1
|
Jiang M, Salari A, Stock C, Nikolovska K, Boedtkjer E, Amiri M, Seidler UE. The electroneutral Na +-HCO 3- cotransporter NBCn1 (SLC4A7) modulates colonic enterocyte pH i, proliferation, and migration. Am J Physiol Cell Physiol 2024; 326:C1625-C1636. [PMID: 38646790 PMCID: PMC11371319 DOI: 10.1152/ajpcell.00079.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/05/2024] [Accepted: 04/06/2024] [Indexed: 04/23/2024]
Abstract
NBCn1 (SLC4A7) is one of the two major Na+-HCO3- cotransporters in the human colonic epithelium, expressed predominantly in the highly proliferating colonocytes at the cryptal base. Increased NBCn1 expression levels are reported in tumors, including colorectal cancer. The study explores its importance for maintenance of the intracellular pH (pHi), as well as the proliferative, adhesive, and migratory behavior of the self-differentiating Caco2BBe colonic tumor cell line. In the self-differentiating Caco2BBe cells, NBCn1 mRNA was highly expressed from the proliferative stage until full differentiation. The downregulation of NBCn1 expression by RNA interference affected proliferation and differentiation and decreased intracellular pH (pHi) of the cells in correlation with the degree of knockdown. In addition, a disturbed cell adhesion and reduced migratory speed were associated with NBCn1 knockdown. Murine colonic Nbcn1-/- enteroids also displayed reduced proliferative activity. In the migrating Caco2BBe cells, NBCn1 was found at the leading edge and in colocalization with the focal adhesion markers vinculin and paxillin, which suggests that NBCn1 is involved in the establishment of cell-matrix adhesion. Our data highlight the physiological significance of NBCn1 in modulating epithelial pH homeostasis and cell-matrix interactions in the proliferative region of the colonic epithelium and unravel the molecular mechanism behind pathological overexpression of this transporter in human colorectal cancers.NEW & NOTEWORTHY The transporter NBCn1 plays a central role in maintaining homeostasis within Caco2BBe colonic epithelial cells through its regulation of intracellular pH, matrix adhesion, migration, and proliferation. These observations yield valuable insights into the molecular mechanism of the aberrant upregulation of this transporter in human colorectal cancers.
Collapse
Affiliation(s)
- Min Jiang
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Azam Salari
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Christian Stock
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Katerina Nikolovska
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Ebbe Boedtkjer
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Mahdi Amiri
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Ursula E Seidler
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
2
|
Colmenares Aguilar MG, Mazzone A, Eisenman ST, Strege PR, Bernard CE, Holmes HL, Romero MF, Farrugia G, Gibbons SJ. Expression of the regulated isoform of the electrogenic Na +/HCO 3- cotransporter, NBCe1, is enriched in pacemaker interstitial cells of Cajal. Am J Physiol Gastrointest Liver Physiol 2021; 320:G93-G107. [PMID: 33112159 PMCID: PMC8112189 DOI: 10.1152/ajpgi.00255.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Interstitial cells of Cajal (ICCs) generate electrical slow waves, which are required for normal gastrointestinal motility. The mechanisms for generation of normal pacemaking are not fully understood. Normal gastrointestinal contractility- and electrical slow-wave activity depend on the presence of extracellular HCO3-. Previous transcriptional analysis identified enrichment of mRNA encoding the electrogenic Na+/HCO3- cotransporter (NBCe1) gene (Slc4a4) in pacemaker myenteric ICCs in mouse small intestine. We aimed to determine the distribution of NBCe1 protein in ICCs of the mouse gastrointestinal tract and to identify the transcripts of the Slc4a4 gene in mouse and human small intestinal tunica muscularis. We determined the distribution of NBCe1 immunoreactivity (NBCe1-IR) by immunofluorescent labeling in mouse and human tissues. In mice, NBCe1-IR was restricted to Kit-positive myenteric ICCs of the stomach and small intestine and submuscular ICCs of the large intestine, that is, the slow wave generating subset of ICCs. Other subtypes of ICCs were NBCe1-negative. Quantitative real-time PCR identified >500-fold enrichment of Slc4a4-207 and Slc4a4-208 transcripts ["IP3-receptor-binding protein released by IP3" (IRBIT)-regulated isoforms] in Kit-expressing cells isolated from KitcreERT2/+, Rpl22tm1.1Psam/Sj mice and from single GFP-positive ICCs from Kittm1Rosay mice. Human jejunal tunica muscularis ICCs were also NBCe1-positive, and SLC4A4-201 and SLC4A4-204 RNAs were >300-fold enriched relative to SLC4A4-202. In summary, NBCe1 protein expressed in ICCs with electrical pacemaker function is encoded by Slc4a4 gene transcripts that generate IRBIT-regulated isoforms of NBCe1. In conclusion, Na+/HCO3- cotransport through NBCe1 contributes to the generation of pacemaker activity in subsets of ICCs.NEW & NOTEWORTHY In this study, we show that the electrogenic Na+/HCO3- cotransporter, NBCe1/Slc4a4, is expressed in subtypes of interstitial cells of Cajal (ICCs) responsible for electrical slow wave generation throughout the mouse gastrointestinal tract and is absent in other types of ICCs. The transcripts of Slc4a4 expressed in mouse ICCs and human gastrointestinal smooth muscle are the regulated isoforms. This indicates a key role for HCO3- transport in generation of gastrointestinal motility patterns.
Collapse
Affiliation(s)
| | - Amelia Mazzone
- 1Enteric NeuroScience Program, Division of
Gastroenterology and Hepatology, Mayo Clinic,
Rochester, Minnesota
| | - Seth T. Eisenman
- 1Enteric NeuroScience Program, Division of
Gastroenterology and Hepatology, Mayo Clinic,
Rochester, Minnesota
| | - Peter R. Strege
- 1Enteric NeuroScience Program, Division of
Gastroenterology and Hepatology, Mayo Clinic,
Rochester, Minnesota
| | - Cheryl E. Bernard
- 1Enteric NeuroScience Program, Division of
Gastroenterology and Hepatology, Mayo Clinic,
Rochester, Minnesota
| | - Heather L. Holmes
- 2Physiology and Biomedical Engineering, Nephrology and
Hypertension, Mayo Clinic College of Medicine and
Science, Rochester, Minnesota
| | - Michael F. Romero
- 2Physiology and Biomedical Engineering, Nephrology and
Hypertension, Mayo Clinic College of Medicine and
Science, Rochester, Minnesota
| | - Gianrico Farrugia
- 1Enteric NeuroScience Program, Division of
Gastroenterology and Hepatology, Mayo Clinic,
Rochester, Minnesota,3Department of Physiology and Biomedical Engineering,
Mayo Clinic, Rochester, Minnesota
| | - Simon J. Gibbons
- 1Enteric NeuroScience Program, Division of
Gastroenterology and Hepatology, Mayo Clinic,
Rochester, Minnesota
| |
Collapse
|
3
|
Seidler U, Nikolovska K. Slc26 Family of Anion Transporters in the Gastrointestinal Tract: Expression, Function, Regulation, and Role in Disease. Compr Physiol 2019; 9:839-872. [DOI: 10.1002/cphy.c180027] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
4
|
Chao PC, Butt AG. cAMP-dependent secretagogues stimulate the NaHCO 3 cotransporter in the villous epithelium of the brushtail possum, Trichosurus vulpecula. J Comp Physiol B 2017; 187:1019-1028. [PMID: 28247055 DOI: 10.1007/s00360-017-1063-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Revised: 01/30/2017] [Accepted: 02/05/2017] [Indexed: 12/22/2022]
Abstract
In the ileum of the brushtail possum, Trichosurus vulpecula, fluid secretion appears to be driven by electrogenic HCO3- secretion. Consistent with this, the cystic fibrosis transmembrane conductance regulator is expressed in the apical membrane of the ileal epithelial cells and the pancreatic or secretory variant of the NaHCO3 cotransporter in the basolateral membrane. This suggests that in the possum ileum, electrogenic HCO3- secretion is driven by basolateral NaHCO3 cotransporter (NBC) activity. To determine if the NBC contributes to HCO3- secretion in the possum ileum, intracellular pH (pHi) measurements in isolated villi were used to demonstrate NBC activity in the ileal epithelial cells and investigate the effect of cAMP-dependent secretagogues. In CO2/HCO3--free solutions, recovery of the epithelial cells from an acid load was Na+-dependent and ≈80% inhibited by ethyl-isopropyl-amiloride (EIPA, 10 µmol L-1), indicative of the presence of an Na+/H+ exchanger, most likely NHE1. However, in the presence of CO2/HCO3-, EIPA only inhibited ≈ 50% of the recovery, the remainder was inhibited by 4,4'-diisothiocyano-2,2'-stilbenedisulfonic acid (DIDS, 500 µmol L-1), indicative of NBC activity. Under steady-state conditions, NHE1 inhibition by EIPA had little effect on pHi in the presence or absence of secretagogues, but NBC inhibition with DIDS resulted in a rapid acidification of the cells, which was increased fivefold by secretagogues. These data demonstrate the functional activity of an NaHCO3 cotransporter in the ileal epithelial cells. Furthermore, the stimulation of NBC activity by secretagogues is consistent with the involvement of an NaHCO3 cotransporter in electrogenic HCO3- secretion.
