1
|
Cam Y, Kocum CG, Konrad ER, Schweizer TA, Houska TK, Sardina CA, Suri SK, Will MJ. Incentive motivation for palatable food blocked by intra-accumbens melanin-concentrating hormone (MCH) receptor-1 antagonist in female rats. Pharmacol Biochem Behav 2024; 245:173884. [PMID: 39341509 DOI: 10.1016/j.pbb.2024.173884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/16/2024] [Accepted: 09/23/2024] [Indexed: 10/01/2024]
Abstract
Melanin-concentrating hormone (MCH) activity in the nucleus accumbens (Acb) has been shown to influence feeding behavior, yet this has not been characterized in terms of homeostatic vs. hedonic feeding processes. Hedonic feeding, driven by palatability rather than energy deficit, can be modeled through intra-Acb administration of the selective μ-opioid receptor agonist d-Ala2, NMe-Phe4, Glyol5-enkephalin (DAMGO), which preferentially increases consumption and incentive motivation to obtain preferred palatable food. Pharmacological activation of MCH 1 receptors (MCHR1) within Acb has been shown to promote general feeding of chow in males, but not females. However, the effects of MCH on the incentive motivation to obtain preferred palatable food have not been explored. Here, we investigated the role of MCHR1 within the Acb in DAMGO-induced incentive motivation to obtain a sucrose pellet reward. Female Sprague Dawley rats were trained and tested for operant responding under a progressive ratio (PR) breakpoint in response to concurrent intra-Acb administration of DAMGO (0 μg and 0.025 μg/.5 μl/side) immediately following intra-Acb administration of the MCHR1 antagonist (N-(3-{1-[4-(3,4-difluoro-phenoxy)-benzyl]-piperdin-4-yl}-4-methyl-phenyl)-isobutyramide (SNAP-94847; 0 μg, 1.5 μg, and 15 μg/.5 μl/side), in a counterbalanced fashion. As expected, DAMGO significantly increased PR breakpoint and overall active lever presses. SNAP-94847 did not influence PR breakpoint by itself, compared to vehicle; however, both 1.5 and 15 μg doses of SNAP-94847 significantly blocked the increased PR breakpoint produced by intra-Acb DAMGO. The results of the study demonstrate that Acb MCHR1 may play a specific role in the hedonically-driven motivation for palatable food in females.
Collapse
Affiliation(s)
- Yonca Cam
- Department of Psychological Sciences, University of Missouri, Columbia, MO, USA.
| | - Courtney G Kocum
- Department of Psychological Sciences, University of Missouri, Columbia, MO, USA
| | - Ella R Konrad
- Department of Psychological Sciences, University of Missouri, Columbia, MO, USA
| | - Tim A Schweizer
- Department of Psychological Sciences, University of Missouri, Columbia, MO, USA
| | - Tabitha K Houska
- Department of Psychological Sciences, University of Missouri, Columbia, MO, USA
| | - Carlos A Sardina
- Department of Psychological Sciences, University of Missouri, Columbia, MO, USA
| | - Sanya K Suri
- Department of Psychological Sciences, University of Missouri, Columbia, MO, USA
| | - Matthew J Will
- Department of Psychological Sciences, University of Missouri, Columbia, MO, USA
| |
Collapse
|
2
|
de Winne C, Pascual FL, Lopez-Vicchi F, Etcheverry-Boneo L, Mendez-Garcia LF, Ornstein AM, Lacau-Mengido IM, Sorianello E, Becu-Villalobos D. Neuroendocrine control of brown adipocyte function by prolactin and growth hormone. J Neuroendocrinol 2024; 36:e13248. [PMID: 36932836 DOI: 10.1111/jne.13248] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 02/08/2023] [Accepted: 02/11/2023] [Indexed: 03/06/2023]
Abstract
Growth hormone (GH) is fundamental for growth and glucose homeostasis, and prolactin for optimal pregnancy and lactation outcome, but additionally, both hormones have multiple functions that include a strong impact on energetic metabolism. In this respect, prolactin and GH receptors have been found in brown, and white adipocytes, as well as in hypothalamic centers regulating thermogenesis. This review describes the neuroendocrine control of the function and plasticity of brown and beige adipocytes, with a special focus on prolactin and GH actions. Most evidence points to a negative association between high prolactin levels and the thermogenic capacity of BAT, except in early development. During lactation and pregnancy, prolactin may be a contributing factor that limits unneeded thermogenesis, downregulating BAT UCP1. Furthermore, animal models of high serum prolactin have low BAT UCP1 levels and whitening of the tissue, while lack of Prlr induces beiging in WAT depots. These actions may involve hypothalamic nuclei, particularly the DMN, POA and ARN, brain centers that participate in thermogenesis. Studies on GH regulation of BAT function present some controversies. Most mouse models with GH excess or deficiency point to an inhibitory role of GH on BAT function. Even so, a stimulatory role of GH on WAT beiging has also been described, in accordance with whole-genome microarrays that demonstrate divergent response signatures of BAT and WAT genes to the loss of GH signaling. Understanding the physiology of BAT and WAT beiging may contribute to the ongoing efforts to curtail obesity.
Collapse
Affiliation(s)
- Catalina de Winne
- Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad de Buenos Aires, Argentina
| | - Florencia L Pascual
- Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad de Buenos Aires, Argentina
| | - Felicitas Lopez-Vicchi
- Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad de Buenos Aires, Argentina
| | - Luz Etcheverry-Boneo
- Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad de Buenos Aires, Argentina
| | - Luis F Mendez-Garcia
- Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad de Buenos Aires, Argentina
| | - Ana Maria Ornstein
- Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad de Buenos Aires, Argentina
| | - Isabel Maria Lacau-Mengido
- Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad de Buenos Aires, Argentina
| | - Eleonora Sorianello
- Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad de Buenos Aires, Argentina
| | - Damasia Becu-Villalobos
- Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad de Buenos Aires, Argentina
| |
Collapse
|
3
|
Huang H, Zhang Z, Xing M, Jin Z, Hu Y, Zhou M, Wei H, Liang Y, Lv Z. Angiostrongylus cantonensis induces energy imbalance and dyskinesia in mice by reducing the expression of melanin-concentrating hormone. Parasit Vectors 2024; 17:192. [PMID: 38654385 PMCID: PMC11036757 DOI: 10.1186/s13071-024-06267-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 03/31/2024] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND Infection with Angiostrongylus cantonensis (AC) in humans or mice can lead to severe eosinophilic meningitis or encephalitis, resulting in various neurological impairments. Developing effective neuroprotective drugs to improve the quality of life in affected individuals is critical. METHODS We conducted a Gene Ontology enrichment analysis on microarray gene expression (GSE159486) in the brains of AC-infected mice. The expression levels of melanin-concentrating hormone (MCH) were confirmed through real-time quantitative PCR (RT-qPCR) and immunofluorescence. Metabolic parameters were assessed using indirect calorimetry, and mice's energy metabolism was evaluated via pathological hematoxylin and eosin (H&E) staining, serum biochemical assays, and immunohistochemistry. Behavioral tests assessed cognitive and motor functions. Western blotting was used to measure the expression of synapse-related proteins. Mice were supplemented with MCH via nasal administration. RESULTS Postinfection, a marked decrease in Pmch expression and the encoded MCH was observed. Infected mice exhibited significant weight loss, extensive consumption of sugar and white fat tissue, reduced movement distance, and decreased speed, compared with the control group. Notably, nasal administration of MCH countered the energy imbalance and dyskinesia caused by AC infection, enhancing survival rates. MCH treatment also increased the expression level of postsynaptic density protein 95 (PSD95) and microtubule-associated protein-2 (MAP2), as well as upregulated transcription level of B cell leukemia/lymphoma 2 (Bcl2) in the cortex. CONCLUSIONS Our findings suggest that MCH improves dyskinesia by reducing loss of synaptic proteins, indicating its potential as a therapeutic agent for AC infection.
Collapse
Affiliation(s)
- Hui Huang
- Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-Sen University, Guangzhou, Guangdong Province, 510030, People's Republic of China
- Department of Pathogen Biology and Biosafety, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong Province, 510030, People's Republic of China
| | - Zhongyuan Zhang
- Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-Sen University, Guangzhou, Guangdong Province, 510030, People's Republic of China
- Department of Pathogen Biology and Biosafety, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong Province, 510030, People's Republic of China
| | - Mengdan Xing
- Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-Sen University, Guangzhou, Guangdong Province, 510030, People's Republic of China
- Department of Pathogen Biology and Biosafety, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong Province, 510030, People's Republic of China
| | - Zihan Jin
- Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-Sen University, Guangzhou, Guangdong Province, 510030, People's Republic of China
- Department of Pathogen Biology and Biosafety, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong Province, 510030, People's Republic of China
| | - Yue Hu
- Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-Sen University, Guangzhou, Guangdong Province, 510030, People's Republic of China
- Department of Pathogen Biology and Biosafety, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong Province, 510030, People's Republic of China
| | - Minyu Zhou
- Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-Sen University, Guangzhou, Guangdong Province, 510030, People's Republic of China
- Department of Pathogen Biology and Biosafety, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong Province, 510030, People's Republic of China
| | - Hang Wei
- Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-Sen University, Guangzhou, Guangdong Province, 510030, People's Republic of China
- Department of Pathogen Biology and Biosafety, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong Province, 510030, People's Republic of China
| | - Yiwen Liang
- Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-Sen University, Guangzhou, Guangdong Province, 510030, People's Republic of China
- Department of Pathogen Biology and Biosafety, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong Province, 510030, People's Republic of China
| | - Zhiyue Lv
- Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-Sen University, Guangzhou, Guangdong Province, 510030, People's Republic of China.
- Department of Pathogen Biology and Biosafety, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong Province, 510030, People's Republic of China.
- Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan Province, 570311, People's Republic of China.
| |
Collapse
|
4
|
Concetti C, Peleg-Raibstein D, Burdakov D. Hypothalamic MCH Neurons: From Feeding to Cognitive Control. FUNCTION 2023; 5:zqad059. [PMID: 38020069 PMCID: PMC10667013 DOI: 10.1093/function/zqad059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/06/2023] [Accepted: 10/11/2023] [Indexed: 12/01/2023] Open
Abstract
Modern neuroscience is progressively elucidating that the classic view positing distinct brain regions responsible for survival, emotion, and cognitive functions is outdated. The hypothalamus demonstrates the interdependence of these roles, as it is traditionally known for fundamental survival functions like energy and electrolyte balance, but is now recognized to also play a crucial role in emotional and cognitive processes. This review focuses on lateral hypothalamic melanin-concentrating hormone (MCH) neurons, producing the neuropeptide MCH-a relatively understudied neuronal population with integrative functions related to homeostatic regulation and motivated behaviors, with widespread inputs and outputs throughout the entire central nervous system. Here, we review early findings and recent literature outlining their role in the regulation of energy balance, sleep, learning, and memory processes.
Collapse
Affiliation(s)
- Cristina Concetti
- Neurobehavioural Dynamics Laboratory, ETH Zürich, Schorenstrasse 16, Schwerzenbach 8603, Switzerland
| | - Daria Peleg-Raibstein
- Neurobehavioural Dynamics Laboratory, ETH Zürich, Schorenstrasse 16, Schwerzenbach 8603, Switzerland
| | - Denis Burdakov
- Neurobehavioural Dynamics Laboratory, ETH Zürich, Schorenstrasse 16, Schwerzenbach 8603, Switzerland
| |
Collapse
|
5
|
Rossi MA. Control of energy homeostasis by the lateral hypothalamic area. Trends Neurosci 2023; 46:738-749. [PMID: 37353461 PMCID: PMC10524917 DOI: 10.1016/j.tins.2023.05.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 05/12/2023] [Accepted: 05/23/2023] [Indexed: 06/25/2023]
Abstract
The lateral hypothalamic area (LHA) is a subcortical brain region that exerts control over motivated behavior, feeding, and energy balance across species. Recent single-cell sequencing studies have defined at least 30 distinct LHA neuron types. Some of these influence specific aspects of energy homeostasis; however, the functions of many LHA cell types remain unclear. This review addresses the rapidly emerging evidence from cell-type-specific investigations that the LHA leverages distinct neuron populations to regulate energy balance through complex connections with other brain regions. It will highlight recent findings demonstrating that LHA control of energy balance extends beyond mere food intake and propose outstanding questions to be addressed by future research.
Collapse
Affiliation(s)
- Mark A Rossi
- Child Health Institute of New Jersey, New Brunswick, NJ, USA; Department of Psychiatry, Robert Wood Johnson Medical School, New Brunswick, NJ, USA; Brain Health Institute, Rutgers University, New Brunswick, NJ, USA.
| |
Collapse
|
6
|
Bouâouda H, Jha PK. Orexin and MCH neurons: regulators of sleep and metabolism. Front Neurosci 2023; 17:1230428. [PMID: 37674517 PMCID: PMC10478345 DOI: 10.3389/fnins.2023.1230428] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 08/07/2023] [Indexed: 09/08/2023] Open
Abstract
Sleep-wake and fasting-feeding are tightly coupled behavioral states that require coordination between several brain regions. The mammalian lateral hypothalamus (LH) is a functionally and anatomically complex brain region harboring heterogeneous cell populations that regulate sleep, feeding, and energy metabolism. Significant attempts were made to understand the cellular and circuit bases of LH actions. Rapid advancements in genetic and electrophysiological manipulation help to understand the role of discrete LH cell populations. The opposing action of LH orexin/hypocretin and melanin-concentrating hormone (MCH) neurons on metabolic sensing and sleep-wake regulation make them the candidate to explore in detail. This review surveys the molecular, genetic, and neuronal components of orexin and MCH signaling in the regulation of sleep and metabolism.
