1
|
Piro A, Luo Y, Zhang Z, Ye W, Kang F, Xie L, Wang Y, Dai FF, Gaisano HY, Rocheleau JV, Prentice KJ, Wheeler MB. Beta cell specific ZnT8 gene deficiency and resulting loss in zinc content significantly improve insulin secretion. Mol Cell Endocrinol 2024; 594:112376. [PMID: 39321953 DOI: 10.1016/j.mce.2024.112376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/06/2024] [Accepted: 09/22/2024] [Indexed: 09/27/2024]
Abstract
Zinc transporter 8 (ZnT8) is highly expressed in pancreatic beta cells, localizes to insulin secretory granules (ISG), and regulates zinc content. ZnT8 gene polymorphisms have revealed a relationship between ZnT8 activity and type 2 diabetes (T2D) risk, however, the role of beta-cell ZnT8 is not well understood. A beta cell specific ZnT8 knockout (ZnT8 BKO) mouse model was investigated. ZnT8 BKO islets showed significantly reduced ZnT8 gene expression and reduced zinc content. Compared to controls, ZnT8 BKO mice displayed significantly elevated plasma insulin levels and improved glucose tolerance following acute insulin resistance induced via S961. Glucose stimulated insulin secretion from isolated ZnT8 BKO pancreatic islets revealed enhanced insulin secretion capacity. The difference in insulin secretion between ZnT8 BKO and control islets was negated upon zinc supplementation, and the inhibitory effect of zinc on insulin secretion was confirmed in human islets. These results indicate that the loss of ZnT8 activity and accompanying reduced cellular zinc are associated with increased insulin secretion capacity. The reduction in secreted insulin content upon zinc supplementation in ZnT8 BKO islets suggests that ISG-released zinc normally tempers insulin secretion.
Collapse
Affiliation(s)
- Anthony Piro
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Yihan Luo
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Ziyi Zhang
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Department of Endocrinology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang, China
| | - Wenyue Ye
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Fei Kang
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Li Xie
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Yufeng Wang
- Advanced Diagnostics, Toronto General Hospital Research Institute, Toronto, ON M5G 1L7, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
| | - Feihan F Dai
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Herbert Y Gaisano
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Jonathan V Rocheleau
- Advanced Diagnostics, Toronto General Hospital Research Institute, Toronto, ON M5G 1L7, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
| | - Kacey J Prentice
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Michael B Wheeler
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
2
|
Sui L, Du Q, Romer A, Su Q, Chabosseau PL, Xin Y, Kim J, Kleiner S, Rutter GA, Egli D. ZnT8 Loss of Function Mutation Increases Resistance of Human Embryonic Stem Cell-Derived Beta Cells to Apoptosis in Low Zinc Condition. Cells 2023; 12:903. [PMID: 36980244 PMCID: PMC10047077 DOI: 10.3390/cells12060903] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/25/2023] [Accepted: 03/06/2023] [Indexed: 03/17/2023] Open
Abstract
The rare SLC30A8 mutation encoding a truncating p.Arg138* variant (R138X) in zinc transporter 8 (ZnT8) is associated with a 65% reduced risk for type 2 diabetes. To determine whether ZnT8 is required for beta cell development and function, we derived human pluripotent stem cells carrying the R138X mutation and differentiated them into insulin-producing cells. We found that human pluripotent stem cells with homozygous or heterozygous R138X mutation and the null (KO) mutation have normal efficiency of differentiation towards insulin-producing cells, but these cells show diffuse granules that lack crystalline zinc-containing insulin granules. Insulin secretion is not compromised in vitro by KO or R138X mutations in human embryonic stem cell-derived beta cells (sc-beta cells). Likewise, the ability of sc-beta cells to secrete insulin and maintain glucose homeostasis after transplantation into mice was comparable across different genotypes. Interestingly, sc-beta cells with the SLC30A8 KO mutation showed increased cytoplasmic zinc, and cells with either KO or R138X mutation were resistant to apoptosis when extracellular zinc was limiting. These findings are consistent with a protective role of zinc in cell death and with the protective role of zinc in T2D.
Collapse
Affiliation(s)
- Lina Sui
- Departments of Pediatrics, Naomi Berrie Diabetes Center, Obstetrics and Gynecology, Columbia Stem Cell Initiative, Columbia University Irving Medical Center, Columbia University, New York, NY 10032, USA; (Q.D.)
| | - Qian Du
- Departments of Pediatrics, Naomi Berrie Diabetes Center, Obstetrics and Gynecology, Columbia Stem Cell Initiative, Columbia University Irving Medical Center, Columbia University, New York, NY 10032, USA; (Q.D.)
| | - Anthony Romer
- Departments of Pediatrics, Naomi Berrie Diabetes Center, Obstetrics and Gynecology, Columbia Stem Cell Initiative, Columbia University Irving Medical Center, Columbia University, New York, NY 10032, USA; (Q.D.)
| | - Qi Su
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA
| | | | - Yurong Xin
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA
| | - Jinrang Kim
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA
| | - Sandra Kleiner
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA
| | - Guy A. Rutter
- CR-CHUM, Faculté de Medicine, Université de Montréal, Montréal, QC H3T 1J4, Canada
- Section of Cell Biology, Hammersmith Hospital, Imperial College, London WI2 ONN, UK
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
| | - Dieter Egli
- Departments of Pediatrics, Naomi Berrie Diabetes Center, Obstetrics and Gynecology, Columbia Stem Cell Initiative, Columbia University Irving Medical Center, Columbia University, New York, NY 10032, USA; (Q.D.)
| |
Collapse
|
3
|
Morales-Reyes I, Atwater I, Esparza-Aguilar M, Pérez-Armendariz EM. Impact of biotin supplemented diet on mouse pancreatic islet β-cell mass expansion and glucose induced electrical activity. Islets 2022; 14:149-163. [PMID: 35758027 PMCID: PMC9733685 DOI: 10.1080/19382014.2022.2091886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
Abstract
Biotin supplemented diet (BSD) is known to enhance β-cell replication and insulin secretion in mice. Here, we first describe BSD impact on the islet β-cell membrane potential (Vm) and glucose-induced electrical activity. BALB/c female mice (n ≥ 20) were fed for nine weeks after weaning with a control diet (CD) or a BSD (100X). In both groups, islet area was compared in pancreatic sections incubated with anti-insulin and anti-glucagon antibodies; Vm was recorded in micro dissected islet β-cells during perfusion with saline solutions containing 2.8, 5.0, 7.5-, or 11.0 mM glucose. BSD increased the islet and β-cell area compared with CD. In islet β-cells of the BSD group, a larger ΔVm/Δ[glucose] was found at sub-stimulatory glucose concentrations and the threshold glucose concentration for generation of action potentials (APs) was increased by 1.23 mM. Moreover, at 11.0 mM glucose, a significant decrease was found in AP amplitude, frequency, ascending and descending slopes as well as in the calculated net charge influx and efflux of islet β-cells from BSD compared to the CD group, without changes in slow Vm oscillation parameters. A pharmacological dose of biotin in mice increases islet insulin cell mass, shifts islet β-cell intracellular electrical activity dose response curve toward higher glucose concentrations, very likely by increasing KATP conductance, and decreases voltage gated Ca2+ and K+ conductance at stimulatory glucose concentrations.
