1
|
Johnsen LØ, Friis KA, Møller‐Madsen MK, Damkier HH. Mechanisms of cerebrospinal fluid secretion by the choroid plexus epithelium: Application to various intracranial pathologies. Clin Anat 2025; 38:63-74. [PMID: 38894645 PMCID: PMC11652798 DOI: 10.1002/ca.24199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/02/2024] [Accepted: 06/06/2024] [Indexed: 06/21/2024]
Abstract
The choroid plexus (CP) is a small yet highly active epithelial tissue located in the ventricles of the brain. It secretes most of the CSF that envelops the brain and spinal cord. The epithelial cells of the CP have a high fluid secretion rate and differ from many other secretory epithelia in the organization of several key ion transporters. One striking difference is the luminal location of, for example, the vital Na+-K+-ATPase. In recent years, there has been a renewed focus on the role of ion transporters in CP secretion. Several studies have indicated that increased membrane transport activity is implicated in disorders such as hydrocephalus, idiopathic intracranial hypertension, and posthemorrhagic sequelae. The importance of the CP membrane transporters in regulating the composition of the CSF has also been a focus in research in recent years, particularly as a regulator of breathing and hemodynamic parameters such as blood pressure. This review focuses on the role of the fundamental ion transporters involved in CSF secretion and its ion composition. It gives a brief overview of the established factors and controversies concerning ion transporters, and finally discusses future perspectives related to the role of these transporters in the CP epithelium.
Collapse
|
2
|
Johnsen LØ, Sigad A, Friis KA, Berg PM, Damkier HH. NH 4Cl-induced metabolic acidosis increases the abundance of HCO 3 - transporters in the choroid plexus of mice. Front Physiol 2024; 15:1491793. [PMID: 39497701 PMCID: PMC11532781 DOI: 10.3389/fphys.2024.1491793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 10/07/2024] [Indexed: 11/07/2024] Open
Abstract
Regulation of cerebrospinal fluid (CSF) pH and brain pH are vital for all brain cells. The acute regulation of CSF pH is dependent on the transport of HCO3 - across the choroid plexus in the brain ventricles. Acute regulation in response to acidosis is dependent on H+ export and HCO3 - import across the plasma membrane. Acute regulation in response to alkalosis is dependent on HCO3 - export across the plasma membrane. The objective of the study was to investigate the contribution of the Na+-dependent HCO3 - transporters, Ncbe, NBCn1, and NBCe2 to CSF pH regulation during chronic metabolic acidosis in mice. To induce metabolic acidosis, mice received 0.28 M ammonium chloride (NH4Cl) in the drinking water for three, five, or seven days. While in vivo, CSF pH measurements did not differ, measurements of CSF [HCO3 -] revealed a significantly lower CSF [HCO3 -] after three days of acid-loading. Immunoblotting of choroid plexus protein samples showed that the abundance of the basolateral Na+/HCO3 - transporter, NBCn1, was significantly increased. This was followed by a significant increase in CSF secretion rate determined by ventriculo-cisternal perfusion. After five days of treatment with NH4Cl, CSF [HCO3 -] levels were normalized. After the normalization of CSF [HCO3 -], CSF secretion was no longer increased but the abundance of the basolateral Na+-dependent HCO3 - transporters Ncbe and NBCn1 increased. The luminal HCO3 - transporter, NBCe2, was unaffected by the treatment. In conclusion, we establish that 1) acidotic conditions increase the abundance of the basolateral Na+-dependent HCO3 - transporters in the choroid plexus, 2) NH4Cl loading in mice lowers CSF [HCO3 -] and 3) leads to increased CSF secretion likely caused by the increased capacity for transepithelial transport of Na+ and HCO3 - in the choroid plexus.
Collapse
|
3
|
Damkier HH, Praetorius J. Cerebrospinal fluid pH regulation. Pflugers Arch 2024; 476:467-478. [PMID: 38383821 DOI: 10.1007/s00424-024-02917-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/23/2024] [Accepted: 01/29/2024] [Indexed: 02/23/2024]
Abstract
The cerebrospinal fluid (CSF) fills the brain ventricles and the subarachnoid space surrounding the brain and spinal cord. The fluid compartment of the brain ventricles communicates with the interstitial fluid of the brain across the ependyma. In comparison to blood, the CSF contains very little protein to buffer acid-base challenges. Nevertheless, the CSF responds efficiently to changes in systemic pH by mechanisms that are dependent on the CO2/HCO3- buffer system. This is evident from early studies showing that the CSF secretion is sensitive to inhibitors of acid/base transporters and carbonic anhydrase. The CSF is primarily generated by the choroid plexus, which is a well-vascularized structure arising from the pial lining of the brain ventricles. The epithelial cells of the choroid plexus host a range of acid/base transporters, many of which participate in CSF secretion and most likely contribute to the transport of acid/base equivalents into the ventricles. This review describes the current understanding of the molecular mechanisms in choroid plexus acid/base regulation and the possible role in CSF pH regulation.
Collapse
Affiliation(s)
- Helle H Damkier
- Department of Biomedicine, Aarhus University, Wilhelm Meyers Allé 3, 8000, Aarhus C, Denmark
| | - Jeppe Praetorius
- Department of Biomedicine, Aarhus University, Wilhelm Meyers Allé 3, 8000, Aarhus C, Denmark.
| |
Collapse
|
4
|
Maroofian R, Zamani M, Kaiyrzhanov R, Liebmann L, Karimiani EG, Vona B, Huebner AK, Calame DG, Misra VK, Sadeghian S, Azizimalamiri R, Mohammadi MH, Zeighami J, Heydaran S, Toosi MB, Akhondian J, Babaei M, Hashemi N, Schnur RE, Suri M, Setzke J, Wagner M, Brunet T, Grochowski CM, Emrick L, Chung WK, Hellmich UA, Schmidts M, Lupski JR, Galehdari H, Severino M, Houlden H, Hübner CA. Biallelic variants in SLC4A10 encoding a sodium-dependent bicarbonate transporter lead to a neurodevelopmental disorder. Genet Med 2024; 26:101034. [PMID: 38054405 PMCID: PMC11157690 DOI: 10.1016/j.gim.2023.101034] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 11/21/2023] [Accepted: 11/24/2023] [Indexed: 12/07/2023] Open
Abstract
PURPOSE SLC4A10 encodes a plasma membrane-bound transporter, which mediates Na+-dependent HCO3- import, thus mediating net acid extrusion. Slc4a10 knockout mice show collapsed brain ventricles, an increased seizure threshold, mild behavioral abnormalities, impaired vision, and deafness. METHODS Utilizing exome/genome sequencing in families with undiagnosed neurodevelopmental disorders and international data sharing, 11 patients from 6 independent families with biallelic variants in SLC4A10 were identified. Clinico-radiological and dysmorphology assessments were conducted. A minigene assay, localization studies, intracellular pH recordings, and protein modeling were performed to study the possible functional consequences of the variant alleles. RESULTS The families harbor 8 segregating ultra-rare biallelic SLC4A10 variants (7 missense and 1 splicing). Phenotypically, patients present with global developmental delay/intellectual disability and central hypotonia, accompanied by variable speech delay, microcephaly, cerebellar ataxia, facial dysmorphism, and infrequently, epilepsy. Neuroimaging features range from some non-specific to distinct neuroradiological findings, including slit ventricles and a peculiar form of bilateral curvilinear nodular heterotopia. In silico analyses showed 6 of 7 missense variants affect evolutionarily conserved residues. Functional analyses supported the pathogenicity of 4 of 7 missense variants. CONCLUSION We provide evidence that pathogenic biallelic SLC4A10 variants can lead to neurodevelopmental disorders characterized by variable abnormalities of the central nervous system, including altered brain ventricles, thus resembling several features observed in knockout mice.
Collapse
Affiliation(s)
- Reza Maroofian
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, United Kingdom.
| | - Mina Zamani
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran; Narges Medical Genetics and Prenatal Diagnosis Laboratory, Kianpars, Ahvaz, Iran
| | - Rauan Kaiyrzhanov
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Lutz Liebmann
- Institute of Human Genetics, Jena University Hospital, Friedrich Schiller Universität, Am Klinikum 1, Jena, Germany
| | - Ehsan Ghayoor Karimiani
- Molecular and Clinical Sciences Institute, St. George's, University of London, Cranmer Terrace, London, United Kingdom
| | - Barbara Vona
- Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany; Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany
| | - Antje K Huebner
- Institute of Human Genetics, Jena University Hospital, Friedrich Schiller Universität, Am Klinikum 1, Jena, Germany
| | - Daniel G Calame
- Division of Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, TX; Texas Children's Hospital, Houston, TX; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | - Vinod K Misra
- Division of Genetic, Genomic & Metabolic Disorders, Discipline of Pediatrics, College of Medicine, Central Michigan University, Mount Pleasant, MI
| | - Saeid Sadeghian
- Department of Pediatric Neurology, Golestan Medical, Educational, and Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Reza Azizimalamiri
- Department of Pediatric Neurology, Golestan Medical, Educational, and Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | - Jawaher Zeighami
- Narges Medical Genetics and Prenatal Diagnosis Laboratory, Kianpars, Ahvaz, Iran
| | - Sogand Heydaran
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Mehran Beiraghi Toosi
- Pediatric Neurology Department, Ghaem Hospital, Mashhad University of Medical Sciences, Mashhad, Iran; Neuroscience Research Center, Mashhad University of Medical Science, Mashhad, Iran
| | - Javad Akhondian
- Pediatric Neurology Department, Ghaem Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meisam Babaei
- Department of Pediatrics, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Narges Hashemi
- Department of Pediatrics, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Mohnish Suri
- Clinical Genetics Service, Nottingham University Hospitals NHS Trust, Nottingham, United Kingdom
| | - Jonas Setzke
- Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany; Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany
| | - Matias Wagner
- Institute of Human Genetics, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany; Institute of Neurogenomics, Helmholtz Zentrum München, Neuherberg, Germany; Department of Pediatric Neurology and Developmental Medicine and LMU Center for Children with Medical Complexity, Dr. von Hauner Children's Hospital, LMU Hospital, Ludwig-Maximilians-University, Munich, Germany
| | - Theresa Brunet
- Institute of Human Genetics, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany; Institute of Neurogenomics, Helmholtz Zentrum München, Neuherberg, Germany
| | | | - Lisa Emrick
- Division of Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, TX; Texas Children's Hospital, Houston, TX; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | - Wendy K Chung
- Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Ute A Hellmich
- Friedrich Schiller University Jena, Faculty of Chemistry and Earth Sciences, Institute of Organic Chemistry and Macromolecular Chemistry, Jena, Germany; Center for Biomolecular Magnetic Resonance (BMRZ), Goethe University, Frankfurt, Germany; Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Jena, Germany
| | - Miriam Schmidts
- Pediatrics Genetics Division, Center for Pediatrics and Adolescent Medicine, Faculty of Medicine, Freiburg University, Freiburg, Germany; Genome Research Division, Human Genetics Department, Radboud University Medical Center, Nijmegen, The Netherlands; CIBSS-Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - James R Lupski
- Texas Children's Hospital, Houston, TX; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX; Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX
| | - Hamid Galehdari
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | | | - Henry Houlden
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Christian A Hübner
- Institute of Human Genetics, Jena University Hospital, Friedrich Schiller Universität, Am Klinikum 1, Jena, Germany; Center for Rare Diseases, Jena University Hospital, Jena, Germany
| |
Collapse
|
5
|
MacAulay N, Toft-Bertelsen TL. Dual function of the choroid plexus: Cerebrospinal fluid production and control of brain ion homeostasis. Cell Calcium 2023; 116:102797. [PMID: 37801806 DOI: 10.1016/j.ceca.2023.102797] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/07/2023] [Accepted: 09/08/2023] [Indexed: 10/08/2023]
Abstract
The choroid plexus is a small monolayered epithelium located in the brain ventricles and serves to secrete the cerebrospinal fluid (CSF) that envelops the brain and fills the central ventricles. The CSF secretion is sustained with a concerted effort of a range of membrane transporters located in a polarized fashion in this tissue. Prominent amongst these are the Na+/K+-ATPase, the Na+,K+,2Cl- cotransporter (NKCC1), and several HCO3- transporters, which together support the net transepithelial transport of the major electrolytes, Na+ and Cl-, and thus drive the CSF secretion. The choroid plexus, in addition, serves an important role in keeping the CSF K+ concentration at a level compatible with normal brain function. The choroid plexus Na+/K+-ATPase represents a key factor in the barrier-mediated control of the CSF K+ homeostasis, as it increases its K+ uptake activity when faced with elevated extracellular K+ ([K+]o). In certain developmental or pathological conditions, the NKCC1 may revert its net transport direction to contribute to CSF K+ homeostasis. The choroid plexus ion transport machinery thus serves dual, yet interconnected, functions with its contribution to electrolyte and fluid secretion in combination with its control of brain K+ levels.
