022; 8:1869-1882. [PMID: 35969484 DOI: 10.1021/acsinfecdis.2c00142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Prion diseases are fatal neurodegenerative disorders caused by the deposition of scrapie prion protein aggregates (PrPSc) in the brain. We previously reported that styrylchromone (SC) and benzofuran (BF) derivatives have potential as imaging probes for PrPSc. To further improve their properties, we designed and synthesized 2-(benzofuran-2-yl)-chromone (BFC) derivatives hybridized with SC and BF backbones as novel single-photon emission computed tomography probes for the detection of cerebral PrPSc deposits. Recombinant mouse prion protein (rMoPrP) aggregates and mouse-adapted bovine spongiform encephalopathy (mBSE)-infected mice were used to evaluate the binding properties of BFC derivatives to PrPSc. The BFC derivatives exhibited high binding affinities (equilibrium dissociation constant [Kd] = 22.6-47.7 nM) for rMoPrP aggregates. All BFC derivatives showed remarkable selectivity against amyloid beta aggregates. Fluorescence microscopy confirmed that the fluorescence signals of the BFC derivatives corresponded to the antibody-positive deposits of PrPSc in mBSE-infected mouse brains. Among the BFC derivatives, [125I]BFC-OMe and [125I]BFC-NH2 exhibited high brain uptake and favorable washout from the mouse brain. In vitro autoradiography demonstrated that the distribution of [125I]BFC-OMe in the brain tissues of mBSE-infected mice was colocalized with PrPSc deposits. Taken together, BFC derivatives appear to be promising prion imaging probes.
Collapse
Affiliation(s)
- Mari Nakaie
- Department of Hygienic Chemistry, Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Fumihiro Katayama
- Department of Hygienic Chemistry, Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Takehiro Nakagaki
- Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Sakura Yoshida
- Department of Hygienic Chemistry, Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Masao Kawasaki
- Department of Hygienic Chemistry, Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Kodai Nishi
- Department of Radioisotope Medicine, Atomic Bomb Disease Institute, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Kazuma Ogawa
- Laboratory of Clinical Analytical Sciences, Graduate School of Medical Sciences, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan.,Institute for Frontier Science Initiative, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Akira Toriba
- Department of Hygienic Chemistry, Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Noriyuki Nishida
- Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Morio Nakayama
- Department of Hygienic Chemistry, Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Takeshi Fuchigami
- Laboratory of Clinical Analytical Sciences, Graduate School, Division of Pharmaceutical Sciences, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| |
Collapse
|
42
|
Hallinan GI, Ozcan KA, Hoq MR, Cracco L, Vago FS, Bharath SR, Li D, Jacobsen M, Doud EH, Mosley AL, Fernandez A, Garringer HJ, Jiang W, Ghetti B, Vidal R. Cryo-EM structures of prion protein filaments from Gerstmann-Sträussler-Scheinker disease. Acta Neuropathol 2022; 144:509-520. [PMID: 35819518 PMCID: PMC9381446 DOI: 10.1007/s00401-022-02461-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/23/2022] [Accepted: 06/23/2022] [Indexed: 12/28/2022]
Abstract
Prion protein (PrP) aggregation and formation of PrP amyloid (APrP) are central events in the pathogenesis of prion diseases. In the dominantly inherited prion protein amyloidosis known as Gerstmann-Sträussler-Scheinker (GSS) disease, plaques made of PrP amyloid are present throughout the brain. The c.593t > c mutation in the prion protein gene (PRNP) results in a phenylalanine to serine amino acid substitution at PrP residue 198 (F198S) and causes the most severe amyloidosis among GSS variants. It has been shown that neurodegeneration in this disease is associated with the presence of extracellular APrP plaques and neuronal intracytoplasmic Tau inclusions, that have been shown to contain paired helical filaments identical to those found in Alzheimer disease. Using cryogenic electron microscopy (cryo-EM), we determined for the first time the structures of filaments of human APrP, isolated post-mortem from the brain of two symptomatic PRNP F198S mutation carriers. We report that in GSS (F198S) APrP filaments are composed of dimeric, trimeric and tetrameric left-handed protofilaments with their protomers sharing a common protein fold. The protomers in the cross-β spines consist of 62 amino acids and span from glycine 80 to phenylalanine 141, adopting a previously unseen spiral fold with a thicker outer layer and a thinner inner layer. Each protomer comprises nine short β-strands, with the β1 and β8 strands, as well as the β4 and β9 strands, forming a steric zipper. The data obtained by cryo-EM provide insights into the structural complexity of the PrP filament in a dominantly inherited human PrP amyloidosis. The novel findings highlight the urgency of extending our knowledge of the filaments' structures that may underlie distinct clinical and pathologic phenotypes of human neurodegenerative diseases.
