1
|
Marakhova II, Yurinskaya VE, Domnina AP. The Role of Intracellular Potassium in Cell Quiescence, Proliferation, and Death. Int J Mol Sci 2024; 25:884. [PMID: 38255956 PMCID: PMC10815214 DOI: 10.3390/ijms25020884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/28/2023] [Accepted: 01/06/2024] [Indexed: 01/24/2024] Open
Abstract
This brief review explores the role of intracellular K+ during the transition of cells from quiescence to proliferation and the induction of apoptosis. We focus on the relationship between intracellular K+ and the growth and proliferation rates of different cells, including transformed cells in culture as well as human quiescent T cells and mesenchymal stem cells, and analyze the concomitant changes in K+ and water content in both proliferating and apoptotic cells. Evidence is discussed indicating that during the initiation of cell proliferation and apoptosis changes in the K+ content in cells occur in parallel with changes in water content and therefore do not lead to significant changes in the intracellular K+ concentration. We conclude that K+, as a dominant intracellular ion, is involved in the regulation of cell volume during the transit from quiescence, and the content of K+ and water in dividing cells is higher than in quiescent or differentiated cells, which can be considered to be a hallmark of cell proliferation and transformation.
Collapse
Affiliation(s)
- Irina I. Marakhova
- Department of Intracellular Signalling and Transport, Institute of Cytology of the Russian Academy of Sciences, Tikhoretsky Avenue 4, 194064 Saint-Petersburg, Russia
| | - Valentina E. Yurinskaya
- Department of Molecular Cell Physiology, Institute of Cytology of the Russian Academy of Sciences, Tikhoretsky Avenue 4, 194064 Saint-Petersburg, Russia
| | - Alisa P. Domnina
- Department of Intracellular Signalling and Transport, Institute of Cytology of the Russian Academy of Sciences, Tikhoretsky Avenue 4, 194064 Saint-Petersburg, Russia
| |
Collapse
|
2
|
Isaev NK, Stelmashook EV, Genrikhs EE, Onishchenko GE. Interaction between mitophagy, cadmium and zinc. J Trace Elem Med Biol 2023; 79:127230. [PMID: 37290313 DOI: 10.1016/j.jtemb.2023.127230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 05/28/2023] [Accepted: 05/31/2023] [Indexed: 06/10/2023]
Abstract
Mitophagy is the selective degradation of mitochondria by autophagy. This process is considered to be one of the stages of mitochondrial quality control, as a result of which damaged depolarized mitochondria are eliminated, thus limiting the formation of reactive oxygen species and the release of apoptogenic factors. Selective degradation of mitochondria by autophagy is one of the main ways to protect cells from cadmium toxicity, which results in dysfunction of the mitochondrial electron transport chain, leading to electron leakage, production of reactive oxygen species and cells death. However, excessive autophagy can be dangerous for cells. Currently, the participation of cadmium ions in normal physiological processes has not been detected. Zn2+, unlike Cd2+, regulate the activity of a large number of functionally important proteins, including transcription factors, enzymes, and adapters. It has been shown that Zn2+ not only participate in autophagy, but are also crucial for basal or induced autophagy. It is likely that zinc drugs can be used to reduce the cadmium toxicity and in the regulation of mithophagy.
Collapse
Affiliation(s)
- Nickolay K Isaev
- M.V. Lomonosov Moscow State University, Moscow, Russia; Research Center of Neurology, Moscow, Russia.
| | | | | | | |
Collapse
|
3
|
Su SH, Su SJ, Huang LY, Chiang YC. Leukemic cells resist lysosomal inhibition through the mitochondria-dependent reduction of intracellular pH and oxidants. Free Radic Biol Med 2023; 198:1-11. [PMID: 36736442 DOI: 10.1016/j.freeradbiomed.2023.01.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 01/18/2023] [Accepted: 01/28/2023] [Indexed: 02/01/2023]
Abstract
Acidic lysosomes are indispensable for cancer development and linked to chemotherapy resistance. Chloroquine (CQ) and functional analogues have been considered as a potential solution to overcome the cancer progression and chemoresistance by inhibiting the lysosome-mediated autophagy and multidrug exocytosis. However, their anti-cancer efficacy in most clinical trials demonstrated modest improvement. In this study, we investigated the detailed mechanisms underlying the acquired resistance of K562 leukemic cells to CQ treatment. In response to 5-80 μM CQ, the lumen pH of endosomal-lysosomal system immediately increased and gradually reached dynamic equilibrium within 24 h. Leukemic cells produced more acidic organelles to tolerate 5-10 μM CQ. CQ (20-80 μM) concentration-dependently triggered cytosolic pH (pHi) rise, G0/G1 arrest, mitochondrial depolarization/fragmentation, and necrotic/apoptotic cell death. Oxidant induction by CQ was responsible for the mitochondria-dependent cytotoxicity and partial pHi elevation. Cells that survived the CQ cytotoxicity were accompanied with increased mitochondria. Under the 80 μM CQ challenge, co-treatment with the inhibitor of F0 part of mitochondrial H+-ATP synthase, oligomycin (40 nM), prevented the elevation of oxidants as well as pHi, and attenuated stresses on mitochondria, cell survival, and cell proliferation. Besides, oligomycin-treated cells obviously displayed the lysosomal peripheralization and plasma membrane blebbing, suggesting that these cells were in process of lysosomal exocytosis and microvesicle release. Enhanced motion of these secretory processes allowed the cells to exclude CQ and repair necrotic injury. Together, the oxidant production and the proton dynamic interconnection among lysosomes, mitochondria, and cytosol are crucial for leukemic susceptibility to lysosomotropic chemotherapeutics.
Collapse
Affiliation(s)
- Shu-Hui Su
- Department of Molecular Biology and Human Genetics, College of Medicine, Tzu Chi University, Hualien, Taiwan; Department of Laboratory Medicine and Biotechnology, College of Medicine, Tzu Chi University, Hualien, Taiwan.
| | - Shu-Jem Su
- Department of Medical Laboratory Science and Biotechnology, School of Medicine and Health Sciences, FooYin University, Kaohsiung, Taiwan
| | - Li-Yun Huang
- Department of Laboratory Medicine and Biotechnology, College of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Yun-Chen Chiang
- Department of Molecular Biology and Human Genetics, College of Medicine, Tzu Chi University, Hualien, Taiwan
| |
Collapse
|
4
|
González-Hernández J, Moya-Alvarado G, Alvarado-Gámez AL, Urcuyo R, Barquero-Quirós M, Arcos-Martínez MJ. Electrochemical biosensor for quantitative determination of fentanyl based on immobilized cytochrome c on multi-walled carbon nanotubes modified screen-printed carbon electrodes. Mikrochim Acta 2022; 189:483. [DOI: 10.1007/s00604-022-05578-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 11/14/2022] [Indexed: 12/02/2022]
|
5
|
Designing of various biosensor devices for determination of apoptosis: A comprehensive review. Biochem Biophys Res Commun 2021; 578:42-62. [PMID: 34536828 DOI: 10.1016/j.bbrc.2021.08.089] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/29/2021] [Accepted: 08/29/2021] [Indexed: 12/30/2022]
Abstract
Apoptosis is a type of cell death caused by the occurrence of both pathological and physiological conditions triggered by ligation of death receptors outside the cell or triggered by DNA damage and/or cytoskeleton disruption. Timely monitoring of apoptosis can effectively help early diagnosis of related diseases and continuous assessment of the effectiveness of drugs. Detecting caspases, a protease family closely related to cellular apoptosis, and its identification as markers of apoptosis is a popular procedure. Biosensors are used for early diagnosis and play a very important role in preventing disease progression in various body sections. Recently, there has been a widespread increase in the desire to use materials made of paper (e.g. nitrocellulose membrane) for Point-of-Care (POC) testing systems since paper and paper-like materials are cheap, abundant and degradable. Microfluidic paper-based analytical devices (μPADs) are highly promising as they are cost-effective, easy to use, fast, precise and sustainable over time and under different environmental conditions. In this review, we focused our efforts on compiling the different approaches on identifying apoptosis pathway while giving brief information about apoptosis and biosensors. This review includes recent advantages in biosensing techniques to simply determine what happened in the cell life and which direction it would continue. As a conclusion, we believed that the review may help to researchers to compare/update the knowledge about diagnosis of the apoptosis pathway while reminding the basic definitions about the apoptosis and biosensor technologies.
Collapse
|
6
|
Christensen EAF, Stieglitz JD, Grosell M, Steffensen JF. Intra-Specific Difference in the Effect of Salinity on Physiological Performance in European Perch ( Perca fluviatilis) and Its Ecological Importance for Fish in Estuaries. BIOLOGY 2019; 8:biology8040089. [PMID: 31744192 PMCID: PMC6956070 DOI: 10.3390/biology8040089] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/13/2019] [Accepted: 11/14/2019] [Indexed: 12/02/2022]
Abstract
Changes in environmental salinity challenge fish homeostasis and may affect physiological performance, such as swimming capacity and metabolism, which are important for foraging, migration, and escaping predators in the wild. The effects of salinity stress on physiological performance are largely species specific, but may also depend on intra-specific differences in physiological capabilities of sub-populations. We measured critical swimming speed (Ucrit) and metabolic rates during swimming and at rest at salinities of 0 and 10 in European perch (Perca fluviatilis) from a low salinity tolerance population (LSTP) and a high salinity tolerance population (HSTP). Ucrit of LSTP was significantly reduced at a salinity of 10 yet was unaffected by salinity change in HSTP. We did not detect a significant cost of osmoregulation, which should theoretically be apparent from the metabolic rates during swimming and at rest at a salinity of 0 compared to at a salinity of 10 (iso-osmotic). Maximum metabolic rates were also not affected by salinity, indicating a modest tradeoff between respiration and osmoregulation (osmo-respiratory compromise). Intra-specific differences in effects of salinity on physiological performance are important for fish species to maintain ecological compatibility in estuarine environments, yet render these sub-populations vulnerable to fisheries. The findings of the present study are therefore valuable knowledge in conservation and management of estuarine fish populations.
Collapse
Affiliation(s)
- Emil A. F. Christensen
- Marine Biological Section, Department of Biology, University of Copenhagen, Strandpromenaden 5, 3000 Elsinore, Denmark;
- Correspondence:
| | - John D. Stieglitz
- Department of Marine Ecosystems and Society, Rosenstiel School of Marine and Atmospheric Science, University of Miami, 4600 Rickenbacker Causeway, Miami, FL 33149, USA;
| | - Martin Grosell
- Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, 4600 Rickenbacker Causeway, Miami, FL 33149, USA;
| | - John F. Steffensen
- Marine Biological Section, Department of Biology, University of Copenhagen, Strandpromenaden 5, 3000 Elsinore, Denmark;
| |
Collapse
|
7
|
Liu CL, Zhang X, Liu J, Wang Y, Sukhova GK, Wojtkiewicz GR, Liu T, Tang R, Achilefu S, Nahrendorf M, Libby P, Guo J, Zhang JY, Shi GP. Na +-H + exchanger 1 determines atherosclerotic lesion acidification and promotes atherogenesis. Nat Commun 2019; 10:3978. [PMID: 31484936 PMCID: PMC6726618 DOI: 10.1038/s41467-019-11983-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 08/15/2019] [Indexed: 01/25/2023] Open
Abstract
The pH in atherosclerotic lesions varies between individuals. IgE activates macrophage Na+-H+ exchanger (Nhe1) and induces extracellular acidification and cell apoptosis. Here, we show that the pH-sensitive pHrodo probe localizes the acidic regions in atherosclerotic lesions to macrophages, IgE, and cell apoptosis. In Apoe-/- mice, Nhe1-deficiency or anti-IgE antibody reduces atherosclerosis and blocks lesion acidification. Reduced atherosclerosis in Apoe-/- mice receiving bone marrow from Nhe1- or IgE receptor FcεR1-deficient mice, blunted foam cell formation and signaling in IgE-activated macrophages from Nhe1-deficient mice, immunocomplex formation of Nhe1 and FcεR1 in IgE-activated macrophages, and Nhe1-FcεR1 colocalization in atherosclerotic lesion macrophages support a role of IgE-mediated macrophage Nhe1 activation in atherosclerosis. Intravenous administration of a near-infrared fluorescent pH-sensitive probe LS662, followed by coregistered fluorescent molecular tomography-computed tomography imaging, identifies acidic regions in atherosclerotic lesions in live mice, ushering a non-invasive and radiation-free imaging approach to monitor atherosclerotic lesions in live subjects.