Collapse
Affiliation(s)
- Pin-Chun Chao
- Department of Physiology, School of Biomedical Sciences, University of Otago, PO Box 56, Dunedin, 9054, New Zealand
| | - A Grant Butt
- Department of Physiology, School of Biomedical Sciences, University of Otago, PO Box 56, Dunedin, 9054, New Zealand.
| |
Collapse
|
5
|
Foulke-Abel J, In J, Yin J, Zachos NC, Kovbasnjuk O, Estes MK, de Jonge H, Donowitz M. Human Enteroids as a Model of Upper Small Intestinal Ion Transport Physiology and Pathophysiology. Gastroenterology 2016; 150:638-649.e8. [PMID: 26677983 PMCID: PMC4766025 DOI: 10.1053/j.gastro.2015.11.047] [Citation(s) in RCA: 163] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 11/05/2015] [Accepted: 11/25/2015] [Indexed: 01/18/2023]
Abstract
BACKGROUND & AIMS Human intestinal crypt-derived enteroids are a model of intestinal ion transport that require validation by comparison with cell culture and animal models. We used human small intestinal enteroids to study neutral Na(+) absorption and stimulated fluid and anion secretion under basal and regulated conditions in undifferentiated and differentiated cultures to show their functional relevance to ion transport physiology and pathophysiology. METHODS Human intestinal tissue specimens were obtained from an endoscopic biopsy or surgical resections performed at Johns Hopkins Hospital. Crypts were isolated, enteroids were propagated in culture, induced to undergo differentiation, and transduced with lentiviral vectors. Crypt markers, surface cell enzymes, and membrane ion transporters were characterized using quantitative reverse-transcription polymerase chain reaction, immunoblot, or immunofluorescence analyses. We used multiphoton and time-lapse confocal microscopy to monitor intracellular pH and luminal dilatation in enteroids under basal and regulated conditions. RESULTS Enteroids differentiated upon withdrawal of WNT3A, yielding decreased crypt markers and increased villus-like characteristics. Na(+)/H(+) exchanger 3 activity was similar in undifferentiated and differentiated enteroids, and was affected by known inhibitors, second messengers, and bacterial enterotoxins. Forskolin-induced swelling was completely dependent on cystic fibrosis transmembrane conductance regulator and partially dependent on Na(+)/H(+) exchanger 3 and Na(+)/K(+)/2Cl(-) cotransporter 1 inhibition in undifferentiated and differentiated enteroids. Increases in cyclic adenosine monophosphate with forskolin caused enteroid intracellular acidification in HCO3(-)-free buffer. Cyclic adenosine monophosphate-induced enteroid intracellular pH acidification as part of duodenal HCO3(-) secretion appears to require cystic fibrosis transmembrane conductance regulator and electrogenic Na(+)/HCO3(-) cotransporter 1. CONCLUSIONS Undifferentiated or crypt-like, and differentiated or villus-like, human enteroids represent distinct points along the crypt-villus axis; they can be used to characterize electrolyte transport processes along the vertical axis of the small intestine. The duodenal enteroid model showed that electrogenic Na(+)/HCO3(-) cotransporter 1 might be a target in the intestinal mucosa for treatment of secretory diarrheas.
Collapse
Affiliation(s)
- Jennifer Foulke-Abel
- Department of Medicine, Division of Gastroenterology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Julie In
- Department of Medicine, Division of Gastroenterology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jianyi Yin
- Department of Medicine, Division of Gastroenterology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Nicholas C Zachos
- Department of Medicine, Division of Gastroenterology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Olga Kovbasnjuk
- Department of Medicine, Division of Gastroenterology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Mary K Estes
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas
| | - Hugo de Jonge
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Mark Donowitz
- Department of Medicine, Division of Gastroenterology, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| |
Collapse
|
6
|
Abstract
Cation-coupled HCO3(-) transport was initially identified in the mid-1970s when pioneering studies showed that acid extrusion from cells is stimulated by CO2/HCO3(-) and associated with Na(+) and Cl(-) movement. The first Na(+)-coupled bicarbonate transporter (NCBT) was expression-cloned in the late 1990s. There are currently five mammalian NCBTs in the SLC4-family: the electrogenic Na,HCO3-cotransporters NBCe1 and NBCe2 (SLC4A4 and SLC4A5 gene products); the electroneutral Na,HCO3-cotransporter NBCn1 (SLC4A7 gene product); the Na(+)-driven Cl,HCO3-exchanger NDCBE (SLC4A8 gene product); and NBCn2/NCBE (SLC4A10 gene product), which has been characterized as an electroneutral Na,HCO3-cotransporter or a Na(+)-driven Cl,HCO3-exchanger. Despite the similarity in amino acid sequence and predicted structure among the NCBTs of the SLC4-family, they exhibit distinct differences in ion dependency, transport function, pharmacological properties, and interactions with other proteins. In epithelia, NCBTs are involved in transcellular movement of acid-base equivalents and intracellular pH control. In nonepithelial tissues, NCBTs contribute to intracellular pH regulation; and hence, they are crucial for diverse tissue functions including neuronal discharge, sensory neuron development, performance of the heart, and vascular tone regulation. The function and expression levels of the NCBTs are generally sensitive to intracellular and systemic pH. Animal models have revealed pathophysiological roles of the transporters in disease states including metabolic acidosis, hypertension, visual defects, and epileptic seizures. Studies are being conducted to understand the physiological consequences of genetic polymorphisms in the SLC4-members, which are associated with cancer, hypertension, and drug addiction. Here, we describe the current knowledge regarding the function, structure, and regulation of the mammalian cation-coupled HCO3(-) transporters of the SLC4-family.
Collapse
Affiliation(s)
- Christian Aalkjaer
- Department of Biomedicine, and the Water and Salt Research Center, Aarhus University, Aarhus, Denmark; Department of Physiology, Emory University School of Medicine, Atlanta, USA
| | | | | | | |
Collapse
|
7
|
Gastrointestinal HCO3- transport and epithelial protection in the gut: new techniques, transport pathways and regulatory pathways. Curr Opin Pharmacol 2013; 13:900-8. [PMID: 24280619 DOI: 10.1016/j.coph.2013.10.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Revised: 09/29/2013] [Accepted: 10/01/2013] [Indexed: 02/07/2023]
Abstract
The concept of a protective alkaline gastric and duodenal mucus layer is a century old, yet it is amazing how much new information on HCO3(-) transport pathways has emerged recently, made possible by the extensive utilization of gene-deleted and transgenic mice and novel techniques to study HCO3(-) transport. This review highlights recent findings regarding the importance of HCO3(-) for mucosal protection of duodenum and other gastrointestinal epithelia against luminal acid and other damaging factors. Recently, methods have been developed to visualize HCO3(-) transport in vivo by assessing the surface pH in the mucus layer, as well as the epithelial pH. New information about HCO3(-) transport pathways, and emerging concepts about the intricate regulatory network that governs duodenal HCO3(-) secretion are described, and new perspectives for drug therapy discussed.
Collapse
|
8
|
Christensen HL, Nguyen AT, Pedersen FD, Damkier HH. Na(+) dependent acid-base transporters in the choroid plexus; insights from slc4 and slc9 gene deletion studies. Front Physiol 2013; 4:304. [PMID: 24155723 PMCID: PMC3804831 DOI: 10.3389/fphys.2013.00304] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 10/02/2013] [Indexed: 02/02/2023] Open
Abstract
The choroid plexus epithelium (CPE) is located in the ventricular system of the brain, where it secretes the majority of the cerebrospinal fluid (CSF) that fills the ventricular system and surrounds the central nervous system. The CPE is a highly vascularized single layer of cuboidal cells with an unsurpassed transepithelial water and solute transport rate. Several members of the slc4a family of bicarbonate transporters are expressed in the CPE. In the basolateral membrane the electroneutral Na+ dependent Cl−/HCO3− exchanger, NCBE (slc4a10) is expressed. In the luminal membrane, the electrogenic Na+:HCO3− cotransporter, NBCe2 (slc4a5) is expressed. The electroneutral Na+:HCO3− cotransporter, NBCn1 (slc4a7), has been located in both membranes. In addition to the bicarbonate transporters, the Na+/H+ exchanger, NHE1 (slc9a1), is located in the luminal membrane of the CPE. Genetically modified mice targeting slc4a2, slc4a5, slc4a7, slc4a10, and slc9a1 have been generated. Deletion of slc4a5, 7 or 10, or slc9a1 has numerous impacts on CP function and structure in these mice. Removal of the transporters affects brain ventricle size (slc4a5 and slc4a10) and intracellular pH regulation (slc4a7 and slc4a10). In some instances, removal of the proteins from the CPE (slc4a5, 7, and 10) causes changes in abundance and localization of non-target transporters known to be involved in pH regulation and CSF secretion. The focus of this review is to combine the insights gathered from these knockout mice to highlight the impact of slc4 gene deletion on the CSF production and intracellular pH regulation resulting from the deletion of slc4a5, 7 and 10, and slc9a1. Furthermore, the review contains a comparison of the described human mutations of these genes to the findings in the knockout studies. Finally, the future perspective of utilizing these proteins as potential targets for the treatment of CSF disorders will be discussed.
Collapse
|
9
|
Collaco AM, Jakab RL, Hoekstra NE, Mitchell KA, Brooks A, Ameen NA. Regulated traffic of anion transporters in mammalian Brunner's glands: a role for water and fluid transport. Am J Physiol Gastrointest Liver Physiol 2013; 305:G258-75. [PMID: 23744739 PMCID: PMC3742856 DOI: 10.1152/ajpgi.00485.2012] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The Brunner's glands of the proximal duodenum exert barrier functions through secretion of glycoproteins and antimicrobial peptides. However, ion transporter localization, function, and regulation in the glands are less clear. Mapping the subcellular distribution of transporters is an important step toward elucidating trafficking mechanisms of fluid transport in the gland. The present study examined 1) changes in the distribution of intestinal anion transporters and the aquaporin 5 (AQP5) water channel in rat Brunner's glands following second messenger activation and 2) anion transporter distribution in Brunner's glands from healthy and disease-affected human tissues. Cystic fibrosis transmembrane conductance regulator (CFTR), AQP5, sodium-potassium-coupled chloride cotransporter 1 (NKCC1), sodium-bicarbonate cotransporter (NBCe1), and the proton pump vacuolar ATPase (V-ATPase) were localized to distinct membrane domains and in endosomes at steady state. Carbachol and cAMP redistributed CFTR to the apical membrane. cAMP-dependent recruitment of CFTR to the apical membrane was accompanied by recruitment of AQP5 that was reversed by a PKA inhibitor. cAMP also induced apical trafficking of V-ATPase and redistribution of NKCC1 and NBCe1 to the basolateral membranes. The steady-state distribution of AQP5, CFTR, NBCe1, NKCC1, and V-ATPase in human Brunner's glands from healthy controls, cystic fibrosis, and celiac disease resembled that of rat; however, the distribution profiles were markedly attenuated in the disease-affected duodenum. These data support functional transport of chloride, bicarbonate, water, and protons by second messenger-regulated traffic in mammalian Brunner's glands under physiological and pathophysiological conditions.