Collapse
Affiliation(s)
- Nanna MacAulay
- Department of Neuroscience, University of Copenhagen, Blegdamsvej 3, Copenhagen 2200, Denmark.
| | - Trine L Toft-Bertelsen
- Department of Neuroscience, University of Copenhagen, Blegdamsvej 3, Copenhagen 2200, Denmark
| |
Collapse
|
6
|
Fasham J, Huebner AK, Liebmann L, Khalaf-Nazzal R, Maroofian R, Kryeziu N, Wortmann SB, Leslie JS, Ubeyratna N, Mancini GMS, van Slegtenhorst M, Wilke M, Haack TB, Shamseldin HE, Gleeson JG, Almuhaizea M, Dweikat I, Abu-Libdeh B, Daana M, Zaki MS, Wakeling MN, McGavin L, Turnpenny PD, Alkuraya FS, Houlden H, Schlattmann P, Kaila K, Crosby AH, Baple EL, Hübner CA. SLC4A10 mutation causes a neurological disorder associated with impaired GABAergic transmission. Brain 2023; 146:4547-4561. [PMID: 37459438 PMCID: PMC10629776 DOI: 10.1093/brain/awad235] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/19/2023] [Accepted: 06/06/2023] [Indexed: 11/09/2023] Open
Abstract
SLC4A10 is a plasma-membrane bound transporter that utilizes the Na+ gradient to drive cellular HCO3- uptake, thus mediating acid extrusion. In the mammalian brain, SLC4A10 is expressed in principal neurons and interneurons, as well as in epithelial cells of the choroid plexus, the organ regulating the production of CSF. Using next generation sequencing on samples from five unrelated families encompassing nine affected individuals, we show that biallelic SLC4A10 loss-of-function variants cause a clinically recognizable neurodevelopmental disorder in humans. The cardinal clinical features of the condition include hypotonia in infancy, delayed psychomotor development across all domains and intellectual impairment. Affected individuals commonly display traits associated with autistic spectrum disorder including anxiety, hyperactivity and stereotyped movements. In two cases isolated episodes of seizures were reported in the first few years of life, and a further affected child displayed bitemporal epileptogenic discharges on EEG without overt clinical seizures. While occipitofrontal circumference was reported to be normal at birth, progressive postnatal microcephaly evolved in 7 out of 10 affected individuals. Neuroradiological features included a relative preservation of brain volume compared to occipitofrontal circumference, characteristic narrow sometimes 'slit-like' lateral ventricles and corpus callosum abnormalities. Slc4a10 -/- mice, deficient for SLC4A10, also display small lateral brain ventricles and mild behavioural abnormalities including delayed habituation and alterations in the two-object novel object recognition task. Collapsed brain ventricles in both Slc4a10-/- mice and affected individuals suggest an important role of SLC4A10 in the production of the CSF. However, it is notable that despite diverse roles of the CSF in the developing and adult brain, the cortex of Slc4a10-/- mice appears grossly intact. Co-staining with synaptic markers revealed that in neurons, SLC4A10 localizes to inhibitory, but not excitatory, presynapses. These findings are supported by our functional studies, which show the release of the inhibitory neurotransmitter GABA is compromised in Slc4a10-/- mice, while the release of the excitatory neurotransmitter glutamate is preserved. Manipulation of intracellular pH partially rescues GABA release. Together our studies define a novel neurodevelopmental disorder associated with biallelic pathogenic variants in SLC4A10 and highlight the importance of further analyses of the consequences of SLC4A10 loss-of-function for brain development, synaptic transmission and network properties.
Collapse
Affiliation(s)
- James Fasham
- RILD Wellcome Wolfson Centre, University of Exeter Medical School, Royal Devon University Healthcare NHS Foundation Trust, Exeter EX2 5DW, UK
- Peninsula Clinical Genetics Service, Royal Devon University Healthcare NHS Foundation Trust, Exeter EX2 5DW, UK
| | - Antje K Huebner
- Institute of Human Genetics, Jena University Hospital, Friedrich Schiller Universität, 07747 Jena, Germany
| | - Lutz Liebmann
- Institute of Human Genetics, Jena University Hospital, Friedrich Schiller Universität, 07747 Jena, Germany
| | - Reham Khalaf-Nazzal
- Department of Biomedical Sciences, Faculty of Medicine, Arab American University of Palestine, Jenin, P227, Palestine
| | - Reza Maroofian
- Molecular and Clinical Sciences Institute, St. George’s University of London, London SW17 0RE, UK
| | - Nderim Kryeziu
- Institute of Human Genetics, Jena University Hospital, Friedrich Schiller Universität, 07747 Jena, Germany
| | - Saskia B Wortmann
- University Children’s Hospital, Salzburger Landeskliniken (SALK) and Paracelsus Medical University (PMU), 5020 Salzburg, Austria
- Amalia Children’s Hospital, Radboudumc, 6525 GA Nijmegen, The Netherlands
- Institute of Human Genetics, Technische Universität München, 80333 Munich, Germany
| | - Joseph S Leslie
- RILD Wellcome Wolfson Centre, University of Exeter Medical School, Royal Devon University Healthcare NHS Foundation Trust, Exeter EX2 5DW, UK
| | - Nishanka Ubeyratna
- RILD Wellcome Wolfson Centre, University of Exeter Medical School, Royal Devon University Healthcare NHS Foundation Trust, Exeter EX2 5DW, UK
| | - Grazia M S Mancini
- Department of Clinical Genetics, Erasmus Medical Center, 3015 GD Rotterdam, The Netherlands
| | | | - Martina Wilke
- Department of Clinical Genetics, Erasmus Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Tobias B Haack
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, 72076 Tübingen, Germany
| | - Hanan E Shamseldin
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia
| | - Joseph G Gleeson
- Rady Children’s Institute for Genomic Medicine, San Diego, CA 92123, USA
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Mohamed Almuhaizea
- Department of Neuroscience, King Faisal Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia
| | - Imad Dweikat
- Department of Biomedical Sciences, Faculty of Medicine, Arab American University of Palestine, Jenin, P227, Palestine
| | - Bassam Abu-Libdeh
- Department of Pediatrics and Genetics, Makassed Hospital and Al-Quds University, East Jerusalem, 95908, Palestine
| | - Muhannad Daana
- Department of Pediatrics, Arab Women’s Union Hospital, Nablus, P400, Palestine
| | - Maha S Zaki
- Clinical Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, Dokki, Cairo 12622, Egypt
| | - Matthew N Wakeling
- RILD Wellcome Wolfson Centre, University of Exeter Medical School, Royal Devon University Healthcare NHS Foundation Trust, Exeter EX2 5DW, UK
| | - Lucy McGavin
- Department of Radiology, Derriford Hospital, Plymouth PL6 8DH, UK
| | - Peter D Turnpenny
- RILD Wellcome Wolfson Centre, University of Exeter Medical School, Royal Devon University Healthcare NHS Foundation Trust, Exeter EX2 5DW, UK
- Peninsula Clinical Genetics Service, Royal Devon University Healthcare NHS Foundation Trust, Exeter EX2 5DW, UK
| | - Fowzan S Alkuraya
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia
| | - Henry Houlden
- Molecular and Clinical Sciences Institute, St. George’s University of London, London SW17 0RE, UK
| | - Peter Schlattmann
- Institute for Medical Statistics, Computer Science and Data Science, Jena University Hospital, 07747 Jena, Germany
| | - Kai Kaila
- Molecular and Integrative Biosciences, University of Helsinki, 00014 Helsinki, Finland
- Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, 00014 Helsinki, Finland
| | - Andrew H Crosby
- RILD Wellcome Wolfson Centre, University of Exeter Medical School, Royal Devon University Healthcare NHS Foundation Trust, Exeter EX2 5DW, UK
| | - Emma L Baple
- RILD Wellcome Wolfson Centre, University of Exeter Medical School, Royal Devon University Healthcare NHS Foundation Trust, Exeter EX2 5DW, UK
- Peninsula Clinical Genetics Service, Royal Devon University Healthcare NHS Foundation Trust, Exeter EX2 5DW, UK
| | - Christian A Hübner
- Institute of Human Genetics, Jena University Hospital, Friedrich Schiller Universität, 07747 Jena, Germany
- Center for Rare Diseases, Jena University Hospital, Friedrich Schiller Universität, 07747 Jena, Germany
| |
Collapse
|
7
|
Johnsen LØ, Friis KA, Damkier HH. In vitro investigation of the effect of proinflammatory cytokines on mouse choroid plexus membrane transporters Ncbe and NKCC1. Fluids Barriers CNS 2023; 20:71. [PMID: 37828581 PMCID: PMC10568836 DOI: 10.1186/s12987-023-00474-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 10/04/2023] [Indexed: 10/14/2023] Open
Abstract
Intraventricular hemorrhage is a potentially life-threatening condition. Approximately 20% of patients develop posthemorrhagic hydrocephalus with increased ventricular volume and intracranial pressure. Hydrocephalus develops partially due to increased secretion of cerebrospinal fluid by the choroid plexus. During hemorrhage a multitude of factors are released into the cerebrospinal fluid. Many of these have been implicated in the hypersecretion. In this study, we have investigated the isolated effect of inflammatory components, on the abundance of two membrane transporters involved in cerebrospinal fluid secretion by the choroid plexus: the Na+-dependent Cl-/HCO3- exchanger, Ncbe, and the Na+, K+, 2Cl- cotransporter, NKCC1. We have established a primary choroid plexus epithelial cell culture from 1 to 7 days old mouse pups. Seven days after seeding, the cells formed a monolayer. The cells were treated with either tumor necrosis factor alpha (TNFα), interleukin 1 beta (IL-1β), or interleukin 6 (IL-6) to mimic inflammation. The data show that treatment with TNFα, and IL-1β only transiently increased NKCC1 abundance whereas the effect on Ncbe abundance was a transient decrease. IL-6 however significantly increased NKCC1 (242%), the phosphorylated NKCC1 (147%), as well as pSPAK (406%) abundance, but had no effect on Ncbe. This study suggests that the inflammatory pathway involved in hypersecretion primarily is mediated by activation of basolateral receptors in the choroid plexus, mainly facilitated by IL-6. This study highlights the complexity of the pathophysiological circumstances occurring during intraventricular hemorrhage.
Collapse
|
8
|
Saunders NR, Dziegielewska KM, Fame RM, Lehtinen MK, Liddelow SA. The choroid plexus: a missing link in our understanding of brain development and function. Physiol Rev 2023; 103:919-956. [PMID: 36173801 PMCID: PMC9678431 DOI: 10.1152/physrev.00060.2021] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 09/01/2022] [Accepted: 09/17/2022] [Indexed: 11/22/2022] Open
Abstract
Studies of the choroid plexus lag behind those of the more widely known blood-brain barrier, despite a much longer history. This review has two overall aims. The first is to outline long-standing areas of research where there are unanswered questions, such as control of cerebrospinal fluid (CSF) secretion and blood flow. The second aim is to review research over the past 10 years where the focus has shifted to the idea that there are choroid plexuses located in each of the brain's ventricles that make specific contributions to brain development and function through molecules they generate for delivery via the CSF. These factors appear to be particularly important for aspects of normal brain growth. Most research carried out during the twentieth century dealt with the choroid plexus, a brain barrier interface making critical contributions to the composition and stability of the brain's internal environment throughout life. More recent research in the twenty-first century has shown the importance of choroid plexus-generated CSF in neurogenesis, influence of sex and other hormones on choroid plexus function, and choroid plexus involvement in circadian rhythms and sleep. The advancement of technologies to facilitate delivery of brain-specific therapies via the CSF to treat neurological disorders is a rapidly growing area of research. Conversely, understanding the basic mechanisms and implications of how maternal drug exposure during pregnancy impacts the developing brain represents another key area of research.
Collapse
Affiliation(s)
- Norman R Saunders
- Department of Neuroscience, The Alfred Centre, Monash University, Melbourne, Victoria, Australia
| | | | - Ryann M Fame
- Department of Pathology, Boston Children's Hospital, Boston, Massachusetts
| | - Maria K Lehtinen
- Department of Pathology, Boston Children's Hospital, Boston, Massachusetts
| | - Shane A Liddelow
- Neuroscience Institute, NYU Grossman School of Medicine, New York, New York
- Department of Neuroscience and Physiology, NYU Grossman School of Medicine, New York, New York
- Department of Ophthalmology, NYU Grossman School of Medicine, New York, New York
- Parekh Center for Interdisciplinary Neurology, NYU Grossman School of Medicine, New York, New York
| |
Collapse
|
9
|
Thompson D, Brissette CA, Watt JA. The choroid plexus and its role in the pathogenesis of neurological infections. Fluids Barriers CNS 2022; 19:75. [PMID: 36088417 PMCID: PMC9463972 DOI: 10.1186/s12987-022-00372-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 08/27/2022] [Indexed: 11/10/2022] Open
Abstract
The choroid plexus is situated at an anatomically and functionally important interface within the ventricles of the brain, forming the blood-cerebrospinal fluid barrier that separates the periphery from the central nervous system. In contrast to the blood-brain barrier, the choroid plexus and its epithelial barrier have received considerably less attention. As the main producer of cerebrospinal fluid, the secretory functions of the epithelial cells aid in the maintenance of CNS homeostasis and are capable of relaying inflammatory signals to the brain. The choroid plexus acts as an immunological niche where several types of peripheral immune cells can be found within the stroma including dendritic cells, macrophages, and T cells. Including the epithelia cells, these cells perform immunosurveillance, detecting pathogens and changes in the cytokine milieu. As such, their activation leads to the release of homing molecules to induce chemotaxis of circulating immune cells, driving an immune response at the choroid plexus. Research into the barrier properties have shown how inflammation can alter the structural junctions and promote increased bidirectional transmigration of cells and pathogens. The goal of this review is to highlight our foundational knowledge of the choroid plexus and discuss how recent research has shifted our understanding towards viewing the choroid plexus as a highly dynamic and important contributor to the pathogenesis of neurological infections. With the emergence of several high-profile diseases, including ZIKA and SARS-CoV-2, this review provides a pertinent update on the cellular response of the choroid plexus to these diseases. Historically, pharmacological interventions of CNS disorders have proven difficult to develop, however, a greater focus on the role of the choroid plexus in driving these disorders would provide for novel targets and routes for therapeutics.
Collapse
Affiliation(s)
- Derick Thompson
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, USA
| | - Catherine A Brissette
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, USA
| | - John A Watt
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, USA.
| |
Collapse
|
10
|
Wang J, Zahra A, Wang Y, Wu J. Understanding the Physiological Role of Electroneutral Na+-Coupled HCO3− Cotransporter and Its Therapeutic Implications. Pharmaceuticals (Basel) 2022; 15:ph15091082. [PMID: 36145304 PMCID: PMC9505461 DOI: 10.3390/ph15091082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/28/2022] [Accepted: 08/29/2022] [Indexed: 11/16/2022] Open
Abstract
Acid–base homeostasis is critical for proper physiological function and pathology. The SLC4 family of HCO3− transmembrane cotransporters is one of the HCO3− transmembrane transport carriers responsible for cellular pH regulation and the uptake or secretion of HCO3− in epithelial cells. NBCn1 (SLC4A7), an electroneutral Na+/HCO3− cotransporter, is extensively expressed in several tissues and functions as a cotransporter for net acid extrusion after cellular acidification. However, the expression and activity level of NBCn1 remain elusive. In addition, NBCn1 has been involved in numerous other cellular processes such as cell volume, cell death/survival balance, transepithelial transport, as well as regulation of cell viability. This review aims to give an inclusive overview of the most recent advances in the research of NBCn1, emphasizing the basic features, regulation, and tissue-specific physiology as well as the development and application of potent inhibitors of NBCn1 transporter in cancer therapy. Research and development of targeted therapies should be carried out for NBCn1 and its associated pathways.
