1
|
Wolint P, Hofmann S, von Atzigen J, Böni R, Miescher I, Giovanoli P, Calcagni M, Emmert MY, Buschmann J. Standardization to Characterize the Complexity of Vessel Network Using the Aortic Ring Model. Int J Mol Sci 2024; 26:291. [PMID: 39796147 PMCID: PMC11719671 DOI: 10.3390/ijms26010291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/05/2024] [Accepted: 12/30/2024] [Indexed: 01/13/2025] Open
Abstract
Regeneration after ischemia requires to be promoted by (re)perfusion of the affected tissue, and, to date, there is no therapy that covers all needs. In treatment with mesenchymal stem cells (MSC), the secretome acts via paracrine mechanisms and has a positive influence on vascular regeneration via proangiogenic factors. A lack of standardization and the high complexity of vascular structures make it difficult to compare angiogenic readouts from different studies. This emphasizes the need for improved approaches and the introduction of an index in the preclinical setting. A characterization of human MSC secretomes obtained from one of the three formats-single cells, small, and large spheroids-was performed using the chicken aortic ring assay in combination with a modified angiogenic activity index (AAI) and an angiogenic profile. While the secretome of the small spheroid group showed an inhibitory effect on angiogenesis, the large spheroid group impressed with a fully pro-angiogenic response, and a higher AAI compared to the single cell group, underlying the suitability of these three-stem cell-derived secretomes with their distinct angiogenic properties to validate the AAI and the novel angiogenic profile established here.
Collapse
Affiliation(s)
- Petra Wolint
- Division of Surgical Research, University Hospital of Zurich, 8091 Zurich, Switzerland
- Department of Plastic Surgery and Hand Surgery, University Hospital Zurich, 8091 Zurich, Switzerland; (S.H.); (J.v.A.); (I.M.); (P.G.); (M.C.)
| | - Silvan Hofmann
- Department of Plastic Surgery and Hand Surgery, University Hospital Zurich, 8091 Zurich, Switzerland; (S.H.); (J.v.A.); (I.M.); (P.G.); (M.C.)
| | - Julia von Atzigen
- Department of Plastic Surgery and Hand Surgery, University Hospital Zurich, 8091 Zurich, Switzerland; (S.H.); (J.v.A.); (I.M.); (P.G.); (M.C.)
| | - Roland Böni
- White House Center for Liposuction, 8044 Zurich, Switzerland;
| | - Iris Miescher
- Department of Plastic Surgery and Hand Surgery, University Hospital Zurich, 8091 Zurich, Switzerland; (S.H.); (J.v.A.); (I.M.); (P.G.); (M.C.)
| | - Pietro Giovanoli
- Department of Plastic Surgery and Hand Surgery, University Hospital Zurich, 8091 Zurich, Switzerland; (S.H.); (J.v.A.); (I.M.); (P.G.); (M.C.)
| | - Maurizio Calcagni
- Department of Plastic Surgery and Hand Surgery, University Hospital Zurich, 8091 Zurich, Switzerland; (S.H.); (J.v.A.); (I.M.); (P.G.); (M.C.)
| | - Maximilian Y. Emmert
- Institute for Regenerative Medicine (IREM), University of Zurich, 8952 Zurich, Switzerland;
- Deutsches Herzzentrum der Charité (DHZC), Department of Cardiothoracic and Vascular Surgery, 13353 Berlin, Germany
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 13353 Berlin, Germany
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Johanna Buschmann
- Division of Surgical Research, University Hospital of Zurich, 8091 Zurich, Switzerland
- Department of Plastic Surgery and Hand Surgery, University Hospital Zurich, 8091 Zurich, Switzerland; (S.H.); (J.v.A.); (I.M.); (P.G.); (M.C.)
| |
Collapse
|
2
|
Yi B, Xu Y, Wang X, Wang G, Li S, Xu R, Liu X, Zhou Q. Overview of Injectable Hydrogels for the Treatment of Myocardial Infarction. CARDIOVASCULAR INNOVATIONS AND APPLICATIONS 2024; 9. [DOI: 10.15212/cvia.2024.0019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025] Open
Abstract
Myocardial infarction (MI) triggers adverse remodeling mechanisms, thus leading to heart failure. Since the application of biomaterial-based scaffolds emerged as a viable approach for providing mechanical support and promoting cell growth, injectable hydrogels have garnered substantial attention in MI treatment because of their minimally invasive administration through injection and diminished risk of infection. To fully understand the interplay between injectable hydrogels and infarcted myocardium repair, this review provides an overview of recent advances in injectable hydrogel-mediated MI therapy, including: I) material designs for repairing the infarcted myocardium, considering the pathophysiological mechanism of MI and design principles for biomaterials in MI treatment; II) the development of injectable functional hydrogels for MI treatment, including conductive, self-healing, drug-loaded, and stimulus-responsive hydrogels; and III) research progress in using injectable hydrogels to restore cardiac function in infarcted myocardium by promoting neovascularization, enhancing cardiomyocyte proliferation, decreasing myocardial fibrosis, and inhibiting excessive inflammation. Overall, this review presents the current state of injectable hydrogel research in MI treatment, offering valuable information to facilitate interdisciplinary knowledge transfer and enable the development of prognostic markers for suitable injectable materials.
Collapse
|
3
|
Yarmolinsky J, Díez-Obrero V, Richardson TG, Pigeyre M, Sjaarda J, Paré G, Walker VM, Vincent EE, Tan VY, Obón-Santacana M, Albanes D, Hampe J, Gsur A, Hampel H, Pai RK, Jenkins M, Gallinger S, Casey G, Zheng W, Amos CI, Smith GD, Martin RM, Moreno V. Genetically proxied therapeutic inhibition of antihypertensive drug targets and risk of common cancers: A mendelian randomization analysis. PLoS Med 2022; 19:e1003897. [PMID: 35113855 PMCID: PMC8812899 DOI: 10.1371/journal.pmed.1003897] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 12/21/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Epidemiological studies have reported conflicting findings on the potential adverse effects of long-term antihypertensive medication use on cancer risk. Naturally occurring variation in genes encoding antihypertensive drug targets can be used as proxies for these targets to examine the effect of their long-term therapeutic inhibition on disease outcomes. METHODS AND FINDINGS We performed a mendelian randomization analysis to examine the association between genetically proxied inhibition of 3 antihypertensive drug targets and risk of 4 common cancers (breast, colorectal, lung, and prostate). Single-nucleotide polymorphisms (SNPs) in ACE, ADRB1, and SLC12A3 associated (P < 5.0 × 10-8) with systolic blood pressure (SBP) in genome-wide association studies (GWAS) were used to proxy inhibition of angiotensin-converting enzyme (ACE), β-1 adrenergic receptor (ADRB1), and sodium-chloride symporter (NCC), respectively. Summary genetic association estimates for these SNPs were obtained from GWAS consortia for the following cancers: breast (122,977 cases, 105,974 controls), colorectal (58,221 cases, 67,694 controls), lung (29,266 cases, 56,450 controls), and prostate (79,148 cases, 61,106 controls). Replication analyses were performed in the FinnGen consortium (1,573 colorectal cancer cases, 120,006 controls). Cancer GWAS and FinnGen consortia data were restricted to individuals of European ancestry. Inverse-variance weighted random-effects models were used to examine associations between genetically proxied inhibition of these drug targets and risk of cancer. Multivariable mendelian randomization and colocalization analyses were employed to examine robustness of findings to violations of mendelian randomization assumptions. Genetically proxied ACE inhibition equivalent to a 1-mm Hg reduction in SBP was associated with increased odds of colorectal cancer (odds ratio (OR) 1.13, 95% CI 1.06 to 1.22; P = 3.6 × 10-4). This finding was replicated in the FinnGen consortium (OR 1.40, 95% CI 1.02 to 1.92; P = 0.035). There was little evidence of association of genetically proxied ACE inhibition with risk of breast cancer (OR 0.98, 95% CI 0.94 to 1.02, P = 0.35), lung cancer (OR 1.01, 95% CI 0.92 to 1.10; P = 0.93), or prostate cancer (OR 1.06, 95% CI 0.99 to 1.13; P = 0.08). Genetically proxied inhibition of ADRB1 and NCC were not associated with risk of these cancers. The primary limitations of this analysis include the modest statistical power for analyses of drug targets in relation to some less common histological subtypes of cancers examined and the restriction of the majority of analyses to participants of European ancestry. CONCLUSIONS In this study, we observed that genetically proxied long-term ACE inhibition was associated with an increased risk of colorectal cancer, warranting comprehensive evaluation of the safety profiles of ACE inhibitors in clinical trials with adequate follow-up. There was little evidence to support associations across other drug target-cancer risk analyses, consistent with findings from short-term randomized controlled trials for these medications.