Collapse
Affiliation(s)
- Anne M. Collaco
- 1Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut;
| | - Robert L. Jakab
- 1Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut;
| | - Nadia E. Hoekstra
- 1Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut;
| | - Kisha A. Mitchell
- 2Department of Pathology, Yale University School of Medicine, New Haven, Connecticut; and
| | - Amos Brooks
- 2Department of Pathology, Yale University School of Medicine, New Haven, Connecticut; and
| | - Nadia A. Ameen
- 1Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut; ,3Department Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|
10
|
Barmeyer C, Ye JH, Soroka C, Geibel P, Hingsammer LM, Weitgasser L, Atway D, Geibel JP, Binder HJ, Rajendran VM. Identification of functionally distinct Na-HCO3 co-transporters in colon. PLoS One 2013; 8:e62864. [PMID: 23690961 PMCID: PMC3653958 DOI: 10.1371/journal.pone.0062864] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2012] [Accepted: 03/26/2013] [Indexed: 01/23/2023] Open
Abstract
Na-HCO3 cotransport (NBC) regulates intracellular pH (pHi) and HCO3 secretion in rat colon. NBC has been characterized as a 5,5′-diisothiocyanato-2-2′-stilbene (DIDS)-sensitive transporter in several tissues, while the colonic NBC is sensitive to both amiloride and DIDS. In addition, the colonic NBC has been identified as critical for pHi regulation as it is activated by intravesicular acid pH. Molecular studies have identified several characteristically distinct NBC isoforms [i.e. electrogenic (NBCe) and electroneutral (NBCn)] that exhibit tissue specific expression. This study was initiated to establish the molecular identity and specific function of NBC isoforms in rat colon. Northern blot and reverse transcriptase PCR (RT-PCR) analyses revealed that electrogenic NBCe1B or NBCe1C (NBCe1B/C) isoform is predominantly expressed in proximal colon, while electroneutral NBCn1C or NBCn1D (NBCn1C/D) is expressed in both proximal and distal colon. Functional analyses revealed that amiloride-insensitive, electrogenic, pH gradient-dependent NBC activity is present only in basolateral membranes of proximal colon. In contrast, amiloride-sensitive, electroneutral, [H+]-dependent NBC activity is present in both proximal and distal colon. Both electrogenic and electroneutral NBC activities are saturable processes with an apparent Km for Na of 7.3 and 4.3 mM, respectively; and are DIDS-sensitive with apparent Ki of 8.9 and 263.8 µM, respectively. In addition to Na-H exchanger isoform-1 (NHE1), pHi acidification is regulated by a HCO3-dependent mechanism that is HOE694-insensitive in colonic crypt glands. We conclude from these data that electroneutral, amiloride-sensitive NBC is encoded by NBCn1C/D and is present in both proximal and distal colon, while NBCe1B/C encodes electrogenic, amiloride-insensitive Na-HCO3 cotransport in proximal colon. We also conclude that NBCn1C/D regulates HCO3-dependent HOE694-insensitive Na-HCO3 cotransport and plays a critical role in pHi regulation in colonic epithelial cells.
Collapse
Affiliation(s)
- Christian Barmeyer
- Department of Internal Medicine, Yale University, New Haven, Connecticut, United States of America
| | - Jeff Huaqing Ye
- Department of Internal Medicine, Yale University, New Haven, Connecticut, United States of America
| | - Carol Soroka
- Department of Internal Medicine, Yale University, New Haven, Connecticut, United States of America
| | - Peter Geibel
- Department of Surgery, Yale University, New Haven, Connecticut, United States of America
| | - Lukas M. Hingsammer
- Department of Surgery, Yale University, New Haven, Connecticut, United States of America
| | - Laurence Weitgasser
- Department of Surgery, Yale University, New Haven, Connecticut, United States of America
| | - Danny Atway
- Department of Surgery, Yale University, New Haven, Connecticut, United States of America
| | - John P. Geibel
- Department of Surgery, Yale University, New Haven, Connecticut, United States of America
- Department of Cellular and Molecular Physiology, Yale University, New Haven, Connecticut, United States of America
| | - Henry J. Binder
- Department of Internal Medicine, Yale University, New Haven, Connecticut, United States of America
- Department of Cellular and Molecular Physiology, Yale University, New Haven, Connecticut, United States of America
| | - Vazhaikkurichi M. Rajendran
- Department of Internal Medicine, Yale University, New Haven, Connecticut, United States of America
- Department of Biochemistry and Microbiology, West Virginia University School of Medicine, Morgantown, West Virginia, United States of America
- * E-mail:
| |
Collapse
|
11
|
Parker MD, Boron WF. The divergence, actions, roles, and relatives of sodium-coupled bicarbonate transporters. Physiol Rev 2013; 93:803-959. [PMID: 23589833 PMCID: PMC3768104 DOI: 10.1152/physrev.00023.2012] [Citation(s) in RCA: 208] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The mammalian Slc4 (Solute carrier 4) family of transporters is a functionally diverse group of 10 multi-spanning membrane proteins that includes three Cl-HCO3 exchangers (AE1-3), five Na(+)-coupled HCO3(-) transporters (NCBTs), and two other unusual members (AE4, BTR1). In this review, we mainly focus on the five mammalian NCBTs-NBCe1, NBCe2, NBCn1, NDCBE, and NBCn2. Each plays a specialized role in maintaining intracellular pH and, by contributing to the movement of HCO3(-) across epithelia, in maintaining whole-body pH and otherwise contributing to epithelial transport. Disruptions involving NCBT genes are linked to blindness, deafness, proximal renal tubular acidosis, mental retardation, and epilepsy. We also review AE1-3, AE4, and BTR1, addressing their relevance to the study of NCBTs. This review draws together recent advances in our understanding of the phylogenetic origins and physiological relevance of NCBTs and their progenitors. Underlying these advances is progress in such diverse disciplines as physiology, molecular biology, genetics, immunocytochemistry, proteomics, and structural biology. This review highlights the key similarities and differences between individual NCBTs and the genes that encode them and also clarifies the sometimes confusing NCBT nomenclature.
Collapse
Affiliation(s)
- Mark D Parker
- Dept. of Physiology and Biophysics, Case Western Reserve University School of Medicine, 10900 Euclid Ave., Cleveland, OH 44106-4970, USA.
| | | |
Collapse
|
12
|
Singh AK, Xia W, Riederer B, Juric M, Li J, Zheng W, Cinar A, Xiao F, Bachmann O, Song P, Praetorius J, Aalkjaer C, Seidler U. Essential role of the electroneutral Na+-HCO3- cotransporter NBCn1 in murine duodenal acid-base balance and colonic mucus layer build-up in vivo. J Physiol 2013; 591:2189-204. [PMID: 23401617 DOI: 10.1113/jphysiol.2012.247874] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Duodenal epithelial cells need efficient defence strategies during gastric acidification of the lumen, while colonic mucosa counteracts damage by pathogens by building up a bacteria-free adherent mucus layer. Transport of HCO3(-) is considered crucial for duodenal defence against acid as well as for mucus release and expansion, but the transport pathways involved are incompletely understood. This study investigated the significance of the electroneutral Na(+)-HCO3(-) cotransporter NBCn1 for duodenal defence against acid and colonic mucus release. NBCn1 was localized to the basolateral membrane of duodenal villous enterocytes and of colonic crypt cells, with predominant expression in goblet cells. Duodenal villous enterocyte intracellular pH was studied before and during a luminal acid load by two-photon microscopy in exteriorized, vascularly perfused, indicator (SNARF-1 AM)-loaded duodenum of isoflurane-anaesthetized, systemic acid-base-controlled mice. Acid-induced HCO3(-) secretion was measured in vivo by single-pass perfusion and pH-stat titration. After a luminal acid load, NBCn1-deficient duodenocytes were unable to recover rapidly from intracellular acidification and could not respond adequately with protective HCO3(-) secretion. In the colon, build-up of the mucus layer was delayed, and a decreased thickness of the adherent mucus layer was observed, suggesting that basolateral HCO3(-) uptake is essential for optimal release of mucus. The electroneutral Na(+)-HCO3(-) cotransporter NBCn1 displays a differential cellular distribution in the murine intestine and is essential for HCO3(-)-dependent mucosal protective functions, such as recovery of intracellular pH and HCO3(-) secretion in the duodenum and secretion of mucus in the colon.
Collapse
Affiliation(s)
- Anurag Kumar Singh
- Department of Gastroenterology, Hannover Medical School, Hannover, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Boedtkjer E, Moreira JMA, Mele M, Vahl P, Wielenga VT, Christiansen PM, Jensen VED, Pedersen SF, Aalkjaer C. Contribution of Na+,HCO3(-)-cotransport to cellular pH control in human breast cancer: a role for the breast cancer susceptibility locus NBCn1 (SLC4A7). Int J Cancer 2012; 132:1288-99. [PMID: 22907202 DOI: 10.1002/ijc.27782] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Accepted: 07/31/2012] [Indexed: 12/16/2022]
Abstract
Genome-wide association studies recently linked the locus for Na(+),HCO(3)(-)-cotransporter NBCn1 (SLC4A7) to breast cancer susceptibility, yet functional insights have been lacking. To determine whether NBCn1, by transporting HCO(3)(-) into cells, may dispose of acid produced during high metabolic activity, we studied the expression of NBCn1 and the functional impact of Na(+),HCO(3)(-)-cotransport in human breast cancer. We found that the plasmalemmal density of NBCn1 was 20-30% higher in primary breast carcinomas and metastases compared to matched normal breast tissue. The increase in NBCn1 density was similar in magnitude to that observed for Na(+)/H(+)-exchanger NHE1 (SLC9A1), a transporter previously implicated in cell migration, proliferation and malignancy. In primary breast carcinomas, the apparent molecular weight for NBCn1 was increased compared to normal tissue. Using pH-sensitive fluorophores, we showed that Na(+),HCO(3)(-)-cotransport is the predominant mechanism of acid extrusion and is inhibited 34 ± 9% by 200 μM 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid in human primary breast carcinomas. At intracellular pH (pH(i) ) levels >6.6, CO(2)/HCO(3)(-)-dependent mechanisms accounted for >90% of total net acid extrusion. Na(+)/H(+)-exchange activity was prominent only at lower pH(i) -values. Furthermore, steady-state pH(i) was 0.35 ± 0.06 units lower in the absence than in the presence of CO(2)/HCO(3)(-). In conclusion, expression of NBCn1 is upregulated in human primary breast carcinomas and metastases compared to normal breast tissue. Na(+),HCO(3)(-)-cotransport is a major determinant of pH(i) in breast cancer and the modest DIDS-sensitivity is consistent with NBCn1 being predominantly responsible. Hence, our results suggest a major pathophysiological role for NBCn1 that may be clinically relevant.