Collapse
Affiliation(s)
- Israel Morales-Reyes
- Tisular, Facultad de Medicina, Universidad Nacional Autónoma de México, Av. Universidad 3000, Circuito Interior S/N, Universidad Nacional Autónoma de México, C.U., CDMXLaboratorio de sinapsis eléctricas. Departamento de Biología Celular y , México
| | - Illani Atwater
- Human Genetics Program, ICBM, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Marcelino Esparza-Aguilar
- Unidad de Investigación en Epidemiología, Instituto Nacional de Pediatría, México. Ciudad de México, México
| | - E. Martha Pérez-Armendariz
- Tisular, Facultad de Medicina, Universidad Nacional Autónoma de México, Av. Universidad 3000, Circuito Interior S/N, Universidad Nacional Autónoma de México, C.U., CDMXLaboratorio de sinapsis eléctricas. Departamento de Biología Celular y , México
- CONTACT E. Martha Pérez-Armendariz ; Laboratorio de sinapsis eléctricas. Departamento de Biología Celular y Tisular, Facultad de Medicina, Universidad Nacional Autónoma de México, Av. Universidad 3000, Circuito Interior S/N, Universidad Nacional Autónoma de México, C.U., CDMX, C.P. 04510, México
| |
Collapse
|
4
|
ZnT8 loss-of-function accelerates functional maturation of hESC-derived β cells and resists metabolic stress in diabetes. Nat Commun 2022; 13:4142. [PMID: 35842441 PMCID: PMC9288460 DOI: 10.1038/s41467-022-31829-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 07/04/2022] [Indexed: 12/21/2022] Open
Abstract
Human embryonic stem cell-derived β cells (SC-β cells) hold great promise for treatment of diabetes, yet how to achieve functional maturation and protect them against metabolic stresses such as glucotoxicity and lipotoxicity remains elusive. Our single-cell RNA-seq analysis reveals that ZnT8 loss of function (LOF) accelerates the functional maturation of SC-β cells. As a result, ZnT8 LOF improves glucose-stimulated insulin secretion (GSIS) by releasing the negative feedback of zinc inhibition on insulin secretion. Furthermore, we demonstrate that ZnT8 LOF mutations endow SC-β cells with resistance to lipotoxicity/glucotoxicity-triggered cell death by alleviating endoplasmic reticulum (ER) stress through modulation of zinc levels. Importantly, transplantation of SC-β cells with ZnT8 LOF into mice with preexisting diabetes significantly improves glycemia restoration and glucose tolerance. These findings highlight the beneficial effect of ZnT8 LOF on the functional maturation and survival of SC-β cells that are useful as a potential source for cell replacement therapies. Immature function and fragility hinder application of hESC-derived β cells (SC-β cell) for diabetes cell therapy. Here, the authors identify ZnT8 as a gene editing target to enhance the insulin secretion and cell survival under metabolic stress by abolishing zinc transport in SC-β cells.
Collapse
|
5
|
Dwivedi OP, Lehtovirta M, Hastoy B, Chandra V, Krentz NAJ, Kleiner S, Jain D, Richard AM, Abaitua F, Beer NL, Grotz A, Prasad RB, Hansson O, Ahlqvist E, Krus U, Artner I, Suoranta A, Gomez D, Baras A, Champon B, Payne AJ, Moralli D, Thomsen SK, Kramer P, Spiliotis I, Ramracheya R, Chabosseau P, Theodoulou A, Cheung R, van de Bunt M, Flannick J, Trombetta M, Bonora E, Wolheim CB, Sarelin L, Bonadonna RC, Rorsman P, Davies B, Brosnan J, McCarthy MI, Otonkoski T, Lagerstedt JO, Rutter GA, Gromada J, Gloyn AL, Tuomi T, Groop L. Loss of ZnT8 function protects against diabetes by enhanced insulin secretion. Nat Genet 2019; 51:1596-1606. [PMID: 31676859 PMCID: PMC6858874 DOI: 10.1038/s41588-019-0513-9] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Accepted: 09/13/2019] [Indexed: 12/30/2022]
Abstract
A rare loss-of-function allele p.Arg138* in SLC30A8 encoding the zinc transporter 8 (ZnT8), which is enriched in Western Finland, protects against type 2 diabetes (T2D). We recruited relatives of the identified carriers and showed that protection was associated with better insulin secretion due to enhanced glucose responsiveness and proinsulin conversion, particularly when compared with individuals matched for the genotype of a common T2D-risk allele in SLC30A8, p.Arg325. In genome-edited human induced pluripotent stem cell (iPSC)-derived β-like cells, we establish that the p.Arg138* allele results in reduced SLC30A8 expression due to haploinsufficiency. In human β cells, loss of SLC30A8 leads to increased glucose responsiveness and reduced KATP channel function similar to isolated islets from carriers of the T2D-protective allele p.Trp325. These data position ZnT8 as an appealing target for treatment aimed at maintaining insulin secretion capacity in T2D.
Collapse
Affiliation(s)
- Om Prakash Dwivedi
- Institute for Molecular Medicine Finland, Helsinki University, Helsinki, Finland
| | - Mikko Lehtovirta
- Institute for Molecular Medicine Finland, Helsinki University, Helsinki, Finland
| | - Benoit Hastoy
- Oxford Centre for Diabetes Endocrinology and Metabolism, University of Oxford, Oxford, UK
| | - Vikash Chandra
- Stem Cells and Metabolism Research Program and Biomedicum Stem Cell Centre, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Nicole A J Krentz
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | | | - Deepak Jain
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | | | - Fernando Abaitua
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Nicola L Beer
- Oxford Centre for Diabetes Endocrinology and Metabolism, University of Oxford, Oxford, UK
| | - Antje Grotz
- Oxford Centre for Diabetes Endocrinology and Metabolism, University of Oxford, Oxford, UK
| | - Rashmi B Prasad
- Lund University Diabetes Centre, Department of Clinical Sciences, Lund University, Skåne University Hospital, Malmö, Sweden
| | - Ola Hansson
- Institute for Molecular Medicine Finland, Helsinki University, Helsinki, Finland
- Lund University Diabetes Centre, Department of Clinical Sciences, Lund University, Skåne University Hospital, Malmö, Sweden
| | - Emma Ahlqvist
- Lund University Diabetes Centre, Department of Clinical Sciences, Lund University, Skåne University Hospital, Malmö, Sweden
| | - Ulrika Krus
- Lund University Diabetes Centre, Department of Clinical Sciences, Lund University, Skåne University Hospital, Malmö, Sweden
| | - Isabella Artner
- Lund University Diabetes Centre, Department of Clinical Sciences, Lund University, Skåne University Hospital, Malmö, Sweden
| | - Anu Suoranta
- Institute for Molecular Medicine Finland, Helsinki University, Helsinki, Finland
| | | | - Aris Baras
- Regeneron Pharmaceuticals, Tarrytown, NY, USA
| | - Benoite Champon
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Anthony J Payne
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Daniela Moralli
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Soren K Thomsen
- Oxford Centre for Diabetes Endocrinology and Metabolism, University of Oxford, Oxford, UK
| | - Philipp Kramer
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Ioannis Spiliotis
- Oxford Centre for Diabetes Endocrinology and Metabolism, University of Oxford, Oxford, UK
| | - Reshma Ramracheya
- Oxford Centre for Diabetes Endocrinology and Metabolism, University of Oxford, Oxford, UK
| | - Pauline Chabosseau
- Section of Cell Biology, Department of Medicine, Imperial College London, Imperial Centre for Translational and Experimental Medicine, Hammersmith, Hospital, London, UK
| | - Andria Theodoulou
- Section of Cell Biology, Department of Medicine, Imperial College London, Imperial Centre for Translational and Experimental Medicine, Hammersmith, Hospital, London, UK
| | - Rebecca Cheung
- Section of Cell Biology, Department of Medicine, Imperial College London, Imperial Centre for Translational and Experimental Medicine, Hammersmith, Hospital, London, UK
| | - Martijn van de Bunt
- Oxford Centre for Diabetes Endocrinology and Metabolism, University of Oxford, Oxford, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Jason Flannick
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA, USA
| | - Maddalena Trombetta
- Department of Medicine, University of Verona and Azienda Ospedaliera Universitaria Integrata of Verona, Verona, Italy
| | - Enzo Bonora
- Department of Medicine, University of Verona and Azienda Ospedaliera Universitaria Integrata of Verona, Verona, Italy
| | - Claes B Wolheim
- Lund University Diabetes Centre, Department of Clinical Sciences, Lund University, Skåne University Hospital, Malmö, Sweden
| | | | - Riccardo C Bonadonna
- Department of Medicine and Surgery, University of Parma School of Medicine and Azienda Ospedaliera Universitaria of Parma, Parma, Italy
| | - Patrik Rorsman
- Oxford Centre for Diabetes Endocrinology and Metabolism, University of Oxford, Oxford, UK
| | - Benjamin Davies
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | | | - Mark I McCarthy
- Oxford Centre for Diabetes Endocrinology and Metabolism, University of Oxford, Oxford, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
- Oxford NIHR Biomedical Research Centre, Churchill Hospital, Oxford, UK
| | - Timo Otonkoski
- Stem Cells and Metabolism Research Program and Biomedicum Stem Cell Centre, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Jens O Lagerstedt
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Guy A Rutter
- Section of Cell Biology, Department of Medicine, Imperial College London, Imperial Centre for Translational and Experimental Medicine, Hammersmith, Hospital, London, UK
| | | | - Anna L Gloyn
- Oxford Centre for Diabetes Endocrinology and Metabolism, University of Oxford, Oxford, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
- Oxford NIHR Biomedical Research Centre, Churchill Hospital, Oxford, UK
| | - Tiinamaija Tuomi
- Institute for Molecular Medicine Finland, Helsinki University, Helsinki, Finland
- Folkhälsan Research Center, Helsinki, Finland
- Abdominal Center, Endocrinology, Helsinki University Central Hospital, Research Program for Clinical and Molecular Metabolism, University of Helsinki, Helsinki, Finland
| | - Leif Groop
- Institute for Molecular Medicine Finland, Helsinki University, Helsinki, Finland.