Collapse
Affiliation(s)
- James Yarmolinsky
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, United Kingdom
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Virginia Díez-Obrero
- Biomarkers and Susceptibility Unit, Oncology Data Analytics Program, Catalan Institute of Oncology (ICO), L’Hospitalet de Llobregat, Barcelona, Spain
- Colorectal Cancer Group, ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat, Barcelona, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Tom G. Richardson
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, United Kingdom
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Marie Pigeyre
- Population Health Research Institute, David Braley Cardiac, Vascular and Stroke Research Institute, Hamilton, Canada
- Thrombosis and Atherosclerosis Research Institute, David Braley Cardiac, Vascular and Stroke Research Institute, Hamilton, Canada
- Department of Medicine, Michael G. DeGroote School of Medicine, McMaster University, Hamilton, Canada
| | - Jennifer Sjaarda
- Population Health Research Institute, David Braley Cardiac, Vascular and Stroke Research Institute, Hamilton, Canada
- Thrombosis and Atherosclerosis Research Institute, David Braley Cardiac, Vascular and Stroke Research Institute, Hamilton, Canada
- Department of Pathology and Molecular Medicine, McMaster University, Michael G. DeGroote School of Medicine, Hamilton, Canada
| | - Guillaume Paré
- Population Health Research Institute, David Braley Cardiac, Vascular and Stroke Research Institute, Hamilton, Canada
- Thrombosis and Atherosclerosis Research Institute, David Braley Cardiac, Vascular and Stroke Research Institute, Hamilton, Canada
- Department of Pathology and Molecular Medicine, McMaster University, Michael G. DeGroote School of Medicine, Hamilton, Canada
- Department of Clinical Epidemiology and Biostatistics, McMaster University, Ontario, Canada
| | - Venexia M. Walker
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, United Kingdom
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
- Department of Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Emma E. Vincent
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, United Kingdom
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Vanessa Y. Tan
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, United Kingdom
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Mireia Obón-Santacana
- Biomarkers and Susceptibility Unit, Oncology Data Analytics Program, Catalan Institute of Oncology (ICO), L’Hospitalet de Llobregat, Barcelona, Spain
- Colorectal Cancer Group, ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat, Barcelona, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Demetrius Albanes
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Jochen Hampe
- Department of Medicine I, University Hospital Dresden, Technische Universität Dresden (TU Dresden), Dresden, Germany
| | - Andrea Gsur
- Institute of Cancer Research, Department of Medicine I, Medical University Vienna, Vienna, Austria
| | - Heather Hampel
- Division of Human Genetics, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, United States of America
| | - Rish K. Pai
- Department of Laboratory Medicine and Pathology, Mayo Clinic Arizona, Scottsdale, Arizona, United States of America
| | - Mark Jenkins
- Centre for Epidemiology and Biostatistics, The University of Melbourne, Parkville, Australia
| | - Steven Gallinger
- Division of General Surgery, University Health Network, University of Toronto, Toronto, Canada
| | - Graham Casey
- Center for Public Health Genomics and Department of Public Health Sciences, University of Virginia, Charlottesville, Virginia, United States of America
| | - Wei Zheng
- Division of Epidemiology, Vanderbilt University Medical Center, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Christopher I. Amos
- Department of Medicine, Baylor College of Medicine, Institute for Clinical and Translational Research, Houston, Texas, United States of America
| | | | | | | | - George Davey Smith
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, United Kingdom
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Richard M. Martin
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, United Kingdom
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
- University Hospitals Bristol, NHS Foundation Trust, National Institute for Health Research Bristol Biomedical Research Centre, University of Bristol, Bristol, United Kingdom
| | - Victor Moreno
- Biomarkers and Susceptibility Unit, Oncology Data Analytics Program, Catalan Institute of Oncology (ICO), L’Hospitalet de Llobregat, Barcelona, Spain
- Colorectal Cancer Group, ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat, Barcelona, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Department of Clinical Sciences, Faculty of Medicine, University of Barcelona, Barcelona, Spain
| |
Collapse
|
4
|
Xing Y, Ye Y, Zuo H, Li Y. Progress on the Function and Application of Thymosin β4. Front Endocrinol (Lausanne) 2021; 12:767785. [PMID: 34992578 PMCID: PMC8724243 DOI: 10.3389/fendo.2021.767785] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 11/26/2021] [Indexed: 12/13/2022] Open
Abstract
Thymosin β4 (Tβ4) is a multifunctional and widely distributed peptide that plays a pivotal role in several physiological and pathological processes in the body, namely, increasing angiogenesis and proliferation and inhibiting apoptosis and inflammation. Moreover, Tβ4 is effectively utilized for several indications in animal experiments or clinical trials, such as myocardial infarction and myocardial ischemia-reperfusion injury, xerophthalmia, liver and renal fibrosis, ulcerative colitis and colon cancer, and skin trauma. Recent studies have reported the potential application of Tβ4 and its underlying mechanisms. The present study reveals the progress regarding functions and applications of Tβ4.