Collapse
Affiliation(s)
- Hanan Bouâouda
- Pharmacology Institute, Medical Faculty Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Pawan Kumar Jha
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
7
|
Bolborea M, Vercruysse P, Daria T, Reiners JC, Alami NO, Guillot SJ, Dieterlé S, Sinniger J, Scekic-Zahirovic J, Londo A, Arcay H, Goy MA, de Tapia CN, Thal DR, Shibuya K, Otani R, Arai K, Kuwabara S, Ludolph AC, Roselli F, Yilmazer-Hanke D, Dupuis L. Loss of hypothalamic MCH decreases food intake in amyotrophic lateral sclerosis. Acta Neuropathol 2023; 145:773-791. [PMID: 37058170 PMCID: PMC10175407 DOI: 10.1007/s00401-023-02569-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/29/2023] [Accepted: 03/30/2023] [Indexed: 04/15/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is associated with impaired energy metabolism, including weight loss and decreased appetite which are negatively correlated with survival. Neural mechanisms underlying metabolic impairment in ALS remain unknown. ALS patients and presymptomatic gene carriers have early hypothalamic atrophy. The lateral hypothalamic area (LHA) controls metabolic homeostasis through the secretion of neuropeptides such as orexin/hypocretin and melanin-concentrating hormone (MCH). Here, we show loss of MCH-positive neurons in three mouse models of ALS based on SOD1 or FUS mutations. Supplementation with MCH (1.2 µg/d) through continuous intracerebroventricular delivery led to weight gain in male mutant Sod1G86R mice. MCH supplementation increased food intake, rescued expression of the key appetite-related neuropeptide AgRP (agouti-related protein) and modified respiratory exchange ratio, suggesting increased carbohydrate usage during the inactive phase. Importantly, we document pTDP-43 pathology and neurodegeneration in the LHA of sporadic ALS patients. Neuronal cell loss was associated with pTDP-43-positive inclusions and signs of neurodegeneration in MCH-positive neurons. These results suggest that hypothalamic MCH is lost in ALS and contributes to the metabolic changes, including weight loss and decreased appetite.
Collapse
Affiliation(s)
- Matei Bolborea
- Université de Strasbourg, INSERM, Mécanismes centraux et périphériques de la neurodégénérescence, UMR-S1118, Strasbourg, France.
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK.
| | - Pauline Vercruysse
- Université de Strasbourg, INSERM, Mécanismes centraux et périphériques de la neurodégénérescence, UMR-S1118, Strasbourg, France
| | - Tselmen Daria
- Clinical Neuroanatomy Section, Department of Neurology, Ulm University, Ulm, Germany
| | - Johanna C Reiners
- Clinical Neuroanatomy Section, Department of Neurology, Ulm University, Ulm, Germany
- Institute for Neurobiochemistry, Ulm University, Ulm, Germany
| | - Najwa Ouali Alami
- Clinical Neuroanatomy Section, Department of Neurology, Ulm University, Ulm, Germany
| | - Simon J Guillot
- Université de Strasbourg, INSERM, Mécanismes centraux et périphériques de la neurodégénérescence, UMR-S1118, Strasbourg, France
| | - Stéphane Dieterlé
- Université de Strasbourg, INSERM, Mécanismes centraux et périphériques de la neurodégénérescence, UMR-S1118, Strasbourg, France
| | - Jérôme Sinniger
- Université de Strasbourg, INSERM, Mécanismes centraux et périphériques de la neurodégénérescence, UMR-S1118, Strasbourg, France
| | - Jelena Scekic-Zahirovic
- Department of Neurology, Neurology Clinic, Ulm University, Ulm, Germany
- Laboratory for Neuropathology, Institute for Pathology, Ulm University, Ulm, Germany
| | - Amela Londo
- Department of Neurology, Neurology Clinic, Ulm University, Ulm, Germany
- Laboratory for Neuropathology, Institute for Pathology, Ulm University, Ulm, Germany
| | - Hippolyte Arcay
- Université de Strasbourg, INSERM, Mécanismes centraux et périphériques de la neurodégénérescence, UMR-S1118, Strasbourg, France
| | - Marc-Antoine Goy
- Université de Strasbourg, INSERM, Mécanismes centraux et périphériques de la neurodégénérescence, UMR-S1118, Strasbourg, France
| | - Claudia Nelson de Tapia
- Université de Strasbourg, INSERM, Mécanismes centraux et périphériques de la neurodégénérescence, UMR-S1118, Strasbourg, France
| | - Dietmar R Thal
- Laboratory for Neuropathology, Institute for Pathology, Ulm University, Ulm, Germany
- Laboratory for Neuropathology, Department of Imaging and Pathology, and Leuven Brain Institute, KU louvain, Belgium
- Department of Pathology, UZ Leuven, Japan
| | - Kazumoto Shibuya
- Department of Neurology, Chiba University School of Medicine, Chiba, Japan
| | - Ryo Otani
- Department of Neurology, Chiba University School of Medicine, Chiba, Japan
| | - Kimihito Arai
- Department of Neurology, Chiba University School of Medicine, Chiba, Japan
| | - Satoshi Kuwabara
- Department of Neurology, Chiba University School of Medicine, Chiba, Japan
| | - Albert C Ludolph
- Department of Neurology, Neurology Clinic, Ulm University, Ulm, Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Ulm, Germany
| | - Francesco Roselli
- Department of Neurology, Neurology Clinic, Ulm University, Ulm, Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Ulm, Germany
| | - Deniz Yilmazer-Hanke
- Clinical Neuroanatomy Section, Department of Neurology, Ulm University, Ulm, Germany.
| | - Luc Dupuis
- Université de Strasbourg, INSERM, Mécanismes centraux et périphériques de la neurodégénérescence, UMR-S1118, Strasbourg, France.
| |
Collapse
|
8
|
DeMars KM, Ross MR, Starr A, McIntyre JC. Neuronal primary cilia integrate peripheral signals with metabolic drives. Front Physiol 2023; 14:1150232. [PMID: 37064917 PMCID: PMC10090425 DOI: 10.3389/fphys.2023.1150232] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 03/20/2023] [Indexed: 03/31/2023] Open
Abstract
Neuronal primary cilia have recently emerged as important contributors to the central regulation of energy homeostasis. As non-motile, microtubule-based organelles, primary cilia serve as signaling antennae for metabolic status. The impairment of ciliary structure or function can produce ciliopathies for which obesity is a hallmark phenotype and global ablation of cilia induces non-syndromic adiposity in mouse models. This organelle is not only a hub for metabolic signaling, but also for catecholamine neuromodulation that shapes neuronal circuitry in response to sensory input. The objective of this review is to highlight current research investigating the mechanisms of primary cilium-regulated metabolic drives for maintaining energy homeostasis.
Collapse
Affiliation(s)
- Kelly M. DeMars
- Department of Neuroscience, University of Florida, Gainesville, FL, United States
| | - Madeleine R. Ross
- Department of Neuroscience, University of Florida, Gainesville, FL, United States
- Summer Neuroscience Internship Program, University of Florida, Gainesville, FL, United States
| | - Alana Starr
- Department of Neuroscience, University of Florida, Gainesville, FL, United States
| | - Jeremy C. McIntyre
- Department of Neuroscience, University of Florida, Gainesville, FL, United States
| |
Collapse
|
9
|
Competing paradigms of obesity pathogenesis: energy balance versus carbohydrate-insulin models. Eur J Clin Nutr 2022; 76:1209-1221. [PMID: 35896818 PMCID: PMC9436778 DOI: 10.1038/s41430-022-01179-2] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/24/2022] [Accepted: 06/28/2022] [Indexed: 02/07/2023]
Abstract
The obesity pandemic continues unabated despite a persistent public health campaign to decrease energy intake (“eat less”) and increase energy expenditure (“move more”). One explanation for this failure is that the current approach, based on the notion of energy balance, has not been adequately embraced by the public. Another possibility is that this approach rests on an erroneous paradigm. A new formulation of the energy balance model (EBM), like prior versions, considers overeating (energy intake > expenditure) the primary cause of obesity, incorporating an emphasis on “complex endocrine, metabolic, and nervous system signals” that control food intake below conscious level. This model attributes rising obesity prevalence to inexpensive, convenient, energy-dense, “ultra-processed” foods high in fat and sugar. An alternative view, the carbohydrate-insulin model (CIM), proposes that hormonal responses to highly processed carbohydrates shift energy partitioning toward deposition in adipose tissue, leaving fewer calories available for the body’s metabolic needs. Thus, increasing adiposity causes overeating to compensate for the sequestered calories. Here, we highlight robust contrasts in how the EBM and CIM view obesity pathophysiology and consider deficiencies in the EBM that impede paradigm testing and refinement. Rectifying these deficiencies should assume priority, as a constructive paradigm clash is needed to resolve long-standing scientific controversies and inform the design of new models to guide prevention and treatment. Nevertheless, public health action need not await resolution of this debate, as both models target processed carbohydrates as major drivers of obesity.
Collapse
|
10
|
Al-Massadi O, Dieguez C, Schneeberger M, López M, Schwaninger M, Prevot V, Nogueiras R. Multifaceted actions of melanin-concentrating hormone on mammalian energy homeostasis. Nat Rev Endocrinol 2021; 17:745-755. [PMID: 34608277 DOI: 10.1038/s41574-021-00559-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/16/2021] [Indexed: 12/12/2022]
Abstract
Melanin-concentrating hormone (MCH) is a small cyclic peptide expressed in all mammals, mainly in the hypothalamus. MCH acts as a robust integrator of several physiological functions and has crucial roles in the regulation of sleep-wake rhythms, feeding behaviour and metabolism. MCH signalling has a very broad endocrine context and is involved in physiological functions and emotional states associated with metabolism, such as reproduction, anxiety, depression, sleep and circadian rhythms. MCH mediates its functions through two receptors (MCHR1 and MCHR2), of which only MCHR1 is common to all mammals. Owing to the wide variety of MCH downstream signalling pathways, MCHR1 agonists and antagonists have great potential as tools for the directed management of energy balance disorders and associated metabolic complications, and translational strategies using these compounds hold promise for the development of novel treatments for obesity. This Review provides an overview of the numerous roles of MCH in energy and glucose homeostasis, as well as in regulation of the mesolimbic dopaminergic circuits that encode the hedonic component of food intake.
Collapse
Affiliation(s)
- Omar Al-Massadi
- Instituto de Investigación Sanitaria de Santiago de Compostela, Complexo Hospitalario Universitario de Santiago (CHUS/SERGAS), Santiago de Compostela, Spain.
- CIBER Fisiopatologia de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, Spain.
| | - Carlos Dieguez
- CIBER Fisiopatologia de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, Spain
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
| | - Marc Schneeberger
- Laboratory of Molecular Genetics, Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
| | - Miguel López
- CIBER Fisiopatologia de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, Spain
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
| | - Markus Schwaninger
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck, Germany
| | - Vincent Prevot
- Univ. Lille, Inserm, CHU Lille, Lille Neuroscience and Cognition, Laboratory of Development and Plasticity of the Neuroendocrine Brain, UMR-S1172, EGID, Lille, France
| | - Ruben Nogueiras
- CIBER Fisiopatologia de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, Spain.
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain.
- Galician Agency of Innovation (GAIN), Xunta de Galicia, Santiago de Compostela, Spain.
| |
Collapse
|
11
|
Philippe C, Klebermass EM, Balber T, Kulterer OC, Zeilinger M, Egger G, Dumanic M, Herz CT, Kiefer FW, Scheuba C, Scherer T, Fürnsinn C, Vraka C, Pallitsch K, Spreitzer H, Wadsak W, Viernstein H, Hacker M, Mitterhauser M. Discovery of melanin-concentrating hormone receptor 1 in brown adipose tissue. Ann N Y Acad Sci 2021; 1494:70-86. [PMID: 33502798 PMCID: PMC8248337 DOI: 10.1111/nyas.14563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/23/2020] [Accepted: 12/23/2020] [Indexed: 11/26/2022]
Abstract
Although extensive research on brown adipose tissue (BAT) has stimulated optimism in the battle against obesity and diabetes, BAT physiology and organ crosstalk are not fully understood. Besides BAT, melanin‐concentrating hormone (MCH) and its receptor (MCHR1) play an important role in energy homeostasis. Because of the link between hypothalamic MCH neurons and sympathetic BAT activation via β‐adrenoceptors, we investigated the expression and physiological role of the MCHR1 in BAT. MCHR1 was detected in rodent and human BAT with RT‐qPCR and western blot analyses. In vivo imaging in rats used the glucose analog [18F]FDG and the MCHR1‐tracer [11C]SNAP‐7941. We found that the β3‐adrenoceptor (ADRB3) agonist CL316,243 increased [11C]SNAP‐7941 uptake in BAT. Additionally, a pharmacological concentration of SNAP‐7941—a low‐affinity ADRB3 ligand—stimulated [18F]FDG uptake, reflecting BAT activation. In cultured human adipocytes, CL316,243 induced MCHR1 expression, further supporting a direct interaction between MCHR1 and ADRB3. These findings characterized MCHR1 expression in rodent and human BAT for the first time, including in vitro and in vivo data demonstrating a link between MCHR1 and the β3‐adrenergic system. The presence of MCHR1 in BAT emphasizes the role of BAT in energy homeostasis and may help uncover treatment approaches for obesity.
