1
|
Zhang Y, Li N, Kobayashi S. Paxillin participates in the sphingosylphosphorylcholine-induced abnormal contraction of vascular smooth muscle by regulating Rho-kinase activation. Cell Commun Signal 2024; 22:58. [PMID: 38254202 PMCID: PMC10801962 DOI: 10.1186/s12964-023-01404-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 11/22/2023] [Indexed: 01/24/2024] Open
Abstract
BACKGROUND The Ca2+-independent contraction of vascular smooth muscle is a leading cause of cardiovascular and cerebrovascular spasms. In the previous study, we demonstrated the involvement of Src family protein tyrosine kinase Fyn and Rho-kinase in the sphingosylphosphorylcholine (SPC)-induced abnormal and Ca2+-independent contraction of vascular smooth muscle, but the specific mechanism has not been completely clarified. METHODS Paxillin knockdown human coronary artery smooth muscle cells (CASMCs) and smooth muscle-specific paxillin knockout mice were generated by using paxillin shRNA and the tamoxifen-inducible Cre-LoxP system, respectively. CASMCs contraction was observed by time-lapse recording. The vessel contractility was measured by using a myography assay. Fyn, Rho-kinase, and myosin light chain activation were assessed by immunoprecipitation and western blotting. The paxillin expression and actin stress fibers were visualized by histological analysis and immunofluorescent staining. RESULTS The SPC-induced abnormal contraction was inhibited in paxillin knockdown CASMCs and arteries of paxillin knockout mice, indicating that paxillin is involved in this abnormal contraction. Further study showed that paxillin knockdown inhibited the SPC-induced Rho-kinase activation without affecting Fyn activation. In addition, paxillin knockdown significantly inhibited the SPC-induced actin stress fiber formation and myosin light chain phosphorylation. These results suggest that paxillin, as an upstream molecule of Rho-kinase, is involved in the SPC-induced abnormal contraction of vascular smooth muscle. CONCLUSIONS The present study demonstrated that paxillin participates in the SPC-induced abnormal vascular smooth muscle contraction by regulating Rho-kinase activation. Video Abstract.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Yamaguchi University, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan.
| | - Nan Li
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Yamaguchi University, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Sei Kobayashi
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Yamaguchi University, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan.
| |
Collapse
|
2
|
Maher S, Bayachou M, Fu P, Hijaz A, Liu G. Focal adhesion kinase activation is involved in contractile stimulation-induced detrusor muscle contraction in mice. Eur J Pharmacol 2023; 952:175807. [PMID: 37236435 PMCID: PMC10330804 DOI: 10.1016/j.ejphar.2023.175807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 05/28/2023]
Abstract
Recent studies suggested smooth muscle contraction may involve mechanisms besides the myosin regulatory light chain (MLC) phosphorylation-induced actomyosin crossbridge cycling. This study aims to determine if focal adhesion kinase (FAK) activation is involved in mouse detrusor muscle contraction. The mouse detrusor muscle strips were preincubated with PF-573228 (2 μM), latrunculin B (1 μM), or the same volume of vehicle (DMSO) for 30 min. The contractile responses to KCl (90 mM), electrical field stimulation (EFS, 2-32 Hz), or carbachol (CCh, 10-7.5-10-4.5 M) were measured. In a separate experiment, the phosphorylated FAK (p-FAK) and MLC (p-MLC) levels were measured in the detrusor strips stimulated with CCh (10 μM) after incubation with PF-573228 or vehicle (DMSO) compared to those with vehicle incubation but without CCh stimulation. KCl-induced contractile responses decreased significantly after incubation with PF-573228 or latrunculin B compared to the corresponding vehicle-treated strips (p < 0.0001). The contractile responses induced by EFS were markedly inhibited by preincubation with PF-573228 at 8, 16, and 32 Hz (p < 0.05) or latrunculin B at 16 and 32 Hz (p < 0.01). Following the application of PF-573228 or Latrunculin B, CCh-induced dose-response contractions were lower than the corresponding vehicle group (p = 0.0021 and 0.0003, respectively). Western blot examination showed that CCh stimulation enhanced the expression of p-FAK and p-MLC, while preincubation with PF-573228 prevented the increase of p-FAK but not p-MLC. In conclusion, FAK activation involves tension development induced by contractile stimulation in the mouse detrusor muscle. This effect is likely caused by promoting actin polymerization rather than elevating MLC phosphorylation.
Collapse
Affiliation(s)
- Shaimaa Maher
- Department of Surgery, MetroHealth Medical Center, Case Western Reserve University, Cleveland, OH, USA; Department of Chemistry, Cleveland State University, Cleveland, OH, USA
| | - Mekki Bayachou
- Department of Chemistry, Cleveland State University, Cleveland, OH, USA; Department of Inflammation & Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Pingfu Fu
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Adonis Hijaz
- Department of Urology, University Hospitals Cleveland Medical Center, Case Western Reserve University, Cleveland, OH, USA
| | - Guiming Liu
- Department of Surgery, MetroHealth Medical Center, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
3
|
Roberts E, Xu T, Assoian RK. Cell contractility and focal adhesion kinase control circumferential arterial stiffness. VASCULAR BIOLOGY (BRISTOL, ENGLAND) 2022; 4:28-39. [PMID: 36222505 PMCID: PMC9782408 DOI: 10.1530/vb-22-0013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 10/12/2022] [Indexed: 11/07/2022]
Abstract
Arterial stiffening is a hallmark of aging and cardiovascular disease. While it is well established that vascular smooth muscle cells (SMCs) contribute to arterial stiffness by synthesizing and remodeling the arterial extracellular matrix, the direct contributions of SMC contractility and mechanosensors to arterial stiffness, and particularly the arterial response to pressure, remain less well understood despite being a long-standing question of biomedical importance. Here, we have examined this issue by combining the use of pressure myography of intact carotid arteries, pharmacologic inhibition of contractility, and genetic deletion of SMC focal adhesion kinase (FAK). Biaxial inflation-extension tests performed at physiological pressures showed that acute inhibition of cell contractility with blebbistatin or EGTA altered vessel geometry and preferentially reduced circumferential, as opposed to axial, arterial stiffness in wild-type mice. Similarly, genetic deletion of SMC FAK, which attenuated arterial contraction to KCl, reduced vessel wall thickness and circumferential arterial stiffness in response to pressure while having minimal effect on axial mechanics. Moreover, these effects of FAK deletion were lost by treating arteries with blebbistatin or by inhibiting myosin light-chain kinase. The expression of arterial fibrillar collagens, the integrity of arterial elastin, or markers of SMC differentiation were not affected by the deletion of SMC FAK. Our results connect cell contractility and SMC FAK to the regulation of arterial wall thickness and directionally specific arterial stiffening.
Collapse
Affiliation(s)
- Emilia Roberts
- Department of Systems Pharmacology and Translational Therapeutics, Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Tina Xu
- Department of Systems Pharmacology and Translational Therapeutics, Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Richard K Assoian
- Department of Systems Pharmacology and Translational Therapeutics, Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
4
|
Zheng H, Li X, Zeng X, Huang C, Ma M, Lv X, Zhang Y, Sun L, Wang G, Du Y, Guan Y. TMEM16A inhibits angiotensin II-induced basilar artery smooth muscle cell migration in a WNK1-dependent manner. Acta Pharm Sin B 2021; 11:3994-4007. [PMID: 35024321 PMCID: PMC8727780 DOI: 10.1016/j.apsb.2021.04.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/18/2021] [Accepted: 03/31/2021] [Indexed: 11/20/2022] Open
Abstract
Vascular smooth muscle cell (VSMC) migration plays a critical role in the pathogenesis of many cardiovascular diseases. We recently showed that TMEM16A is involved in hypertension-induced cerebrovascular remodeling. However, it is unclear whether this effect is related to the regulation of VSMC migration. Here, we investigated whether and how TMEM16A contributes to migration in basilar artery smooth muscle cells (BASMCs). We observed that AngII increased the migration of cultured BASMCs, which was markedly inhibited by overexpression of TMEM16A. TMEM16A overexpression inhibited AngII-induced RhoA/ROCK2 activation, and myosin light chain phosphatase (MLCP) and myosin light chain (MLC20) phosphorylation. But AngII-induced myosin light chain kinase (MLCK) activation was not affected by TMEM16A. Furthermore, a suppressed activation of integrinβ3/FAK pathway, determined by reduced integrinβ3 expression, FAK phosphorylation and F-actin rearrangement, was observed in TMEM16A-overexpressing BASMCs upon AngII stimulation. Contrary to the results of TMEM16A overexpression, silencing of TMEM16A showed the opposite effects. These in vitro results were further demonstrated in vivo in basilar arteries from VSMC-specific TMEM16A transgenic mice during AngII-induced hypertension. Moreover, we observed that the inhibitory effect of TMEM16A on BASMC migration was mediated by decreasing the activation of WNK1, a Cl--sensitive serine/threonine kinase. In conclusion, this study demonstrated that TMEM16A suppressed AngII-induced BASMC migration, thus contributing to the protection against cerebrovascular remodeling during AngII-infused hypertension. TMEM16A may exert this effect by suppressing the RhoA/ROCK2/MLCP/MLC20 and integrinβ3/FAK signaling pathways via inhibiting WNK1. Our results suggest that TMEM16A may serve as a novel therapeutic target for VSMC migration-related diseases, such as vascular remodeling.
Collapse
Key Words
- AngII, angiotensin II
- BASMCs, basilar artery smooth muscle cells
- CaCC, Ca2+-activated chloride channel
- F-actin, filamentous actin
- FAK
- FAK, focal adhesion kinase
- Hypertension
- Integrin
- MLC20, myosin light chain 20
- MLCK, myosin light chain kinase
- MLCP, myosin light chain phosphates
- MYPT1, myosin phosphatase target subunit 1
- RhoA/ROCK
- SMTg, smooth muscle-specific TMEM16A transgenic mice
- TMEM16A
- VSMC migration
- VSMCs, vascular smooth muscle cells
- Vascular remodeling
- WNK1
- WNK1, with-no-lysine kinase 1
Collapse
Affiliation(s)
| | | | - Xin Zeng
- Department of Pharmacology, Cardiac & Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Chengcui Huang
- Department of Pharmacology, Cardiac & Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Mingming Ma
- Department of Pharmacology, Cardiac & Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Xiaofei Lv
- Department of Pharmacology, Cardiac & Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Yajuan Zhang
- Department of Pharmacology, Cardiac & Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Lu Sun
- Department of Pharmacology, Cardiac & Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Guanlei Wang
- Department of Pharmacology, Cardiac & Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Yanhua Du
- Department of Pharmacology, Cardiac & Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Yongyuan Guan
- Department of Pharmacology, Cardiac & Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| |
Collapse
|
5
|
LIMK2 is required for membrane cytoskeleton reorganization of contracting airway smooth muscle. J Genet Genomics 2021; 48:452-462. [PMID: 34353741 DOI: 10.1016/j.jgg.2021.04.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 04/14/2021] [Accepted: 04/26/2021] [Indexed: 11/23/2022]
Abstract
Airway smooth muscle (ASM) has developed a mechanical adaption mechanism by which it transduces force and responds to environmental forces, which is essential for periodic breathing. Cytoskeletal reorganization has been implicated in this process, but the regulatory mechanism remains to be determined. We here observe that ASM abundantly expresses cytoskeleton regulators Limk1 and Limk2, and their expression levels are further upregulated in chronic obstructive pulmonary disease (COPD) animals. By establishing mouse lines with deletions of Limk1 or Limk2, we analyse the length-sensitive contraction, F/G-actin dynamics, and F-actin pool of mutant ASM cells. As LIMK1 phosphorylation does not respond to the contractile stimulation, LIMK1-deficient ASM develops normal maximal force, while LIMK2 or LIMK1/LIMK2 deficient ASMs show approximately 30% inhibition. LIMK2 deletion causes a significant decrease in cofilin phosphorylation along with a reduced F/G-actin ratio. As LIMK2 functions independently of cross-bridge movement, this observation indicates that LIMK2 is necessary for F-actin dynamics and hence force transduction. Moreover, LIMK2-deficient ASMs display abolishes stretching-induced suppression of 5-hydroxytryptamine (5-HT) but not acetylcholine-evoks force, which is due to the differential contraction mechanisms adopted by the agonists. We propose that LIMK2-mediated cofilin phosphorylation is required for membrane cytoskeleton reorganization that is necessary for ASM mechanical adaption including the 5-HT-evoked length-sensitive effect.