Collapse
|
14
|
Boedtkjer E, Aalkjaer C. Intracellular pH in the resistance vasculature: regulation and functional implications. J Vasc Res 2012; 49:479-96. [PMID: 22907294 DOI: 10.1159/000341235] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Accepted: 06/20/2012] [Indexed: 12/18/2022] Open
Abstract
Net acid extrusion from vascular smooth muscle (VSMCs) and endothelial cells (ECs) in the wall of resistance arteries is mediated by the Na(+),HCO(3)(-) cotransporter NBCn1 (SLC4A7) and the Na(+)/H(+) exchanger NHE1 (SLC9A1) and is essential for intracellular pH (pH(i)) control. Experimental evidence suggests that the pH(i) of VSMCs and ECs modulates both vasocontractile and vasodilatory functions in resistance arteries with implications for blood pressure regulation. The connection between disturbed pH(i) and altered cardiovascular function has been substantiated by a genome-wide association study showing a link between NBCn1 and human hypertension. On this basis, we here review the current evidence regarding (a) molecular mechanisms involved in pH(i) control in VSMCs and ECs of resistance arteries at rest and during contractions, (b) implications of disturbed pH(i) for resistance artery function, and (c) involvement of disturbed pH(i) in the pathogenesis of vascular disease. The current evidence clearly implies that pH(i) of VSMCs and ECs modulates vascular function and suggests that disturbed pH(i) either consequent to disturbed regulation or due to metabolic challenges needs to be taken into consideration as a mechanistic component of artery dysfunction and disturbed blood pressure regulation.
Collapse
Affiliation(s)
- Ebbe Boedtkjer
- Department of Biomedicine and Water and Salt Research Center, Aarhus University, Aarhus, Denmark.
| | | |
Collapse
|
15
|
Chen M, Praetorius J, Zheng W, Xiao F, Riederer B, Singh AK, Stieger N, Wang J, Shull GE, Aalkjaer C, Seidler U. The electroneutral Na⁺:HCO₃⁻ cotransporter NBCn1 is a major pHi regulator in murine duodenum. J Physiol 2012; 590:3317-33. [PMID: 22586225 DOI: 10.1113/jphysiol.2011.226506] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Duodenocyte pHi control and HCO3 − secretion protects the proximal duodenum against damage by gastric acid. The molecular details of duodenocyte pH control are not well understood. A selective duodenal expression (within the upper GI tract) has been reported for the electroneutral Na+:HCO3 − cotransporter NBCn1 (Slc4a7). We aimed to determine the role of NBCn1 and NBCe2 in duodenocyte intracellular pH regulation as well as basal and agonist-stimulated duodenal bicarbonate secretion (JHCO3 −), exploiting mouse models of genetic slc4a7 and slc4a5 disruption. Basal and forskolin (FSK)-stimulated JHCO3 − was measured by single-pass perfusion in the duodenum of slc4a7−/− and slc4a7+/+ as well as slc4a5−/− and slc4a5+/+ mice in vivo, and by pH-stat titration in isolated duodenal mucosa in vitro. Duodenocyte HCO3 − uptake rates were fluorometrically assessed after acidification of intact villi and of isolated duodenocytes. Slc4a7−/− mice displayed significantly lower basal and FSK-stimulated duodenal HCO3 − secretion than slc4a7+/+ littermates in vivo. FSK-stimulated HCO3 − secretion was significantly reduced in slc4a7−/− isolated duodenal mucosa. Na+- and HCO3 −-dependent base uptake rates were significantly decreased in slc4a7−/− compared with slc4a7+/+ villus duodenocytes when measured in intact villi. Carbonic anhydrase (CA)-mediated CO2 hydration played no apparent role as a HCO3 − supply mechanism for basal or FSK-stimulated secretion in the slc4a7+/+ duodenum, but was an important alternative HCO3 − supply mechanism in the slc4a7−/− duodenum. NBCe2 (Slc4a5) displayed markedly lower duodenal mRNA expression levels, and its disruption did not interfere with duodenal HCO3 − secretion. The electroneutral Na+:HCO3 − cotransporter NBCn1 (slc4a7) is a major duodenal HCO3 − importer that supplies HCO3 − during basal and FSK-stimulated HCO3 − secretion.
Collapse
Affiliation(s)
- Mingmin Chen
- Department of Gastroenterology, Hannover Medical School, Carl-Neuberg-Straße 1, Hannover, D-30625, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Jakab RL, Collaco AM, Ameen NA. Physiological relevance of cell-specific distribution patterns of CFTR, NKCC1, NBCe1, and NHE3 along the crypt-villus axis in the intestine. Am J Physiol Gastrointest Liver Physiol 2011; 300:G82-98. [PMID: 21030607 PMCID: PMC3025502 DOI: 10.1152/ajpgi.00245.2010] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2010] [Accepted: 10/27/2010] [Indexed: 01/31/2023]
Abstract
We examined the cell-specific subcellular expression patterns for sodium- and potassium-coupled chloride (NaK2Cl) cotransporter 1 (NKCC1), Na(+) bicarbonate cotransporter (NBCe1), cystic fibrosis transmembrane conductance regulator (CFTR), and Na(+)/H(+) exchanger 3 (NHE3) to understand the functional plasticity and synchronization of ion transport functions along the crypt-villus axis and its relevance to intestinal disease. In the unstimulated intestine, all small intestinal villus enterocytes coexpressed apical CFTR and NHE3, basolateral NBCe1, and mostly intracellular NKCC1. All (crypt and villus) goblet cells strongly expressed basolateral NKCC1 (at approximately three-fold higher levels than villus enterocytes), but no CFTR, NBCe1, or NHE3. Lower crypt cells coexpressed apical CFTR and basolateral NKCC1, but no NHE3 or NBCe1 (except NBCe1-expressing proximal colonic crypts). CFTR, NBCe1, and NKCC1 colocalized with markers of early and recycling endosomes, implicating endocytic recycling in cell-specific anion transport. Brunner's glands of the proximal duodenum coexpressed high levels of apical/subapical CFTR and basolateral NKCC1, but very low levels of NBCe1, consistent with secretion of Cl(-)-enriched fluid into the crypt. The cholinergic agonist carbachol rapidly (within 10 min) reduced cell volume along the entire crypt/villus axis and promoted NHE3 internalization into early endosomes. In contrast, carbachol induced membrane recruitment of NKCC1 and CFTR in all crypt and villus enterocytes, NKCC1 in all goblet cells, and NBCe1 in all villus enterocytes. These observations support regulated vesicle traffic in Cl(-) secretion by goblet cells and Cl(-) and HCO(3)(-) secretion by villus enterocytes during the transient phase of cholinergic stimulation. Overall, the carbachol-induced membrane trafficking profile of the four ion transporters supports functional plasticity of the small intestinal villus epithelium that enables it to conduct both absorptive and secretory functions.
Collapse
Affiliation(s)
- Robert L Jakab
- Department of Pediatrics/Gastroenterology and Hepatology, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | | | | |
Collapse
|
17
|
Seidler U, Song P, Xiao F, Riederer B, Bachmann O, Chen M. Recent advances in the molecular and functional characterization of acid/base and electrolyte transporters in the basolateral membranes of gastric and duodenal epithelial cells. Acta Physiol (Oxf) 2011; 201:3-20. [PMID: 20331540 DOI: 10.1111/j.1748-1716.2010.02107.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
All segments of the gastrointestinal tract are comprised of an elaborately folded epithelium that expresses a variety of cell types and performs multiple secretory and absorptive functions. While the apical membrane expresses the electrolyte transporters that secrete or absorb electrolytes and water, basolateral transporters regulate the secretory or absorptive rates. During gastric acid formation, Cl⁻/HCO₃⁻ and Na(+) /H(+) exchange and other transporters secure Cl⁻ re-supply as well as pH and volume regulation. Gastric surface cells utilize ion transporters to secrete HCO₃⁻, maintain pH(i) during a luminal acid load and repair damaged surface areas during the process of epithelial restitution. Na(+)/H(+) exchange and Na(+)/HCO₃⁻ cotransport serve basolateral acid/base import for gastroduodenal HCO₃⁻ secretion. The gastric and duodenal epithelium also absorbs salt and water. Recent molecular information on novel ion transporters expressed in the gastric and duodenal epithelium has exploded; however, a function has not been found yet for all transporters. The purpose of this review is to summarize current knowledge on the molecular identity and cellular function of basolateral ion transporters in the gastric and duodenal epithelium.
Collapse
Affiliation(s)
- U Seidler
- Department of Gastroenterology, Hepatology, and Endocrinology, Hannover Medical School, Germany.
| | | | | | | | | | | |
Collapse
|
18
|
Majumdar D, Bevensee MO. Na-coupled bicarbonate transporters of the solute carrier 4 family in the nervous system: function, localization, and relevance to neurologic function. Neuroscience 2010; 171:951-72. [PMID: 20884330 PMCID: PMC2994196 DOI: 10.1016/j.neuroscience.2010.09.037] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2010] [Revised: 09/03/2010] [Accepted: 09/14/2010] [Indexed: 12/26/2022]
Abstract
Many cellular processes including neuronal activity are sensitive to changes in intracellular and/or extracellular pH-both of which are regulated by acid-base transporter activity. HCO(3)(-)-dependent transporters are particularly potent regulators of intracellular pH in neurons and astrocytes, and also contribute to the composition of the cerebrospinal fluid (CSF). The molecular physiology of HCO(3)(-) transporters has advanced considerably over the past ∼14 years as investigators have cloned and characterized the function and localization of many Na-Coupled Bicarbonate Transporters of the solute carrier 4 (Slc4) family (NCBTs). In this review, we provide an updated overview of the function and localization of NCBTs in the nervous system. Multiple NCBTs are expressed in neurons and astrocytes in various brain regions, as well as in epithelial cells of the choroid plexus. Characteristics of human patients with SLC4 gene mutations/deletions and results from recent studies on mice with Slc4 gene disruptions highlight the functional importance of NCBTs in neuronal activity, somatosensory function, and CSF production. Furthermore, energy-deficient states (e.g., hypoxia and ischemia) lead to altered expression and activity of NCBTs. Thus, recent studies expand our understanding of the role of NCBTs in regulating the pH and ionic composition of the nervous system that can modulate neuronal activity.