Collapse
Affiliation(s)
- Jingjing Wang
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China
| | - Aqeela Zahra
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China
| | - YunFu Wang
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan 442000, China
| | - Jianping Wu
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan 442000, China
- Correspondence:
| |
Collapse
|
11
|
Barbuskaite D, Oernbo EK, Wardman JH, Toft-Bertelsen TL, Conti E, Andreassen SN, Gerkau NJ, Rose CR, MacAulay N. Acetazolamide modulates intracranial pressure directly by its action on the cerebrospinal fluid secretion apparatus. Fluids Barriers CNS 2022; 19:53. [PMID: 35768824 PMCID: PMC9245291 DOI: 10.1186/s12987-022-00348-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/01/2022] [Indexed: 01/29/2023] Open
Abstract
Background Elevated intracranial pressure (ICP) is observed in many neurological pathologies, e.g. hydrocephalus and stroke. This condition is routinely relieved with neurosurgical approaches, since effective and targeted pharmacological tools are still lacking. The carbonic anhydrase inhibitor, acetazolamide (AZE), may be employed to treat elevated ICP. However, its effectiveness is questioned, its location of action unresolved, and its tolerability low. Here, we determined the efficacy and mode of action of AZE in the rat . Methods We employed in vivo approaches including ICP and cerebrospinal fluid secretion measurements in anaesthetized rats and telemetric monitoring of ICP and blood pressure in awake rats in combination with ex vivo choroidal radioisotope flux assays and transcriptomic analysis. Results AZE effectively reduced the ICP, irrespective of the mode of drug administration and level of anaesthesia. The effect appeared to occur via a direct action on the choroid plexus and an associated decrease in cerebrospinal fluid secretion, and not indirectly via the systemic action of AZE on renal and vascular processes. Upon a single administration, the reduced ICP endured for approximately 10 h post-AZE delivery with no long-term changes of brain water content or choroidal transporter expression. However, a persistent reduction of ICP was secured with repeated AZE administrations throughout the day. Conclusions AZE lowers ICP directly via its ability to reduce the choroid plexus CSF secretion, irrespective of mode of drug administration. Supplementary Information The online version contains supplementary material available at 10.1186/s12987-022-00348-6.
Collapse
Affiliation(s)
- Dagne Barbuskaite
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200, Copenhagen, Denmark
| | - Eva K Oernbo
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200, Copenhagen, Denmark
| | - Jonathan H Wardman
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200, Copenhagen, Denmark
| | - Trine L Toft-Bertelsen
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200, Copenhagen, Denmark
| | - Eller Conti
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200, Copenhagen, Denmark
| | - Søren N Andreassen
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200, Copenhagen, Denmark
| | - Niklas J Gerkau
- Institute of Neurobiology, Heinrich Heine University, Universitätsstrasse 1, 40225, Düsseldorf, Germany
| | - Christine R Rose
- Institute of Neurobiology, Heinrich Heine University, Universitätsstrasse 1, 40225, Düsseldorf, Germany
| | - Nanna MacAulay
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200, Copenhagen, Denmark.
| |
Collapse
|
12
|
Targeting choroid plexus epithelium as a novel therapeutic strategy for hydrocephalus. J Neuroinflammation 2022; 19:156. [PMID: 35715859 PMCID: PMC9205094 DOI: 10.1186/s12974-022-02500-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 06/01/2022] [Indexed: 11/25/2022] Open
Abstract
The choroid plexus is a tissue located in the lateral ventricles of the brain and is composed mainly of choroid plexus epithelium cells. The main function is currently thought to be the secretion of cerebrospinal fluid and the regulation of its pH, and more functions are gradually being demonstrated. Assistance in the removal of metabolic waste and participation in the apoptotic pathway are also the functions of choroid plexus. Besides, it helps to repair the brain by regulating the secretion of neuropeptides and the delivery of drugs. It is involved in the immune response to assist in the clearance of infections in the central nervous system. It is now believed that the choroid plexus is in an inflammatory state after damage to the brain. This state, along with changes in the cilia, is thought to be an abnormal physiological state of the choroid plexus, which in turn leads to abnormal conditions in cerebrospinal fluid and triggers hydrocephalus. This review describes the pathophysiological mechanism of hydrocephalus following choroid plexus epithelium cell abnormalities based on the normal physiological functions of choroid plexus epithelium cells, and analyzes the attempts and future developments of using choroid plexus epithelium cells as a therapeutic target for hydrocephalus.
Collapse
|
13
|
Kompaníková P, Bryja V. Regulation of choroid plexus development and its functions. Cell Mol Life Sci 2022; 79:304. [PMID: 35589983 PMCID: PMC9119385 DOI: 10.1007/s00018-022-04314-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 03/28/2022] [Accepted: 04/17/2022] [Indexed: 11/03/2022]
Abstract
The choroid plexus (ChP) is an extensively vascularized tissue that protrudes into the brain ventricular system of all vertebrates. This highly specialized structure, consisting of the polarized epithelial sheet and underlying stroma, serves a spectrum of functions within the central nervous system (CNS), most notably the production of cerebrospinal fluid (CSF). The epithelial cells of the ChP have the competence to tightly modulate the biomolecule composition of CSF, which acts as a milieu functionally connecting ChP with other brain structures. This review aims to eloquently summarize the current knowledge about the development of ChP. We describe the mechanisms that control its early specification from roof plate followed by the formation of proliferative regions-cortical hem and rhombic lips-feeding later development of ChP. Next, we summarized the current knowledge on the maturation of ChP and mechanisms that control its morphological and cellular diversity. Furthermore, we attempted to review the currently available battery of molecular markers and mouse strains available for the research of ChP, and identified some technological shortcomings that must be overcome to accelerate the ChP research field. Overall, the central principle of this review is to highlight ChP as an intriguing and surprisingly poorly known structure that is vital for the development and function of the whole CNS. We believe that our summary will increase the interest in further studies of ChP that aim to describe the molecular and cellular principles guiding the development and function of this tissue.
Collapse
Affiliation(s)
- Petra Kompaníková
- Department of Experimental Biology, Faculty of Science, Masaryk University, 62500, Brno, Czech Republic
| | - Vítězslav Bryja
- Department of Experimental Biology, Faculty of Science, Masaryk University, 62500, Brno, Czech Republic.
- Department of Cytokinetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, 61265, Brno, Czech Republic.
| |
Collapse
|
14
|
Fang Y, Huang L, Wang X, Si X, Lenahan C, Shi H, Shao A, Tang J, Chen S, Zhang J, Zhang JH. A new perspective on cerebrospinal fluid dynamics after subarachnoid hemorrhage: From normal physiology to pathophysiological changes. J Cereb Blood Flow Metab 2022; 42:543-558. [PMID: 34806932 PMCID: PMC9051143 DOI: 10.1177/0271678x211045748] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 08/14/2021] [Accepted: 08/19/2021] [Indexed: 11/17/2022]
Abstract
Knowledge about the dynamic metabolism and function of cerebrospinal fluid (CSF) physiology has rapidly progressed in recent decades. It has traditionally been suggested that CSF is produced by the choroid plexus and drains to the arachnoid villi. However, recent findings have revealed that the brain parenchyma produces a large portion of CSF and drains through the perivascular glymphatic system and meningeal lymphatic vessels into the blood. The primary function of CSF is not limited to maintaining physiological CNS homeostasis but also participates in clearing waste products resulting from neurodegenerative diseases and acute brain injury. Aneurysmal subarachnoid hemorrhage (SAH), a disastrous subtype of acute brain injury, is associated with high mortality and morbidity. Post-SAH complications contribute to the poor outcomes associated with SAH. Recently, abnormal CSF flow was suggested to play an essential role in the post-SAH pathophysiological changes, such as increased intracerebral pressure, brain edema formation, hydrocephalus, and delayed blood clearance. An in-depth understanding of CSF dynamics in post-SAH events would shed light on potential development of SAH treatment options. This review summarizes and updates the latest physiological characteristics of CSF dynamics and discusses potential pathophysiological changes and therapeutic targets after SAH.
Collapse
Affiliation(s)
- Yuanjian Fang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Lei Huang
- Department of Neurosurgery, Loma Linda University, Loma Linda, CA, USA
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, USA
| | - Xiaoyu Wang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiaoli Si
- Department of Neurology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Cameron Lenahan
- Department of Neurosurgery, Loma Linda University, Loma Linda, CA, USA
- Burrell College of Osteopathic Medicine, Las Cruces, NM, USA
| | - Hui Shi
- Department of Neurosurgery, Loma Linda University, Loma Linda, CA, USA
- Department of Neurosurgery, Yongchuan Hospital, Chongqing Medical University, Chongqing, China
| | - Anwen Shao
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jiping Tang
- Department of Neurosurgery, Loma Linda University, Loma Linda, CA, USA
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, USA
- Department of Anesthesiology, Loma Linda University, Loma Linda, CA, USA
| | - Sheng Chen
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jianmin Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - John H Zhang
- Department of Neurosurgery, Loma Linda University, Loma Linda, CA, USA
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, USA
- Department of Anesthesiology, Loma Linda University, Loma Linda, CA, USA
| |
Collapse
|
15
|
Abstract
Our brains consist of 80% water, which is continuously shifted between different compartments and cell types during physiological and pathophysiological processes. Disturbances in brain water homeostasis occur with pathologies such as brain oedema and hydrocephalus, in which fluid accumulation leads to elevated intracranial pressure. Targeted pharmacological treatments do not exist for these conditions owing to our incomplete understanding of the molecular mechanisms governing brain water transport. Historically, the transmembrane movement of brain water was assumed to occur as passive movement of water along the osmotic gradient, greatly accelerated by water channels termed aquaporins. Although aquaporins govern the majority of fluid handling in the kidney, they do not suffice to explain the overall brain water movement: either they are not present in the membranes across which water flows or they appear not to be required for the observed flow of water. Notably, brain fluid can be secreted against an osmotic gradient, suggesting that conventional osmotic water flow may not describe all transmembrane fluid transport in the brain. The cotransport of water is an unconventional molecular mechanism that is introduced in this Review as a missing link to bridge the gap in our understanding of cellular and barrier brain water transport.
Collapse
Affiliation(s)
- Nanna MacAulay
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
16
|
Yuan D, Ma Z, Tuo B, Li T, Liu X. Physiological Significance of Ion Transporters and Channels in the Stomach and Pathophysiological Relevance in Gastric Cancer. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2020; 2020:2869138. [PMID: 32104192 PMCID: PMC7040404 DOI: 10.1155/2020/2869138] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 12/17/2019] [Accepted: 01/08/2020] [Indexed: 12/26/2022]
Abstract
Gastric cancer (GC) is a highly invasive and fatal malignant disease that accounts for 5.7% of new global cancer cases and is the third leading cause of cancer-related death. Acid/base homeostasis is critical for organisms because protein and enzyme function, cellular structure, and plasma membrane permeability change with pH. Various ion transporters are expressed in normal gastric mucosal epithelial cells and regulate gastric acid secretion, ion transport, and fluid absorption, thereby stabilizing the differentiation and homeostasis of gastric mucosal epithelial cells. Ion transporter dysfunction results in disordered ion transport, mucosa barrier dysfunction, and acid/base disturbances, causing gastric acid-related diseases such as chronic atrophic gastritis (CAG) and GC. This review summarizes the physiological functions of multiple ion transporters and channels in the stomach, including Cl- channels, Cl-/HCO3 - exchangers, sodium/hydrogen exchangers (NHEs), and potassium (K+) channels, and their pathophysiological relevance in GC.
Collapse
Affiliation(s)
- Dumin Yuan
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, China
- Digestive Disease Institute of Guizhou Province, Zunyi, Guizhou Province, China
| | - Zhiyuan Ma
- Department of Thyroid and Breast Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, China
| | - Biguang Tuo
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, China
- Digestive Disease Institute of Guizhou Province, Zunyi, Guizhou Province, China
| | - Taolang Li
- Department of Thyroid and Breast Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, China
| | - Xuemei Liu
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, China
- Digestive Disease Institute of Guizhou Province, Zunyi, Guizhou Province, China
| |
Collapse
|
17
|
Christensen IB, Wu Q, Bohlbro AS, Skals MG, Damkier HH, Hübner CA, Fenton RA, Praetorius J. Genetic disruption of slc4a10 alters the capacity for cellular metabolism and vectorial ion transport in the choroid plexus epithelium. Fluids Barriers CNS 2020; 17:2. [PMID: 31906971 PMCID: PMC6945596 DOI: 10.1186/s12987-019-0162-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 12/12/2019] [Indexed: 02/02/2023] Open
Abstract
Background Genetic disruption of slc4a10, which encodes the sodium-dependent chloride/bicarbonate exchanger Ncbe, leads to a major decrease in Na+-dependent HCO3− import into choroid plexus epithelial cells in mice and to a marked reduction in brain intraventricular fluid volume. This suggests that Ncbe functionally is a key element in vectorial Na+ transport and thereby for cerebrospinal fluid secretion in the choroid plexus. However, slc4a10 disruption results in severe changes in expression of Na+,K+-ATPase complexes and other major transport proteins, indicating that profound cellular changes accompany the genetic manipulation. Methods A tandem mass tag labeling strategy was chosen for quantitative mass spectrometry. Alterations in the broader patterns of protein expression in the choroid plexus in response to genetic disruption of Ncbe was validated by semi-quantitative immunoblotting, immunohistochemistry and morphometry. Results The abundance of 601 proteins were found significantly altered in the choroid plexus from Ncbe ko mice relative to Ncbe wt. In addition to a variety of transport proteins, particularly large changes in the abundance of proteins involved in cellular energy metabolism were detected in the Ncbe ko mice. In general, the abundance of rate limiting glycolytic enzymes and several mitochondrial enzymes were reduced following slc4a10 disruption. Surprisingly, this was accompanied by increased ATP levels in choroid plexus cells, indicating that the reduction in capacity for energy metabolism was adaptive to high ATP rather than causal for a decreased capacity for ion and water transport. Ncbe-deficient cells also had a reduced cell area and decreased K+ content. Conclusion Our findings suggest that the lack of effective Na+-entry into the epithelial cells of the choroid plexus leads to a profound change in the cellular phenotype, shifting from a high-rate secretory function towards a more dormant state; similar to what is observed during ageing or Alzheimer’s disease.