Collapse
|
6
|
Wu Y, Huang Y, Zhang W, Gunst SJ. The proprotein convertase furin inhibits IL-13-induced inflammation in airway smooth muscle by regulating integrin-associated signaling complexes. Am J Physiol Lung Cell Mol Physiol 2021; 321:L102-L115. [PMID: 34009050 DOI: 10.1152/ajplung.00618.2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Furin is a proprotein convertase that regulates the activation and the inactivation of multiple proteins including matrix metalloproteinases, integrins, and cytokines. It is a serine endoprotease that localizes to the plasma membrane and can be secreted into the extracellular space. The role of furin in regulating inflammation in isolated canine airway smooth muscle tissues was investigated. The treatment of airway tissues with recombinant furin (rFurin) inhibited the activation of Akt and eotaxin secretion induced by IL-13, and it prevented the IL-13-induced suppression of smooth muscle myosin heavy chain expression. rFurin promoted a differentiated phenotype by activating β1-integrin proteins and stimulating the activation of the adhesome proteins vinculin and paxillin by talin. Activated paxillin induced the binding of Akt to β-parvin IPP [integrin-linked kinase (ILK), PINCH, parvin] complexes, which inhibits Akt activation. Treatment of tissues with a furin inhibitor or the depletion of endogenous furin using shRNA resulted in Akt activation and inflammatory responses similar to those induced by IL-13. Furin inactivation or IL-13 caused talin cleavage and integrin inactivation, resulting in the inactivation of vinculin and paxillin. Paxillin inactivation resulted in the coupling of Akt to α-parvin IPP complexes, which catalyze Akt activation and an inflammatory response. The results demonstrate that furin inhibits inflammation in airway smooth muscle induced by IL-13 and that the anti-inflammatory effects of furin are mediated by activating integrin proteins and integrin-associated signaling complexes that regulate Akt-mediated pathways to the nucleus. Furin may have therapeutic potential for the treatment of inflammatory conditions of the lungs and airways.
Collapse
Affiliation(s)
- Yidi Wu
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Youliang Huang
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Wenwu Zhang
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Susan J Gunst
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, Indiana
| |
Collapse
|
7
|
Zhang W, Gunst SJ. S100A4 is activated by RhoA and catalyses the polymerization of non-muscle myosin, adhesion complex assembly and contraction in airway smooth muscle. J Physiol 2020; 598:4573-4590. [PMID: 32767681 DOI: 10.1113/jp280111] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 06/29/2020] [Indexed: 12/27/2022] Open
Abstract
KEY POINTS S100A4 is expressed in many tissues, including smooth muscle (SM), but its physiologic function is unknown. S100A4 regulates the motility of metastatic cancer cells by binding to non-muscle (NM) myosin II. Contractile stimulation causes the polymerization of NM myosin in airway SM, which is necessary for tension development. NM myosin regulates the assembly of adhesion junction signalling complexes (adhesomes) that catalyse actin polymerization. In airway SM, ACh (acetylcholine) stimulated the binding of S100A4 to the NM myosin heavy chain, which was catalysed by RhoA GTPase via the RhoA-binding protein, rhotekin. The binding of S100A4 to NM myosin was required for NM myosin polymerization, adhesome assembly and actin polymerization. S100A4 plays a critical function in the regulation of airway SM contraction by catalysing NM myosin filament assembly. The interaction of S100A4 with NM myosin may also play an important role in the physiologic function of other tissues. ABSTRACT S100A4 binds to the heavy chain of non-muscle (NM) myosin II and can regulate the motility of crawling cells. S100A4 is widely expressed in many tissues including smooth muscle (SM), although its role in the regulation of their physiologic function is not known. We hypothesized that S100A4 contributes to the regulation of contraction in airway SM by regulating a pool of NM myosin II at the cell cortex. NM myosin II undergoes polymerization in airway SM and regulates contraction by catalysing the assembly of integrin-associated adhesome complexes that activate pathways that catalyse actin polymerization. ACh stimulated the interaction of S100A4 with NM myosin II in airway SM at the cell cortex and catalysed NM myosin filament assembly. RhoA GTPase regulated the activation of S100A4 via rhotekin, which facilitated the formation of a complex between RhoA, S100A4 and NM myosin II. The depletion of S100A4, RhoA or rhotekin from airway SM tissues using short hairpin RNA or small interfering RNA prevented NM myosin II polymerization as well as the recruitment of vinculin and paxillin to adhesome signalling complexes in response to ACh, and inhibited actin polymerization and tension development. S100A4 depletion did not affect ACh-stimulated SM myosin regulatory light chain phosphorylation. The results show that S100A4 plays a critical role in tension development in airway SM tissue by catalysing NM myosin filament assembly, and that the interaction of S100A4 with NM myosin in response to contractile stimulation is activated by RhoA GTPase. These results may be broadly relevant to the physiologic function of S100A4 in other cell and tissue types.
Collapse
Affiliation(s)
- Wenwu Zhang
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Susan J Gunst
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
8
|
Khadangi F, Bossé Y. Extracellular regulation of airway smooth muscle contraction. Int J Biochem Cell Biol 2019; 112:1-7. [PMID: 31042549 DOI: 10.1016/j.biocel.2019.04.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 04/25/2019] [Accepted: 04/26/2019] [Indexed: 01/22/2023]
Abstract
The molecular mechanisms governing the contraction of airway smooth muscle have always been at the forefront of asthma research. New extracellular molecules affecting the contraction of airway smooth muscle are steadily being discovered. Although interesting, this is disconcerting for researchers trying to find a mend for the significant part of asthma symptoms caused by contraction. Additional efforts are being deployed to understand the intracellular signaling pathways leading to contraction. The goal being to find common pathways that are essential to convey the contractile signal emanating from any single or combination of extracellular molecules. Not only these pathways exist and their details are being slowly unveiled, but some carry the signal inside-out to interact back with extracellular molecules. These latter represent targets with promising therapeutic potential, not only because they are molecules downstream of pathways essential for contraction but also because their extracellular location makes them readily accessible by inhaled drugs.
Collapse
|
9
|
Zhang W, Gunst SJ. Molecular Mechanisms for the Mechanical Modulation of Airway Responsiveness. ACTA ACUST UNITED AC 2019; 2. [PMID: 32270135 PMCID: PMC7141576 DOI: 10.1115/1.4042775] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
The smooth muscle of the airways is exposed to continuously changing mechanical
forces during normal breathing. The mechanical oscillations that occur during
breathing have profound effects on airway tone and airway responsiveness both in
experimental animals and humans in vivo and in isolated airway tissues in vitro.
Experimental evidence suggests that alterations in the contractile and
mechanical properties of airway smooth muscle tissues caused by mechanical
perturbations result from adaptive changes in the organization of the
cytoskeletal architecture of the smooth muscle cell. The cytoskeleton is a
dynamic structure that undergoes rapid reorganization in response to external
mechanical and pharmacologic stimuli. Contractile stimulation initiates the
assembly of cytoskeletal/extracellular matrix adhesion complex proteins into
large macromolecular signaling complexes (adhesomes) that undergo activation to
mediate the polymerization and reorganization of a submembranous network of
actin filaments at the cortex of the cell. Cortical actin polymerization is
catalyzed by Neuronal-Wiskott–Aldrich syndrome protein (N-WASP) and the
Arp2/3 complex, which are activated by pathways regulated by paxillin and the
small GTPase, cdc42. These processes create a strong and rigid cytoskeletal
framework that may serve to strengthen the membrane for the transmission of
force generated by the contractile apparatus to the extracellular matrix, and to
enable the adaptation of smooth muscle cells to mechanical stresses. This model
for the regulation of airway smooth muscle function can provide novel
perspectives to explain the normal physiologic behavior of the airways and
pathophysiologic properties of the airways in asthma.
Collapse
Affiliation(s)
- Wenwu Zhang
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Susan J Gunst
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN 46202
| |
Collapse
|
10
|
Xie Y, Han KH, Grainger N, Li W, Corrigan RD, Perrino BA. A role for focal adhesion kinase in facilitating the contractile responses of murine gastric fundus smooth muscles. J Physiol 2018. [PMID: 29528115 DOI: 10.1113/jp275406] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
KEY POINTS Activation of focal adhesion kinase (FAK) by integrin signalling facilitates smooth muscle contraction by transmitting the force generated by myofilament activation to the extracellular matrix and throughout the smooth muscle tissue. Here we report that electrical field stimulation (EFS) of cholinergic motor neurons activates FAK in gastric fundus smooth muscles, and that FAK activation by EFS is atropine-sensitive but nicardipine-insensitive. PDBu and calyculin A contracted gastric fundus muscles Ca2+ -independently and also activated FAK. Inhibition of FAK activation inhibits the contractile responses evoked by EFS, and inhibits CPI-17 phosphorylation at T38. This study indicates that mechanical force or tension is sufficient to activate FAK, and that FAK appears to be involved in the activation of the protein kinase C-CPI-17 Ca2+ sensitization pathway in gastric fundus smooth muscles. These results reveal a novel role for FAK in gastric fundus smooth muscle contraction by facilitating CPI-17 phosphorylation. ABSTRACT Smooth muscle contraction involves regulating myosin light chain phosphorylation and dephosphorylation by myosin light chain kinase and myosin light chain phosphatase. C-kinase potentiated protein phosphatase-1 inhibitor of 17 kDa (CPI-17) and myosin phosphatase targeting subunit of myosin light-chain phosphatase (MYPT1) are crucial for regulating gastrointestinal smooth muscle contraction by inhibiting myosin light chain phosphatase. Integrin signalling involves the dynamic recruitment of several proteins, including focal adhesion kinase (FAK), to focal adhesions. FAK tyrosine kinase activation is involved in cell adhesion to the extracellular matrix via integrin signalling. FAK participates in linking the force generated by myofilament activation to the extracellular matrix and throughout the smooth muscle tissue. Here, we show that cholinergic stimulation activates FAK in gastric fundus smooth muscles. Electrical field stimulation in the presence of Nω -nitro-l-arginine methyl ester and MRS2500 contracted gastric fundus smooth muscle strips and increased FAK Y397 phosphorylation (pY397). Atropine blocked the contractions and prevented the increase in pY397. The FAK inhibitor PF-431396 inhibited the contractions and the increase in pY397. PF-431396 also inhibited the electrical field stimulation-induced increase in CPI-17 T38 phosphorylation, and reduced MYPT1 T696 and T853, and myosin light chain S19 phosphorylation. Ca2+ influx was unaffected by PF-431396. Nicardipine inhibited the contractions but had no effect on the increase in pY397. Phorbol 12,13-dibutyrate or calyculin A contracted gastric fundus smooth muscle strips Ca2+ independently and increased pY397. Our findings suggest that FAK is activated by mechanical forces during contraction and reveal a novel role of FAK in the regulation of CPI-17 phosphorylation.
Collapse
Affiliation(s)
- Yeming Xie
- Department of Physiology and Cell Biology, University of Nevada, Reno, School of Medicine, Reno, NV, 89557, USA
| | - Koon Hee Han
- Department of Internal Medicine, Gangneung Asan Hospital, University of Ulsan College of Medicine, Gangneung, Republic of Korea
| | - Nathan Grainger
- Department of Physiology and Cell Biology, University of Nevada, Reno, School of Medicine, Reno, NV, 89557, USA
| | - Wen Li
- Department of Physiology and Cell Biology, University of Nevada, Reno, School of Medicine, Reno, NV, 89557, USA
| | - Robert D Corrigan
- Department of Physiology and Cell Biology, University of Nevada, Reno, School of Medicine, Reno, NV, 89557, USA
| | - Brian A Perrino
- Department of Physiology and Cell Biology, University of Nevada, Reno, School of Medicine, Reno, NV, 89557, USA
| |
Collapse
|
11
|
Abstract
Smooth muscle contraction requires both myosin activation and actin cytoskeletal remodeling. Actin cytoskeletal reorganization facilitates smooth muscle contraction by promoting force transmission between the contractile unit and the extracellular matrix (ECM), and by enhancing intercellular mechanical transduction. Myosin may be viewed to serve as an "engine" for smooth muscle contraction whereas the actin cytoskeleton may function as a "transmission system" in smooth muscle. The actin cytoskeleton in smooth muscle also undergoes restructuring upon activation with growth factors or the ECM, which controls smooth muscle cell proliferation and migration. Abnormal smooth muscle contraction, cell proliferation, and motility contribute to the development of vascular and pulmonary diseases. A number of actin-regulatory proteins including protein kinases have been discovered to orchestrate actin dynamics in smooth muscle. In particular, Abelson tyrosine kinase (c-Abl) is an important molecule that controls actin dynamics, contraction, growth, and motility in smooth muscle. Moreover, c-Abl coordinates the regulation of blood pressure and contributes to the pathogenesis of airway hyperresponsiveness and vascular/airway remodeling in vivo. Thus, c-Abl may be a novel pharmacological target for the development of new therapy to treat smooth muscle diseases such as hypertension and asthma.