Collapse
Affiliation(s)
- Debeshi Majumdar
- Department of Physiology and Biophysics, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Mark O. Bevensee
- Department of Physiology and Biophysics, University of Alabama at Birmingham, Birmingham, AL 35294
- Center of Glial Biology in Medicine, University of Alabama at Birmingham, Birmingham, AL 35294
- Civitan International Research Center, University of Alabama at Birmingham, Birmingham, AL 35294
| |
Collapse
|
19
|
Sussman CR, Zhao J, Plata C, Lu J, Daly C, Angle N, DiPiero J, Drummond IA, Liang JO, Boron WF, Romero MF, Chang MH. Cloning, localization, and functional expression of the electrogenic Na+ bicarbonate cotransporter (NBCe1) from zebrafish. Am J Physiol Cell Physiol 2009; 297:C865-75. [PMID: 19625604 PMCID: PMC2770747 DOI: 10.1152/ajpcell.00679.2008] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2008] [Accepted: 07/20/2009] [Indexed: 11/22/2022]
Abstract
Mutations in the electrogenic Na+/nHCO3- cotransporter (NBCe1, SLC4A4) cause severe proximal renal tubular acidosis, glaucoma, and cataracts in humans, indicating NBCe1 has a critical role in acid-base homeostasis and ocular fluid transport. To better understand the homeostatic roles and protein ontogeny of NBCe1, we have cloned, localized, and downregulated NBCe1 expression in zebrafish, and examined its transport characteristics when expressed in Xenopus oocytes. Zebrafish NBCe1 (zNBCe1) is 80% identical to published mammalian NBCe1 cDNAs. Like other fish NBCe1 clones, zebrafish NBCe1 is most similar to the pancreatic form of mammalian NBC (Slc4a4-B) but appears to be the dominant isoform found in zebrafish. In situ hybridization of embryos demonstrated mRNA expression in kidney pronephros and eye by 24 h postfertilization (hpf) and gill and brain by 120 hpf. Immunohistochemical labeling demonstrated expression in adult zebrafish eye and gill. Morpholino knockdown studies demonstrated roles in eye and brain development and caused edema, indicating altered fluid and electrolyte balance. With the use of microelectrodes to measure membrane potential (Vm), voltage clamp (VC), intracellular pH (pH(i)), or intracellular Na+ activity (aNa(i)), we examined the function of zNBCe1 expressed in Xenopus oocytes. Zebrafish NBCe1 shared transport properties with mammalian NBCe1s, demonstrating electrogenic Na+ and HCO3- transport as well as similar drug sensitivity, including inhibition by 4,4'-diiso-thiocyano-2,2'-disulfonic acid stilbene and tenidap. These data indicate that NBCe1 in zebrafish shares many characteristics with mammalian NBCe1, including tissue distribution, importance in systemic water and electrolyte balance, and electrogenic transport of Na+ and HCO3-. Thus zebrafish promise to be useful model system for studies of NBCe1 physiology.
Collapse
Affiliation(s)
- Caroline R Sussman
- Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Garcia MAS, Yang N, Quinton PM. Normal mouse intestinal mucus release requires cystic fibrosis transmembrane regulator-dependent bicarbonate secretion. J Clin Invest 2009; 119:2613-22. [PMID: 19726884 DOI: 10.1172/jci38662] [Citation(s) in RCA: 225] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2009] [Accepted: 07/01/2009] [Indexed: 12/16/2022] Open
Abstract
The mechanisms underlying mucus-associated pathologies in cystic fibrosis (CF) remain obscure. However, recent studies indicate that CF transmembrane conductance regulator (CFTR) is required for bicarbonate (HCO3-) transport and that HCO3- is critical for normal mucus formation. We therefore investigated the role of HCO3- in mucus secretion using mouse small intestine segments ex vivo. Basal rates of mucus release in the presence or absence of HCO3- were similar. However, in the absence of HCO3-, mucus release stimulated by either PGE2 or 5-hydroxytryptamine (5-HT) was approximately half that stimulated by these molecules in the presence of HCO3-. Inhibition of HCO3- and fluid transport markedly reduced stimulated mucus release. However, neither absence of HCO3- nor inhibition of HCO3- transport affected fluid secretion rates, indicating that the effect of HCO3- removal on mucus release was not due to decreased fluid secretion. In a mouse model of CF (mice homozygous for the most common human CFTR mutation), intestinal mucus release was minimal when stimulated with either PGE2 or 5-HT in the presence or absence of HCO3-. These data suggest that normal mucus release requires concurrent HCO3- secretion and that the characteristically aggregated mucus observed in mucin-secreting organs in individuals with CF may be a consequence of defective HCO3- transport.
Collapse
Affiliation(s)
- Mary Abigail S Garcia
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, University of California School of Medicine, San Diego, California 92093-0831, USA
| | | | | |
Collapse
|
21
|
Boedtkjer E, Praetorius J, Füchtbauer EM, Aalkjaer C. Antibody-independent localization of the electroneutral Na+-HCO3- cotransporter NBCn1 (slc4a7) in mice. Am J Physiol Cell Physiol 2007; 294:C591-603. [PMID: 18077606 DOI: 10.1152/ajpcell.00281.2007] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The expression pattern of the electroneutral Na(+)-HCO(3)(-)cotransporter NBCn1 (slc4a7) was investigated by beta-galactosidase staining of mice with a LacZ insertion into the NBCn1 gene. This method is of particular value because it is independent of immunoreactivity. We find that the NBCn1 promoter is active in a number of tissues where NBCn1 has previously been functionally or immunohistochemically identified, including a broad range of blood vessels (vascular smooth muscle cells and endothelial cells), kidney thick ascending limb and medullary collecting duct epithelial cells, the epithelial lining of the kidney pelvis, duodenal enterocytes, choroid plexus epithelial cells, hippocampus, and retina. Kidney corpuscles, colonic mucosa, and nonvascular smooth muscle cells (from the urinary bladder, trachea, gastrointestinal wall, and uterus) were novel areas of promoter activity. Atrial but not ventricular cardiomyocytes were stained. In the brain, distinct layers of the cerebral cortex and cerebellar Purkinje cells were stained as was the dentate nucleus. No staining of skeletal muscle or cortical collecting ducts was observed. RT-PCR analyses confirmed the expression of NBCn1 and beta-galactosidase in selected tissues. Disruption of the NBCn1 gene resulted in reduced NBCn1 expression, and in bladder smooth muscle cells, reduced amiloride-insensitive Na(+)-dependent HCO(3)(-) influx was observed. Furthermore, disruption of the NBCn1 gene resulted in a lower intracellular steady-state pH of bladder smooth muscle cells in the presence of CO(2)/HCO(3)(-) but not in its nominal absence. We conclude that NBCn1 has a broad expression profile, supporting previous findings based on immunoreactivity, and suggest several new tissues where NBCn1 may be important.
Collapse
Affiliation(s)
- Ebbe Boedtkjer
- The Water and Salt Research Center, University of Aarhus, Ole Worms Allé 1160, DK-8000 Aarhus C, Denmark.
| | | | | | | |
Collapse
|
22
|
Bachmann O, Reichelt D, Tuo B, Manns MP, Seidler U. Carbachol increases Na+-HCO3- cotransport activity in murine colonic crypts in a M3-, Ca2+/calmodulin-, and PKC-dependent manner. Am J Physiol Gastrointest Liver Physiol 2006; 291:G650-7. [PMID: 16675744 DOI: 10.1152/ajpgi.00376.2005] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The Na(+)-HCO(3)(-) cotransporter (NBC) mediates HCO(3)(-) import into the colonocyte via its pNBC1 isoform. Whereas renal kNBC1 is inhibited by increased cAMP levels, pNBC1 is stimulated. Cholinergic stimulation activates renal NBC, but the effect on intestinal NBC is unknown. Therefore, crypts were isolated from the murine proximal colon by Ca(2+) chelation and loaded with the pH-sensitive dye 2',7'-bis-carboxyethyl-5,6-carboxyfluorescein. Na(+)-HCO(3)(-) cotransport activity was calculated from the dimethylamiloride-insensitive (500 microM) intracellular pH recovery from an acid load in the presence of CO(2)-HCO(3)(-) and the intracellular buffering capacity. Carbachol strongly increased Na(+)-HCO(3)(-) cotransport activity compared with control rates. Ca(2+) chelation with BAPTA-AM, blockade of the M(3) subtype of muscarinergic receptors with 4-diphenylacetoxy-N-methylpiperidine methiodide, and inhibition of Ca(2+)/calmodulin kinase II with KN-62 all caused significant inhibition of the carbachol-induced NBC activity increase. Furthermore, PKC inhibition with Gö-6976 and Gö-6850 significantly reduced the carbachol effect, which may be related to the unique NH(2)-terminal consensus site for PKC-dependent phosphorylation of pNBC1. We conclude that NBC in the murine colon is thus activated by carbachol, consistent with its presumed function as an anion uptake pathway during intestinal anion secretion, but that the signal transductions pathways are distinct from those involved in the cholinergic activation of renal NBC1.
Collapse
Affiliation(s)
- O Bachmann
- Dept. of Gastroenterology, Hepatology, and Endocrinology, Hannover Medical School, Carl-Neuberg-Strasse 1, Hannover 30625, Germany
| | | | | | | | | |
Collapse
|
23
|
Pushkin A, Kurtz I. SLC4 base (HCO3 -, CO3 2-) transporters: classification, function, structure, genetic diseases, and knockout models. Am J Physiol Renal Physiol 2006; 290:F580-99. [PMID: 16461757 DOI: 10.1152/ajprenal.00252.2005] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In prokaryotic and eukaryotic organisms, biochemical and physiological processes are sensitive to changes in H(+) activity. For these processes to function optimally, a variety of proteins have evolved that transport H(+)/base equivalents across cell and organelle membranes, thereby maintaining the pH of various intracellular and extracellular compartments within specific limits. The SLC4 family of base (HCO(3)(-), CO(3)(2(-))) transport proteins plays an essential role in mediating Na(+)- and/or Cl(-)-dependent base transport in various tissues and cell types in mammals. In addition to pH regulation, specific members of this family also contribute to vectorial transepithelial base transport in several organ systems including the kidney, pancreas, and eye. The importance of these transporters in mammalian cell biology is highlighted by the phenotypic abnormalities resulting from spontaneous SLC4 mutations in humans and targeted deletions in murine knockout models. This review focuses on recent advances in our understanding of the molecular organization and functional properties of SLC4 transporters and their role in disease.