- Lund University Diabetes Centre, Department of Clinical Sciences, Lund University, Skåne University Hospital, Malmö, Sweden.
| |
Collapse
|
6
|
Proks P, Kramer H, Haythorne E, Ashcroft FM. Binding of sulphonylureas to plasma proteins - A KATP channel perspective. PLoS One 2018; 13:e0197634. [PMID: 29772022 PMCID: PMC5957440 DOI: 10.1371/journal.pone.0197634] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 05/04/2018] [Indexed: 12/25/2022] Open
Abstract
Sulphonylurea drugs stimulate insulin secretion from pancreatic β-cells primarily by inhibiting ATP sensitive potassium (KATP) channels in the β-cell membrane. The effective sulphonylurea concentration at its site of action is significantly attenuated by binding to serum albumin, which makes it difficult to compare in vitro and in vivo data. We therefore measured the ability of gliclazide and glibenclamide to inhibit KATP channels and stimulate insulin secretion in the presence of serum albumin. We used this data, together with estimates of free drug concentrations from binding studies, to predict the extent of sulphonylurea inhibition of KATP channels at therapeutic concentrations in vivo. KATP currents from mouse pancreatic β-cells and Xenopus oocytes were measured using the patch-clamp technique. Gliclazide and glibenclamide binding to human plasma were determined in spiked plasma samples using an ultrafiltration-mass spectrometry approach. Bovine serum albumin (60g/l) produced a mild, non-significant reduction of gliclazide block of KATP currents in pancreatic β-cells and Xenopus oocytes. In contrast, glibenclamide inhibition of recombinant KATP channels was dramatically suppressed by albumin (predicted free drug concentration <0.1%). Insulin secretion was also reduced. Free concentrations of gliclazide and glibenclamide in the presence of human plasma measured in binding experiments were 15% and 0.05%, respectively. Our data suggest the free concentration of glibenclamide in plasma is too low to account for the drug’s therapeutic effect. In contrast, the free gliclazide concentration in plasma is high enough to close KATP channels and stimulate insulin secretion.
Collapse
Affiliation(s)
- Peter Proks
- Oxford Centre for Gene Function, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Holger Kramer
- Oxford Centre for Gene Function, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Elizabeth Haythorne
- Oxford Centre for Gene Function, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Frances M. Ashcroft
- Oxford Centre for Gene Function, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
- * E-mail:
| |
Collapse
|
7
|
Abstract
Islets of Langerhans are islands of endocrine cells scattered throughout the pancreas. A number of new studies have pointed to the potential for conversion of non-β islet cells in to insulin-producing β-cells to replenish β-cell mass as a means to treat diabetes. Understanding normal islet cell mass and function is important to help advance such treatment modalities: what should be the target islet/β-cell mass, does islet architecture matter to energy homeostasis, and what may happen if we lose a particular population of islet cells in favour of β-cells? These are all questions to which we will need answers for islet replacement therapy by transdifferentiation of non-β islet cells to be a reality in humans. We know a fair amount about the biology of β-cells but not quite as much about the other islet cell types. Until recently, we have not had a good grasp of islet mass and distribution in the human pancreas. In this review, we will look at current data on islet cells, focussing more on non-β cells, and on human pancreatic islet mass and distribution.
Collapse
Affiliation(s)
- Gabriela Da Silva Xavier
- Section of Functional Genomics and Cell Biology, Department of Medicine, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK.
- Institute of Metabolism and Systems Research (IMSR), University of Birmingham, Edgbaston B15 2TT, UK.
| |
Collapse
|
8
|
Hershfinkel M. The Zinc Sensing Receptor, ZnR/GPR39, in Health and Disease. Int J Mol Sci 2018; 19:ijms19020439. [PMID: 29389900 PMCID: PMC5855661 DOI: 10.3390/ijms19020439] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Revised: 01/24/2018] [Accepted: 01/29/2018] [Indexed: 02/07/2023] Open
Abstract
A distinct G-protein coupled receptor that senses changes in extracellular Zn2+, ZnR/GPR39, was found in cells from tissues in which Zn2+ plays a physiological role. Most prominently, ZnR/GPR39 activity was described in prostate cancer, skin keratinocytes, and colon epithelial cells, where zinc is essential for cell growth, wound closure, and barrier formation. ZnR/GPR39 activity was also described in neurons that are postsynaptic to vesicular Zn2+ release. Activation of ZnR/GPR39 triggers Gαq-dependent signaling and subsequent cellular pathways associated with cell growth and survival. Furthermore, ZnR/GPR39 was shown to regulate the activity of ion transport mechanisms that are essential for the physiological function of epithelial and neuronal cells. Thus, ZnR/GPR39 provides a unique target for therapeutically modifying the actions of zinc in a specific and selective manner.
Collapse
Affiliation(s)
- Michal Hershfinkel
- Department of Physiology and Cell Biology and The Zlotowski Center for Neuroscience, Faculty of Health Sciences, POB 653, Ben-Gurion Ave. Ben-Gurion University of the Negev, Beer Sheva 84105, Israel.
| |
Collapse
|
9
|
Rorsman P, Ashcroft FM. Pancreatic β-Cell Electrical Activity and Insulin Secretion: Of Mice and Men. Physiol Rev 2018; 98:117-214. [PMID: 29212789 PMCID: PMC5866358 DOI: 10.1152/physrev.00008.2017] [Citation(s) in RCA: 519] [Impact Index Per Article: 74.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 05/30/2017] [Accepted: 06/18/2017] [Indexed: 12/14/2022] Open
Abstract
The pancreatic β-cell plays a key role in glucose homeostasis by secreting insulin, the only hormone capable of lowering the blood glucose concentration. Impaired insulin secretion results in the chronic hyperglycemia that characterizes type 2 diabetes (T2DM), which currently afflicts >450 million people worldwide. The healthy β-cell acts as a glucose sensor matching its output to the circulating glucose concentration. It does so via metabolically induced changes in electrical activity, which culminate in an increase in the cytoplasmic Ca2+ concentration and initiation of Ca2+-dependent exocytosis of insulin-containing secretory granules. Here, we review recent advances in our understanding of the β-cell transcriptome, electrical activity, and insulin exocytosis. We highlight salient differences between mouse and human β-cells, provide models of how the different ion channels contribute to their electrical activity and insulin secretion, and conclude by discussing how these processes become perturbed in T2DM.