Collapse
Affiliation(s)
- Dale D Tang
- Albany Medical College, Albany, NY, United States.
| |
Collapse
|
12
|
Tang DD, Gerlach BD. The roles and regulation of the actin cytoskeleton, intermediate filaments and microtubules in smooth muscle cell migration. Respir Res 2017; 18:54. [PMID: 28390425 PMCID: PMC5385055 DOI: 10.1186/s12931-017-0544-7] [Citation(s) in RCA: 212] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 04/05/2017] [Indexed: 02/06/2023] Open
Abstract
Smooth muscle cell migration has been implicated in the development of respiratory and cardiovascular systems; and airway/vascular remodeling. Cell migration is a polarized cellular process involving a protrusive cell front and a retracting trailing rear. There are three cytoskeletal systems in mammalian cells: the actin cytoskeleton, the intermediate filament network, and microtubules; all of which regulate all or part of the migrated process. The dynamic actin cytoskeleton spatially and temporally regulates protrusion, adhesions, contraction, and retraction from the cell front to the rear. c-Abl tyrosine kinase plays a critical role in regulating actin dynamics and migration of airway smooth muscle cells and nonmuscle cells. Recent studies suggest that intermediate filaments undergo reorganization during migration, which coordinates focal adhesion dynamics, cell contraction, and nucleus rigidity. In particular, vimentin intermediate filaments undergo phosphorylation and reorientation in smooth muscle cells, which may regulate cell contraction and focal adhesion assembly/disassembly. Motile cells are characterized by a front-rear polarization of the microtubule framework, which regulates all essential processes leading to cell migration through its role in cell mechanics, intracellular trafficking, and signaling. This review recapitulates our current knowledge how the three cytoskeletal systems spatially and temporally modulate the migratory properties of cells. We also summarize the potential role of migration-associated biomolecules in lung and vascular diseases.
Collapse
Affiliation(s)
- Dale D Tang
- Department of Molecular and Cellular Physiology, Albany Medical College, 47 New Scotland Avenue, MC-8, Albany, NY, 12208, USA.
| | - Brennan D Gerlach
- Department of Molecular and Cellular Physiology, Albany Medical College, 47 New Scotland Avenue, MC-8, Albany, NY, 12208, USA
| |
Collapse
|
13
|
Wu Y, Huang Y, Gunst SJ. Focal adhesion kinase (FAK) and mechanical stimulation negatively regulate the transition of airway smooth muscle tissues to a synthetic phenotype. Am J Physiol Lung Cell Mol Physiol 2016; 311:L893-L902. [PMID: 27612967 DOI: 10.1152/ajplung.00299.2016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 09/05/2016] [Indexed: 01/10/2023] Open
Abstract
The effects of mechanical forces and focal adhesion kinase (FAK) in regulating the inflammatory responses of airway smooth muscle (ASM) tissues to stimulation with interleukin (IL)-13 were investigated. Canine tracheal tissues were subjected to different mechanical loads in vitro, and the effects of mechanical load on eotaxin secretion and inflammatory signaling pathways in response to IL-13 were determined. Eotaxin secretion by tissues in response to IL-13 was significantly inhibited in muscles maintained at a higher (+) load compared with those at a lower (-) load as assessed by ELISA, and Akt activation was also reduced in the higher (+) loaded tissues. Conversely the (+) mechanical load increased activation of the focal adhesion proteins FAK and paxillin in the tissues. The role of FAK in regulating the mechanosensitive responses was assessed by overexpressing FAK-related nonkinase in the tissues, by expressing the FAK kinase-dead mutant FAK Y397F, or by treating tissues with the FAK inhibitor PF-573228. FAK inactivation potentiated Akt activity and increased eotaxin secretion in response to IL-13. FAK inhibition also suppressed the mechanosensitivity of Akt activation and eotaxin secretion. In addition, FAK inactivation suppressed smooth muscle myosin heavy chain expression induced by the higher (+) mechanical load. The results demonstrate that the imposition of a higher mechanical load on airway smooth muscle stimulates FAK activation, which promotes the expression of the differentiated contractile phenotype and suppresses the synthetic phenotype and the inflammatory responses of the muscle tissue.
Collapse
Affiliation(s)
- Yidi Wu
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Youliang Huang
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Susan J Gunst
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana
| |
Collapse
|
14
|
Zhang W, Huang Y, Gunst SJ. p21-Activated kinase (Pak) regulates airway smooth muscle contraction by regulating paxillin complexes that mediate actin polymerization. J Physiol 2016; 594:4879-900. [PMID: 27038336 DOI: 10.1113/jp272132] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 03/28/2016] [Indexed: 01/01/2023] Open
Abstract
KEY POINTS In airway smooth muscle, tension development caused by a contractile stimulus requires phosphorylation of the 20 kDa myosin light chain (MLC), which activates crossbridge cycling and the polymerization of a pool of submembraneous actin. The p21-activated kinases (Paks) can regulate the contractility of smooth muscle and non-muscle cells, and there is evidence that this occurs through the regulation of MLC phosphorylation. We show that Pak has no effect on MLC phosphorylation during the contraction of airway smooth muscle, and that it regulates contraction by mediating actin polymerization. We find that Pak phosphorylates the adhesion junction protein, paxillin, on Ser273, which promotes the formation of a signalling complex that activates the small GTPase, cdc42, and the actin polymerization catalyst, neuronal Wiskott-Aldrich syndrome protein (N-WASP). These studies demonstrate a novel role for Pak in regulating the contractility of smooth muscle by regulating actin polymerization. ABSTRACT The p21-activated kinases (Pak) can regulate contractility in smooth muscle and other cell and tissue types, but the mechanisms by which Paks regulate cell contractility are unclear. In airway smooth muscle, stimulus-induced contraction requires phosphorylation of the 20 kDa light chain of myosin, which activates crossbridge cycling, as well as the polymerization of a small pool of actin. The role of Pak in airway smooth muscle contraction was evaluated by inhibiting acetylcholine (ACh)-induced Pak activation through the expression of a kinase inactive mutant, Pak1 K299R, or by treating tissues with the Pak inhibitor, IPA3. Pak inhibition suppressed actin polymerization and contraction in response to ACh, but it did not affect myosin light chain phosphorylation. Pak activation induced paxillin phosphorylation on Ser273; the paxillin mutant, paxillin S273A, inhibited paxillin Ser273 phosphorylation and inhibited actin polymerization and contraction. Immunoprecipitation analysis of tissue extracts and proximity ligation assays in dissociated cells showed that Pak activation and paxillin Ser273 phosphorylation triggered the formation of an adhesion junction signalling complex with paxillin that included G-protein-coupled receptor kinase-interacting protein (GIT1) and the cdc42 guanine exchange factor, βPIX (Pak interactive exchange factor). Assembly of the Pak-GIT1-βPIX-paxillin complex was necessary for cdc42 and neuronal Wiskott-Aldrich syndrome protein (N-WASP) activation, actin polymerization and contraction in response to ACh. RhoA activation was also required for the recruitment of Pak to adhesion junctions, Pak activation, paxillin Ser273 phosphorylation and paxillin complex assembly. These studies demonstrate a novel role for Pak in the regulation of N-WASP activation, actin dynamics and cell contractility.
Collapse
Affiliation(s)
- Wenwu Zhang
- Department of Cellular and Integrative Physiology, Indiana University School Medicine, Indianapolis, IN, 46202-5120, USA
| | - Youliang Huang
- Department of Cellular and Integrative Physiology, Indiana University School Medicine, Indianapolis, IN, 46202-5120, USA
| | - Susan J Gunst
- Department of Cellular and Integrative Physiology, Indiana University School Medicine, Indianapolis, IN, 46202-5120, USA
| |
Collapse
|
15
|
Tang DD. Critical role of actin-associated proteins in smooth muscle contraction, cell proliferation, airway hyperresponsiveness and airway remodeling. Respir Res 2015; 16:134. [PMID: 26517982 PMCID: PMC4628321 DOI: 10.1186/s12931-015-0296-1] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 10/22/2015] [Indexed: 01/16/2023] Open
Abstract
Asthma is characterized by airway hyperresponsiveness and airway remodeling, which are largely attributed to increased airway smooth muscle contractility and cell proliferation. It is known that both chemical and mechanical stimulation regulates smooth muscle contraction. Recent studies suggest that contractile activation and mechanical stretch induce actin cytoskeletal remodeling in smooth muscle. However, the mechanisms that control actin cytoskeletal reorganization are not completely elucidated. This review summarizes our current understanding regarding how actin-associated proteins may regulate remodeling of the actin cytoskeleton in airway smooth muscle. In particular, there is accumulating evidence to suggest that Abelson tyrosine kinase (Abl) plays a critical role in regulating airway smooth muscle contraction and cell proliferation in vitro, and airway hyperresponsiveness and remodeling in vivo. These studies indicate that Abl may be a novel target for the development of new therapy to treat asthma.
Collapse
Affiliation(s)
- Dale D Tang
- Center for Cardiovascular Sciences, Albany Medical College, 47 New Scotland Avenue, MC-8, Albany, NY, 12208, USA.
| |
Collapse
|
16
|
Shaifta Y, Irechukwu N, Prieto-Lloret J, MacKay CE, Marchon KA, Ward JPT, Knock GA. Divergent modulation of Rho-kinase and Ca(2+) influx pathways by Src family kinases and focal adhesion kinase in airway smooth muscle. Br J Pharmacol 2015; 172:5265-80. [PMID: 26294392 PMCID: PMC4864488 DOI: 10.1111/bph.13313] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 08/02/2015] [Accepted: 08/19/2015] [Indexed: 02/06/2023] Open
Abstract
Background and Purpose The importance of tyrosine kinases in airway smooth muscle (ASM) contraction is not fully understood. The aim of this study was to investigate the role of Src‐family kinases (SrcFK) and focal adhesion kinase (FAK) in GPCR‐mediated ASM contraction and associated signalling events. Experimental Approach Contraction was recorded in intact or α‐toxin permeabilized rat bronchioles. Phosphorylation of SrcFK, FAK, myosin light‐chain‐20 (MLC20) and myosin phosphatase targeting subunit‐1 (MYPT‐1) was evaluated in cultured human ASM cells (hASMC). [Ca2+]i was evaluated in Fura‐2 loaded hASMC. Responses to carbachol (CCh) and bradykinin (BK) and the contribution of SrcFK and FAK to these responses were determined. Key Results Contractile responses in intact bronchioles were inhibited by antagonists of SrcFK, FAK and Rho‐kinase, while after α‐toxin permeabilization, they were sensitive to inhibition of SrcFK and Rho‐kinase, but not FAK. CCh and BK increased phosphorylation of MYPT‐1 and MLC20 and auto‐phosphorylation of SrcFK and FAK. MYPT‐1 phosphorylation was sensitive to inhibition of Rho‐kinase and SrcFK, but not FAK. Contraction induced by SR Ca2+ depletion and equivalent [Ca2+]i responses in hASMC were sensitive to inhibition of both SrcFK and FAK, while depolarization‐induced contraction was sensitive to FAK inhibition only. SrcFK auto‐phosphorylation was partially FAK‐dependent, while FAK auto‐phosphorylation was SrcFK‐independent. Conclusions and Implications SrcFK mediates Ca2+‐sensitization in ASM, while SrcFK and FAK together and individually influence multiple Ca2+ influx pathways. Tyrosine phosphorylation is therefore a key upstream signalling event in ASM contraction and may be a viable target for modulating ASM tone in respiratory disease.
Collapse
Affiliation(s)
- Yasin Shaifta
- Division of Asthma, Allergy and Lung Biology, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Nneka Irechukwu
- Division of Asthma, Allergy and Lung Biology, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Jesus Prieto-Lloret
- Division of Asthma, Allergy and Lung Biology, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Charles E MacKay
- Division of Asthma, Allergy and Lung Biology, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Keisha A Marchon
- Division of Asthma, Allergy and Lung Biology, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Jeremy P T Ward
- Division of Asthma, Allergy and Lung Biology, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Greg A Knock
- Division of Asthma, Allergy and Lung Biology, Faculty of Life Sciences and Medicine, King's College London, London, UK
| |
Collapse
|
17
|
Colinas O, Moreno-Domínguez A, Zhu HL, Walsh EJ, Pérez-García MT, Walsh MP, Cole WC. α5-Integrin-mediated cellular signaling contributes to the myogenic response of cerebral resistance arteries. Biochem Pharmacol 2015; 97:281-91. [PMID: 26278977 DOI: 10.1016/j.bcp.2015.08.088] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 08/10/2015] [Indexed: 12/24/2022]
Abstract
The myogenic response of resistance arterioles and small arteries involving constriction in response to intraluminal pressure elevation and dilation on pressure reduction is fundamental to local blood flow regulation in the microcirculation. Integrins have garnered considerable attention in the context of initiating the myogenic response, but evidence indicative of mechanotransduction by integrin adhesions, for example established changes in tyrosine phosphorylation of key adhesion proteins, has not been obtained to substantiate this interpretation. Here, we evaluated the role of integrin adhesions and associated cellular signaling in the rat cerebral arterial myogenic response using function-blocking antibodies against α5β1-integrins, pharmacological inhibitors of focal adhesion kinase (FAK) and Src family kinase (SFK), an ultra-high-sensitivity western blotting technique, site-specific phosphoprotein antibodies to quantify adhesion and contractile filament protein phosphorylation, and differential centrifugation to determine G-actin levels in rat cerebral arteries at varied intraluminal pressures. Pressure-dependent increases in the levels of phosphorylation of FAK (FAK-Y397, Y576/Y577), SFK (SFK-Y416; Y527 phosphorylation was reduced), vinculin-Y1065, paxillin-Y118 and phosphoinositide-specific phospholipase C-γ1 (PLCγ1)-Y783 were detected. Treatment with α5-integrin function-blocking antibodies, FAK inhibitor FI-14 or SFK inhibitor SU6656 suppressed the changes in adhesion protein phosphorylation, and prevented pressure-dependent phosphorylation of the myosin targeting subunit of myosin light chain phosphatase (MYPT1) at T855 and 20kDa myosin regulatory light chains (LC20) at S19, as well as actin polymerization that are necessary for myogenic constriction. We conclude that mechanotransduction by integrin adhesions and subsequent cellular signaling play a fundamental role in the cerebral arterial myogenic response.