Collapse
Affiliation(s)
- Yuan Xing
- Department of Experimental Pathology, Beijing Institute of Radiation Medicine, Beijing, China
- Department of Pharmacy, The First Affiliated Hospital of Hebei North University, Zhangjiakou, China
| | - Yumeng Ye
- Department of Experimental Pathology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Hongyan Zuo
- Department of Experimental Pathology, Beijing Institute of Radiation Medicine, Beijing, China
- *Correspondence: Hongyan Zuo, ; Yang Li,
| | - Yang Li
- Department of Experimental Pathology, Beijing Institute of Radiation Medicine, Beijing, China
- Academy of Life Sciences, Anhui Medical University, Hefei City, China
- *Correspondence: Hongyan Zuo, ; Yang Li,
| |
Collapse
|
5
|
Jang WB, Ji ST, Park JH, Kim YJ, Kang S, Kim DY, Lee NK, Kim JS, Lim HJ, Choi J, Le THV, Ly TTG, Rethineswaran VK, Kim DH, Ha JS, Yun J, Baek SH, Kwon SM. Engineered M13 Peptide Carrier Promotes Angiogenic Potential of Patient-Derived Human Cardiac Progenitor Cells and In Vivo Engraftment. Tissue Eng Regen Med 2020; 17:323-333. [PMID: 32227286 DOI: 10.1007/s13770-020-00244-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 01/19/2020] [Accepted: 02/06/2020] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Despite promising advances in stem cell-based therapy, the treatment of ischemic cardiovascular diseases remains a big challenge due to both the insufficient in vivo viability of transplanted cells and poor angiogenic potential of stem cells. The goal of this study was to develop therapeutic human cardiac progenitor cells (hCPCs) for ischemic cardiovascular diseases with a novel M13 peptide carrier. METHOD In this study, an engineered M13 peptide carrier was successfully generated using a QuikChange Kit. The cellular function of M13 peptide carrier-treated hCPCs was assessed using a tube formation assay and scratch wound healing assay. The in vivo engraftment and cell survival bioactivities of transplanted cells were demonstrated by immunohistochemistry after hCPC transplantation into a myocardial infarction animal model. RESULTS The engineered M13RGD+SDKP peptide carrier, which expressed RGD peptide on PIII site and SDKP peptide on PVIII site, did not affect morphologic change and proliferation ability in hCPCs. In contrast, hCPCs treated with M13RGD+SDKP showed enhanced angiogenic capacity, including tube formation and migration capacity. Moreover, transplanted hCPCs with M13RGD+SDKP were engrafted into the ischemic region and promoted in vivo cell survival. CONCLUSION Our present data provides a promising protocol for CPC-based cell therapy via short-term cell priming of hCPCs with engineered M13RGD+SDKP before cell transplantation for treatment of cardiovascular disease.
Collapse
Affiliation(s)
- Woong Bi Jang
- Laboratory of Regenerative Medicine and Stem Cell Biology, Department of Physiology, Medical Research Institute, School of Medicine, Pusan National University, 20 Geumo-ro, Mulgeum-eup, Yangsan, 50612, Republic of Korea.,Research Institute of Convergence Biomedical Science and Technology, Pusan National University School of Medicine, 20 Geumo-ro, Mulgeum-eup, Yangsan, 50612, Republic of Korea
| | - Seung Taek Ji
- Laboratory of Regenerative Medicine and Stem Cell Biology, Department of Physiology, Medical Research Institute, School of Medicine, Pusan National University, 20 Geumo-ro, Mulgeum-eup, Yangsan, 50612, Republic of Korea.,Research Institute of Convergence Biomedical Science and Technology, Pusan National University School of Medicine, 20 Geumo-ro, Mulgeum-eup, Yangsan, 50612, Republic of Korea
| | - Ji Hye Park
- Laboratory of Regenerative Medicine and Stem Cell Biology, Department of Physiology, Medical Research Institute, School of Medicine, Pusan National University, 20 Geumo-ro, Mulgeum-eup, Yangsan, 50612, Republic of Korea.,Research Institute of Convergence Biomedical Science and Technology, Pusan National University School of Medicine, 20 Geumo-ro, Mulgeum-eup, Yangsan, 50612, Republic of Korea
| | - Yeon-Ju Kim
- Laboratory of Regenerative Medicine and Stem Cell Biology, Department of Physiology, Medical Research Institute, School of Medicine, Pusan National University, 20 Geumo-ro, Mulgeum-eup, Yangsan, 50612, Republic of Korea.,Research Institute of Convergence Biomedical Science and Technology, Pusan National University School of Medicine, 20 Geumo-ro, Mulgeum-eup, Yangsan, 50612, Republic of Korea
| | - Songhwa Kang
- Laboratory of Regenerative Medicine and Stem Cell Biology, Department of Physiology, Medical Research Institute, School of Medicine, Pusan National University, 20 Geumo-ro, Mulgeum-eup, Yangsan, 50612, Republic of Korea.,Research Institute of Convergence Biomedical Science and Technology, Pusan National University School of Medicine, 20 Geumo-ro, Mulgeum-eup, Yangsan, 50612, Republic of Korea
| | - Da Yeon Kim
- Laboratory of Regenerative Medicine and Stem Cell Biology, Department of Physiology, Medical Research Institute, School of Medicine, Pusan National University, 20 Geumo-ro, Mulgeum-eup, Yangsan, 50612, Republic of Korea.,Research Institute of Convergence Biomedical Science and Technology, Pusan National University School of Medicine, 20 Geumo-ro, Mulgeum-eup, Yangsan, 50612, Republic of Korea
| | - Na-Kyung Lee
- Laboratory of Regenerative Medicine and Stem Cell Biology, Department of Physiology, Medical Research Institute, School of Medicine, Pusan National University, 20 Geumo-ro, Mulgeum-eup, Yangsan, 50612, Republic of Korea.,Research Institute of Convergence Biomedical Science and Technology, Pusan National University School of Medicine, 20 Geumo-ro, Mulgeum-eup, Yangsan, 50612, Republic of Korea
| | - Jin Su Kim
- Laboratory of Regenerative Medicine and Stem Cell Biology, Department of Physiology, Medical Research Institute, School of Medicine, Pusan National University, 20 Geumo-ro, Mulgeum-eup, Yangsan, 50612, Republic of Korea.,Research Institute of Convergence Biomedical Science and Technology, Pusan National University School of Medicine, 20 Geumo-ro, Mulgeum-eup, Yangsan, 50612, Republic of Korea
| | - Hye Ji Lim
- Laboratory of Regenerative Medicine and Stem Cell Biology, Department of Physiology, Medical Research Institute, School of Medicine, Pusan National University, 20 Geumo-ro, Mulgeum-eup, Yangsan, 50612, Republic of Korea.,Research Institute of Convergence Biomedical Science and Technology, Pusan National University School of Medicine, 20 Geumo-ro, Mulgeum-eup, Yangsan, 50612, Republic of Korea
| | - Jaewoo Choi
- Laboratory of Regenerative Medicine and Stem Cell Biology, Department of Physiology, Medical Research Institute, School of Medicine, Pusan National University, 20 Geumo-ro, Mulgeum-eup, Yangsan, 50612, Republic of Korea.,Research Institute of Convergence Biomedical Science and Technology, Pusan National University School of Medicine, 20 Geumo-ro, Mulgeum-eup, Yangsan, 50612, Republic of Korea
| | - Thi Hong Van Le
- Laboratory of Regenerative Medicine and Stem Cell Biology, Department of Physiology, Medical Research Institute, School of Medicine, Pusan National University, 20 Geumo-ro, Mulgeum-eup, Yangsan, 50612, Republic of Korea.,Research Institute of Convergence Biomedical Science and Technology, Pusan National University School of Medicine, 20 Geumo-ro, Mulgeum-eup, Yangsan, 50612, Republic of Korea
| | - Thanh Truong Giang Ly
- Laboratory of Regenerative Medicine and Stem Cell Biology, Department of Physiology, Medical Research Institute, School of Medicine, Pusan National University, 20 Geumo-ro, Mulgeum-eup, Yangsan, 50612, Republic of Korea.,Research Institute of Convergence Biomedical Science and Technology, Pusan National University School of Medicine, 20 Geumo-ro, Mulgeum-eup, Yangsan, 50612, Republic of Korea