Collapse
Affiliation(s)
- Patrik Rorsman
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford, United Kingdom; Department of Neuroscience and Physiology, Metabolic Research Unit, Göteborg, Sweden; and Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Frances M Ashcroft
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford, United Kingdom; Department of Neuroscience and Physiology, Metabolic Research Unit, Göteborg, Sweden; and Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
10
|
Zn2+ chelation by serum albumin improves hexameric Zn2+-insulin dissociation into monomers after exocytosis. PLoS One 2017; 12:e0187547. [PMID: 29099856 PMCID: PMC5669427 DOI: 10.1371/journal.pone.0187547] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 10/20/2017] [Indexed: 11/19/2022] Open
Abstract
β-cells release hexameric Zn2+-insulin into the extracellular space, but monomeric Zn2+-free insulin appears to be the only biologically active form. The mechanisms implicated in dissociation of the hexamer remain unclear, but they seem to be Zn2+ concentration-dependent. In this study, we investigate the influence of albumin binding to Zn2+ on Zn2+-insulin dissociation into Zn2+-free insulin and its physiological, methodological and therapeutic relevance. Glucose and K+-induced insulin release were analyzed in isolated mouse islets by static incubation and perifusion experiments in the presence and absence of albumin and Zn2+ chelators. Insulin tolerance tests were performed in rats using different insulin solutions with and without Zn2+ and/or albumin. Albumin-free buffer does not alter quantification by RIA of Zn2+-free insulin but strongly affects RIA measurements of Zn2+-insulin. In contrast, accurate determination of Zn2+-insulin was obtained only when bovine serum albumin or Zn2+ chelators were present in the assay buffer solution. Albumin and Zn2+ chelators do not modify insulin release but do affect insulin determination. Preincubation with albumin or Zn2+ chelators promotes the conversion of "slow" Zn2+-insulin into "fast" insulin. Consequently, insulin diffusion from large islets is ameliorated in the presence of Zn2+ chelators. These observations support the notion that the Zn2+-binding properties of albumin improve the dissociation of Zn2+-insulin into subunits after exocytosis, which may be useful in insulin determination, insulin pharmacokinetic assays and islet transplantation.
Collapse
|
11
|
Lawson R, Maret W, Hogstrand C. Expression of the ZIP/SLC39A transporters in β-cells: a systematic review and integration of multiple datasets. BMC Genomics 2017; 18:719. [PMID: 28893192 PMCID: PMC5594519 DOI: 10.1186/s12864-017-4119-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 09/05/2017] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Pancreatic β-cells require a constant supply of zinc to maintain normal insulin secretory function. Following co-exocytosis with insulin, zinc is replenished via the Zrt- and Irt-like (ZIP; SLC39A) family of transporters. However the ZIP paralogues of particular importance for zinc uptake, and associations with β-cell function and Type 2 Diabetes remain largely unexplored. We retrieved and statistically analysed publically available microarray and RNA-seq datasets to perform a systematic review on the expression of β-cell SLC39A paralogues. We complemented results with experimental data on expression profiling of human islets and mouse β-cell derived MIN6 cells, and compared transcriptomic and proteomic sequence conservation between human, mouse and rat. RESULTS The 14 ZIP paralogues have 73-98% amino sequence conservation between human and rodents. We identified 18 datasets for β-cell SLC39A analysis, which compared relative expression to non-β-cells, and expression in response to PDX-1 activity, cytokines, glucose and type 2 diabetic status. Published expression data demonstrate enrichment of transcripts for ZIP7 and ZIP9 transporters within rodent β-cells and of ZIP6, ZIP7 and ZIP14 within human β-cells, with ZIP1 most differentially expressed in response to cytokines and PDX-1 within rodent, and ZIP6 in response to diabetic status in human and glucose in rat. Our qPCR expression profiling data indicate that SLC39A6, -9, -13, and - 14 are the highest expressed paralogues in human β-cells and Slc39a6 and -7 in MIN6 cells. CONCLUSIONS Our systematic review, expression profiling and sequence alignment reveal similarities and potentially important differences in ZIP complements between human and rodent β-cells. We identify ZIP6, ZIP7, ZIP9, ZIP13 and ZIP14 in human and rodent and ZIP1 in rodent as potentially biologically important for β-cell zinc trafficking. We propose ZIP6 and ZIP7 are key functional orthologues in human and rodent β-cells and highlight these zinc importers as important targets for exploring associations between zinc status and normal physiology of β-cells and their decline in Type 2 Diabetes.
Collapse
Affiliation(s)
- Rebecca Lawson
- King's College London, Faculty of Life Sciences and Medicine, Diabetes and Nutritional Sciences, Metal Metabolism Group, 150 Stamford St, London, SE1 9NH, UK
| | - Wolfgang Maret
- King's College London, Faculty of Life Sciences and Medicine, Diabetes and Nutritional Sciences, Metal Metabolism Group, 150 Stamford St, London, SE1 9NH, UK
| | - Christer Hogstrand
- King's College London, Faculty of Life Sciences and Medicine, Diabetes and Nutritional Sciences, Metal Metabolism Group, 150 Stamford St, London, SE1 9NH, UK.
| |
Collapse
|
12
|
Chabosseau P, Rutter GA. Zinc and diabetes. Arch Biochem Biophys 2016; 611:79-85. [DOI: 10.1016/j.abb.2016.05.022] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 05/09/2016] [Accepted: 05/31/2016] [Indexed: 01/09/2023]
|
13
|
Slepchenko KG, Daniels NA, Guo A, Li YV. Autocrine effect of Zn²⁺ on the glucose-stimulated insulin secretion. Endocrine 2015; 50:110-22. [PMID: 25771886 DOI: 10.1007/s12020-015-0568-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 03/02/2015] [Indexed: 12/30/2022]
Abstract
It is well known that zinc (Zn(2+)) is required for the process of insulin biosynthesis and the maturation of insulin secretory granules in pancreatic beta (β)-cells, and that changes in Zn(2+) levels in the pancreas have been found to be associated with diabetes. Glucose-stimulation causes a rapid co-secretion of Zn(2+) and insulin with similar kinetics. However, we do not know whether Zn(2+) regulates insulin availability and secretion. Here we investigated the effect of Zn(2+) on glucose-stimulated insulin secretion (GSIS) in isolated mouse pancreatic islets. Whereas Zn(2+) alone (control) had no effect on the basal secretion of insulin, it significantly inhibited GSIS. The application of CaEDTA, by removing the secreted Zn(2+) from the extracellular milieu of the islets, resulted in significantly increased GSIS, suggesting an overall inhibitory role of secreted Zn(2+) on GSIS. The inhibitory action of Zn(2+) was mostly mediated through the activities of KATP/Ca(2+) channels. Furthermore, during brief paired-pulse glucose-stimulated Zn(2+) secretion (GSZS), Zn(2+) secretion following the second pulse was significantly attenuated, probably by the secreted endogenous Zn(2+) after the first pulse. Such an inhibition on Zn(2+) secretion following the second pulse was completely reversed by Zn(2+) chelation, suggesting a negative feedback mechanism, in which the initial glucose-stimulated Zn(2+) release inhibits subsequent Zn(2+) secretion, subsequently inhibiting insulin co-secretion as well. Taken together, these data suggest a negative feedback mechanism on GSZS and GSIS by Zn(2+) secreted from β-cells, and the co-secreted Zn(2+) may act as an autocrine inhibitory modulator.
Collapse
Affiliation(s)
- Kira G Slepchenko
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, 45701, USA
| | | | | | | |
Collapse
|
14
|
Diethyldithiocarbamate-mediated zinc ion chelation reveals role of Cav2.3 channels in glucagon secretion. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:953-64. [DOI: 10.1016/j.bbamcr.2015.01.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 12/28/2014] [Accepted: 01/03/2015] [Indexed: 12/13/2022]
|
15
|
Abstract
Zinc (Zn2+) is an essential element crucial for growth and development, and also plays a role in cell signaling for cellular processes like cell division and apoptosis. In the mammalian pancreas, Zn2+ is essential for the correct processing, storage, secretion, and action of insulin in beta (β)-cells. Insulin is stored inside secretory vesicles or granules, where two Zn2+ ions coordinate six insulin monomers to form the hexameric-structure on which maturated insulin crystals are based. The total Zn2+ content of the mammalian pancreas is among the highest in the body, and Zn2+ concentration reach millimolar levels in the interior of the dense-core granule. Changes in Zn2+ levels in the pancreas have been found to be associated with diabetes. Hence, the relationship between co-stored Zn2+ and insulin undoubtedly is critical to normal β-cell function. The advances in the field of Zn2+ biology over the last decade have facilitated our understanding of Zn2+ trafficking, its intracellular distribution and its storage. When exocytosis of insulin occurs, insulin granules fuse with the β-cell plasma membrane and release their contents, i.e., insulin as well as substantial amount of free Zn2+, into the extracellular space and the local circulation. Studies increasingly indicate that secreted Zn2+ has autocrine or paracrine signaling in β-cells or the neighboring cells. This review discusses the Zn2+ homeostasis in β-cells with emphasis on the potential signaling role of Zn2+ to islet biology.