Collapse
Affiliation(s)
- Olaia Colinas
- Smooth Muscle Research Group, Department of Physiology and Pharmacology, Hotchkiss Brain Institute and Libin Cardiovascular Institute, University of Calgary, Alberta, Canada.
| | - Alejandro Moreno-Domínguez
- Smooth Muscle Research Group, Department of Physiology and Pharmacology, Hotchkiss Brain Institute and Libin Cardiovascular Institute, University of Calgary, Alberta, Canada.
| | - Hai-Lei Zhu
- Smooth Muscle Research Group, Department of Physiology and Pharmacology, Hotchkiss Brain Institute and Libin Cardiovascular Institute, University of Calgary, Alberta, Canada.
| | - Emma J Walsh
- Smooth Muscle Research Group, Department of Physiology and Pharmacology, Hotchkiss Brain Institute and Libin Cardiovascular Institute, University of Calgary, Alberta, Canada.
| | - M Teresa Pérez-García
- Department of Physiology, Instituto de Biología y Genética Molecular, University of Valladolid, Valladolid, Spain.
| | - Michael P Walsh
- Smooth Muscle Research Group, Department of Biochemistry and Molecular Biology, Hotchkiss Brain Institute and Libin Cardiovascular Institute, University of Calgary, Alberta, Canada.
| | - William C Cole
- Smooth Muscle Research Group, Department of Physiology and Pharmacology, Hotchkiss Brain Institute and Libin Cardiovascular Institute, University of Calgary, Alberta, Canada.
| |
Collapse
|
18
|
Wang L, Paré PD, Seow CY. The importance of complete tissue homogenization for accurate stoichiometric measurement of myosin light chain phosphorylation in airway smooth muscle. Can J Physiol Pharmacol 2014; 93:155-62. [PMID: 25494914 DOI: 10.1139/cjpp-2014-0357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The standard method for measuring the phosphorylation of the regulatory myosin light chain (MLC20) in smooth muscle is extraction of the light chain using a urea extraction buffer, urea-glycerol gel electrophoresis of the soluble portion of the extract (supernatant) and Western blot analysis. The undissolved portion of the tissue during extraction (the pellet) is usually discarded. Because the pellet contains a finite amount of MLC20, omission of the pellet could result in inaccurate measurement of MLC20 phosphorylation. In this study we compared the level of tracheal smooth muscle MLC20 phosphorylation in the supernatant alone, with that in the complete tissue homogenate (supernatant and pellet) using the standard method. The supernatant fraction showed the well-known double bands representing phosphorylated and un-phosphorylated MLC20. The dissolved pellet fraction showed varying amounts of un-phosphorylated and phosphorylated MLC20. There was a small but statistically significant overestimation of the percent MLC20 phosphorylation if the pellet was not taken into consideration. The overestimation was 7% ± 2% (mean ± SEM) (p < 0.05) in unstimulated muscle and 2% ± 1% (p < 0.05) in acetylcholine (10(-6) mol/L) stimulated muscle. This finding suggests that for accurate estimation of the stoichiometry of MLC20 phosphorylation it is necessary to consider the contribution from the pellet portion of the muscle tissue homogenate.
Collapse
Affiliation(s)
- Lu Wang
- a Respiratory Division, Department of Medicine, Vancouver, BC V5Z 1M9, Canada
| | | | | |
Collapse
|
19
|
Zhang W, Huang Y, Wu Y, Gunst SJ. A novel role for RhoA GTPase in the regulation of airway smooth muscle contraction. Can J Physiol Pharmacol 2014; 93:129-36. [PMID: 25531582 DOI: 10.1139/cjpp-2014-0388] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Recent studies have demonstrated a novel molecular mechanism for the regulation of airway smooth muscle (ASM) contraction by RhoA GTPase. In ASM tissues, both myosin light chain (MLC) phosphorylation and actin polymerization are required for active tension generation. RhoA inactivation dramatically suppresses agonist-induced tension development and completely inhibits agonist-induced actin polymerization, but only slightly reduces MLC phosphorylation. The inhibition of MLC phosphatase does not reverse the effects of RhoA inactivation on contraction or actin polymerization. Thus, RhoA regulates ASM contraction through its effects on actin polymerization rather than MLC phosphorylation. Contractile stimulation of ASM induces the recruitment and assembly of paxillin, vinculin, and focal adhesion kinase (FAK) into membrane adhesion complexes (adhesomes) that regulate actin polymerization by catalyzing the activation of cdc42 GTPase by the G-protein-coupled receptor kinase-interacting target (GIT) - p21-activated kinase (PAK) - PAK-interacting exchange factor (PIX) complex. Cdc42 is a necessary and specific activator of the actin filament nucleation activator, N-WASp. The recruitment and activation of paxillin, vinculin, and FAK is prevented by RhoA inactivation, thus preventing cdc42 and N-WASp activation. We conclude that RhoA regulates ASM contraction by catalyzing the assembly and activation of membrane adhesome signaling modules that regulate actin polymerization, and that the RhoA-mediated assembly of adhesome complexes is a fundamental step in the signal transduction process in response to a contractile agonist.
Collapse
Affiliation(s)
- Wenwu Zhang
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN 46202, USA
| | | | | | | |
Collapse
|
20
|
Kunit T, Gratzke C, Schreiber A, Strittmatter F, Waidelich R, Rutz B, Loidl W, Andersson KE, Stief CG, Hennenberg M. Inhibition of smooth muscle force generation by focal adhesion kinase inhibitors in the hyperplastic human prostate. Am J Physiol Renal Physiol 2014; 307:F823-32. [DOI: 10.1152/ajprenal.00011.2014] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Smooth muscle contraction may be critical for lower urinary tract symptoms (LUTS) in patients with benign prostate hyperplasia and requires stable anchorage of the cytoskeleton to the cell membrane. These connections are regulated by focal adhesion kinase (FAK). Here, we addressed the involvement of FAK in the regulation of smooth muscle contraction in hyperplastic human prostate tissues. Prostate tissues were obtained from radical prostatectomy. Expression of FAK and focal adhesion proteins was assessed by Western blot analysis and immunohistochemical stainings. Effects of the FAK inhibitors PF-573228 and Y-11 on contraction of prostate strips were examined in the organ bath. Expression of FAK and focal adhesion proteins (integrin-5α, paxilin, and c-Src) was detected by Western blot analysis in prostate samples. By double immunofluorescence staining with calponin and pan-cytokeratin, expression of FAK was observed in stromal and epithelial cells. Immunoreactivity for FAK colocalized with integrin-5α, paxilin, talin, and c-Src. Stimulation of prostate tissues with the α1-adrenergic agonist phenylephrine increased the phosphorylation state of FAK at Tyr397 and Tyr925 with different kinetics, which was blocked by the α1-adrenoceptor antagonist tamsulosin. Norepinephrine and phenylephrine induced concentration-dependent contractions of prostate strips. Both FAK inhibitors PF-573228 and Y-11 significantly inhibited norepinephrine- and phenylephrine-induced contractions. Finally, PF-573228 and Y-11 inhibited contractions induced by electric field stimulation, which was significant at the highest frequency. In conclusion, α1-adrenergic smooth muscle contraction or its regulation involves FAK in the human prostate. Consequently, FAK may be involved in the pathophysiology of LUTS and in current or future LUTS therapies.
Collapse
Affiliation(s)
- Thomas Kunit
- Department of Urology, Ludwig-Maximilians University, Munich, Germany
- Krankenhaus der Barmherzigen Schwestern Linz, Linz, Austria; and
| | - Christian Gratzke
- Department of Urology, Ludwig-Maximilians University, Munich, Germany
| | - Andrea Schreiber
- Department of Urology, Ludwig-Maximilians University, Munich, Germany
| | | | | | - Beata Rutz
- Department of Urology, Ludwig-Maximilians University, Munich, Germany
| | - Wolfgang Loidl
- Krankenhaus der Barmherzigen Schwestern Linz, Linz, Austria; and
| | - Karl-Erik Andersson
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | | | - Martin Hennenberg
- Department of Urology, Ludwig-Maximilians University, Munich, Germany
| |
Collapse
|
21
|
Jang KW, Buckwalter JA, Martin JA. Inhibition of cell-matrix adhesions prevents cartilage chondrocyte death following impact injury. J Orthop Res 2014; 32:448-54. [PMID: 24249698 PMCID: PMC4034578 DOI: 10.1002/jor.22523] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Accepted: 10/21/2013] [Indexed: 02/04/2023]
Abstract
Focal adhesions are transmembrane protein complexes that attach chondrocytes to the pericellular cartilage matrix and in turn, are linked to intracellular organelles via cytoskeleton. We previously found that excessive compression of articular cartilage leads to cytoskeleton-dependent chondrocyte death. Here we tested the hypothesis that this process also requires integrin activation and signaling via focal adhesion kinase (FAK) and Src family kinase (SFK). Osteochondral explants were treated with FAK and SFK inhibitors (FAKi, SFKi, respectively) for 2 h and then subjected to a death-inducing impact load. Chondrocyte viability was assessed by confocal microscopy immediately and at 24 h post-impact. With no treatment immediate post-impact viability was 59%. Treatment with 10 µM SFKi, 10 μM, or 100 µM FAKi improved viability to 80%, 77%, and 82%, respectively (p < 0.05). After 24 h viability declined to 34% in controls, 48% with 10 µM SFKi, 45% with 10 µM FAKi, and 56% with 100 µM FAKi (p < 0.01) treatment. These results confirmed that most of the acute chondrocyte mortality was FAK- and SFK-dependent, which implicates integrin-cytoskeleton interactions in the death signaling pathway. Together with previous findings, these data support the hypothesis that the excessive tissue strains accompanying impact loading induce death via a pathway initiated by strain on cell adhesion receptors.
Collapse
Affiliation(s)
- Kee W. Jang
- Department of Orthopaedics and Rehabilitation, The University of Iowa, Iowa City, IA,Department of Biomedical Engineering, The University of Iowa, Iowa City, IA
| | - Joseph A. Buckwalter
- Department of Orthopaedics and Rehabilitation, The University of Iowa, Iowa City, IA,Veterans Affairs Medical Center, Iowa City, IA
| | - James A. Martin
- Department of Orthopaedics and Rehabilitation, The University of Iowa, Iowa City, IA
| |
Collapse
|
22
|
Dekkers BGJ, Spanjer AIR, van der Schuyt RD, Kuik WJ, Zaagsma J, Meurs H. Focal adhesion kinase regulates collagen I-induced airway smooth muscle phenotype switching. J Pharmacol Exp Ther 2013; 346:86-95. [PMID: 23591997 DOI: 10.1124/jpet.113.203042] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Increased extracellular matrix (ECM) deposition and airway smooth muscle (ASM) mass are major contributors to airway remodeling in asthma. Recently, we demonstrated that the ECM protein collagen I, which is increased surrounding asthmatic ASM, induces a proliferative, hypocontractile ASM phenotype. Little is known, however, about the signaling pathways involved. Using bovine tracheal smooth muscle, we investigated the role of focal adhesion kinase (FAK) and downstream signaling pathways in collagen I-induced ASM phenotype modulation. Phosphorylation of FAK was increased during adhesion to both uncoated and collagen I-coated culture dishes, without differences between these matrices. Nor were any differences found in cellular adhesion. Inhibition of FAK activity by overexpression of the FAK deletion mutants FAT (focal adhesion targeting domain) and FRNK (FAK-related nonkinase) attenuated adhesion. After attachment, FAK phosphorylation increased in a time-dependent manner in cells cultured on collagen I, whereas no activation was found on an uncoated plastic matrix. In addition, collagen I increased in a time- and concentration-dependent manner the cell proliferation, which was fully inhibited by FAT and FRNK. Similarly, the specific pharmacologic FAK inhibitor PF-573228 [6-((4-((3-(methanesulfonyl)benzyl)amino)-5-trifluoromethylpyrimidin-2-yl) amino)-3,4-dihydro-1H-quinolin-2-one] as well as specific inhibitors of p38 mitogen-activated protein kinase (MAPK) and Src also fully inhibited collagen I-induced proliferation, whereas partial inhibition was observed by inhibition of phosphatidylinositol-3-kinase (PI3-kinase) and mitogen-activated protein kinase kinase (MEK). The inhibition of cell proliferation by these inhibitors was associated with attenuation of the collagen I-induced hypocontractility. Collectively, the results indicate that induction of a proliferative, hypocontractile ASM phenotype by collagen I is mediated by FAK and downstream signaling pathways.