Collapse
Affiliation(s)
- Cong-Lin Liu
- Department of Cardiology, Institute of Clinical Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Xian Zhang
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Jing Liu
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Yunzhe Wang
- Department of Cardiology, Institute of Clinical Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Galina K Sukhova
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Gregory R Wojtkiewicz
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Tianxiao Liu
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Rui Tang
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Samuel Achilefu
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Matthias Nahrendorf
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Peter Libby
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Junli Guo
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA.
- Key Laboratory of Emergency and Trauma of Ministry of Education, Institute of Cardiovascular Research of the First Affiliated Hospital, Hainan Medical University, 571199,, Haikou, China.
| | - Jin-Ying Zhang
- Department of Cardiology, Institute of Clinical Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Guo-Ping Shi
- Department of Cardiology, Institute of Clinical Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA.
- Key Laboratory of Emergency and Trauma of Ministry of Education, Institute of Cardiovascular Research of the First Affiliated Hospital, Hainan Medical University, 571199,, Haikou, China.
| |
Collapse
|
8
|
Tashakor A, H-Dehkordi M, O'Connell E, Gomez Ganau S, Gozalbes R, Eriksson LA, Hosseinkhani S, Fearnhead HO. A new split-luciferase complementation assay identifies pentachlorophenol as an inhibitor of apoptosome formation. FEBS Open Bio 2019; 9:1194-1203. [PMID: 31033240 PMCID: PMC6609562 DOI: 10.1002/2211-5463.12646] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 04/12/2019] [Accepted: 04/26/2019] [Indexed: 12/03/2022] Open
Abstract
The expense and time required for in vivo reproductive and developmental toxicity studies have driven the development of in vitro alternatives. Here, we used a new in vitro split luciferase‐based assay to screen a library of 177 toxicants for inhibitors of apoptosome formation. The apoptosome contains seven Apoptotic Protease‐Activating Factor‐1 (Apaf‐1) molecules and induces cell death by activating caspase‐9. Apaf‐1‐dependent caspase activation also plays an important role in CNS development and spermatogenesis. In the in vitro assay, Apaf‐1 fused to an N‐terminal fragment of luciferase binds to Apaf‐1 fused to a C‐terminal fragment of luciferase and reconstitutes luciferase activity. Our assay indicated that pentachlorophenol (PCP) inhibits apoptosome formation, and further investigation revealed that PCP binds to cytochrome c. PCP is a wood preservative that reduces male fertility by ill‐defined mechanisms. Although the data show that PCP inhibited apoptosome formation, the concentration required suggests that other mechanisms may be more important for PCP's effects on spermatogenesis. Nonetheless, the data demonstrate the utility of the new assay in identifying apoptosome inhibitors, and we suggest that the assay may be useful in screening for reproductive and developmental toxicants.
Collapse
Affiliation(s)
- Amin Tashakor
- Pharmacology and Therapeutics, School of Medicine, NUI Galway, Ireland
| | | | - Enda O'Connell
- Genomics and Screening Core, National Centre for Biomedical Engineering Science, NUI Galway, Ireland
| | | | | | | | | | | |
Collapse
|
9
|
Clark AM, Ponniah K, Warden MS, Raitt EM, Yawn AC, Pascal SM. pH-Induced Folding of the Caspase-Cleaved Par-4 Tumor Suppressor: Evidence of Structure Outside of the Coiled Coil Domain. Biomolecules 2018; 8:biom8040162. [PMID: 30518159 PMCID: PMC6316887 DOI: 10.3390/biom8040162] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 11/20/2018] [Accepted: 11/22/2018] [Indexed: 12/13/2022] Open
Abstract
Prostate apoptosis response-4 (Par-4) is a 38 kDa largely intrinsically disordered tumor suppressor protein that functions in cancer cell apoptosis. Par-4 down-regulation is often observed in cancer while up-regulation is characteristic of neurodegenerative conditions such as Alzheimer’s disease. Cleavage of Par-4 by caspase-3 activates tumor suppression via formation of an approximately 25 kDa fragment (cl-Par-4) that enters the nucleus and inhibits Bcl-2 and NF-ƙB, which function in pro-survival pathways. Here, we have investigated the structure of cl-Par-4 using biophysical techniques including circular dichroism (CD) spectroscopy, dynamic light scattering (DLS), and intrinsic tyrosine fluorescence. The results demonstrate pH-dependent folding of cl-Par-4, with high disorder and aggregation at neutral pH, but a largely folded, non-aggregated conformation at acidic pH.
Collapse
Affiliation(s)
- Andrea M Clark
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, VA 23529, USA.
| | - Komala Ponniah
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, VA 23529, USA.
| | - Meghan S Warden
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, VA 23529, USA.
| | - Emily M Raitt
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, VA 23529, USA.
| | - Andrea C Yawn
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, VA 23529, USA.
| | - Steven M Pascal
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, VA 23529, USA.
| |
Collapse
|
10
|
Gatto F, Bardi G. Metallic Nanoparticles: General Research Approaches to Immunological Characterization. NANOMATERIALS 2018; 8:nano8100753. [PMID: 30248990 PMCID: PMC6215296 DOI: 10.3390/nano8100753] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 09/18/2018] [Accepted: 09/19/2018] [Indexed: 12/12/2022]
Abstract
Our immunity is guaranteed by a complex system that includes specialized cells and active molecules working in a spatially and temporally coordinated manner. Interaction of nanomaterials with the immune system and their potential immunotoxicity are key aspects for an exhaustive biological characterization. Several assays can be used to unravel the immunological features of nanoparticles, each one giving information on specific pathways leading to immune activation or immune suppression. Size, shape, and surface chemistry determine the surrounding corona, mainly formed by soluble proteins, hence, the biological identity of nanoparticles released in cell culture conditions or in a living organism. Here, we review the main laboratory characterization steps and immunological approaches that can be used to understand and predict the responses of the immune system to frequently utilized metallic or metal-containing nanoparticles, in view of their potential uses in diagnostics and selected therapeutic treatments.
Collapse
Affiliation(s)
- Francesca Gatto
- Istituto Italiano di Tecnologia, Nanobiointeractions & Nanodiagnostics, Via Morego 30, 16163 Genova, Italy.
| | - Giuseppe Bardi
- Istituto Italiano di Tecnologia, Nanobiointeractions & Nanodiagnostics, Via Morego 30, 16163 Genova, Italy.
| |
Collapse
|
11
|
Hadj Abdallah N, Baulies A, Bouhlel A, Bejaoui M, Zaouali MA, Ben Mimouna S, Messaoudi I, Fernandez-Checa JC, García Ruiz C, Ben Abdennebi H. Zinc mitigates renal ischemia-reperfusion injury in rats by modulating oxidative stress, endoplasmic reticulum stress, and autophagy. J Cell Physiol 2018; 233:8677-8690. [PMID: 29761825 DOI: 10.1002/jcp.26747] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 04/13/2018] [Indexed: 12/30/2022]
Abstract
Oxidative stress is a major factor involved in the pathogenesis of renal ischemia/reperfusion (I/R). Exogenous zinc (Zn) was suggested as a potent antioxidant; however, the mechanism by which it strengthens the organ resistance against the effects of reactive oxygen species (ROS) is not yet investigated. The present study aims to determine whether acute zinc chloride (ZnCl2 ) administration could attenuate endoplasmic reticulum (ER) stress, autophagy, and inflammation after renal I/R. Rats were subjected to either sham operation (Sham group, n = 6), or 1 hr of bilateral ischemia followed by 2 hr of reperfusion (I/R groups, n = 6), or they received ZnCl2 orally 24 hr and 30 min before ischemia (ZnCl2 group, n = 6). Rats were subjected to 1 hr of bilateral renal ischemia followed by 2 hr of reperfusion (I/R group, n = 6). Our results showed that ZnCl2 enhances renal function and reduces cytolysis (p < 0,05). In addition, it increased significantly the activities of antioxidant enzymes (SOD, CAT, and GPX) and the level of GSH in comparison to I/R (p < 0,05). Interestingly, ZnCl2 treatment resulted in significant decreased ER stress, as reflected by GRP78, ATF-6,p-eIF-2α, XPB-1, and CHOP downregulaion. Rats undergoing ZnCl2 treatment demonstrated a low expression of autophagy parameters (Beclin-1 and LAMP-2), which was correlated with low induction of apoptosis (caspase-9, caspase-3, and p-JNK), and reduction of inflammation (IL-1ß, IL-6, and MCP-1) (p < 0,05). In conclusion, we demonstrated the potential effect of Zn supplementation to modulate ER pathway and autophagic process after I/R.
Collapse
Affiliation(s)
- Najet Hadj Abdallah
- Faculty of Pharmacy, Department of Physiology, Unité de Biologie et Anthropologie Moléculaire Appliquées au Développement et à la Santé, University of Monastir, Monastir, Tunisia
| | - Anna Baulies
- Department of Cell Death and Proliferation, Instituto de Investigaciones Biomédicas de Barcelona, Consejo Superior de Investigaciones Científicas, Liver Unit Hospital Clínici Provincial, IDIBAPS and CIBERehd, Barcelona, Spain
| | - Ahlem Bouhlel
- Faculty of Pharmacy, Department of Physiology, Unité de Biologie et Anthropologie Moléculaire Appliquées au Développement et à la Santé, University of Monastir, Monastir, Tunisia
| | - Mohamed Bejaoui
- Faculty of Pharmacy, Department of Physiology, Unité de Biologie et Anthropologie Moléculaire Appliquées au Développement et à la Santé, University of Monastir, Monastir, Tunisia
| | - Mohamed A Zaouali
- Faculty of Pharmacy, Department of Physiology, Unité de Biologie et Anthropologie Moléculaire Appliquées au Développement et à la Santé, University of Monastir, Monastir, Tunisia
| | - Safa Ben Mimouna
- Laboratoire de Génétique, Biodiversité et Valorisation des Bioressources (LR11ES41), Institute of Biotechnology, University of Monastir, Monastir, Tunisia
| | - Imed Messaoudi
- Laboratoire de Génétique, Biodiversité et Valorisation des Bioressources (LR11ES41), Institute of Biotechnology, University of Monastir, Monastir, Tunisia
| | - José C Fernandez-Checa
- Department of Cell Death and Proliferation, Instituto de Investigaciones Biomédicas de Barcelona, Consejo Superior de Investigaciones Científicas, Liver Unit Hospital Clínici Provincial, IDIBAPS and CIBERehd, Barcelona, Spain
| | - Carmen García Ruiz
- Department of Cell Death and Proliferation, Instituto de Investigaciones Biomédicas de Barcelona, Consejo Superior de Investigaciones Científicas, Liver Unit Hospital Clínici Provincial, IDIBAPS and CIBERehd, Barcelona, Spain
| | - Hassen Ben Abdennebi
- Faculty of Pharmacy, Department of Physiology, Unité de Biologie et Anthropologie Moléculaire Appliquées au Développement et à la Santé, University of Monastir, Monastir, Tunisia
| |
Collapse
|
12
|
Singh MS, Tammam SN, Shetab Boushehri MA, Lamprecht A. MDR in cancer: Addressing the underlying cellular alterations with the use of nanocarriers. Pharmacol Res 2017; 126:2-30. [PMID: 28760489 DOI: 10.1016/j.phrs.2017.07.023] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 06/29/2017] [Accepted: 07/26/2017] [Indexed: 01/02/2023]
Abstract
Multidrug resistance (MDR) is associated with a wide range of pathological changes at different cellular and intracellular levels. Nanoparticles (NPs) have been extensively exploited as the carriers of MDR reversing payloads to resistant tumor cells. However, when properly formulated in terms of chemical composition and physicochemical properties, NPs can serve as beyond delivery systems and help overcome MDR even without carrying a load of chemosensitizers or MDR reversing molecular cargos. Whether serving as drug carriers or beyond, a wise design of the nanoparticulate systems to overcome the cellular and intracellular alterations underlying the resistance is imperative. Within the current review, we will initially discuss the cellular changes occurring in resistant cells and how such changes lead to chemotherapy failure and cancer cell survival. We will then focus on different mechanisms through which nanosystems with appropriate chemical composition and physicochemical properties can serve as MDR reversing units at different cellular and intracellular levels according to the changes that underlie the resistance. Finally, we will conclude by discussing logical grounds for a wise and rational design of MDR reversing nanoparticulate systems to improve the cancer therapeutic approaches.