Collapse
Affiliation(s)
- Inga Baasch Christensen
- Department of Biomedicine, Health, Aarhus University, Wilhelm Meyers Allé 3, r. 219, 8000, Aarhus C, Denmark
| | - Qi Wu
- Department of Biomedicine, Health, Aarhus University, Wilhelm Meyers Allé 3, r. 219, 8000, Aarhus C, Denmark
| | - Anders Solitander Bohlbro
- Department of Biomedicine, Health, Aarhus University, Wilhelm Meyers Allé 3, r. 219, 8000, Aarhus C, Denmark
| | - Marianne Gerberg Skals
- Department of Biomedicine, Health, Aarhus University, Wilhelm Meyers Allé 3, r. 219, 8000, Aarhus C, Denmark
| | - Helle Hasager Damkier
- Department of Biomedicine, Health, Aarhus University, Wilhelm Meyers Allé 3, r. 219, 8000, Aarhus C, Denmark
| | - Christian Andreas Hübner
- Department of Biomedicine, Health, Aarhus University, Wilhelm Meyers Allé 3, r. 219, 8000, Aarhus C, Denmark
| | - Robert Andrew Fenton
- Department of Biomedicine, Health, Aarhus University, Wilhelm Meyers Allé 3, r. 219, 8000, Aarhus C, Denmark
| | - Jeppe Praetorius
- Department of Biomedicine, Health, Aarhus University, Wilhelm Meyers Allé 3, r. 219, 8000, Aarhus C, Denmark.
| |
Collapse
|
18
|
Christensen HL, Barbuskaite D, Rojek A, Malte H, Christensen IB, Füchtbauer AC, Füchtbauer EM, Wang T, Praetorius J, Damkier HH. The choroid plexus sodium-bicarbonate cotransporter NBCe2 regulates mouse cerebrospinal fluid pH. J Physiol 2018; 596:4709-4728. [PMID: 29956324 PMCID: PMC6166071 DOI: 10.1113/jp275489] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 06/19/2018] [Indexed: 12/25/2022] Open
Abstract
Key points Normal pH is crucial for proper functioning of the brain, and disorders increasing the level of CO2 in the blood lead to a decrease in brain pH. CO2 can easily cross the barriers of the brain and will activate chemoreceptors leading to an increased exhalation of CO2. The low pH, however, is harmful and bases such as HCO3− are imported across the brain barriers in order to normalize brain pH. We show that the HCO3− transporter NBCe2 in the choroid plexus of the blood‐cerebrospinal fluid barrier is absolutely necessary for normalizing CSF pH during high levels of CO2. This discovery represents a significant step in understanding the molecular mechanisms behind regulation of CSF pH during acid‐base disturbances, such as chronic lung disease.
Abstract The choroid plexus epithelium (CPE) is located in the brain ventricles where it produces the majority of the cerebrospinal fluid (CSF). The hypothesis that normal brain function is sustained by CPE‐mediated CSF pH regulation by extrusion of acid‐base equivalents was tested by determining the contribution of the electrogenic Na+‐HCO3− cotransporter NBCe2 to CSF pH regulation. A novel strain of NBCe2 (Slc4a5) knockout (KO) mice was generated and validated. The base extrusion rate after intracellular alkalization was reduced by 77% in NBCe2 KO mouse CPE cells compared to control mice. NBCe2 KO mice and mice with CPE‐targeted NBCe2 siRNA knockdown displayed a reduction in CSF pH recovery during hypercapnia‐induced acidosis of approximately 85% and 90%, respectively, compared to control mice. NBCe2 KO did not affect baseline respiration rate or tidal volume, and the NBCe2 KO and wild‐type (WT) mice displayed similar ventilatory responses to 5% CO2 exposure. NBCe2 KO mice were not protected against pharmacological or heating‐induced seizure development. In conclusion, we establish the concept that the CPE is involved in the regulation of CSF pH by demonstrating that NBCe2 is necessary for proper CSF pH recovery after hypercapnia‐induced acidosis. Normal pH is crucial for proper functioning of the brain, and disorders increasing the level of CO2 in the blood lead to a decrease in brain pH. CO2 can easily cross the barriers of the brain and will activate chemoreceptors leading to an increased exhalation of CO2. The low pH, however, is harmful and bases such as HCO3− are imported across the brain barriers in order to normalize brain pH. We show that the HCO3− transporter NBCe2 in the choroid plexus of the blood‐cerebrospinal fluid barrier is absolutely necessary for normalizing CSF pH during high levels of CO2. This discovery represents a significant step in understanding the molecular mechanisms behind regulation of CSF pH during acid‐base disturbances, such as chronic lung disease.
Collapse
Affiliation(s)
| | - Dagne Barbuskaite
- Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | | | - Hans Malte
- Department of Bioscience, Science and Technology, Aarhus University, Denmark
| | | | - Annette C Füchtbauer
- Department of Molecular Biology and Genetics, Science and Technology, Aarhus University, Denmark
| | - Ernst-Martin Füchtbauer
- Department of Molecular Biology and Genetics, Science and Technology, Aarhus University, Denmark
| | - Tobias Wang
- Department of Bioscience, Science and Technology, Aarhus University, Denmark
| | | | - Helle H Damkier
- Department of Biomedicine, Health, Aarhus University, Denmark.,Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| |
Collapse
|
19
|
Li FF, Shang XK, Du XL, Chen S. Rapamycin Treatment Attenuates Angiotensin II -induced Abdominal Aortic Aneurysm Formation via VSMC Phenotypic Modulation and Down-regulation of ERK1/2 Activity. Curr Med Sci 2018; 38:93-100. [PMID: 30074157 DOI: 10.1007/s11596-018-1851-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 01/10/2018] [Indexed: 10/24/2022]
Abstract
The aim of the present study is to address the effect of rapamycin on abdominal aortic aneurysm (AAA) and the potential mechanisms. A clinically relevant AAA model was induced in apolipoprotein E-deficient (ApoE-/-) mice, in which miniosmotic pump was implanted subcutaneously to deliver angiotensin II (Ang II) for 14 days. Male ApoE-/- mice were randomly divided into 3 groups: saline infusion, Ang II infusion, and Ang II infusion plus intraperitoneal injection of rapamycin. The diameter of the supra-renal abdominal aorta was measured by ultrasonography at the end of the infusion. Then aortic tissue was excised and examined by Western blotting and histoimmunochemistry. Ang n with or without rapamycin treatment was applied to the cultured vascular smooth muscle cells (VSMCs) in vitro. The results revealed that rapamycin treatment significantly attenuated the incidence of Ang II induced-AAA in ApoE-/- mice. Histologic analysis showed that rapamycin treatment decreased disarray of elastin fibers and VSMCs hyperplasia in the medial layer. Immunochemistry staining and Western blotting documented the increased phospho-ERK1/2 and ERK1/2 expression in aortic walls in Ang II induced-AAA, as well as in human lesions. Whereas in the rapamycintreated group, decreased phospho-ERKl/2 expression level was detected. Moreover, rapamycin reversed Ang II -induced VSMCs phenotypic change both in vivo and in vitro. Based on those results, we confirmed that rapamycin therapy suppressed Ang II -induced AAA formation in mice, partially via VSMCs phenotypic modulation and down-regulation of ERK1/2 activity.
Collapse
Affiliation(s)
- Fei-Fei Li
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiao-Ke Shang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xin-Ling Du
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Shu Chen
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
20
|
Li Q, Ding Y, Krafft P, Wan W, Yan F, Wu G, Zhang Y, Zhan Q, Zhang JH. Targeting Germinal Matrix Hemorrhage-Induced Overexpression of Sodium-Coupled Bicarbonate Exchanger Reduces Posthemorrhagic Hydrocephalus Formation in Neonatal Rats. J Am Heart Assoc 2018; 7:e007192. [PMID: 29386206 PMCID: PMC5850237 DOI: 10.1161/jaha.117.007192] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 11/21/2017] [Indexed: 02/01/2023]
Abstract
BACKGROUND Germinal matrix hemorrhage (GMH) is a leading cause of mortality and lifelong morbidity in preterm infants. Posthemorrhagic hydrocephalus (PHH) is a common complication of GMH. A sodium-coupled bicarbonate exchanger (NCBE) encoded by solute carrier family 4 member 10 gene is expressed on the choroid plexus basolateral membrane and may play a role in cerebrospinal fluid production and the development of PHH. Following GMH, iron degraded from hemoglobin has been linked to PHH. Choroid plexus epithelial cells also contain iron-responsive element-binding proteins (IRPs), IRP1, and IRP2 that bind to mRNA iron-responsive elements. The present study aims to resolve the following issues: (1) whether the expression of NCBE is regulated by IRPs; (2) whether NCBE regulates the formation of GMH-induced hydrocephalus; and (3) whether inhibition of NCBE reduces PHH development. METHODS AND RESULTS GMH model was established in P7 rat pups by injecting bacterial collagenase into the right ganglionic eminence. Another group received iron trichloride injections instead of collagenase. Deferoxamine was administered intraperitoneally for 3 consecutive days after GMH/iron trichloride. Solute carrier family 4 member 10 small interfering RNA or scrambled small interfering RNA was administered by intracerebroventricular injection 24 hours before GMH and followed with an injection every 7 days over 21 days. NCBE expression increased while IRP2 expression decreased after GMH/iron trichloride. Deferoxamine ameliorated both the GMH-induced and iron trichloride-induced decrease of IRP2 and decreased NCBE expressions. Deferoxamine and solute carrier family 4 member 10 small interfering RNA improved cognitive and motor functions at 21 to 28 days post GMH and reduced cerebrospinal fluid production as well as the degree of hydrocephalus at 28 days after GMH. CONCLUSIONS Targeting iron-induced overexpression of NCBE may be a translatable therapeutic strategy for the treatment of PHH following GMH.
Collapse
Affiliation(s)
- Qian Li
- Department of Neurology, The Fifth People's Hospital of Chongqing, Chongqing, China
| | - Yan Ding
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA
| | - Paul Krafft
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA
| | - Weifeng Wan
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA
| | - Feng Yan
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA
| | - Guangyong Wu
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA
| | - Yixin Zhang
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA
| | - Qunling Zhan
- Department of Neurology, The Fifth People's Hospital of Chongqing, Chongqing, China
| | - John H Zhang
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA
- Department of Anesthesiology, Loma Linda University School of Medicine, Loma Linda, CA
| |
Collapse
|
21
|
Damkier HH, Christensen HL, Christensen IB, Wu Q, Fenton RA, Praetorius J. The murine choroid plexus epithelium expresses the 2Cl -/H + exchanger ClC-7 and Na +/H + exchanger NHE6 in the luminal membrane domain. Am J Physiol Cell Physiol 2017; 314:C439-C448. [PMID: 29351414 DOI: 10.1152/ajpcell.00145.2017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The choroid plexus epithelium within the brain ventricles secretes the majority of the cerebrospinal fluid (CSF). The luminal Na+-K+-ATPase acts in concert with a host of other transport proteins to mediate efficient fluid secretion across the epithelium. The CSF contains little protein buffer, but the pH value seems nonetheless maintained within narrow limits, even when faced with acid-base challenges. The involvement of choroid plexus acid-base transporters in CSF pH regulation is highlighted by the expression of several acid-base transporters in the epithelium. The aim of the present study was to identify novel acid-base transporters expressed in the luminal membrane of the choroid plexus epithelium to pave the way for systematic investigations of each candidate transporter in the regulation of CSF pH. Mass spectrometry analysis of proteins from epithelial cells isolated by fluorescence-activated cell sorting identified the Cl-/H+ exchangers ClC-3, -4, -5, and -7 in addition to known choroid plexus acid-base transporters. RT-PCR on FACS isolated epithelial cells confirmed the expression of the corresponding mRNAs, as well as Na+/H+ exchanger NHE6 mRNA. Both NHE6 and ClC-7 were immunolocalized to the luminal plasma membrane domain of the choroid plexus epithelial cells. Dynamic imaging of intracellular pH and membrane potential changes in isolated choroid plexus epithelial cells demonstrated Cl- gradient-driven changes in intracellular pH and membrane potential that are consistent with Cl-/H+ exchange. In conclusion, we have detected for the first time NHE6 and ClC-7 in the choroid plexus, which are potentially involved in pH regulation of the CSF.
Collapse
Affiliation(s)
- Helle H Damkier
- Department of Biomedicine, Health, Aarhus University , Aarhus , Denmark.,Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen , Denmark
| | | | | | - Qi Wu
- Department of Biomedicine, Health, Aarhus University , Aarhus , Denmark
| | - Robert A Fenton
- Department of Biomedicine, Health, Aarhus University , Aarhus , Denmark
| | - Jeppe Praetorius
- Department of Biomedicine, Health, Aarhus University , Aarhus , Denmark
| |
Collapse
|
22
|
Godar DE, Merrill SJ. Untangling the most probable role for vitamin D 3 in autism. DERMATO-ENDOCRINOLOGY 2017; 9:e1387702. [PMID: 29484101 PMCID: PMC5821151 DOI: 10.1080/19381980.2017.1387702] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 09/02/2017] [Accepted: 09/29/2017] [Indexed: 12/31/2022]
Abstract
Recent studies indicate an important role for vitamin D3 in autism spectrum disorder (ASD), although its mechanism is not completely understood. The most puzzling aspect of ASD is that identical twins, who share identical DNA, do not have 100% concordance rates (∼88% for identical and ∼31% for fraternal twins). These findings provide major clues into the etiology: ASD must involve an environmental factor present in the prenatal milieu that both identical twins are not always exposed to because they do not always share it (i.e., placentas). Combined with the exponential increasing rates of ASD around the world, these observations suggest a contagious disease is probably transferred to the fetus via the placenta becoming infected by a cervical virus. Vitamin D3 boosts immune responses clearing viral infections and increases serotonin and estrogen brain levels. Here we review the different roles and untangle the most probable one vitamin D3 plays in ASD.
Collapse
Affiliation(s)
- Dianne E. Godar
- Body of Knowledge, Inc., Division of Human Disease Research Worldwide, Racine, WI, USA
| | - Stephen J. Merrill
- Marquette University, Department of Mathematics, Statistics, and Computer Science, Milwaukee, WI, USA
| |
Collapse
|
23
|
The crystal structure of the regulatory domain of the human sodium-driven chloride/bicarbonate exchanger. Sci Rep 2017; 7:12131. [PMID: 28935959 PMCID: PMC5608694 DOI: 10.1038/s41598-017-12409-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 09/06/2017] [Indexed: 12/12/2022] Open
Abstract
The sodium-driven chloride/bicarbonate exchanger (NDCBE) is essential for maintaining homeostatic pH in neurons. The crystal structure at 2.8 Å resolution of the regulatory N-terminal domain of human NDCBE represents the first crystal structure of an electroneutral sodium-bicarbonate cotransporter. The crystal structure forms an equivalent dimeric interface as observed for the cytoplasmic domain of Band 3, and thus establishes that the consensus motif VTVLP is the key minimal dimerization motif. The VTVLP motif is highly conserved and likely to be the physiologically relevant interface for all other members of the SLC4 family. A novel conserved Zn2+-binding motif present in the N-terminal domain of NDCBE is identified and characterized in vitro. Cellular studies confirm the Zn2+ dependent transport of two electroneutral bicarbonate transporters, NCBE and NBCn1. The Zn2+ site is mapped to a cluster of histidines close to the conserved ETARWLKFEE motif and likely plays a role in the regulation of this important motif. The combined structural and bioinformatics analysis provides a model that predicts with additional confidence the physiologically relevant interface between the cytoplasmic domain and the transmembrane domain.