| | - Vinoth Kumar Rethineswaran
- Laboratory of Regenerative Medicine and Stem Cell Biology, Department of Physiology, Medical Research Institute, School of Medicine, Pusan National University, 20 Geumo-ro, Mulgeum-eup, Yangsan, 50612, Republic of Korea.,Research Institute of Convergence Biomedical Science and Technology, Pusan National University School of Medicine, 20 Geumo-ro, Mulgeum-eup, Yangsan, 50612, Republic of Korea
| | - Dong Hwan Kim
- Department of Neurosurgery & Medical Research Institute, Pusan National University Hospital, 179 Gudeok-ro, Seo-gu, Busan, 49241, Republic of Korea
| | - Jong Seong Ha
- Laboratory of Regenerative Medicine and Stem Cell Biology, Department of Physiology, Medical Research Institute, School of Medicine, Pusan National University, 20 Geumo-ro, Mulgeum-eup, Yangsan, 50612, Republic of Korea.,Research Institute of Convergence Biomedical Science and Technology, Pusan National University School of Medicine, 20 Geumo-ro, Mulgeum-eup, Yangsan, 50612, Republic of Korea
| | - Jisoo Yun
- Laboratory of Regenerative Medicine and Stem Cell Biology, Department of Physiology, Medical Research Institute, School of Medicine, Pusan National University, 20 Geumo-ro, Mulgeum-eup, Yangsan, 50612, Republic of Korea.,Research Institute of Convergence Biomedical Science and Technology, Pusan National University School of Medicine, 20 Geumo-ro, Mulgeum-eup, Yangsan, 50612, Republic of Korea
| | - Sang Hong Baek
- Division of Cardiology, Seoul St. Mary's Hospital, School of Medicine, the Catholic University of Korea, 505, Banpo-dong, Seocho-gu, Seoul, 06591, Republic of Korea.
| | - Sang-Mo Kwon
- Laboratory of Regenerative Medicine and Stem Cell Biology, Department of Physiology, Medical Research Institute, School of Medicine, Pusan National University, 20 Geumo-ro, Mulgeum-eup, Yangsan, 50612, Republic of Korea. .,Research Institute of Convergence Biomedical Science and Technology, Pusan National University School of Medicine, 20 Geumo-ro, Mulgeum-eup, Yangsan, 50612, Republic of Korea. .,Laboratory for Vascular Medicine and Stem Cell Biology, Department of Physiology, Medical Research Institute, School of Medicine, Pusan National University, 20 Geumo-ro, Mulgeum-eup, Yangsan, 50612, Republic of Korea.
| |
Collapse
|
6
|
Li C, Zhang L, Wang C, Teng H, Fan B, Chopp M, Zhang ZG. N-Acetyl-Seryl-Aspartyl-Lysyl-Proline Augments Thrombolysis of tPA (Tissue-Type Plasminogen Activator) in Aged Rats After Stroke. Stroke 2019; 50:2547-2554. [PMID: 31387512 PMCID: PMC6710137 DOI: 10.1161/strokeaha.119.026212] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Background and Purpose- Stroke is a leading cause of disability worldwide, mainly affecting the elderly. However, preclinical studies in aged ischemic animals are limited. N-acetyl-seryl-aspartyl-lysyl-proline (AcSDKP) is a naturally occurring tetrapeptide with vascular-protective properties. The present study investigated the effect of AcSDKP on tPA (tissue-type plasminogen activator)-induced thrombolysis in aged rats after ischemic stroke. Methods- Aged male rats (18 months) were subjected to embolic middle cerebral artery occlusion. Rats subjected to 4 hours of middle cerebral artery occlusion were randomized into the following groups: (1) AcSDKP; (2) tPA; (3) AcSDKP in combination with tPA; and (4) saline. Neurological deficits, cerebral microvascular patency and integrity, and infarction were examined at 1 day and 7 days after middle cerebral artery occlusion. In vitro experiments were performed to examine the effect of AcSDKP on aged cerebral endothelial cell permeability. Results- Compared with saline, AcSDKP, or tPA as monotherapy did not have any therapeutic effects, whereas AcSDKP in combination with tPA significantly reduced cerebral tissue infarction and improved neurological outcome without increasing cerebral hemorrhage. Concurrently, the combination treatment significantly augmented microvascular perfusion and reduced thrombosis and blood-brain barrier leakage. In vitro, compared with cerebral endothelial cells from ischemic adult rats, the endothelial cells from ischemic aged rats exhibited significantly increased leakage. AcSDKP suppressed tPA-induced aged endothelial cell leakage and reduced expression of ICAM-1 (intercellular adhesion molecule 1) and NF (nuclear factor)-κB. Conclusions- The present study provides evidence for the therapeutic efficacy of AcSDKP in combination tPA for the treatment of embolic stroke in aged rats at 4 hours after stroke onset. AcSDKP likely acts on cerebral endothelial cells to enhance the benefits of tPA by increasing tissue perfusion and augmenting the integrity of the blood-brain barrier. Visual Overview- An online visual overview is available for this article.
Collapse
Affiliation(s)
- Chao Li
- Department of Neurology, Henry Ford Hospital, Detroit, Michigan 48202
| | - Li Zhang
- Department of Neurology, Henry Ford Hospital, Detroit, Michigan 48202
| | - Chunyang Wang
- Department of Neurology, Henry Ford Hospital, Detroit, Michigan 48202
| | - Hua Teng
- Department of Neurology, Henry Ford Hospital, Detroit, Michigan 48202
| | - Baoyan Fan
- Department of Neurology, Henry Ford Hospital, Detroit, Michigan 48202
| | - Michael Chopp
- Department of Neurology, Henry Ford Hospital, Detroit, Michigan 48202
- Department of Physics, Oakland University, Rochester, Michigan, 48309
| | - Zheng Gang Zhang
- Department of Neurology, Henry Ford Hospital, Detroit, Michigan 48202
| |
Collapse
|
7
|
Peng H, Xu J, Yang XP, Kassem KM, Rhaleb IA, Peterson E, Rhaleb NE. N-acetyl-seryl-aspartyl-lysyl-proline treatment protects heart against excessive myocardial injury and heart failure in mice. Can J Physiol Pharmacol 2019; 97:753-765. [PMID: 30998852 PMCID: PMC6824427 DOI: 10.1139/cjpp-2019-0047] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Myocardial infarction (MI) in mice results in cardiac rupture at 4-7 days after MI, whereas cardiac fibrosis and dysfunction occur later. N-acetyl-seryl-aspartyl-lysyl-proline (Ac-SDKP) has anti-inflammatory, anti-fibrotic, and pro-angiogenic properties. We hypothesized that Ac-SDKP reduces cardiac rupture and adverse cardiac remodeling, and improves function by promoting angiogenesis and inhibiting detrimental reactive fibrosis and inflammation after MI. C57BL/6J mice were subjected to MI and treated with Ac-SDKP (1.6 mg/kg per day) for 1 or 5 weeks. We analyzed (1) intercellular adhesion molecule-1 (ICAM-1) expression; (2) inflammatory cell infiltration and angiogenesis; (3) gelatinolytic activity; (4) incidence of cardiac rupture; (5) p53, the endoplasmic reticulum stress marker CCAAT/enhancer binding protein homology protein (CHOP), and cardiomyocyte apoptosis; (6) sarcoplasmic reticulum Ca2+ ATPase (SERCA2) expression; (7) interstitial collagen fraction and capillary density; and (8) cardiac remodeling and function. Acutely, Ac-SDKP reduced cardiac rupture, decreased ICAM-1 expression and the number of infiltrating macrophages, decreased gelatinolytic activity, p53 expression, and myocyte apoptosis, but increased capillary density in the infarction border. Chronically, Ac-SDKP improved cardiac structures and function, reduced CHOP expression and interstitial collagen fraction, and preserved myocardium SERCA2 expression. Thus, Ac-SDKP decreased cardiac rupture, ameliorated adverse cardiac remodeling, and improved cardiac function after MI, likely through preserved SERCA2 expression and inhibition of endoplasmic reticulum stress.