Collapse
Affiliation(s)
- Cécile Philippe
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria.,Department of Pharmaceutical Technology and Biopharmaceutics, University of Vienna, Vienna, Austria
| | - Eva-Maria Klebermass
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria.,Department of Pharmaceutical Technology and Biopharmaceutics, University of Vienna, Vienna, Austria
| | - Theresa Balber
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria.,Ludwig Boltzmann Institute Applied Diagnostics, Vienna, Austria
| | - Oana C Kulterer
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria.,Division of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Markus Zeilinger
- Faculty of Engineering, University of Applied Sciences Wiener Neustadt, Wiener Neustadt, Austria
| | - Gerda Egger
- Ludwig Boltzmann Institute Applied Diagnostics, Vienna, Austria.,Department of Pathology, Medical University of Vienna, Vienna, Austria
| | - Monika Dumanic
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Carsten T Herz
- Division of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Florian W Kiefer
- Division of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Christian Scheuba
- Division of General Surgery, Department of Surgery, Medical University of Vienna, Vienna, Austria
| | - Thomas Scherer
- Division of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Clemens Fürnsinn
- Division of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Chrysoula Vraka
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | | | - Helmut Spreitzer
- Department of Pharmaceutical Chemistry, University of Vienna, Vienna, Austria
| | - Wolfgang Wadsak
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria.,Center for Biomarker Research in Medicine - CBmed GmbH, Graz, Austria
| | - Helmut Viernstein
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Vienna, Vienna, Austria
| | - Marcus Hacker
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Markus Mitterhauser
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria.,Ludwig Boltzmann Institute Applied Diagnostics, Vienna, Austria
| |
Collapse
|
12
|
Bandaru SS, Khanday MA, Ibrahim N, Naganuma F, Vetrivelan R. Sleep-Wake Control by Melanin-Concentrating Hormone (MCH) Neurons: a Review of Recent Findings. Curr Neurol Neurosci Rep 2020; 20:55. [PMID: 33006677 PMCID: PMC11891936 DOI: 10.1007/s11910-020-01075-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/17/2020] [Indexed: 12/14/2022]
Abstract
PURPOSE OF THE REVIEW Melanin-concentrating hormone (MCH)-expressing neurons located in the lateral hypothalamus are considered as an integral component of sleep-wake circuitry. However, the precise role of MCH neurons in sleep-wake regulation has remained unclear, despite several years of research employing a wide range of techniques. We review recent data on this aspect, which are mostly inconsistent, and propose a novel role for MCH neurons in sleep regulation. RECENT FINDINGS While almost all studies using "gain-of-function" approaches show an increase in rapid eye movement sleep (or paradoxical sleep; PS), loss-of-function approaches have not shown reductions in PS. Similarly, the reported changes in wakefulness or non-rapid eye movement sleep (slow-wave sleep; SWS) with manipulation of the MCH system using conditional genetic methods are inconsistent. Currently available data do not support a role for MCH neurons in spontaneous sleep-wake but imply a crucial role for them in orchestrating sleep-wake responses to changes in external and internal environments.
Collapse
Affiliation(s)
- Sathyajit S Bandaru
- Department of Neurology, Beth Israel Deaconess Medical Center, 3 Blackfan Circle, Center for Life Science # 711, Boston, MA, USA
| | - Mudasir A Khanday
- Department of Neurology, Beth Israel Deaconess Medical Center, 3 Blackfan Circle, Center for Life Science # 711, Boston, MA, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA
| | - Nazifa Ibrahim
- Department of Neurology, Beth Israel Deaconess Medical Center, 3 Blackfan Circle, Center for Life Science # 711, Boston, MA, USA
- Department of Public Health Sciences, University of Massachusetts, Amherst, MA, USA
| | - Fumito Naganuma
- Department of Neurology, Beth Israel Deaconess Medical Center, 3 Blackfan Circle, Center for Life Science # 711, Boston, MA, USA
- Division of Pharmacology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Ramalingam Vetrivelan
- Department of Neurology, Beth Israel Deaconess Medical Center, 3 Blackfan Circle, Center for Life Science # 711, Boston, MA, USA.
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
13
|
You H, Chu P, Guo W, Lu B. A subpopulation of Bdnf-e1-expressing glutamatergic neurons in the lateral hypothalamus critical for thermogenesis control. Mol Metab 2019; 31:109-123. [PMID: 31918913 PMCID: PMC6920260 DOI: 10.1016/j.molmet.2019.11.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 11/16/2019] [Accepted: 11/17/2019] [Indexed: 12/14/2022] Open
Abstract
Objective Brown adipose tissue (BAT)–mediated thermogenesis plays a key role in energy homeostasis and the maintenance of body temperature. Previous work suggests that brain-derived neurotrophic factor (BDNF) is involved in BAT thermogenesis, but the underlying neural circuits and molecular mechanism remain largely unknown. This is in part due to the difficulties in manipulating BDNF expression in different brain regions through different promoters and the lack of tools to identify neurons in the brain specifically involved in BAT thermogenesis. Methods We have created several lines of mutant mice in which BDNF transcription from a specific promoter was selectively disrupted by replacing Bdnf with green fluorescent protein (GFP; Bdnf-e1, -e4, and -e6−/− mice). As such, cells expressing Bdnf-e1, -e4, or -e6 were labeled with GFP. To identify BAT-connected thermogenesis neurons in brain, we applied the retrograde pseudorabies virus labeling method from BAT. We also used chemogenetic tools to manipulate specific neurons coupled with BAT temperature recording. Moreover, we developed a new TrkB agonist antibody to rescue the BAT thermogenesis deficits. Results We show that selective disruption of Bdnf expression from promoter 1 (Bdnf-e1) resulted in severe obesity and deficits of BAT-mediated thermogenesis. Body temperature response to cold was impaired in Bdnf-e1−/− mice. BAT expression of Ucp1 and Pcg1a, genes known to regulate thermogenesis, was also reduced, accompanying a decrease in the sympathetic activity of BAT. Staining of cells expressing Bdnf-e1 transcript, combined with transsynaptic, retrograde-tracing labeling of BAT-connected neurons, identified a group of excitatory neurons in lateral hypothalamus (LH) critical for thermogenesis regulation. Moreover, an adaptive thermogenesis defect in Bdnf-e1−/− mice was rescued by injecting an agonistic antibody for TrkB, the BDNF receptor, into LH. Remarkably, activation of the excitatory neurons (VGLUT2+) in LH through chemogenetic tools resulted in a rise of BAT temperature. Conclusions These results reveal a specific role of BDNF promoter I in thermogenesis regulation and define a small subset of neurons in LH that contribute to such regulation. Only Bdnf-e1−/−, but not Bdnf-e4−/− or Bdnf-e6−/−, mutant mice exhibited deficiencies of BAT thermogenesis. Neurons that are both Bdnf-e1 expressing and BAT-connected were found only in LH. BAT-connected neurons in LH are glutamatergic. Activation of the LH glutamatergic neurons resulted in an increase in BAT temperature. Administration of TrkB agonist antibody in LH rescued thermogenesis deficits.
Collapse
Affiliation(s)
- He You
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China; School of Life Sciences, Tsinghua University, Beijing, 100084, China; Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Pengcheng Chu
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China; School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Wei Guo
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China
| | - Bai Lu
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
14
|
Philippe C, Zeilinger M, Dumanic M, Pichler F, Fetty L, Vraka C, Balber T, Wadsak W, Pallitsch K, Spreitzer H, Lanzenberger R, Hacker M, Mitterhauser M. SNAPshots of the MCHR1: a Comparison Between the PET-Tracers [ 18F]FE@SNAP and [ 11C]SNAP-7941. Mol Imaging Biol 2019; 21:257-268. [PMID: 29948643 PMCID: PMC6449294 DOI: 10.1007/s11307-018-1212-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE The melanin-concentrating hormone receptor 1 (MCHR1) has become an important pharmacological target, since it may be involved in various diseases, such as diabetes, insulin resistance, and obesity. Hence, a suitable positron emission tomography radiotracer for the in vivo assessment of the MCHR1 pharmacology is imperative. The current paper contrasts the extensive in vitro, in vivo, and ex vivo assessments of the radiotracers [18F]FE@SNAP and [11C]SNAP-7941 and provides comprehensive information about their biological and physicochemical properties. Furthermore, it examines their suitability for first-in-man imaging studies. PROCEDURES Kinetic real-time cell-binding studies with [18F]FE@SNAP and [11C]SNAP-7941 were conducted on adherent Chines hamster ovary (CHO-K1) cells stably expressing the human MCHR1 and MCHR2. Small animal imaging studies on mice and rats were performed under displacement and baseline conditions, as well as after pretreatment with the P-glycoprotein/breast cancer resistant protein inhibitor tariquidar. After the imaging studies, detailed analyses of the ex vivo biodistribution were performed. Ex vivo metabolism was determined in rat blood and brain and analyzed at various time points using a quantitative radio-HPLC assay. RESULTS [11C]SNAP-7941 demonstrates high uptake on CHO-K1-hMCHR1 cells, whereas no uptake was detected for the CHO-K1-hMCHR2 cells. In contrast, [18F]FE@SNAP evinced binding to CHO-K1-hMCHR1 and CHO-K1-hMCHR2 cells. Imaging studies with [18F]FE@SNAP and [11C]SNAP-7941 showed an increased brain uptake after tariquidar pretreatment in mice, as well as in rats, and exhibited a significant difference between the time-activity curves of the baseline and blocking groups. Biodistribution of both tracers demonstrated a decreased uptake after displacement. [11C]SNAP-7941 revealed a high metabolic stability in rats, whereas [18F]FE@SNAP was rapidly metabolized. CONCLUSIONS Both radiotracers demonstrate appropriate imaging properties for the MCHR1. However, the pronounced metabolic stability as well as superior selectivity and affinity of [11C]SNAP-7941 underlines the decisive superiority over [18F]FE@SNAP.
Collapse
Affiliation(s)
- Cécile Philippe
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Vienna, Vienna, Austria
| | - Markus Zeilinger
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
- Faculty of Engineering, University of Applied Sciences Wiener Neustadt, Neustadt, Austria
| | - Monika Dumanic
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Florian Pichler
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
- Faculty of Engineering, University of Applied Sciences Wiener Neustadt, Neustadt, Austria
| | - Lukas Fetty
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
- Department of Radiotherapy, Division of Medical Physics, Medical University of Vienna, Vienna, Austria
| | - Chrysoula Vraka
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Theresa Balber
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Wolfgang Wadsak
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
- Department of Inorganic Chemistry, University of Vienna, Vienna, Austria
- CBmed, Graz, Austria
| | | | - Helmut Spreitzer
- Department of Pharmaceutical Chemistry, University of Vienna, Vienna, Austria
| | - Rupert Lanzenberger
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Marcus Hacker
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Markus Mitterhauser
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria.
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Vienna, Vienna, Austria.
- Ludwig Boltzmann Institute Applied Diagnostics, Vienna, Austria.
| |
Collapse
|
15
|
Alexandre PA, Naval-Sanchez M, Porto-Neto LR, Ferraz JBS, Reverter A, Fukumasu H. Systems Biology Reveals NR2F6 and TGFB1 as Key Regulators of Feed Efficiency in Beef Cattle. Front Genet 2019; 10:230. [PMID: 30967894 PMCID: PMC6439317 DOI: 10.3389/fgene.2019.00230] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 03/04/2019] [Indexed: 11/20/2022] Open
Abstract
Systems biology approaches are used as strategy to uncover tissue-specific perturbations and regulatory genes related to complex phenotypes. We applied this approach to study feed efficiency (FE) in beef cattle, an important trait both economically and environmentally. Poly-A selected RNA of five tissues (adrenal gland, hypothalamus, liver, skeletal muscle and pituitary) of eighteen young bulls, selected for high and low FE, were sequenced (Illumina HiSeq 2500, 100 bp, pared-end). From the 17,354 expressed genes considering all tissues, 1,335 were prioritized by five selection categories (differentially expressed, harboring SNPs associated with FE, tissue-specific, secreted in plasma and key regulators) and used for network construction. NR2F6 and TGFB1 were identified and validated by motif discovery as key regulators of hepatic inflammatory response and muscle tissue development, respectively, two biological processes demonstrated to be associated with FE. Moreover, we indicated potential biomarkers of FE, which are related to hormonal control of metabolism and sexual maturity. By using robust methodologies and validation strategies, we confirmed the main biological processes related to FE in Bos indicus and indicated candidate genes as regulators or biomarkers of superior animals.
Collapse
Affiliation(s)
- Pâmela A. Alexandre
- Department of Veterinary Medicine, College of Animal Sciences and Food Engineering, University of São Paulo, Pirassununga, Brazil
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation, Brisbane, QLD, Australia
| | - Marina Naval-Sanchez
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation, Brisbane, QLD, Australia
| | - Laercio R. Porto-Neto
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation, Brisbane, QLD, Australia
| | - José Bento S. Ferraz
- Department of Veterinary Medicine, College of Animal Sciences and Food Engineering, University of São Paulo, Pirassununga, Brazil
| | - Antonio Reverter
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation, Brisbane, QLD, Australia
| | - Heidge Fukumasu
- Department of Veterinary Medicine, College of Animal Sciences and Food Engineering, University of São Paulo, Pirassununga, Brazil
| |
Collapse
|
16
|
Suyama S, Yada T. New insight into GABAergic neurons in the hypothalamic feeding regulation. J Physiol Sci 2018; 68:717-722. [PMID: 30003408 PMCID: PMC10717766 DOI: 10.1007/s12576-018-0622-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 05/30/2018] [Indexed: 12/11/2022]
Abstract
Several lines of study have suggested that GABA in the hypothalamic feeding center plays a role in promoting food intake. Recent studies revealed that not only NPY/AgRP neurons in the hypothalamic arcuate nucleus (ARC) that co-express GABA but also other GABAergic neurons act as an orexigenic. Here, we review the progress of studies on hypothalamic GABAergic neurons distributed in ARC, dorsomedial hypothalamus (DMH), and lateral hypothalamus (LH). Three advanced technologies have been applied and greatly contributed to the recent progress. Optogenetic (and chemogenetic) approaches map input and output pathways of particular subpopulations of GABAergic neurons. In vivo Ca2+ imaging using GRIN lens and GCaMP can correlate the activity of GABAergic neuron subpopulations with feeding behavior. Single-cell RNA-seq approach clarifies precise transcriptional profiles of GABAergic neuron subpopulations. These approaches have shown diversity of GABAergic neurons and the subpopulation-dependent role in feeding regulation.
Collapse
Affiliation(s)
- Shigetomo Suyama
- Division of Integrative Physiology, Department of Physiology, Jichi Medical University School of Medicine, 3311-1 Yakushiji, Shimotsuke, Tochigi, 320-0498, Japan.
| | - Toshihiko Yada
- Division of Integrative Physiology, Department of Physiology, Jichi Medical University School of Medicine, 3311-1 Yakushiji, Shimotsuke, Tochigi, 320-0498, Japan.