Collapse
Affiliation(s)
- Bart G J Dekkers
- Department of Molecular Pharmacology, University Centre for Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands.
| | | | | | | | | | | |
Collapse
|
23
|
Wickramasekera NT, Gebremedhin D, Carver KA, Vakeel P, Ramchandran R, Schuett A, Harder DR. Role of dual-specificity protein phosphatase-5 in modulating the myogenic response in rat cerebral arteries. J Appl Physiol (1985) 2012; 114:252-61. [PMID: 23172031 DOI: 10.1152/japplphysiol.01026.2011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The present study examined the role of the dual-specificity protein phosphatase-5 (DUSP-5) in the pressure-induced myogenic responses of organ-cultured cerebral arterial segments. In these studies, we initially compared freshly isolated and organ-cultured cerebral arterial segments with respect to responses to step increases in intravascular pressure, vasodilator and vasoconstrictor stimuli, activities of the large-conductance arterial Ca(2+)-activated K(+) (K(Ca)) single-channel current, and stable protein expression of DUSP-5 enzyme. The results demonstrate maintained pressure-dependent myogenic vasoconstriction, DUSP-5 protein expression, endothelium-dependent and -independent dilations, agonist-induced constriction, and unitary K(Ca) channel conductance in organ-cultured cerebral arterial segments similar to that in freshly isolated cerebral arteries. Furthermore, using a permeabilization transfection technique in organ-cultured cerebral arterial segments, gene-specific small interfering RNA (siRNA) induced knockdown of DUSP-5 mRNA and protein, which were associated with enhanced pressure-dependent cerebral arterial myogenic constriction and increased phosphorylation of PKC-βII. In addition, siRNA knockdown of DUSP-5 reduced levels of phosphorylated ROCK and ERK1 with no change in the level of phosphorylated ERK2. Pharmacological inhibition of ERK1/2 phosphorylation significantly attenuated pressure-induced myogenic constriction in cerebral arteries. The findings within the present studies illustrate that DUSP-5, native in cerebral arterial muscle cells, appears to regulate signaling of pressure-dependent myogenic cerebral arterial constriction, which is crucial for the maintenance of constant cerebral blood flow to the brain.
Collapse
Affiliation(s)
- Nadi T Wickramasekera
- Department of Physiology and Cardiovascular Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | | | | | | | | | | | | |
Collapse
|
24
|
Yamin R, Morgan KG. Deciphering actin cytoskeletal function in the contractile vascular smooth muscle cell. J Physiol 2012; 590:4145-54. [PMID: 22687615 DOI: 10.1113/jphysiol.2012.232306] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
This review focuses on the vascular smooth muscle cells present in the medial layer of the blood vessels wall in the fully differentiated state (dVSMCs). The dVSMC contractile phenotype enables these cells to respond in a highly regulated manner to changes in extracellular stimuli. Through modulation of vascular contractile force and vascular compliance dVSMCs regulate blood pressure and blood flow. The cellular and molecular mechanisms by which vascular smooth muscle contractile functions are regulated are not completely elucidated. Recent studies have documented a critical role for actin polymerization and cytoskeletal dynamics in the regulation of contractile function. Here we will review the current understanding of actin cytoskeletal dynamics and focal adhesion function in dVSMCs in order to better understand actin cytoskeleton connections to the extracellular matrix and the effects of cytoskeletal remodelling on vascular contractility and vascular stiffness in health and disease.
Collapse
Affiliation(s)
- Rina Yamin
- Health Sciences Department, Boston University, 635 Commonwealth Ave, Boston, MA 02215, USA
| | | |
Collapse
|
25
|
Zhang W, Du L, Gunst SJ. The effects of the small GTPase RhoA on the muscarinic contraction of airway smooth muscle result from its role in regulating actin polymerization. Am J Physiol Cell Physiol 2010; 299:C298-306. [PMID: 20445174 PMCID: PMC2928621 DOI: 10.1152/ajpcell.00118.2010] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2010] [Accepted: 04/29/2010] [Indexed: 12/30/2022]
Abstract
The small GTPase RhoA increases the Ca(2+) sensitivity of smooth muscle contraction and myosin light chain (MLC) phosphorylation by inhibiting the activity of MLC phosphatase. RhoA is also a known regulator of cytoskeletal dynamics and actin polymerization in many cell types. In airway smooth muscle (ASM), contractile stimulation induces MLC phosphorylation and actin polymerization, which are both required for active tension generation. The objective of this study was to evaluate the primary mechanism by which RhoA regulates active tension generation in intact ASM during stimulation with acetylcholine (ACh). RhoA activity was inhibited in canine tracheal smooth muscle tissues by expressing the inactive RhoA mutant, RhoA T19N, in the intact tissues or by treating them with the cell-permeant RhoA inhibitor, exoenzyme C3 transferase. RhoA inactivation reduced ACh-induced contractile force by approximately 60% and completely inhibited ACh-induced actin polymerization but inhibited ACh-induced MLC phosphorylation by only approximately 20%. Inactivation of MLC phosphatase with calyculin A reversed the reduction in MLC phosphorylation caused by RhoA inactivation, but calyculin A did not reverse the depression of active tension and actin polymerization caused by RhoA inactivation. The MLC kinase inhibitor, ML-7, inhibited ACh-induced MLC phosphorylation by approximately 80% and depressed active force by approximately 70% but did not affect ACh-induced actin polymerization, demonstrating that ACh-stimulated actin polymerization occurs independently of MLC phosphorylation. We conclude that the RhoA-mediated regulation of ACh-induced contractile tension in ASM results from its role in mediating actin polymerization rather than from effects on MLC phosphatase or MLC phosphorylation.
Collapse
Affiliation(s)
- Wenwu Zhang
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | | | | |
Collapse
|
26
|
Abstract
The sarcoplasmic reticulum (SR) of smooth muscles presents many intriguing facets and questions concerning its roles, especially as these change with development, disease, and modulation of physiological activity. The SR's function was originally perceived to be synthetic and then that of a Ca store for the contractile proteins, acting as a Ca amplification mechanism as it does in striated muscles. Gradually, as investigators have struggled to find a convincing role for Ca-induced Ca release in many smooth muscles, a role in controlling excitability has emerged. This is the Ca spark/spontaneous transient outward current coupling mechanism which reduces excitability and limits contraction. Release of SR Ca occurs in response to inositol 1,4,5-trisphosphate, Ca, and nicotinic acid adenine dinucleotide phosphate, and depletion of SR Ca can initiate Ca entry, the mechanism of which is being investigated but seems to involve Stim and Orai as found in nonexcitable cells. The contribution of the elemental Ca signals from the SR, sparks and puffs, to global Ca signals, i.e., Ca waves and oscillations, is becoming clearer but is far from established. The dynamics of SR Ca release and uptake mechanisms are reviewed along with the control of luminal Ca. We review the growing list of the SR's functions that still includes Ca storage, contraction, and relaxation but has been expanded to encompass Ca homeostasis, generating local and global Ca signals, and contributing to cellular microdomains and signaling in other organelles, including mitochondria, lysosomes, and the nucleus. For an integrated approach, a review of aspects of the SR in health and disease and during development and aging are also included. While the sheer versatility of smooth muscle makes it foolish to have a "one model fits all" approach to this subject, we have tried to synthesize conclusions wherever possible.
Collapse
Affiliation(s)
- Susan Wray
- Department of Physiology, School of Biomedical Sciences, University of Liverpool, Liverpool, Merseyside L69 3BX, United Kingdom.
| | | |
Collapse
|
27
|
Chen S, Wang R, Li QF, Tang DD. Abl knockout differentially affects p130 Crk-associated substrate, vinculin, and paxillin in blood vessels of mice. Am J Physiol Heart Circ Physiol 2009; 297:H533-9. [PMID: 19542491 PMCID: PMC2724200 DOI: 10.1152/ajpheart.00237.2009] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2009] [Accepted: 06/17/2009] [Indexed: 11/22/2022]
Abstract
Actin polymerization has recently emerged as an important cellular process that regulates smooth muscle contraction. Abelson tyrosine kinase (Abl) has been implicated in the regulation of actin dynamics and force development in vascular smooth muscle. In the present study, the systolic blood pressure was lower in Abl(-/-) knockout mice compared with wild-type mice. The knockout of Abl diminished the tyrosine phosphorylation of p130 Crk-associated substrate (CAS, an adapter protein associated with smooth muscle contraction) in resistance arteries upon stimulation with phenylephrine or angiotensin II. The agonist-elicited enhancement of F-actin-to-G-actin ratios in arteries assessed by fluorescent microscopy was also reduced in Abl(-/-) mice. It has been known that vinculin is a structural protein that links actin filaments to extracellular matrix via transmembrane integrins, whereas paxillin is a signaling protein associated with focal contacts mediating actin cytoskeleton remodeling. The expression of vinculin and paxillin at protein and messenger levels was lower in arterial vessels from Abl knockout mice. However, the agonist-induced increase in myosin phosphorylation was not attenuated in arteries from Abl knockout mice. These results indicate that Abl differentially regulates Crk-associated substrate, vinculin, and paxillin in arterial vessels. The Abl-regulated cellular process and blood pressure are independent of myosin activation in vascular smooth muscle.
Collapse
Affiliation(s)
- Shu Chen
- The Center for Cardiovascular Sciences, Albany Medical College, Albany, New York 12208, USA
| | | | | | | |
Collapse
|
28
|
Abstract
Vascular smooth muscle is a key effector in the wall of blood vessels during the pathogenesis of hypertension. Various factors directly elicit smooth muscle cell contraction, migration, growth, and hypertrophy, which lead to the progression of hypertension. Crk-associated substrate (CAS), the first discovered member of the adapter protein CAS family, has recently emerged as a critical cellular component that regulates smooth muscle functions. In this review, the molecular structure and protein interactions of the CAS family members are summarized. Evidence for the role of CAS in the regulation of vascular smooth muscle contractility, cell migration, hypertrophy, and growth is presented. Regulation of CAS by novel tyrosine kinases/phosphatases and unique downstream signaling partners of CAS are also discussed. These new findings establish the important role for CAS in regulating vascular smooth muscle functions. The CAS-associated processes may be new biological targets for the development of new treatment of cardiovascular diseases such as hypertension.
Collapse
Affiliation(s)
- Dale D Tang
- Center for Cardiovascular Sciences, Albany Medical College, Albany, New York 12208, USA.
| |
Collapse
|
29
|
Kim HR, Appel S, Vetterkind S, Gangopadhyay SS, Morgan KG. Smooth muscle signalling pathways in health and disease. J Cell Mol Med 2009. [PMID: 19120701 DOI: 10.1111/j.1582-4934.2008.00552] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Smooth muscle contractile activity is a major regulator of function of the vascular system, respiratory system, gastrointestinal system and the genitourinary systems. Malfunction of contractility in these systems leads to a host of clinical disorders, and yet, we still have major gaps in our understanding of the molecular mechanisms by which contractility of the differentiated smooth muscle cell is regulated. This review will summarize recent advances in the molecular understanding of the regulation of smooth muscle myosin activity via phosphorylation/dephosphorylation of myosin, the regulation of the accessibility of actin to myosin via the actin-binding proteins calponin and caldesmon, and the remodelling of the actin cytoskeleton. Understanding of the molecular 'players' should identify target molecules that could point the way to novel drug discovery programs for the treatment of smooth muscle disorders such as cardiovascular disease, asthma, functional bowel disease and pre-term labour.
Collapse
Affiliation(s)
- H R Kim
- Department of Health Sciences, Boston University, Boston, MA 02215, USA
| | | | | | | | | |
Collapse
|
30
|
Fomin VP, Kronbergs A, Gunst S, Tang D, Simirskii V, Hoffman M, Duncan RL. Role of protein kinase Calpha in regulation of [Ca2+](I) and force in human myometrium. Reprod Sci 2009; 16:71-9. [PMID: 19087983 DOI: 10.1177/1933719108324892] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2025]
Abstract
Recent findings implicate protein kinase C in regulation of contraction of uterine muscle (myometrium). However, the role of protein kinase C isoforms in myometrial contraction remains uncertain. Therefore, this study examined protein kinase Calpha's role in regulation of contraction and intracellular calcium concentration ([Ca2+](I)) of myometrium from term pregnant women. The authors demonstrated that protein kinase Calpha inhibitor Go6976 decreased the amplitude of potassium chloride-induced myometrial contractions in a time-dependent manner. The treatment of the myometrial strips with protein kinase Calpha-specific antisense oligodeoxynucleotides decreased the potassium chloride-induced contraction and [Ca2+](I) response to 39.3% + 6.8% and 50.0% + 3.3%, respectively, compared to control. The sense oligonucleotides treatment did not significantly change the potassium chloride responses (89.8% + 6.8% and 93.9% + 4.5% of the control for the contraction and [Ca2+](I), respectively). These data, coupled with the observation that protein kinase Calpha levels are elevated in the pregnant myometrium, suggest the involvement of protein kinase Calpha in regulation of human uterine contraction.