Collapse
Affiliation(s)
- Yang V Li
- Department of Biomedical Sciences, Ohio University Heritage College of Osteopathic Medicine, 346 Irvine Hall, Athens, OH, 45701, USA,
| |
Collapse
|
16
|
Tamaki M, Fujitani Y, Hara A, Uchida T, Tamura Y, Takeno K, Kawaguchi M, Watanabe T, Ogihara T, Fukunaka A, Shimizu T, Mita T, Kanazawa A, Imaizumi MO, Abe T, Kiyonari H, Hojyo S, Fukada T, Kawauchi T, Nagamatsu S, Hirano T, Kawamori R, Watada H. The diabetes-susceptible gene SLC30A8/ZnT8 regulates hepatic insulin clearance. J Clin Invest 2013; 123:4513-24. [PMID: 24051378 DOI: 10.1172/jci68807] [Citation(s) in RCA: 178] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Accepted: 07/11/2013] [Indexed: 12/30/2022] Open
Abstract
Recent genome-wide association studies demonstrated that common variants of solute carrier family 30 member 8 gene (SLC30A8) increase susceptibility to type 2 diabetes. SLC30A8 encodes zinc transporter-8 (ZnT8), which delivers zinc ion from the cytoplasm into insulin granules. Although it is well known that insulin granules contain high amounts of zinc, the physiological role of secreted zinc remains elusive. In this study, we generated mice with β cell-specific Slc30a8 deficiency (ZnT8KO mice) and demonstrated an unexpected functional linkage between Slc30a8 deletion and hepatic insulin clearance. The ZnT8KO mice had low peripheral blood insulin levels, despite insulin hypersecretion from pancreatic β cells. We also demonstrated that a substantial amount of the hypersecreted insulin was degraded during its first passage through the liver. Consistent with these findings, ZnT8KO mice and human individuals carrying rs13266634, a major risk allele of SLC30A8, exhibited increased insulin clearance, as assessed by c-peptide/insulin ratio. Furthermore, we demonstrated that zinc secreted in concert with insulin suppressed hepatic insulin clearance by inhibiting clathrin-dependent insulin endocytosis. Our results indicate that SLC30A8 regulates hepatic insulin clearance and that genetic dysregulation of this system may play a role in the pathogenesis of type 2 diabetes.
Collapse
|
17
|
Slepchenko KG, James CBL, Li YV. Inhibitory effect of zinc on glucose-stimulated zinc/insulin secretion in an insulin-secreting β-cell line. Exp Physiol 2013; 98:1301-11. [PMID: 23603373 DOI: 10.1113/expphysiol.2013.072348] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Diminished or inappropriate secretion of insulin is associated with type II diabetes. The cellular/molecular mechanism coupled with the regulation of insulin secretion is still under intense investigation. Divalent ion zinc (Zn(2+)) is co-packaged and co-secreted with insulin and is intimately involved in the process of insulin biosynthesis and the maturation of insulin secretory granules. The study reported here investigated glucose-stimulated zinc secretion (GSZS) and the effect of zinc on glucose-stimulated insulin secretion (GSIS) in the HIT-T15 pancreatic β-cell line. Zinc secretion was measured using a newly developed fluorescent zinc imaging approach, and the insulin secretion was measured using an enzyme-linked immunosorbent assay. There was apparent granular-like zinc staining in β-cells. The application of glucose induced detectable zinc secretion or GSZS. Like GSIS, GSZS was dependent on the glucose concentration (5-20 mm) and the presence of extracellular calcium. The application of a zinc chelator enhanced GSZS. When brief paired-pulse glucose stimulations, which involve the initial glucose stimulation followed by a second round of glucose stimulation, were applied, zinc secretion or GSZS that followed the first pulse was inhibited. This inhibition was reversed by zinc chelation, suggesting a feedback mechanism on GSZS by zinc secreted from β-cells. Finally, the application of zinc (50 μm) strongly inhibited GSIS as measured by enzyme-linked immunosorbent assay. The present study suggests that insulin secretion is regulated by co-secreted zinc that may act as an autocrine inhibitory modulator.
Collapse
Affiliation(s)
- Kira G Slepchenko
- Department of Biomedical Sciences, Ohio University Heritage College of Osteopathic Medicine, Athens, OH 45701, USA
| | | | | |
Collapse
|
18
|
Duprez J, Roma LP, Close AF, Jonas JC. Protective antioxidant and antiapoptotic effects of ZnCl2 in rat pancreatic islets cultured in low and high glucose concentrations. PLoS One 2012; 7:e46831. [PMID: 23056475 PMCID: PMC3463538 DOI: 10.1371/journal.pone.0046831] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Accepted: 09/05/2012] [Indexed: 01/09/2023] Open
Abstract
Aim/Hypothesis Rat pancreatic islet cell apoptosis is minimal after prolonged culture in 10 mmol/l glucose (G10), largely increased in 5 mmol/l glucose (G5) and moderately increased in 30 mmol/l glucose (G30). This glucose-dependent asymmetric V-shaped profile is preceded by parallel changes in the mRNA levels of oxidative stress-response genes like Metallothionein 1a (Mt1a). In this study, we tested the effect of ZnCl2, a potent inducer of Mt1a, on apoptosis, mitochondrial oxidative stress and alterations of glucose-induced insulin secretion (GSIS) induced by prolonged exposure to low and high vs. intermediate glucose concentrations. Methods Male Wistar rat islets were cultured in RPMI medium. Islet gene mRNA levels were measured by RTq-PCR. Apoptosis was quantified by measuring islet cytosolic histone-associated DNA fragments and the percentage of TUNEL-positive β-cells. Mitochondrial thiol oxidation was measured in rat islet cell clusters expressing “redox sensitive GFP” targeted to the mitochondria (mt-roGFP1). Insulin secretion was measured by RIA. Results As observed for Mt1a mRNA levels, β-cell apoptosis and loss of GSIS, culture in either G5 or G30 vs. G10 significantly increased mt-roGFP1 oxidation. While TPEN decreased Mt1a/2a mRNA induction by G5, addition of 50–100 µM ZnCl2 to the culture medium strongly increased Mt1a/2a mRNA and protein levels, reduced early mt-roGFP oxidation and significantly decreased late β-cell apoptosis after prolonged culture in G5 or G30 vs. G10. It did not, however, prevent the loss of GSIS under these culture conditions. Conclusion ZnCl2 reduces mitochondrial oxidative stress and improves rat β-cell survival during culture in the presence of low and high vs. intermediate glucose concentrations without improving their acute GSIS.
