1
|
Richter EA, Bilan PJ, Klip A. A comprehensive view of muscle glucose uptake: regulation by insulin, contractile activity, and exercise. Physiol Rev 2025; 105:1867-1945. [PMID: 40173020 DOI: 10.1152/physrev.00033.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 11/07/2024] [Accepted: 03/08/2025] [Indexed: 04/04/2025] Open
Abstract
Skeletal muscle is the main site of glucose deposition in the body during meals and the major glucose utilizer during physical activity. Although in both instances the supply of glucose from the circulation to the muscle is of paramount importance, in most conditions the rate-limiting step in glucose uptake, storage, and utilization is the transport of glucose across the muscle cell membrane. This step is dependent upon the translocation of the insulin- and contraction-responsive glucose transporter GLUT4 from intracellular storage sites to the sarcolemma and T tubules. Here, we first analyze how glucose can traverse the capillary wall into the muscle interstitial space. We then review the molecular processes that regulate GLUT4 translocation in response to insulin and muscle contractions and the methodologies utilized to unravel them. We further discuss how physical activity and inactivity, respectively, lead to increased and decreased insulin action in muscle and touch upon sex differences in glucose metabolism. Although many key processes regulating glucose uptake in muscle are known, the advent of newer and bioinformatics tools has revealed further molecular signaling processes reaching a staggering level of complexity. Much of this molecular mapping has emerged from cellular and animal studies and more recently from application of a variety of -omics in human tissues. In the future, it will be imperative to validate the translatability of results drawn from experimental systems to human physiology.
Collapse
Affiliation(s)
- Erik A Richter
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Philip J Bilan
- Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Amira Klip
- Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
| |
Collapse
|
2
|
Göttig L, Schreiner S. E4orf1: The triple agent of adenovirus - Unraveling its roles in oncogenesis, infectious obesity and immune responses in virus replication and vector therapy. Tumour Virus Res 2024; 17:200277. [PMID: 38428735 PMCID: PMC10937242 DOI: 10.1016/j.tvr.2024.200277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/20/2024] [Accepted: 02/20/2024] [Indexed: 03/03/2024] Open
Abstract
Human Adenoviruses (HAdV) are nearly ubiquitous pathogens comprising numerous sub-types that infect various tissues and organs. Among many encoded proteins that facilitate viral replication and subversion of host cellular processes, the viral E4orf1 protein has emerged as an intriguing yet under-investigated player in the complex interplay between the virus and its host. E4orf1 has gained attention as a metabolism activator and oncogenic agent, while recent research is showing that E4orf1 may play a more important role in modulating cellular pathways such as PI3K-Akt-mTOR, Ras, the immune response and further HAdV replication stages than previously anticipated. In this review, we aim to explore the structure, molecular mechanisms, and biological functions of E4orf1, shedding light on its potentially multifaceted roles during HAdV infection, including metabolic diseases and oncogenesis. Furthermore, we discuss the role of functional E4orf1 in biotechnological applications such as Adenovirus (AdV) vaccine vectors and oncolytic AdV. By dissecting the intricate relationships between HAdV types and E4orf1 proteins, this review provides valuable insights into viral pathogenesis and points to promising areas of future research.
Collapse
Affiliation(s)
- Lilian Göttig
- Institute of Virology, School of Medicine, Technical University of Munich, Germany
| | - Sabrina Schreiner
- Institute of Virology, School of Medicine, Technical University of Munich, Germany; Institute of Virology, Hannover Medical School, Hannover, Germany; Cluster of Excellence RESIST (Resolving Infection Susceptibility; EXC 2155), Hannover, Germany; Institute of Virology, Medical Center - University of Freiburg, Freiburg, Germany.
| |
Collapse
|
3
|
Logesh R, Hari B, Chidambaram K, Das N. Molecular effects of Vitamin-D and PUFAs metabolism in skeletal muscle combating Type-II diabetes mellitus. Gene 2024; 904:148216. [PMID: 38307219 DOI: 10.1016/j.gene.2024.148216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 01/10/2024] [Accepted: 01/25/2024] [Indexed: 02/04/2024]
Abstract
Multiple post-receptor intracellular alterations such as impaired glucose transfer, glucose phosphorylation, decreased glucose oxidation, and glycogen production contribute to insulin resistance (IR) in skeletal muscle, manifested by diminished insulin-stimulated glucose uptake. Type-2 diabetes mellites (T2DM) has caused by IR, which is also seen in obese patients and those with metabolic syndrome. The Vitamin-D receptor (VDR) and poly unsaturated fatty acids (PUFAs) roles in skeletal muscle growth, shapes, and function for combating type-2 diabetes have been clarified throughout this research. VDR and PUFAs appears to show a variety of effects on skeletal muscle, in addition it shows a promising role on bone and mineral homeostasis. Individuals having T2DM are reported to suffer from severe muscular weakness and alterations in shape of the muscle. Several studies have investigated the effect on VDR on muscular strength and mass, which leads to Vitamin-D deficiency (VDD) in individuals, in which most commonly seen in elderly. VDR has been shown to affect skeletal cellular proliferation, intracellular calcium handling, as well as genomic activity in a variety of different ways such as muscle metabolism, insulin sensitivity, which is the major characteristic pathogenesis for IR in combating T2DM. The identified VDR gene polymorphisms are ApaI, TaqI, FokI, and BsmI that are associated with T2DM. This review collates informations on the mechanisms by which VDR activation takes place in skeletal muscles. Despite the significant breakthroughs made in recent decades, various studies show that IR affects VDR and PUFAs metabolism in skeletal muscle. Therefore, this review collates the data to show the role of VDR and PUFAs in the skeletal muscles to combat T2DM.
Collapse
Affiliation(s)
- Rajan Logesh
- Department of Pharmacognosy, JSS College of Pharmacy, Mysuru, JSS Academy of Higher Education & Research, Karnataka, India.
| | - Balaji Hari
- TIFAC CORE in Herbal Drugs, Department of Pharmacognosy, JSS Academy of Higher Education & Research, JSS College of Pharmacy, The Nilgiris, Ooty 643001, Tamil Nadu, India
| | - Kumarappan Chidambaram
- Department of Pharmacology, College of Pharmacy, King Khalid University, Al-Qara, Asir Province, Saudi Arabia
| | - Niranjan Das
- Department of Chemistry, Iswar Chandra Vidyasagar College, Belonia 799155, Tripura, India
| |
Collapse
|
4
|
Ren M, Wang L, Wen L, Chen J, Quan S, Shi X. Association between female circulating heavy metal concentration and abortion: a systematic review and meta-analysis. Front Endocrinol (Lausanne) 2023; 14:1216507. [PMID: 37711903 PMCID: PMC10497972 DOI: 10.3389/fendo.2023.1216507] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/31/2023] [Indexed: 09/16/2023] Open
Abstract
Objective This study aimed to evaluate the association between blood heavy metal (zinc (Zn), copper (Cu), lead (Pb), and cadmium (Cd)) concentrations and spontaneous abortion (SA) and recurrent pregnancy loss (RPL) and explore the possible endocrine dysfunction associated with it. Methods A literature search was performed in the PubMed, Embase, Cochrane Library, and Web of Science databases up to April 2023. The overall effects were expressed as the standard mean difference (SMD). Subgroup analysis was performed according to the type of abortion (SA or RPL). Stata 16.0 was utilized for data analysis. Results Based on the integrated findings, abortion women showed significantly lower Zn (SMD = -1.05, 95% CI: -1.74 to -0.36, p = 0.003) and Cu concentrations (SMD = -1.42, 95% CI: -1.97 to -0.87, p <0.001) and higher Pb (SMD = 1.47, 95% CI: 0.89-2.05, p <0.001) and Cd concentrations (SMD = 1.15, 95% CI: 0.45-1.85, p = 0.001) than normal pregnant women. Subgroup analysis showed that Zn and Cu deficiency and Cd and Pb exposure were significantly (p <0.05) associated with RPL, whereas Cu deficiency and Cd and Pb exposure were significantly (p <0.05) associated with SA. Conclusion Zn and Cu deficiencies and Pb and Cd exposure were associated with abortion. Endocrine dysfunction, such as insulin resistance, vitamin D insufficiency, and abnormal thyroid and sex hormone concentrations, is thought to be involved in heavy metal-related abortion.
Collapse
Affiliation(s)
- Meiqi Ren
- Center for Reproductive Medicine, Department of Obstetrics and Gynaecology, NanFang Hospital, Southern Medical University, Guangzhou, China
| | - Liantong Wang
- Center for Reproductive Medicine, Department of Obstetrics and Gynaecology, NanFang Hospital, Southern Medical University, Guangzhou, China
| | - Liqin Wen
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Jinghua Chen
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Song Quan
- Center for Reproductive Medicine, Department of Obstetrics and Gynaecology, NanFang Hospital, Southern Medical University, Guangzhou, China
| | - Xiao Shi
- Center for Reproductive Medicine, Department of Obstetrics and Gynaecology, NanFang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
5
|
Jeon YK, Shin MJ, Saini SK, Custodero C, Aggarwal M, Anton SD, Leeuwenburgh C, Mankowski RT. Vascular dysfunction as a potential culprit of sarcopenia. Exp Gerontol 2020; 145:111220. [PMID: 33373710 DOI: 10.1016/j.exger.2020.111220] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 12/17/2020] [Accepted: 12/18/2020] [Indexed: 02/08/2023]
Abstract
Aging-related changes to biological structures such as cardiovascular and musculoskeletal systems contribute to the development of comorbid conditions including cardiovascular disease and frailty, and ultimately lead to premature death. Although, frail older adults often demonstrate both cardiovascular and musculoskeletal comorbidities, the etiology of sarcopenia, and especially the contribution of cardiovascular aging is unclear. Aging-related vascular calcification is prevalent in older adults and is a known risk factor for cardiovascular disease and death. The effect vascular calcification has on function during aging is not well understood. Emerging findings suggest vascular calcification can impact skeletal muscle perfusion, negatively affecting nutrient and oxygen delivery to skeletal muscle, ultimately accelerating muscle loss and functional decline. The present review summarizes existing evidence on the biological mechanisms linking vascular calcification with sarcopenia during aging.