Collapse
Affiliation(s)
- Grace I. Hallinan
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, 635 Barnhill Dr., Indianapolis, IN 46202 USA
| | - Kadir A. Ozcan
- Department of Biological Sciences, Markey Center for Structural Biology, Purdue University, West Lafayette, IN 47906 USA
| | - Md Rejaul Hoq
- Department of Biological Sciences, Markey Center for Structural Biology, Purdue University, West Lafayette, IN 47906 USA
| | - Laura Cracco
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, 635 Barnhill Dr., Indianapolis, IN 46202 USA
| | - Frank S. Vago
- Department of Biological Sciences, Markey Center for Structural Biology, Purdue University, West Lafayette, IN 47906 USA
| | - Sakshibeedu R. Bharath
- Department of Biological Sciences, Markey Center for Structural Biology, Purdue University, West Lafayette, IN 47906 USA
| | - Daoyi Li
- Department of Biological Sciences, Markey Center for Structural Biology, Purdue University, West Lafayette, IN 47906 USA
| | - Max Jacobsen
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, 635 Barnhill Dr., Indianapolis, IN 46202 USA
| | - Emma H. Doud
- Center for Proteome Analysis and Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN 46202 USA
| | - Amber L. Mosley
- Center for Proteome Analysis and Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN 46202 USA
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202 USA
| | - Anllely Fernandez
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, 635 Barnhill Dr., Indianapolis, IN 46202 USA
| | - Holly J. Garringer
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, 635 Barnhill Dr., Indianapolis, IN 46202 USA
| | - Wen Jiang
- Department of Biological Sciences, Markey Center for Structural Biology, Purdue University, West Lafayette, IN 47906 USA
| | - Bernardino Ghetti
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, 635 Barnhill Dr., Indianapolis, IN 46202 USA
| | - Ruben Vidal
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, 635 Barnhill Dr., Indianapolis, IN 46202 USA
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202 USA
| |
Collapse
|
43
|
Sequeira D, Nihat A, Mok T, Coysh T, Rudge P, Collinge J, Mead S. Prevalence and Treatments of Movement Disorders in Prion Diseases: A Longitudinal Cohort Study. Mov Disord 2022; 37:1893-1903. [PMID: 35841311 PMCID: PMC9543300 DOI: 10.1002/mds.29152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 06/01/2022] [Accepted: 06/06/2022] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Prion diseases cause a range of movement disorders involving the cortical, extrapyramidal, and cerebellar systems, and yet there are no large systematic studies of their prevalence, features, associations, and responses to commonly used treatments. OBJECTIVES We sought to describe the natural history and pharmacological management of movement disorders in prion diseases. METHODS We studied the serial examination findings, investigation results, and symptomatic treatment recorded for 700 patients with prion diseases and 51 mimics who had been enrolled onto the prospective longitudinal National Prion Monitoring Cohort study between 2008 and 2020. We performed an analysis to identify whether there were patterns of movement disorders associated with disease aetiology, PRNP codon 129 polymorphism, disease severity rating scales, magnetic resonance imaging (MRI) and cerebrospinal fluid (CSF) findings. RESULTS Gait disturbances, myoclonus, and increased tone are the most frequently observed movement disorders in patients with prion diseases. The typical pattern of early motor dysfunction involves gait disturbance, limb ataxia, impaired smooth pursuit, myoclonus, tremor, and increased limb tone. Disturbances of gait, increased tone, and myoclonus become more prevalent and severe as the disease progresses. Chorea, alien limb phenomenon, and nystagmus were the least frequently observed movement disorders, with these symptoms showing spontaneous resolution in approximately half of symptomatic patients. Disease severity and PRNP codon 129 polymorphism were associated with different movement disorder phenotypes. Antiepileptics and benzodiazepines were found to be effective in treating myoclonus. CONCLUSIONS We describe the prevalence, severity, evolution, treatment, and associated features of movement disorders in prion diseases based on a prospective cohort study. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Danielle Sequeira
- National Prion ClinicUniversity College London Hospitals NHS Foundation TrustLondonUK,MRC Prion Unit at UCLInstitute of Prion DiseasesLondonUK
| | - Akin Nihat
- National Prion ClinicUniversity College London Hospitals NHS Foundation TrustLondonUK,MRC Prion Unit at UCLInstitute of Prion DiseasesLondonUK
| | - Tzehow Mok