Collapse
|
24
|
Praetorius J, Damkier HH. Transport across the choroid plexus epithelium. Am J Physiol Cell Physiol 2017; 312:C673-C686. [PMID: 28330845 DOI: 10.1152/ajpcell.00041.2017] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 03/17/2017] [Accepted: 03/17/2017] [Indexed: 11/22/2022]
Abstract
The choroid plexus epithelium is a secretory epithelium par excellence. However, this is perhaps not the most prominent reason for the massive interest in this modest-sized tissue residing inside the brain ventricles. Most likely, the dominant reason for extensive studies of the choroid plexus is the identification of this epithelium as the source of the majority of intraventricular cerebrospinal fluid. This finding has direct relevance for studies of diseases and conditions with deranged central fluid volume or ionic balance. While the concept is supported by the vast majority of the literature, the implication of the choroid plexus in secretion of the cerebrospinal fluid was recently challenged once again. Three newer and promising areas of current choroid plexus-related investigations are as follows: 1) the choroid plexus epithelium as the source of mediators necessary for central nervous system development, 2) the choroid plexus as a route for microorganisms and immune cells into the central nervous system, and 3) the choroid plexus as a potential route for drug delivery into the central nervous system, bypassing the blood-brain barrier. Thus, the purpose of this review is to highlight current active areas of research in the choroid plexus physiology and a few matters of continuous controversy.
Collapse
Affiliation(s)
- Jeppe Praetorius
- Department of Biomedicine, Health, Aarhus University, Aarhus, Denmark; and
| | - Helle Hasager Damkier
- Department of Biomedicine, Health, Aarhus University, Aarhus, Denmark; and.,Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
25
|
Chao PC, Butt AG. cAMP-dependent secretagogues stimulate the NaHCO 3 cotransporter in the villous epithelium of the brushtail possum, Trichosurus vulpecula. J Comp Physiol B 2017; 187:1019-1028. [PMID: 28247055 DOI: 10.1007/s00360-017-1063-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Revised: 01/30/2017] [Accepted: 02/05/2017] [Indexed: 12/22/2022]
Abstract
In the ileum of the brushtail possum, Trichosurus vulpecula, fluid secretion appears to be driven by electrogenic HCO3- secretion. Consistent with this, the cystic fibrosis transmembrane conductance regulator is expressed in the apical membrane of the ileal epithelial cells and the pancreatic or secretory variant of the NaHCO3 cotransporter in the basolateral membrane. This suggests that in the possum ileum, electrogenic HCO3- secretion is driven by basolateral NaHCO3 cotransporter (NBC) activity. To determine if the NBC contributes to HCO3- secretion in the possum ileum, intracellular pH (pHi) measurements in isolated villi were used to demonstrate NBC activity in the ileal epithelial cells and investigate the effect of cAMP-dependent secretagogues. In CO2/HCO3--free solutions, recovery of the epithelial cells from an acid load was Na+-dependent and ≈80% inhibited by ethyl-isopropyl-amiloride (EIPA, 10 µmol L-1), indicative of the presence of an Na+/H+ exchanger, most likely NHE1. However, in the presence of CO2/HCO3-, EIPA only inhibited ≈ 50% of the recovery, the remainder was inhibited by 4,4'-diisothiocyano-2,2'-stilbenedisulfonic acid (DIDS, 500 µmol L-1), indicative of NBC activity. Under steady-state conditions, NHE1 inhibition by EIPA had little effect on pHi in the presence or absence of secretagogues, but NBC inhibition with DIDS resulted in a rapid acidification of the cells, which was increased fivefold by secretagogues. These data demonstrate the functional activity of an NaHCO3 cotransporter in the ileal epithelial cells. Furthermore, the stimulation of NBC activity by secretagogues is consistent with the involvement of an NaHCO3 cotransporter in electrogenic HCO3- secretion.
Collapse
Affiliation(s)
- Pin-Chun Chao
- Department of Physiology, School of Biomedical Sciences, University of Otago, PO Box 56, Dunedin, 9054, New Zealand
| | - A Grant Butt
- Department of Physiology, School of Biomedical Sciences, University of Otago, PO Box 56, Dunedin, 9054, New Zealand.
| |
Collapse
|
26
|
Hladky SB, Barrand MA. Fluid and ion transfer across the blood-brain and blood-cerebrospinal fluid barriers; a comparative account of mechanisms and roles. Fluids Barriers CNS 2016; 13:19. [PMID: 27799072 PMCID: PMC5508927 DOI: 10.1186/s12987-016-0040-3] [Citation(s) in RCA: 186] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 09/01/2016] [Indexed: 12/24/2022] Open
Abstract
The two major interfaces separating brain and blood have different primary roles. The choroid plexuses secrete cerebrospinal fluid into the ventricles, accounting for most net fluid entry to the brain. Aquaporin, AQP1, allows water transfer across the apical surface of the choroid epithelium; another protein, perhaps GLUT1, is important on the basolateral surface. Fluid secretion is driven by apical Na+-pumps. K+ secretion occurs via net paracellular influx through relatively leaky tight junctions partially offset by transcellular efflux. The blood-brain barrier lining brain microvasculature, allows passage of O2, CO2, and glucose as required for brain cell metabolism. Because of high resistance tight junctions between microvascular endothelial cells transport of most polar solutes is greatly restricted. Because solute permeability is low, hydrostatic pressure differences cannot account for net fluid movement; however, water permeability is sufficient for fluid secretion with water following net solute transport. The endothelial cells have ion transporters that, if appropriately arranged, could support fluid secretion. Evidence favours a rate smaller than, but not much smaller than, that of the choroid plexuses. At the blood-brain barrier Na+ tracer influx into the brain substantially exceeds any possible net flux. The tracer flux may occur primarily by a paracellular route. The blood-brain barrier is the most important interface for maintaining interstitial fluid (ISF) K+ concentration within tight limits. This is most likely because Na+-pumps vary the rate at which K+ is transported out of ISF in response to small changes in K+ concentration. There is also evidence for functional regulation of K+ transporters with chronic changes in plasma concentration. The blood-brain barrier is also important in regulating HCO3- and pH in ISF: the principles of this regulation are reviewed. Whether the rate of blood-brain barrier HCO3- transport is slow or fast is discussed critically: a slow transport rate comparable to those of other ions is favoured. In metabolic acidosis and alkalosis variations in HCO3- concentration and pH are much smaller in ISF than in plasma whereas in respiratory acidosis variations in pHISF and pHplasma are similar. The key similarities and differences of the two interfaces are summarized.
Collapse
Affiliation(s)
- Stephen B. Hladky
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1PD UK
| | - Margery A. Barrand
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1PD UK
| |
Collapse
|
27
|
Liu Y, Yang J, Chen LM. Structure and Function of SLC4 Family [Formula: see text] Transporters. Front Physiol 2015; 6:355. [PMID: 26648873 PMCID: PMC4664831 DOI: 10.3389/fphys.2015.00355] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 11/10/2015] [Indexed: 12/12/2022] Open
Abstract
The solute carrier SLC4 family consists of 10 members, nine of which are [Formula: see text] transporters, including three Na(+)-independent Cl(-)/[Formula: see text] exchangers AE1, AE2, and AE3, five Na(+)-coupled [Formula: see text] transporters NBCe1, NBCe2, NBCn1, NBCn2, and NDCBE, as well as "AE4" whose Na(+)-dependence remains controversial. The SLC4 [Formula: see text] transporters play critical roles in pH regulation and transepithelial movement of electrolytes with a broad range of demonstrated physiological relevances. Dysfunctions of these transporters are associated with a series of human diseases. During the past decades, tremendous amount of effort has been undertaken to investigate the topological organization of the SLC4 transporters in the plasma membrane. Based upon the proposed topology models, mutational and functional studies have identified important structural elements likely involved in the ion translocation by the SLC4 transporters. In the present article, we review the advances during the past decades in understanding the structure and function of the SLC4 transporters.
Collapse
Affiliation(s)
- Ying Liu
- Key Laboratory of Molecular Biophysics of Ministry of Education, Department of Biophysics and Molecular Physiology, School of Life Science and Technology, Huazhong University of Science and TechnologyWuhan, China
| | - Jichun Yang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science CenterBeijing, China
| | - Li-Ming Chen
- Key Laboratory of Molecular Biophysics of Ministry of Education, Department of Biophysics and Molecular Physiology, School of Life Science and Technology, Huazhong University of Science and TechnologyWuhan, China
| |
Collapse
|
28
|
Abstract
Cation-coupled HCO3(-) transport was initially identified in the mid-1970s when pioneering studies showed that acid extrusion from cells is stimulated by CO2/HCO3(-) and associated with Na(+) and Cl(-) movement. The first Na(+)-coupled bicarbonate transporter (NCBT) was expression-cloned in the late 1990s. There are currently five mammalian NCBTs in the SLC4-family: the electrogenic Na,HCO3-cotransporters NBCe1 and NBCe2 (SLC4A4 and SLC4A5 gene products); the electroneutral Na,HCO3-cotransporter NBCn1 (SLC4A7 gene product); the Na(+)-driven Cl,HCO3-exchanger NDCBE (SLC4A8 gene product); and NBCn2/NCBE (SLC4A10 gene product), which has been characterized as an electroneutral Na,HCO3-cotransporter or a Na(+)-driven Cl,HCO3-exchanger. Despite the similarity in amino acid sequence and predicted structure among the NCBTs of the SLC4-family, they exhibit distinct differences in ion dependency, transport function, pharmacological properties, and interactions with other proteins. In epithelia, NCBTs are involved in transcellular movement of acid-base equivalents and intracellular pH control. In nonepithelial tissues, NCBTs contribute to intracellular pH regulation; and hence, they are crucial for diverse tissue functions including neuronal discharge, sensory neuron development, performance of the heart, and vascular tone regulation. The function and expression levels of the NCBTs are generally sensitive to intracellular and systemic pH. Animal models have revealed pathophysiological roles of the transporters in disease states including metabolic acidosis, hypertension, visual defects, and epileptic seizures. Studies are being conducted to understand the physiological consequences of genetic polymorphisms in the SLC4-members, which are associated with cancer, hypertension, and drug addiction. Here, we describe the current knowledge regarding the function, structure, and regulation of the mammalian cation-coupled HCO3(-) transporters of the SLC4-family.
Collapse
Affiliation(s)
- Christian Aalkjaer
- Department of Biomedicine, and the Water and Salt Research Center, Aarhus University, Aarhus, Denmark; Department of Physiology, Emory University School of Medicine, Atlanta, USA
| | | | | | | |
Collapse
|
29
|
Sinning A, Liebmann L, Hübner CA. Disruption of Slc4a10 augments neuronal excitability and modulates synaptic short-term plasticity. Front Cell Neurosci 2015; 9:223. [PMID: 26136660 PMCID: PMC4468864 DOI: 10.3389/fncel.2015.00223] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 05/27/2015] [Indexed: 11/13/2022] Open
Abstract
Slc4a10 is a Na+-coupled Cl−-HCO3− exchanger, which is expressed in principal and inhibitory neurons as well as in choroid plexus epithelial cells of the brain. Slc4a10 knockout (KO) mice have collapsed brain ventricles and display an increased seizure threshold, while heterozygous deletions in man have been associated with idiopathic epilepsy and other neurological symptoms. To further characterize the role of Slc4a10 for network excitability, we compared input-output relations as well as short and long term changes of evoked field potentials in Slc4a10 KO and wildtype (WT) mice. While responses of CA1 pyramidal neurons to stimulation of Schaffer collaterals were increased in Slc4a10 KO mice, evoked field potentials did not differ between genotypes in the stratum radiatum or the neocortical areas analyzed. Paired pulse facilitation was diminished in the hippocampus upon disruption of Slc4a10. In the neocortex paired pulse depression was increased. Though short term plasticity is modulated via Slc4a10, long term potentiation appears independent of Slc4a10. Our data support that Slc4a10 dampens neuronal excitability and thus sheds light on the pathophysiology of SLC4A10 associated pathologies.
Collapse
Affiliation(s)
- Anne Sinning
- Institute of Human Genetics, University Hospital Jena, Friedrich Schiller University Jena Jena, Germany ; Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz, Germany
| | - Lutz Liebmann
- Institute of Human Genetics, University Hospital Jena, Friedrich Schiller University Jena Jena, Germany
| | - Christian A Hübner
- Institute of Human Genetics, University Hospital Jena, Friedrich Schiller University Jena Jena, Germany
| |
Collapse
|
30
|
Spector R, Keep RF, Robert Snodgrass S, Smith QR, Johanson CE. A balanced view of choroid plexus structure and function: Focus on adult humans. Exp Neurol 2015; 267:78-86. [PMID: 25747036 DOI: 10.1016/j.expneurol.2015.02.032] [Citation(s) in RCA: 133] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 02/22/2015] [Accepted: 02/25/2015] [Indexed: 12/21/2022]
Abstract
Recently tremendous progress has been made in studying choroid plexus (CP) physiology and pathophysiology; and correcting several misconceptions about the CP. Specifically, the details of how CP, a locus of the blood-CSF barrier (BCSFB), secretes and purifies CSF, generates intracranial pressure (ICP), maintains CSF ion homeostasis, and provides micronutrients, proteins and hormones for neuronal and glial development, maintenance and function, are being understood on a molecular level. Unequivocal evidence that the CP secretory epithelium is the predominant supplier of CSF for the ventricles comes from multiple lines: uptake kinetics of tracer (22)Na and (36)Cl penetration from blood to CSF, autoradiographic mapping of rapid (22)Na and (36)Cl permeation (high permeability coefficients) into the cerebroventricles, CSF sampling from several different in vivo and in vitro CP preparations, CP hyperplasia that increases CSF formation and ICP; and in vitro analysis of CP ability to transport molecules (with expected directionality) and actively secrete fluid against an hydrostatic fluid column. Furthermore, clinical support for this CP-CSF model comes from neurosurgical procedures to remove lateral ventricle CPs in hydrocephalic children to reduce CSF formation, thereby relieving elevated ICP. In terms of micronutrient transport, ascorbic acid, folate and other essential factors are transported by specific (cloned) carriers across CP into ventricular CSF, from which they penetrate across the ependyma and pia mater deeply into the brain to support its viability and function. Without these choroidal functions, severe neurological disease and even death can occur. In terms of efflux or clearance transport, the active carriers (many of which have been cloned and expressed) in the CP basolateral and apical membranes perform regulatory removal of some metabolites (e.g. choline) and certain drugs (e.g. antibiotics like penicillin) from CSF, thus reducing agents such as penicillin to sub-therapeutic levels. Altogether, these multiple transport and secretory functions in CP support CSF homeostasis and fluid dynamics essential for brain function.