Collapse
Affiliation(s)
- Yun Kyung Jeon
- Department of Aging and Geriatric Research, University of Florida, Gainesville, FL, USA; Division of Endocrinology and Metabolism, Department of Internal Medicine and Biomedical Research Institute, Pusan National University Hospital, Busan, Republic of Korea
| | - Myung Jun Shin
- Department of Aging and Geriatric Research, University of Florida, Gainesville, FL, USA; Department of Rehabilitation Medicine and Biomedical Research Institute, Pusan National University Hospital, Busan, Republic of Korea
| | - Sunil Kumar Saini
- Department of Aging and Geriatric Research, University of Florida, Gainesville, FL, USA
| | - Carlo Custodero
- Department of Aging and Geriatric Research, University of Florida, Gainesville, FL, USA; Dipartimento Interdisciplinare di Medicina, Clinica Medica Cesare Frugoni, University of Bari Aldo Moro, Bari, Italy
| | - Monica Aggarwal
- Department of Medicine, Division of Cardiovascular Medicine, University of Florida, FL, USA
| | - Stephen D Anton
- Department of Aging and Geriatric Research, University of Florida, Gainesville, FL, USA
| | | | - Robert T Mankowski
- Department of Aging and Geriatric Research, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
6
|
Elshazly SM, Alsemeh AE, Ahmad EAA, Rezq S. CoQ10 exerts hepatoprotective effect in fructose-induced fatty liver model in rats. Pharmacol Rep 2020; 72:922-934. [PMID: 32157594 DOI: 10.1007/s43440-020-00075-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 11/02/2019] [Accepted: 12/30/2019] [Indexed: 12/27/2022]
Abstract
BACKGROUND Excess dietary sugar is associated with deleterious metabolic effects, liver injury, and coenzyme-Q10 (CoQ10) deficiency. This study investigates the ability of CoQ10 to protect against fructose-induced hepatic damage. METHODS Rats were fed tap water or 30% fructose for 12 weeks with or without CoQ10 (10 mg/kg, po). An additional group of rats were allowed to feed on either water or 30% fructose for 12 weeks, followed by four weeks of treatment with either the vehicle or CoQ10. RESULTS Fructose-fed rats showed lower CoQ10 levels, increased systolic pressure, increased body weight, higher liquid consumption, decreased food intake and hyperglycemia. Fructose-fed rats also showed deteriorated serum and liver lipid profiles, impaired liver function tests and oxidative status, and lower expression of adiponectin receptor 1 and 2 along with higher GLUT-2 levels. Furthermore, following fructose treatment, tyrosine kinase-PI3K pathway was inhibited. Additionally, there was an increase in the levels of apoptotic markers and serum visfatin and a decrease in the levels of adiponectin and soluble receptor of the advanced glycated end product. Consequently, several histopathological changes were detected in the liver. Concurrent or three months post-exposure administration of CoQ10 in fructose rats significantly reversed or attenuated all the measured parameters and hepato-cytoarchitecture alterations. CONCLUSION This study suggests CoQ10 supplement as a possible prophylaxis or treatment candidate for fructose-induced liver injury.
Collapse
Affiliation(s)
- Shimaa M Elshazly
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Amira E Alsemeh
- Department of Anatomy and Embryology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Enssaf A A Ahmad
- Department of Anatomy and Embryology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Samar Rezq
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt. .,Department of Cell and Molecular Biology, UMMC, 2500 N state St., Jackson, MS, 39216, USA.
| |
Collapse
|
7
|
IGF1 Knockdown Hinders Myocardial Development through Energy Metabolism Dysfunction Caused by ROS-Dependent FOXO Activation in the Chicken Heart. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:7838754. [PMID: 31949883 PMCID: PMC6948330 DOI: 10.1155/2019/7838754] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 11/16/2019] [Accepted: 11/20/2019] [Indexed: 12/15/2022]
Abstract
Insulin-like growth factor 1 (IGF1) is a multifunctional cellular regulatory factor that can regulate cell growth and development by mediating growth hormone stimulation. However, the mechanism of IGF1 dysfunction in cardiomyocyte development is seldom reported. To study this, we employed the models of IGF1 knockdown in chicken embryo in vivo and in cardiomyocytes in vitro. We detected the antioxidant capacity, PI3K/Akt pathway, energy metabolism-related genes, and myocardial development-related genes. Our results revealed that the low expression of IGF1 can significantly suppress the antioxidant capacity and increase the ROS (P < 0.05) levels, activating the AMPK and PI3K pathway by inhibiting the expression of IRS1. We also found that myocardial energy metabolism is blocked through IGF1, GLUT, and IGFBP inhibition, further inducing myocardial developmental disorder by inhibiting Mesp1, GATA, Nkx2.5, and MyoD expression. Altogether, we conclude that low IGF1 expression can hinder myocardial development through the dysfunction of energy metabolism caused by ROS-dependent FOXO activation.
Collapse
|
8
|
Fazakerley DJ, Minard AY, Krycer JR, Thomas KC, Stöckli J, Harney DJ, Burchfield JG, Maghzal GJ, Caldwell ST, Hartley RC, Stocker R, Murphy MP, James DE. Mitochondrial oxidative stress causes insulin resistance without disrupting oxidative phosphorylation. J Biol Chem 2018; 293:7315-7328. [PMID: 29599292 PMCID: PMC5950018 DOI: 10.1074/jbc.ra117.001254] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 03/19/2018] [Indexed: 01/02/2023] Open
Abstract
Mitochondrial oxidative stress, mitochondrial dysfunction, or both have been implicated in insulin resistance. However, disentangling the individual roles of these processes in insulin resistance has been difficult because they often occur in tandem, and tools that selectively increase oxidant production without impairing mitochondrial respiration have been lacking. Using the dimer/monomer status of peroxiredoxin isoforms as an indicator of compartmental hydrogen peroxide burden, we provide evidence that oxidative stress is localized to mitochondria in insulin-resistant 3T3-L1 adipocytes and adipose tissue from mice. To dissociate oxidative stress from impaired oxidative phosphorylation and study whether mitochondrial oxidative stress per se can cause insulin resistance, we used mitochondria-targeted paraquat (MitoPQ) to generate superoxide within mitochondria without directly disrupting the respiratory chain. At ≤10 μm, MitoPQ specifically increased mitochondrial superoxide and hydrogen peroxide without altering mitochondrial respiration in intact cells. Under these conditions, MitoPQ impaired insulin-stimulated glucose uptake and glucose transporter 4 (GLUT4) translocation to the plasma membrane in both adipocytes and myotubes. MitoPQ recapitulated many features of insulin resistance found in other experimental models, including increased oxidants in mitochondria but not cytosol; a more profound effect on glucose transport than on other insulin-regulated processes, such as protein synthesis and lipolysis; an absence of overt defects in insulin signaling; and defective insulin- but not AMP-activated protein kinase (AMPK)-regulated GLUT4 translocation. We conclude that elevated mitochondrial oxidants rapidly impair insulin-regulated GLUT4 translocation and significantly contribute to insulin resistance and that MitoPQ is an ideal tool for studying the link between mitochondrial oxidative stress and regulated GLUT4 trafficking.
Collapse
Affiliation(s)
- Daniel J Fazakerley
- Charles Perkins Centre, School of Life and Environmental Sciences, Camperdown, New South Wales 2006, Australia
| | - Annabel Y Minard
- Charles Perkins Centre, School of Life and Environmental Sciences, Camperdown, New South Wales 2006, Australia
| | - James R Krycer
- Charles Perkins Centre, School of Life and Environmental Sciences, Camperdown, New South Wales 2006, Australia
| | - Kristen C Thomas
- Charles Perkins Centre, School of Life and Environmental Sciences, Camperdown, New South Wales 2006, Australia
| | - Jacqueline Stöckli
- Charles Perkins Centre, School of Life and Environmental Sciences, Camperdown, New South Wales 2006, Australia
| | - Dylan J Harney
- Charles Perkins Centre, School of Life and Environmental Sciences, Camperdown, New South Wales 2006, Australia
| | - James G Burchfield
- Charles Perkins Centre, School of Life and Environmental Sciences, Camperdown, New South Wales 2006, Australia
| | - Ghassan J Maghzal
- Vascular Biology Division, Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales 2010, Australia; St. Vincent's Clinical School, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Stuart T Caldwell
- School of Chemistry, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Richard C Hartley
- School of Chemistry, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Roland Stocker
- Vascular Biology Division, Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales 2010, Australia; St. Vincent's Clinical School, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Michael P Murphy
- MRC Mitochondrial Biology Unit, Hills Road, University of Cambridge, Cambridge CB2 0XY, United Kingdom
| | - David E James
- Charles Perkins Centre, School of Life and Environmental Sciences, Camperdown, New South Wales 2006, Australia; Charles Perkins Centre, Sydney Medical School, University of Sydney, Camperdown, New South Wales 2006, Australia.
| |
Collapse
|
9
|
Haeusler RA, McGraw TE, Accili D. Biochemical and cellular properties of insulin receptor signalling. Nat Rev Mol Cell Biol 2018; 19:31-44. [PMID: 28974775 PMCID: PMC5894887 DOI: 10.1038/nrm.2017.89] [Citation(s) in RCA: 475] [Impact Index Per Article: 67.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The mechanism of insulin action is a central theme in biology and medicine. In addition to the rather rare condition of insulin deficiency caused by autoimmune destruction of pancreatic β-cells, genetic and acquired abnormalities of insulin action underlie the far more common conditions of type 2 diabetes, obesity and insulin resistance. The latter predisposes to diseases ranging from hypertension to Alzheimer disease and cancer. Hence, understanding the biochemical and cellular properties of insulin receptor signalling is arguably a priority in biomedical research. In the past decade, major progress has led to the delineation of mechanisms of glucose transport, lipid synthesis, storage and mobilization. In addition to direct effects of insulin on signalling kinases and metabolic enzymes, the discovery of mechanisms of insulin-regulated gene transcription has led to a reassessment of the general principles of insulin action. These advances will accelerate the discovery of new treatment modalities for diabetes.