Collapse
Affiliation(s)
- Jessica Duprez
- Université Catholique de Louvain, Institut de Recherche Expérimentale et Clinique, Pôle d’Endocrinologie, Diabète et Nutrition, Brussels, Belgium
| | - Leticia P. Roma
- Université Catholique de Louvain, Institut de Recherche Expérimentale et Clinique, Pôle d’Endocrinologie, Diabète et Nutrition, Brussels, Belgium
| | - Anne-Françoise Close
- Université Catholique de Louvain, Institut de Recherche Expérimentale et Clinique, Pôle d’Endocrinologie, Diabète et Nutrition, Brussels, Belgium
| | - Jean-Christophe Jonas
- Université Catholique de Louvain, Institut de Recherche Expérimentale et Clinique, Pôle d’Endocrinologie, Diabète et Nutrition, Brussels, Belgium
- * E-mail:
| |
Collapse
|
19
|
Gerbino A, Maiellaro I, Carmone C, Caroppo R, Debellis L, Barile M, Busco G, Colella M. Glucose increases extracellular [Ca2+] in rat insulinoma (INS-1E) pseudoislets as measured with Ca2+-sensitive microelectrodes. Cell Calcium 2012; 51:393-401. [PMID: 22361140 DOI: 10.1016/j.ceca.2012.01.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Revised: 12/29/2011] [Accepted: 01/08/2012] [Indexed: 11/24/2022]
Abstract
Secretory granules of pancreatic β-cells contain high concentrations of Ca2+ ions that are co-released with insulin in the extracellular milieu upon activation of exocytosis. As a consequence, an increase in the extracellular Ca2+ concentration ([Ca2+]ext) in the microenvironment immediately surrounding β-cells should be expected following the exocytotic event. Using Ca2+-selective microelectrodes we show here that both high glucose and non-nutrient insulinotropic agents elicit a reversible increase of [Ca2+]ext within rat insulinoma (INS-1E) β-cells pseudoislets. The glucose-induced increases in [Ca2+]ext are blocked by pretreatment with different Ca2+ channel blockers. Physiological agonists acting as positive or negative modulators of the insulin secretion and drugs known to intersect the secretory machinery at different levels also induce [Ca2+]ext changes as predicted on the basis of their described action on insulin secretion. Finally, the glucose-induced [Ca2+]ext increase is strongly inhibited after disruption of the actin web, indicating that the dynamic [Ca2+]ext changes recorded in INS-1E pseudoislets by Ca2+-selective microelectrodes occur mainly as a consequence of exocytosis of Ca2+-rich granules. In conclusion, our data directly demonstrate that the extracellular spaces surrounding β-cells constitute a restricted domain where Ca2+ is co-released during insulin exocytosis, creating the basis for an autocrine/paracrine cell-to-cell communication system via extracellular Ca2+ sensors.
Collapse
Affiliation(s)
- Andrea Gerbino
- Department of Biosciences, Biotechnology and Pharmacological Sciences, University of Bari, Via G. Amendola 165/A, 70126 Bari, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Colomer C, Martin AO, Desarménien MG, Guérineau NC. Gap junction-mediated intercellular communication in the adrenal medulla: an additional ingredient of stimulus-secretion coupling regulation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1818:1937-51. [PMID: 21839720 DOI: 10.1016/j.bbamem.2011.07.034] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Revised: 07/20/2011] [Accepted: 07/25/2011] [Indexed: 01/28/2023]
Abstract
The traditional understanding of stimulus-secretion coupling in adrenal neuroendocrine chromaffin cells states that catecholamines are released upon trans-synaptic sympathetic stimulation mediated by acetylcholine released from the splanchnic nerve terminals. Although this statement remains largely true, it deserves to be tempered. In addition to its neurogenic control, catecholamine secretion also depends on a local gap junction-mediated communication between chromaffin cells. We review here the insights gained since the first description of gap junctions in the adrenal medullary tissue. Adrenal stimulus-secretion coupling now appears far more intricate than was previously envisioned and its deciphering represents a challenge for neurobiologists engaged in the study of the regulation of neuroendocrine secretion. This article is part of a Special Issue entitled: The Communicating junctions, composition, structure and characteristics.
Collapse
Affiliation(s)
- Claude Colomer
- Institut de Génomique Fonctionnelle, F-34000 Montpellier, France
| | | | | | | |
Collapse
|
21
|
Subthreshold α₂-adrenergic activation counteracts glucagon-like peptide-1 potentiation of glucose-stimulated insulin secretion. EXPERIMENTAL DIABETES RESEARCH 2010; 2011:604989. [PMID: 21253359 PMCID: PMC3021849 DOI: 10.1155/2011/604989] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2010] [Accepted: 12/10/2010] [Indexed: 11/17/2022]
Abstract
The pancreatic β cell harbors α2-adrenergic and glucagon-like peptide-1 (GLP-1) receptors on its plasma membrane to sense the corresponding ligands adrenaline/noradrenaline and GLP-1 to govern glucose-stimulated insulin secretion. However, it is not known whether these two signaling systems interact to gain the adequate and timely control of insulin release in response to glucose. The present work shows that the α2-adrenergic agonist clonidine concentration-dependently depresses glucose-stimulated insulin secretion from INS-1 cells. On the contrary, GLP-1 concentration-dependently potentiates insulin secretory response to glucose. Importantly, the present work reveals that subthreshold α2-adrenergic activation with clonidine counteracts GLP-1 potentiation of glucose-induced insulin secretion. This counteractory process relies on pertussis toxin- (PTX-) sensitive Gi proteins since it no longer occurs following PTX-mediated inactivation of Gi proteins. The counteraction of GLP-1 potentiation of glucose-stimulated insulin secretion by subthreshold α2-adrenergic activation is likely to serve as a molecular mechanism for the delicate regulation of insulin release.
Collapse
|
22
|
Tremblay F, Richard AMT, Will S, Syed J, Stedman N, Perreault M, Gimeno RE. Disruption of G protein-coupled receptor 39 impairs insulin secretion in vivo. Endocrinology 2009; 150:2586-95. [PMID: 19213841 DOI: 10.1210/en.2008-1251] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
GPR39 is a G protein-coupled receptor expressed in liver, gastrointestinal tract, adipose tissue, and pancreas. We have recently shown that young GPR39(-/-) mice have normal body weight, food intake, and fasting glucose and insulin levels. In this study, we examined the role of GPR39 in aging and diet-induced obese mice. Body weight and food intake were similar in wild-type and GPR39(-/-) mice as they aged from 12 to 52 wk or when fed a low-fat/high-sucrose or high-fat/high-sucrose diet. Fifty-two-week-old GPR39(-/-) mice showed a trend toward decreased insulin levels after oral glucose challenge. When fed either a low-fat/high-sucrose or high-fat/high-sucrose diet, GPR39(-/-) mice had increased fed glucose levels and showed decreased serum insulin levels during an oral glucose tolerance test in the face of unchanged insulin tolerance. Pancreas morphology and glucose-stimulated insulin secretion in isolated islets from wild-type and GPR39(-/-) mice were comparable, suggesting that GPR39 is not required for pancreas development or ex vivo insulin secretion. Small interfering RNA-mediated knockdown of GPR39 in clonal NIT-1 beta-cells revealed that GPR39 regulates the expression of insulin receptor substrate-2 and pancreatic and duodenal homeobox-1 in a cell-autonomous manner; insulin receptor substrate-2 mRNA was also significantly decreased in the pancreas of GPR39(-/-) mice. Taken together, our data indicate that GPR39 is required for the increased insulin secretion in vivo under conditions of increased demand, i.e. on development of age-dependent and diet-induced insulin resistance. Thus, GPR39 agonists may have potential for the treatment of type 2 diabetes.
Collapse
Affiliation(s)
- Frédéric Tremblay
- Department of Metabolic Diseases,Wyeth Research, Cambridge, Massachusetts 02140, USA
| | | | | | | | | | | | | |
Collapse
|
23
|
Prost AL, Bloc A, Hussy N, Derand R, Vivaudou M. Zinc is both an intracellular and extracellular regulator of KATP channel function. J Physiol 2004; 559:157-67. [PMID: 15218066 PMCID: PMC1665068 DOI: 10.1113/jphysiol.2004.065094] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Extracellular Zn(2+) has been identified as an activator of pancreatic K(ATP) channels. We further examined the action of Zn(2+) on recombinant K(ATP) channels formed with the inward rectifier K(+) channel subunit Kir6.2 associated with either the pancreatic/neuronal sulphonylurea receptor 1 (SUR1) subunit or the cardiac SUR2A subunit. Zn(2+), applied at either the extracellular or intracellular side of the membrane appeared as a potent, reversible activator of K(ATP) channels. External Zn(2+), at micromolar concentrations, activated SUR1/Kir6.2 but induced a small inhibition of SUR2A/Kir6.2 channels. Cytosolic Zn(2+) dose-dependently stimulated both SUR1/Kir6.2 and SUR2A/Kir6.2 channels, with half-maximal effects at 1.8 and 60 microm, respectively, but it did not affect the Kir6.2 subunit expressed alone. These observations point to an action of both external and internal Zn(2+) on the SUR subunit. Effects of internal Zn(2+) were not due to Zn(2+) leaking out, since they were unaffected by the presence of a Zn(2+) chelator on the external side. Similarly, internal chelators did not affect activation by external Zn(2+). Therefore, Zn(2+) is an endogenous K(ATP) channel opener being active on both sides of the membrane, with potentially distinct sites of action located on the SUR subunit. These findings uncover a novel regulatory pathway targeting K(ATP) channels, and suggest a new role for Zn(2+) as an intracellular signalling molecule.