Collapse
Affiliation(s)
- Alexander Pushkin
- Division of Nephrology, David Geffen School of Medicine at UCLA, University of California-Los Angeles, 10833 Le Conte Avenue, Rm. 7-155 Factor Bldg., Los Angeles, CA 90095, USA
| | | |
Collapse
|
24
|
Koo NY, Li J, Hwang SM, Choi SY, Lee SJ, Oh SB, Kim JS, Lee JH, Park K. Molecular cloning and functional expression of a sodium bicarbonate cotransporter from guinea-pig parotid glands. Biochem Biophys Res Commun 2006; 342:1114-22. [PMID: 16513089 DOI: 10.1016/j.bbrc.2006.02.064] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2006] [Accepted: 02/13/2006] [Indexed: 11/22/2022]
Abstract
We recently found that the concentration of HCO3- in guinea-pig saliva is very similar to that of human saliva; however, the entity that regulates HCO3- transport has not yet been fully characterized. In order to investigate the mechanism of HCO3- transport, we identified, cloned, and characterized a sodium bicarbonate (Na(+)/HCO3- cotransporter found in guinea-pig parotid glands (gpNBC1). The gpNBC1 gene encodes a 1079-amino acid protein that has 95% and 96% homology with human and mouse parotid NBC1, respectively. Oocytes expressing gpNBC1 were exposed to HCO3- or Na(+)-free solutions, which resulted in a marked change in membrane potentials (V(m)), suggesting that gpNBC1 is electrogenic. Likewise, a gpNBC1-mediated pH recovery was observed in gpNBC1 transfected human hepatoma cells; however, in the presence of 4, 4-diisothiocyanostilbene-2,2-disulfonic acid, a specific NBC1 inhibitor, such changes in V(m) and pH(i) were not observed. Together, the data show that the cloned guinea-pig gene is a functional, as well as sequence homologue of human NBC1.
Collapse
Affiliation(s)
- Na-Youn Koo
- Department of Physiology and Dental Research Institute, School of Dentistry, Seoul National University, Seoul 110-749, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Montrose MH, Akiba Y, Takeuchi K, Kaunitz JD. Gastroduodenal Mucosal Defense. PHYSIOLOGY OF THE GASTROINTESTINAL TRACT 2006:1259-1291. [DOI: 10.1016/b978-012088394-3/50053-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
26
|
Damkier HH, Nielsen S, Praetorius J. An anti-NH2-terminal antibody localizes NBCn1 to heart endothelia and skeletal and vascular smooth muscle cells. Am J Physiol Heart Circ Physiol 2005; 290:H172-80. [PMID: 16126812 DOI: 10.1152/ajpheart.00713.2005] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The electroneutral sodium bicarbonate cotransporter NBCn1 or NBC3 was originally cloned from rat aorta and from human skeletal muscle. NBCn1 (or NBC3) has been localized to the basolateral membrane of various epithelia, but thus far it has been impossible to detect the protein in these tissues by using anti-COOH-terminal antibodies. Hence an antibody was developed against the NH2-terminus of NBCn1 and was validated by peptide recognition and immunoblotting on positive control tissues and by binding of an approximately 180-kDa protein in the rat kidney, cerebrum, cerebellum, and duodenum. In addition, an approximately 180-kDa immunoreactive band appeared using samples from the aorta, heart ventricles and atria, mesenteric arteries, lung, spleen, liver, pancreas, and epididymis. Immunohistochemical analysis confirmed the previously described labeling in the kidney, duodenum, and the choroid plexus. The anti-NH2-terminal antibody localized NBCn1 to the plasma membrane domains of endothelia and smooth muscle cells in small mesenteric and renal arteries, as well as the capillaries of the heart ventricles, spleen, and salivary glands. NBCn1 was also detected in neuromuscular junctions and vasculature in skeletal muscle. Analysis of variable NBCn1 splicing by RT-PCR revealed that an NH2-terminal sequence, the cassette III, seems absent from cardiovascular NBCn1 and that both cassettes I and III are variable in most epithelia, whereas cassette II is absent from epithelial NBCn1. Thus the development of the NH2-terminal antibody allowed the localization of NBCn1 protein to major cardiovascular tissues where NBCn1 mRNA was previously detected. The NBCn1 is a likely candidate for mediating the reported electroneutral Na+-HCO3(-) cotransport in vascular smooth muscle.
Collapse
Affiliation(s)
- Helle Hasager Damkier
- Water and Salt Research Center, Institute of Anatomy, Univ. of Aarhus, Wilhelm Meyers Allé, Bldg. 234, 8000 Aarhus C, Denmark
| | | | | |
Collapse
|
27
|
Bouzinova EV, Praetorius J, Virkki LV, Nielsen S, Boron WF, Aalkjaer C. Na+-dependent HCO3- uptake into the rat choroid plexus epithelium is partially DIDS sensitive. Am J Physiol Cell Physiol 2005; 289:C1448-56. [PMID: 16093277 DOI: 10.1152/ajpcell.00313.2005] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Several studies suggest the involvement of Na+ and HCO3- transport in the formation of cerebrospinal fluid. Two Na+-dependent HCO3- transporters were recently localized to the epithelial cells of the rat choroid plexus (NBCn1 and NCBE), and the mRNA for a third protein was also detected (NBCe2) (Praetorius J, Nejsum LN, and Nielsen S. Am J Physiol Cell Physiol 286: C601-C610, 2004). Our goal was to immunolocalize the NBCe2 to the choroid plexus by immunohistochemistry and immunogold electronmicroscopy and to functionally characterize the bicarbonate transport in the isolated rat choroid plexus by measurements of intracellular pH (pHi) using a dual-excitation wavelength pH-sensitive dye (BCECF). Both antisera derived from COOH-terminal and NH2-terminal NBCe2 peptides localized NBCe2 to the brush-border membrane domain of choroid plexus epithelial cells. Steady-state pHi in choroidal cells increased from 7.03 +/- 0.02 to 7.38 +/- 0.02 (n=41) after addition of CO2/HCO3- into the bath solution. This increase was Na+ dependent and inhibited by the Cl- and HCO3- transport inhibitor DIDS (200 muM). This suggests the presence of Na+-dependent, partially DIDS-sensitive HCO3- uptake. The pHi recovery after acid loading revealed an initial Na+ and HCO3- -dependent net base flux of 0.828 +/- 0.116 mM/s (n = 8). The initial flux in the presence of CO2/HCO3- was unaffected by DIDS. Our data support the existence of both DIDS-sensitive and -insensitive Na+- and HCO3- -dependent base loader uptake into the rat choroid plexus epithelial cells. This is consistent with the localization of the three base transporters NBCn1, Na+-driven Cl- bicarbonate exchanger, and NBCe2 in this tissue.
Collapse
Affiliation(s)
- Elena V Bouzinova
- Institute for Physiology and Biophysics, Univ. of Aarhus, Ole Worms Allé, Bldg. 1160, DK-8000 Aarhus C, Denmark.
| | | | | | | | | | | |
Collapse
|
28
|
Allen A, Flemström G. Gastroduodenal mucus bicarbonate barrier: protection against acid and pepsin. Am J Physiol Cell Physiol 2005; 288:C1-19. [PMID: 15591243 DOI: 10.1152/ajpcell.00102.2004] [Citation(s) in RCA: 401] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Secretion of bicarbonate into the adherent layer of mucus gel creates a pH gradient with a near-neutral pH at the epithelial surfaces in stomach and duodenum, providing the first line of mucosal protection against luminal acid. The continuous adherent mucus layer is also a barrier to luminal pepsin, thereby protecting the underlying mucosa from proteolytic digestion. In this article we review the present state of the gastroduodenal mucus bicarbonate barrier two decades after the first supporting experimental evidence appeared. The primary function of the adherent mucus gel layer is a structural one to create a stable, unstirred layer to support surface neutralization of acid and act as a protective physical barrier against luminal pepsin. Therefore, the emphasis on mucus in this review is on the form and role of the adherent mucus gel layer. The primary function of the mucosal bicarbonate secretion is to neutralize acid diffusing into the mucus gel layer and to be quantitatively sufficient to maintain a near-neutral pH at the mucus-mucosal surface interface. The emphasis on mucosal bicarbonate in this review is on the mechanisms and control of its secretion and the establishment of a surface pH gradient. Evidence suggests that under normal physiological conditions, the mucus bicarbonate barrier is sufficient for protection of the gastric mucosa against acid and pepsin and is even more so for the duodenum.
Collapse
Affiliation(s)
- Adrian Allen
- Physiological Sciences, Medical School, University of Newcastle upon Tyne, Newcastle upon Tyne, United Kingdom
| | | |
Collapse
|
29
|
Konturek PC, Konturek SJ, Hahn EG. Duodenal alkaline secretion: its mechanisms and role in mucosal protection against gastric acid. Dig Liver Dis 2004; 36:505-12. [PMID: 15334769 DOI: 10.1016/j.dld.2004.03.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Duodenal mucosa, especially its proximal portion, is exposed to intermittent pulses of gastric acid (H+). This review summarises the mechanisms of duodenal bicarbonate (HCO3-) secretion and their role in protecting duodenal epithelium against gastric H+. Duodenal epithelium is a leaky barrier against gastric H+, which diffuses into duodenocytes, but fails to damage them due to: (a) an enhanced expression of cyclooxygenase, producing protective prostaglandins and expression of nitric oxide synthase, releasing nitric oxide, both stimulating duodenal HCO3- secretion and (b) the release of several neurotransmitters also stimulating HCO3- secretion such as vasoactive intestinal peptide, pituitary adenylate cyclase-activating polypeptide, acetylcholine and melatonin. At the apical duodenocyte membrane, several HCO3-/Cl- anion exchangers operate in response to luminal H+ to extrude HCO3- into duodenal lumen. In baso-lateral duodenocyte membrane, both non-electrogenic and electrogenic Na+-HCO3- cotransporters are activated after exposure of duodenum to gastric H+, causing inward movement of HCO3- from extracellular fluid to duodenocytes. There are also at least three Na+/H+ exchangers, eliminating H+ which diffused into these cells. The Helicobacter pylori infection with gastric metaplasia in the duodenum and bacterium inoculation results in the inhibition of HCO3- secretion by its endogenous inhibitor dimethyl arginine, resulting in ulcerogenesis.