Collapse
Affiliation(s)
- Reynold Spector
- Department of Medicine, Robert Wood Johnson Medical School, Piscataway, NJ 08554, USA.
| | - Richard F Keep
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI 48105, USA.
| | - S Robert Snodgrass
- Departments of Neurology and Pediatrics, Harbor-UCLA Medical Center, David Geffen UCLA School of Medicine, Torrance, CA 90502, USA.
| | - Quentin R Smith
- Department of Pharmaceutical Sciences, School of Pharmacy, Amarillo, TX 79106, USA.
| | - Conrad E Johanson
- Department of Neurosurgery, Alpert Medical School at Brown University, Providence, RI 02903, USA.
| |
Collapse
|
31
|
Mokgokong R, Wang S, Taylor CJ, Barrand MA, Hladky SB. Ion transporters in brain endothelial cells that contribute to formation of brain interstitial fluid. Pflugers Arch 2014; 466:887-901. [PMID: 24022703 PMCID: PMC4006130 DOI: 10.1007/s00424-013-1342-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 08/24/2013] [Accepted: 08/24/2013] [Indexed: 02/07/2023]
Abstract
Ions and water transported across the endothelium lining the blood–brain barrier contribute to the fluid secreted into the brain and are important in maintaining appropriate volume and ionic composition of brain interstitial fluid. Changes in this secretion process may occur after stroke. The present study identifies at transcript and protein level ion transporters involved in the movement of key ions and examines how levels of certain of these alter following oxidative stress. Immunohistochemistry provides evidence for Cl−/HCO3− exchanger, AE2, and Na+, HCO3− cotransporters, NBCe1 and NBCn1, on brain microvessels. mRNA analysis by RT-PCR reveals expression of these transporters in cultured rat brain microvascular endothelial cells (both primary and immortalized GPNT cells) and also Na+/H+ exchangers, NHE1 (primary and immortalized) and NHE2 (primary cells only). Knock-down using siRNA in immortalized GPNT cells identifies AE2 as responsible for much of the Cl−/HCO3− exchange following extracellular chloride removal and NHE1 as the transporter that accounts for most of the Na+/H+ exchange following intracellular acidification. Transcript levels of both AE2 and NHE1 are increased following hypoxia/reoxygenation. Further work is now required to determine the localization of the bicarbonate transporters to luminal or abluminal membranes of the endothelial cells as well as to identify and localize additional transport mechanisms that must exist for K+ and Cl−.
Collapse
Affiliation(s)
- Ruth Mokgokong
- Department of Pharmacology, University of Cambridge, Cambridge, CB2 1PD UK
| | - Shanshan Wang
- Department of Pharmacology, University of Cambridge, Cambridge, CB2 1PD UK
| | - Caroline J. Taylor
- O’Brien Institute and Department of Surgery, University of Melbourne, St. Vincent’s Hospital, 42 Fitzroy Street, Fitzroy, Melbourne, VIC 3065 Australia
- Faculty of Health Sciences, Australian Catholic University, Melbourne, VIC 3065 Australia
| | - Margery A. Barrand
- Department of Pharmacology, University of Cambridge, Cambridge, CB2 1PD UK
| | - Stephen B. Hladky
- Department of Pharmacology, University of Cambridge, Cambridge, CB2 1PD UK
| |
Collapse
|
32
|
Alka K, Casey JR. Bicarbonate transport in health and disease. IUBMB Life 2014; 66:596-615. [PMID: 25270914 DOI: 10.1002/iub.1315] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 09/10/2014] [Indexed: 12/28/2022]
Abstract
Bicarbonate (HCO3(-)) has a central place in human physiology as the waste product of mitochondrial energy production and for its role in pH buffering throughout the body. Because bicarbonate is impermeable to membranes, bicarbonate transport proteins are necessary to enable control of bicarbonate levels across membranes. In humans, 14 bicarbonate transport proteins, members of the SLC4 and SLC26 families, function by differing transport mechanisms. In addition, some anion channels and ZIP metal transporters contribute to bicarbonate movement across membranes. Defective bicarbonate transport leads to diseases, including systemic acidosis, brain dysfunction, kidney stones, and hypertension. Altered expression levels of bicarbonate transporters in patients with breast, colon, and lung cancer suggest an important role of these transporters in cancer.
Collapse
Affiliation(s)
- Kumari Alka
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| | | |
Collapse
|
33
|
Song X, Yamasaki M, Miyazaki T, Konno K, Uchigashima M, Watanabe M. Neuron type- and input pathway-dependent expression of Slc4a10 in adult mouse brains. Eur J Neurosci 2014; 40:2797-810. [PMID: 24905082 DOI: 10.1111/ejn.12636] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 04/25/2014] [Accepted: 04/28/2014] [Indexed: 11/29/2022]
Abstract
Slc4a10 was originally identified as a Na(+) -driven Cl(-) /HCO3 (-) exchanger NCBE that transports extracellular Na(+) and HCO3 (-) in exchange for intracellular Cl(-) , whereas other studies argue against a Cl(-) -dependence for Na(+) -HCO3 (-) transport, and thus named it the electroneutral Na(+) /HCO3 (-) cotransporter NBCn2. Here we investigated Slc4a10 expression in adult mouse brains by in situ hybridization and immunohistochemistry. Slc4a10 mRNA was widely expressed, with higher levels in pyramidal cells in the hippocampus and cerebral cortex, parvalbumin-positive interneurons in the hippocampus, and Purkinje cells (PCs) in the cerebellum. Immunohistochemistry revealed an uneven distribution of Slc4a10 within the somatodendritic compartment of cerebellar neurons. In the cerebellar molecular layer, stellate cells and their innervation targets (i.e. PC dendrites in the superficial molecular layer) showed significantly higher labeling than basket cells and their targets (PC dendrites in the basal molecular layer and PC somata). Moreover, the distal dendritic trees of PCs (i.e. parallel fiber-targeted dendrites) had significantly greater labeling than the proximal dendrites (climbing fiber-targeted dendrites). These observations suggest that Slc4a10 expression is regulated in neuron type- and input pathway-dependent manners. Because such an elaborate regulation is also found for K(+) -Cl(-) cotransporter KCC2, a major neuronal Cl(-) extruder, we compared their expression. Slc4a10 and KCC2 overlapped in most somatodendritic elements. However, relative abundance was largely complementary in the cerebellar cortex, with particular enrichments of Slc4a10 in PC dendrites and KCC2 in molecular layer interneurons, granule cells and PC somata. These properties might reflect functional redundancy and distinction of these transporters, and their differential requirements by individual neurons and respective input domains.
Collapse
Affiliation(s)
- Xiaohong Song
- Department of Anatomy, Hokkaido University Graduate School of Medicine, Sapporo, 060-8638, Japan; Japan Science and Technology Agency, CREST, Sanbancho, Chiyoda-ku, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
34
|
Trevisi G, Frassanito P, Di Rocco C. Idiopathic cerebrospinal fluid overproduction: case-based review of the pathophysiological mechanism implied in the cerebrospinal fluid production. Croat Med J 2014; 55:377-87. [PMID: 25165051 PMCID: PMC4157373 DOI: 10.3325/cmj.2014.55.377] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Accepted: 08/10/2014] [Indexed: 12/15/2022] Open
Abstract
Cerebrospinal fluid (CSF) overproduction results from either CSF infection or choroid plexus hypertrophy or tumor, with only a single idiopathic case described so far. We report a unique case of a male infant with Crouzon syndrome who presented with intracranial hypertension, caused by up to 4-fold increase in CSF daily production. Conditions related to CSF overproduction, namely central nervous system infections and choroid plexus hypertrophy or tumor, were ruled out by repeated magnetic resonance imaging and CSF samples. Medical therapy failed to reduce CSF production and the patient underwent several shunting procedures, cranial expansion, and endoscopic coagulation of the choroid plexus. This article thoroughly reviews pertinent literature on CSF production mechanisms and possible therapeutic implications.
Collapse
Affiliation(s)
| | - Paolo Frassanito
- Paolo Frassanito, Pediatric Neurosurgery, Catholic University Medical School, Largo Agostino Gemelli 8, 00168 Rome, Italy,
| | | |
Collapse
|
35
|
Christensen IB, Gyldenholm T, Damkier HH, Praetorius J. Polarization of membrane associated proteins in the choroid plexus epithelium from normal and slc4a10 knockout mice. Front Physiol 2013; 4:344. [PMID: 24348423 PMCID: PMC3842056 DOI: 10.3389/fphys.2013.00344] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 11/07/2013] [Indexed: 12/18/2022] Open
Abstract
The choroid plexus epithelium (CPE) has served as a model-epithelium for cell polarization and transport studies and plays a crucial role for cerebrospinal fluid (CSF) production. The normal luminal membrane expression of Na(+),K(+)-ATPase, aquaporin-1 and Na(+)/H(+) exchanger 1 in the choroid plexus is severely affected by deletion of the slc4a10 gene that encodes the bicarbonate transporting protein Ncbe/NBCn2. The causes for these deviations from normal epithelial polarization and redistribution following specific gene knockout are unknown, but may be significant for basic epithelial cell biology. Therefore, a more comprehensive analysis of cell polarization in the choroid plexus is warranted. We find that the cytoskeleton in the choroid plexus contains αI-, αII-, βI-, and βII-spectrin isoforms along with the anchoring protein ankyrin-3, most of which are mainly localized in the luminal membrane domain. Furthermore, we find α-adducin localized near the plasma membranes globally, but with only faint expression in the luminal membrane domain. In slc4a10 knockout mice, the abundance of β1 Na(+),K(+)-ATPase subunits in the luminal membrane is markedly reduced. Anion exchanger 2 abundance is increased in slc4a10 knockout and its anchor protein, α-adducin is almost exclusively found near the basolateral domain. The αI- and βI-spectrin abundances are also decreased in the slc4a10 knockout, where the basolateral domain expression of αI-spectrin is exchanged for a strictly luminal domain localization. E-cadherin expression is unchanged in the slc4a10 knockout, while small decreases in abundance are observed for its probable adaptor proteins, the catenins. Interestingly, the abundance of the tight junction protein claudin-2 is significantly reduced in the slc4a10 knockouts, which may critically affect paracellular transport in this epithelium. The observations allow the generation of new hypotheses on basic cell biological paradigms that can be tested experimentally in future studies.
Collapse
Affiliation(s)
- Inga B Christensen
- Department of Biomedicine, Faculty of Health, Aarhus University Aarhus, Denmark
| | - Tua Gyldenholm
- Department of Biomedicine, Faculty of Health, Aarhus University Aarhus, Denmark
| | - Helle H Damkier
- Department of Biomedicine, Faculty of Health, Aarhus University Aarhus, Denmark
| | - Jeppe Praetorius
- Department of Biomedicine, Faculty of Health, Aarhus University Aarhus, Denmark
| |
Collapse
|
36
|
Bjerregaard-Andersen K, Perdreau-Dahl H, Guldsten H, Praetorius J, Jensen JK, Morth JP. The N-terminal cytoplasmic region of NCBE displays features of an intrinsic disordered structure and represents a novel target for specific drug screening. Front Physiol 2013; 4:320. [PMID: 24223558 PMCID: PMC3819638 DOI: 10.3389/fphys.2013.00320] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Accepted: 10/15/2013] [Indexed: 01/18/2023] Open
Abstract
The sodium dependent bicarbonate transporter NCBE/NBCn2 is predominantly expressed in the central nervous system (CNS). The highest protein concentrations are found in the choroid plexus. The primary function of this integral plasma membrane transport protein is to regulate intracellular neuronal pH and also probably to maintain the pH homeostasis across the blood-cerebrospinal fluid barrier. NCBE is predicted to contain at least 10 transmembrane helices. The N- and C- termini are both cytoplasmic, with a large N-terminal domain (Nt-NCBE) and a relatively small C-terminal domain (Ct-NCBE). The Nt-NCBE is likely to be involved in bicarbonate recognition and transport and contains key areas of regulation involving pH sensing and protein-protein interactions. Intrinsic disordered protein regions (IDPRs) are defined as protein regions having no rigid three-dimensional structure under physiological conditions. They are believed to be involved in signaling networks in which specific, low affinity, protein-protein interactions play an important role. We predict that NCBE and other SoLute Carrier 4 (SLC4) family members have a high level of intrinsic disorder in their cytoplasmic regions. To provide biophysical evidence for the IDPRs predicted in Nt-NCBE, we produced pure (>99%), recombinant Nt-NCBE using E. coli as the expression host. The protein was used to perform differential scanning fluorescence spectroscopy (DSF), in order to search for small molecules that would induce secondary or tertiary structure in the IDPRs. We expect this to assist the development of selective pharmaceutical compounds against individual SLC4 family members. We have also determined a low resolution (4 Å) X-ray crystal structure of the N-terminal core domain. The N-terminal cytoplasmic domain (cdb3) of anion exchanger 1 (AE1) shares a similar fold with the N-terminal core domain of NCBE. Crystallization conditions for the full-length N-terminal domain have been sought, but only the core domain yields diffracting crystals.