Collapse
Affiliation(s)
- Victor P Fomin
- Department of Biological Sciences, University of Delaware, Newark, Delaware 19716, USA.
| | | | | | | | | | | | | |
Collapse
|
31
|
Kim HR, Appel S, Vetterkind S, Gangopadhyay SS, Morgan KG. Smooth muscle signalling pathways in health and disease. J Cell Mol Med 2008; 12:2165-80. [PMID: 19120701 PMCID: PMC2692531 DOI: 10.1111/j.1582-4934.2008.00552.x] [Citation(s) in RCA: 154] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2008] [Accepted: 10/08/2008] [Indexed: 12/24/2022] Open
Abstract
Smooth muscle contractile activity is a major regulator of function of the vascular system, respiratory system, gastrointestinal system and the genitourinary systems. Malfunction of contractility in these systems leads to a host of clinical disorders, and yet, we still have major gaps in our understanding of the molecular mechanisms by which contractility of the differentiated smooth muscle cell is regulated. This review will summarize recent advances in the molecular understanding of the regulation of smooth muscle myosin activity via phosphorylation/dephosphorylation of myosin, the regulation of the accessibility of actin to myosin via the actin-binding proteins calponin and caldesmon, and the remodelling of the actin cytoskeleton. Understanding of the molecular 'players' should identify target molecules that could point the way to novel drug discovery programs for the treatment of smooth muscle disorders such as cardiovascular disease, asthma, functional bowel disease and pre-term labour.
Collapse
Affiliation(s)
- H R Kim
- Department of Health Sciences, Boston UniversityBoston, MA, USA
| | - S Appel
- Department of Health Sciences, Boston UniversityBoston, MA, USA
| | - S Vetterkind
- Department of Health Sciences, Boston UniversityBoston, MA, USA
| | | | - K G Morgan
- Department of Health Sciences, Boston UniversityBoston, MA, USA
- Boston Biomedical Research InstituteWatertown, MA, USA
| |
Collapse
|
32
|
Wu Y, Huang Y, Herring BP, Gunst SJ. Integrin-linked kinase regulates smooth muscle differentiation marker gene expression in airway tissue. Am J Physiol Lung Cell Mol Physiol 2008; 295:L988-97. [PMID: 18805960 PMCID: PMC2604790 DOI: 10.1152/ajplung.90202.2008] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2008] [Accepted: 09/17/2008] [Indexed: 01/18/2023] Open
Abstract
Phenotypic changes in airway smooth muscle occur with airway inflammation and asthma. These changes may be induced by alterations in the extracellular matrix that initiate signaling pathways mediated by integrin receptors. We hypothesized that integrin-linked kinase (ILK), a multidomain protein kinase that binds to the cytoplasmic tail of beta-integrins, may be an important mediator of signaling pathways that regulate the growth and differentiation state of airway smooth muscle. We disrupted signaling pathways mediated by ILK in intact differentiated tracheal muscle tissues by depleting ILK protein using ILK antisense. The depletion of ILK protein increased the expression of the smooth muscle differentiation marker genes myosin heavy chain (SmMHC), SM22alpha, and calponin and increased the expression of SmMHC protein. Conversely, the overexpression of ILK protein reduced the mRNA levels of SmMHC, SM22alpha, and calponin and SmMHC protein. Analysis by chromatin immunoprecipitation showed that the binding of the transcriptional regulator serum response factor (SRF) to the promoters of SmMHC, SM22alpha, and calponin genes was increased in ILK-depleted tissues and decreased in tissues overexpressing ILK. ILK depletion also increased the amount of SRF that localized within the nucleus. ILK depletion and overexpression, respectively, decreased and increased the activation of its downstream substrate protein kinase B (PKB/Akt). The pharmacological inhibition of Akt activity also increased SRF binding to the promoters of smooth muscle-specific genes and increased expression of smooth muscle proteins, suggesting that ILK may exert its effects by regulating the activity of Akt. We conclude that ILK is a critical regulator of airway smooth muscle differentiation. ILK may mediate signals from integrin receptors that control airway smooth muscle differentiation in response to alterations in the extracellular matrix.
Collapse
Affiliation(s)
- Yidi Wu
- Dept. of Cellular & Integrative Physiology, Indiana Univ. School of Medicine, 635 Barnhill Dr., Indianapolis, IN 46202-5120, USA
| | | | | | | |
Collapse
|
33
|
Abstract
Vascular smooth muscle tone plays a fundamental role in regulating blood pressure, blood flow, microcirculation, and other cardiovascular functions. The cellular and molecular mechanisms by which vascular smooth muscle contractility is regulated are not completely elucidated. Recent studies show that the actin cytoskeleton in smooth muscle is dynamic, which regulates force development. In this review, evidence for actin polymerization in smooth muscle upon external stimulation is summarized. Protein kinases such as Abelson tyrosine kinase, focal adhesion kinase, Src, and mitogen-activated protein kinase have been documented to coordinate actin polymerization in smooth muscle. Transmembrane integrins have also been reported to link to signaling pathways modulating actin dynamics. The roles of Rho family of the small proteins that bind to guanosine triphosphate (GTP), also known as GTPases, and the actin-regulatory proteins, including Crk-associated substrate, neuronal Wiskott-Aldrich Syndrome protein, the Arp2/3 complex, and profilin, and heat shock proteins in regulating actin assembly are discussed. These new findings promote our understanding on how smooth muscle contraction is regulated at cellular and molecular levels.
Collapse
Affiliation(s)
- Dale D Tang
- Center for Cardiovascular Sciences, Albany Medical College, Albany, New York 12208, USA.
| | | |
Collapse
|
34
|
Xue Z, Zhang L, Liu Y, Gunst SJ, Tepper RS. Chronic inflation of ferret lungs with CPAP reduces airway smooth muscle contractility in vivo and in vitro. J Appl Physiol (1985) 2008; 104:610-5. [PMID: 18096756 DOI: 10.1152/japplphysiol.00241.2007] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The mechanical stress imposed on the lungs during breathing is an important modulator of airway responsiveness in vivo. Our recent study demonstrated that continuous positive airway pressure applied to the lungs of nonanesthetized, tracheotomized rabbits for 4 days decreased lower respiratory system responsiveness to challenge with ACh (Xue Z, Zhang L, Ramchandani R, Liu Y, Antony VB, Gunst SJ, Tepper RS. J. Appl Physiol 99: 677-682, 2005). In addition, airway segments excised from the lungs of these animals and studied in vitro exhibited reduced contractility. However, the mechanism for this reduction in contractility was not determined. The stress-induced decrease in airway responsiveness could have resulted from alterations in the excitation-contraction coupling mechanisms of the smooth muscle cells, or it might reflect changes in the structure and/or composition of the airway wall tissues. In the present study, we assessed the effect of prolonged chronic stress of the lungs in vivo on airway smooth muscle force generation, myosin light chain phosphorylation, and airway wall structure. To enhance the potential development of stress-induced structural changes, we applied mechanical stress for a prolonged period of time of 2-3 wk. Our results demonstrate a direct connection between the decreased airway responsiveness caused by chronic mechanical stress of the lungs in vivo and a persistent decrease in contractile protein activation in the airway smooth muscle isolated from those lungs. The chronic stress also caused an increase in airway size but no detectable changes in the composition of the airway wall.
Collapse
Affiliation(s)
- Z Xue
- Department of Pediatrics, HB Wells Center for Pediatric Research, Indianapolis, IN, USA
| | | | | | | | | |
Collapse
|
35
|
Tilghman RW, Parsons JT. Focal adhesion kinase as a regulator of cell tension in the progression of cancer. Semin Cancer Biol 2008; 18:45-52. [PMID: 17928235 PMCID: PMC2267763 DOI: 10.1016/j.semcancer.2007.08.002] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2007] [Accepted: 08/28/2007] [Indexed: 01/13/2023]
Abstract
Growing evidence indicates that critical steps in cancer progression such as cell adhesion, migration, and cell cycle progression are regulated by the composition and organization of the microenvironment. The adhesion of cancer cells to components of the microenvironment and the forces transmitted to the cells via the actinomyosin network and the signaling complexes organized within focal adhesions allow cancer cells to sense the local topography of the extracellular matrix and respond efficiently to proximal growth and migration promoting cues. Focal adhesion kinase (FAK) is a nonreceptor tyrosine kinase that is over expressed in a variety of cancers and plays an important role in cell adhesion, migration, and anchorage-dependent growth. In this review, we summarize evidence which implicate FAK in the ability of cells to sense and respond to local forces from the microenvironment through the regulation of adhesion dynamics and actinomyosin contractility, and we discuss the potential roles of FAK as a mechanosensor in the progression of cancer.
Collapse
Affiliation(s)
- Robert W Tilghman
- Department of Microbiology, University of Virginia Health System, Charlottesville, VA 22908, USA
| | | |
Collapse
|
36
|
Abstract
The tyrosine phosphorylated protein Crk-associated substrate (CAS) has previously been shown to participate in the cellular processes regulating dynamic changes in the actin architecture and arterial constriction. In the present study, treatment of rat mesenteric arteries with phenylephrine (PE) led to the increase in CAS tyrosine phosphorylation and the association of CAS with the adapter protein CrkII. CAS phosphorylation was catalyzed by Abl in an in vitro study. To determine the role of Abl tyrosine kinase in arterial vessels, plasmids encoding Abl short hairpin RNA (shRNA) were transduced into mesenteric arteries by chemical loading plus liposomes. Abl silencing diminished increases in CAS phosphorylation on PE stimulation. Previous studies have shown that assembly of the multiprotein compound containing CrkII, neuronal Wiskott-Aldrich Syndrome Protein (N-WASP) and the Arp2/3 (Actin Related Protein) complex triggers actin polymerization in smooth muscle as well as in nonmuscle cells. In this study, Abl silencing attenuated the assembly of the multiprotein compound in resistance arteries on contractile stimulation. Furthermore, the increase in F/G-actin ratios (an index of actin assembly) and constriction on contractile stimulation were reduced in Abl-deficient arterial segments compared with control arteries. However, myosin regulatory light chain phosphorylation (MRLCP) elicited by contractile activation was not inhibited in Abl-deficient arteries. These results suggest that Abl may play a pivotal role in mediating CAS phosphorylation, the assembly of the multiprotein complex, actin assembly, and constriction in resistance arteries. Abl does not participate in the regulation of myosin activation in arterial vessels during contractile stimulation.
Collapse
Affiliation(s)
- Yana Anfinogenova
- Center for Cardiovascular Sciences, Albany Medical College, Albany, NY 12208, USA
| | | | | | | | | |
Collapse
|
37
|
Wang J, Weigand L, Foxson J, Shimoda LA, Sylvester JT. Ca2+ signaling in hypoxic pulmonary vasoconstriction: effects of myosin light chain and Rho kinase antagonists. Am J Physiol Lung Cell Mol Physiol 2007; 293:L674-85. [PMID: 17575009 DOI: 10.1152/ajplung.00141.2007] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Antagonists of myosin light chain (MLC) kinase (MLCK) and Rho kinase (ROK) are thought to inhibit hypoxic pulmonary vasoconstriction (HPV) by decreasing the concentration of phosphorylated MLC at any intracellular Ca(2+) concentration ([Ca(2+)](i)) in pulmonary arterial smooth muscle cells (PASMC); however, these antagonists can also decrease [Ca(2+)](i). To determine whether MLCK and ROK antagonists alter Ca(2+) signaling in HPV, we measured the effects of ML-9, ML-7, Y-27632, and HA-1077 on [Ca(2+)](i), Ca(2+) entry, and Ca(2+) release in rat distal PASMC exposed to hypoxia or depolarizing concentrations of KCl. We performed parallel experiments in isolated rat lungs to confirm the inhibitory effects of these agents on pulmonary vasoconstriction. Our results demonstrate that MLCK and ROK antagonists caused concentration-dependent inhibition of hypoxia-induced increases in [Ca(2+)](i) in PASMC and HPV in isolated lungs and suggest that this inhibition was due to blockade of Ca(2+) release from the sarcoplasmic reticulum and Ca(2+) entry through store- and voltage-operated Ca(2+) channels in PASMC. Thus MLCK and ROK antagonists might block HPV by inhibiting Ca(2+) signaling, as well as the actin-myosin interaction, in PASMC. If effects on Ca(2+) signaling were due to decreased phosphorylated myosin light chain concentration, their diversity suggests that MLCK and ROK antagonists may have acted by inhibiting myosin motors and/or altering the cytoskeleton in a manner that prevented achievement of required spatial relationships among the cellular components of the response.