Collapse
Affiliation(s)
- Rebecca A Haeusler
- Columbia University College of Physicians and Surgeons, Department of Pathology and Cell Biology, New York, New York 10032, USA
| | - Timothy E McGraw
- Weill Cornell Medicine, Departments of Biochemistry and Cardiothoracic Surgery, New York, New York 10065, USA
| | - Domenico Accili
- Columbia University College of Physicians & Surgeons, Department of Medicine, New York, New York 10032, USA
| |
Collapse
|
10
|
Liu CM, Ma JQ, Sun JM, Feng ZJ, Cheng C, Yang W, Jiang H. Association of changes in ER stress-mediated signaling pathway with lead-induced insulin resistance and apoptosis in rats and their prevention by A-type dimeric epigallocatechin-3-gallate. Food Chem Toxicol 2017; 110:325-332. [PMID: 29107025 DOI: 10.1016/j.fct.2017.10.040] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 10/15/2017] [Accepted: 10/25/2017] [Indexed: 01/19/2023]
Abstract
A-type dimeric epigallocatechin-3-gallate (A-type-EGCG-dimer, AEd), a new proanthocyanidins dimer from persimmon fruits, has been shown to have health benefit effects. However, A-type-EGCG-dimer affects gluose metabolism in the liver and the underlying mechanism is not clarified. The present study aims to examine the protective effects of A-type-EGCG-dimer on Pb-induced hepatic insulin resistance, endoplasmic reticulum (ER) stress and apoptosis in rats. Male wistar rats exposed to 0.05% w/v Pb acetate in the drinking water with or without A-type-EGCG-dimer coadministration (200 mg/kg body weight/day, intragastrically) for three months. We found that A-type-EGCG-dimer and pioglitazone supplementation significantly deceased glucose and insulin levels in plasma as compared with the Pb group. A-type-EGCG-dimer markedly prevents Pb-induced oxidative stress, ER stress and apoptosis in livers. A-type-EGCG-dimer and pioglitazone reduced the expression levels of the GRP78, PEPCK, G6Pase, p-PERK, p-IRE1, p-JNK, ATF4, CHOP and increased p-AKT in livers of the Pb group. Moreover, A-type-EGCG-dimer reduced ROS production and restored the activities of SOD and GPx in livers. A-type-EGCG-dimer decreased Bax, cytosolic cytochrome c and cleaved caspase-3 and increased Bcl-2 in livers of Pb-exposed rats. Our results suggest that A-type-EGCG-dimer might be a potential natural candidate for the prevention of hepatic insulin resistance and apoptosis induced by Pb.
Collapse
Affiliation(s)
- Chan-Min Liu
- School of Life Science, Jiangsu Normal University, No.101, Shanghai Road, Tangshan New Area, 221116, Xuzhou City, Jiangsu Province, PR China.
| | - Jie-Qiong Ma
- School of Chemistry Engineering, Sichuan University of Science and Engineering, No. 180, Huixing Road, 643000, Zigong City, Sichuan Province, PR China
| | - Jian-Mei Sun
- School of Life Science, Jiangsu Normal University, No.101, Shanghai Road, Tangshan New Area, 221116, Xuzhou City, Jiangsu Province, PR China
| | - Zhao-Jun Feng
- School of Life Science, Jiangsu Normal University, No.101, Shanghai Road, Tangshan New Area, 221116, Xuzhou City, Jiangsu Province, PR China
| | - Chao Cheng
- School of Life Science, Jiangsu Normal University, No.101, Shanghai Road, Tangshan New Area, 221116, Xuzhou City, Jiangsu Province, PR China
| | - Wei Yang
- School of Life Science, Jiangsu Normal University, No.101, Shanghai Road, Tangshan New Area, 221116, Xuzhou City, Jiangsu Province, PR China
| | - Hong Jiang
- School of Life Science, Jiangsu Normal University, No.101, Shanghai Road, Tangshan New Area, 221116, Xuzhou City, Jiangsu Province, PR China
| |
Collapse
|
11
|
Selenium deficiency-induced thioredoxin suppression and thioredoxin knock down disbalanced insulin responsiveness in chicken cardiomyocytes through PI3K/Akt pathway inhibition. Cell Signal 2017; 38:192-200. [PMID: 28734787 DOI: 10.1016/j.cellsig.2017.07.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 06/26/2017] [Accepted: 07/16/2017] [Indexed: 01/15/2023]
Abstract
Thioredoxin (Txn) system is the most crucial antioxidant defense mechanism in cell consisting of Txn, thioredoxin reductase (TR) and Nicotinamide Adenine Dinucleotide Phosphate (NADPH). Perturbations in Txn system may compromise cell survival through oxidative stress induction. Metabolic activity of insulin plays important roles in fulfilling the stable and persistent demands of heart through glucose metabolism. However, the roles of Txn and Txn system in insulin modulated cardiac energy metabolism have been less reported. Therefore, to investigate the role of Txn in myocardial metabolism, we developed a Se-deficient chicken model (0.033mg/kg) for in-vivo and Txn knock down cardiomyocytes culture model (siRNA) for in-vitro studies. Quantitative real time PCR and western blotting was performed. Se deficiency suppressed Txn and TR in cardiac tissues. Significant increases in ROS (P<0.05) levels signify the onset of oxidative stress and in both models. Se deficiency-induced Txn suppression model and Txn knock down cardiomyocytes models significantly decreased (P<0.05), the mRNA and protein levels of insulin-like growth factors (IGF1, IGF2), IGF-binding proteins (IGFBP2, IGFBP4), insulin receptor (IR), insulin receptor substrates (IRS1, IRS2), and glucose transporters (GLUT1, GLUT3, GLUT8), however, IGFBP3 expression increased in Txn knock down cardiomyocytes. In addition, in contrast to their respective controls, Se deficiency-induced Txn depleted tissues and Txn deleted cardiomyocytes showed suppression in mRNA and protein levels of PI3K, AKT, P-PI3K, and repression in FOX, P-FOX JNK genes. Combing the in vitro and in vivo experiments, we demonstrate that Txn gene suppression can cause dysfunction of insulin-modulated cardiac energy metabolism and increase insulin resistance through PI3K-Akt pathway inhibition. Herein, we conclude that inactivation of Txn system can alter cellular insulin response through IRS/PI3K/Akt pathway repression and JNK and FOX expression. These findings point out that Txn system can redox regulate the insulin dependent glucose metabolism in heart and is essential for cell vitality. Moreover, the increased expression of IGFBP3 indicates that it can be a potential negative modulator of metabolic activity of insulin in Txn deficient cells.
Collapse
|
12
|
Lee Y, Fluckey JD, Chakraborty S, Muthuchamy M. Hyperglycemia- and hyperinsulinemia-induced insulin resistance causes alterations in cellular bioenergetics and activation of inflammatory signaling in lymphatic muscle. FASEB J 2017; 31:2744-2759. [PMID: 28298335 DOI: 10.1096/fj.201600887r] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 02/22/2017] [Indexed: 12/27/2022]
Abstract
Insulin resistance is a well-known risk factor for obesity, metabolic syndrome (MetSyn) and associated cardiovascular diseases, but its mechanisms are undefined in the lymphatics. Mesenteric lymphatic vessels from MetSyn or LPS-injected rats exhibited impaired intrinsic contractile activity and associated inflammatory changes. Hence, we hypothesized that insulin resistance in lymphatic muscle cells (LMCs) affects cell bioenergetics and signaling pathways that consequently alter contractility. LMCs were treated with different concentrations of insulin or glucose or both at various time points to determine insulin resistance. Onset of insulin resistance significantly impaired glucose uptake, mitochondrial function, oxygen consumption rates, glycolysis, lactic acid, and ATP production in LMCs. Hyperglycemia and hyperinsulinemia also impaired the PI3K/Akt while enhancing the ERK/p38MAPK/JNK pathways in LMCs. Increased NF-κB nuclear translocation and macrophage chemoattractant protein-1 and VCAM-1 levels in insulin-resistant LMCs indicated activation of inflammatory mechanisms. In addition, increased phosphorylation of myosin light chain-20, a key regulator of lymphatic muscle contraction, was observed in insulin-resistant LMCs. Therefore, our data elucidate the mechanisms of insulin resistance in LMCs and provide the first evidence that hyperglycemia and hyperinsulinemia promote insulin resistance and impair lymphatic contractile status by reducing glucose uptake, altering cellular metabolic pathways, and activating inflammatory signaling cascades.-Lee, Y., Fluckey, J. D., Chakraborty, S., Muthuchamy, M. Hyperglycemia- and hyperinsulinemia-induced insulin resistance causes alterations in cellular bioenergetics and activation of inflammatory signaling in lymphatic muscle.
Collapse
Affiliation(s)
- Yang Lee
- Department of Medical Physiology, Texas A&M Health Science Center College of Medicine, College Station, Texas, USA
| | - James D Fluckey
- Department of Health and Kinesiology, Texas A&M University, College Station, Texas, USA
| | - Sanjukta Chakraborty
- Department of Medical Physiology, Texas A&M Health Science Center College of Medicine, College Station, Texas, USA;
| | - Mariappan Muthuchamy
- Department of Medical Physiology, Texas A&M Health Science Center College of Medicine, College Station, Texas, USA;
| |
Collapse
|
13
|
Extracts of Chilean native fruits inhibit oxidative stress, inflammation and insulin-resistance linked to the pathogenic interaction between adipocytes and macrophages. J Funct Foods 2016. [DOI: 10.1016/j.jff.2016.08.052] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
14
|
Abstract
Insulin resistance is one of the defining features of type 2 diabetes and the metabolic syndrome and accompanies many other clinical conditions, ranging from obesity to lipodystrophy to glucocorticoid excess. Extraordinary efforts have gone into defining the mechanisms that underlie insulin resistance, with most attention focused on altered signalling as well as mitochondrial and endoplasmic reticulum stress. Here, nuclear mechanisms of insulin resistance, including transcriptional and epigenomic effects, will be discussed. Three levels of control involving transcription factors, transcriptional cofactors, and chromatin-modifying enzymes will be considered. Well-studied examples of the first include PPAR-γ in adipose tissue and the glucocorticoid receptor and FoxO1 in a variety of insulin-sensitive tissues. These proteins work in concert with cofactors such as PGC-1α and CRTC2, and chromatin-modifying enzymes including DNA methyltransferases and histone acetyltransferases, to regulate key genes that promote insulin-stimulated glucose uptake, gluconeogenesis or other pathways that affect systemic insulin action. Furthermore, genetic variation associated with increased risk of type 2 diabetes is often related to altered transcription factor binding, either by affecting the transcription factor itself, or more commonly by changing the binding affinity of a noncoding regulatory region. Finally, several avenues for therapeutic exploitation in the battle against metabolic disease will be discussed, including small-molecule inhibitors and activators of these factors and their related pathways.