Collapse
Affiliation(s)
- Manu S Singh
- Department of Pharmaceutical Technology and Biopharmceutics, University of Bonn, Germany
| | - Salma N Tammam
- Department of Pharmaceutical Technology and Biopharmceutics, University of Bonn, Germany; Department of Pharmaceutical Technology, German University of Cairo, Egypt
| | | | - Alf Lamprecht
- Department of Pharmaceutical Technology and Biopharmceutics, University of Bonn, Germany; Laboratory of Pharmaceutical Engineering (EA4267), University of Franche-Comté, Besançon, France.
| |
Collapse
|
13
|
Masuda T, Maruyama H, Arai F, Anada T, Tsuchiya K, Fukuda T, Suzuki O. Application of an indicator-immobilized-gel-sheet for measuring the pH surrounding a calcium phosphate-based biomaterial. J Biomater Appl 2017; 31:1296-1304. [DOI: 10.1177/0885328217699108] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The present study was designed to investigate the local microenvironment of octacalcium phosphate in a granule form upon biomolecules adsorption utilizing an indicator-immobilized-gel-sheet for measuring pH. We previously showed that octacalcium phosphate enhances bone regeneration during its progressive hydrolysis into hydroxyapatite if implanted in bone defects. The gel-sheet was made from a photocrosslinkable prepolymer solution, which can easily immobilize a pH indicator (bromothymol blue; BTB) in the hydrogel. The indicator-immobilized-gel-sheet was mounted on a biochip which was made of polydimethylsiloxane (PDMS) with a flow channel. The pH value was calculated by detecting the color changes in the gel-sheet and displayed as the pH distribution. After pre-adsorption of bovine albumin, β-lactoglobuline or cytochrome C onto octacalcium phosphate granules, the granules with the gel-sheet were further incubated in Tris-HCl buffer solution in the absence or presence of fluoride, known as an accelerator of octacalcium phosphate hydrolysis. pH values of the gel-sheet surrounding octacalcium phosphate granules showed a decrease from pH 7.4 to 6.6 in relation to the proteins adsorbed. Overall, the proposed pH-sensitive gel can be used to detect the pH around octacalcium phosphate granules with a high spatial resolution.
Collapse
Affiliation(s)
- Taisuke Masuda
- Graduate School of Engineering, Nagoya University, Nagoya, Japan
| | | | - Fumihito Arai
- Graduate School of Engineering, Nagoya University, Nagoya, Japan
| | - Takahisa Anada
- Graduate School of Dentistry, Tohoku University, Aoba-ku Sendai, Japan
| | - Kaori Tsuchiya
- Graduate School of Dentistry, Tohoku University, Aoba-ku Sendai, Japan
| | - Toshio Fukuda
- Faculty of Science and Technology, Meijo University, Nagoya, Japan
| | - Osamu Suzuki
- Graduate School of Dentistry, Tohoku University, Aoba-ku Sendai, Japan
| |
Collapse
|
14
|
Christensen EAF, Svendsen MBS, Steffensen JF. Plasma osmolality and oxygen consumption of perch Perca fluviatilis in response to different salinities and temperatures. JOURNAL OF FISH BIOLOGY 2017; 90:819-833. [PMID: 27981561 DOI: 10.1111/jfb.13200] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 09/29/2016] [Indexed: 06/06/2023]
Abstract
The present study determined the blood plasma osmolality and oxygen consumption of the perch Perca fluviatilis at different salinities (0, 10 and 15) and temperatures (5, 10 and 20° C). Blood plasma osmolality increased with salinity at all temperatures. Standard metabolic rate (SMR) increased with salinity at 10 and 20° C. Maximum metabolic rate (MMR) and aerobic scope was lowest at salinity of 15 at 5° C, yet at 20° C, they were lowest at a salinity of 0. A cost of osmoregulation (SMR at a salinity of 0 and 15 compared with SMR at a salinity of 10) could only be detected at a salinity of 15 at 20° C, where it was 28%. The results show that P. fluviatilis have capacity to osmoregulate in hyper-osmotic environments. This contradicts previous studies and indicates intraspecific variability in osmoregulatory capabilities among P. fluviatilis populations or habitat origins. An apparent cost of osmoregulation (28%) at a salinity of 15 at 20° C indicates that the cost of osmoregulation in P. fluviatilis increases with temperature under hyperosmotic conditions and a power analysis showed that the cost of osmoregulation could be lower than 12·5% under other environmental conditions. The effect of salinity on MMR is possibly due to a reduction in gill permeability, initiated to reduce osmotic stress. An interaction between salinity and temperature on aerobic scope shows that high salinity habitats are energetically beneficial during warm periods (summer), whereas low salinity habitats are energetically beneficial during cold periods (winter). It is suggested, therefore, that the seasonal migrations of P. fluviatilis between brackish and fresh water is to select an environment that is optimal for metabolism and aerobic scope.
Collapse
Affiliation(s)
- E A F Christensen
- University of Copenhagen, Marine Biological Section, Strandpromenaden 5, 3000, Elsinore, Denmark
| | - M B S Svendsen
- University of Copenhagen, Marine Biological Section, Strandpromenaden 5, 3000, Elsinore, Denmark
| | - J F Steffensen
- University of Copenhagen, Marine Biological Section, Strandpromenaden 5, 3000, Elsinore, Denmark
| |
Collapse
|
15
|
Focal photodynamic intracellular acidification as a cancer therapeutic. Semin Cancer Biol 2017; 43:147-156. [PMID: 28215969 DOI: 10.1016/j.semcancer.2017.02.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 02/03/2017] [Accepted: 02/08/2017] [Indexed: 11/21/2022]
Abstract
Cancer cells utilize an array of proton transporters to regulate intra- and extracellular pH to thrive in hypoxic conditions, and to increase tumor growth and metastasis. Efforts to target many of the transporters involved in cancer cell pH regulation have yielded promising results, however, many productive attempts to disrupt pH regulation appear to be non-specific to cancer cells, and more effective in some cancer cells than others. Following a review of the status of photodynamic cancer therapy, a novel light-activated process is presented which creates very focal, rapid, and significant decreases in only intracellular pH (pHi), leading to cell death. The light-activation of the H+ carrier, nitrobenzaldehyde, has been effective at initiating pH-induced apoptosis in non-cancerous and numerous cancerous cell lines in vitro, to include breast, prostate, and pancreatic cancers. Also, this intracellular acidification technique caused significant reductions in tumor growth rate and enhanced survival in mice bearing triple negative breast cancer tumors. The efficacy of an NBA-upconverting nanoparticle to kill breast cancer cells in vitro is described, as well as a discussion of the potential intracellular mechanisms underlying the pH-induced apoptosis.
Collapse
|
16
|
Asuaje A, Smaldini P, Martín P, Enrique N, Orlowski A, Aiello EA, Gonzalez León C, Docena G, Milesi V. The inhibition of voltage-gated H + channel (HVCN1) induces acidification of leukemic Jurkat T cells promoting cell death by apoptosis. Pflugers Arch 2016; 469:251-261. [PMID: 28013412 DOI: 10.1007/s00424-016-1928-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 12/05/2016] [Accepted: 12/06/2016] [Indexed: 11/26/2022]
Abstract
Cellular energetic deregulation is widely known to produce an overproduction of acidic species in cancer cells. This acid overload must be counterbalanced with a high rate of H+ extrusion to maintain cell viability. In this sense, many H+ transporters have been reported to be crucial for cell survival and proposed as antineoplastic target. By the way, voltage-gated proton channels (Hv1) mediate highly selective H+ outward currents, capable to compensate acid burden in brief periods of time. This structure is canonically described acting as NADPH oxidase counterbalance in reactive oxygen species production. In this work, we show, for the first time in a oncohematologic cell line, that inhibition of Hv1 channels by Zn2+ and the more selective blocker 2-(6-chloro-1H-benzimidazol-2-yl)guanidine (ClGBI) progressively decreases intracellular pH in resting conditions. This acidification is evident minutes after blockade and progresses under prolonged exposure (2, 17, and 48 h), and we firstly demonstrate that this is followed by cell death through apoptosis (annexin V binding). Altogether, these results contribute strong evidence that this channel might be a new therapeutic target in cancer.
Collapse
Affiliation(s)
- Agustín Asuaje
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP, CONICET-Universidad Nacional de la Plata), Fac. de Ciencias Exactas, Universidad Nacional de La Plata, 47 y 115, 1900, La Plata, Argentina
| | - Paola Smaldini
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP, CONICET-Universidad Nacional de la Plata), Fac. de Ciencias Exactas, Universidad Nacional de La Plata, 47 y 115, 1900, La Plata, Argentina
| | - Pedro Martín
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP, CONICET-Universidad Nacional de la Plata), Fac. de Ciencias Exactas, Universidad Nacional de La Plata, 47 y 115, 1900, La Plata, Argentina.
| | - Nicolás Enrique
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP, CONICET-Universidad Nacional de la Plata), Fac. de Ciencias Exactas, Universidad Nacional de La Plata, 47 y 115, 1900, La Plata, Argentina
| | - Alejandro Orlowski
- Centro de Investigaciones Cardiovasculares (CIC, CONICET-Universidad Nacional de la Plata), Fac. de Ciencias Médicas, Universidad Nacional de La Plata, 60 y 120, 1900, La Plata, Argentina
| | - Ernesto A Aiello
- Centro de Investigaciones Cardiovasculares (CIC, CONICET-Universidad Nacional de la Plata), Fac. de Ciencias Médicas, Universidad Nacional de La Plata, 60 y 120, 1900, La Plata, Argentina
| | - Carlos Gonzalez León
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Chile, Pasaje Harrington 287, Playa Ancha, Valparaíso, Chile
| | - Guillermo Docena
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP, CONICET-Universidad Nacional de la Plata), Fac. de Ciencias Exactas, Universidad Nacional de La Plata, 47 y 115, 1900, La Plata, Argentina
| | - Verónica Milesi
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP, CONICET-Universidad Nacional de la Plata), Fac. de Ciencias Exactas, Universidad Nacional de La Plata, 47 y 115, 1900, La Plata, Argentina
| |
Collapse
|
17
|
Kim HS, Kim SJ, Bae J, Wang Y, Park SY, Min YS, Je HD, Sohn UD. The p90rsk-mediated signaling of ethanol-induced cell proliferation in HepG2 cell line. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2016; 20:595-603. [PMID: 27847436 PMCID: PMC5106393 DOI: 10.4196/kjpp.2016.20.6.595] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 07/23/2016] [Accepted: 07/28/2016] [Indexed: 01/17/2023]
Abstract
Ribosomal S6 kinase is a family of serine/threonine protein kinases involved in the regulation of cell viability. There are two subfamilies of ribosomal s6 kinase, (p90rsk, p70rsk). Especially, p90rsk is known to be an important downstream kinase of p44/42 MAPK. We investigated the role of p90rsk on ethanol-induced cell proliferation of HepG2 cells. HepG2 cells were treated with 10~50 mM of ethanol with or without ERK and p90rsk inhibitors. Cell viability was measured by MTT assay. The expression of pERK1, NHE1 was measured by Western blots. The phosphorylation of p90rsk was measured by ELISA kits. The expression of Bcl-2 was measured by qRT-PCR. When the cells were treated with 10~30 mM of ethanol for 24 hour, it showed significant increase in cell viability versus control group. Besides, 10~30 mM of ethanol induced increased expression of pERK1, p-p90rsk, NHE1 and Bcl-2. Moreover treatment of p90rsk inhibitor attenuated the ethanol-induced increase in cell viability and NHE1 and Bcl-2 expression. In summary, these results suggest that p90rsk, a downstream kinase of ERK, plays a stimulatory role on ethanol-induced hepatocellular carcinoma progression by activating anti-apoptotic factor Bcl-2 and NHE1 known to regulate cell survival.