- National Prion ClinicUniversity College London Hospitals NHS Foundation TrustLondonUK,MRC Prion Unit at UCLInstitute of Prion DiseasesLondonUK
| | - Thomas Coysh
- National Prion ClinicUniversity College London Hospitals NHS Foundation TrustLondonUK,MRC Prion Unit at UCLInstitute of Prion DiseasesLondonUK
| | - Peter Rudge
- National Prion ClinicUniversity College London Hospitals NHS Foundation TrustLondonUK,MRC Prion Unit at UCLInstitute of Prion DiseasesLondonUK
| | - John Collinge
- National Prion ClinicUniversity College London Hospitals NHS Foundation TrustLondonUK,MRC Prion Unit at UCLInstitute of Prion DiseasesLondonUK
| | - Simon Mead
- National Prion ClinicUniversity College London Hospitals NHS Foundation TrustLondonUK,MRC Prion Unit at UCLInstitute of Prion DiseasesLondonUK
| |
Collapse
|
44
|
Murakami K, Ono K. Interactions of amyloid coaggregates with biomolecules and its relevance to neurodegeneration. FASEB J 2022; 36:e22493. [PMID: 35971743 DOI: 10.1096/fj.202200235r] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/18/2022] [Accepted: 08/01/2022] [Indexed: 01/16/2023]
Abstract
The aggregation of amyloidogenic proteins is a pathological hallmark of various neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. In these diseases, oligomeric intermediates or toxic aggregates of amyloids cause neuronal damage and degeneration. Despite the substantial effort made over recent decades to implement therapeutic interventions, these neurodegenerative diseases are not yet understood at the molecular level. In many cases, multiple disease-causing amyloids overlap in a sole pathological feature or a sole disease-causing amyloid represents multiple pathological features. Various amyloid pathologies can coexist in the same brain with or without clinical presentation and may even occur in individuals without disease. From sparse data, speculation has arisen regarding the coaggregation of amyloids with disparate amyloid species and other biomolecules, which are the same characteristics that make diagnostics and drug development challenging. However, advances in research related to biomolecular condensates and structural analysis have been used to overcome some of these challenges. Considering the development of these resources and techniques, herein we review the cross-seeding of amyloidosis, for example, involving the amyloids amyloid β, tau, α-synuclein, and human islet amyloid polypeptide, and their cross-inhibition by transthyretin and BRICHOS. The interplay of nucleic acid-binding proteins, such as prions, TAR DNA-binding protein 43, fused in sarcoma/translated in liposarcoma, and fragile X mental retardation polyglycine, with nucleic acids in the pathology of neurodegeneration are also described, and we thereby highlight the potential clinical applications in central nervous system therapy.
Collapse
Affiliation(s)
- Kazuma Murakami
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Kenjiro Ono
- Department of Neurology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
45
|
Manka SW, Wenborn A, Collinge J, Wadsworth JDF. Prion strains viewed through the lens of cryo-EM. Cell Tissue Res 2022; 392:167-178. [PMID: 36028585 PMCID: PMC10113314 DOI: 10.1007/s00441-022-03676-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 08/18/2022] [Indexed: 12/14/2022]
Abstract
Mammalian prions are lethal transmissible pathogens that cause fatal neurodegenerative diseases in humans and animals. They consist of fibrils of misfolded, host-encoded prion protein (PrP) which propagate through templated protein polymerisation. Prion strains produce distinct clinicopathological phenotypes in the same host and appear to be encoded by distinct misfolded PrP conformations and assembly states. Despite fundamental advances in our understanding of prion biology, key knowledge gaps remain. These include precise delineation of prion replication mechanisms, detailed explanation of the molecular basis of prion strains and inter-species transmission barriers, and the structural definition of neurotoxic PrP species. Central to addressing these questions is the determination of prion structure. While high-resolution definition of ex vivo prion fibrils once seemed unlikely, recent advances in cryo-electron microscopy (cryo-EM) and computational methods for 3D reconstruction of amyloids have now made this possible. Recently, near-atomic resolution structures of highly infectious, ex vivo prion fibrils from hamster 263K and mouse RML prion strains were reported. The fibrils have a comparable parallel in-register intermolecular β-sheet (PIRIBS) architecture that now provides a structural foundation for understanding prion strain diversity in mammals. Here, we review these new findings and discuss directions for future research.