Collapse
Affiliation(s)
- E D Rosen
- Division of Endocrinology and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
15
|
Pao AC. There and back again: insulin, ENaC, and the cortical collecting duct. Physiol Rep 2016; 4:4/10/e12809. [PMID: 27233302 PMCID: PMC4886174 DOI: 10.14814/phy2.12809] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 05/03/2016] [Indexed: 01/02/2023] Open
Abstract
Cell culture models suggest mechanisms by which insulin stimulates ENaC in the cortical collecting duct. These mechanisms still need to be tested for physiological significance in animal models of insulin resistance.![]()
Collapse
Affiliation(s)
- Alan C Pao
- Department of Medicine Stanford University, Stanford, California
| |
Collapse
|
16
|
Nuclear Mechanisms of Insulin Resistance. Trends Cell Biol 2016; 26:341-351. [PMID: 26822036 DOI: 10.1016/j.tcb.2016.01.002] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 12/31/2015] [Accepted: 01/04/2016] [Indexed: 12/15/2022]
Abstract
Insulin resistance is a sine qua non of type 2 diabetes and is associated with many other clinical conditions. Decades of research into mechanisms underlying insulin resistance have mostly focused on problems in insulin signal transduction and other mitochondrial and cytosolic pathways. By contrast, relatively little attention has been focused on transcriptional and epigenetic contributors to insulin resistance, despite strong evidence that such nuclear mechanisms play a major role in the etiopathogenesis of this condition. In this review, we summarize the evidence for nuclear mechanisms of insulin resistance, focusing on three transcription factors with a major impact on insulin action in liver, muscle, and fat.
Collapse
|
17
|
Wiza C, Chadt A, Blumensatt M, Kanzleiter T, Herzfeld De Wiza D, Horrighs A, Mueller H, Nascimento EBM, Schürmann A, Al-Hasani H, Ouwens DM. Over-expression of PRAS40 enhances insulin sensitivity in skeletal muscle. Arch Physiol Biochem 2014; 120:64-72. [PMID: 24576065 DOI: 10.3109/13813455.2014.894076] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
CONTEXT Silencing proline-rich Akt substrate of 40-kDa (PRAS40) impairs insulin signalling in skeletal muscle. OBJECTIVE This study assessed the effects of over-expressing wild type or mutant AAA-PRAS40, in which the major phosphorylation sites and mTORC1-binding site were mutated, on insulin signalling in skeletal muscle. RESULTS Over-expression of WT-PRAS40, but not AAA-PRAS40, impaired the insulin-mediated activation of the mTORC1-pathway in human skeletal muscle cells (hSkMC). However, insulin-mediated Akt-phosphorylation was increased upon over-expression of WT-PRAS40 both in hSkMC and mouse skeletal muscle. Also over-expression of AAA-PRAS40 had an insulin-sensitizing effect, although to a lesser extent as WT-PRAS40. The insulin-sensitizing effect associated with increased IRS1 protein abundance and inhibition of proteasome activity. Finally, over-expression of WT-PRAS40 reversed hyperinsulinemia-induced insulin resistance. CONCLUSION This study identifies PRAS40 as a regulator of insulin sensitivity in hSkMC. In contrast to the mTORC1-pathway, the insulin-sensitizing action of PRAS40 occurs independent of binding of PRAS40 to the mTORC1-complex.
Collapse
Affiliation(s)
- Claudia Wiza
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Centre , Auf'mHennekamp 65, D-40225 Düsseldorf , Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
GdCl3 reduces hyperglycaemia through Akt/FoxO1-induced suppression of hepatic gluconeogenesis in Type 2 diabetic mice. Clin Sci (Lond) 2014; 127:91-100. [DOI: 10.1042/cs20130670] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
In the present study, we demonstrate that GdCl3 reduces hyperglycaemia via the Akt/FoxO1-induced suppression of hepatic gluconeogenesis, both in Type 2 diabetic mice (in vivo) and in hepatocarcinoma cells (in vitro), suggesting that GdCl3 may be a potential therapeutic target for diabetes.
Collapse
|
19
|
Asrih M, Jornayvaz FR. Inflammation as a potential link between nonalcoholic fatty liver disease and insulin resistance. J Endocrinol 2013; 218:R25-36. [PMID: 23833274 DOI: 10.1530/joe-13-0201] [Citation(s) in RCA: 217] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) has become a major health problem in developed countries. It has affected more than 30% of the general population and is commonly associated with insulin resistance, which is a major risk factor for the development of type 2 diabetes and a central feature of the metabolic syndrome. Furthermore, accumulating evidences reveal that NAFLD as well as insulin resistance is strongly related to inflammation. Cytokines and adipokines play a pivotal role in inflammatory processes. In addition, these inflammatory mediators regulate various functions including metabolic energy balance, inflammation, and immune response. However, their role in modulating ectopic lipids involved in the development of insulin resistance, such as diacylglycerols and ceramides, remains unknown. The aim of this review is first to describe the pathophysiology of insulin resistance in NAFLD. In particular, we discuss the role of ectopic lipid accumulation in the liver. Secondly, we also summarize recent findings emphasizing the role of main inflammatory markers in both NAFLD and insulin resistance and their potential role in modulating hepatic fat content in NAFLD and associated hepatic insulin resistance.
Collapse
Affiliation(s)
- Mohamed Asrih
- Service of Endocrinology, Diabetes, Hypertension and Nutrition, Geneva University Hospital, Rue Gabrielle-Perret-Gentil 4, 1211 Genève 14, Switzerland
| | | |
Collapse
|
20
|
Lin R, Tao R, Gao X, Li T, Zhou X, Guan KL, Xiong Y, Lei QY. Acetylation stabilizes ATP-citrate lyase to promote lipid biosynthesis and tumor growth. Mol Cell 2013; 51:506-518. [PMID: 23932781 DOI: 10.1016/j.molcel.2013.07.002] [Citation(s) in RCA: 287] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Revised: 06/06/2013] [Accepted: 07/01/2013] [Indexed: 01/01/2023]
Abstract
Increased fatty acid synthesis is required to meet the demand for membrane expansion of rapidly growing cells. ATP-citrate lyase (ACLY) is upregulated or activated in several types of cancer, and inhibition of ACLY arrests proliferation of cancer cells. Here we show that ACLY is acetylated at lysine residues 540, 546, and 554 (3K). Acetylation at these three lysine residues is stimulated by P300/calcium-binding protein (CBP)-associated factor (PCAF) acetyltransferase under high glucose and increases ACLY stability by blocking its ubiquitylation and degradation. Conversely, the protein deacetylase sirtuin 2 (SIRT2) deacetylates and destabilizes ACLY. Substitution of 3K abolishes ACLY ubiquitylation and promotes de novo lipid synthesis, cell proliferation, and tumor growth. Importantly, 3K acetylation of ACLY is increased in human lung cancers. Our study reveals a crosstalk between acetylation and ubiquitylation by competing for the same lysine residues in the regulation of fatty acid synthesis and cell growth in response to glucose.
Collapse
Affiliation(s)
- Ruiting Lin
- Key Laboratory of Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shanghai Medical College, Shanghai 200032, China.,Molecular and Cell Biology Lab, Institutes of Biomedical Sciences, Shanghai Medical College, Shanghai 200032, China.,School of Life Science Fudan University, Shanghai 200032, China
| | - Ren Tao
- Department of Respiratory Medicine, East Hospital, Tongji University School of Medicine, 150 Jimo Road, Pudong New Area, Shanghai 200120, China
| | - Xue Gao
- Key Laboratory of Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shanghai Medical College, Shanghai 200032, China.,Molecular and Cell Biology Lab, Institutes of Biomedical Sciences, Shanghai Medical College, Shanghai 200032, China.,School of Life Science Fudan University, Shanghai 200032, China
| | - Tingting Li
- Key Laboratory of Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shanghai Medical College, Shanghai 200032, China.,Molecular and Cell Biology Lab, Institutes of Biomedical Sciences, Shanghai Medical College, Shanghai 200032, China.,School of Life Science Fudan University, Shanghai 200032, China
| | - Xin Zhou
- Key Laboratory of Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shanghai Medical College, Shanghai 200032, China.,Molecular and Cell Biology Lab, Institutes of Biomedical Sciences, Shanghai Medical College, Shanghai 200032, China.,School of Life Science Fudan University, Shanghai 200032, China
| | - Kun-Liang Guan
- Key Laboratory of Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shanghai Medical College, Shanghai 200032, China.,Molecular and Cell Biology Lab, Institutes of Biomedical Sciences, Shanghai Medical College, Shanghai 200032, China.,Department of Pharmacology and Moores Cancer Center, University of California San Diego, La Jolla, CA 92037-0695, USA
| | - Yue Xiong
- Molecular and Cell Biology Lab, Institutes of Biomedical Sciences, Shanghai Medical College, Shanghai 200032, China.,School of Life Science Fudan University, Shanghai 200032, China.,Department of Biochemistry and Biophysics, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Qun-Ying Lei
- Key Laboratory of Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shanghai Medical College, Shanghai 200032, China.,Molecular and Cell Biology Lab, Institutes of Biomedical Sciences, Shanghai Medical College, Shanghai 200032, China
| |
Collapse
|
21
|
Resistin disrupts glycogen synthesis under high insulin and high glucose levels by down-regulating the hepatic levels of GSK3β. Gene 2013; 529:50-6. [PMID: 23860320 DOI: 10.1016/j.gene.2013.06.085] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 06/25/2013] [Accepted: 06/27/2013] [Indexed: 11/21/2022]
Abstract
The effect of mouse resistin on hepatic insulin resistance in vivo and in vitro, and its possible molecular mechanism were examined. Focusing on liver glycogen metabolism and gluconeogenesis, which are important parts of glucose metabolism, in primary cultures of rat hepatocytes we found that glycogen content was significantly lower (P<0.05) after treatment with recombinant murine resistin only in the presence of insulin plus glucose stimulation. Protein levels of factors in the insulin signaling pathway involved in glycogen synthesis were examined by Western blot analysis, with the only significant change observed being the level of phosphorylated (at Ser 9) glycogen synthase kinase-3β (GSK-3β) (P<0.001). No differences in the protein levels for the insulin receptor β (IRβ), insulin receptor substrates (IRS1 and IRS2), phosphatidylinositol 3-kinase (PI3K), protein kinase B (Akt) or their phosphorylated forms were observed between control and resistin treated primary rat hepatocytes. In a mouse model with high liver-specific expression of resistin, fasting blood glucose levels and liver glycogen content changed. Fasting blood glucose levels were significantly higher (P<0.001) in the model mice, compared to the control mice, while the glycogen content of the liver tissue was about 60% of that of the control mice (P<0.05). The gluconeogenic response was not altered between the experimental and control mice. The level of phosphorylated GSK-3β in the liver tissue was also decreased (P<0.05) in the model mice, consistent with the results from the primary rat hepatocytes. Our results suggest that resistin reduces the levels of GSK-3β phosphorylated at Ser 9 leading to impaired hepatic insulin action in primary rat hepatocytes and in a mouse model with high liver-specific expression of resistin.