Collapse
Affiliation(s)
- Kaare Bjerregaard-Andersen
- Norwegian Centre for Molecular Medicine, University of Oslo Oslo, Norway ; Danish Chinese Centre for Cancer and Proteases, Department for Molecular Biology and Genetics, University of Aarhus Aarhus, Denmark
| | | | | | | | | | | |
Collapse
|
37
|
Christensen HL, Nguyen AT, Pedersen FD, Damkier HH. Na(+) dependent acid-base transporters in the choroid plexus; insights from slc4 and slc9 gene deletion studies. Front Physiol 2013; 4:304. [PMID: 24155723 PMCID: PMC3804831 DOI: 10.3389/fphys.2013.00304] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 10/02/2013] [Indexed: 02/02/2023] Open
Abstract
The choroid plexus epithelium (CPE) is located in the ventricular system of the brain, where it secretes the majority of the cerebrospinal fluid (CSF) that fills the ventricular system and surrounds the central nervous system. The CPE is a highly vascularized single layer of cuboidal cells with an unsurpassed transepithelial water and solute transport rate. Several members of the slc4a family of bicarbonate transporters are expressed in the CPE. In the basolateral membrane the electroneutral Na+ dependent Cl−/HCO3− exchanger, NCBE (slc4a10) is expressed. In the luminal membrane, the electrogenic Na+:HCO3− cotransporter, NBCe2 (slc4a5) is expressed. The electroneutral Na+:HCO3− cotransporter, NBCn1 (slc4a7), has been located in both membranes. In addition to the bicarbonate transporters, the Na+/H+ exchanger, NHE1 (slc9a1), is located in the luminal membrane of the CPE. Genetically modified mice targeting slc4a2, slc4a5, slc4a7, slc4a10, and slc9a1 have been generated. Deletion of slc4a5, 7 or 10, or slc9a1 has numerous impacts on CP function and structure in these mice. Removal of the transporters affects brain ventricle size (slc4a5 and slc4a10) and intracellular pH regulation (slc4a7 and slc4a10). In some instances, removal of the proteins from the CPE (slc4a5, 7, and 10) causes changes in abundance and localization of non-target transporters known to be involved in pH regulation and CSF secretion. The focus of this review is to combine the insights gathered from these knockout mice to highlight the impact of slc4 gene deletion on the CSF production and intracellular pH regulation resulting from the deletion of slc4a5, 7 and 10, and slc9a1. Furthermore, the review contains a comparison of the described human mutations of these genes to the findings in the knockout studies. Finally, the future perspective of utilizing these proteins as potential targets for the treatment of CSF disorders will be discussed.
Collapse
|
38
|
Damkier HH, Brown PD, Praetorius J. Cerebrospinal Fluid Secretion by the Choroid Plexus. Physiol Rev 2013; 93:1847-92. [DOI: 10.1152/physrev.00004.2013] [Citation(s) in RCA: 291] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The choroid plexus epithelium is a cuboidal cell monolayer, which produces the majority of the cerebrospinal fluid. The concerted action of a variety of integral membrane proteins mediates the transepithelial movement of solutes and water across the epithelium. Secretion by the choroid plexus is characterized by an extremely high rate and by the unusual cellular polarization of well-known epithelial transport proteins. This review focuses on the specific ion and water transport by the choroid plexus cells, and then attempts to integrate the action of specific transport proteins to formulate a model of cerebrospinal fluid secretion. Significant emphasis is placed on the concept of isotonic fluid transport across epithelia, as there is still surprisingly little consensus on the basic biophysics of this phenomenon. The role of the choroid plexus in the regulation of fluid and electrolyte balance in the central nervous system is discussed, and choroid plexus dysfunctions are described in a very diverse set of clinical conditions such as aging, Alzheimer's disease, brain edema, neoplasms, and hydrocephalus. Although the choroid plexus may only have an indirect influence on the pathogenesis of these conditions, the ability to modify epithelial function may be an important component of future therapies.
Collapse
Affiliation(s)
- Helle H. Damkier
- Department of Biomedicine, Health, Aarhus University, Aarhus, Denmark; and Faculty of Life Sciences, Michael Smith Building, Manchester University, Manchester, United Kingdom
| | - Peter D. Brown
- Department of Biomedicine, Health, Aarhus University, Aarhus, Denmark; and Faculty of Life Sciences, Michael Smith Building, Manchester University, Manchester, United Kingdom
| | - Jeppe Praetorius
- Department of Biomedicine, Health, Aarhus University, Aarhus, Denmark; and Faculty of Life Sciences, Michael Smith Building, Manchester University, Manchester, United Kingdom
| |
Collapse
|
39
|
Liddelow SA, Dziegielewska KM, Ek CJ, Habgood MD, Bauer H, Bauer HC, Lindsay H, Wakefield MJ, Strazielle N, Kratzer I, Møllgård K, Ghersi-Egea JF, Saunders NR. Mechanisms that determine the internal environment of the developing brain: a transcriptomic, functional and ultrastructural approach. PLoS One 2013; 8:e65629. [PMID: 23843944 PMCID: PMC3699566 DOI: 10.1371/journal.pone.0065629] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2013] [Accepted: 04/25/2013] [Indexed: 01/04/2023] Open
Abstract
We provide comprehensive identification of embryonic (E15) and adult rat lateral ventricular choroid plexus transcriptome, with focus on junction-associated proteins, ionic influx transporters and channels. Additionally, these data are related to new structural and previously published permeability studies. Results reveal that most genes associated with intercellular junctions are expressed at similar levels at both ages. In total, 32 molecules known to be associated with brain barrier interfaces were identified. Nine claudins showed unaltered expression, while two claudins (6 and 8) were expressed at higher levels in the embryo. Expression levels for most cytoplasmic/regulatory adaptors (10 of 12) were similar at the two ages. A few junctional genes displayed lower expression in embryos, including 5 claudins, occludin and one junctional adhesion molecule. Three gap junction genes were enriched in the embryo. The functional effectiveness of these junctions was assessed using blood-delivered water-soluble tracers at both the light and electron microscopic level: embryo and adult junctions halted movement of both 286Da and 3kDa molecules into the cerebrospinal fluid (CSF). The molecular identities of many ion channel and transporter genes previously reported as important for CSF formation and secretion in the adult were demonstrated in the embryonic choroid plexus (and validated with immunohistochemistry of protein products), but with some major age-related differences in expression. In addition, a large number of previously unidentified ion channel and transporter genes were identified for the first time in plexus epithelium. These results, in addition to data obtained from electron microscopical and physiological permeability experiments in immature brains, indicate that exchange between blood and CSF is mainly transcellular, as well-formed tight junctions restrict movement of small water-soluble molecules from early in development. These data strongly indicate the brain develops within a well-protected internal environment and the exchange between the blood, brain and CSF is transcellular and not through incomplete barriers.
Collapse
Affiliation(s)
- Shane A Liddelow
- Department of Pharmacology, the University of Melbourne, Victoria, Australia.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Davies KM, Hare DJ, Cottam V, Chen N, Hilgers L, Halliday G, Mercer JFB, Double KL. Localization of copper and copper transporters in the human brain. Metallomics 2013; 5:43-51. [PMID: 23076575 DOI: 10.1039/c2mt20151h] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Disturbances in brain copper result in rare and severe neurological disorders and may play a role in the pathogenesis and progression of multiple neurodegenerative diseases. Our current understanding of mammalian brain copper transport is based on model systems outside the central nervous system and no data are available regarding copper transport systems in the human brain. To address this deficit, we quantified regional copper concentrations and examined the distribution and cellular localization of the copper transport proteins Copper transporter 1, Atox1, ATP7A, and ATP7B in multiple regions of the human brain using inductively coupled plasma-mass spectrometry, Western blot and immunohistochemistry. We identified significant relationships between copper transporter levels and brain copper concentrations, supporting a role for these proteins in copper transport in the human brain. Interestingly, the substantia nigra contained twice as much copper than that in other brain regions, suggesting an important role for copper in this brain region. Furthermore, ATP7A levels were significantly greater in the cerebellum, compared with other brain regions, supporting an important role for ATP7A in cerebellar neuronal health. This study provides novel data regarding copper regulation in the human brain, critical to understand the mechanisms by which brain copper levels can be altered, leading to neurological disease.
Collapse
Affiliation(s)
- Katherine M Davies
- Neuroscience Research Australia and The University of New South Wales, Randwick, NSW 2031, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Parker MD, Boron WF. The divergence, actions, roles, and relatives of sodium-coupled bicarbonate transporters. Physiol Rev 2013; 93:803-959. [PMID: 23589833 PMCID: PMC3768104 DOI: 10.1152/physrev.00023.2012] [Citation(s) in RCA: 208] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The mammalian Slc4 (Solute carrier 4) family of transporters is a functionally diverse group of 10 multi-spanning membrane proteins that includes three Cl-HCO3 exchangers (AE1-3), five Na(+)-coupled HCO3(-) transporters (NCBTs), and two other unusual members (AE4, BTR1). In this review, we mainly focus on the five mammalian NCBTs-NBCe1, NBCe2, NBCn1, NDCBE, and NBCn2. Each plays a specialized role in maintaining intracellular pH and, by contributing to the movement of HCO3(-) across epithelia, in maintaining whole-body pH and otherwise contributing to epithelial transport. Disruptions involving NCBT genes are linked to blindness, deafness, proximal renal tubular acidosis, mental retardation, and epilepsy. We also review AE1-3, AE4, and BTR1, addressing their relevance to the study of NCBTs. This review draws together recent advances in our understanding of the phylogenetic origins and physiological relevance of NCBTs and their progenitors. Underlying these advances is progress in such diverse disciplines as physiology, molecular biology, genetics, immunocytochemistry, proteomics, and structural biology. This review highlights the key similarities and differences between individual NCBTs and the genes that encode them and also clarifies the sometimes confusing NCBT nomenclature.
Collapse
Affiliation(s)
- Mark D Parker
- Dept. of Physiology and Biophysics, Case Western Reserve University School of Medicine, 10900 Euclid Ave., Cleveland, OH 44106-4970, USA.
| | | |
Collapse
|
42
|
Identification and properties of a novel variant of NBC4 (Na(+)/HCO(3)- co-transporter 4) that is predominantly expressed in the choroid plexus. Biochem J 2013. [PMID: 23205667 DOI: 10.1042/bj20121515] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Secretion of HCO(3)- at the apical side of the epithelial cells of the choroid plexus is an essential step in the formation of cerebrospinal fluid. Anion conductance with a high degree of HCO(3)- permeability has been observed and suggested to be the major pathway for HCO(3)- transport across the apical membrane. Recently, it was found that NBC (Na(+)/HCO(3)- co-transporter) 4, an electrogenic member of the NBC family, was expressed in the choroid plexus. We found that a novel variant of the NBC4 [NBC4g/Slc4a5 (solute carrier family 4, sodium bicarbonate co-transporter, member 5)] is almost exclusively expressed in the apical membrane of rat choroid plexus epithelium at exceptionally high levels. RNA interference-mediated knockdown allowed the functional demonstration that NBC4g is the major player in the HCO(3)- transport across the apical membrane of the choroid plexus epithelium. When combined with a recent observation that in choroid plexus epithelial cells electrogenic NBC operates with a stoichiometry of 3:1, the results of the present study suggest that NBC4g mediates the efflux of HCO(3)- and contributes to cerebrospinal fluid production.
Collapse
|
43
|
Liu Y, Wang DK, Jiang DZ, Qin X, Xie ZD, Wang QK, Liu M, Chen LM. Cloning and functional characterization of novel variants and tissue-specific expression of alternative amino and carboxyl termini of products of slc4a10. PLoS One 2013; 8:e55974. [PMID: 23409100 PMCID: PMC3567025 DOI: 10.1371/journal.pone.0055974] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Accepted: 01/04/2013] [Indexed: 11/18/2022] Open
Abstract
Previous studies have shown that the electroneutral Na+/HCO3− cotransporter NBCn2 (SLC4A10) is predominantly expressed in the central nervous system (CNS). The physiological and pathological significances of NBCn2 have been well recognized. However, little is known about the tissue specificity of expression of different NBCn2 variants. Moreover, little is known about the expression of NBCn2 proteins in systems other than CNS. Here, we identified a set of novel Slc4a10 variants differing from the originally described ones by containing a distinct 5′ untranslated region encoding a new extreme amino-terminus (Nt). Electrophysiology measurements showed that both NBCn2 variants with alternative Nt contain typical electroneutral Na+-coupled HCO3− transport activity in Xenopus oocytes. Luciferase reporter assay showed that Slc4a10 contains two alternative promoters responsible for expression of the two types of NBCn2 with distinct extreme Nt. Western blotting showed that NBCn2 proteins with the original Nt are primarily expressed in CNS, whereas those with the novel Nt are predominantly expressed in the kidney and to a lesser extent in the small intestine. Due to alternative splicing, the known NBCn2 variants contain two types of carboxyl-termini (CT) differing in the optional inclusion of a PDZ-binding motif. cDNA cloning showed that virtually all NBCn2 variants expressed in epithelial tissues contain, but the vast majority of those from the neural tissues lack the PDZ-binding motif. We conclude that alternative transcription and splicing of Slc4a10 products are regulated in a tissue-specific manner. Our findings provide critical insights that will greatly influence the study of the physiology of NBCn2.
Collapse
Affiliation(s)
- Ying Liu
- Department of Biophysics and Molecular Physiology, Key Laboratory of Molecular Biophysics of Ministry of Education, Huazhong University of Science & Technology School of Life Science & Technology, Wuhan, Hubei, China
| | - Deng-Ke Wang
- Department of Biophysics and Molecular Physiology, Key Laboratory of Molecular Biophysics of Ministry of Education, Huazhong University of Science & Technology School of Life Science & Technology, Wuhan, Hubei, China
| | - De-Zhi Jiang
- Department of Biophysics and Molecular Physiology, Key Laboratory of Molecular Biophysics of Ministry of Education, Huazhong University of Science & Technology School of Life Science & Technology, Wuhan, Hubei, China
| | - Xue Qin
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
| | - Zhang-Dong Xie
- Department of Biophysics and Molecular Physiology, Key Laboratory of Molecular Biophysics of Ministry of Education, Huazhong University of Science & Technology School of Life Science & Technology, Wuhan, Hubei, China
| | - Qing K. Wang
- Department of Genetics and Developmental Biology, Key Laboratory of Molecular Biophysics of Ministry of Education, Huazhong University of Science & Technology School of Life Science & Technology, Wuhan, Hubei, China
| | - Mugen Liu
- Department of Genetics and Developmental Biology, Key Laboratory of Molecular Biophysics of Ministry of Education, Huazhong University of Science & Technology School of Life Science & Technology, Wuhan, Hubei, China
| | - Li-Ming Chen
- Department of Biophysics and Molecular Physiology, Key Laboratory of Molecular Biophysics of Ministry of Education, Huazhong University of Science & Technology School of Life Science & Technology, Wuhan, Hubei, China
- * E-mail:
| |
Collapse
|
44
|
Ho HTB, Dahlin A, Wang J. Expression Profiling of Solute Carrier Gene Families at the Blood-CSF Barrier. Front Pharmacol 2012; 3:154. [PMID: 22936914 PMCID: PMC3426838 DOI: 10.3389/fphar.2012.00154] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Accepted: 08/01/2012] [Indexed: 12/12/2022] Open
Abstract
The choroid plexus (CP) is a highly vascularized tissue in the brain ventricles and acts as the blood-cerebrospinal fluid (CSF) barrier (BCSFB). A main function of the CP is to secrete CSF, which is accomplished by active transport of small ions and water from the blood side to the CSF side. The CP also supplies the brain with certain nutrients, hormones, and metal ions, while removing metabolites and xenobiotics from the CSF. Numerous membrane transporters are expressed in the CP in order to facilitate the solute exchange between the blood and the CSF. The solute carrier (SLC) superfamily represents a major class of transporters in the CP that constitutes the molecular mechanisms for CP function. Recently, we systematically and quantitatively examined Slc gene expression in 20 anatomically comprehensive brain areas in the adult mouse brain using high-quality in situ hybridization data generated by the Allen Brain Atlas. Here we focus our analysis on Slc gene expression at the BCSFB using previously obtained data. Of the 252 Slc genes present in the mouse brain, 202 Slc genes were found at detectable levels in the CP. Unsupervised hierarchical cluster analysis showed that the CP Slc gene expression pattern is substantially different from the other 19 analyzed brain regions. The majority of the Slc genes in the CP are expressed at low to moderate levels, whereas 28 Slc genes are present in the CP at the highest levels. These highly expressed Slc genes encode transporters involved in CSF secretion, energy production, and transport of nutrients, hormones, neurotransmitters, sulfate, and metal ions. In this review, the functional characteristics and potential importance of these Slc transporters in the CP are discussed, with particular emphasis on their localization and physiological functions at the BCSFB.