Collapse
Affiliation(s)
- Szymon W Manka
- MRC Prion Unit at UCL, Institute of Prion Diseases, University College London, 33 Cleveland Street, London, W1W 7FF, UK
| | - Adam Wenborn
- MRC Prion Unit at UCL, Institute of Prion Diseases, University College London, 33 Cleveland Street, London, W1W 7FF, UK
| | - John Collinge
- MRC Prion Unit at UCL, Institute of Prion Diseases, University College London, 33 Cleveland Street, London, W1W 7FF, UK.
| | - Jonathan D F Wadsworth
- MRC Prion Unit at UCL, Institute of Prion Diseases, University College London, 33 Cleveland Street, London, W1W 7FF, UK.
| |
Collapse
|
46
|
Sen A, Mora AK, Koli M, Mula S, Kundu S, Nath S. Sensing lysozyme fibrils by salicylaldimine substituted BODIPY dyes - A correlation with molecular structure. Int J Biol Macromol 2022; 220:901-909. [PMID: 35998856 DOI: 10.1016/j.ijbiomac.2022.08.112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/11/2022] [Accepted: 08/16/2022] [Indexed: 11/29/2022]
Abstract
Quick and efficient detection of protein fibrils has enormous impact on the diagnosis and treatment of amyloid related neurological diseases. Among several methods, fluorescence based techniques have garnered most importance in the detection of amyloid fibrils due to its high sensitivity and extreme simplicity. Among other classes of molecular probes, BODIPY derivatives have been employed extensively for the detection of amyloid fibrils. However, there are very few studies on the relationship between the molecular structure of BODIPY dyes and their amyloid sensing activity. Here in a BODIPY based salicylaldimine Schiff base and its corresponding boron complex have been evaluated for their ability to sense amyloid fibrils from hen-egg white lysozyme using steady state and time-resolved spectroscopic techniques. Both dyes show fluorescence enhancement as well as increase in their excited state lifetime upon their binding with lysozyme fibrils. However, the BODIPY derivative which shows more emission enhancement in fibrillar solution has much lower affinity towards amyloid fibrils as compared to other derivative. This contrasting behaviour in the emission enhancement and binding affinity has been explained on the basis of differences in their photophysical properties in water and amyloid fibril originating from the difference in their molecular structure. Such correlation between the amyloid sensitivity and the molecular structure of the probe can open up a new strategy for designing new efficient amyloid probes.
Collapse
Affiliation(s)
- Ayentika Sen
- Beam Technology Development Group, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400 094, India
| | - Aruna K Mora
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400 094, India.
| | - Mrunesh Koli
- Bio-Organic Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085, India
| | - Soumyaditya Mula
- Bio-Organic Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400 094, India
| | - Soumitra Kundu
- Beam Technology Development Group, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085, India
| | - Sukhendu Nath
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400 094, India.
| |
Collapse
|
47
|
Gao K, Zhang X, Zhang Z, Wu X, Guo Y, Fu P, Sun A, Peng J, Zheng J, Yu P, Wang T, Ye Q, Jiang J, Wang H, Lin CP, Gao G. Transcription-coupled donor DNA expression increases homologous recombination for efficient genome editing. Nucleic Acids Res 2022; 50:e109. [PMID: 35929067 DOI: 10.1093/nar/gkac676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/18/2022] [Accepted: 07/26/2022] [Indexed: 11/14/2022] Open
Abstract
Genomes can be edited by homologous recombination stimulated by CRISPR/Cas9 [clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated peptide 9]-induced DNA double-strand breaks. However, this approach is inefficient for inserting or deleting long fragments in mammalian cells. Here, we describe a simple genome-editing method, termed transcription-coupled Cas9-mediated editing (TEd), that can achieve higher efficiencies than canonical Cas9-mediated editing (CEd) in deleting genomic fragments, inserting/replacing large DNA fragments and introducing point mutations into mammalian cell lines. We also found that the transcription on DNA templates is crucial for the promotion of homology-directed repair, and that tethering transcripts from TEd donors to targeted sites further improves editing efficiency. The superior efficiency of TEd for the insertion and deletion of long DNA fragments expands the applications of CRISPR for editing mammalian genomes.