Collapse
|
22
|
Lee JH, Palaia T, Ragolia L. Impaired insulin-mediated vasorelaxation in diabetic Goto-Kakizaki rats is caused by impaired Akt phosphorylation. Am J Physiol Cell Physiol 2008; 296:C327-38. [PMID: 19052261 DOI: 10.1152/ajpcell.00254.2008] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Insulin resistance associated with Type 2 diabetes contributes to impaired vasorelaxation. Previously, we showed the phosphorylation of myosin-bound phosphatase substrate MYPT1, a marker of the vascular smooth muscle cell (VSMC) contraction, was negatively regulated by Akt (protein kinase B) phosphorylation in response to insulin stimulation. In this study we examined the role of Akt phosphorylation on impaired insulin-induced vasodilation in the Goto-Kakizaki (GK) rat model of Type 2 diabetes. GK VSMCs had impaired basal and insulin-induced Akt phosphorylation as well as increases in basal MYPT1 phosphorylation, inducible nitric oxide synthase (iNOS) expression, and nitrite/nitrate production compared with Wistar-Kyoto controls. Both iNOS expression and the inhibition of angiotensin (ANG) II-induced MYPT1 phosphorylation were resistant to the effects of insulin in diabetic GK VSMC. We also measured the isometric tension of intact and denuded GK aorta using a myograph and observed significantly impaired insulin-induced vasodilation. Adenovirus-mediated overexpression of constitutively active Akt in GK VSMC led to significantly improved insulin sensitivity in terms of counteracting ANG II-induced contractile signaling via MYPT1, myosin light chain dephosphorylation, and reduced iNOS expression, S-nitrosylation and survivin expression. We demonstrated for the first time the presence of Akt-independent iNOS expression in the GK diabetic model and that the defective insulin-induced vasodilation observed in the diabetic vasculature can be restored by the overexpression of active Akt, which advocates a novel therapeutic strategy for treating diabetes.
Collapse
Affiliation(s)
- Jin Hee Lee
- Vascular Biology Institute, Winthrop Univ. Hospital, 222 Station Plaza North, Rm. 505B, Mineola, NY 11501, USA
| | | | | |
Collapse
|
23
|
Garcia-Souza EP, da Silva SV, Félix GB, Rodrigues AL, de Freitas MS, Moura AS, Barja-Fidalgo C. Maternal protein restriction during early lactation induces GLUT4 translocation and mTOR/Akt activation in adipocytes of adult rats. Am J Physiol Endocrinol Metab 2008; 295:E626-36. [PMID: 18559980 DOI: 10.1152/ajpendo.00439.2007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Epidemiological and experimental studies have demonstrated that early postnatal nutrition has been associated with long-term effects on glucose homeostasis in adulthood. Recently, our group demonstrated that undernutrition during early lactation affects the expression and activation of key proteins of the insulin signaling cascade in rat skeletal muscle during postnatal development. To elucidate the molecular mechanisms by which undernutrition during early life leads to changes in insulin sensitivity in peripheral tissues, we investigated the insulin signaling in adipose tissue. Adipocytes were isolated from epididymal fat pads of adult male rats that were the offspring of dams fed either a normal or a protein-free diet during the first 10 days of lactation. The cells were incubated with 100 nM insulin before the assays for immunoblotting analysis, 2-deoxyglucose uptake, immunocytochemistry for GLUT4, and/or actin filaments. Following insulin stimulation, adipocytes isolated from undernourished rats presented reduced tyrosine phosphorylation of IR and IRS-1 and increased basal phosphorylation of IRS-2, Akt, and mTOR compared with controls. Basal glucose uptake was increased in adipocytes from the undernourished group, and the treatment with LY294002 induced only a partial inhibition both in basal and in insulin-stimulated glucose uptake, suggesting an involvement of phosphoinositide 3-kinase activity. These alterations were accompanied by higher GLUT4 content in the plasma membrane and alterations in the actin cytoskeleton dynamics. These data suggest that early postnatal undernutrition impairs insulin sensitivity in adulthood by promoting changes in critical steps of insulin signaling in adipose tissue, which may contribute to permanent changes in glucose homeostasis.
Collapse
Affiliation(s)
- Erica Patrícia Garcia-Souza
- Departament of Pharmacology, Institute of Biology, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, 20551-030, Brasil
| | | | | | | | | | | | | |
Collapse
|
24
|
Hoehn KL, Hohnen-Behrens C, Cederberg A, Wu LE, Turner N, Yuasa T, Ebina Y, James DE. IRS1-independent defects define major nodes of insulin resistance. Cell Metab 2008; 7:421-33. [PMID: 18460333 PMCID: PMC2443409 DOI: 10.1016/j.cmet.2008.04.005] [Citation(s) in RCA: 239] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2007] [Revised: 02/20/2008] [Accepted: 04/07/2008] [Indexed: 12/16/2022]
Abstract
Insulin resistance is a common disorder caused by a wide variety of physiological insults, some of which include poor diet, inflammation, anti-inflammatory steroids, hyperinsulinemia, and dyslipidemia. The common link between these diverse insults and insulin resistance is widely considered to involve impaired insulin signaling, particularly at the level of the insulin receptor substrate (IRS). To test this model, we utilized a heterologous system involving the platelet-derived growth factor (PDGF) pathway that recapitulates many aspects of insulin action independently of IRS. We comprehensively analyzed six models of insulin resistance in three experimental systems and consistently observed defects in both insulin and PDGF action despite a range of insult-specific defects within the IRS-Akt nexus. These findings indicate that while insulin resistance is associated with multiple deficiencies, the most deleterious defects and the origin of insulin resistance occur independently of IRS.
Collapse
Affiliation(s)
- Kyle L. Hoehn
- Diabetes and Obesity Program, Garvan Institute of Medical Research, 384 Victoria St., Darlinghurst, NSW, Australia, 2010
| | - Cordula Hohnen-Behrens
- Diabetes and Obesity Program, Garvan Institute of Medical Research, 384 Victoria St., Darlinghurst, NSW, Australia, 2010
| | - Anna Cederberg
- Diabetes and Obesity Program, Garvan Institute of Medical Research, 384 Victoria St., Darlinghurst, NSW, Australia, 2010
| | - Lindsay E. Wu
- Diabetes and Obesity Program, Garvan Institute of Medical Research, 384 Victoria St., Darlinghurst, NSW, Australia, 2010
| | - Nigel Turner
- Diabetes and Obesity Program, Garvan Institute of Medical Research, 384 Victoria St., Darlinghurst, NSW, Australia, 2010
| | - Tomoyuki Yuasa
- Division of Molecular Genetics, Institute for Enzyme Research, University of Tokushima, Tokushima, Japan
| | - Yousuke Ebina
- Division of Molecular Genetics, Institute for Enzyme Research, University of Tokushima, Tokushima, Japan
| | - David E. James
- Diabetes and Obesity Program, Garvan Institute of Medical Research, 384 Victoria St., Darlinghurst, NSW, Australia, 2010
| |
Collapse
|
25
|
Song DH, Getty-Kaushik L, Tseng E, Simon J, Corkey BE, Wolfe MM. Glucose-dependent insulinotropic polypeptide enhances adipocyte development and glucose uptake in part through Akt activation. Gastroenterology 2007; 133:1796-805. [PMID: 18054552 PMCID: PMC2185546 DOI: 10.1053/j.gastro.2007.09.005] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2007] [Accepted: 08/30/2007] [Indexed: 12/02/2022]
Abstract
BACKGROUND & AIMS In addition to its role as the primary mediator of the enteroinsular axis, glucose-dependent insulinotropic polypeptide (GIP) may play a critical role in the development of obesity. The purpose of these studies was to characterize the effects of GIP and its receptor (GIPR) in adipocyte development and signaling. METHODS Effects of GIP and GIPR on differentiated 3T3-L1 cells were analyzed using Western blot analysis, Oil-Red-O staining, cyclic adenosine monophosphate radioimmunoassay, immunofluorescence microscopy, and glucose uptake measurements. RESULTS To determine whether GIP and GIPR are important components in adipocyte development, the expression profile of GIPR during differentiation was examined. GIPR protein expression was enhanced during the differentiation process, and coincubation with its ligand GIP augmented the expression of aP2, a fat cell marker. Conversely, the suppression of GIPR expression by a specific short hairpin RNA attenuated Oil-Red-O staining and aP2 expression, suggesting that the GIPR may play a critical role in adipocyte development. To investigate specific signaling components that may mediate the effects of GIP, we analyzed Akt, glucose transporter-4, and glucose uptake, all of which are modulated by insulin in fat cells. Like insulin, GIP induced the activation of Akt in a concentration-dependent manner, promoted membrane glucose transporter-4 accumulation, and enhanced [(3)H]-2-deoxyglucose uptake. CONCLUSIONS These studies provide further evidence for an important physiologic role for GIP in lipid homeostasis and possibly in the pathogenesis of obesity. Furthermore, our data indicate that the GIPR might represent a suitable target for the treatment of obesity.