Collapse
Affiliation(s)
- Hongmei Peng
- a Hypertension and Vascular Research Division, Department of Internal Medicine, Detroit, MI 48202, USA
| | - Jiang Xu
- a Hypertension and Vascular Research Division, Department of Internal Medicine, Detroit, MI 48202, USA
| | - Xiao-Ping Yang
- a Hypertension and Vascular Research Division, Department of Internal Medicine, Detroit, MI 48202, USA
| | - Kamal M Kassem
- b Department of Internal Medicine, University of Cincinnati Medical Center, Cincinnati, OH 45219, USA
| | - Imane A Rhaleb
- a Hypertension and Vascular Research Division, Department of Internal Medicine, Detroit, MI 48202, USA
| | - Ed Peterson
- c Department of Public Health Sciences, Henry Ford Hospital, Detroit, MI 48202, USA
| | - Nour-Eddine Rhaleb
- a Hypertension and Vascular Research Division, Department of Internal Medicine, Detroit, MI 48202, USA
- d Department of Physiology, Wayne State University, Detroit, MI 48201, USA
| |
Collapse
|
8
|
Kassem KM, Vaid S, Peng H, Sarkar S, Rhaleb NE. Tβ4-Ac-SDKP pathway: Any relevance for the cardiovascular system? Can J Physiol Pharmacol 2019; 97:589-599. [PMID: 30854877 PMCID: PMC6824425 DOI: 10.1139/cjpp-2018-0570] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The last 20 years witnessed the emergence of the thymosin β4 (Tβ4)-N-acetyl-seryl-aspartyl-lysyl-proline (Ac-SDKP) pathway as a new source of future therapeutic tools to treat cardiovascular and renal diseases. In this review article, we attempted to shed light on the numerous experimental findings pertaining to the many promising cardiovascular therapeutic avenues for Tβ4 and (or) its N-terminal derivative, Ac-SDKP. Specifically, Ac-SDKP is endogenously produced from the 43-amino acid Tβ4 by 2 successive enzymes, meprin α and prolyl oligopeptidase. We also discussed the possible mechanisms involved in the Tβ4-Ac-SDKP-associated cardiovascular biological effects. In infarcted myocardium, Tβ4 and Ac-SDKP facilitate cardiac repair after infarction by promoting endothelial cell migration and myocyte survival. Additionally, Tβ4 and Ac-SDKP have antifibrotic and anti-inflammatory properties in the arteries, heart, lungs, and kidneys, and stimulate both in vitro and in vivo angiogenesis. The effects of Tβ4 can be mediated directly through a putative receptor (Ku80) or via its enzymatically released N-terminal derivative Ac-SDKP. Despite the localization and characterization of Ac-SDKP binding sites in myocardium, more studies are needed to fully identify and clone Ac-SDKP receptors. It remains promising that Ac-SDKP or its degradation-resistant analogs could serve as new therapeutic tools to treat cardiac, vascular, and renal injury and dysfunction to be used alone or in combination with the already established pharmacotherapy for cardiovascular diseases.
Collapse
Affiliation(s)
- Kamal M Kassem
- a Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, MI 48202, USA
- b Internal Medicine Department, University of Cincinnati Medical Center, Cincinnati, OH 45219, USA
| | - Sonal Vaid
- a Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, MI 48202, USA
- c Internal Medicine Department, St. Vincent Indianapolis Hospital, Indianapolis, IN 46260, USA
| | - Hongmei Peng
- a Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, MI 48202, USA
| | - Sarah Sarkar
- a Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, MI 48202, USA
| | - Nour-Eddine Rhaleb
- a Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, MI 48202, USA
- d Department of Physiology, Wayne State University, Detroit, MI 48201, USA
| |
Collapse
|
9
|
The anti-inflammatory peptide Ac-SDKP: Synthesis, role in ACE inhibition, and its therapeutic potential in hypertension and cardiovascular diseases. Pharmacol Res 2018; 134:268-279. [DOI: 10.1016/j.phrs.2018.07.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 05/12/2018] [Accepted: 07/07/2018] [Indexed: 01/27/2023]
|
10
|
Dubé KN, Smart N. Thymosin β4 and the vasculature: multiple roles in development, repair and protection against disease. Expert Opin Biol Ther 2018; 18:131-139. [DOI: 10.1080/14712598.2018.1459558] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Karina N. Dubé
- BHF Centre of Regenerative Medicine, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Nicola Smart
- BHF Centre of Regenerative Medicine, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| |
Collapse
|
11
|
Ac-SDKP decreases mortality and cardiac rupture after acute myocardial infarction. PLoS One 2018; 13:e0190300. [PMID: 29364896 PMCID: PMC5783348 DOI: 10.1371/journal.pone.0190300] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 12/12/2017] [Indexed: 11/25/2022] Open
Abstract
The natural peptide N-Acetyl-Seryl-Aspartyl-Lysyl-Proline (Ac-SDKP) decreases inflammation in chronic diseases such as hypertension and heart failure. However, Ac-SDKP effects on acute inflammatory responses during myocardial infarction (MI) are unknown. During the first 72 hours post-MI, neutrophils, M1 macrophages (pro-inflammatory), and M2 macrophages (pro-resolution) and release of myeloperoxidase (MPO) and matrix metalloproteinases (MMP) are involved in cardiac rupture. We hypothesized that in the acute stage of MI, Ac-SDKP decreases the incidence of cardiac rupture and mortality by preventing immune cell infiltration as well as by decreasing MPO and MMP expression. MI was induced by ligating the left descending coronary artery in C57BL/6 mice. Vehicle or Ac-SDKP (1.6 mg/kg/d) was infused via osmotic minipump. Cardiac immune cell infiltration was assessed by flow cytometry, cardiac MPO and MMP levels were measured at 24–48 hrs post-MI. Cardiac rupture and mortality incidence were determined at 7 days post-MI. In infarcted mice, Ac-SDKP significantly decreased cardiac rupture incidence from 51.0% (26 of 51 animals) to 27.3% (12 of 44) and mortality from 56.9% (29 of 51) to 31.8% (14 of 44). Ac-SDKP reduced M1 macrophages in cardiac tissue after MI, without affecting M2 macrophages and neutrophils. Ac-SDKP decreased MMP-9 activation in infarcted hearts with no changes on MPO expression. Ac-SDKP prevents cardiac rupture and decreases mortality post-acute MI. These protective effects of Ac-SDKP are associated with decreased pro-inflammatory M1 macrophage infiltration and MMP-9 activation.