- Kansai Electric Power Medical Research Institute, 1-5-6 Minatojimaminamimachi, Chuou-ku, Kobe, 650-0047, Japan.
| |
Collapse
|
17
|
Fuller-Jackson JP, Henry BA. Adipose and skeletal muscle thermogenesis: studies from large animals. J Endocrinol 2018; 237:R99-R115. [PMID: 29703782 DOI: 10.1530/joe-18-0090] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 04/05/2018] [Indexed: 12/30/2022]
Abstract
The balance between energy intake and energy expenditure establishes and preserves a 'set-point' body weight. The latter is comprised of three major components including metabolic rate, physical activity and thermogenesis. Thermogenesis is defined as the cellular dissipation of energy via heat production. This process has been extensively characterised in brown adipose tissue (BAT), wherein uncoupling protein 1 (UCP1) creates a proton leak across the inner mitochondrial membrane, diverting protons away from ATP synthesis and resulting in heat dissipation. In beige adipocytes and skeletal muscle, thermogenesis can occur independent of UCP1. Beige adipocytes have been shown to produce heat via UCP1 as well as via both futile creatine and calcium cycling pathways. On the other hand, the UCP1 homologue UCP3 is abundant in skeletal muscle and post-prandial thermogenesis has been associated with UCP3 and the futile calcium cycling. This review will focus on the differential contributions of adipose tissue and skeletal muscle in determining total thermogenic output and energy expenditure in large mammals. Sheep and pigs do not have a circumscribed brown fat depot but rather possess white fat depots that contain brown and beige adipocytes interspersed amongst white adipose tissue. This is representative of humans, where brown, beige and white adipocytes have been identified in the neck and supraclavicular regions. This review will describe the mechanisms of thermogenesis in pigs and sheep and the relative roles of skeletal muscle and adipose tissue thermogenesis in controlling body weight in larger mammals.
Collapse
Affiliation(s)
| | - Belinda A Henry
- Metabolism, Diabetes and Obesity Program, Monash Biomedicine Discovery Institute, Department of Physiology, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
18
|
|
19
|
Hausen AC, Ruud J, Jiang H, Hess S, Varbanov H, Kloppenburg P, Brüning JC. Insulin-Dependent Activation of MCH Neurons Impairs Locomotor Activity and Insulin Sensitivity in Obesity. Cell Rep 2017; 17:2512-2521. [PMID: 27926856 DOI: 10.1016/j.celrep.2016.11.030] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 09/22/2016] [Accepted: 11/08/2016] [Indexed: 11/18/2022] Open
Abstract
Melanin-concentrating-hormone (MCH)-expressing neurons (MCH neurons) in the lateral hypothalamus (LH) are critical regulators of energy and glucose homeostasis. Here, we demonstrate that insulin increases the excitability of these neurons in control mice. In vivo, insulin promotes phosphatidylinositol 3-kinase (PI3K) signaling in MCH neurons, and cell-type-specific deletion of the insulin receptor (IR) abrogates this response. While lean mice lacking the IR in MCH neurons (IRΔMCH) exhibit no detectable metabolic phenotype under normal diet feeding, they present with improved locomotor activity and insulin sensitivity under high-fat-diet-fed, obese conditions. Similarly, obesity promotes PI3 kinase signaling in these neurons, and this response is abrogated in IRΔMCH mice. In turn, acute chemogenetic activation of MCH neurons impairs locomotor activity but not insulin sensitivity. Collectively, our experiments reveal an insulin-dependent activation of MCH neurons in obesity, which contributes via distinct mechanisms to the manifestation of impaired locomotor activity and insulin resistance.
Collapse
Affiliation(s)
- A Christine Hausen
- Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931 Cologne, Germany; Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), University Hospital Cologne, Kerpener Strasse 26, 50924 Cologne, Germany; Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD) and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Joseph-Stelzmann-Strasse 26, 50931 Cologne, Germany
| | - Johan Ruud
- Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931 Cologne, Germany; Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), University Hospital Cologne, Kerpener Strasse 26, 50924 Cologne, Germany; Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD) and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Joseph-Stelzmann-Strasse 26, 50931 Cologne, Germany
| | - Hong Jiang
- Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931 Cologne, Germany; Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), University Hospital Cologne, Kerpener Strasse 26, 50924 Cologne, Germany; Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD) and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Joseph-Stelzmann-Strasse 26, 50931 Cologne, Germany
| | - Simon Hess
- Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD) and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Joseph-Stelzmann-Strasse 26, 50931 Cologne, Germany; Biocenter, Institute for Zoology, University of Cologne, Zülpicher Strasse 47b, 50674 Cologne, Germany
| | - Hristo Varbanov
- Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD) and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Joseph-Stelzmann-Strasse 26, 50931 Cologne, Germany; Biocenter, Institute for Zoology, University of Cologne, Zülpicher Strasse 47b, 50674 Cologne, Germany
| | - Peter Kloppenburg
- Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD) and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Joseph-Stelzmann-Strasse 26, 50931 Cologne, Germany; Biocenter, Institute for Zoology, University of Cologne, Zülpicher Strasse 47b, 50674 Cologne, Germany
| | - Jens C Brüning
- Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931 Cologne, Germany; Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), University Hospital Cologne, Kerpener Strasse 26, 50924 Cologne, Germany; Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD) and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Joseph-Stelzmann-Strasse 26, 50931 Cologne, Germany; National Center for Diabetes Research (DZD), Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany.
| |
Collapse
|
20
|
Zeilinger M, Dumanic M, Pichler F, Budinsky L, Wadsak W, Pallitsch K, Spreitzer H, Lanzenberger R, Hacker M, Mitterhauser M, Philippe C. In vivo evaluation of radiotracers targeting the melanin-concentrating hormone receptor 1: [ 11C]SNAP-7941 and [ 18F]FE@SNAP reveal specific uptake in the ventricular system. Sci Rep 2017; 7:8054. [PMID: 28808288 PMCID: PMC5556108 DOI: 10.1038/s41598-017-08684-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 07/17/2017] [Indexed: 11/14/2022] Open
Abstract
The MCHR1 is involved in the regulation of energy homeostasis and changes of the expression are linked to a variety of associated diseases, such as diabetes and adiposity. The study aimed at the in vitro and in vivo evaluation of [11C]SNAP-7941 and [18F]FE@SNAP as potential PET-tracers for the MCHR1. Competitive binding studies with non-radioactive derivatives and small-animal PET/CT and MRI brain studies were performed under baseline conditions and tracer displacement with the unlabelled MCHR1 antagonist (±)-SNAP-7941. Binding studies evinced high binding affinity of the non-radioactive derivatives. Small-animal imaging of [11C]SNAP-7941 and [18F]FE@SNAP evinced high tracer uptake in MCHR1-rich regions of the ventricular system. Quantitative analysis depicted a significant tracer reduction after displacement with (±)-SNAP-7941. Due to the high binding affinity of the non-labelled derivatives and the high specific tracer uptake of [11C]SNAP-7941 and [18F]FE@SNAP, there is strong evidence that both radiotracers may serve as highly suitable agents for specific MCHR1 imaging.
Collapse
Affiliation(s)
- Markus Zeilinger
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
- Department of Engineering, University of Applied Sciences Wiener Neustadt, Wiener Neustadt, Austria
| | - Monika Dumanic
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
| | - Florian Pichler
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
- Department of Engineering, University of Applied Sciences Wiener Neustadt, Wiener Neustadt, Austria
| | - Lubos Budinsky
- Department of Biomedical Imaging and Image-guided Therapy, Division of Molecular and Gender Imaging, Medical University of Vienna, Vienna, Austria
| | - Wolfgang Wadsak
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
- Department of Inorganic Chemistry, University of Vienna, Vienna, Austria
- CBmed GmbH, Center for Biomarker Research in Medicine, Graz, Austria
| | | | - Helmut Spreitzer
- Department of Pharmaceutical Chemistry, University of Vienna, Vienna, Austria
| | - Rupert Lanzenberger
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Marcus Hacker
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
| | - Markus Mitterhauser
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria.
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Vienna, Vienna, Austria.
- Ludwig Boltzmann Institute for Applied Diagnostics, Vienna, Austria.
| | - Cécile Philippe
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Vienna, Vienna, Austria
| |
Collapse
|
21
|
Kawata Y, Okuda S, Hotta N, Igawa H, Takahashi M, Ikoma M, Kasai S, Ando A, Satomi Y, Nishida M, Nakayama M, Yamamoto S, Nagisa Y, Takekawa S. A novel and selective melanin-concentrating hormone receptor 1 antagonist ameliorates obesity and hepatic steatosis in diet-induced obese rodent models. Eur J Pharmacol 2016; 796:45-53. [PMID: 27986627 DOI: 10.1016/j.ejphar.2016.12.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 12/12/2016] [Accepted: 12/12/2016] [Indexed: 01/23/2023]
Abstract
Melanin-concentrating hormone (MCH), a cyclic neuropeptide expressed predominantly in the lateral hypothalamus, plays an important role in the control of feeding behavior and energy homeostasis. Mice lacking MCH or MCH1 receptor are resistant to diet-induced obesity (DIO) and MCH1 receptor antagonists show potent anti-obesity effects in preclinical studies, indicating that MCH1 receptor is a promising target for anti-obesity drugs. Moreover, recent studies have suggested the potential of MCH1 receptor antagonists for treatment of non-alcoholic fatty liver disease (NAFLD). In the present study, we show the anti-obesity and anti-hepatosteatosis effect of our novel MCH1 receptor antagonist, Compound A. Repeated oral administration of Compound A resulted in dose-dependent body weight reduction and had an anorectic effect in DIO mice. The body weight lowering effect of Compound A was more potent than that of pair-feeding. Compound A also reduced lipid content and the expression level of lipogenesis-, inflammation-, and fibrosis-related genes in the liver of DIO mice. Conversely, intracerebroventricular infusion of MCH caused induction of hepatic steatosis as well as increase in body weight in high-fat diet-fed wild type mice, but not MCH1 receptor knockout mice. The pair-feeding study revealed the MCH-MCH1 receptor system affects hepatic steatosis through a mechanism that is independent of body weight change. Metabolome analysis demonstrated that Compound A upregulated lipid metabolism-related molecules, such as acylcarnitines and cardiolipins, in the liver. These findings suggest that our novel MCH1 receptor antagonist, Compound A, exerts its beneficial therapeutic effect on NAFLD and obesity through a central MCH-MCH1 receptor pathway.
Collapse
Affiliation(s)
- Yayoi Kawata
- Pharmaceutical Research Division, Takeda Pharmaceutical Co., Ltd., 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan.
| | - Shoki Okuda
- Pharmaceutical Research Division, Takeda Pharmaceutical Co., Ltd., 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Natsu Hotta
- Pharmaceutical Research Division, Takeda Pharmaceutical Co., Ltd., 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Hideyuki Igawa
- Pharmaceutical Research Division, Takeda Pharmaceutical Co., Ltd., 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Masashi Takahashi
- Pharmaceutical Research Division, Takeda Pharmaceutical Co., Ltd., 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Minoru Ikoma
- Pharmaceutical Research Division, Takeda Pharmaceutical Co., Ltd., 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Shizuo Kasai
- Pharmaceutical Research Division, Takeda Pharmaceutical Co., Ltd., 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Ayumi Ando
- Pharmaceutical Research Division, Takeda Pharmaceutical Co., Ltd., 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Yoshinori Satomi
- Pharmaceutical Research Division, Takeda Pharmaceutical Co., Ltd., 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Mayumi Nishida
- Pharmaceutical Research Division, Takeda Pharmaceutical Co., Ltd., 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Masaharu Nakayama
- Pharmaceutical Research Division, Takeda Pharmaceutical Co., Ltd., 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Syunsuke Yamamoto
- Pharmaceutical Research Division, Takeda Pharmaceutical Co., Ltd., 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Yasutaka Nagisa
- Pharmaceutical Research Division, Takeda Pharmaceutical Co., Ltd., 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Shiro Takekawa
- Pharmaceutical Research Division, Takeda Pharmaceutical Co., Ltd., 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| |
Collapse
|
22
|
Philippe C, Haeusler D, Scherer T, Fürnsinn C, Zeilinger M, Wadsak W, Shanab K, Spreitzer H, Hacker M, Mitterhauser M. [(18)F]FE@SNAP-a specific PET tracer for melanin-concentrating hormone receptor 1 imaging? EJNMMI Res 2016; 6:31. [PMID: 27033361 PMCID: PMC4816952 DOI: 10.1186/s13550-016-0186-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 03/20/2016] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND The melanin-concentrating hormone receptor 1 (MCHR1), which is highly expressed in the lateral hypothalamus, plays a key role in energy homeostasis, obesity and other endocrine diseases. Hence, there is a major interest in in vivo imaging of this receptor. A PET tracer would allow non-invasive in vivo visualization and quantification of the MCHR1. The aim of the study was the ex vivo evaluation of the MCHR1 ligand [(18)F]FE@SNAP as a potential PET tracer for the MCHR1. METHODS [(18)F]FE@SNAP was injected directly into the jugular vein of awake naïve rats for ex vivo brain autoradiography, biodistribution and additional blood metabolite analysis. Blocking experiments were conducted using the unlabeled MCHR1 ligand SNAP-7941. RESULTS A high uptake of [(18)F]FE@SNAP was observed in the lateral hypothalamus and the ventricular system. Both regions were significantly blocked by SNAP-7941. Biodistribution evinced the highest uptake in the kidneys, adrenals, lung and duodenum. Specific blocking with SNAP-7941 led to a significant tracer reduction in the heart and adrenals. In plasma samples, 47.73 ± 6.1 % of a hydrophilic radioactive metabolite was found 45 min after tracer injection. CONCLUSIONS Since [(18)F]FE@SNAP uptake was significantly blocked in the lateral hypothalamus, there is strong evidence that [(18)F]FE@SNAP is a highly suitable agent for specific MCHR1 imaging in the central nervous system. Additionally, this finding is supported by the specific blocking in the ventricular system, where the MCHR1 is expressed in the ependymal cells. These findings suggest that [(18)F]FE@SNAP could serve as a useful imaging and therapy monitoring tool for MCHR1-related pathologies.