Collapse
Affiliation(s)
- P C Konturek
- First Department of Medicine, University Erlangen-Nuernberg. Erlangen, Germany
| | | | | |
Collapse
|
30
|
Roussa E, Nastainczyk W, Thévenod F. Differential expression of electrogenic NBC1 (SLC4A4) variants in rat kidney and pancreas. Biochem Biophys Res Commun 2004; 314:382-9. [PMID: 14733916 DOI: 10.1016/j.bbrc.2003.12.099] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The purpose of this study was to determine expression and localization of NH(2)-terminal variants of the electrogenic Na(+)-HCO(3)(-) co-transporter NBC1 (SLC4A4) in the rat kidney and pancreas. We generated two anti-peptide antibodies: alpha333 against the "mste" start (kidney; kNBC1) and alpha332 against the "mede" start (pancreas; pNBC1). Transcripts for both NBC1 variants were detected in kidney and pancreas by RT-PCR, though kNBC1 was more prominent in the kidney and pNBC1 was more prominent in the pancreas. Similar protein expression levels were detected by immunoblotting of plasma membranes (PM) from kidney cortex and pancreas. Immunohistochemistry with alpha333 recognized the "mste"-epitope in the basolateral plasma membrane (BLM) of renal proximal tubule. The "mede"-protein (alpha332) was similarly localized although staining was much less and more diffuse. In the pancreas, alpha332 stained BLM of acinar and duct cells. Some isolated duct cells were also stained at the apical PM. The "mste"-protein (alpha333) was absent in acinar cells but was located at the apical PM of duct cells. The data indicate that the two NH(2)-terminal NBC1 variants are co-expressed in kidney and pancreas, where they may contribute to HCO(3)(-) transport and pH regulation.
Collapse
Affiliation(s)
- Eleni Roussa
- Department of Neuroanatomy, Center for Anatomy, Georg-August-University Göttingen, D-37075 Göttingen, Germany.
| | | | | |
Collapse
|
31
|
Praetorius J, Kim YH, Bouzinova EV, Frische S, Rojek A, Aalkjaer C, Nielsen S. NBCn1 is a basolateral Na+-HCO3- cotransporter in rat kidney inner medullary collecting ducts. Am J Physiol Renal Physiol 2004; 286:F903-12. [PMID: 15075186 DOI: 10.1152/ajprenal.00437.2002] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Primary cultures of rat inner medullary collecting duct (IMCD) cells Na(+) dependently import HCO(3)(-) across the basolateral membrane through an undefined transport protein. We used RT-PCR, immunoblotting, and immunohistochemistry to identify candidate proteins for this basolateral Na(+)-HCO(3)(-) cotransport. The mRNA encoding the electroneutral Na(+)-HCO(3)(-) cotransporter NBCn1 was detected as the only Na(+)-HCO(3)(-) cotransporter in the rat inner medulla (IM) among the five characterized Na(+)-dependent HCO(3)(-) transporters. The mRNA of a yet uncharacterized transporter-like protein, BTR1, was also present in the IM, but its expression in microdissected tubules seemed restricted to the thin limbs of Henle's loop. Immunoblotting confirmed the presence of NBCn1 as an approximately 180-kDa protein of the rat IM. Anti-NBCn1 immunolabeling was confined to the basolateral plasma membrane domain of IMCD cells in the papillary two-thirds of the IM. Consistent with the presence of NBCn1, IMCD cells possessed stilbene-insensitive, Na(+)- and HCO(3)(-)-dependent pH recovery after acidification, as assessed by fluorescence microscopy using a pH-sensitive intracellular dye. In furosemide-induced alkalotic rats, NBCn1 protein abundance was decreased in both the IM and inner stripe of outer medulla (ISOM) as determined by immunoblotting and immunohistochemistry. In contrast, NBCn1 abundance in the IM and ISOM was unchanged in NaHCO(3)-loaded animals, and the NBCn1 abundance increased only in the ISOM after NH(4)Cl loading. In conclusion, NBCn1 is a basolateral Na(+)-HCO(3)(-) cotransporter of IMCD cells and is differentially regulated in IMCD and medullary thick ascending limb.
Collapse
Affiliation(s)
- Jeppe Praetorius
- The Water and Salt Research Ctr., University of Aarhus, Wilhelm Meyers Allé Bldg. 233, 8000 Aarhus C, Denmark.
| | | | | | | | | | | | | |
Collapse
|
32
|
Furukawa O, Bi LC, Guth PH, Engel E, Hirokawa M, Kaunitz JD. NHE3 inhibition activates duodenal bicarbonate secretion in the rat. Am J Physiol Gastrointest Liver Physiol 2004; 286:G102-9. [PMID: 12881227 DOI: 10.1152/ajpgi.00092.2003] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We examined the effect of inhibition of Na+/H+ exchange (NHE) on duodenal bicarbonate secretion (DBS) in rats to further understand DBS regulation. DBS was measured by using the pH-stat method and by using CO2-sensitive electrodes. 5-(N,N-dimethyl)-amiloride (50 microM; DMA), a concentration that selectively inhibits the NHE isoforms NHE1 and NHE2, but not NHE3, did not affect DBS. Nevertheless, 3 mM DMA, a higher concentration that inhibits NHE1, NHE2, and NHE3, significantly increased DBS. Moreover, S1611 and S3226, both specific inhibitors of NHE3 only, or perfusion with Na+-free solutions, dose dependently increased DBS, as measured by pH-stat and CO2-sensitive electrode, without affecting intracellular pH. Coperfusion with 0.1 microM indomethacin, 0.5 mM DIDS, or 1 mM methazolamide did not affect S3226-induced DBS. Nevertheless, coperfusion with 0.1 and 0.3 mM 5-nitro-2-(3-phenylpropylamino) benzoic acid, which inhibits the cystic fibrosis transmembrane conductor regulator (CFTR), dose dependently inhibited S3226-induced DBS. In conclusion, only specific apical NHE3 inhibition increased DBS, whereas prostaglandin synthesis, Na+-HCO3- cotransporter activation, or intracellular HCO3- formation by carbonic anhydrase was not involved. Because NHE3 inhibition-increased DBS was inhibited by an anion channel inhibitor and because reciprocal CFTR regulation has been previously shown between NHE3 and apical membrane anion transporters, we speculate that NHE3 inhibition increased DBS by altering anion transporter function.
Collapse
Affiliation(s)
- Osamu Furukawa
- Greater Los Angeles Veterans Affairs Healthcare System, Los Angeles, California 90073, USA
| | | | | | | | | | | |
Collapse
|
33
|
Cole J, Blikslager A, Hunt E, Gookin J, Argenzio R. Cyclooxygenase blockade and exogenous glutamine enhance sodium absorption in infected bovine ileum. Am J Physiol Gastrointest Liver Physiol 2003; 284:G516-24. [PMID: 12466144 DOI: 10.1152/ajpgi.00172.2002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We have previously shown that prostanoids inhibit electroneutral sodium absorption in Cryptosporidium parvum-infected porcine ileum, whereas glutamine stimulates electroneutral sodium absorption. We postulated that glutamine would stimulate sodium absorption via a cyclooxygenase (COX)-dependent pathway. We tested this hypothesis in C. parvum-infected calves, which are the natural hosts of cryptosporidiosis. Tissues from healthy and infected calves were studied in Ussing chambers and analyzed via immunohistochemistry and Western blots. Treatment of infected tissue with selective COX inhibitors revealed that COX-1 and -2 must be blocked to restore electroneutral sodium absorption, although the transporter involved did not appear to be the expected Na(+)/H(+) exchanger 3 isoform. Glutamine addition also stimulated sodium absorption in calf tissue, but although this transport was electroneutral in healthy tissue, sodium absorption was electrogenic in infected tissue and was additive to sodium transport uncovered by COX inhibition. Blockade of both COX isoforms is necessary to release the prostaglandin-mediated inhibition of electroneutral sodium uptake in C. parvum-infected calf ileal tissue, whereas glutamine increases sodium uptake by an electrogenic mechanism in this same tissue.
Collapse
Affiliation(s)
- Jeffrey Cole
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC 27695, USA.
| | | | | | | | | |
Collapse
|
34
|
Bachmann O, Rossmann H, Berger UV, Colledge WH, Ratcliff R, Evans MJ, Gregor M, Seidler U. cAMP-mediated regulation of murine intestinal/pancreatic Na+/HCO3- cotransporter subtype pNBC1. Am J Physiol Gastrointest Liver Physiol 2003; 284:G37-45. [PMID: 12388213 DOI: 10.1152/ajpgi.00209.2002] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Basolateral Na(+)-HCO(3)(-) cotransport is essential for intestinal anion secretion, and indirect evidence suggests that it may be stimulated by a rise of intracellular cAMP. We therefore investigated the expression, activity, and regulation by cAMP of the Na(+)-HCO(3)(-) cotransporter isoforms NBC1 and NBCn1 in isolated murine colonic crypts. Na(+)-HCO(3)(-) transport rates were measured fluorometrically in BCECF-loaded crypts, and mRNA expression levels and localization were determined by semiquantitative PCR and in situ hybridization. Acid-activated Na(+)-HCO(3)(-) cotransport rates were 5.07 +/- 0.7 mM/min and increased by 62% after forskolin stimulation. NBC1 mRNA was more abundant in colonic crypts than in surface cells, and crypts expressed far more NBC1 than NBCn1. To investigate whether the cAMP-induced Na(+)-HCO(3)(-) cotransport activation was secondary to secretion-associated changes in HCO(3)(-) or cell volume, we measured potential forskolin-induced changes in intracellular pH and assessed Na(+)-HCO(3)(-) transport activity in CFTR -/- crypts (in which no forskolin-induced cell shrinkage occurs). We found 30% reduced Na(+)-HCO(3)(-) transport rates in CFTR -/- compared with CFTR +/+ crypts but similar Na(+)-HCO(3)(-) cotransport activation by forskolin. These studies establish the existence of an intracellular HCO(3)(-) concentration- and cell volume-independent activation of colonic NBC by an increase in intracellular cAMP.
Collapse
Affiliation(s)
- O Bachmann
- Department of Internal Medicine, University of Tübingen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Gross E, Kurtz I. Structural determinants and significance of regulation of electrogenic Na(+)-HCO(3)(-) cotransporter stoichiometry. Am J Physiol Renal Physiol 2002; 283:F876-87. [PMID: 12372762 DOI: 10.1152/ajprenal.00148.2002] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Na(+)-HCO(3)(-) cotransporters play an important role in intracellular pH regulation and transepithelial HCO(3)(-) transport in various tissues. Of the characterized members of the HCO(3)(-) transporter superfamily, NBC1 and NBC4 proteins are known to be electrogenic. An important functional property of electrogenic Na(+)-HCO(3)(-) cotransporters is their HCO(3)(-):Na(+) coupling ratio, which sets the transporter reversal potential and determines the direction of Na(+)-HCO(3)(-) flux. Recent studies have shown that the HCO(3)(-):Na(+) transport stoichiometry of NBC1 proteins is either 2:1 or 3:1 depending on the cell type in which the transporters are expressed, indicating that the HCO(3)(-):Na(+) coupling ratio can be regulated. Mutational analysis has been very helpful in revealing the molecular mechanisms and signaling pathways that modulate the coupling ratio. These studies have demonstrated that PKA-dependent phosphorylation of the COOH terminus of NBC1 proteins alters the transport stoichiometry. This cAMP-dependent signaling pathway provides HCO(3)(-) -transporting epithelia with an efficient mechanism for modulating the direction of Na(+)-HCO(3)(-) flux through the cotransporter.