Collapse
Affiliation(s)
- Diane H Song
- Department of Medicine, Boston University School of Medicine and Boston Medical Center, Boston, Massachusetts, USA
| | | | | | | | | | | |
Collapse
|
26
|
Hoy AJ, Bruce CR, Cederberg A, Turner N, James DE, Cooney GJ, Kraegen EW. Glucose infusion causes insulin resistance in skeletal muscle of rats without changes in Akt and AS160 phosphorylation. Am J Physiol Endocrinol Metab 2007; 293:E1358-64. [PMID: 17785505 DOI: 10.1152/ajpendo.00133.2007] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hyperglycemia is a defining feature of Type 1 and 2 diabetes. Hyperglycemia also causes insulin resistance, and our group (Kraegen EW, Saha AK, Preston E, Wilks D, Hoy AJ, Cooney GJ, Ruderman NB. Am J Physiol Endocrinol Metab Endocrinol Metab 290: E471-E479, 2006) has recently demonstrated that hyperglycemia generated by glucose infusion results in insulin resistance after 5 h but not after 3 h. The aim of this study was to investigate possible mechanism(s) by which glucose infusion causes insulin resistance in skeletal muscle and in particular to examine whether this was associated with changes in insulin signaling. Hyperglycemia (~10 mM) was produced in cannulated male Wistar rats for up to 5 h. The glucose infusion rate required to maintain this hyperglycemia progressively lessened over 5 h (by 25%, P < 0.0001 at 5 h) without any alteration in plasma insulin levels consistent with the development of insulin resistance. Muscle glucose uptake in vivo (44%; P < 0.05) and glycogen synthesis rate (52%; P < 0.001) were reduced after 5 h compared with after 3 h of infusion. Despite these changes, there was no decrease in the phosphorylation state of multiple insulin signaling intermediates [insulin receptor, Akt, AS160 (Akt substrate of 160 kDa), glycogen synthase kinase-3beta] over the same time course. In isolated soleus strips taken from control or 1- or 5-h glucose-infused animals, insulin-stimulated 2-deoxyglucose transport was similar, but glycogen synthesis was significantly reduced in the 5-h muscle sample (68% vs. 1-h sample; P < 0.001). These results suggest that the reduced muscle glucose uptake in rats after 5 h of acute hyperglycemia is due more to the metabolic effects of excess glycogen storage than to a defect in insulin signaling or glucose transport.
Collapse
Affiliation(s)
- Andrew J Hoy
- Diabetes and Obesity Research Program, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
| | | | | | | | | | | | | |
Collapse
|
27
|
Lee SJ, Bae SS, Kim KH, Lee WS, Rhim BY, Hong KW, Kim CD. High glucose enhances MMP-2 production in adventitial fibroblasts via Akt1-dependent NF-kappaB pathway. FEBS Lett 2007; 581:4189-94. [PMID: 17692316 DOI: 10.1016/j.febslet.2007.07.058] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2007] [Revised: 07/25/2007] [Accepted: 07/26/2007] [Indexed: 10/23/2022]
Abstract
To understand the role of adventitial fibroblasts (AF) in diabetic vascular diseases, the importance of high glucose (HG, 25mM) on matrix metalloproteinase-2 (MMP-2) production in AF was determined. HG enhanced mRNA, protein and gelatinolytic activity of MMP-2. The enhanced MMP-2 activity was significantly attenuated not only by a PI3K inhibitor but also by an Akt inhibitor. These HG-induced MMP-2 responses were markedly reduced in Akt1-deficient (1KO) cells. The diminished HG-induced MMP-2 responses were completely restored by re-expression of Akt1. Both the reporter activity and electrophoretic mobility shift assay for activator protein-1 and nuclear factor-kappa B (NF-kappaB) were enhanced by HG, but NF-kappaB were not increased in 1KO cells. Furthermore, HG-induced MMP-2 responses were markedly suppressed by NF-kappaB decoy oligodeoxynucleotides. Based on these results, it is suggested that HG augments MMP-2 production via PI3K/Akt1/NF-kappaB pathway.
Collapse
Affiliation(s)
- Seung Jin Lee
- Department of Pharmacology, BK21 Medical Science Education Center, College of Medicine, Pusan National University, 10 Ami-Dong 1-Ga, Seo-Gu, Busan 602-739, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
28
|
Flowers JB, Rabaglia ME, Schueler KL, Flowers MT, Lan H, Keller MP, Ntambi JM, Attie AD. Loss of stearoyl-CoA desaturase-1 improves insulin sensitivity in lean mice but worsens diabetes in leptin-deficient obese mice. Diabetes 2007; 56:1228-39. [PMID: 17369521 DOI: 10.2337/db06-1142] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The lipogenic gene stearoyl-CoA desaturase (SCD)1 appears to be a promising new target for obesity-related diabetes, as mice deficient in this enzyme are resistant to diet- and leptin deficiency-induced obesity. The BTBR mouse strain replicates many features of insulin resistance found in humans with excess visceral adiposity. Using the hyperinsulinemic-euglycemic clamp technique, we determined that insulin sensitivity was improved in heart, soleus muscle, adipose tissue, and liver of BTBR SCD1-deficient mice. We next determined whether SCD1 deficiency could prevent diabetes in leptin-deficient BTBR mice. Loss of SCD1 in leptin(ob/ob) mice unexpectedly accelerated the progression to severe diabetes; 6-week fasting glucose increased approximately 70%. In response to a glucose challenge, Scd1(-/-) leptin(ob/ob) mice had insufficient insulin secretion, resulting in glucose intolerance. A morphologically distinct class of islets isolated from the Scd1(-/-) leptin(ob/ob) mice had reduced insulin content and increased triglycerides, free fatty acids, esterified cholesterol, and free cholesterol and also a much higher content of saturated fatty acids. We believe the accumulation of lipid is due to an upregulation of lipoprotein lipase (20-fold) and Cd36 (167-fold) and downregulation of lipid oxidation genes in this class of islets. Therefore, although loss of Scd1 has beneficial effects on adiposity, this benefit may come at the expense of beta-cells, resulting in an increased risk of diabetes.
Collapse
Affiliation(s)
- Jessica B Flowers
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI 537606, USA
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Le Foll C, Corporeau C, Le Guen V, Gouygou JP, Bergé JP, Delarue J. Long-chain n-3 polyunsaturated fatty acids dissociate phosphorylation of Akt from phosphatidylinositol 3'-kinase activity in rats. Am J Physiol Endocrinol Metab 2007; 292:E1223-30. [PMID: 17179391 DOI: 10.1152/ajpendo.00446.2006] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We examined whether a low amount of dietary long-chain n-3 polyunsaturated fatty acids (LC n-3 PUFA) modulated phosphatidylinositol 3'-kinase (PI 3-kinase) activity and downstream Akt phosphorylation differently in normal or insulin-resistant rats. Rats were fed for 28 days with either a control diet containing 14.6% of metabolizable energy (ME) as peanut-rape oil (PR) or an n-3 diet where 4.9% of ME as PR was replaced by fish oil. Over the last 5 days, rats received 9 per thousand NaCl or dexamethasone (1 mg/kg). Insulin stimulation of both PI 3-kinase activity and Akt serine(473) phosphorylation and modulation of GLUT4 content were studied in liver, muscle, and adipose tissue (AT). Glucose tolerance and insulin sensitivity were determined by an oral glucose challenge. In muscle and AT, LC n-3 PUFA abolished insulin-stimulated PI 3-kinase activity. These effects were not paralleled by defects in Akt serine(473) phosphorylation, which was even increased in AT. Dexamethasone abolished insulin-stimulated PI 3-kinase activity in all tissues, whereas Akt serine(473) phosphorylation was markedly reduced in muscle but unaltered in liver and AT. Such tissue-specific dissociating effects of LC n-3 PUFA on PI 3-kinase/Akt activation took place without alteration of glucose metabolism. Maintenance of a normal glucose metabolism by the n-3 diet despite abolition of PI 3-kinase activation was likely explained by a compensatory downstream Akt serine(473) phosphorylation. The inability of LC n-3 PUFA to prevent insulin resistance by dexamethasone could result from the lack of such a dissociation.
Collapse
|
30
|
Flowers JB, Oler AT, Nadler ST, Choi Y, Schueler KL, Yandell BS, Kendziorski CM, Attie AD. Abdominal obesity in BTBR male mice is associated with peripheral but not hepatic insulin resistance. Am J Physiol Endocrinol Metab 2007; 292:E936-45. [PMID: 17132824 DOI: 10.1152/ajpendo.00370.2006] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Insulin resistance is a common feature of obesity. BTBR mice have more fat mass than most other inbred mouse strains. On a chow diet, BTBR mice have elevated insulin levels relative to the C57BL/6J (B6) strain. Male F1 progeny of a B6 x BTBR cross are insulin resistant. Previously, we reported insulin resistance in isolated muscle and in isolated adipocytes in this strain. Whereas the muscle insulin resistance was observed only in male F1 mice, adipocyte insulin resistance was also present in male BTBR mice. We examined in vivo mechanisms of insulin resistance with the hyperinsulinemic euglycemic clamp technique. At 10 wk of age, BTBR and F1 mice had a >30% reduction in whole body glucose disposal primarily due to insulin resistance in heart, soleus muscle, and adipose tissue. The increased adipose tissue mass and decreased muscle mass in BTBR and F1 mice were negatively and positively correlated with whole body glucose disposal, respectively. Genes involved in focal adhesion, actin cytoskeleton, and inflammation were more highly expressed in BTBR and F1 than in B6 adipose tissue. The BTBR and F1 mice have higher levels of testosterone, which may be related to the pathological changes in adipose tissue that lead to systemic insulin resistance. Despite profound peripheral insulin resistance, BTBR and F1 mice retained hepatic insulin sensitivity. These studies reveal a genetic difference in body composition that correlates with large differences in peripheral insulin sensitivity.