Collapse
Affiliation(s)
- Horace T B Ho
- Department of Pharmaceutics, University of Washington Seattle, WA, USA
| | | | | |
Collapse
|
45
|
Parker MD, Qin X, Williamson RC, Toye AM, Boron WF. HCO(3)(-)-independent conductance with a mutant Na(+)/HCO(3)(-) cotransporter (SLC4A4) in a case of proximal renal tubular acidosis with hypokalaemic paralysis. J Physiol 2012; 590:2009-34. [PMID: 22331414 PMCID: PMC3573318 DOI: 10.1113/jphysiol.2011.224733] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Accepted: 02/07/2012] [Indexed: 12/14/2022] Open
Abstract
The renal electrogenic Na(+)/HCO(3)(−) cotransporter (NBCe1-A) contributes to the basolateral step of transepithelial HCO(3)(−) reabsorption in proximal tubule epithelia, contributing to the buffering of blood pH. Elsewhere in the body (e.g. muscle cells) NBCe1 variants contribute to, amongst other processes, maintenance of intracellular pH. Others have described a homozygous mutation in NBCe1 (NBCe1-A p.Ala799Val) in an individual with severe proximal renal tubular acidosis (pRTA; usually associated with defective HCO(3)(−) reabsorption in proximal tubule cells) and hypokalaemic periodic paralysis (hypoPP; usually associated with leaky cation channels in muscle cells). Using biotinylation and two-electrode voltage-clamp on Xenopus oocytes expressing NBCe1, we demonstrate that the mutant NBCe1-A (A(A799V)) exhibits a per-molecule transport defect that probably contributes towards the observed pRTA. Furthermore, we find that A(A799V) expression is associated with an unusual HCO(3)(−)-independent conductance that, if associated with mutant NBCe1 in muscle cells, could contribute towards the appearance of hypokalaemic paralysis in the affected individual. We also study three novel lab mutants of NBCe1-A: p.Ala799Ile, p.Ala799Gly and p.Ala799Ser. All three exhibit a per-molecule transport defect, but only A(A799I) exhibits an A(A799V)-like ion conductance. A(A799G) and A(A799S) exhibit unusual outward rectification in their HCO(3)(−)-dependent conductance and A(A799G) exhibits reduced sensitivity to both DIDS and tenidap. A799G is the first mutation shown to affect the apparent tenidap affinity of NBCe1. Finally we show that A(A799V) and A(A799I), which accumulate poorly in the plasma membrane of oocytes, exhibit signs of abnormal intracellular accumulation in a non-polarized renal cell-line.
Collapse
Affiliation(s)
- Mark D Parker
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, 10900 Euclid Avenue, Cleveland, OH 44106, USA.
| | | | | | | | | |
Collapse
|
46
|
Damkier HH, Praetorius J. Genetic ablation of Slc4a10 alters the expression pattern of transporters involved in solute movement in the mouse choroid plexus. Am J Physiol Cell Physiol 2012; 302:C1452-9. [PMID: 22357733 DOI: 10.1152/ajpcell.00285.2011] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Mutational changes of one transporter can have deleterious effects on epithelial function leaving the cells with the options of either compensating for the loss of function or dedifferentiating. Previous studies have shown that the choroid plexus epithelium (CPE) from mice lacking the Na(+)-dependent Cl(-)/HCO(3)(-) exchanger (NCBE) encoded by Slc4a10 leads to retargeting of the Na(+)/H(+) exchanger 1 (NHE1) from the luminal to the basolateral plasma membrane. We hypothesized that disruption of NCBE, the main basolateral Na(+) importer in the CPE, would lead to a compensatory increase in the abundance of other important transport proteins in this tissue. Aquaporin-1 (AQP1) abundance was 42.7% lower and Na,K-ATPase 36.4% lower in the CPE of Slc4a10 knockout mice, respectively. The NHE1 binding ezrin cytoskeleton appeared disrupted in Slc4a10 knockout mice, whereas no changes were observed in cellular polarization with respect to claudin-2 and appearance of luminal surface microvilli. The renal proximal tubule constitutes a leaky epithelium with high transport rate similar to CPE. Here, Slc4a10 knockout did not affect Na,K-ATPase or AQP1 expression. CPE from AQP1 knockout mice has a secretory defect similar to Slc4a10 mice. However, neither NCBE nor Na,K-ATPase expression was affected in CPE from AQP1 knockout mice. By contrast, the abundance of Na,K-ATPase and NBCe1 was decreased by 23 and 31.7%, respectively, in AQP1 knockout proximal tubules, while the NHE3 abundance was unchanged. In conclusion, CPE lacking NCBE seems to spare the molecular machinery involved in CSF secretion rather than compensate for the loss of the Na(+) loader. Slc4a10 knockout seems to be more deleterious to CPE than AQP1 knockout.
Collapse
Affiliation(s)
- Helle Hasager Damkier
- Department of Biomedicine, Aarhus University, Wilhelm Meyers Allé 3, Bldg. 1233/1234, DK-8000 Aarhus C, Denmark.
| | | |
Collapse
|
47
|
Expression and distribution of NBCn2 (Slc4a10) splice variants in mouse brain: cloning of novel variant NBCn2-D. Brain Res 2011; 1390:33-40. [PMID: 21439947 DOI: 10.1016/j.brainres.2011.03.046] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2011] [Revised: 03/10/2011] [Accepted: 03/17/2011] [Indexed: 11/22/2022]
Abstract
The SLC4A10 gene, which is highly expressed in the mammalian brain, contains two known alternative splicing units, inserts A and B, and is theoretically capable of producing four NBCn2 splice variants: NBCn2-A, -B, -C, and -D. By immunoprecipitation and western blotting, a previous study showed the putative NBCn2-D to be expressed predominantly in the subcortex (SCX) and medulla (MD) of mouse brain. However, no evidence has been provided, in any species, for the existence of a full-length transcript encoding NBCn2-D. In the present study, we report for the first time the cloning of the full-length cDNAs encoding NBCn2-D from mouse SCX and MD. Based on the frequency of bacterial colonies obtained after PCR, we conclude that in SCX, the NBCn2-A transcript is dominant, whereas in MD, NBCn2-B is dominant. NBCn2-D is the least abundant transcript in each of these two brain regions. An analysis based upon the present PCR data as well as the previous immunoprecipitation/western-blot data suggests the following prevalence of NBCn2 variants in total mouse brain: NBCn2-A (~83%), NBCn2-B (~10%), NBCn2-C (~5%), and NBCn2-D (~2%). We also estimate the prevalence of each variant in each of the five brain regions (i.e., cerebral cortex, SCX, cerebellum, hippocampus, and MD). We hypothesize that the expression of different NBCn2 splice variants is characteristic of specific tissue/cells.
Collapse
|
48
|
Redzic Z. Molecular biology of the blood-brain and the blood-cerebrospinal fluid barriers: similarities and differences. Fluids Barriers CNS 2011; 8:3. [PMID: 21349151 PMCID: PMC3045361 DOI: 10.1186/2045-8118-8-3] [Citation(s) in RCA: 253] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2010] [Accepted: 01/18/2011] [Indexed: 01/11/2023] Open
Abstract
Efficient processing of information by the central nervous system (CNS) represents an important evolutionary advantage. Thus, homeostatic mechanisms have developed that provide appropriate circumstances for neuronal signaling, including a highly controlled and stable microenvironment. To provide such a milieu for neurons, extracellular fluids of the CNS are separated from the changeable environment of blood at three major interfaces: at the brain capillaries by the blood-brain barrier (BBB), which is localized at the level of the endothelial cells and separates brain interstitial fluid (ISF) from blood; at the epithelial layer of four choroid plexuses, the blood-cerebrospinal fluid (CSF) barrier (BCSFB), which separates CSF from the CP ISF, and at the arachnoid barrier. The two barriers that represent the largest interface between blood and brain extracellular fluids, the BBB and the BCSFB, prevent the free paracellular diffusion of polar molecules by complex morphological features, including tight junctions (TJs) that interconnect the endothelial and epithelial cells, respectively. The first part of this review focuses on the molecular biology of TJs and adherens junctions in the brain capillary endothelial cells and in the CP epithelial cells. However, normal function of the CNS depends on a constant supply of essential molecules, like glucose and amino acids from the blood, exchange of electrolytes between brain extracellular fluids and blood, as well as on efficient removal of metabolic waste products and excess neurotransmitters from the brain ISF. Therefore, a number of specific transport proteins are expressed in brain capillary endothelial cells and CP epithelial cells that provide transport of nutrients and ions into the CNS and removal of waste products and ions from the CSF. The second part of this review concentrates on the molecular biology of various solute carrier (SLC) transport proteins at those two barriers and underlines differences in their expression between the two barriers. Also, many blood-borne molecules and xenobiotics can diffuse into brain ISF and then into neuronal membranes due to their physicochemical properties. Entry of these compounds could be detrimental for neural transmission and signalling. Thus, BBB and BCSFB express transport proteins that actively restrict entry of lipophilic and amphipathic substances from blood and/or remove those molecules from the brain extracellular fluids. The third part of this review concentrates on the molecular biology of ATP-binding cassette (ABC)-transporters and those SLC transporters that are involved in efflux transport of xenobiotics, their expression at the BBB and BCSFB and differences in expression in the two major blood-brain interfaces. In addition, transport and diffusion of ions by the BBB and CP epithelium are involved in the formation of fluid, the ISF and CSF, respectively, so the last part of this review discusses molecular biology of ion transporters/exchangers and ion channels in the brain endothelial and CP epithelial cells.
Collapse
Affiliation(s)
- Zoran Redzic
- Department of Physiology, Faculty of Medicine, Kuwait University, SAFAT 13110, Kuwait.
| |
Collapse
|
49
|
Johanson CE, Stopa EG, McMillan PN. The blood-cerebrospinal fluid barrier: structure and functional significance. Methods Mol Biol 2011; 686:101-131. [PMID: 21082368 DOI: 10.1007/978-1-60761-938-3_4] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The choroid plexus (CP) of the blood-CSF barrier (BCSFB) displays fundamentally different properties than blood-brain barrier (BBB). With brisk blood flow (10 × brain) and highly permeable capillaries, the human CP provides the CNS with a high turnover rate of fluid (∼400,000 μL/day) containing micronutrients, peptides, and hormones for neuronal networks. Renal-like basement membranes in microvessel walls and underneath the epithelium filter large proteins such as ferritin and immunoglobulins. Type IV collagen (α3, α4, and α5) in the subepithelial basement membrane confers kidney-like permselectivity. As in the glomerulus, so also in CP, the basolateral membrane utrophin A and colocalized dystrophin impart structural stability, transmembrane signaling, and ion/water homeostasis. Extensive infoldings of the plasma-facing basal labyrinth together with lush microvilli at the CSF-facing membrane afford surface area, as great as that at BBB, for epithelial solute and water exchange. CSF formation occurs by basolateral carrier-mediated uptake of Na+, Cl-, and HCO3-, followed by apical release via ion channel conductance and osmotic flow of water through AQP1 channels. Transcellular epithelial active transport and secretion are energized and channeled via a highly dense organelle network of mitochondria, endoplasmic reticulum, and Golgi; bleb formation occurs at the CSF surface. Claudin-2 in tight junctions helps to modulate the lower electrical resistance and greater permeability in CP than at BBB. Still, ratio analyses of influx coefficients (Kin) for radiolabeled solutes indicate that paracellular diffusion of small nonelectrolytes (e.g., urea and mannitol) through tight junctions is restricted; molecular sieving is proportional to solute size. Protein/peptide movement across BCSFB is greatly limited, occurring by paracellular leaks through incomplete tight junctions and low-capacity transcellular pinocytosis/exocytosis. Steady-state concentration ratios, CSF/plasma, ranging from 0.003 for IgG to 0.80 for urea, provide insight on plasma solute penetrability, barrier permeability, and CSF sink action to clear substances from CNS.
Collapse
Affiliation(s)
- Conrad E Johanson
- Department of Clinical Neuroscience, Alpert Medical School at Brown University, Providence, RI, USA
| | | | | |
Collapse
|
50
|
Damkier HH, Brown PD, Praetorius J. Epithelial pathways in choroid plexus electrolyte transport. Physiology (Bethesda) 2010; 25:239-49. [PMID: 20699470 DOI: 10.1152/physiol.00011.2010] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A stable intraventricular milieu is crucial for maintaining normal neuronal function. The choroid plexus epithelium produces the cerebrospinal fluid and in doing so influences the chemical composition of the interstitial fluid of the brain. Here, we review the molecular pathways involved in transport of the electrolytes Na+, K+, Cl-, and HCO3(-)across the choroid plexus epithelium.
Collapse
Affiliation(s)
- Helle H Damkier
- Department of Anatomy and the Water and Salt Research Center, Aarhus University, Aarhus C, Denmark
| | | | | |
Collapse
|