Collapse
Affiliation(s)
- Kaixuan Gao
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Xuedi Zhang
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Zhenwu Zhang
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Xiangyu Wu
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yan Guo
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Pengchong Fu
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Angyang Sun
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Ju Peng
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Jie Zheng
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Pengfei Yu
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Tengfei Wang
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Qinying Ye
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Jingwei Jiang
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Haopeng Wang
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Chao-Po Lin
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Guanjun Gao
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
48
|
A field-deployable diagnostic assay for the visual detection of misfolded prions. Sci Rep 2022; 12:12246. [PMID: 35851406 PMCID: PMC9293997 DOI: 10.1038/s41598-022-16323-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 07/08/2022] [Indexed: 11/30/2022] Open
Abstract
Diagnostic tools for the detection of protein-misfolding diseases (i.e., proteopathies) are limited. Gold nanoparticles (AuNPs) facilitate sensitive diagnostic techniques via visual color change for the identification of a variety of targets. In parallel, recently developed quaking-induced conversion (QuIC) assays leverage protein-amplification and fluorescent signaling for the accurate detection of misfolded proteins. Here, we combine AuNP and QuIC technologies for the visual detection of amplified misfolded prion proteins from tissues of wild white-tailed deer infected with chronic wasting disease (CWD), a prion disease of cervids. Our newly developed assay, MN-QuIC, enables both naked-eye and light-absorbance measurements for detection of misfolded prions. MN-QuIC leverages basic laboratory equipment that is cost-effective and portable, thus facilitating real-time prion diagnostics across a variety of settings. In addition to laboratory-based tests, we deployed to a rural field-station in southeastern Minnesota and tested for CWD on site. We successfully demonstrated that MN-QuIC is functional in a non-traditional laboratory setting by performing a blinded analysis in the field and correctly identifying all CWD positive and CWD not-detected deer at the field site in 24 h, thus documenting the portability of the assay. White-tailed deer tissues used to validate MN-QuIC included medial retropharyngeal lymph nodes, parotid lymph nodes, and palatine tonsils. Importantly, all of the white-tailed deer (n = 63) were independently tested using ELISA, IHC, and/or RT-QuIC technologies and results secured with MN-QuIC were 95.7% and 100% consistent with these tests for positive and non-detected animals, respectively. We hypothesize that electrostatic forces help govern the AuNP/prion interactions and conclude that MN-QuIC has great potential for sensitive, field-deployable diagnostics for CWD, with future potential diagnostic applications for a variety of proteopathies.
Collapse
|
49
|
Establishing a committee for antemortem reviews of suspect Creutzfeldt-Jakob disease cases in Ireland. Ir J Med Sci 2022:10.1007/s11845-022-03070-2. [PMID: 35840825 PMCID: PMC9286704 DOI: 10.1007/s11845-022-03070-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 06/11/2022] [Indexed: 11/09/2022]
Abstract
Background
Creutzfeldt-Jakob disease (CJD) is a rapidly progressive, neurodegenerative disease. In Ireland, clinical diagnostics and laboratory testing remain the responsibility of the managing clinician and the Neuropathology Department at the Beaumont Hospital, respectively. Centralized review of individual cases is not undertaken. Aims To determine how diagnostic processes for CJD could be improved in Ireland and to outline the structure and referral process for a new CJD review panel at the Beaumont Hospital. Methods We surveyed Irish neurologists’ experiences on the management of CJD in Ireland. We measured turnaround times (TAT) for CSF samples referred for diagnostic CJD testing. Finally, we retrospectively reviewed imaging of autopsy-proven CJD cases to compare with initial reports. Results Ninety-three percent of neurologists supported a national central review of suspect CJD cases. A second clinical opinion was considered to be of likely benefit by 79%. Additionally, 93% reported that a centralized review of neuroradiology would be useful. All respondents felt that expediting turnaround of CSF analysis would be of benefit. The average TAT for CSF testing was 35.4 days. In retrospective review of imaging, all patients demonstrated MRI findings consistent with CJD. However, in only one of these cases were the initial pre-autopsy radiological findings reported as being consistent with CJD. Conclusions These findings support the need for improvements to the Irish National CJD Surveillance Unit to maximize antemortem diagnostic accuracy. On foot of this, a clinical CJD Multidisciplinary Team (CJD MDT) has been established to provide a second opinion on (i) the patient’s clinical history, (ii) neuroradiology and (iii) and neurophysiology reports (where available).
Collapse
|
50
|
Transmission, Strain Diversity, and Zoonotic Potential of Chronic Wasting Disease. Viruses 2022; 14:v14071390. [PMID: 35891371 PMCID: PMC9316268 DOI: 10.3390/v14071390] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 06/11/2022] [Accepted: 06/12/2022] [Indexed: 02/01/2023] Open
Abstract
Chronic wasting disease (CWD) is a prion disease affecting several species of captive and free-ranging cervids. In the past few decades, CWD has been spreading uncontrollably, mostly in North America, resulting in a high increase of CWD incidence but also a substantially higher number of geographical regions affected. The massive increase in CWD poses risks at several levels, including contamination of the environment, transmission to animals cohabiting with cervids, and more importantly, a putative transmission to humans. In this review, I will describe the mechanisms and routes responsible for the efficient transmission of CWD, the strain diversity of natural CWD, its spillover and zoonotic potential and strategies to minimize the CWD threat.
Collapse
|