Collapse
Affiliation(s)
- Cécile Philippe
- />Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
- />Department of Pharmaceutical Technology and Biopharmaceutics, University of Vienna, Vienna, Austria
| | - Daniela Haeusler
- />Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Thomas Scherer
- />Department of Medicine III, Division of Endocrinology and Metabolism, Medical University of Vienna, Vienna, Austria
| | - Clemens Fürnsinn
- />Department of Medicine III, Division of Endocrinology and Metabolism, Medical University of Vienna, Vienna, Austria
| | - Markus Zeilinger
- />Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Wolfgang Wadsak
- />Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Karem Shanab
- />Department of Pharmaceutical Chemistry, University of Vienna, Vienna, Austria
| | - Helmut Spreitzer
- />Department of Pharmaceutical Chemistry, University of Vienna, Vienna, Austria
| | - Marcus Hacker
- />Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Markus Mitterhauser
- />Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
- />Department of Pharmaceutical Technology and Biopharmaceutics, University of Vienna, Vienna, Austria
- />Ludwig Boltzmann Institute for Applied Diagnostics, Vienna, Austria
| |
Collapse
|
23
|
Lelesz B, Szilvássy Z, Tóth GK, Tóth A, Enyedi A, Felszeghy E, Varga A, Juhász B, Németh J. Radioanalytical methods for the measurement of melanin concentrating hormone (MCH) and detection its receptor in rat tissues. J Radioanal Nucl Chem 2016. [DOI: 10.1007/s10967-016-4952-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
24
|
Igawa H, Takahashi M, Ikoma M, Kaku H, Kakegawa K, Kina A, Aida J, Okuda S, Kawata Y, Noguchi T, Hotta N, Yamamoto S, Nakayama M, Nagisa Y, Kasai S, Maekawa T. Amine-free melanin-concentrating hormone receptor 1 antagonists: Novel non-basic 1-(2H-indazole-5-yl)pyridin-2(1H)-one derivatives and mitigation of mutagenicity in Ames test. Bioorg Med Chem 2016; 24:2504-2518. [PMID: 27117261 DOI: 10.1016/j.bmc.2016.04.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 04/05/2016] [Accepted: 04/06/2016] [Indexed: 11/21/2022]
Abstract
To develop non-basic melanin-concentrating hormone receptor 1 (MCHR1) antagonists with a high probability of target selectivity and therapeutic window, we explored neutral bicyclic motifs that could replace the previously reported imidazo[1,2-a]pyridine or 1H-benzimidazole motif. The results indicated that the binding affinity of a chemically neutral 2H-indazole derivative 8a with MCHR1 (hMCHR1: IC50=35nM) was comparable to that of the imidazopyridine and benzimidazole derivatives (1 and 2, respectively) reported so far. However, 8a was positive in the Ames test using TA1537 in S9- condition. Based on a putative intercalation of 8a with DNA, we introduced a sterically-hindering cyclopropyl group on the indazole ring to decrease planarity, which led to the discovery of 1-(2-cyclopropyl-3-methyl-2H-indazol-5-yl)-4-{[5-(trifluoromethyl)thiophen-3-yl]methoxy}pyridin-2(1H)-one 8l without mutagenicity in TA1537. Compound 8l exerted significant antiobesity effects in diet-induced obese F344 rats and exhibited promising safety profile.
Collapse
Affiliation(s)
- Hideyuki Igawa
- Pharmaceutical Research Division, Takeda Pharmaceutical Co., Ltd, Shonan Research Center, 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan.
| | - Masashi Takahashi
- Pharmaceutical Research Division, Takeda Pharmaceutical Co., Ltd, Shonan Research Center, 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Minoru Ikoma
- Pharmaceutical Research Division, Takeda Pharmaceutical Co., Ltd, Shonan Research Center, 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Hiromi Kaku
- Pharmaceutical Research Division, Takeda Pharmaceutical Co., Ltd, Shonan Research Center, 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Keiko Kakegawa
- Pharmaceutical Research Division, Takeda Pharmaceutical Co., Ltd, Shonan Research Center, 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Asato Kina
- Pharmaceutical Research Division, Takeda Pharmaceutical Co., Ltd, Shonan Research Center, 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Jumpei Aida
- Pharmaceutical Research Division, Takeda Pharmaceutical Co., Ltd, Shonan Research Center, 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Shoki Okuda
- Pharmaceutical Research Division, Takeda Pharmaceutical Co., Ltd, Shonan Research Center, 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Yayoi Kawata
- Pharmaceutical Research Division, Takeda Pharmaceutical Co., Ltd, Shonan Research Center, 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Toshihiro Noguchi
- Pharmaceutical Research Division, Takeda Pharmaceutical Co., Ltd, Shonan Research Center, 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Natsu Hotta
- Pharmaceutical Research Division, Takeda Pharmaceutical Co., Ltd, Shonan Research Center, 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Syunsuke Yamamoto
- Pharmaceutical Research Division, Takeda Pharmaceutical Co., Ltd, Shonan Research Center, 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Masaharu Nakayama
- Pharmaceutical Research Division, Takeda Pharmaceutical Co., Ltd, Shonan Research Center, 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Yasutaka Nagisa
- CVM Marketing Japan Pharma Business Unit, Takeda Pharmaceutical Co., Ltd, 12-10, Nihonbashi 2-Chome, Chuo-ku, Tokyo 103-8686, Japan
| | - Shizuo Kasai
- Pharmaceutical Research Division, Takeda Pharmaceutical Co., Ltd, Shonan Research Center, 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Tsuyoshi Maekawa
- Pharmaceutical Research Division, Takeda Pharmaceutical Co., Ltd, Shonan Research Center, 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| |
Collapse
|
25
|
Igawa H, Takahashi M, Shirasaki M, Kakegawa K, Kina A, Ikoma M, Aida J, Yasuma T, Okuda S, Kawata Y, Noguchi T, Yamamoto S, Fujioka Y, Kundu M, Khamrai U, Nakayama M, Nagisa Y, Kasai S, Maekawa T. Amine-free melanin-concentrating hormone receptor 1 antagonists: Novel 1-(1H-benzimidazol-6-yl)pyridin-2(1H)-one derivatives and design to avoid CYP3A4 time-dependent inhibition. Bioorg Med Chem 2016; 24:2486-2503. [PMID: 27112449 DOI: 10.1016/j.bmc.2016.04.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 04/04/2016] [Accepted: 04/05/2016] [Indexed: 12/11/2022]
Abstract
Melanin-concentrating hormone (MCH) is an attractive target for antiobesity agents, and numerous drug discovery programs are dedicated to finding small-molecule MCH receptor 1 (MCHR1) antagonists. We recently reported novel pyridine-2(1H)-ones as aliphatic amine-free MCHR1 antagonists that structurally featured an imidazo[1,2-a]pyridine-based bicyclic motif. To investigate imidazopyridine variants with lower basicity and less potential to inhibit cytochrome P450 3A4 (CYP3A4), we designed pyridine-2(1H)-ones bearing various less basic bicyclic motifs. Among these, a lead compound 6a bearing a 1H-benzimidazole motif showed comparable binding affinity to MCHR1 to the corresponding imidazopyridine derivative 1. Optimization of 6a afforded a series of potent thiophene derivatives (6q-u); however, most of these were found to cause time-dependent inhibition (TDI) of CYP3A4. As bioactivation of thiophenes to form sulfoxide or epoxide species was considered to be a major cause of CYP3A4 TDI, we introduced electron withdrawing groups on the thiophene and found that a CF3 group on the ring or a Cl adjacent to the sulfur atom helped prevent CYP3A4 TDI. Consequently, 4-[(5-chlorothiophen-2-yl)methoxy]-1-(2-cyclopropyl-1-methyl-1H-benzimidazol-6-yl)pyridin-2(1H)-one (6s) was identified as a potent MCHR1 antagonist without the risk of CYP3A4 TDI, which exhibited a promising safety profile including low CYP3A4 inhibition and exerted significant antiobesity effects in diet-induced obese F344 rats.
Collapse
Affiliation(s)
- Hideyuki Igawa
- Pharmaceutical Research Division, Takeda Pharmaceutical Co., Ltd., Shonan Research Center, 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan.
| | - Masashi Takahashi
- Pharmaceutical Research Division, Takeda Pharmaceutical Co., Ltd., Shonan Research Center, 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Mikio Shirasaki
- Pharmaceutical Research Division, Takeda Pharmaceutical Co., Ltd., Shonan Research Center, 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Keiko Kakegawa
- Pharmaceutical Research Division, Takeda Pharmaceutical Co., Ltd., Shonan Research Center, 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Asato Kina
- Pharmaceutical Research Division, Takeda Pharmaceutical Co., Ltd., Shonan Research Center, 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Minoru Ikoma
- Pharmaceutical Research Division, Takeda Pharmaceutical Co., Ltd., Shonan Research Center, 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Jumpei Aida
- Pharmaceutical Research Division, Takeda Pharmaceutical Co., Ltd., Shonan Research Center, 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Tsuneo Yasuma
- CMC Center, Takeda Pharmaceutical Co., Ltd., 17-85, Jusohonmachi 2-Chome, Yodogawa-ku, Osaka 532-8686, Japan
| | - Shoki Okuda
- Pharmaceutical Research Division, Takeda Pharmaceutical Co., Ltd., Shonan Research Center, 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Yayoi Kawata
- Pharmaceutical Research Division, Takeda Pharmaceutical Co., Ltd., Shonan Research Center, 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Toshihiro Noguchi
- Pharmaceutical Research Division, Takeda Pharmaceutical Co., Ltd., Shonan Research Center, 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Syunsuke Yamamoto
- Pharmaceutical Research Division, Takeda Pharmaceutical Co., Ltd., Shonan Research Center, 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Yasushi Fujioka
- Pharmaceutical Research Division, Takeda Pharmaceutical Co., Ltd., Shonan Research Center, 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Mrinalkanti Kundu
- TCG Lifesciences Ltd., Block BN, Plot 7, Saltlake Electronics Complex, Sector V, Kolkata 700091, India
| | - Uttam Khamrai
- TCG Lifesciences Ltd., Block BN, Plot 7, Saltlake Electronics Complex, Sector V, Kolkata 700091, India
| | - Masaharu Nakayama
- Pharmaceutical Research Division, Takeda Pharmaceutical Co., Ltd., Shonan Research Center, 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Yasutaka Nagisa
- CVM Marketing Japan Pharma Business Unit, Takeda Pharmaceutical Co., Ltd., 12-10, Nihonbashi 2-Chome, Chuo-ku, Tokyo 103-8686, Japan
| | - Shizuo Kasai
- Pharmaceutical Research Division, Takeda Pharmaceutical Co., Ltd., Shonan Research Center, 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Tsuyoshi Maekawa
- Pharmaceutical Research Division, Takeda Pharmaceutical Co., Ltd., Shonan Research Center, 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| |
Collapse
|
26
|
Henry BA, Loughnan R, Hickford J, Young IR, St John JC, Clarke I. Differences in mitochondrial DNA inheritance and function align with body conformation in genetically lean and fat sheep. J Anim Sci 2016; 93:2083-93. [PMID: 26020304 DOI: 10.2527/jas.2014-8764] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Body weight and adiposity are determined by the balance between energy intake, energy expenditure, and nutrient deposition. We have identified differences in appetite-regulating peptides in sheep selectively bred to be either lean or fat, wherein gene expression for orexin and melanin-concentrating hormone are elevated in the lean group. Despite this, the underlying mechanisms leading to differences in body composition in the lean and fat lines remains unknown. We measured postprandial temperature in adipose tissue and muscle to ascertain whether a difference in thermogenesis is associated with the difference in body composition in genetically lean (n = 8) and fat (n = 12) ewes. Body weight was higher (P < 0.01) but percent fat mass was lower (P < 0.001) in the lean group. The percent lean mass was similar in lean and fat groups. Animals received intracerebroventricular cannulae and temperature probes implanted into the retroperitoneal fat and the hind-limb skeletal muscle (vastus lateralis). Animals were meal fed (1100-1600 h) to entrain postprandial thermogenesis. Food intake was similar between lean and fat animals. Postprandial thermogenesis was greater (P < 0.05) in the retroperitoneal adipose tissue of lean animals but not in skeletal muscle. Intracerebroventricular infusion of leptin reduced (P< 0.05) food intake by an equal extent in both groups. Postprandial expression of UCP1 mRNA was greater (P < 0.05) in retroperitoneal fat of lean animals, with similar UCP3 expression in skeletal muscle. Mitochondrial genome sequencing indicated haplotypic clustering in lean and fat animals within both the encoding and nonencoding regions. This demonstrates that differences in body composition may be underpinned by differences in thermogenesis, specifically within adipose tissue. Furthermore, thermogenic differences may be associated with specific mitochondrial DNA haplotypes, suggesting a strong genetic component inherited through the maternal lineage.
Collapse
|
27
|
Igawa H, Takahashi M, Kakegawa K, Kina A, Ikoma M, Aida J, Yasuma T, Kawata Y, Ashina S, Yamamoto S, Kundu M, Khamrai U, Hirabayashi H, Nakayama M, Nagisa Y, Kasai S, Maekawa T. Melanin-Concentrating Hormone Receptor 1 Antagonists Lacking an Aliphatic Amine: Synthesis and Structure-Activity Relationships of Novel 1-(Imidazo[1,2-a]pyridin-6-yl)pyridin-2(1H)-one Derivatives. J Med Chem 2016; 59:1116-39. [PMID: 26736071 DOI: 10.1021/acs.jmedchem.5b01704] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Aiming to discover melanin-concentrating hormone receptor 1 (MCHR1) antagonists with improved safety profiles, we hypothesized that the aliphatic amine employed in most antagonists reported to date could be removed if the bicyclic motif of the compound scaffold interacted with Asp123 and/or Tyr272 of MCHR1. We excluded aliphatic amines from our compound designs, with a cutoff value of pK(a) < 8, and explored aliphatic amine-free MCHR1 antagonists in a CNS-oriented chemical space limited by four descriptors (TPSA, ClogP, MW, and HBD count). Screening of novel bicyclic motifs with high intrinsic binding affinity for MCHR1 identified the imidazo[1,2-a]pyridine ring (represented in compounds 6a and 6b), and subsequent cyclization of the central aliphatic amide linkage led to the discovery of a potent, orally bioavailable MCHR1 antagonist 4-[(4-chlorobenzyl)oxy]-1-(2-cyclopropyl-3-methylimidazo[1,2-a]pyridin-6-yl)pyridin-2(1H)-one 10a. It exhibited low potential for hERG inhibition and phospholipidosis induction as well as sufficient brain concentration to exert antiobesity effects in diet-induced obese rats.