Collapse
Affiliation(s)
- Jessica B Flowers
- Department of Nutritional Sciences, University of Wisconsin-Madison, 433 Babcock Dr., Madison, WI 53706, USA
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
Inbred mouse strains provide genetic diversity comparable to that of the human population. Like humans, mice have a wide range of diabetes-related phenotypes. The inbred mouse strains differ in the response of their critical physiological functions, such as insulin sensitivity, insulin secretion, beta-cell proliferation and survival, and fuel partitioning, to diet and obesity. Most of the critical genes underlying these differences have not been identified, although many loci have been mapped. The dramatic improvements in genomic and bioinformatics resources are accelerating the pace of gene discovery. This review describes how mouse genetics can be used to discover diabetes-related genes, summarizes how the mouse strains differ in their diabetes-related phenotypes, and describes several examples of how loci identified in the mouse may directly relate to human diabetes.
Collapse
Affiliation(s)
- Susanne M Clee
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, Wisconsin 53706-1544, USA
| | | |
Collapse
|
32
|
Shetty S, Eckhardt ERM, Post SR, van der Westhuyzen DR. Phosphatidylinositol-3-kinase regulates scavenger receptor class B type I subcellular localization and selective lipid uptake in hepatocytes. Arterioscler Thromb Vasc Biol 2006; 26:2125-31. [PMID: 16794223 DOI: 10.1161/01.atv.0000233335.26362.37] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE The high-density lipoprotein (HDL) receptor scavenger receptor Class B type I (SR-BI) plays a key role in mediating the final step of reverse cholesterol transport. This study examined the possible regulation of hepatic SR-BI by phosphatidylinositol-3-kinase (PI3K), a well known regulator of endocytosis and membrane protein trafficking. METHODS AND RESULTS SR-BI-dependent HDL selective cholesterol ester uptake in human HepG2 hepatoma cells was decreased (approximately 50%) by the PI3K inhibitors wortmannin and LY294002. Insulin increased selective uptake (approximately 30%), and this increase was blocked by PI3K inhibitors. Changes in SR-BI activity could be accounted for by pronounced changes in the subcellular localization and cell surface expression of SR-BI as determined by HDL cell surface binding, receptor biotinylation studies, and confocal fluorescence microscopy of HepG2 cells expressing green fluorescent protein-tagged SR-BI. Thus, under conditions of PI3K activation by insulin, and to a lesser extent by the SR-BI ligand HDL, cell surface expression of SR-BI was promoted, resulting in increased SR-BI-mediated HDL selective lipid uptake. CONCLUSIONS Our data indicate that PI3K activation stimulates hepatic SR-BI function post-translationally by regulating the subcellular localization of SR-BI in a P13K-dependent manner. Decreased hepatocyte PI3K activity in insulin-resistant states, such as type 2 diabetes, obesity, or metabolic syndrome, may impair reverse cholesterol transport by reducing cell surface expression of SR-BI.
Collapse
Affiliation(s)
- Shoba Shetty
- Graduate Center for Nutritional Sciences, University of Kentucky, Lexington, KY, USA
| | | | | | | |
Collapse
|
33
|
Longnus SL, Ségalen C, Giudicelli J, Sajan MP, Farese RV, Van Obberghen E. Insulin signalling downstream of protein kinase B is potentiated by 5'AMP-activated protein kinase in rat hearts in vivo. Diabetologia 2005; 48:2591-601. [PMID: 16283248 DOI: 10.1007/s00125-005-0016-3] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2005] [Accepted: 08/11/2005] [Indexed: 12/25/2022]
Abstract
AIMS/HYPOTHESIS 5'AMP-activated protein kinase (AMPK) and insulin stimulate glucose transport in heart and muscle. AMPK acts in an additive manner with insulin to increase glucose uptake, thereby suggesting that AMPK activation may be a useful strategy for ameliorating glucose uptake, especially in cases of insulin resistance. In order to characterise interactions between the insulin- and AMPK-signalling pathways, we investigated the effects of AMPK activation on insulin signalling in the rat heart in vivo. METHODS Male rats (350-400 g) were injected with 1 g/kg 5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside (AICAR) or 250 mg/kg metformin in order to activate AMPK. Rats were administered insulin 30 min later and after another 30 min their hearts were removed. The activities and phosphorylation levels of components of the insulin-signalling pathway were subsequently analysed in individual rat hearts. RESULTS AICAR and metformin administration activated AMPK and enhanced insulin signalling downstream of protein kinase B in rat hearts in vivo. Insulin-induced phosphorylation of glycogen synthase kinase 3 (GSK3) beta, p70 S6 kinase (p70S6K)(Thr389) and IRS1(Ser636/639) were significantly increased following AMPK activation. To the best of our knowledge, this is the first report of heightened insulin responses of GSK3beta and p70S6K following AMPK activation. In addition, we found that AMPK inhibits insulin stimulation of IRS1-associated phosphatidylinositol 3-kinase activity, and that AMPK activates atypical protein kinase C and extracellular signal-regulated kinase in the heart. CONCLUSIONS/INTERPRETATIONS Our data are indicative of differential effects of AMPK on the activation of components in the cardiac insulin-signalling pathway. These intriguing observations are critical for characterisation of the crosstalk between AMPK and insulin signalling.
Collapse
Affiliation(s)
- S L Longnus
- INSERM U145, IFR 50, Faculty of Medicine, Avenue de Valombrose, 06107,, Nice Cedex 2, France.
| | | | | | | | | | | |
Collapse
|
34
|
Poladia DP, Bauer JA. Oxidant driven signaling pathways during diabetes: role of Rac1 and modulation of protein kinase activity in mouse urinary bladder. Biochimie 2005; 86:543-51. [PMID: 15388231 DOI: 10.1016/j.biochi.2004.07.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2004] [Revised: 07/08/2004] [Accepted: 07/12/2004] [Indexed: 11/23/2022]
Abstract
BACKGROUND Urinary bladder dysfunction is a complication in diabetes but the mechanisms involved are undefined. Here, we investigated roles of oxidative stress and oxidant driven signaling pathways in a murine model of diabetes, with an emphasis on urothelial vs. smooth muscle regional changes. METHODS Mice were dosed with streptozotocin (150 mg/kg) or vehicle and studied at 5 weeks. Functional changes were assessed by in vitro cystometry. Immunohistochemical methods and automated digital imaging was used for morphometric and histochemical analysis of bladder tissue regions. RESULTS We detected significant increases in protein 3-nitrotyrosine in both urothelium and smooth muscle regions during diabetes, demonstrating an increased prevalence of reactive nitrogen species. In light of nitric oxide synthase (NOS) isoforms as potential contributors to increased protein nitration, all three NOS isoforms were studied; region specific increases in NOS1 (urothelium and smooth muscle), NOS2 (urothelium only) but no alterations in NOS3 isoform were detected during diabetes. In contrast, p21-Rac1 (coordinating protein of NADPH oxidase) was significantly increased only in smooth muscle (diabetic vs. controls). We also investigated phosphorylation of ERK, JNK, p38 and Akt using immunohistochemical techniques; each of these was increased during diabetes but with different distributions in the two major regions of bladder tissues viz the smooth muscle and urothelium. CONCLUSIONS The STZ mouse model of diabetes exhibits bladder dysfunction and structural changes similar to human. Reactive nitrogen species formation occurs in this setting and region specific assessments also revealed that urothelial changes and smooth muscle changes are discrete with respect to mechanisms of reactive nitrogen species (increased production of NO vs. superoxide anion) and activation of oxidant related stress signaling pathways.
Collapse
|
35
|
Ruzzin J, Wagman AS, Jensen J. Glucocorticoid-induced insulin resistance in skeletal muscles: defects in insulin signalling and the effects of a selective glycogen synthase kinase-3 inhibitor. Diabetologia 2005; 48:2119-30. [PMID: 16078016 DOI: 10.1007/s00125-005-1886-0] [Citation(s) in RCA: 165] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2004] [Accepted: 05/16/2005] [Indexed: 01/03/2023]
Abstract
AIMS/HYPOTHESIS Treatment with glucocorticoids, especially at high doses, induces insulin resistance. The aims of the present study were to identify the potential defects in insulin signalling that contribute to dexamethasone-induced insulin resistance in skeletal muscles, and to investigate whether the glycogen synthase-3 (GSK-3) inhibitor CHIR-637 could restore insulin-stimulated glucose metabolism. MATERIALS AND METHODS Skeletal muscles were made insulin-resistant by treating male Wistar rats with dexamethasone, a glucocorticoid analogue, for 12 days. Insulin-stimulated glucose uptake, glycogen synthesis and insulin signalling were studied in skeletal muscles in vitro. RESULTS Dexamethasone treatment decreased the ability of insulin to stimulate glucose uptake, glycogen synthesis and glycogen synthase fractional activity. In addition, the dephosphorylation of glycogen synthase by insulin was blocked. These defects were paralleled by reduced insulin-stimulated protein kinase B (PKB) and GSK-3 phosphorylation. While expression of PKB, GSK-3 and glycogen synthase was not reduced by dexamethasone treatment, expression of the p85alpha subunit of phosphatidylinositol 3-kinase (PI 3-kinase) was increased. Inhibition of GSK-3 by CHIR-637 increased glycogen synthase fractional activity in soleus muscle from normal and dexamethasone-treated rats, although the effect was more pronounced in control rats. CHIR-637 did not improve insulin-stimulated glucose uptake in muscles from dexamethasone-treated rats. CONCLUSIONS/INTERPRETATION We demonstrated that chronic dexamethasone treatment impairs insulin-stimulated PKB and GSK-3 phosphorylation, which may contribute to insulin resistance in skeletal muscles. Acute pharmacological inhibition of GSK-3 activated glycogen synthase in muscles from dexamethasone-treated rats, but GSK-3 inhibition did not restore insulin-stimulated glucose uptake.