Collapse
|
12
|
Engineered M13 Nanofiber Accelerates Ischemic Neovascularization by Enhancing Endothelial Progenitor Cells. Tissue Eng Regen Med 2017; 14:787-802. [PMID: 30603528 DOI: 10.1007/s13770-017-0074-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 07/08/2017] [Accepted: 07/16/2017] [Indexed: 12/21/2022] Open
Abstract
Dysfunction or loss of blood vessel causes several ischemic diseases. Although endothelial progenitor cells (EPCs) are a promising source for cell-based therapy, ischemia-induced pathophysiological condition limits the recovery rate by causing drastic cell death. To overcome this issue, we attempted to develop a cell-targeted peptide delivery and priming system to enhance EPC-based neovascularization using an engineered M13 bacteriophage harboring nanofibrous tubes displaying ~2700 multiple functional motifs. The M13 nanofiber was modified by displaying RGD, which is an integrin-docking peptide, on the minor coat protein, and by mutilayering SDKP motifs, which are the key active sites for thymosin β4, on the major coat protein. The engineered M13 nanofiber dramatically enhanced ischemic neovascularization by activating intracellular and extracellular processes such as proliferation, migration, and tube formation in the EPCs. Furthermore, transplantation of the primed EPCs with the M13 nanofiber harboring RGD and SDKP facilitated functional recovery and neovascularization in a murine hindlimb ischemia model. Overall, this study demonstrates the effectiveness of the M13 nanofiber-based novel peptide delivery and priming strategy in promoting EPC bioactivity and neovessel regeneration. To our knowledge, this is first report on M13 nanofibers harboring dual functional motifs, the use of which might be a novel strategy for stem and progenitor cell therapy against cardiovascular ischemic diseases.
Collapse
|
13
|
González GE, Rhaleb NE, D'Ambrosio MA, Nakagawa P, Liao TD, Peterson EL, Leung P, Dai X, Janic B, Liu YH, Yang XP, Carretero OA. Cardiac-deleterious role of galectin-3 in chronic angiotensin II-induced hypertension. Am J Physiol Heart Circ Physiol 2016; 311:H1287-H1296. [PMID: 27496875 DOI: 10.1152/ajpheart.00096.2016] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 08/03/2016] [Indexed: 01/04/2023]
Abstract
Galectin-3 (Gal-3), a member of the β-galactoside lectin family, has an important role in immune regulation. In hypertensive rats and heart failure patients, Gal-3 is considered a marker for an unfavorable prognosis. Nevertheless, the role and mechanism of Gal-3 action in hypertension-induced target organ damage are unknown. We hypothesized that, in angiotensin II (ANG II)-induced hypertension, genetic deletion of Gal-3 prevents left ventricular (LV) adverse remodeling and LV dysfunction by reducing the innate immune responses and myocardial fibrosis. To induce hypertension, male C57BL/6J and Gal-3 knockout (KO) mice were infused with ANG II (3 μg·min-1·kg-1 sc) for 8 wk. We assessed: 1) systolic blood pressure by plethysmography, 2) LV function and remodeling by echocardiography, 3) myocardial fibrosis by histology, 4) cardiac CD68+ macrophage infiltration by histology, 5) ICAM-1 and VCAM-1 expression by Western blotting, 6) plasma cytokines, including interleukin-6 (IL-6), by enzyme-linked immunosorbent assay, and 7) regulatory T (Treg) cells by flow cytometry as detected by their combined expression of CD4, CD25, and FOXP3. Systolic blood pressure and cardiac hypertrophy increased similarly in both mouse strains when infused with ANG II. However, hypertensive C57BL/6J mice suffered impaired ejection and shortening fractions. In these mice, the extent of myocardial fibrosis and macrophage infiltration was greater in histological sections, and cardiac ICAM-1, as well as plasma IL-6, expression was higher as assessed by Western blotting. However, all these parameters were blunted in Gal-3 KO mice. Hypertensive Gal-3 KO mice also had a higher number of splenic Treg lymphocytes. In conclusion, in ANG II-induced hypertension, genetic deletion of Gal-3 prevented LV dysfunction without affecting blood pressure or LV hypertrophy. This study indicates that the ANG II effects are, in part, mediated or triggered by Gal-3 together with the related intercellular signaling (ICAM-1 and IL-6), leading to cardiac inflammation and fibrosis.
Collapse
Affiliation(s)
- Germán E González
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, Michigan.,Cardiovascular Pathophysiology Institute, Department of Pathology, University of Buenos Aires, Buenos Aires, Argentina; and
| | - N-E Rhaleb
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, Michigan.,Department of Physiology, Wayne State University, Detroit, Michigan
| | - Martin A D'Ambrosio
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, Michigan
| | - Pablo Nakagawa
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, Michigan
| | - Tang-Dong Liao
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, Michigan
| | - Edward L Peterson
- Department of Public Health Sciences, Henry Ford Hospital, Detroit, Michigan
| | - Pablo Leung
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, Michigan
| | - Xiangguo Dai
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, Michigan
| | - Branislava Janic
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, Michigan
| | - Yun-He Liu
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, Michigan
| | - Xiao-Ping Yang
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, Michigan
| | - Oscar A Carretero
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, Michigan;
| |
Collapse
|
14
|
Srivastava SP, Shi S, Kanasaki M, Nagai T, Kitada M, He J, Nakamura Y, Ishigaki Y, Kanasaki K, Koya D. Effect of Antifibrotic MicroRNAs Crosstalk on the Action of N-acetyl-seryl-aspartyl-lysyl-proline in Diabetes-related Kidney Fibrosis. Sci Rep 2016; 6:29884. [PMID: 27425816 PMCID: PMC4947922 DOI: 10.1038/srep29884] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 06/23/2016] [Indexed: 12/15/2022] Open
Abstract
N-acetyl-seryl-aspartyl-lysyl-proline (AcSDKP) is an endogenous antifibrotic peptide. We found that suppression of AcSDKP and induction of dipeptidyl peptidase-4 (DPP-4), which is associated with insufficient levels of antifibrotic microRNA (miR)s in kidneys, were imperative to understand the mechanisms of fibrosis in the diabetic kidneys. Analyzing streptozotocin (STZ)-induced diabetic mouse strains, diabetic CD-1 mice with fibrotic kidneys could be differentiated from less-fibrotic diabetic 129Sv mice by suppressing AcSDKP and antifibrotic miRs (miR-29s and miR-let-7s), as well as by the prominent induction of DPP-4 protein expression/activity and endothelial to mesenchymal transition. In diabetic CD-1 mice, these alterations were all reversed by AcSDKP treatment. Transfection studies in culture endothelial cells demonstrated crosstalk regulation of miR-29s and miR-let-7s against mesenchymal activation program; such bidirectional regulation could play an essential role in maintaining the antifibrotic program of AcSDKP. Finally, we observed that AcSDKP suppression in fibrotic mice was associated with induction of both interferon-γ and transforming growth factor-β signaling, crucial molecular pathways that disrupt antifibrotic miRs crosstalk. The present study provides insight into the physiologically relevant antifibrotic actions of AcSDKP via antifibrotic miRs; restoring such antifibrotic programs could demonstrate potential utility in combating kidney fibrosis in diabetes.