Collapse
Affiliation(s)
- Jian Wang
- Division of Pulmonary & Critical Care Medicine, The Johns Hopkins Asthma and Allergy Center, Baltimore, MD 21224, USA
| | | | | | | | | |
Collapse
|
38
|
Janssen LJ, Killian K. Airway smooth muscle as a target of asthma therapy: history and new directions. Respir Res 2006; 7:123. [PMID: 17010205 PMCID: PMC1592490 DOI: 10.1186/1465-9921-7-123] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2006] [Accepted: 09/29/2006] [Indexed: 11/10/2022] Open
Abstract
Ultimately, asthma is a disease characterized by constriction of airway smooth muscle (ASM). The earliest approach to the treatment of asthma comprised the use of xanthines and anti-cholinergics with the later introduction of anti-histamines and anti-leukotrienes. Agents directed at ion channels on the smooth muscle membrane (Ca2+ channel blockers, K+ channel openers) have been tried and found to be ineffective. Functional antagonists, which modulate intracellular signalling pathways within the smooth muscle (beta-agonists and phosphodiesterase inhibitors), have been used for decades with success, but are not universally effective and patients continue to suffer with exacerbations of asthma using these drugs. During the past several decades, research energies have been directed into developing therapies to treat airway inflammation, but there have been no substantial advances in asthma therapies targeting the ASM. In this manuscript, excitation-contraction coupling in ASM is addressed, highlighting the current treatment of asthma while proposing several new directions that may prove helpful in the management of this disease.
Collapse
Affiliation(s)
- Luke J Janssen
- Firestone Institute for Respiratory Health, St. Joseph's Hospital and the Department of Medicine, McMaster University, Hamilton, Ontario, L8N 3Z5, Canada
| | - Kieran Killian
- Firestone Institute for Respiratory Health, St. Joseph's Hospital and the Department of Medicine, McMaster University, Hamilton, Ontario, L8N 3Z5, Canada
| |
Collapse
|
39
|
Wang R, Li QF, Anfinogenova Y, Tang DD. Dissociation of Crk-associated substrate from the vimentin network is regulated by p21-activated kinase on ACh activation of airway smooth muscle. Am J Physiol Lung Cell Mol Physiol 2006; 292:L240-8. [PMID: 16997882 PMCID: PMC1769421 DOI: 10.1152/ajplung.00199.2006] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The intermediate filament protein vimentin has been shown to be required for smooth muscle contraction. The adapter protein p130 Crk-associated substrate (CAS) participates in the signaling processes that regulate force development in smooth muscle. However, the interaction of vimentin filaments with CAS has not been well elucidated. In the present study, ACh stimulation of tracheal smooth muscle strips increased the ratio of soluble to insoluble vimentin (an index of vimentin disassembly) in association with force development. ACh activation also induced vimentin phosphorylation at Ser(56) as assessed by immunoblot analysis. More importantly, CAS was found in the cytoskeletal vimentin fraction, and the amount of CAS in cytoskeletal vimentin was reduced in smooth muscle strips on contractile stimulation. CAS redistributed from the myoplasm to the periphery during ACh activation of smooth muscle cells. The ACh-elicited decrease in CAS distribution in cytoskeletal vimentin was attenuated by the downregulation of p21-activated kinase (PAK) 1 with antisense oligodeoxynucleotides. Vimentin phosphorylation at this residue, the ratio of soluble to insoluble vimentin, and active force in smooth muscle strips induced by ACh were also reduced in PAK-depleted tissues. These results suggest that PAK may regulate CAS release from the vimentin intermediate filaments by mediating vimentin phosphorylation at Ser(56) and the transition of cytoskeletal vimentin to soluble vimentin. The PAK-mediated dissociation of CAS from the vimentin network may participate in the cellular processes that affect active force development during ACh activation of tracheal smooth muscle tissues.
Collapse
Affiliation(s)
| | | | | | - Dale D. Tang
- Correspondence: Dale D. Tang, Center for Cardiovascular Sciences, Albany Medical College, 47 New Scotland Avenue, MC-8, Albany, NY 12208, Tel: (518)-262-6416; Fax: (518)-262-8101, E-mail:
| |
Collapse
|
40
|
Abstract
Vimentin intermediate filaments undergo spatial reorganization in cultured smooth muscle cells in response to contractile activation; however, the role of vimentin in the physiological properties of smooth muscle has not been well elucidated. Tracheal smooth muscle strips were loaded with antisense oligonucleotides (ODNs) against vimentin and then cultured for 2 days to allow for protein degradation. Treatment with vimentin antisense, but not sense, ODNs suppressed vimentin protein expression; neither vimentin antisense nor sense ODNs affected protein levels of desmin and actin. Force development in response to ACh stimulation or KCl depolarization was lower in vimentin-deficient tissues than in vimentin sense ODN- or non-ODN-treated muscle strips. Passive tension was also depressed in vimentin-depleted muscle tissues. Vimentin downregulation did not attenuate increases in myosin light chain (MLC) phosphorylation in response to contractile stimulation or basal MLC phosphorylation. In vimentin sense ODN-treated or non-ODN-treated smooth muscle strips, the desmosomal protein plakoglobin was primarily localized in the cell periphery. The membrane-associated localization of plakoglobin was reduced in vimentin-depleted muscle tissues. These studies suggest that vimentin filaments play an important role in mediating active force development and passive tension, which are not regulated by MLC phosphorylation. Vimentin downregulation impairs the structural organization of desmosomes, which may be associated with the decrease in force development.
Collapse
Affiliation(s)
| | | | - Dale D. Tang
- Correspondence: Dale D. Tang, Center for Cardiovascular Sciences, Albany Medical College, 47 New Scotland Avenue, MC-8, Albany, NY 12208, Tel: (518)-262-6416; Fax: (518)-262-8101, E-mail:
| |
Collapse
|
41
|
Tang DD, Bai Y, Gunst SJ. Silencing of p21-activated kinase attenuates vimentin phosphorylation on Ser-56 and reorientation of the vimentin network during stimulation of smooth muscle cells by 5-hydroxytryptamine. Biochem J 2005; 388:773-83. [PMID: 15766329 PMCID: PMC1183456 DOI: 10.1042/bj20050065] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Vimentin intermediate filaments undergo spatial reorganization in endothelial cells and fibroblasts in response to stimulation with platelet-derived growth factor and epidermal growth factor. In the present study, the vimentin network exhibited a curved filamentous structure in unstimulated smooth muscle cells. Vimentin filaments became straight and were arranged along the long axis of cells upon stimulation with 5-hydroxytryptamine (5-HT; serotonin). Stimulation of smooth muscle cells with 5-HT also induced phosphorylation of vimentin on Ser-56. Treatment of cells with small interfering RNA selectively down-regulated the expression of PAK1 (p21-activated kinase 1) without affecting the content of smooth muscle alpha-actin. The silencing of PAK1 inhibited the site-specific phosphorylation and spatial rearrangement of the vimentin network in response to stimulation with 5-HT. Neither the disruption of stress fibres by cytochalasin D nor the inhibition of protein tyrosine phosphorylation affects the spatial reorganization of vimentin intermediate filaments in response to stimulation with 5-HT. In addition, stimulation of smooth muscle cells with 5-HT increased the ratio of soluble to insoluble vimentin. PAK1 silencing attenuated increases in the ratio of soluble to insoluble vimentin upon stimulation with 5-HT. These results suggest that the PAK-mediated site-specific phosphorylation of vimentin may play a role in regulating the reorganization of vimentin intermediate filaments during stimulation of smooth muscle cells with 5-HT.
Collapse
Affiliation(s)
- Dale D Tang
- Center for Cardiovascular Sciences, Albany Medical College, 47 New Scotland Avenue, MC-8, ME-424, Albany, NY 12208, USA.
| | | | | |
Collapse
|
42
|
Zhang W, Wu Y, Du L, Tang DD, Gunst SJ. Activation of the Arp2/3 complex by N-WASp is required for actin polymerization and contraction in smooth muscle. Am J Physiol Cell Physiol 2005; 288:C1145-60. [PMID: 15625304 DOI: 10.1152/ajpcell.00387.2004] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Contractile stimulation has been shown to initiate actin polymerization in smooth muscle tissues, and this actin polymerization is required for active tension development. We evaluated whether neuronal Wiskott-Aldrich syndrome protein (N-WASp)-mediated activation of the actin-related proteins 2 and 3 (Arp2/3) complex regulates actin polymerization and tension development initiated by muscarinic stimulation in canine tracheal smooth muscle tissues. In vitro, the COOH-terminal CA domain of N-WASp acts as an inhibitor of N-WASp-mediated actin polymerization; whereas the COOH-terminal VCA domain of N-WASp is constitutively active and is sufficient by itself to catalyze actin polymerization. Plasmids encoding EGFP-tagged wild-type N-WASp, the N-WASp VCA and CA domains, or enhanced green fluorescent protein (EGFP) were introduced into tracheal smooth muscle strips by reversible permeabilization, and the tissues were incubated for 2 days to allow for expression of the proteins. Expression of the CA domain inhibited actin polymerization and tension development in response to ACh, whereas expression of the wild-type N-WASp, the VCA domain, or EGFP did not. The increase in myosin light-chain (MLC) phosphorylation in response to contractile stimulation was not affected by expression of either the CA or VCA domain of N-WASp. Stimulation of the tissues with ACh increased the association of the Arp2/3 complex with N-WASp, and this association was inhibited by expression of the CA domain. The results demonstrate that 1) N-WASp-mediated activation of the Arp2/3 complex is necessary for actin polymerization and tension development in response to muscarinic stimulation in tracheal smooth muscle and 2) these effects are independent of the regulation of MLC phosphorylation.
Collapse
Affiliation(s)
- Wenwu Zhang
- Dept. of Cellular and Integrative Physiology, Indiana Univ. School of Medicine, 635 Barnhill Drive, MS374, Indianapolis, IN 46202, USA
| | | | | | | | | |
Collapse
|
43
|
Tang DD, Zhang W, Gunst SJ. The adapter protein CrkII regulates neuronal Wiskott-Aldrich syndrome protein, actin polymerization, and tension development during contractile stimulation of smooth muscle. J Biol Chem 2005; 280:23380-9. [PMID: 15834156 DOI: 10.1074/jbc.m413390200] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Actin polymerization has been shown to occur in tracheal smooth muscle tissues and cells in response to contractile stimulation, and there is evidence that the polymerization of actin is required for contraction. In tracheal smooth muscle, agonist-induced actin polymerization is mediated by activation of neuronal Wiskott-Aldrich syndrome protein (N-WASp) and the Arp (actin-related protein) 2/3 complex, and activation of the small GTPase Cdc42 regulates the activation of N-WASp. In the present study, the role of the adapter protein CrkII in the regulation of N-WASp and Cdc42 activation, actin polymerization, and tension development in smooth muscle tissues was evaluated. Stimulation of tracheal smooth muscle tissues with acetylcholine increased the association of CrkII with N-WASp. Plasmids encoding wild type CrkII or a CrkII mutant lacking the SH3 effector-binding ability, CrkII SH3N, were introduced into tracheal smooth muscle tissues, and the tissues were incubated for 2 days to allow for protein expression. Expression of the CrkII SH3N mutant in smooth muscle tissues inhibited the association of CrkII with N-WASp and the activation of Cdc42. The CrkII SH3N mutant also inhibited the increase in the association of N-WASp with Arp2, a major component of the Arp2/3 complex, in response to contractile stimulation, indicating inhibition of N-WASp activation. Expression of the CrkII SH3N mutant also inhibited tension generation and actin polymerization in response to contractile stimulation; however, it did not inhibit myosin light chain phosphorylation. These results suggest that CrkII plays a critical role in the regulation of N-WASp activation, perhaps by regulating the activation of Cdc42, and that it thereby regulates actin polymerization and active tension generation in tracheal smooth muscle. These studies suggest a novel signaling pathway for the regulation of N-WASp activation and active contraction in smooth muscle tissues.
Collapse
Affiliation(s)
- Dale D Tang
- Department of Cellular and Integrative Physiology, School of Medicine, Indiana University, Indianapolis, 46202, USA
| | | | | |
Collapse
|
44
|
Kim-Kaneyama JR, Suzuki W, Ichikawa K, Ohki T, Kohno Y, Sata M, Nose K, Shibanuma M. Uni-axial stretching regulates intracellular localization of Hic-5 expressed in smooth-muscle cells in vivo. J Cell Sci 2005; 118:937-49. [PMID: 15713747 DOI: 10.1242/jcs.01683] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Hic-5 is a focal adhesion protein belonging to the paxillin LIM family that shuttles in and out of the nucleus. In the present study, we examined the expression of Hic-5 among mouse tissues by immunohistochemistry and found its expression only in smooth-muscle cells in several tissues. This result is consistent with a previous report on adult human tissues and contradicts the relatively ubiquitous expression of paxillin, the protein most homologous to Hic-5. One factor characterizing smooth-muscle cells in vivo is a continuous exposure to mechanical stretching in the organs. To study the involvement of Hic-5 in cellular responses to mechanical stress, we exposed mouse embryo fibroblasts to a uni-axial cyclic stretching and found that Hic-5 was relocalized from focal adhesions to stress fibers through its C-terminal LIM domains during the stress. In sharp contrast to this, paxillin did not change its focal-adhesion-based localization. Of the factors tested, which included interacting partners of Hic-5, only CRP2 (an only-LIM protein expressed in vascular smooth-muscle cells) and GIT1 were, like Hic-5, localized to stress fibers during the cyclic stretching. Interestingly, Hic-5 showed a suppressive effect on the contractile capability of cells embedded in three-dimensional collagen gels, and the effect was further augmented when CRP2 co-localized with Hic-5 to fiber structures of those cells. These results suggested that Hic-5 was a mediator of tensional force, translocating directly from focal adhesions to actin stress fibers upon mechanical stress and regulating the contractile capability of cells in the stress fibers.