Collapse
Affiliation(s)
- J Ruzzin
- Department of Physiology, National Institute of Occupational Health, P.O. Box 8149 Dep., 0033 Oslo, Norway
| | | | | |
Collapse
|
36
|
Rabaglia ME, Gray-Keller MP, Frey BL, Shortreed MR, Smith LM, Attie AD. Alpha-Ketoisocaproate-induced hypersecretion of insulin by islets from diabetes-susceptible mice. Am J Physiol Endocrinol Metab 2005; 289:E218-24. [PMID: 15741243 DOI: 10.1152/ajpendo.00573.2004] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Most patients at risk for developing type 2 diabetes are hyperinsulinemic. Hyperinsulinemia may be a response to insulin resistance, but another possible abnormality is insulin hypersecretion. BTBR mice are insulin resistant and hyperinsulinemic. When the leptin(ob) mutation is introgressed into BTBR mice, they develop severe diabetes. We compared the responsiveness of lean B6 and BTBR mouse islets to various insulin secretagogues. The transamination product of leucine, alpha-ketoisocaproate (KIC), elicited a dramatic insulin secretory response in BTBR islets. The KIC response was blocked by methyl-leucine or aminooxyacetate, inhibitors of branched-chain amino transferase. When dimethylglutamate was combined with KIC, the fractional insulin secretion was identical in islets from both mouse strains, predicting that the amine donor is rate-limiting for KIC-induced insulin secretion. Consistent with this prediction, glutamate levels were higher in BTBR than in B6 islets. The transamination product of glutamate, alpha-ketoglutarate, elicited insulin secretion equally from B6 and BTBR islets. Thus formation of alpha-ketoglutarate is a requisite step in the response of mouse islets to KIC. alpha-Ketoglutarate can be oxidized to succinate. However, succinate does not stimulate insulin secretion in mouse islets. Our data suggest that alpha-ketoglutarate may directly stimulate insulin secretion and that increased formation of alpha-ketoglutarate leads to hyperinsulinemia.
Collapse
Affiliation(s)
- Mary E Rabaglia
- Dept. of Biochemistry, Univ. of Wisconsin-Madison, Madison, WI 53706, USA
| | | | | | | | | | | |
Collapse
|
37
|
Sugita H, Kaneki M, Sugita M, Yasukawa T, Yasuhara S, Martyn JAJ. Burn injury impairs insulin-stimulated Akt/PKB activation in skeletal muscle. Am J Physiol Endocrinol Metab 2005; 288:E585-91. [PMID: 15536206 DOI: 10.1152/ajpendo.00321.2004] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The molecular bases underlying burn- or critical illness-induced insulin resistance still remain unclarified. Muscle protein catabolism is a ubiquitous feature of critical illness. Akt/PKB plays a central role in the metabolic actions of insulin and is a pivotal regulator of hypertrophy and atrophy of skeletal muscle. We therefore examined the effects of burn injury on insulin-stimulated Akt/PKB activation in skeletal muscle. Insulin-stimulated phosphorylation of Akt/PKB was significantly attenuated in burned compared with sham-burned rats. Insulin-stimulated Akt/PKB kinase activity, as judged by immune complex kinase assay and phosphorylation status of the endogenous substrate of Akt/PKB, glycogen synthase kinase-3beta (GSK-3beta), was significantly impaired in burned rats. Furthermore, insulin consistently failed to increase the phosphorylation of p70 S6 kinase, another downstream effector of Akt/PKB, in rats with burn injury, whereas phosphorylation of p70 S6 kinase was increased by insulin in controls. The protein expression of Akt/PKB, GSK-3beta, and p70 S6 kinase was unaltered by burn injury. However, insulin-stimulated activation of ERK, a signaling pathway parallel to Akt/PKB, was not affected by burn injury. These results demonstrate that burn injury impairs insulin-stimulated Akt/PKB activation in skeletal muscle and suggest that attenuated Akt/PKB activation may be involved in deranged metabolism and muscle wasting observed after burn injury.
Collapse
Affiliation(s)
- Hiroki Sugita
- Department of Anesthesia and Critical Care, Massachusetts General Hospital, Boston, MA, USA
| | | | | | | | | | | |
Collapse
|
38
|
Yaspelkis BB, Singh MK, Krisan AD, Collins DE, Kwong CC, Bernard JR, Crain AM. Chronic leptin treatment enhances insulin-stimulated glucose disposal in skeletal muscle of high-fat fed rodents. Life Sci 2004; 74:1801-16. [PMID: 14741737 DOI: 10.1016/j.lfs.2003.08.037] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The aim of this investigation was to evaluate if chronic leptin administration corrects high fat diet-induced skeletal muscle insulin resistance, in part, by enhancing rates of glucose disposal and if the improvements are accounted for by alterations in components of the insulin-signaling cascade. Sprague-Dawley rats consumed normal (CON) or high fat diets for three months. After the dietary lead in, the high fat diet group was further subdivided into high fat (HF) and high fat, leptin treated (HF-LEP) animals. HF-LEP animals were injected twice daily with leptin (5 mg/100 g body weight) for 10 days, while the CON and HF animals were injected with vehicle. Following the treatment periods, all animals were prepared for and subjected to hind limb perfusion. The high fat diet decreased rates of insulin-stimulated skeletal muscle glucose uptake and glycogen synthesis in the red gastrocnemius (RG), but did not affect glycogen synthase activity, rates of glucose oxidation or nonoxidative disposal of glucose. Of interest, IRS-1-associated PI3-K activity and total GLUT4 protein concentration were reduced in the RG of the high fat-fed animals. Leptin treatment increased rates of insulin-stimulated glucose uptake and glucose oxidation, and normalized rates of glycogen synthesis. Leptin appeared to mediate these effects by normalizing insulin-stimulated PI3-K activation and GLUT4 protein concentration in the RG. Collectively, these data suggest that chronic leptin treatment reverses the effects of a high fat diet thereby allowing the insulin signaling cascade and glucose transport effector system to be fully activated which in turn affects the amount of glucose that is transported across the plasma membrane and made available for glycogen synthesis.
Collapse
Affiliation(s)
- Ben B Yaspelkis
- Exercise Biochemistry Laboratory, Department of Kinesiology, California State University Northridge, 18111 Nordhoff Street, Northridge, CA 91330-8287, USA.
| | | | | | | | | | | | | |
Collapse
|
39
|
McCurdy CE, Davidson RT, Cartee GD. Brief calorie restriction increases Akt2 phosphorylation in insulin-stimulated rat skeletal muscle. Am J Physiol Endocrinol Metab 2003; 285:E693-700. [PMID: 12799317 PMCID: PMC2748752 DOI: 10.1152/ajpendo.00224.2003] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Skeletal muscle insulin sensitivity improves with short-term reduction in calorie intake. The goal of this study was to evaluate changes in the abundance and phosphorylation of Akt1 and Akt2 as potential mechanisms for enhanced insulin action after 20 days of moderate calorie restriction [CR; 60% of ad libitum (AL) intake] in rat skeletal muscle. We also assessed changes in the abundance of SH2 domain-containing inositol phosphatase (SHIP2), a negative regulator of insulin signaling. Fisher 344 x Brown Norway rats were assigned to an AL control group or a CR treatment group for 20 days. Epitrochlearis muscles were dissected and incubated with or without insulin (500 microU/ml). Total Akt serine and threonine phosphorylation was significantly increased by 32 (P < 0.01) and 30% (P < 0.005) in insulin-stimulated muscles from CR vs. AL. Despite an increase in total Akt phosphorylation, there was no difference in Akt1 serine or Akt1 threonine phosphorylation between CR and AL insulin-treated muscles. However, there was a 30% decrease (P < 0.05) in Akt1 abundance for CR vs. AL. In contrast, there was no change in Akt2 protein abundance, and there was a 94% increase (P < 0.05) in Akt2 serine phosphorylation and an increase of 75% (P < 0.05) in Akt2 threonine phosphorylation of insulin-stimulated CR muscles compared with AL. There was no diet effect on SHIP2 abundance in skeletal muscle. These results suggest that, with brief CR, enhanced Akt2 phosphorylation may play a role in increasing insulin sensitivity in rat skeletal muscles.
Collapse
Affiliation(s)
- Carrie E McCurdy
- Department of Kinesiology, University of Wisconsin, 2000 Observatory Drive, Madison, WI 53706, USA
| | | | | |
Collapse
|
40
|
Abstract
Since its discovery more than a decade ago, the Ser/Thr kinase Akt/PKB (protein kinase B) has been recognized as being remarkably well conserved across a broad range of species and involved in a diverse array of cellular processes. Among its many roles, Akt appears to be common to signaling pathways that mediate the metabolic effects of insulin in several physiologically important target tissues. Refining our understanding of those pivotal molecular components that normally coordinate insulin action throughout the body is essential for a full understanding of insulin resistance in diabetes mellitus and ultimately the successful treatment of this disease.
Collapse
Affiliation(s)
- Eileen L Whiteman
- Dept Medicine and Howard Hughes Medical Institute, University of Pennsylvania School of Medicine, 415 Curie Blvd, 322 Clinical Research Building, Philadelphia, PA 19104, USA
| | | | | |
Collapse
|
41
|
Abstract
PURPOSE OF REVIEW The number of people affected with obesity and type 2 diabetes has reached epidemic proportions worldwide. Insulin resistance, a common feature of both conditions, has come under intense investigation. This review focuses on our current understanding of the insulin signaling cascade and potential mechanisms of regulation. RECENT FINDINGS Recent studies have concentrated on inhibition of insulin-stimulated glucose uptake by free fatty acids as the primary cause of insulin resistance, particularly in muscle, a major site of insulin-stimulated glucose disposal. Mouse models of muscle-specific lipoprotein lipase overexpression permit closer examination of the consequences of lipid oversupply to muscle. Such mice exhibit whole-body and muscle insulin resistance, accompanied by increased accumulation of intramyocellular triglyceride and other fatty acid metabolites (i.e. long-chain acyl coenzyme A, diacylglycerol, and ceramide). These molecules may impede glucose transport by interfering with insulin signal transduction. The mechanisms for the inhibitory effect of free fatty acids on insulin-stimulated glucose transport are complex, and multiple pathways may be involved. Although key molecules have been identified, no single, clearly defined pathway has been established. SUMMARY The mouse model of muscle-specific lipoprotein lipase overexpression allows closer examination of increased free fatty acid delivery to the muscle and of effects on insulin sensitivity. Further study of this model may provide additional insight into the role that lipids play in the development of insulin resistance, and may possibly help to identify novel approaches to prevention or treatment.
Collapse
Affiliation(s)
- Leslie K Pulawa
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado Health Sciences Center, Denver, Colorado 80262, USA.
| | | |
Collapse
|