Collapse
Affiliation(s)
- Swayam Prakash Srivastava
- Department of Diabetology &Endocrinology, Kanazawa Medical University, Uchinada, Ishikawa 920-0293, Japan
| | - Sen Shi
- Department of Diabetology &Endocrinology, Kanazawa Medical University, Uchinada, Ishikawa 920-0293, Japan
| | - Megumi Kanasaki
- Department of Diabetology &Endocrinology, Kanazawa Medical University, Uchinada, Ishikawa 920-0293, Japan
| | - Takako Nagai
- Department of Diabetology &Endocrinology, Kanazawa Medical University, Uchinada, Ishikawa 920-0293, Japan
| | - Munehiro Kitada
- Department of Diabetology &Endocrinology, Kanazawa Medical University, Uchinada, Ishikawa 920-0293, Japan.,Division of Anticipatory Molecular Food Science and Technology, Kanazawa Medical University, Uchinada, Ishikawa 920-0293, Japan
| | - Jianhua He
- Department of Diabetology &Endocrinology, Kanazawa Medical University, Uchinada, Ishikawa 920-0293, Japan
| | - Yuka Nakamura
- Medical Research Institute, Kanazawa Medical University, Uchinada, Ishikawa 920-0293, Japan
| | - Yasuhito Ishigaki
- Medical Research Institute, Kanazawa Medical University, Uchinada, Ishikawa 920-0293, Japan
| | - Keizo Kanasaki
- Department of Diabetology &Endocrinology, Kanazawa Medical University, Uchinada, Ishikawa 920-0293, Japan.,Division of Anticipatory Molecular Food Science and Technology, Kanazawa Medical University, Uchinada, Ishikawa 920-0293, Japan
| | - Daisuke Koya
- Department of Diabetology &Endocrinology, Kanazawa Medical University, Uchinada, Ishikawa 920-0293, Japan.,Division of Anticipatory Molecular Food Science and Technology, Kanazawa Medical University, Uchinada, Ishikawa 920-0293, Japan
| |
Collapse
|
15
|
Abstract
No agent has been identified that significantly accelerates the repair of chronic dermal wounds in humans. Thymosin beta 4 (Tβ4) is a small, abundant, naturally occurring regenerative protein that is found in body fluids and inside cells. It was found to have angiogenic and antiinflammatory activity and to be high in platelets that aggregate at the wound site. Thus we used Tβ4 initially in dermal healing. It has since been shown to have many activities important in tissue protection, repair, and regeneration. Tβ4 increases the rate of dermal healing in various preclinical animal models, including diabetic and aged animals, and is active for burns as well. Tβ4 also accelerated the rate of repair in phase 2 trials with patients having pressure ulcers, stasis ulcers, and epidermolysis bullosa wounds. It is safe and well tolerated and will likely have additional uses in the skin and in injured organs for tissue repair and regeneration.
Collapse
Affiliation(s)
- H K Kleinman
- George Washington University, Washington, DC, United States.
| | - G Sosne
- Kresge Eye Institute, Wayne State University School of Medicine, Detroit, MI, United States
| |
Collapse
|
16
|
Zhang Y, Zhang ZG, Chopp M, Meng Y, Zhang L, Mahmood A, Xiong Y. Treatment of traumatic brain injury in rats with N-acetyl-seryl-aspartyl-lysyl-proline. J Neurosurg 2016; 126:782-795. [PMID: 28245754 DOI: 10.3171/2016.3.jns152699] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
OBJECTIVE The authors' previous studies have suggested that thymosin beta 4 (Tβ4), a major actin-sequestering protein, improves functional recovery after neural injury. N-acetyl-seryl-aspartyl-lysyl-proline (AcSDKP) is an active peptide fragment of Tβ4. Its effect as a treatment of traumatic brain injury (TBI) has not been investigated. Thus, this study was designed to determine whether AcSDKP treatment improves functional recovery in rats after TBI. METHODS Young adult male Wistar rats were randomly divided into the following groups: 1) sham group (no injury); 2) TBI + vehicle group (0.01 N acetic acid); and 3) TBI + AcSDKP (0.8 mg/kg/day). TBI was induced by controlled cortical impact over the left parietal cortex. AcSDKP or vehicle was administered subcutaneously starting 1 hour postinjury and continuously for 3 days using an osmotic minipump. Sensorimotor function and spatial learning were assessed using a modified Neurological Severity Score and Morris water maze tests, respectively. Some of the animals were euthanized 1 day after injury, and their brains were processed for measurement of fibrin accumulation and neuroinflammation signaling pathways. The remaining animals were euthanized 35 days after injury, and brain sections were processed for measurement of lesion volume, hippocampal cell loss, angiogenesis, neurogenesis, and dendritic spine remodeling. RESULTS Compared with vehicle treatment, AcSDKP treatment initiated 1 hour postinjury significantly improved sensorimotor functional recovery (Days 7-35, p < 0.05) and spatial learning (Days 33-35, p < 0.05), reduced cortical lesion volume, and hippocampal neuronal cell loss, reduced fibrin accumulation and activation of microglia/macrophages, enhanced angiogenesis and neurogenesis, and increased the number of dendritic spines in the injured brain (p < 0.05). AcSDKP treatment also significantly inhibited the transforming growth factor-β1/nuclear factor-κB signaling pathway. CONCLUSIONS AcSDKP treatment initiated 1 hour postinjury provides neuroprotection and neurorestoration after TBI, indicating that this small tetrapeptide has promising therapeutic potential for treatment of TBI. Further investigation of the optimal dose and therapeutic window of AcSDKP treatment for TBI and the associated underlying mechanisms is therefore warranted.