Collapse
Affiliation(s)
- Han Sang Kim
- Department of Pharmacology, College of Pharmacy, Chung-Ang University, Seoul 06974, Korea
| | - Su-Jin Kim
- Department of Pharmacology, College of Pharmacy, Chung-Ang University, Seoul 06974, Korea
| | - Jinhyung Bae
- Department of Pharmacology, College of Pharmacy, Chung-Ang University, Seoul 06974, Korea
| | - Yiyi Wang
- Department of Pharmacology, College of Pharmacy, Chung-Ang University, Seoul 06974, Korea
| | - Sun Young Park
- Department of Pharmacology, College of Pharmacy, Chung-Ang University, Seoul 06974, Korea
| | - Young Sil Min
- Department of Medicinal Plant Science, College of Science and Engineering, Jungwon University, Chungbuk 28024, Korea
| | - Hyun Dong Je
- Department of Pharmacology, College of Pharmacy, Catholic University of Daegu, Daegu 38430, Korea
| | - Uy Dong Sohn
- Department of Pharmacology, College of Pharmacy, Chung-Ang University, Seoul 06974, Korea
| |
Collapse
|
18
|
Hanson DJ, Nakamura S, Amachi R, Hiasa M, Oda A, Tsuji D, Itoh K, Harada T, Horikawa K, Teramachi J, Miki H, Matsumoto T, Abe M. Effective impairment of myeloma cells and their progenitors by blockade of monocarboxylate transportation. Oncotarget 2016; 6:33568-86. [PMID: 26384349 PMCID: PMC4741786 DOI: 10.18632/oncotarget.5598] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 08/26/2015] [Indexed: 02/04/2023] Open
Abstract
Cancer cells robustly expel lactate produced through enhanced glycolysis via monocarboxylate transporters (MCTs) and maintain alkaline intracellular pH. To develop a novel therapeutic strategy against multiple myeloma (MM), which still remains incurable, we explored the impact of perturbing a metabolism via inhibiting MCTs. All MM cells tested constitutively expressed MCT1 and MCT4, and most expressed MCT2. Lactate export was substantially suppressed to induce death along with lowering intracellular pH in MM cells by blockade of all three MCT molecules with α-cyano-4-hydroxy cinnamate (CHC) or the MCT1 and MCT2 inhibitor AR-C155858 in combination with MCT4 knockdown, although only partially by knockdown of each MCT. CHC lowered intracellular pH and severely curtailed lactate secretion even when combined with metformin, which further lowered intracellular pH and enhanced cytotoxicity. Interestingly, an ambient acidic pH markedly enhanced CHC-mediated cytotoxicity, suggesting preferential targeting of MM cells in acidic MM bone lesions. Furthermore, treatment with CHC suppressed hexokinase II expression and ATP production to reduce side populations and colony formation. Finally, CHC caused downregulation of homing receptor CXCR4 and abrogated SDF-1-induced migration. Targeting tumor metabolism by MCT blockade therefore may become an effective therapeutic option for drug-resistant MM cells with elevated glycolysis.
Collapse
Affiliation(s)
- Derek James Hanson
- Department of Hematology, Endocrinology and Metabolism, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Shingen Nakamura
- Department of Hematology, Endocrinology and Metabolism, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Ryota Amachi
- Department of Hematology, Endocrinology and Metabolism, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan.,Department of Orthodontics and Dentofacial Orthopedics, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Masahiro Hiasa
- Department of Orthodontics and Dentofacial Orthopedics, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan.,Department of Biomaterials and Bioengineering, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Asuka Oda
- Department of Hematology, Endocrinology and Metabolism, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Daisuke Tsuji
- Department of Hematology, Endocrinology and Metabolism, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Kohji Itoh
- Department of Hematology, Endocrinology and Metabolism, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Takeshi Harada
- Department of Hematology, Endocrinology and Metabolism, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Kazuki Horikawa
- Division of Bio-imaging, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Jumpei Teramachi
- Department of Histology and Oral Histology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Hirokazu Miki
- Division of Transfusion Medicine and Cell Therapy, Tokushima University Hospital, Tokushima, Japan
| | - Toshio Matsumoto
- Department of Hematology, Endocrinology and Metabolism, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Masahiro Abe
- Department of Hematology, Endocrinology and Metabolism, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| |
Collapse
|
19
|
Abstract
The longstanding focus in chronic kidney disease (CKD) research has been on the glomerulus, which is sensible because this is where glomerular filtration occurs, and a large proportion of progressive CKD is associated with significant glomerular pathology. However, it has been known for decades that tubular atrophy is also a hallmark of CKD and that it is superior to glomerular pathology as a predictor of glomerular filtration rate decline in CKD. Nevertheless, there are vastly fewer studies that investigate the causes of tubular atrophy, and fewer still that identify potential therapeutic targets. The purpose of this review is to discuss plausible mechanisms of tubular atrophy, including tubular epithelial cell apoptosis, cell senescence, peritubular capillary rarefaction and downstream tubule ischemia, oxidative stress, atubular glomeruli, epithelial-to-mesenchymal transition, interstitial inflammation, lipotoxicity and Na(+)/H(+) exchanger-1 inactivation. Once a a better understanding of tubular atrophy (and interstitial fibrosis) pathophysiology has been obtained, it might then be possible to consider tandem glomerular and tubular therapeutic strategies, in a manner similar to cancer chemotherapy regimens, which employ multiple drugs to simultaneously target different mechanistic pathways.
Collapse
|
20
|
Molecular Integrity of Mitochondria Alters by Potassium Chloride. INTERNATIONAL JOURNAL OF PROTEOMICS 2015; 2015:647408. [PMID: 26783459 PMCID: PMC4689972 DOI: 10.1155/2015/647408] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 11/07/2015] [Accepted: 11/10/2015] [Indexed: 01/09/2023]
Abstract
Potassium chloride (KCl) has been commonly used in homogenization buffer and procedures of protein extraction. It is known to facilitate release of membrane-associated molecules but the higher concentration of KCl may affect the integrity of mitochondria by breaching the electrostatic force between the lipids and proteins. Therefore, it has been intended to explore the effect of KCl on mitochondrial proteome. The mitochondria were isolated from the mice liver and sub-fractionated into mitochondrial matrix and outer mitochondrial membrane fraction. The fractions were analysed by denaturing polyacrylamide gel electrophoresis (PAGE) and 2D-PAGE. The analysis of ultrastructure and protein profiles by MALDI-MS and data-mining reveals KCl-associated alterations in the integrity of mitochondria and its proteome. The mitochondrial membrane, cristae, and the matrix proteins appear altered under the influence of KCl.
Collapse
|
21
|
Na+-H+ exchanger-1 (NHE1) regulation in kidney proximal tubule. Cell Mol Life Sci 2015; 72:2061-74. [PMID: 25680790 DOI: 10.1007/s00018-015-1848-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 01/28/2015] [Accepted: 01/29/2015] [Indexed: 01/17/2023]
Abstract
The ubiquitously expressed plasma membrane Na(+)-H(+) exchanger NHE1 is a 12 transmembrane-spanning protein that directs important cell functions such as homeostatic intracellular volume and pH control. The 315 amino acid cytosolic tail of NHE1 binds plasma membrane phospholipids and multiple proteins that regulate additional, ion-translocation independent functions. This review focuses on NHE1 structure/function relationships, as well as the role of NHE1 in kidney proximal tubule functions, including pH regulation, vectorial Na(+) transport, cell volume control and cell survival. The implications of these functions are particularly critical in the setting of progressive, albuminuric kidney diseases, where the accumulation of reabsorbed fatty acids leads to disruption of NHE1-membrane phospholipid interactions and tubular atrophy, which is a poor prognostic factor for progression to end stage renal disease. This review amplifies the vital role of the proximal tubule NHE1 Na(+)-H(+) exchanger as a kidney cell survival factor.
Collapse
|
22
|
Dezaki K, Maeno E, Sato K, Akita T, Okada Y. Early-phase occurrence of K+ and Cl- efflux in addition to Ca 2+ mobilization is a prerequisite to apoptosis in HeLa cells. Apoptosis 2012; 17:821-31. [PMID: 22460504 DOI: 10.1007/s10495-012-0716-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Sustained rise in cytosolic Ca(2+) and cell shrinkage mainly caused by K(+) and Cl(-) efflux are known to be prerequisites to apoptotic cell death. Here, we investigated how the efflux of K(+) and Cl(-) as well as the rise in cytosolic Ca(2+) occur prior to caspase activation and are coupled to each other in apoptotic human epithelial HeLa cells. Caspase-3 activation and DNA laddering induced by staurosporine were abolished by blockers of K(+) and Cl(-) channels or cytosolic Ca(2+) chelation. Staurosporine induced decreases in the intracellular free K(+) and Cl(-) concentrations ([K(+)](i) and [Cl(-)](i)) in an early stage prior to caspase-3 activation. Staurosporine also induced a long-lasting rise in the cytosolic free Ca(2+) concentration. The early-phase decreases in [K(+)](i) and [Cl(-)](i) were completely prevented by a blocker of K(+) or Cl(-) channel, but were not affected by cytosolic Ca(2+) chelation. By contrast, the Ca(2+) response was abolished by a blocker of K(+) or Cl(-) channel. Strong hypertonic stress promptly induced a cytosolic Ca(2+) increase lasting >50 min together with sustained shrinkage and thereafter caspase-3 activation after 4 h. The hypertonic stress induced slight increases in [K(+)](i) and [Cl(-)](i) in the first 50 min, but these increases were much less than the effect of shrinkage-induced condensation, indicating that K(+) and Cl(-) efflux took place. Hypertonicity induced caspase-3 activation that was prevented not only by cytosolic Ca(2+) chelation but also by K(+) and Cl(-) channel blockers. Thus, it is concluded that not only Ca(2+) mobilization but early-phase efflux of K(+) and Cl(-) are required for caspase activation, and Ca(2+) mobilization is a downstream and resultant event of cell shrinkage in both staurosporine- and hypertonicity-induced apoptosis.
Collapse
Affiliation(s)
- Katsuya Dezaki
- Department of Cell Physiology, National Institute for Physiological Sciences, Okazaki, 444-8585, Japan
| | | | | | | | | |
Collapse
|
23
|
Abu Jawdeh BG, Khan S, Deschênes I, Hoshi M, Goel M, Lock JT, Shinlapawittayatorn K, Babcock G, Lakhe-Reddy S, DeCaro G, Yadav SP, Mohan ML, Naga Prasad SV, Schilling WP, Ficker E, Schelling JR. Phosphoinositide binding differentially regulates NHE1 Na+/H+ exchanger-dependent proximal tubule cell survival. J Biol Chem 2011; 286:42435-42445. [PMID: 22020933 DOI: 10.1074/jbc.m110.212845] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Tubular atrophy predicts chronic kidney disease progression, and is caused by proximal tubular epithelial cellcaused by proximal tubular epithelial cell (PTC) apoptosis. The normally quiescent Na(+)/H(+) exchanger-1 (NHE1) defends against PTC apoptosis, and is regulated by PI(4,5)P(2) binding. Because of the vast array of plasma membrane lipids, we hypothesized that NHE1-mediated cell survival is dynamically regulated by multiple anionic inner leaflet phospholipids. In membrane overlay and surface plasmon resonance assays, the NHE1 C terminus bound phospholipids with low affinity and according to valence (PIP(3) > PIP(2) > PIP = PA > PS). NHE1-phosphoinositide binding was enhanced by acidic pH, and abolished by NHE1 Arg/Lys to Ala mutations within two juxtamembrane domains, consistent with electrostatic interactions. PI(4,5)P(2)-incorporated vesicles were distributed to apical and lateral PTC domains, increased NHE1-regulated Na(+)/H(+) exchange, and blunted apoptosis, whereas NHE1 activity was decreased in cells enriched with PI(3,4,5)P(3), which localized to basolateral membranes. Divergent PI(4,5)P(2) and PI(3,4,5)P(3) effects on NHE1-dependent Na(+)/H(+) exchange and apoptosis were confirmed by selective phosphoinositide sequestration with pleckstrin homology domain-containing phospholipase Cδ and Akt peptides, PI 3-kinase, and Akt inhibition in wild-type and NHE1-null PTCs. The results reveal an on-off switch model, whereby NHE1 toggles between weak interactions with PI(4,5)P(2) and PI(3,4,5)P(3). In response to apoptotic stress, NHE1 is stimulated by PI(4,5)P(2), which leads to PI 3-kinase activation, and PI(4,5)P(2) phosphorylation. The resulting PI(3,4,5)P(3) dually stimulates sustained, downstream Akt survival signaling, and dampens NHE1 activity through competitive inhibition and depletion of PI(4,5)P(2).