Collapse
Affiliation(s)
- Eitan Gross
- Departments of Urology and Physiology and Biophysics, Case Western Reserve University, and Veterans Affairs Medical Center, Cleveland, Ohio 44106, USA
| | | |
Collapse
|
36
|
Carlin RW, Quesnell RR, Zheng L, Mitchell KE, Schultz BD. Functional and molecular evidence for Na(+)-HCO cotransporter in porcine vas deferens epithelia. Am J Physiol Cell Physiol 2002; 283:C1033-44. [PMID: 12225967 DOI: 10.1152/ajpcell.00493.2001] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study focused on the role of sodium-bicarbonate cotransporter (NBC1) in cAMP-stimulated ion transport in porcine vas deferens epithelium. Ion substitution experiments in modified Ussing chambers revealed that cAMP-mediated stimulation was dependent on the presence of Na(+), HCO, and Cl(-) for a full response. HCO-dependent current was unaffected by acetazolamide, bumetanide, or amiloride but was inhibited by basolateral 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid. Na(+)-driven, HCO-dependent, stilbene-inhibitable anion flux was observed across the basolateral membrane of selectively permeabilized monolayers. Results of radiotracer flux studies suggest a 4,4'-dinitrostilbene-2,2'-disulfonate-sensitive stoichiometry of 2 base equivalents per Na(+). Antibodies raised against rat kidney NBC epitopes (rkNBC; amino acids 338-391 and 928-1035) identified a single band of ~145 kDa. RT-PCR detected NBC1 message in porcine vas deferens epithelia. These results demonstrate that vas deferens epithelial cells possess the proteins necessary for the vectoral transport of HCO and that these mechanisms are maintained in primary culture. Taken together, the results indicate that vas deferens epithelia play an active role in male fertility and have implications for our understanding of the relationship between cystic fibrosis and congenital bilateral absence of the vas deferens.
Collapse
Affiliation(s)
- Ryan W Carlin
- Department of Anatomy and Physiology, Kansas State University, 1600 Denison Avenue, VMS 228, Manhattan, KS 66506, USA
| | | | | | | | | |
Collapse
|
37
|
Praetorius J, Friis UG, Ainsworth MA, Schaffalitzky de Muckadell OB, Johansen T. The cystic fibrosis transmembrane conductance regulator is not a base transporter in isolated duodenal epithelial cells. ACTA PHYSIOLOGICA SCANDINAVICA 2002; 174:327-36. [PMID: 11942920 DOI: 10.1046/j.1365-201x.2002.00957.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Duodenal epithelial bicarbonate secretion has previously been shown to be greatly impaired in mice deficient of the cystic fibrosis transmembrane conductance regulator (CFTR). It has been proposed that transmembranal bicarbonate transport occurs through the CFTR channel itself. In the present study, the transport of acid/base equivalents across the plasma membrane of proximal duodenal epithelial cells from CFTR deficient mice was compared with that of cells from normal littermates. Mixed epithelial cells from both villi and crypts were isolated from proximal duodenum and intracellular pH was assessed by cuvette-based fluorescence spectrometry using the pH sensitive dye 2',7'-bis-(2-carboxyethyl)-5-(and-6)-carboxyfluorescein. The steady state intracellular pH, the acid extrusion rate and the alkaline extrusion rate were unaffected by CFTR deficiency in the presence of CO(2)/HCO(-)(3). Forskolin had no effect on acid extrusion or alkaline extrusion rates. In control experiments without CO(2)/HCO(-)(3), the intrinsic buffering capacities, the steady state intracellular pH and the acid extrusion rates were equivalent in the cells from CFTR deficient mice and normal littermates. The results are consistent with a model where acid/base transport is almost exclusively mediated by the previously described transporters in the murine duodenum (i.e. Na+/H+ exchange, Cl(-)/HCO(-)(3). exchange and Na+:HCO(-)(3). cotransport). There were no evidence for significant CFTR dependent HCO(-)(3). transport in proximal duodenal epithelial cells of mixed villus and crypt origin.
Collapse
Affiliation(s)
- J Praetorius
- Department of Physiology and Pharmacology, Institute of Medical Biology, University of Southern Denmark-Odense University, Winsloewparken, Odense C, Denmark
| | | | | | | | | |
Collapse
|
38
|
Wang Z, Petrovic S, Mann E, Soleimani M. Identification of an apical Cl(-)/HCO3(-) exchanger in the small intestine. Am J Physiol Gastrointest Liver Physiol 2002; 282:G573-9. [PMID: 11842009 DOI: 10.1152/ajpgi.00338.2001] [Citation(s) in RCA: 171] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
HCO3(-) secretion is the most important defense mechanism against acid injury in the duodenum. However, the identity of the transporter(s) mediating apical HCO3(-) secretion in the duodenum remains unknown. A family of anion exchangers, which include downregulated in adenoma (DRA or SLC26A3), pendrin (PDS or SLC26A4), and the putative anion transporter (PAT1 or SLC26A6) has recently been identified. DRA and pendrin mediate Cl(-)/base exchange; however, the functional identity and distribution of PAT1 (SLC26A6) is not known. In these studies, we investigated the functional identity, tissue distribution, and membrane localization of PAT1. Expression studies in Xenopus oocytes demonstrated that PAT1 functions in Cl(-)/HCO3(-) exchange mode. Tissue distribution studies indicated that the expression of PAT1 is highly abundant in the small intestine but is low in the colon, a pattern opposite that of DRA. PAT1 was also abundantly detected in stomach and heart. Immunoblot analysis studies identified PAT1 as a approximately 90 kDa protein in the duodenum. Immunohistochemical studies localized PAT1 to the brush border membranes of the villus cells of the duodenum. We propose that PAT1 is an apical Cl(-)/HCO3(-) exchanger in the small intestine.
Collapse
Affiliation(s)
- Zhaohui Wang
- Department of Medicine, University of Cincinnati, Ohio 45267-0585, USA
| | | | | | | |
Collapse
|
39
|
Weinlich M, Baumstark C, Usta E, Becker HD, Sessler MJ. Human duodenal spheroids for noninvasive intracellular pH measurement and quantification of regulation mechanisms under physiological conditions. In Vitro Cell Dev Biol Anim 2002; 38:7-13. [PMID: 11963971 DOI: 10.1290/1071-2690(2002)038<0007:hdsfni>2.0.co;2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Three-dimensional cell cultures (spheroids) of biopsies of human duodenum were used to develop a new noninvasive method for studying intercellular and intracellular mechanisms. Through examinations of intracellular pH regulation, high functional similarity to native tissue could be shown, as already evidenced morphologically. A special microperfusion chamber was developed to fix individual spheroids physically to a nylon net, via laminar perfusion flow through the chamber. A significant improvement over current fixation methods was shown by the increase of cell viability almost up to 100%. Viability of the spheroids was confirmed by trypan blue exclusion, by a LIVE/DEAD viability/cytotoxicity kit, and by BCECF distribution. Intracellular pH was measured by use of the pH-sensitive fluorescence dye BCECF. To investigate the intracellular pH regulation, spheroid-like vesicles were acidified by NH4Cl prepulse technique. The subsequent active intracellular pH recovery was blocked with Na+-free Krebs Henseleit (KH) solution, with amiloride KH (inhibitor of the Na+-H+-exchanger), or with H2DIDS KH (inhibitor of the HCO3(-)-Cl(-)-exchanger and Na+-HCO3(-)-cotransporter). The intracellular pH of the spheroids was 7.31 +/- 0.05. pH-backregulation after acidification was prevented by sodium-free buffer, amiloride, and H2DIDS. These experiments indicated the presence of a Na+-H+-exchanger and a Na+-HCO3(-)-cotransporter. In conclusion, the human duodenal spheroid is an excellent physiological system for in vitro studies of the human duodenum.
Collapse
|
40
|
Akiba Y, Furukawa O, Guth PH, Engel E, Nastaskin I, Sassani P, Dukkipatis R, Pushkin A, Kurtz I, Kaunitz JD. Cellular bicarbonate protects rat duodenal mucosa from acid-induced injury. J Clin Invest 2001. [DOI: 10.1172/jci200112218] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
41
|
Akiba Y, Furukawa O, Guth PH, Engel E, Nastaskin I, Sassani P, Dukkipatis R, Pushkin A, Kurtz I, Kaunitz JD. Cellular bicarbonate protects rat duodenal mucosa from acid-induced injury. J Clin Invest 2001; 108:1807-16. [PMID: 11748264 PMCID: PMC209463 DOI: 10.1172/jci12218] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Secretion of bicarbonate from epithelial cells is considered to be the primary mechanism by which the duodenal mucosa is protected from acid-related injury. Against this view is the finding that patients with cystic fibrosis, who have impaired duodenal bicarbonate secretion, are paradoxically protected from developing duodenal ulcers. Therefore, we hypothesized that epithelial cell intracellular pH regulation, rather than secreted extracellular bicarbonate, was the principal means by which duodenal epithelial cells are protected from acidification and injury. Using a novel in vivo microscopic method, we have measured bicarbonate secretion and epithelial cell intracellular pH (pH(i)), and we have followed cell injury in the presence of the anion transport inhibitor DIDS and the Cl(-) channel inhibitor, 5-nitro-2-(3-phenylpropylamino) benzoic acid (NPPB). DIDS and NPPB abolished the increase of duodenal bicarbonate secretion following luminal acid perfusion. DIDS decreased basal pH(i), whereas NPPB increased pH(i); DIDS further decreased pH(i) during acid challenge and abolished the pH(i) overshoot over baseline observed after acid challenge, whereas NPPB attenuated the fall of pH(i) and exaggerated the overshoot. Finally, acid-induced epithelial injury was enhanced by DIDS and decreased by NPPB. The results support the role of intracellular bicarbonate in the protection of duodenal epithelial cells from luminal gastric acid.
Collapse
Affiliation(s)
- Y Akiba
- Greater Los Angeles Veterans Affairs Healthcare System, University of California, Los Angeles, Los Angeles, California 90073, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|