Collapse
Affiliation(s)
- Hideyuki Igawa
- Pharmaceutical Research Division, Takeda Pharmaceutical Co., Ltd., Shonan Research Center , 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Masashi Takahashi
- Pharmaceutical Research Division, Takeda Pharmaceutical Co., Ltd., Shonan Research Center , 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Keiko Kakegawa
- Pharmaceutical Research Division, Takeda Pharmaceutical Co., Ltd., Shonan Research Center , 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Asato Kina
- Pharmaceutical Research Division, Takeda Pharmaceutical Co., Ltd., Shonan Research Center , 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Minoru Ikoma
- Pharmaceutical Research Division, Takeda Pharmaceutical Co., Ltd., Shonan Research Center , 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Jumpei Aida
- Pharmaceutical Research Division, Takeda Pharmaceutical Co., Ltd., Shonan Research Center , 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Tsuneo Yasuma
- CMC Center, Takeda Pharmaceutical Co., Ltd. , 17-85, Jusohonmachi 2-Chome, Yodogawa-ku, Osaka 532-8686, Japan
| | - Yayoi Kawata
- Pharmaceutical Research Division, Takeda Pharmaceutical Co., Ltd., Shonan Research Center , 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Shuntaro Ashina
- Pharmaceutical Research Division, Takeda Pharmaceutical Co., Ltd., Shonan Research Center , 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Syunsuke Yamamoto
- Pharmaceutical Research Division, Takeda Pharmaceutical Co., Ltd., Shonan Research Center , 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Mrinalkanti Kundu
- TCG Lifesciences Ltd. , Block BN, Plot 7, Saltlake Electronics Complex, Sector V, Kolkata 700091, India
| | - Uttam Khamrai
- TCG Lifesciences Ltd. , Block BN, Plot 7, Saltlake Electronics Complex, Sector V, Kolkata 700091, India
| | - Hideki Hirabayashi
- Pharmaceutical Research Division, Takeda Pharmaceutical Co., Ltd., Shonan Research Center , 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Masaharu Nakayama
- Pharmaceutical Research Division, Takeda Pharmaceutical Co., Ltd., Shonan Research Center , 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Yasutaka Nagisa
- CVM Marketing Japan Pharma Business Unit, Takeda Pharmaceutical Co., Ltd. 12-10, Nihonbashi 2-Chome, Chuo-ku, Tokyo 103-8686, Japan
| | - Shizuo Kasai
- Pharmaceutical Research Division, Takeda Pharmaceutical Co., Ltd., Shonan Research Center , 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Tsuyoshi Maekawa
- Pharmaceutical Research Division, Takeda Pharmaceutical Co., Ltd., Shonan Research Center , 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| |
Collapse
|
28
|
Rojczyk E, Pałasz A, Wiaderkiewicz R. Effect of short and long-term treatment with antipsychotics on orexigenic/anorexigenic neuropeptides expression in the rat hypothalamus. Neuropeptides 2015; 51:31-42. [PMID: 25888224 DOI: 10.1016/j.npep.2015.04.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 03/27/2015] [Accepted: 04/01/2015] [Indexed: 12/31/2022]
Abstract
Among numerous side effects of antipsychotic drugs (neuroleptics), one of the leading problems is a significant weight gain caused by disturbances in energy homeostasis. The hypothalamus is considered an important target for neuroleptics and contains some neuronal circuits responsible for food intake regulation, so we decided to study which hypothalamic signaling pathways connected with energy balance control are modified by antipsychotic drugs of different generations. We created an expression profile of different neuropeptides after single-dose and chronic neuroleptic administration. Experiments were carried out on adult male Sprague-Dawley rats injected intraperitoneally for 1 day or for 28 days by three neuroleptics: olanzapine, chlorpromazine and haloperidol. Hypothalami were isolated in order to perform PCR reactions and also whole brains were sliced for immunohistochemical analysis. We assessed the expression of orexigenic/anorexigenic neuropeptides and their receptors--neuropeptide Y (NPY), NPY receptor type 1 (Y1R), preproorexin (PPOX), orexin A, orexin receptor type 1 (OX1R) and 2 (OX2R), nucleobindin 2 (NUCB2), nesfatin-1, proopiomelanocortin (POMC), alpha-melanotropin (α-MSH) and melanocortin receptor type 4 (MC4R)--both on the mRNA and protein levels. We have shown that antipsychotics of different generations administered chronically have the ability to upregulate PPOX, orexin A and Y1R expression with little or no effect on orexigenic receptors (OX1R, OX2R) and NPY. Interestingly, antipsychotics also increased the level of some anorexigenic factors (POMC, α-MSH and MC4R), but at the same time strongly downregulated NUCB2 and nesfatin-1 signaling--a newly discovered neuropeptide known as a food-intake inhibiting factor. Our results may contribute to a better understanding of mechanisms responsible for antipsychotics' side effects. They also underline the complex nature of interactions between classical monoamine receptors and hypothalamic peptidergic pathways, which has potential clinical applications.
Collapse
Affiliation(s)
- Ewa Rojczyk
- Department of Histology, Faculty of Medicine in Katowice, Medical University of Silesia, 18 Medyków Street, 40-752 Katowice, Poland.
| | - Artur Pałasz
- Department of Histology, Faculty of Medicine in Katowice, Medical University of Silesia, 18 Medyków Street, 40-752 Katowice, Poland
| | - Ryszard Wiaderkiewicz
- Department of Histology, Faculty of Medicine in Katowice, Medical University of Silesia, 18 Medyków Street, 40-752 Katowice, Poland
| |
Collapse
|
29
|
Bisschop PH, Fliers E, Kalsbeek A. Autonomic Regulation of Hepatic Glucose Production. Compr Physiol 2014; 5:147-65. [DOI: 10.1002/cphy.c140009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
30
|
Sakurai T, Ogawa K, Ishihara Y, Kasai S, Nakayama M. The MCH(1) receptor, an anti-obesity target, is allosterically inhibited by 8-methylquinoline derivatives possessing subnanomolar binding and long residence times. Br J Pharmacol 2014; 171:1287-98. [PMID: 24670150 DOI: 10.1111/bph.12529] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Revised: 10/16/2013] [Accepted: 11/14/2013] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND AND PURPOSE Melanin-concentrating hormone receptor 1 (MCH1 receptor) antagonists are being considered as anti-obesity agents. The present study reports a new class of MCH1 receptor antagonists with an 8-methylquinoline scaffold. The molecular mechanism of MCH1 receptor blockade by these antagonists was examined. EXPERIMENTAL APPROACH The pharmacological properties of the 8-methylquinolines as exemplified by MQ1 were evaluated by use of multiple biophysical and cell-based functional assays. KEY RESULTS Multiple signalling pathways for Gαi and Gαq , and β-arrestin were inhibited by MQ1. Furthermore, MQ1 produced an insurmountable antagonism, causing a rightward shift of the curve for concentration-dependent binding of MCH along with a progressive reduction of the maximal response. The dissociation kinetics for MQ1 were determined from washout experiments as well as by affinity selection-MS. In short, MQ1 was shown to be a slowly dissociating reversible MCH1 receptor blocker with a low Koff value. CONCLUSION AND IMPLICATIONS This is the first time that a slowly dissociating negative allosteric modulator of the MCH1 receptor has been demonstrated to inhibit the numerous signalling pathways of this receptor. The characteristics of MQ1 are superior and distinct from previously reported MCH1 receptor antagonists, making members of this chemotype attractive as drug candidates.
Collapse
Affiliation(s)
- T Sakurai
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Kanagawa, Japan
| | | | | | | | | |
Collapse
|
31
|
Abstract
A detailed appreciation of the control of adipose tissue whether it be white, brown or brite/beige has never been more important to the development of a framework on which to build therapeutic strategies to combat obesity. This is because 1) the rate of fatty acid release into the circulation from lipolysis in white adipose tissue (WAT) is integrally important to the development of obesity, 2) brown adipose tissue (BAT) has now moved back to center stage with the realization that it is present in adult humans and, in its activated form, is inversely proportional to levels of obesity and 3) the identification and characterization of "brown-like" or brite/beige fat is likely to be one of the most exciting developments in adipose tissue biology in the last decade. Central to all of these developments is the role of the CNS in the control of different fat cell functions and central to CNS control is the integrative capacity of the hypothalamus. In this chapter we will attempt to detail key issues relevant to the structure and function of hypothalamic and downstream control of WAT and BAT and highlight the importance of developing an understanding of the neural input to brite/beige fat cells as a precursor to its recruitment as therapeutic target.
Collapse
Affiliation(s)
- A Stefanidis
- Department of Physiology, Monash University, Clayton, 3800, Australia
| | - N M Wiedmann
- Department of Physiology, Monash University, Clayton, 3800, Australia
| | - E S Adler
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - B J Oldfield
- Department of Physiology, Monash University, Clayton, 3800, Australia.
| |
Collapse
|
32
|
Benedetto L, Pereira M, Ferreira A, Torterolo P. Melanin-concentrating hormone in the medial preoptic area reduces active components of maternal behavior in rats. Peptides 2014; 58:20-5. [PMID: 24893251 DOI: 10.1016/j.peptides.2014.05.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 05/22/2014] [Accepted: 05/23/2014] [Indexed: 01/16/2023]
Abstract
Melanin-concentrating hormone (MCH) is an inhibitory neuropeptide mainly synthesized in neurons of the lateral hypothalamus and incerto-hypothalamic area of mammals that has been implicated in behavioral functions related to motivation. During lactation, this neuropeptide is also expressed in the medial preoptic area (mPOA), a key region of the maternal behavior circuitry. Notably, whereas MCH expression in the mPOA progressively increases during lactation, maternal behavior naturally declines, suggesting that elevated MCHergic activity in the mPOA inhibit maternal behavior in the late postpartum period. To explore this idea, we assessed the maternal behavior of early postpartum females following bilateral microinfusions of either MCH (50 and 100 ng/0.2 μl/side) or the same volume of vehicle into the mPOA. As expected, females receiving 100 ng MCH into the mPOA exhibited significant deficits in the active components of maternal behavior, including retrieving and nest building. In contrast, nursing, as well as other behaviors, including locomotor activity, exploration, and anxiety-like behavior, were not affected by intra-mPOA MCH infusion. The present results, together with previous findings showing elevated expression of this neuropeptide toward the end of the postpartum period, suggest that modulation of mPOA function by MCH may contribute to the weaning of maternal responsiveness characteristic of the late postpartum period.
Collapse
Affiliation(s)
- Luciana Benedetto
- Departamento de Fisiología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Mariana Pereira
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, NJ, USA
| | - Annabel Ferreira
- Sección de Fisiología y Nutrición, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay.
| | - Pablo Torterolo
- Departamento de Fisiología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
33
|
Philippe C, Haeusler D, Fuchshuber F, Spreitzer H, Viernstein H, Hacker M, Wadsak W, Mitterhauser M. Comparative autoradiographic in vitro investigation of melanin concentrating hormone receptor 1 ligands in the central nervous system. Eur J Pharmacol 2014; 735:177-83. [PMID: 24780646 DOI: 10.1016/j.ejphar.2014.04.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 03/19/2014] [Accepted: 04/06/2014] [Indexed: 10/25/2022]
Abstract
The MCHR1 is an interesting pharmacological and pharmaceutical target, due to its involvement in pathologies as diabetes, gut inflammation and adiposity. in vivo PET-studies of the MCHR1 in energy homeostasis and diabetes could be of great value for deeper understanding of endocrinological hormone status and consequential pharmacological interactions. Furthermore, PET-tracers would facilitate compound dose selection of MCHR1 antagonists for treatment. Therefore, we developed two potential PET-tracers, [(11)C]SNAP-7941 and [(18)F]FE@SNAP, for the in vivo visualization of this receptor. Aim of this study was a preclinical in vitro evaluation of both unlabeled ligands. Therefore, a comparative autoradiographic investigation on CNS (coronal rat brain and 4 different human brain regions) and peripheral tissues (rat tongue as target and rat testes as non-target region) was conducted. Competition experiments, using the two radioligands [(125)I]-MCH and [(125)I]-S36057, were performed with selective and specific MCHR1 ligands as PMC-3886, a MCHR1 agonist, SNAP-7941 and FE@SNAP, two MCHR1 antagonists. Additionally, immunohistochemical staining with a specific MCHR1 antibody was performed. Specific binding was found in all tissues known to express the MCHR1 as human and rat CNS and peripheral rat tongue tissue. No specific binding was found in the non-target region of rat testes. MCHR1 antibody staining complemented the outcome of the autoradiographic experiments. The compounds SNAP-7941 and FE@SNAP were generally comparable with PMC-3886. Hence, the in vitro autoradiographic study of the unlabeled compounds SNAP-7941 and FE@SNAP further qualifies the potential of the PET-tracers [(11)C]SNAP-7941 and [(18)F]FE@SNAP as useful MCHR1 PET-tracers.