Collapse
Affiliation(s)
- Bassam G Abu Jawdeh
- Department of Medicine, Case Western Reserve University, Cleveland, Ohio 44109
| | - Shenaz Khan
- Department of Medicine, Case Western Reserve University, Cleveland, Ohio 44109
| | - Isabelle Deschênes
- Department of Medicine, Case Western Reserve University, Cleveland, Ohio 44109; Departments of Physiology and Biophysics, Lerner Research Institute, Case Western Reserve University, Cleveland, Ohio 44109
| | - Malcolm Hoshi
- Departments of Physiology and Biophysics, Lerner Research Institute, Case Western Reserve University, Cleveland, Ohio 44109
| | - Monu Goel
- Departments of Physiology and Biophysics, Lerner Research Institute, Case Western Reserve University, Cleveland, Ohio 44109
| | - Jeffrey T Lock
- Departments of Physiology and Biophysics, Lerner Research Institute, Case Western Reserve University, Cleveland, Ohio 44109
| | - Krekwit Shinlapawittayatorn
- Departments of Physiology and Biophysics, Lerner Research Institute, Case Western Reserve University, Cleveland, Ohio 44109
| | - Gerald Babcock
- Department of Medicine, Case Western Reserve University, Cleveland, Ohio 44109; Departments of Physiology and Biophysics, Lerner Research Institute, Case Western Reserve University, Cleveland, Ohio 44109
| | - Sujata Lakhe-Reddy
- Department of Medicine, Case Western Reserve University, Cleveland, Ohio 44109
| | - Garren DeCaro
- Department of Medicine, Case Western Reserve University, Cleveland, Ohio 44109
| | - Satya P Yadav
- Department of Cleveland Clinic Foundation, Case Western Reserve University, Cleveland, Ohio 44109
| | - Maradumane L Mohan
- Department of Cleveland Clinic Foundation, Case Western Reserve University, Cleveland, Ohio 44109
| | | | - William P Schilling
- Department of Medicine, Case Western Reserve University, Cleveland, Ohio 44109; Departments of Physiology and Biophysics, Lerner Research Institute, Case Western Reserve University, Cleveland, Ohio 44109
| | - Eckhard Ficker
- Department of Medicine, Case Western Reserve University, Cleveland, Ohio 44109
| | - Jeffrey R Schelling
- Department of Medicine, Case Western Reserve University, Cleveland, Ohio 44109.
| |
Collapse
|
24
|
van Breukelen F, Krumschnabel G, Podrabsky JE. Vertebrate cell death in energy-limited conditions and how to avoid it: what we might learn from mammalian hibernators and other stress-tolerant vertebrates. Apoptosis 2010; 15:386-99. [DOI: 10.1007/s10495-010-0467-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
25
|
Induction of nitric oxide by erythropoietin is mediated by the β common receptor and requires interaction with VEGF receptor 2. Blood 2010; 115:896-905. [DOI: 10.1182/blood-2009-04-216432] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Abstract
Vascular endothelial growth factor (VEGF) and erythropoietin (EPO) have profound effects on the endothelium and endothelial progenitor cells (EPCs), which originate from the bone marrow and differentiate into endothelial cells. Both EPO and VEGF have demonstrated an ability to increase the number and performance properties of EPCs. EPC behavior is highly dependent on nitric oxide (NO), and both VEGF and EPO can stimulate intracellular NO. EPO can bind to the homodimeric EPO receptor (EPO-R) and the heterodimeric receptor, EPO-R and the common β receptor (βC-R). Although VEGF has several receptors, VEGF-R2 appears most critical to EPC function. We demonstrate that EPO induction of NO is dependent on the βC-R and VEGF-R2, that VEGF induction of NO is dependent on the expression of the βC-R, and that the βC-R and VEGF-R2 interact. This is the first definitive functional and structural evidence of an interaction between the 2 receptors and has implications for the side effects of EPO.
Collapse
|
26
|
Abstract
Apoptosis is a programmed mechanism of cell death that ensures normal development and tissue homeostasis in metazoans. Avoidance of apoptosis is an important contributor to the survival of tumor cells, and the ability to specifically trigger tumor cell apoptosis is a major goal in cancer treatment. In vertebrates, numerous stress signals engage the intrinsic apoptosis pathway to induce the release of cytochrome c from mitochondria. Cytochrome c binds to apoptosis protease activating factor-1, triggering formation of the apoptosome, a multisubunit protein complex that serves as a platform for caspase activation. In this review we summarize the mechanisms of apoptosome assembly and activation, and our current understanding of the regulation of these processes. We detail the evidence that loss-of-function of the apoptosome pathway may contribute to the development of specific cancers. Finally we discuss recent results showing enhanced sensitivity of some tumor cells to cytochrome c-induced apoptosis, suggesting that agents able to directly or indirectly trigger apoptosome-catalyzed caspase activation in tumor cells could provide new approaches to cancer treatment.
Collapse
|
27
|
Autefage H, Albinet V, Garcia V, Berges H, Nicolau ML, Therville N, Altié MF, Caillaud C, Levade T, Andrieu-Abadie N. Lysosomal serine protease CLN2 regulates tumor necrosis factor-alpha-mediated apoptosis in a Bid-dependent manner. J Biol Chem 2009; 284:11507-16. [PMID: 19246452 DOI: 10.1074/jbc.m807151200] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Apoptosis is a highly organized, energy-dependent program by which multicellular organisms eliminate damaged, superfluous, and potentially harmful cells. Although caspases are the most prominent group of proteases involved in the apoptotic process, the role of lysosomes has only recently been unmasked. This study investigated the role of the lysosomal serine protease CLN2 in apoptosis. We report that cells isolated from patients affected with late infantile neuronal ceroid lipofuscinosis (LINCL) having a deficient activity of CLN2 are resistant to the toxic effect of death ligands such as tumor necrosis factor (TNF), CD95 ligand, or tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) but not to receptor-independent stress agents. CLN2-deficient cells exhibited a defect in TNF-induced Bid cleavage, release of cytochrome c, and caspase-9 and -3 activation. Moreover, extracts from CLN2-overexpressing cells or a CLN2 recombinant protein were able to catalyze the in vitro cleavage of Bid. Noteworthy, correction of the lysosomal enzyme defect of LINCL fibroblasts using a medium enriched in CLN2 protein enabled restoration of TNF-induced Bid and caspase-3 processing and toxicity. Conversely, transfection of CLN2-corrected cells with small interfering RNA targeting Bid abrogated TNF-induced cell death. Altogether, our study demonstrates that genetic deletion of the lysosomal serine protease CLN2 and the subsequent loss of its catalytic function confer resistance to TNF in non-neuronal somatic cells, indicating that CLN2 plays a yet unsuspected role in TNF-induced cell death.
Collapse
|
28
|
Noe J, Petrusca D, Rush N, Deng P, VanDemark M, Berdyshev E, Gu Y, Smith P, Schweitzer K, Pilewsky J, Natarajan V, Xu Z, Obukhov AG, Petrache I. CFTR regulation of intracellular pH and ceramides is required for lung endothelial cell apoptosis. Am J Respir Cell Mol Biol 2009; 41:314-23. [PMID: 19168702 DOI: 10.1165/rcmb.2008-0264oc] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The functional significance of the expression of cystic fibrosis transmembrane regulator (CFTR) on endothelial cells has not yet been elucidated. Since CFTR has been implicated in the regulation of intracellular sphingolipid levels, which are important regulators of endothelial cell apoptosis in response to various insults, we investigated the role of CFTR in the apoptotic responses of lung endothelial cells. CFTR was detected as a functional chloride channel in primary lung endothelial cells isolated from both pulmonary arteries (human or mouse) and bronchial arteries (sheep). Both specific CFTR inhibition with 2-(phenylamino) benzoic acid diphenylamine-2-carboxylic acid, 5-[(4-carboxyphenyl)methylene]-2-thioxo-3-[(3-trifluoromethyl)phenyl-4-thiazolidinone (CFTR(inh)-172), or 5-nitro-2-(3-phenylpropylamino)benzoic acid and CFTR knockdown significantly attenuated endothelial cell apoptosis induced by staurosporine or H(2)O(2). CFTR(inh)-172 treatment prevented the increases in the ceramide:sphingosine-1 phosphate ratio induced by H(2)O(2) in lung endothelial cells. Replenishing endogenous ceramides via sphingomyelinase supplementation restored the susceptibility of CFTR-inhibited lung endothelial cells to H(2)O(2)-induced apoptosis. Similarly, the anti-apoptotic phenotype of CFTR-inhibited cells was reversed by lowering the intracellular pH, and was reproduced by alkalinization before H(2)O(2) challenge. TUNEL staining and active caspase-3 immunohistochemistry indicated that cellular apoptosis was decreased in lung explants from patients with cystic fibrosis compared with those with smoking-induced chronic obstructive lung disease, especially in the alveolar tissue and vascular endothelium. In conclusion, CFTR function is required for stress-induced apoptosis in lung endothelial cells by maintaining adequate intracellular acidification and ceramide activation. These results may have implications in the pathogenesis of cystic fibrosis, where aberrant endothelial cell death may dysregulate lung vascular homeostasis, contributing to abnormal angiogenesis and chronic inflammation.
Collapse
Affiliation(s)
- Julie Noe
- Section of Pulmonology and Critical Care, Department of Pediatrics, Indiana University, Indianapolis, Indiana 46202-5120, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Kroll A, Pillukat MH, Hahn D, Schnekenburger J. Current in vitro methods in nanoparticle risk assessment: limitations and challenges. Eur J Pharm Biopharm 2008; 72:370-7. [PMID: 18775492 DOI: 10.1016/j.ejpb.2008.08.009] [Citation(s) in RCA: 261] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2008] [Revised: 07/19/2008] [Accepted: 08/06/2008] [Indexed: 11/30/2022]
Abstract
Nanoparticles are an emerging class of functional materials defined by size-dependent properties. Application fields range from medical imaging, new drug delivery technologies to various industrial products. Due to the expanding use of nanoparticles, the risk of human exposure rapidly increases and reliable toxicity test systems are urgently needed. Currently, nanoparticle cytotoxicity testing is based on in vitro methods established for hazard characterization of chemicals. However, evidence is accumulating that nanoparticles differ largely from these materials and may interfere with commonly used test systems. Here, we present an overview of current in vitro toxicity test methods for nanoparticle risk assessment and focus on their limitations resulting from specific nanoparticle properties. Nanoparticle features such as high adsorption capacity, hydrophobicity, surface charge, optical and magnetic properties, or catalytic activity may interfere with assay components or detection systems, which has to be considered in nanoparticle toxicity studies by characterization of specific particle properties and a careful test system validation. Future studies require well-characterized materials, the use of available reference materials and an extensive characterization of the applicability of the test methods employed. The resulting challenge for nanoparticle toxicity testing is the development of new standardized in vitro methods that cannot be affected by nanoparticle properties.