Collapse
Affiliation(s)
- Anne-Lise Prost
- Biophysique Moléculaire & Cellulaire, CNRS UMR5090, CEA/DRDC, 17 rue des Martyrs, 38054 Grenoble, France
| | | | | | | | | |
Collapse
|
24
|
Tsubamoto Y, Eto K, Noda M, Daniel S, Suga S, Yamashita S, Kasai H, Wakui M, Sharp GW, Kimura S, Kadowaki T. Hexamminecobalt(III) chloride inhibits glucose-induced insulin secretion at the exocytotic process. J Biol Chem 2001; 276:2979-85. [PMID: 11069902 DOI: 10.1074/jbc.m005816200] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Hexamminecobalt(III) (HAC) chloride was found to have a potent inhibitory effect on glucose-induced insulin secretion from pancreatic islets. HAC at 2 mm inhibited the secretion in response to 22.2 mm glucose by 90% in mouse islets. Perifusion experiments revealed that the first phase of insulin secretion was severely suppressed and that the second phase of secretion was completely abrogated. Removal of HAC from the perifusate immediately restored insulin secretion with a transient overshooting above the normal level. However, HAC failed to affect glucose-induced changes in d-[6-(14)C]glucose oxidation, levels of reduced forms of NAD and NADP, mitochondrial membrane potential, ATP content, cytosolic calcium concentration, or calcium influx into mitochondria. Furthermore, HAC inhibited 50 mm potassium-stimulated insulin secretion by 77% and 10 microm mastoparan-stimulated insulin secretion in the absence of extracellular Ca(2+) by 80%. The results of a co-immunoprecipitation study of lysates from insulin-secreting betaHC9 cells using anti-syntaxin and anti-vesicle-associated membrane protein antibodies for immunoprecipitation or Western blotting suggested that HAC inhibited disruption of the SNARE complex, which is normally observed upon glucose challenge. These results suggest that the inhibitory effect of HAC on glucose-induced insulin secretion is exerted at a site(s) distal to the elevation of cytosolic [Ca(2+)], possibly in the exocytotic machinery per se; and thus, HAC may serve as a useful tool for dissecting the molecular mechanism of insulin exocytotic processes.
Collapse
Affiliation(s)
- Y Tsubamoto
- Department of Metabolic Diseases, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Bloc A, Cens T, Cruz H, Dunant Y. Zinc-induced changes in ionic currents of clonal rat pancreatic -cells: activation of ATP-sensitive K+ channels. J Physiol 2000; 529 Pt 3:723-34. [PMID: 11118501 PMCID: PMC2270222 DOI: 10.1111/j.1469-7793.2000.00723.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The effects of zinc (Zn2+) on excitability and ionic conductances were analysed on RINm5F insulinoma cells under whole-cell and outside-out patch-clamp recording conditions. We found that extracellular application of 10-20 microM Zn2+ induced a reversible abolition of Ca2+ action potential firing, which was accompanied by an hyperpolarisation of the resting membrane potential. Higher concentrations of Zn2+, in the tens to hundreds micromolar range, induced a reversible reduction of voltage-gated Ca2+ and, to a lesser extent, K+ currents. Low-voltage-activated Ca2+ currents were more sensitive to Zn2+ block than high voltage-activated Ca2+ currents. The Zn2+-induced hyperpolarisation arose from a dose-dependent increase in a voltage-independent K+ conductance that was pharmacologically identified as an ATP-sensitive K+ (KATP) conductance. The effect was rapid in onset, readily reversible, voltage independent, and related to intracellular ATP concentration. In the presence of 1 mM intracellular ATP, half-maximal activation of KATP channels was obtained with extracellular application of 1.7 microM Zn2+. Single channel analysis revealed that extracellular Zn2+ increased the KATP channel open-state probability with no change in the single channel conductance. Our data support the hypothesis that Zn2+ binding to KATP protein subunits results in an activation of the channels, therefore regulating the resting membrane potential and decreasing the excitability of RINm5F cells. Taken together, our results suggest that Zn2+ can influence insulin secretion in pancreatic beta-cells through a negative feedback loop, involving both KATP and voltage-gated conductances.
Collapse
Affiliation(s)
- A Bloc
- Apsic-Pharmacologie, Centre Medical Universitaire, 1 rue Michel-Servet, 1211 Geneva 4, Switzerland.
| | | | | | | |
Collapse
|
26
|
Ye J, Laychock SG. A protective role for heme oxygenase expression in pancreatic islets exposed to interleukin-1beta. Endocrinology 1998; 139:4155-63. [PMID: 9751495 DOI: 10.1210/endo.139.10.6244] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Heme oxygenase (HO)-1 expression was investigated in rat isolated pancreatic islets. Freshly isolated islets showed no evidence of HO-1 expression. After a 20-h culture, there was a small increase in HO-1 in control islets, and interleukin-1beta (IL-1beta) induced HO-1 expression above control levels. N(G)-monomethyl-L-arginine inhibited the IL-1beta-induced increase in HO-1. Sodium nitroprusside-generated nitric oxide also increased HO-1 expression. CoCl2 induced a concentration- and time-dependent increase in HO-1, but not heat shock protein 70, expression. Cobalt chloride (CoCl2) protected islets from the inhibitory effects of IL-1beta on glucose-stimulated insulin release and glucose oxidation. Nickel chloride did not mimic the effects of CoCl2. An inhibitor of HO-1 activity, zinc-protoporphyrin IX (ZnPP), prevented the protective effect of CoCl2 on insulin release with IL-1beta but did not affect HO-1 expression or the inhibitory response to IL-1beta alone. ZnPP also inhibited the protective effect of hemin in IL-1beta-treated islets. CoCl2 inhibited the marked increase in islet nitrite production in response to IL-1beta. Cobalt-protoporphyrin IX (CoPP), which increased HO expression and activity, also protected islets from the inhibitory effects of IL-1beta, even though IL-1beta largely blocked the CoPP-induced increase in HO-1 expression. In betaHC9 cells, CoCl2 increased HO-1 expression and HO activity, whereas CoPP directly activated HO. ZnPP inhibited basal and CoCl2-stimulated HO activity. Thus, increased HO-1 expression and/or HO activity in response to CoCl2, CoPP, and hemin, seems to mediate protective responses of pancreatic islets against IL-1beta. HO-1 may be protective of beta-cells because of the scavenging of free heme, the antioxidant effects of the end-product bilirubin, or the generation of carbon monoxide, which might have insulin secretion-promoting effects and inhibitory effects on nitric oxide synthase.
Collapse
Affiliation(s)
- J Ye
- Department of Pharmacology and Toxicology, School of Medicine and Biomedical Sciences, the State University of New York, Buffalo 14214, USA
| | | |
Collapse
|
27
|
Barbosa RM, Rosário LM, Brett CM, Brett AM. Electrochemical studies of zinc in zinc-insulin solution. Analyst 1996; 121:1789-93. [PMID: 9008404 DOI: 10.1039/an9962101789] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The electrochemical determination of zinc arising from zinc-insulin complexes was investigated and it was demonstrated that zinc in zinc-insulin solution can be measured in the presence of dissolved oxygen by square-wave anodic stripping voltammetry (SWASV) at mercury thin-film electrodes on glassy carbon disc minielectrode and cylindrical carbon fibre microelectrode substrates. Reoxidation signals arise from complexed zinc at low insulin concentrations (< 100 nmol l-1) and from labile zinc at higher concentrations; the latter can be quantified through linear calibration curves. Batch injection analysis with SWASV was successfully tested for the determination of zinc in zinc-insulin solutions in small sample volumes. Since intracellularly stored insulin exists in the form of a zinc-insulin complex, these techniques are very promising for the indirect study of insulin release from pancreatic beta-cells.