Collapse
Affiliation(s)
- Joo-ri Kim-Kaneyama
- Department of Microbiology, Showa University School of Pharmaceutical Sciences, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Tang DD, Gunst SJ. The Small GTPase Cdc42 Regulates Actin Polymerization and Tension Development during Contractile Stimulation of Smooth Muscle. J Biol Chem 2004; 279:51722-8. [PMID: 15456777 DOI: 10.1074/jbc.m408351200] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Contractile stimulation induces actin polymerization in smooth muscle tissues and cells, and the inhibition of actin polymerization depresses smooth muscle force development. In the present study, the role of Cdc42 in the regulation of actin polymerization and tension development in smooth muscle was evaluated. Acetylcholine stimulation of tracheal smooth muscle tissues increased the activation of Cdc42. Plasmids encoding wild type Cdc42 or a dominant negative Cdc42 mutant, Asn-17 Cdc42, were introduced into tracheal smooth muscle strips by reversible permeabilization, and tissues were incubated for 2 days to allow for protein expression. Expression of recombinant proteins was confirmed by immunoblot analysis. The expression of the dominant negative Cdc42 mutant inhibited contractile force and the increase in actin polymerization in response to acetylcholine stimulation but did not inhibit the increase in myosin light chain phosphorylation. The expression of wild type Cdc42 had no significant effect on force, actin polymerization, or myosin light chain phosphorylation. Contractile stimulation increased the association of neuronal Wiskott-Aldrich syndrome protein with Cdc42 and the Arp2/3 (actin-related protein) complex in smooth muscle tissues expressing wild type Cdc42. The agonist-induced increase in these protein interactions was inhibited in tissues expressing the inactive Cdc42 mutant. We conclude that Cdc42 activation regulates active tension development and actin polymerization during contractile stimulation. Cdc42 may regulate the activation of neuronal Wiskott-Aldrich syndrome protein and the actin related protein complex, which in turn regulate actin filament polymerization initiated by the contractile stimulation of smooth muscle.
Collapse
Affiliation(s)
- Dale D Tang
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | | |
Collapse
|
46
|
Kim HR, Hoque M, Hai CM. Cholinergic receptor-mediated differential cytoskeletal recruitment of actin- and integrin-binding proteins in intact airway smooth muscle. Am J Physiol Cell Physiol 2004; 287:C1375-83. [PMID: 15269004 DOI: 10.1152/ajpcell.00100.2004] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We tested the hypothesis that cholinergic receptor stimulation recruits actin- and integrin-binding proteins from the cytoplasm to the cytoskeleton-membrane complex in intact airway smooth muscle. We stimulated bovine tracheal smooth muscle with carbachol and fractionated the tissue homogenate into pellet (P) and supernatant (S) by ultracentrifugation. In unstimulated tissues, calponin exhibited the highest basal P-to-S ratio (P/S; 2.74 +/- 0.47), whereas vinculin exhibited the lowest P/S (0.52 +/- 0.09). Cholinergic receptor stimulation increased P/S of the following proteins in descending order of sensitivity: alpha-actinin > talin approximately metavinculin > alpha-smooth muscle actin > vinculin approximately calponin. Carbachol induced ERK1/2 phosphorylation by 300% of basal value. U0126 (10 microM) completely inhibited carbachol-induced ERK1/2 phosphorylation but did not significantly affect the correlation between alpha-actinin P/S and carbachol concentration. This observation indicates that cytoskeletal/membrane recruitment of alpha-actinin is independent of ERK1/2 mitogen-activated protein kinase activation. Metavinculin and vinculin are splice variants of a single gene, but metavinculin P/S was significantly higher than vinculin P/S. Furthermore, the P/S of metavinculin but not vinculin increased significantly in response to cholinergic receptor stimulation. Calponin and alpha-actinin both belong to the family of calponin homology (CH) domain proteins. However, unlike alpha-actinin, the calponin P/S did not change significantly in response to cholinergic receptor stimulation. These findings indicate differential cytoskeletal/membrane recruitment of actin- and integrin-binding proteins in response to cholinergic receptor stimulation in intact airway smooth muscle. alpha-Actinin, talin, and metavinculin appear to be key cytoskeletal proteins involved in the recruitment process.
Collapse
Affiliation(s)
- Hak Rim Kim
- Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown University, Providence, Rhode Island 02912, USA
| | | | | |
Collapse
|
47
|
Opazo Saez A, Zhang W, Wu Y, Turner CE, Tang DD, Gunst SJ. Tension development during contractile stimulation of smooth muscle requires recruitment of paxillin and vinculin to the membrane. Am J Physiol Cell Physiol 2004; 286:C433-47. [PMID: 14576084 DOI: 10.1152/ajpcell.00030.2003] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cytoskeletal reorganization of the smooth muscle cell in response to contractile stimulation may be an important fundamental process in regulation of tension development. We used confocal microscopy to analyze the effects of cholinergic stimulation on localization of the cytoskeletal proteins vinculin, paxillin, talin and focal adhesion kinase (FAK) in freshly dissociated tracheal smooth muscle cells. All four proteins were localized at the membrane and throughout the cytoplasm of unstimulated cells, but their concentration at the membrane was greater in acetylcholine (ACh)-stimulated cells. Antisense oligonucleotides were introduced into tracheal smooth muscle tissues to deplete paxillin protein, which also inhibited contraction in response to ACh. In cells dissociated from paxillin-depleted muscle tissues, redistribution of vinculin to the membrane in response to ACh was prevented, but redistribution of FAK and talin was not inhibited. Muscle tissues were transfected with plasmids encoding a paxillin mutant containing a deletion of the LIM3 domain (paxillin LIM3 dl 444–494), the primary determinant for targeting paxillin to focal adhesions. Expression of paxillin LIM3 dl in muscle tissues also inhibited contractile force and prevented cellular redistribution of paxillin and vinculin to the membrane in response to ACh, but paxillin LIM3 dl did not inhibit increases in intracellular Ca2+or myosin light chain phosphorylation. Our results demonstrate that recruitment of paxillin and vinculin to smooth muscle membrane is necessary for tension development and that recruitment of vinculin to the membrane is regulated by paxillin. Vinculin and paxillin may participate in regulating the formation of linkages between the cytoskeleton and integrin proteins that mediate tension transmission between the contractile apparatus and the extracellular matrix during smooth muscle contraction.
Collapse
Affiliation(s)
- Anabelle Opazo Saez
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, 635 Barnhill Dr., Indianapolis, IN 46202, USA
| | | | | | | | | | | |
Collapse
|
48
|
Tang DD, Turner CE, Gunst SJ. Expression of non-phosphorylatable paxillin mutants in canine tracheal smooth muscle inhibits tension development. J Physiol 2003; 553:21-35. [PMID: 12949231 PMCID: PMC2343494 DOI: 10.1113/jphysiol.2003.045047] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The adapter protein paxillin has been implicated in the regulation of cytoskeletal organization and cell motility. Paxillin undergoes tyrosine phosphorylation in response to the contractile stimulation of smooth muscle, and the depletion of paxillin by antisense inhibits smooth muscle contraction. In the present study, acetylcholine (ACh)-stimulation of tracheal smooth muscle tissues increased paxillin phosphorylation at tyr-31 and tyr-118 by three- to fourfold. The role of tyr-31 and tyr-118 phosphorylation of paxillin in smooth muscle was evaluated by introducing plasmids encoding wild type paxillin or paxillin mutants F31, F118 or F31/118 (phenylalanine substitution at tyrosine sites 31, 118) into tracheal smooth muscle strips by reversible permeabilization, and incubating the tissues for 2 days. The expression of recombinant proteins was confirmed by immunoblot and immunofluorescence analysis. Expression of the paxillin mutants F31, F118 or F31/118 inhibited the contractile response to ACh stimulation but did not inhibit the increase in myosin light chain phosphorylation. The expression of wild type paxillin had no significant affect on force or myosin light chain phosphorylation. ACh stimulation reduced G-actin/F-actin ratio in tissues expressing wild type paxillin; whereas the agonist-induced decrease in G-actin/F-actin was inhibited in strips expressing paxillin mutant F31/118. The paxillin mutant F31/118 showed a marked decrease in their interaction with the SH2/SH3 adaptor protein CrkII but not with vinculin or focal adhesion kinase. We conclude that paxillin phosphorylation at tyr-31 and tyr-118 regulates active tension development during contractile stimulation. Paxillin phosphorylation at these two sites may be important in regulating actin filament dynamics and organization during smooth muscle contraction.
Collapse
Affiliation(s)
- Dale D Tang
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN 46202, USA
| | | | | |
Collapse
|
49
|
Su X, Smolock EM, Marcel KN, Moreland RS. Phosphatidylinositol 3-kinase modulates vascular smooth muscle contraction by calcium and myosin light chain phosphorylation-independent and -dependent pathways. Am J Physiol Heart Circ Physiol 2003; 286:H657-66. [PMID: 14551055 DOI: 10.1152/ajpheart.00497.2003] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Regulation of smooth muscle contraction involves a number of signaling mechanisms that include both kinase and phosphatase reactions. The goal of the present study was to determine the role of one such kinase, phosphatidylinositol (PI)3-kinase, in vascular smooth muscle excitation-contraction coupling. Using intact medial strips of the swine carotid artery, we found that inhibition of PI3-kinase by LY-294002 resulted in a concentration-dependent decrease in the contractile response to both agonist stimulation and membrane depolarization-dependent contractions and a decrease in Ca(2+)-dependent myosin light chain (MLC) phosphorylation, the primary step in the initiation of smooth muscle contraction. Inhibition of PI3-kinase also depressed phorbol dibutyrate-induced contractions, which are not dependent on either Ca(2+) or MLC phosphorylation but are dependent on protein kinase C. To determine the Ca(2+)-dependent site of action of PI3-kinase, we determined the effect of several inhibitors of calcium metabolism on LY-294002-dependent inhibition of contraction. These inhibitors included nifedipine, SK&F-96365, and caffeine. Only SK&F-96365 blocked the LY-294002-dependent inhibition of contraction. Interestingly, all compounds blocked the LY-294002-dependent inhibition of MLC phosphorylation. Our results suggest that activation of PI3-kinase is involved in a Ca(2+)- and MLC phosphorylation-independent pathway for contraction likely to involve protein kinase C. In addition, our results also suggest that activation of PI3-kinase is involved in Ca(2+)-dependent signaling at the level of receptor-operated calcium channels.
Collapse
Affiliation(s)
- Xiaoling Su
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | | | | | | |
Collapse
|
50
|
Tang DD, Tan J. Downregulation of profilin with antisense oligodeoxynucleotides inhibits force development during stimulation of smooth muscle. Am J Physiol Heart Circ Physiol 2003; 285:H1528-36. [PMID: 12805028 DOI: 10.1152/ajpheart.00188.2003] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The actin-regulatory protein profilin has been shown to regulate the actin cytoskeleton and the motility of nonmuscle cells. To test the hypothesis that profilin plays a role in regulating smooth muscle contraction, profilin antisense or sense oligodeoxynucleotides were introduced into the canine carotid smooth muscle by a method of reversible permeabilization, and these strips were incubated for 2 days for protein downregulation. The treatment of smooth muscle strips with profilin antisense oligodeoxynucleotides inhibited the expression of profilin; it did not influence the expression of actin, myosin heavy chain, and metavinculin/vinculin. Profilin sense did not affect the expression of these proteins in smooth muscle tissues. Force generation in response to stimulation with norepinephrine or KCl was significantly lower in profilin antisense-treated muscle strips than in profilin sense-treated strips or in muscle strips not treated with oligodeoxynucleotides. The depletion of profilin did not attenuate increases in phosphorylation of the 20-kDa regulatory light chain of myosin (MLC20) in response to stimulation with norepinephrine or KCl. The increase in F-actin/G-actin ratio during contractile stimulation was significantly inhibited in profilin-deficient smooth muscle strips. These results suggest that profilin is a necessary molecule of signaling cascades that regulate carotid smooth muscle contraction, but that it does not modulate MLC20 phosphorylation during contractile stimulation. Profilin may play a role in the regulation of actin polymerization or organization in response to contractile stimulation of smooth muscle.
Collapse
Affiliation(s)
- Dale D Tang
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, 635 Barnhill Dr., Indianapolis, IN 46202, USA.
| | | |
Collapse
|