Collapse
Affiliation(s)
- Alexandra Kroll
- Department of Medicine B, Westfälische Wilhelms-University, Münster, Germany
| | | | | | | |
Collapse
|
30
|
Schelling JR, Abu Jawdeh BG. Regulation of cell survival by Na+/H+ exchanger-1. Am J Physiol Renal Physiol 2008; 295:F625-32. [PMID: 18480176 DOI: 10.1152/ajprenal.90212.2008] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Na(+)/H(+) exchanger-1 (NHE1) is a ubiquitous plasma membrane Na(+)/H(+) exchanger typically associated with maintenance of intracellular volume and pH. In addition to the NHE1 role in electroneutral Na(+)/H(+) transport, in renal tubular epithelial cells in vitro the polybasic, juxtamembrane NHE1 cytosolic tail domain acts as a scaffold, by binding with ezrin/radixin/moesin (ERM) proteins and phosphatidylinositol 4,5-bisphosphate, which initiates formation of a signaling complex that culminates in Akt activation and opposition to initial apoptotic stress. With robust apoptotic stimuli renal tubular epithelial cell NHE1 is a caspase substrate, and proteolytic cleavage may permit progression to apoptotic cell death. In vivo, genetic or pharmacological NHE1 loss of function causes renal tubule epithelial cell apoptosis and renal dysfunction following streptozotocin-induced diabetes, ureteral obstruction, and adriamycin-induced podocyte toxicity. Taken together, substantial in vivo and in vitro data demonstrate that NHE1 regulates tubular epithelial cell survival. In contrast to connotations of NHE1 as an unimportant "housekeeping" protein, this review highlights that NHE1 activity is critical for countering tubular atrophy and chronic renal disease progression.
Collapse
Affiliation(s)
- Jeffrey R Schelling
- Rammelkamp Center for Education and Research, 2500 MetroHealth Drive, Cleveland, OH 44109-1998, USA.
| | | |
Collapse
|
31
|
Chen T, Wang J, Xing D, Chen WR. Spatio-Temporal Dynamic Analysis of Bid Activation and Apoptosis Induced by Alkaline Condition in Human Lung Adenocarcinoma Cell. Cell Physiol Biochem 2008; 20:569-78. [PMID: 17762183 DOI: 10.1159/000107540] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/18/2007] [Indexed: 11/19/2022] Open
Abstract
Activation of initiator and effector caspases and Bid cleavage are apoptotic characteristic features. They are associated with cell alkalization or acidification in some models of apoptosis. The alteration of culture conditions such as extracellular pH value and the overexpression of Bid plasmids may induce cell apoptosis. In present report, we used fluorescence confocal imaging and fluorescence resonance energy transfer (FRET) techniques based on green fluorescent proteins (GFPs) to monitor the spatio-temporal dynamics of Bid translocation and caspase-3 activation in real time in living human lung adenocarcinoma (ASTC-a-1) cells under neutral (pH 7.4) and alkaline (pH 8.0) conditions. The cells transfected with Bid-CFP plasmid did not show apoptotic characteristics for 96 hours under an atmosphere of 95% air, 5% CO(2) at pH 7.4 and 37 degrees C, implying that the overexpression of Bid-CFP plasmid does not induce cell apoptosis. However, all the cells underwent apoptosis after being placed in the alkaline culture (pH 8.0). The dynamic results in single living cell showed that the alkaline condition at pH of 8.0 induced Bid cleavage and tBid translocation to mitochondria at about 1.5 hour, and then induced the caspase-3 activation and cell apoptosis. These results show that the alkaline sondition (pH=8.0) induces cell apoptosis by activating caspase-8, which cleaves Bid to tBid, tBid translocation to mitochondria, and then activating the caspase-3 in the ASTC-a-1 cells.
Collapse
Affiliation(s)
- Tongsheng Chen
- MOE Key Liboratory of Laser Life Science and Institute of Laser Life Science, South China Normal University, Guangzhou, China
| | | | | | | |
Collapse
|
32
|
Acidification induces Bax translocation to the mitochondria and promotes ultraviolet light-induced apoptosis. Cell Mol Biol Lett 2007; 13:119-29. [PMID: 17965970 PMCID: PMC6275645 DOI: 10.2478/s11658-007-0042-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2007] [Accepted: 08/01/2007] [Indexed: 11/21/2022] Open
Abstract
It has been suggested that Bax translocation to the mitochondria is related to apoptosis, and that cytosol acidification contributes to apoptosis events. However, the mechanisms remain obscure. We investigated the effect of acidification on Bax translocation and on ultraviolet (UV) light-induced apoptosis. The Bax translocation assay in vitro showed that Bax translocated to the mitochondria at pH 6.5, whereas no Bax translocation was observed at pH 7.4. VHDBB cells expressing the GFP-Bax fusion protein were treated for 12 h with a pH 6.5 DMEM medium, nigericin (5 μg/ml) and UV light (50 J/cm2), separately or in combination, and Bax translocation to the mitochondria was determined by SDS-PAGE and Western blot, and apoptotic cell death was detected by flow cytometry. The results showed that some of the Bax translocated to the mitochondria in the cells treated with the normal medium, nigericin and UV in combination, whereas all of the Bax translocated to the mitochondria in the cells treated with the pH 6.5 medium, nigericin and UV in combination. In VHDBB cells treated for 12 h with nigericin, UV alone, and UV and nigericin in combination, the respective rates of apoptotic cell death were 25.08%, 33.25% and 52.88%. In cells treated with pH 6.5 medium and nigericin, pH 6.5 medium and UV, and pH 6.5 medium, nigericin and UV in combination, the respective rates of apoptotic cell death increased to 37.19%, 41.42% and 89.44%. Our results indicated that acidification induces Bax translocation from the cytosol to the mitochondria, and promotes UV lightmediated apoptosis. This suggests that there is a possibility of improving cancer treatment by combining acidification with irradiation or chemotherapeutic drugs.
Collapse
|
33
|
Karki P, Seong C, Kim JE, Hur K, Shin SY, Lee JS, Cho B, Park IS. Intracellular K(+) inhibits apoptosis by suppressing the Apaf-1 apoptosome formation and subsequent downstream pathways but not cytochrome c release. Cell Death Differ 2007; 14:2068-75. [PMID: 17885667 DOI: 10.1038/sj.cdd.4402221] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Cellular ionic homeostasis, fundamentally K(+) homeostasis, has been implicated as a critical regulator of apoptosis. The intracellular K(+) efflux on apoptotic insult and suppression of apoptosis by high concentration of extracellular K(+) or after inhibition of this efflux by K(+) channel blockers have established the crucial role of K(+) in turning on the apoptotic machinery. Several contrasting observations have reported the antiapoptotic effect of intracellular K(+) concentration to be the result of inhibition of cytochrome c release from mitochondria, but the exact inhibitory mechanism remains obscure. However, here we show the blockage of K(+) efflux during apoptosis did not affect cytochrome c release from the mitochondria, still completely inhibited the formation of the apoptosome comprising Apaf-1, cytochrome c, caspase-9 and other accessories. As a consequence of this event, procaspase-9, -3, -8 and other death-related proteins were not processed. Furthermore, physiological concentrations of K(+) also inhibited the processing of procaspase-3 by purified caspase-8 or -9, the nucleosomal DNA fragmentation by purified DFF40/CAD and the nuclear fragmentation to varying extents. Altogether, these findings suggest that the efflux of K(+) is prerequisite not only for the formation of the apoptosome but also for the downstream apoptotic signal-transduction pathways.
Collapse
Affiliation(s)
- P Karki
- Department of Bio-Materials Engineering and Cellular and Molecular Medicine, School of Medicine, Research Center for Proteineous Materials (RCPM), Chosun University, Gwangju, Korea
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Pervaiz S, Clement MV. Superoxide anion: Oncogenic reactive oxygen species? Int J Biochem Cell Biol 2007; 39:1297-304. [PMID: 17531522 DOI: 10.1016/j.biocel.2007.04.007] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2007] [Revised: 04/05/2007] [Accepted: 04/10/2007] [Indexed: 10/23/2022]
Abstract
Recent evidence linking intracellular reactive oxygen species to cell survival and/or proliferation signals has resulted in a paradigm shift from the age-old dogma implicating reactive oxygen species exclusively in cell damage and death. It is now accepted that reactive oxygen species play important roles in normal physiological states and that depending on the species involved the effect could be highly varied. In this regard, the effects of the two major reactive oxygen species, superoxide and hydrogen peroxide have been extensively studied. During normal cell growth a tight balance between the two species is kept under check by the cells' anti-oxidant defense systems. Deficiency or defect in this defense armory is invariably associated with neoplasia, thus rendering the intracellular redox status in a state of imbalance and generating a "pro-oxidant" milieu. A variety of model systems have underscored the relationship between a pro-oxidant state and cancer promotion and progression. In this review, we present evidence to support the hypothesis that the effect of intracellular reactive oxygen species on oncogenesis is dependent on the ratio of intracellular superoxide to hydrogen peroxide in that a predominant increase in superoxide supports cell survival and promotes oncogenesis whereas a tilt in favor of hydrogen peroxide prevents carcinogenesis by facilitating cell death signaling.
Collapse
Affiliation(s)
- Shazib Pervaiz
- Cancer Biology Program, Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore.
| | | |
Collapse
|
35
|
Bouyer P, Sakai H, Itokawa T, Kawano T, Fulton CM, Boron WF, Insogna KL. Colony-stimulating factor-1 increases osteoclast intracellular pH and promotes survival via the electroneutral Na/HCO3 cotransporter NBCn1. Endocrinology 2007; 148:831-40. [PMID: 17068143 DOI: 10.1210/en.2006-0547] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Colony-stimulating factor-1 (CSF-1) promotes the survival of osteoclasts, short-lived cells that resorb bone. Although a rise in intracellular pH (pH(i)) has been linked to inhibition of apoptosis, the effect of CSF-1 on pH(i) in osteoclasts has not been reported. The present study shows that, in the absence of CO(2)/HCO(3)(-), CSF-1 causes little change in osteoclast pH(i). In contrast, exposing these cells to CSF-1 in the presence of CO(2)/HCO(3)(-) causes a rapid and sustained cellular alkalinization. The CSF-1-induced rise in pH(i) is not blocked by 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid, an inhibitor of HCO(3)(-) transporters but is abolished by removing extracellular sodium. This inhibition profile is similar to that of the electroneutral Na/HCO(3) cotransporter NBCn1. By RT-PCR, NBCn1 transcripts are present in both osteoclasts and osteoclast-like cells (OCLs), and by immunoblotting, the protein is present in OCLs. Moreover, CSF-1 promotes osteoclast survival in the presence of CO(2)/HCO(3)(-) buffer but not in its absence. Preventing the activation of NBCn1 markedly attenuates the ability of CSF-1 to 1) block activation of caspase-8 and 2) prolong osteoclast survival. Inhibiting caspase-3 or caspase-8 in OCLs prolongs osteoclast survival to the same extent as does CSF-1. This study provides the first evidence that osteoclasts express a CSF-1-regulated Na/HCO(3) cotransporter, which may play a role in cell survival.
Collapse
Affiliation(s)
- Patrice Bouyer
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, 333 Cedar Street, POB 208026, New Haven, Connecticut 06520-8026, USA.
| | | | | | | | | | | | | |
Collapse
|
36
|
Menze MA, Hand SC. Caspase activity during cell stasis: avoidance of apoptosis in an invertebrate extremophile, Artemia franciscana. Am J Physiol Regul Integr Comp Physiol 2007; 292:R2039-47. [PMID: 17255212 DOI: 10.1152/ajpregu.00659.2006] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Evaluation of apoptotic processes downstream of the mitochondrion reveals caspase-9- and low levels of caspase-3-like activities in partly purified extracts of Artemia franciscana embryos. However, in contrast to experiments with extracts of human hepatoma cells, cytochrome c fails to activate caspase-3 or -9 in extracts from A. franciscana. Furthermore, caspase-9 activity is sensitive to exogenous calcium. The addition of 5 mM calcium leads to a 4.86 +/- 0.19 fold (SD) (n = 3) increase in activity, which is fully prevented with 150 mM KCl. As with mammalian systems, high ATP (>1.25 mM) suppresses caspase activity in A. franciscana extracts. A strong inhibition of caspase-9 activity was also found by GTP. Comparison of GTP-induced inhibition of caspase-9 at 0 and 2.5 mM MgCl(2) indicates that free (nonchelated) GTP is likely to be the inhibitory form. The strongest inhibition among all nucleotides tested was with ADP. Inhibition by ADP in the presence of Mg(2+) is 60-fold greater in diapause embryos than in postdiapause embryos. Because ADP does not change appreciably in concentration between the two physiological states, it is likely that this differential sensitivity to Mg(2+)-ADP is important in avoiding caspase activation during diapause. Finally, mixtures of nucleotides that mimic physiological concentrations in postdiapause and diapause states underscore the depressive action of these regulators on caspase-9 during diapause. Our biochemical characterization of caspase-like activity in A. franciscana extracts reveals that multiple mechanisms are in place to reduce the probability of apoptosis under conditions of energy limitation in this embryo.