Collapse
Affiliation(s)
- Cécile Philippe
- Department of Biomedical Imaging and Image-guided Therapy, Divison of Nuclear Medicine, Radiopharmacy and Experimental Nuclear Medicine, Medical University of Vienna, 1090 Vienna, Austria; Department of Pharmaceutical Technology and Biopharmaceutics, University of Vienna, 1090 Vienna, Austria
| | - Daniela Haeusler
- Department of Biomedical Imaging and Image-guided Therapy, Divison of Nuclear Medicine, Radiopharmacy and Experimental Nuclear Medicine, Medical University of Vienna, 1090 Vienna, Austria
| | - Florian Fuchshuber
- Department of Biomedical Imaging and Image-guided Therapy, Divison of Nuclear Medicine, Radiopharmacy and Experimental Nuclear Medicine, Medical University of Vienna, 1090 Vienna, Austria; Department of Pharmaceutical Technology and Biopharmaceutics, University of Vienna, 1090 Vienna, Austria
| | - Helmut Spreitzer
- Department of Drug and Natural Product Synthesis, University of Vienna, 1090 Vienna, Austria
| | - Helmut Viernstein
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Vienna, 1090 Vienna, Austria
| | - Marcus Hacker
- Department of Biomedical Imaging and Image-guided Therapy, Divison of Nuclear Medicine, Radiopharmacy and Experimental Nuclear Medicine, Medical University of Vienna, 1090 Vienna, Austria
| | - Wolfgang Wadsak
- Department of Biomedical Imaging and Image-guided Therapy, Divison of Nuclear Medicine, Radiopharmacy and Experimental Nuclear Medicine, Medical University of Vienna, 1090 Vienna, Austria
| | - Markus Mitterhauser
- Department of Biomedical Imaging and Image-guided Therapy, Divison of Nuclear Medicine, Radiopharmacy and Experimental Nuclear Medicine, Medical University of Vienna, 1090 Vienna, Austria; Department of Pharmaceutical Technology and Biopharmaceutics, University of Vienna, 1090 Vienna, Austria.
| |
Collapse
|
34
|
Zhang LN, Sinclair R, Selman C, Mitchell S, Morgan D, Clapham JC, Speakman JR. Effects of a specific MCHR1 antagonist (GW803430) on energy budget and glucose metabolism in diet-induced obese mice. Obesity (Silver Spring) 2014; 22:681-90. [PMID: 23512845 DOI: 10.1002/oby.20418] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Accepted: 02/01/2013] [Indexed: 11/08/2022]
Abstract
OBJECTIVE The melanin-concentrating hormone (MCH) is a centrally acting peptide implicated in the regulation of energy homeostasis and body weight, although its role in glucose homeostasis is uncertain. Our objective was to determine effects of MCHR1 antagonism on energy budgets and glucose homeostasis in mice. METHODS Effects of chronic oral administration of a specific MCHR1 antagonist (GW803430) on energy budgets and glucose homeostasis in diet-induced obese (DIO) C57BL/6J mice were examined. RESULTS Oral administration of GW803430 for 30 days reduced food intake, body weight, and body fat. Circulating leptin and triglycerides were reduced but insulin and nonesterified fatty acids were unaffected. Despite weight loss there was no improvement in glucose homeostasis (insulin levels and intraperitoneal glucose tolerance tests). On day 4-6, mice receiving MCHR1 antagonist exhibited decreased metabolisable energy intake and increased daily energy expenditure. However these effects had disappeared by day 22-24. Physical activity during the dark phase was increased by MCHR1 antagonist treatment throughout the 30-day treatment. CONCLUSIONS GW803430 produced a persistent anti-obesity effect due to both a decrease in energy intake and an increase in energy expenditure via physical activity but did not improve glucose homeostasis.
Collapse
Affiliation(s)
- Li-Na Zhang
- Integrative Physiology, Institute of Biological Sciences, University of Aberdeen, Aberdeen, Scotland, UK
| | | | | | | | | | | | | |
Collapse
|
35
|
Saito Y, Hamamoto A, Kobayashi Y. Regulated Control of Melanin-Concentrating Hormone Receptor 1 through Posttranslational Modifications. Front Endocrinol (Lausanne) 2013; 4:154. [PMID: 24155742 PMCID: PMC3800845 DOI: 10.3389/fendo.2013.00154] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2013] [Accepted: 10/07/2013] [Indexed: 12/19/2022] Open
Abstract
Melanin-concentrating hormone (MCH) is a hypothalamic neuropeptide that plays an important role in feeding behavior. It activates two G-protein-coupled receptors, MCHR1 and MCHR2, of which MCHR1 is the primary regulator of food intake and energy homeostasis in rodents. In mammalian cells transfected with MCHR1, MCH is able to activate multiple signaling pathways including calcium mobilization, extracellular signal-regulated kinase activation, and inhibition of cyclic AMP generation through Gi/o- and Gq-coupled pathways. Further evidence suggests that MCHR1 is regulated through posttranslational modifications, which control its intracellular localization and provide appropriate cellular responses involving G-protein signaling. This review summarizes the current data on the control of MCHR1 function through glycosylation and phosphorylation, as related to cell function. Especially, a series of mutagenesis study highlights the importance of complete glycosylation of MCHR1 for efficient trafficking to the plasma membrane.
Collapse
Affiliation(s)
- Yumiko Saito
- Graduate School of Integrated Arts and Sciences, Hiroshima University, Hiroshima, Japan
- *Correspondence: Yumiko Saito, Graduate School of Integrated Arts and Sciences, Hiroshima University, 1-7-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8521, Japan e-mail:
| | - Akie Hamamoto
- Graduate School of Integrated Arts and Sciences, Hiroshima University, Hiroshima, Japan
| | - Yuki Kobayashi
- Graduate School of Integrated Arts and Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
36
|
Preclinical in vitro & in vivo evaluation of [11C]SNAP-7941 – the first PET tracer for the melanin concentrating hormone receptor 1. Nucl Med Biol 2013; 40:919-25. [DOI: 10.1016/j.nucmedbio.2013.05.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Revised: 05/16/2013] [Accepted: 05/28/2013] [Indexed: 11/22/2022]
|
37
|
Nagata A, Hamamoto A, Horikawa M, Yoshimura K, Takeda S, Saito Y. Characterization of ciliary targeting sequence of rat melanin-concentrating hormone receptor 1. Gen Comp Endocrinol 2013; 188:159-65. [PMID: 23467069 DOI: 10.1016/j.ygcen.2013.02.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Revised: 02/14/2013] [Accepted: 02/19/2013] [Indexed: 10/27/2022]
Abstract
Melanin-concentrating hormone (MCH) is the natural peptide ligand for MCHR1 and MCHR2, which belong to the G protein-coupled receptor (GPCR) superfamily. The MCH-MCHR1 system is involved in the regulation of feeding, energy homeostasis and emotional processing in rodents. Recently, MCHR1 expression was discovered in neuronal immotile primary cilia of the central nervous system in mice. The cilium has an important chemosensory function in many types of cell and ciliary dysfunction is associated with cliopathies such as polycystic kidney disease, retinal dystrophy, and obesity. The targeting sequence of ciliary membrane proteins is thought to be unique. Although these sequences have been predicted in the cytoplasmic third loop and/or C-terminus of GPCRs, little is known about the characteristics of MCHR1. We thus explored the molecular mechanisms of MCHR1 targeting by transiently expressing a series of MCHR1 mutants into ciliated hRPE1 cells and evaluated the effects of these mutations on the ciliary localization of the heterologous receptor. This approach demonstrated that an Ala-to-Gly mutation (A242G) within the third intracellular loop induced a significant reduction in ciliary localization of the receptor without affecting the ciliogenesis. In contrast, no C-terminal truncation mutant had any effect on ciliary localization or cilia length. This study provides a potential molecular link between defective cilia and clinical manifestations such as obesity.
Collapse
Affiliation(s)
- Asami Nagata
- Graduate School of Integrated Arts and Sciences, Hiroshima University, Kagamiyama, Hiroshima 739-8521, Japan
| | | | | | | | | | | |
Collapse
|
38
|
Philippe C, Nics L, Zeilinger M, Schirmer E, Spreitzer H, Karanikas G, Lanzenberger R, Viernstein H, Wadsak W, Mitterhauser M. Preparation and First Preclinical Evaluation of [(18)F]FE@SNAP: A Potential PET Tracer for the Melanin-Concentrating Hormone Receptor-1 (MCHR1). Sci Pharm 2013; 81:625-39. [PMID: 24106662 PMCID: PMC3791928 DOI: 10.3797/scipharm.1306-02] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Accepted: 07/01/2013] [Indexed: 02/06/2023] Open
Abstract
The melanin-concentrating hormone (MCH) system is a new target for the treatment of human disorders. Since the knowledge of the MCH system’s involvement in a variety of pathologies (obesity, diabetes, and deregulation of metabolic feedback mechanism) is based on in vitro or preclinical studies, a suitable positron emission tomography (PET) tracer needs to be developed. We herein present the preparation and first preclinical evaluation of [18F]FE@SNAP – a new PET tracer for MCH receptor-1 (MCHR1). The synthesis was performed using a microfluidic device. Preclinical evaluation included binding affinity, plasma stability, plasma free fraction, stability against the cytochrome P-450 (CYP450) system using liver microsomes, stability against carboxyl-esterase, and methods to assess the penetration of the blood-brain barrier (BBB) such as logD analysis and immobilized artificial membrane (IAM) chromatography. Levels at 374 ± 202 MBq [18F]FE@SNAP were obtained after purification. The obtained Kd value of [18F]FE@SNAP was 2.9 nM. [18F]FE@SNAP evinced high stability against carboxylesterase, CYP450 enzymes, and in human plasma. LogD (3.83) and IAM chromatography results (Pm=0.51) were in the same range as for known BBB-penetrating compounds. The synthesis of [18F]FE@SNAP was reliable and successful. Due to high binding affinity and stability, [18F]FE@SNAP is a promising tracer for MCHR1.
Collapse
Affiliation(s)
- Cécile Philippe
- Radiochemistry and Biomarker Development Unit, Department of Nuclear Medicine, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria. ; Department of Pharmaceutical Technology and Biopharmaceutics, University of Vienna, Althanstraße 14, 1090 Vienna, Austria
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Sun G, Li M, Li H, Tian Y, Chen Q, Bai Y, Kang X. Molecular cloning and SNP association analysis of chicken PMCH gene. Mol Biol Rep 2013; 40:5049-55. [PMID: 23670042 DOI: 10.1007/s11033-013-2606-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Accepted: 04/29/2013] [Indexed: 11/26/2022]
Abstract
The pre-melanin-concentrating hormone (PMCH) gene is an important gene functionally concerning the regulations of body fat content, feeding behavior and energy balance. In this study, the full-length cDNA of chicken PMCH gene was amplified by SMART RACE method. The single nucleotide polymorphisms (SNPs) in the PMCH gene were screened by comparative sequence analysis. The obtained non-synonymous coding SNPs (ncSNPs) were designed for genotyping firstly. Its effects on growth, carcass characteristics and meat quality traits were investigated employing the F2 resource population of Gushi chicken crossed with Anak broiler by AluI CRS-PCR-RFLP. Our results indicated that the cDNA of chicken PMCH shared 67.25 and 66.47% homology with that of human and bovine PMCH, respectively. The deduced amino acid sequence of chicken PMCH (163 amino acids) were 52.07 and 50.89% identical to those of human and bovine PMCH, respectively. The PMCH protein sequence is predicted to have several functional domains, including pro-MCH, CSP, IL7, XPGI and some low complexity sequence. It has 8 phosphorylation sites and no signal peptide sequence. gga-miR-18a, gga-miR-18b, gga-miR-499 microRNA targeting site was predicted in the 3' untranslated region of chicken PMCH mRNA. In addition, a total of seven SNPs including an ncSNP and a synonymous coding SNP, were identified in the PMCH gene. The ncSNP c.81 A>T was found to be in moderate polymorphic state (polymorphic index=0.365), and the frequencies for genotype AA, AB and BB were 0.3648, 0.4682 and 0.1670, respectively. Significant associations between the locus and shear force of breast and leg were observed. This polymorphic site may serve as a useful target for the marker assisted selection of the growth and meat quality traits in chicken.
Collapse
Affiliation(s)
- Guirong Sun
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Henan Innovative Engineering Research Center of Poultry Germplasm Resource, No. 95 Wenhua Road, Zhengzhou, 450002, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
40
|
MacNeil DJ. The role of melanin-concentrating hormone and its receptors in energy homeostasis. Front Endocrinol (Lausanne) 2013; 4:49. [PMID: 23626585 PMCID: PMC3631741 DOI: 10.3389/fendo.2013.00049] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Accepted: 04/09/2013] [Indexed: 01/25/2023] Open
Abstract
Extensive studies in rodents with melanin-concentrating hormone (MCH) have demonstrated that the neuropeptide hormone is a potent orexigen. Acutely, MCH causes an increase in food intake, while chronically it leads to increased weight gain, primarily as an increase in fat mass. Multiple knockout mice models have confirmed the importance of MCH in modulating energy homeostasis. Animals lacking MCH, MCH-containing neurons, or the MCH receptor all are resistant to diet-induced obesity. These genetic and pharmacologic studies have prompted a large effort to identify potent and selective MCH receptor antagonists, initially as tool compounds to probe pharmacology in models of obesity, with an ultimate goal to identify novel anti-obesity drugs. In animal models, MCH antagonists have consistently shown efficacy in reducing food intake acutely and inhibiting body-weight gain when given chronically. Five compounds have proceeded into clinical testing. Although they were reported as well-tolerated, none has advanced to long-term efficacy and safety studies.
Collapse
Affiliation(s)
- Douglas J. MacNeil
- Department of In Vitro Pharmacology, Merck Research LaboratoriesKenilworth, NJ, USA
- *Correspondence: Douglas J. MacNeil, Department of In Vitro Pharmacology, Merck Research Laboratories, K15-3-309D, 2015 Galloping Hill Road, Kenilworth, NJ 07033, USA. e-mail:
| |
Collapse
|
41
|
Barson JR, Morganstern I, Leibowitz SF. Complementary roles of orexin and melanin-concentrating hormone in feeding behavior. Int J Endocrinol 2013; 2013:983964. [PMID: 23935621 PMCID: PMC3727095 DOI: 10.1155/2013/983964] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Accepted: 06/21/2013] [Indexed: 11/18/2022] Open
Abstract
Transcribed within the lateral hypothalamus, the neuropeptides orexin/hypocretin (OX) and melanin-concentrating hormone (MCH) both promote palatable food intake and are stimulated by palatable food. While these two neuropeptides share this similar positive relationship with food, recent evidence suggests that this occurs through different albeit complementary effects on behavior, with OX promoting food seeking and motivation for palatable food and MCH functioning during ongoing food intake, reinforcing the consumption of calorically dense foods. Further differences are evident in their effects on physiological processes, which are largely opposite in nature. For example, activation of OX receptors, which is neuronally excitatory, promotes waking, increases energy expenditure, and enhances limbic dopamine levels and reward. In contrast, activation of MCH receptors, which is neuronally inhibitory, promotes paradoxical sleep, enhances energy conservation, reduces limbic dopamine, and increases depressive behavior. This review describes these different effects of the neuropeptides, developing the hypothesis that they stimulate the consumption of palatable food through excessive seeking in the case of OX and through excessive energy conservation in the case of MCH. It proposes that OX initiates food intake and subsequently stimulates MCH which then acts to prolong the consumption of palatable, energy-dense food.