Collapse
Affiliation(s)
- R M Barbosa
- Centro de Neurociências de Coimbra, Universidade de Coimbra, Portugal
| | | | | | | |
Collapse
|
28
|
Nassar-Gentina V, Bonansco C, Luxoro M. Ionic components of the electrical response of chromaffin cells from the toad (Caudiverbera caudiverbera) adrenal gland. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. C, COMPARATIVE PHARMACOLOGY AND TOXICOLOGY 1993; 105:513-20. [PMID: 7900970 DOI: 10.1016/0742-8413(93)90094-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
1. Ultra fine tip microelectrodes (300 MOhm) were used to study the electrical properties of the chromaffin cell membrane in situ in the intact toad adrenal gland. 2. In the presence of physiologic [K+]o (2 mM) the resting membrane potential (Vm) was -53 +/- 3.2 mV. Vm depended on [K+]o as predicted by the constant field equation with PNa/PK of 0.16. 3. A small fraction (20%) of the impaled cells exhibited spontaneous electrical activity, though in all the cells examined, the injection of depolarizing current pulses elicited repetitive spikes. 4. Our measurements of the chromaffin cell input resistance (326 +/- 35 MOhm) is substantially smaller than the values reported for bovine isolated chromaffin cells, suggesting that the toad adrenal chromaffin cells might be electrically coupled. 5. Tetraethylammonium (TEA) increased the amplitude and duration of spikes, probably inhibiting outward K+ current. In the presence of tetrodotoxin (TTX) action potentials were abolished, although they reappeared if TEA was added, suggesting the participation of both Na+ and Ca2+ currents in the genesis of spikes. 6. As expected, acetylcholine (ACh) and nicotine depolarized the cells, though they did not always elicit electrical activity. 7. Muscarine (10-100 microM) had no effect on both Vm and on the depolarization induced by ACh or nicotine. Since muscarine inhibits catecholamine (CA) secretion induced by ACh and nicotine, we concluded that the inhibition of CA release by muscarine in the toad probably occurs at a level other than the membrane.
Collapse
Affiliation(s)
- V Nassar-Gentina
- Laboratorio de Fisiologia Celular, Facultad de Ciencias, Universidad de Chile, Viña del Mar
| | | | | |
Collapse
|
29
|
|
30
|
Sánchez-Andrés JV, Ripoll C, Soria B. Evidence that muscarinic potentiation of insulin release is initiated by an early transient calcium entry. FEBS Lett 1988; 231:143-7. [PMID: 2452098 DOI: 10.1016/0014-5793(88)80719-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The increased insulin release induced by carbamoylcholine (CbCh) in pancreatic islets requires the presence of extracellular Ca2+. Intracellular recordings demonstrate that CbCh produces a transient increase in Ca2+ channel activity lasting from 30 to 60 s. Thereafter activity decreased to levels lower than in controls. When extracellular Ca2+ was present during this initial period, the stimulatory effects of CbCh were not different from those in which Ca2+ was present throughout. These experiments suggest that during muscarinic potentiation of insulin release extracellular calcium is only needed in the first minute.
Collapse
|
31
|
Bettger WJ, Spry DJ, Cockell KA, Cho CY, Hilton JW. The distribution of zinc and copper in plasma, erythrocytes and erythrocyte membranes of rainbow trout (Salmo gairdneri). COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. C, COMPARATIVE PHARMACOLOGY AND TOXICOLOGY 1987; 87:445-51. [PMID: 2888593 DOI: 10.1016/0742-8413(87)90036-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
1. The zinc and copper concentration of plasma was determined in rainbow trout, lake trout, walleye and whitefish. 2. These fish had mean plasma zinc concentrations ranging from 9.3 to 15.1 ppm and copper concentrations from 0.6 to 1.3 ppm. 3. In rainbow trout, the concentration of zinc and copper is greater in the erythrocyte membrane than in the total erythrocyte. 4. Ultrafilterable plasma zinc and copper concentration in rainbow trout was determined to be 0.03 and 0.019 ppm, respectively. 5. Dialysis of rainbow trout plasma against 20 mM EDTA results in removal of 99% of the zinc and 88% of the copper from plasma proteins.
Collapse
Affiliation(s)
- W J Bettger
- Department of Nutritional Sciences, College of Biological Science, University of Guelph, Ontario, Canada
| | | | | | | | | |
Collapse
|
32
|
Palafox I, Sanchez-Andres JV, Sala S, Ferrer R, Soria B. Muscarinic receptors and the control of glucose-induced electrical activity in the pancreatic beta-cell. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1986; 211:351-8. [PMID: 3300193 DOI: 10.1007/978-1-4684-5314-0_32] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
33
|
Perez-Armendariz E, Atwater I. Glucose-evoked changes in [K+] and [Ca2+] in the intercellular spaces of the mouse islet of Langerhans. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1986; 211:31-51. [PMID: 3300189 DOI: 10.1007/978-1-4684-5314-0_3] [Citation(s) in RCA: 37] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
34
|
Soria B, Ferrer R. Graded spike electrogenesis in mouse pancreatic beta-cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1986; 211:235-46. [PMID: 3111191 DOI: 10.1007/978-1-4684-5314-0_22] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
35
|
Marques A, Ferrer R, Ripoll C, Soria B. Electrophysiological evidence for histaminergic modulation of pancreatic beta-cell function. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1986; 211:359-65. [PMID: 3300194 DOI: 10.1007/978-1-4684-5314-0_33] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
36
|
Perez-Armendariz E, Atwater I, Rojas E. Glucose-induced oscillatory changes in extracellular ionized potassium concentration in mouse islets of Langerhans. Biophys J 1985; 48:741-9. [PMID: 3907727 PMCID: PMC1329399 DOI: 10.1016/s0006-3495(85)83832-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Liquid membrane [K+]-sensitive microelectrodes (1-2 micron tip diameter) were used to measure the extracellular ionized potassium concentration in mouse pancreatic islets of Langerhans. With the tip of the microelectrode at the surface of the islet, the time course of the [K+]-sensitive electrode potential changes in response to the application of rapid changes in [K+]o (from 1.25 to 5 mM), could be reproduced by the equation for K+-diffusion through a 100-micron-thick unstirred layer around the islet (diffusion coefficient for K+ at 27 degrees C, DK,o, taken as 1.83 X 10(-5) cm2/s). The time to reach 63% of the steady-state electrode response with the tip in the chamber at the surface of the islet was from 5 to 6 s. When the tip of the [K+]-sensitive electrode was placed in the islet tissue, the time for the response to reach 63% of the steady-state level increased. The time course of the [K+]-sensitive electrode response could be reproduced using the same diffusion model assuming that K+ diffusion into the islet tissue takes place in a tortuous intercellular path with an apparent diffusion coefficient, DK,I, about half of DK,o, in series with the unstirred layer around the islet. In the absence of glucose the potassium concentration in the extracellular space, [K+]I, was found to be higher than the concentration in the external modified Krebs solution, [K+]o. The difference in concentration [K+]I - [K+]o was greater when [K+]o was smaller than 2 mM. In the presence of glucose (between 11 and 16 mM), under steady-state conditions, small oscillatory changes in the [K+], (1.48 +/- 0.94 mM) were detected. Simultaneous recording of membrane potential from one B-cell and [K+], in the same islet indicated that the potassium concentration increased during the active phase of the bursts of electrical activity. Maximum concentration in the intercellular was reached near the end of the active phase of the bursts. We propose that the space between islet cells constitutes a restricted diffusion system where potassium accumulates during the transient activation of potassium channels.
Collapse
|