Collapse
Affiliation(s)
- Michael A Menze
- Dept of Biological Sciences, Louisiana State Univ, Baton Rouge, LA 70803, USA.
| | | |
Collapse
|
37
|
Prashar A, Locke IC, Evans CS. Cytotoxicity of clove (Syzygium aromaticum) oil and its major components to human skin cells. Cell Prolif 2006; 39:241-8. [PMID: 16872360 PMCID: PMC6496679 DOI: 10.1111/j.1365-2184.2006.00384.x] [Citation(s) in RCA: 130] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The essential oil extracted from clove (Syzygium aromaticum) is used as a topical application to relieve pain and promote healing in herbal medicine and also finds use in the fragrance and flavouring industries. Clove oil has two major components, eugenol and beta-caryophyllene, which constitute 78% and 13% of the oil, respectively. Clove oil and these components are generally recognized as 'safe', but the in-vitro study here demonstrates cytotoxic properties of both the oil and eugenol, towards human fibroblasts and endothelial cells. Clove oil was found to be highly cytotoxic at concentrations as low as 0.03% (v/v) with up to 73% of this effect attributable to eugenol. beta-caryophyllene did not exhibit any cytotoxic activity, indicating that other cytotoxic components may also exist within the parent oil.
Collapse
Affiliation(s)
- A. Prashar
- School of Biosciences, University of Westminster, London, UK
| | - I. C. Locke
- School of Biosciences, University of Westminster, London, UK
| | - C. S. Evans
- School of Biosciences, University of Westminster, London, UK
| |
Collapse
|
38
|
Deshpande VS, Kehrer JP. Mechanisms of N-acetylcysteine-driven enhancement of MK886-induced apoptosis. Cell Biol Toxicol 2006; 22:303-11. [PMID: 16817014 DOI: 10.1007/s10565-006-0072-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2006] [Accepted: 05/31/2006] [Indexed: 01/19/2023]
Abstract
N-Acetylcysteine (NAC), besides being a precursor of glutathione, has an array of other effects including an ability to scavenge free radicals, modulate gene expression and signal transduction pathways, and regulate cell survival and apoptosis. At concentrations lower than 20 mmol/L, NAC is nontoxic to cultured cells and can protect against apoptosis induced by a number of agents. A few recent reports, however, have indicated that NAC can also increase apoptosis. MK886, a 5-lipoxygenase activating protein (FLAP) inhibitor, induces apoptosis in many cell lines by an unknown mechanism that is independent of FLAP and lipoxygenase activity but is possibly related to effects on kinases such as Akt. In Jurkat T lymphocytes, NAC pretreatment (10 mmol/L) enhanced MK886-induced apoptosis by 2.4-fold. Following NAC-MK886 treatment, there was a significant increase in caspase-3 activity, and a decrease in mitochondrial transmembrane potential compared to MK886 alone. However, the extent of cytochrome c release was comparable between MK886 alone and MK886-NAC treatments. The enhancement of MK886-induced apoptosis by 10 mmol/L NAC appears to be partly related to a decrease in pH caused by this concentration of NAC, because an acidic environment favors activation of effector caspases and triggering of mitochondrial apoptosis. However, because neutralized NAC also enhanced apoptosis (1.6-fold), a direct role for NAC in augmenting the apoptotic pathways initiated by MK886 is suggested.
Collapse
Affiliation(s)
- V S Deshpande
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, Texas 78712, USA.
| | | |
Collapse
|
39
|
Nilsson C, Johansson U, Johansson AC, Kågedal K, Ollinger K. Cytosolic acidification and lysosomal alkalinization during TNF-α induced apoptosis in U937 cells. Apoptosis 2006; 11:1149-59. [PMID: 16699952 DOI: 10.1007/s10495-006-7108-5] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Apoptosis is often associated with acidification of the cytosol and since loss of lysosomal proton gradient and release of lysosomal content are early events during apoptosis, we investigated if the lysosomal compartment could contribute to cytosolic acidification. After exposure of U937 cells to tumor necrosis factor-alpha, three populations; healthy, pre-apoptotic, and apoptotic cells, were identified by flow cytometry. These populations were investigated regarding intra-cellular pH and apoptosis-associated events. There was a drop in cytosolic pH from 7.2 +/- 0.1 in healthy cells to 6.8 +/- 0.1 in pre-apoptotic, caspase-negative cells. In apoptotic, caspase-positive cells, the pH was further decreased to 5.7 +/- 0.04. The cytosolic acidification was not affected by addition of specific inhibitors towards caspases or the mitochondrial F(0)F(1)-ATPase. In parallel to the cytosolic acidification, a rise in lysosomal pH from 4.3 +/- 0.3, in the healthy population, to 4.8 +/- 0.3 and 5.5 +/- 0.3 in the pre-apoptotic- and apoptotic populations, respectively, was detected. In addition, lysosomal membrane permeability increased as detected as release of cathepsin D from lysosomes to the cytosol in pre-apoptotic and apoptotic cells. We, thus, suggest that lysosomal proton release is the cause of the cytosolic acidification of U937 cells exposed to TNF-alpha.
Collapse
Affiliation(s)
- Cathrine Nilsson
- Division of Experimental Pathology, Faculty of Health Sciences, Linköping University, S-581 85 Linköping, Sweden.
| | | | | | | | | |
Collapse
|
40
|
Floryk D, Huberman E. Mycophenolic acid-induced replication arrest, differentiation markers and cell death of androgen-independent prostate cancer cells DU145. Cancer Lett 2006; 231:20-9. [PMID: 16356827 DOI: 10.1016/j.canlet.2005.01.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2004] [Revised: 12/31/2004] [Accepted: 01/07/2005] [Indexed: 01/02/2023]
Abstract
Inosine 5'-monophosphate dehydrogenase inhibitors including mycophenolic acid (MPA) are effective inducers of terminal differentiation in a variety of distinct human tumor cell types. Here, we report that MPA also induces such a differentiation in the androgen-independent prostate cancer derived cell line DU145. MPA evoked replication arrest and accumulation of the DU145 cells in the S-phase of the cell cycle. The inhibitor also induced the expression of CD55, clusterin, granulophysin, glucose-regulated protein 78, vasoactive intestinal polypeptide and prostate-specific transglutaminase, which are differentiation markers associated with the phenotype of normal prostate cells. We suggest that inosine 5'-monophosphate dehydrogenase inhibitors, which are already used for the treatment of other diseases, may be used as potential differentiation therapy drugs to control prostate cancer.
Collapse
Affiliation(s)
- Daniel Floryk
- Gene Expression Group-Energy Systems Division, Argonne National Laboratory, 9700 S Cass Ave, Bldg 202, Argonne, IL 60439, USA
| | | |
Collapse
|
41
|
Arrebola F, Fernández-Segura E, Campos A, Crespo PV, Skepper JN, Warley A. Changes in intracellular electrolyte concentrations during apoptosis induced by UV irradiation of human myeloblastic cells. Am J Physiol Cell Physiol 2006; 290:C638-49. [PMID: 16162654 DOI: 10.1152/ajpcell.00364.2005] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Decreases in the intracellular concentrations of both K+and Cl−have been implicated in playing a major role in the progression of apoptosis, but little is known about the temporal relationship between decreases in electrolyte concentration and the key events in apoptosis, and there is no information about how such decreases affect different intracellular compartments. Electron probe X-ray microanalysis was used to determine changes in element concentrations (Na, P, Cl, and K) in nucleus, cytoplasm, and mitochondria in U937 cells undergoing UV-induced apoptosis. In all compartments, the initial stages of apoptosis were characterized by decreases in [K] and [Cl]. The largest decreases in these elements were in the mitochondria and occurred before the release of cytochrome c. Initial decreases in [K] and [Cl] also preceded apoptotic changes in the nucleus. In the later stages of apoptosis, the [K] continued to decrease, whereas that of Cl began to increase toward control levels and was accompanied by an increase in [Na]. In the nucleus, these increases coincided with poly(ADP-ribose) polymerase cleavage, chromatin condensation, and DNA laddering. The cytoplasm was the compartment least affected and the pattern of change of Cl was similar to those in other compartments, but the decrease in [K] was not significant until after active caspase-3 was detected. Our results support the concept that normotonic cell shrinkage occurs early in apoptosis, and demonstrate that changes in the intracellular concentrations of K and Cl precede apoptotic changes in the cell compartments studied.
Collapse
Affiliation(s)
- F Arrebola
- Electron Microscopy Unit, King's College London, Department of Ophthalmology, The Rayne Institute, St. Thomas' Hospital, UK
| | | | | | | | | | | |
Collapse
|
42
|
Abstract
Understanding the mechanisms of symptoms in patients with gastrointestinal disorders remains a great challenge. One of the major problems facing clinicians in this area is the limited information gained from subjective outcome measures commonly used to assess these conditions. To address this, various stimulation and recording techniques, commonly used by neurologists, have been adapted to study gastrointestinal sensory processing. This review article provides an overview of this expanding research area and discusses the advantages and disadvantages of each approach.
Collapse
Affiliation(s)
- Anthony R Hobson
- Section of Gastrointestinal Sciences, Division of Medicine and Neurosciences--Hope, University of Manchester, Hope Hospital, Salford, Lancs., UK.
| | | |
Collapse
|
43
|
Elliott GD, Liu XH, Cusick JL, Menze M, Vincent J, Witt T, Hand S, Toner M. Trehalose uptake through P2X7 purinergic channels provides dehydration protection. Cryobiology 2005; 52:114-27. [PMID: 16338230 DOI: 10.1016/j.cryobiol.2005.10.009] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2005] [Revised: 10/17/2005] [Accepted: 10/19/2005] [Indexed: 11/25/2022]
Abstract
The tetra-anionic form of ATP (ATP4-) is known to induce monovalent and divalent ion fluxes in cells that express purinergic P2X7 receptors and with sustained application of ATP it has been shown that dyes as large as 831 Da can permeate the cell membrane. The current study explores the kinetics of loading alpha,alpha-trehalose (342 Da) into ATP stimulated J774.A1 cells, which are known to express the purinergic P2X7 receptor. Cells that were incubated at 37 degrees C in a 50 mM phosphate buffer (pH 7.0) containing 225 mM trehalose and 5 mM ATP, were shown to load trehalose linearly over time. Concentrations of approximately 50 mM were reached within 90 min of incubation. Cells incubated in the same solution at 4 degrees C loaded minimally, consistent with the inactivity of the receptor at low temperatures. However, extended incubation at 37 degrees C (>60 min) resulted in zero next-day survival, with adverse effects appearing even with incubation periods as short as 30 min. By using a two-step protocol with a short time period at 37 degrees C to allow pore formation, followed by an extended loading period on ice, cells could be loaded with up to 50 mM trehalose while maintaining good next day recovery (49 +/- 12% by Trypan blue exclusion, 56 +/- 20% by alamarBlue assay). Cells porated by this method and allowed an overnight recovery period exhibited improved dehydration tolerance suggesting a role for ATP poration in the anhydrous preservation of cells.
Collapse
Affiliation(s)
- Gloria D Elliott
- Department of Mechanical Engineering and Engineering Sciences, University of North Carolina at Charlotte, 9201 University City Building, Charlotte, NC 28223-0001, USA.