Collapse
Affiliation(s)
- Jessica R. Barson
- Laboratory of Behavioral Neurobiology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Irene Morganstern
- Laboratory of Behavioral Neurobiology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Sarah F. Leibowitz
- Laboratory of Behavioral Neurobiology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
- *Sarah F. Leibowitz:
| |
Collapse
|
42
|
Long-term effects of aerobic plus resistance training on the adipokines and neuropeptides in nonalcoholic fatty liver disease obese adolescents. Eur J Gastroenterol Hepatol 2012; 24:1313-24. [PMID: 22932160 DOI: 10.1097/meg.0b013e32835793ac] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
OBJECTIVE To compare the effects of aerobic training (AT) with aerobic plus resistance training (AT+RT) in nonalcoholic fatty liver disease (NAFLD) obese adolescents. DESIGN Long-term interdisciplinary weight-loss therapy (1 year of clinical, nutritional, psychological, and exercise-related intervention). PARTICIPANTS Fifty-eight postpubertal obese adolescents were randomized to AT or AT+RT according to NAFLD diagnosis. Adipokine and neuropeptide concentrations were measured by enzyme-linked immunosorbent assay, visceral fat by ultrasound, and body composition by plethysmography. RESULTS The NAFLD group that followed the AT+RT protocol presented lower insulin, homeostasis model assessment-insulin resistance (HOMA-IR), and alanine transaminase (ALT) values after intervention compared with AT. It was verified that there was a higher magnitude of change in the subcutaneous fat, glycemia, total cholesterol (TC), low-density lipoprotein-cholesterol, ALT, and adiponectin in response to AT+RT than in the control group (AT). All patients who underwent the AT+RT exhibited significantly higher adiponectin, leptin, and Δadiponectin and lower melanin-concentrating hormone (MCH) concentrations after therapy compared with the AT group. In the simple linear regression analysis, changes in glycemia, insulin, and HOMA-IR were independent predictors of significant improvement in adiponectin concentration. Indeed, ΔAST (aspartate transaminase) and ΔGGT (γ-glutamyl transpeptidase) were independent predictors of ΔALT, while Δfat mass and ΔAgRP (agouti-related protein) were independent predictors of ΔMCH. Although the number of patients was limited, we showed for the first time the positive effects of AT+RT protocol in a long-term interdisciplinary therapy to improve inflammatory biomarkers and to reduce orexigenic neuropeptide concentrations in NAFLD obese adolescents. CONCLUSION The long-term interdisciplinary therapy with AT+RT protocol was more effective in significantly improving noninvasive biomarkers of NAFLD that are associated with the highest risk of disease progression in the pediatric population.
Collapse
|
43
|
Bartfai T, Conti B. Molecules affecting hypothalamic control of core body temperature in response to calorie intake. Front Genet 2012; 3:184. [PMID: 23097647 PMCID: PMC3466567 DOI: 10.3389/fgene.2012.00184] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Accepted: 08/31/2012] [Indexed: 01/07/2023] Open
Abstract
Core body temperature (CBT) and calorie intake are main components of energy homeostasis and two important regulators of health, longevity, and aging. In homeotherms, CBT can be influenced by calorie intake as food deprivation or calorie restriction (CR) lowers CBT whereas feeding has hyperthermic effects. The finding that in mice CBT prolonged lifespan independently of CR, suggested that the mechanisms modulating CBT may represent important regulators of aging. Here we summarize the current knowledge on the signaling molecules and their receptors that participate in the regulation of CBT responses to calorie intake. These include hypothalamic neuropeptides regulating feeding but also energy expenditure via modulation of thermogenesis. We also report studies indicating that nutrient signals can contribute to regulation of CBT by direct action on hypothalamic preoptic warm-sensitive neurons that in turn regulate adaptive thermogenesis and hence CBT. Finally, we show the role played by two orphans G protein-coupled receptor: GPR50 and GPR83, that were recently demonstrated to regulate temperature-dependent energy expenditure.
Collapse
Affiliation(s)
- Tamas Bartfai
- Department of Chemical Physiology, The Scripps Research Institute La Jolla, CA, USA
| | | |
Collapse
|
44
|
Philippe C, Ungersboeck J, Schirmer E, Zdravkovic M, Nics L, Zeilinger M, Shanab K, Lanzenberger R, Karanikas G, Spreitzer H, Viernstein H, Mitterhauser M, Wadsak W. [¹⁸F]FE@SNAP-A new PET tracer for the melanin concentrating hormone receptor 1 (MCHR1): microfluidic and vessel-based approaches. Bioorg Med Chem 2012; 20:5936-40. [PMID: 22921745 PMCID: PMC3460236 DOI: 10.1016/j.bmc.2012.07.051] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Revised: 07/23/2012] [Accepted: 07/23/2012] [Indexed: 11/30/2022]
Abstract
Changes in the expression of the melanin concentrating hormone receptor 1 (MCHR1) are involved in a variety of pathologies, especially obesity and anxiety disorders. To monitor these pathologies in-vivo positron emission tomography (PET) is a suitable method. After the successful radiosynthesis of [(11)C]SNAP-7941-the first PET-Tracer for the MCHR1, we aimed to synthesize its [(18)F]fluoroethylated analogue: [(18)F]FE@SNAP. Therefore, microfluidic and vessel-based approaches were tested. [(18)F]fluoroethylation was conducted via various [(18)F]fluoroalkylated synthons and direct [(18)F]fluorination. Only the direct [(18)F]fluorination of a tosylated precursor using a flow-through microreactor was successful, affording [(18)F]FE@SNAP in 44.3 ± 2.6%.
Collapse
Affiliation(s)
- Cécile Philippe
- Radiochemistry and Biomarker Development Unit, Department of Nuclear Medicine, Medical University of Vienna, Waehringer Guertel 18-20, Vienna 1090, Austria
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Vienna, Vienna 1090, Austria
| | - Johanna Ungersboeck
- Radiochemistry and Biomarker Development Unit, Department of Nuclear Medicine, Medical University of Vienna, Waehringer Guertel 18-20, Vienna 1090, Austria
- Department of Inorganic Chemistry, University of Vienna, 1090 Vienna, Austria
| | - Eva Schirmer
- Department of Drug and Natural Product Synthesis, University of Vienna, Vienna 1090, Austria
| | - Milica Zdravkovic
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Vienna, Vienna 1090, Austria
| | - Lukas Nics
- Radiochemistry and Biomarker Development Unit, Department of Nuclear Medicine, Medical University of Vienna, Waehringer Guertel 18-20, Vienna 1090, Austria
- Department of Nutritional Sciences, University of Vienna, Vienna 1090, Austria
| | - Markus Zeilinger
- Radiochemistry and Biomarker Development Unit, Department of Nuclear Medicine, Medical University of Vienna, Waehringer Guertel 18-20, Vienna 1090, Austria
| | - Karem Shanab
- Department of Drug and Natural Product Synthesis, University of Vienna, Vienna 1090, Austria
| | - Rupert Lanzenberger
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, 1090 Vienna, Austria
| | - Georgios Karanikas
- Radiochemistry and Biomarker Development Unit, Department of Nuclear Medicine, Medical University of Vienna, Waehringer Guertel 18-20, Vienna 1090, Austria
| | - Helmut Spreitzer
- Department of Drug and Natural Product Synthesis, University of Vienna, Vienna 1090, Austria
| | - Helmut Viernstein
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Vienna, Vienna 1090, Austria
| | - Markus Mitterhauser
- Radiochemistry and Biomarker Development Unit, Department of Nuclear Medicine, Medical University of Vienna, Waehringer Guertel 18-20, Vienna 1090, Austria
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Vienna, Vienna 1090, Austria
- Hospital Pharmacy of the General Hospital of Vienna, 1090 Vienna, Austria
| | - Wolfgang Wadsak
- Radiochemistry and Biomarker Development Unit, Department of Nuclear Medicine, Medical University of Vienna, Waehringer Guertel 18-20, Vienna 1090, Austria
- Department of Inorganic Chemistry, University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
45
|
Poon K, Barson JR, Fagan SE, Leibowitz SF. Developmental changes in embryonic hypothalamic neurons during prenatal fat exposure. Am J Physiol Endocrinol Metab 2012; 303:E432-41. [PMID: 22693204 PMCID: PMC3774346 DOI: 10.1152/ajpendo.00238.2012] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Maternal consumption of a fat-rich diet during pregnancy, which causes later overeating and weight gain in offspring, has been shown to stimulate neurogenesis and increase hypothalamic expression of orexigenic neuropeptides in these postnatal offspring. The studies here, using an in vitro model that mimics in vivo characteristics after prenatal high-fat diet (HFD) exposure, investigate whether these same peptide changes occur in embryos and if they are specific to neurons. Isolated hypothalamic neurons were compared with whole hypothalamus from embryonic day 19 (E19) embryos that were prenatally exposed to HFD and were both found to show similar increases in mRNA expression of enkephalin (ENK) and neuropeptide Y (NPY) compared with that of chow-exposed embryos, with no change in melanin-concentrating hormone, orexin, or galanin. Further examination using immunofluorescence cytochemistry revealed an increase in the number of cells expressing ENK and NPY. By plotting the fluorescence intensity of each cell as a probability density function, three different populations of neurons with low, medium, or high levels of ENK or NPY were found in both HFD and chow groups. The prenatal HFD shifted the density of neurons from the population containing low peptide levels to the population containing high peptide levels. This study indicates that neuronal culture is a useful in vitro system for studying diet effects on neuronal development and shows that prenatal HFD exposure alters the population of hypothalamic neurons containing ENK and NPY in the embryo. These changes may contribute to the increase in HFD intake and body weight observed in offspring.
Collapse
Affiliation(s)
- Kinning Poon
- The Rockefeller University, Laboratory of Behavioral Neurobiology, New York, NY 10065, USA
| | | | | | | |
Collapse
|
46
|
Radiosynthesis of [11C]SNAP-7941--the first PET-tracer for the melanin concentrating hormone receptor 1 (MCHR1). Appl Radiat Isot 2012; 70:2287-94. [PMID: 22858577 PMCID: PMC3439630 DOI: 10.1016/j.apradiso.2012.07.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Revised: 07/05/2012] [Accepted: 07/10/2012] [Indexed: 11/22/2022]
Abstract
The melanin concentrating hormone (MCH) system is a new target to treat human disorders. Our aim was the preparation of the first PET-tracer for the MCHR1. [(11)C]SNAP-7941 is a carbon-11 labeled analog of the published MCHR1 antagonist SNAP-7941. The optimum reaction conditions were 2 min reaction time, ≤25°C reaction temperature, and 2 mg/mL precursor (SNAP-acid) in acetonitrile, using [(11)C]CH(3)OTf as methylation agent. [(11)C]SNAP-7941 was prepared in a reliable and feasible manner with high radiochemical yields (2.9±1.6 GBq; 11.5±6.4% EOB, n=15).
Collapse
|
47
|
Discovery of a novel melanin concentrating hormone receptor 1 (MCHR1) antagonist with reduced hERG inhibition. Bioorg Med Chem Lett 2012; 22:3781-5. [DOI: 10.1016/j.bmcl.2012.04.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Accepted: 04/02/2012] [Indexed: 11/18/2022]
|
48
|
Abstract
Despite remarkable progress in the elucidation of energy balance and regulation, the development of new antiobesity drugs is still at the stage of infancy. This review describes the MCH and MCH receptor system with regard to its involvement in energy homeostasis and summarizes the pharmacological profiles of selected small molecule MCH-R1 antagonists that are relevant for their development as antiobesity drugs. Although their clinical value still has to be demonstrated, and challenges with regard to unwanted side effects remain to be resolved, MCH-R1 antagonists may provide an effective pharmacotherapy for the treatment of obesity in the near future.
Collapse
|
49
|
Thyrotropin-releasing hormone (TRH) inhibits melanin-concentrating hormone neurons: implications for TRH-mediated anorexic and arousal actions. J Neurosci 2012; 32:3032-43. [PMID: 22378876 DOI: 10.1523/jneurosci.5966-11.2012] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Thyrotropin-releasing hormone (TRH) increases activity and decreases food intake, body weight, and sleep, in part through hypothalamic actions. The mechanism of this action is unknown. Melanin-concentrating hormone (MCH) and hypocretin/orexin neurons in the lateral hypothalamus (LH) together with neuropeptide Y (NPY) and proopiomelanocortin (POMC) neurons in the arcuate nucleus play central roles in energy homeostasis. Here, we provide electrophysiological evidence from GFP-reporter transgenic mouse brain slices that shows TRH modulates the activity of MCH neurons. Using whole-cell current-clamp recording, we unexpectedly found that TRH and its agonist, montrelin, dose-dependently inhibited MCH neurons. Consistent with previous reports, TRH excited hypocretin/orexin neurons. No effect was observed on arcuate nucleus POMC or NPY neurons. The TRH inhibition of MCH neurons was eliminated by bicuculline and tetrodotoxin, suggesting that the effect was mediated indirectly through synaptic mechanisms. TRH increased spontaneous IPSC frequency without affecting amplitude and had no effect on miniature IPSCs or EPSCs. Immunocytochemistry revealed little interaction between TRH axons and MCH neurons, but showed TRH axons terminating on or near GABA neurons. TRH inhibition of MCH neurons was attenuated by Na(+)-Ca(2+) exchanger (NCX) inhibitors, TRPC channel blockers and the phospholipase C inhibitor U-73122. TRH excited LH GABA neurons, and this was also reduced by NCX inhibitors. Finally, TRH attenuated the excitation of MCH neurons by hypocretin. Together, our data suggest that TRH inhibits MCH neurons by increasing synaptic inhibition from local GABA neurons. Inhibition of MCH neurons may contribute to the TRH-mediated reduction in food intake and sleep.
Collapse
|
50
|
Mihalic JT, Chen X, Fan P, Chen X, Fu Y, Liang L, Reed M, Tang L, Chen JL, Jaen J, Li L, Dai K. Discovery of a novel series of melanin-concentrating hormone receptor 1 antagonists for the treatment of obesity. Bioorg Med Chem Lett 2011; 21:7001-5. [DOI: 10.1016/j.bmcl.2011.09.110] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Revised: 09/23/2011] [Accepted: 09/27/2011] [Indexed: 11/16/2022]
|