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Tomura H, Mogi C, Sato K, Okajima F. Proton-sensing and lysolipid-sensitive G-protein-coupled receptors: A novel type of multi-functional receptors. Cell Signal 2005; 17:1466-76. [PMID: 16014326 DOI: 10.1016/j.cellsig.2005.06.002] [Citation(s) in RCA: 139] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2005] [Accepted: 06/03/2005] [Indexed: 11/16/2022]
Abstract
OGR1, GPR4, G2A, and TDAG8 share 40% to 50% homology with each other and seem to form a family of GPCRs. They have been described as receptors for lipid molecules such as sphingosylphosphorylcholine, lysophosphatidylcholine, and psychosine. Recent studies, however, have revealed that these receptors also sense extracellular protons or pH through histidine residues of receptors and stimulate a variety of intracellular signaling pathways through several species of hetero-trimeric G-proteins, including G(s), G(i), G(q), and G(12/13). Thus, this family of GPCR seems to recognize both lipid molecules and protons as ligands. Although our knowledge of proton-sensing and lysolipid-sensitive GPCRs is preliminary, the receptor levels and ligand levels especially protons are both sensitively modulated in response to a variety of microenvironmental changes. These results suggest a multiple role of proton-sensing GPCRs in a variety of physiological and pathophysiological states.
Collapse
Affiliation(s)
- Hideaki Tomura
- Laboratory of Signal Transduction, Institute for Molecular and Cellular Regulation, Gunma University, 3-39-15 Showa-machi, Maebashi 371-8512, Japan
| | | | | | | |
Collapse
|
45
|
Duncan EJ, Thompson MP, Phua SH. Zinc protection of HepG2 cells from sporidesmin toxicity does not require de novo gene transcription. Toxicol Lett 2005; 159:164-72. [PMID: 16005584 DOI: 10.1016/j.toxlet.2005.05.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2005] [Revised: 05/19/2005] [Accepted: 05/19/2005] [Indexed: 11/25/2022]
Abstract
Sporidesmin is an epidithiodioxopiperazine mycotoxin secreted by the saprophytic fungus Pithomyces chartarum. Ingestion of sporidesmin by ruminants grazing on the saprophyte infested pasture causes severe liver and bile duct damage leading to secondary photosensitisation. Zinc supplementation is used as an effective prophylaxis against sporidesmin toxicity in ruminants, however, the mechanism by which zinc protects is unknown. This study used the human hepatoma cell line, HepG2, as a model to examine the mechanism of zinc protection against sporidesmin toxicity. Treatment of cells with various concentrations of sporidesmin (0-10 microg/ml) resulted in a sigmoidal dose response curve with an LC50 of 5 microg/ml. Cells were protected from sporidesmin toxicity by pre-treatment for 2h or 16 h with zinc sulphate in a concentration dependent manner, with significant protection at 50 microM zinc and maximal protection at 200 microM zinc. To determine whether zinc protection required de novo gene transcription, cells were treated with the transcriptional inhibitor actinomycin D for one hour prior to and throughout the zinc pre-treatment. The presence of actinomycin D did not significantly reduce the zinc protection against sporidesmin cytotoxicity (80% protection without actinomycin D versus 71% protection with actinomycin D). Therefore, de novo gene transcription does not play a major role in the mechanism of zinc protection against sporidesmin toxicity in HepG2 cells.
Collapse
Affiliation(s)
- Elizabeth J Duncan
- AgResearch Molecular Biology Unit, Department of Biochemistry, University of Otago, P.O. Box 56, Dunedin, New Zealand
| | | | | |
Collapse
|
46
|
Yurinskaya VE, Moshkov AV, Rozanov YM, Shirokova AV, Vassilieva IO, Shumilina EV, Lang F, Volgareva EV, Vereninov AA. Thymocyte K +, Na + and Water Balance During Dexamethasone- and Etoposide-Induced Apoptosis. Cell Physiol Biochem 2005; 16:15-22. [PMID: 16121029 DOI: 10.1159/000087727] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2005] [Indexed: 01/09/2023] Open
Abstract
The mechanism of apoptotic cell volume decrease was studied in rat thymocytes treated with dexamethasone (Dex) or etoposide (Eto). Cell shrinkage, i.e. dehydration, was quantified by using buoyant density of the thymocytes in a continuous Percoll gradient. The K+ and Na+ content of cells from different density fractions were assayed by flame emission analysis. Apoptosis was tested by microscopy and flow cytometry of acridine orange stained cells as well as by flow DNA cytometry. Treatment of the thymocytes with 1 microM Dex for 4-5.5 h or 50 microM Eto for 5 h resulted in the appearance of a new distinct high-density cell subpopulation. The cells from this heavy subpopulation but not those with normal buoyant density had typical features of apoptosis. Apoptotic increase of cell density was accompanied by a decrease in cellular K+ content, which exceeded the simultaneous increase in cellular Na+ content. Cellular loss of K+ contributed to most of the estimated loss of cellular osmolytes, but owing to the parallel loss of cell water, the decrease in cytosolic K+ concentration was less than one third. Due to gain of Na+ and loss of cell water the cytosolic Na+ concentration in thymocytes rose following treatment with Dex (5.5 h) or Eto (5 h) by a factor of about 3.6 and 3.1, respectively.
Collapse
|
47
|
Yurinskaya V, Goryachaya T, Guzhova I, Moshkov A, Rozanov Y, Sakuta G, Shirokova A, Shumilina E, Vassilieva I, Lang F, Vereninov A. Potassium and Sodium Balance in U937 Cells During Apoptosis With and Without Cell Shrinkage. Cell Physiol Biochem 2005; 16:155-62. [PMID: 16301816 DOI: 10.1159/000089841] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/09/2005] [Indexed: 11/19/2022] Open
Abstract
Staurosporine (STS) and etoposide (Eto) induced apoptosis of the human histiocytic lymphoma cells U937 were studied to determine the role of monovalent ions in apoptotic cell shrinkage. Cell shrinkage, defined as cell dehydration, was assayed by measurement of buoyant density of cells in continuous Percoll gradient. The K+ and Na+ content in cells of different density fractions was estimated by flame emission analysis. Apoptosis was evaluated by confocal microscopy and flow cytometry of acridine orange stained cells, by flow DNA cytometry and by effector caspase activity. Apoptosis of U937 cells induced by 1 muM STS for 4 h was found to be paralleled by an increase in buoyant density indicating cell shrinkage. An increase in density was accompanied by a decrease in K+ content (from 1.1 to 0.78 mmol/g protein), which exceeded the increase in Na+ content (from 0.30 to 0.34 mmol/g) and resulted in a significant decrease of the total K+ and Na+ content (from 1.4 to 1.1 mmol/g). In contrast to STS, 50 microM Eto for 4 h or 0.8-8 microM Eto for 18-24 h induced apoptosis without triggering cell shrinkage. During apoptosis of U937 cells induced by Eto the intracellular K(+)/Na+ ratio decreased like in the cells treated with STS, but the total K+ and Na+ content remained virtually the same due to a decrease in K+ content being nearly the same as an increase in Na+ content. Apoptotic cell dehydration correlated with the shift of the total cellular K+ and Na+ content. There was no statistically significant decrease in K+ concentration per cell water during apoptosis induced by either Eto (by 13.5%) or STS (by 8%), whereas increase in Na+ concentration per cell water was statistically significant (by 27% and 47%, respectively). The data show that apoptosis can occur without cell shrinkage-dehydration, that apoptosis with shrinkage is mostly due to a decrease in cellular K+ content, and that this decrease is not accompanied by a significant decrease of K+ concentration in cell water.
Collapse
|
48
|
Abstract
Changes in ionic homeostasis are early events leading up to the commitment to apoptosis. Although the direct effects of cations on caspase-3 activity have been examined, comparable studies on procaspase-3 are lacking. In addition, the effects of salts on caspase structure have not been examined. We have studied the effects of cations on the activities and conformations of caspase-3 and an uncleavable mutant of procaspase-3 that is enzymatically active. The results show that caspase-3 is more sensitive to changes in pH and ion concentrations than is the zymogen. This is due to the loss of both an intact intersubunit linker and the prodomain. The results show that, although the caspase-3 subunits reassemble to the heterotetramer, the activity return is low after the protein is incubated at or below pH 4.5 and then returned to pH 7.5. The data further show that the irreversible step in assembly results from heterotetramer rather than heterodimer dissociation and demonstrate that the active site does not form properly following reassembly. However, active-site formation is fully reversible when reassembly occurs in the presence of the prodomain, and this effect is specific for the propeptide of caspase-3. The data show that the prodomain facilitates both dimerization and active-site formation in addition to stabilizing the native structure. Overall, the results show that the prodomain acts as an intramolecular chaperone during assembly of the (pro)caspase subunits and increases the efficiency of formation of the native conformation.
Collapse
Affiliation(s)
| | - A. Clay Clark
- To whom correspondence should be addressed: Dept. of Molecular and Structural Biochemistry, 128 Polk Hall, North Carolina State University, Raleigh, NC 27695-7622. Tel.: 919-515-5805; Fax: 919-515-2047;
| |
Collapse
|
49
|
Abstract
CLCA proteins were discovered in bovine trachea and named for a calcium-dependent chloride conductance found in trachea and in other secretory epithelial tissues. At least four closely located gene loci in the mouse and the human code for independent isoforms of CLCA proteins. Full-length CLCA proteins have an unprocessed mass ratio of approximately 100 kDa. Three of the four human loci code for the synthesis of membrane-associated proteins. CLCA proteins affect chloride conductance, epithelial secretion, cell-cell adhesion, apoptosis, cell cycle control, mucus production in asthma, and blood pressure. There is a structural and probable functional divergence between CLCA isoforms containing or not containing beta4-integrin binding domains. Cell cycle control and tumor metastasis are affected by isoforms with the binding domains. These isoforms are expressed prominently in smooth muscle, in some endothelial cells, in the central nervous system, and also in secretory epithelial cells. The isoform with disrupted beta4-integrin binding (hCLCA1, pCLCA1, mCLCA3) alters epithelial mucus secretion and ion transport processes. It is preferentially expressed in secretory epithelial tissues including trachea and small intestine. Chloride conductance is affected by the expression of several CLCA proteins. However, the dependence of the resulting electrical signature on the expression system rather than the CLCA protein suggests that these proteins are not independent Ca2+-dependent chloride channels, but may contribute to the activity of chloride channels formed by, or in conjunction with, other proteins.
Collapse
Affiliation(s)
- Matthew E Loewen
- Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, Canada
| | | |
Collapse
|
50
|
Brooks C, Ketsawatsomkron P, Sui Y, Wang J, Wang CY, Yu FS, Dong Z. Acidic pH inhibits ATP depletion-induced tubular cell apoptosis by blocking caspase-9 activation in apoptosome. Am J Physiol Renal Physiol 2005; 289:F410-9. [PMID: 15755925 DOI: 10.1152/ajprenal.00440.2004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Tubular cell apoptosis has been implicated in the development of ischemic renal failure. In in vitro models, ATP depletion-induced apoptosis of tubular cells is mediated by the intrinsic pathway involving Bax translocation, cytochrome c release, and caspase activation. While the apoptotic cascade has been delineated, much less is known about its regulation. The current study has examined the regulation of ATP depletion-induced tubular cell apoptosis by acidic pH, a common feature of tissue ischemia. Cultured renal tubular cells were subjected to 3 h of ATP depletion with azide and then recovered in full culture medium. The treatment led to apoptosis in approximately 40% of cells. Apoptosis was significantly reduced, if the pH of ATP depletion buffer was lowered from 7-7.4 to 6-6.5. This was accompanied by the inhibition of caspase activation. However, acidic pH did not prevent Bax translocation and oligomerization in mitochondria. Cytochrome c release from mitochondria was not blocked either, suggesting that acidic pH inhibited apoptosis at the postmitochondrial level. To determine the postmitochondrial events that were blocked by acidic pH, we conducted in vitro reconstitution experiments. Exogenous cytochrome c, when added into isolated cell cytosol, induced caspase activation. Such activation was abrogated, when pH during the reconstitution was lowered to 6 or 6.5. Nevertheless, acidic pH did not prevent the recruitment and association of caspase-9 by Apaf-1, as shown by coimmunoprecipitation. Together, this study demonstrated the inhibition of tubular cell apoptosis following ATP depletion by acidic pH. A critical step blocked by acidic pH seems to be caspase-9 activation in apoptosome.
Collapse
Affiliation(s)
- Craig Brooks
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta, 30912, USA
| | | | | | | | | | | | | |
Collapse
|