Collapse
Affiliation(s)
| | | | - Michael Chopp
- Neurology, Henry Ford Hospital, Detroit; and.,Department of Physics, Oakland University, Rochester, Michigan
| | | | - Li Zhang
- Neurology, Henry Ford Hospital, Detroit; and
| | | | - Ye Xiong
- Departments of 1 Neurosurgery and
| |
Collapse
|
17
|
Orlova MA, Orlov AP. Some aspects of the angiotensin-converting enzyme for leukemias. Russ Chem Bull 2016. [DOI: 10.1007/s11172-016-1466-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
18
|
Oral Administration of N-Acetyl-seryl-aspartyl-lysyl-proline Ameliorates Kidney Disease in Both Type 1 and Type 2 Diabetic Mice via a Therapeutic Regimen. BIOMED RESEARCH INTERNATIONAL 2016; 2016:9172157. [PMID: 27088094 PMCID: PMC4818806 DOI: 10.1155/2016/9172157] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Accepted: 02/14/2016] [Indexed: 01/03/2023]
Abstract
Kidney fibrosis is the final common pathway of progressive kidney diseases including diabetic nephropathy. Here, we report that the endogenous antifibrotic peptide N-acetyl-seryl-aspartyl-lysyl-proline (AcSDKP), the substrate of angiotensin-converting enzyme (ACE), is an orally available peptide drug used to cure kidney fibrosis in diabetic mice. We utilized two mouse models of diabetic nephropathy, streptozotocin- (STZ-) induced type 1 diabetic CD-1 mice and type 2 diabetic nephropathy model db/db mice. Intervention with the ACE inhibitor imidapril, oral AcSDKP, or imidapril + oral AcSDKP combination therapy increased urine AcSDKP levels. AcSDKP levels were significantly higher in the combination group compared to those of the other groups. AcSDKP oral administration, either AcSDKP alone or in addition to imidapril, ameliorated glomerulosclerosis and tubulointerstitial fibrosis. Plasma cystatin C levels were higher in both models, at euthanasia, and were restored by all the treatment groups. The levels of antifibrotic miRs, such as miR-29 or let-7, were suppressed in the kidneys of both models; all treatments, especially the combination of imidapril + oral AcSDKP, restored the antifibrotic miR levels to a normal value or even higher. AcSDKP may be an oral antifibrotic peptide drug that would be relevant to combating fibroproliferative kidney diseases such as diabetic nephropathy.
Collapse
|
19
|
Kumar N, Nakagawa P, Janic B, Romero CA, Worou ME, Monu SR, Peterson EL, Shaw J, Valeriote F, Ongeri EM, Niyitegeka JMV, Rhaleb NE, Carretero OA. The anti-inflammatory peptide Ac-SDKP is released from thymosin-β4 by renal meprin-α and prolyl oligopeptidase. Am J Physiol Renal Physiol 2016; 310:F1026-34. [PMID: 26962108 DOI: 10.1152/ajprenal.00562.2015] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 03/07/2016] [Indexed: 11/22/2022] Open
Abstract
N-acetyl-seryl-aspartyl-lysyl-proline (Ac-SDKP) is a natural tetrapeptide with anti-inflammatory and antifibrotic properties. Previously, we have shown that prolyl oligopeptidase (POP) is involved in the Ac-SDKP release from thymosin-β4 (Tβ4). However, POP can only hydrolyze peptides shorter than 30 amino acids, and Tβ4 is 43 amino acids long. This indicates that before POP hydrolysis takes place, Tβ4 is hydrolyzed by another peptidase that releases NH2-terminal intermediate peptide(s) with fewer than 30 amino acids. Our peptidase database search pointed out meprin-α metalloprotease as a potential candidate. Therefore, we hypothesized that, prior to POP hydrolysis, Tβ4 is hydrolyzed by meprin-α. In vitro, we found that the incubation of Tβ4 with both meprin-α and POP released Ac-SDKP, whereas no Ac-SDKP was released when Tβ4 was incubated with either meprin-α or POP alone. Incubation of Tβ4 with rat kidney homogenates significantly released Ac-SDKP, which was blocked by the meprin-α inhibitor actinonin. In addition, kidneys from meprin-α knockout (KO) mice showed significantly lower basal Ac-SDKP amount, compared with wild-type mice. Kidney homogenates from meprin-α KO mice failed to release Ac-SDKP from Tβ4. In vivo, we observed that rats treated with the ACE inhibitor captopril increased plasma concentrations of Ac-SDKP, which was inhibited by the coadministration of actinonin (vehicle, 3.1 ± 0.2 nmol/l; captopril, 15.1 ± 0.7 nmol/l; captopril + actinonin, 6.1 ± 0.3 nmol/l; P < 0.005). Similar results were obtained with urinary Ac-SDKP after actinonin treatment. We conclude that release of Ac-SDKP from Tβ4 is mediated by successive hydrolysis involving meprin-α and POP.
Collapse
Affiliation(s)
- Nitin Kumar
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, Michigan
| | - Pablo Nakagawa
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, Michigan
| | - Branislava Janic
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, Michigan
| | - Cesar A Romero
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, Michigan
| | - Morel E Worou
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, Michigan
| | - Sumit R Monu
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, Michigan
| | - Edward L Peterson
- Department of Public Health Sciences, Henry Ford Hospital, Detroit, Michigan
| | - Jiajiu Shaw
- 21st Century Therapeutics, Inc., Detroit, Michigan
| | - Frederick Valeriote
- Department of Internal Medicine, Henry Ford Health System, Detroit, Michigan; and
| | - Elimelda M Ongeri
- Department of Biology, North Carolina A & T State University, Greensboro, North Carolina
| | | | - Nour-Eddine Rhaleb
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, Michigan
| | - Oscar A Carretero
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, Michigan;
| |
Collapse
|
20
|
Jackson KW, Christiansen VJ, Yadav VR, Silasi-Mansat R, Lupu F, Awasthi V, Zhang RR, McKee PA. Suppression of tumor growth in mice by rationally designed pseudopeptide inhibitors of fibroblast activation protein and prolyl oligopeptidase. Neoplasia 2015; 17:43-54. [PMID: 25622898 PMCID: PMC4309729 DOI: 10.1016/j.neo.2014.11.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 10/28/2014] [Accepted: 11/03/2014] [Indexed: 12/25/2022] Open
Abstract
Tumor microenvironments (TMEs) are composed of cancer cells, fibroblasts, extracellular matrix, microvessels, and endothelial cells. Two prolyl endopeptidases, fibroblast activation protein (FAP) and prolyl oligopeptidase (POP), are commonly overexpressed by epithelial-derived malignancies, with the specificity of FAP expression by cancer stromal fibroblasts suggesting FAP as a possible therapeutic target. Despite overexpression in most cancers and having a role in angiogenesis, inhibition of POP activity has received little attention as an approach to quench tumor growth. We developed two specific and highly effective pseudopeptide inhibitors, M83, which inhibits FAP and POP proteinase activities, and J94, which inhibits only POP. Both suppressed human colon cancer xenograft growth > 90% in mice. By immunohistochemical stains, M83- and J94-treated tumors had fewer microvessels, and apoptotic areas were apparent in both. In response to M83, but not J94, disordered collagen accumulations were observed. Neither M83- nor J94-treated mice manifested changes in behavior, weight, or gastrointestinal function. Tumor growth suppression was more extensive than noted with recently reported efforts by others to inhibit FAP proteinase function or reduce FAP expression. Diminished angiogenesis and the accompanying profound reduction in tumor growth suggest that inhibition of either FAP or POP may offer new therapeutic approaches that directly target TMEs.
Collapse
Affiliation(s)
- Kenneth W Jackson
- William K. Warren Medical Research Center, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| | - Victoria J Christiansen
- William K. Warren Medical Research Center, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Vivek R Yadav
- College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Robert Silasi-Mansat
- Cardiovascular Biology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Florea Lupu
- Cardiovascular Biology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Vibhudutta Awasthi
- College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Roy R Zhang
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Patrick A McKee
- William K. Warren Medical Research Center, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| |
Collapse
|
21
|
In vitro effects of ultra-low and low doses of radiation produced by sources of different nature and power on enzymes. Russ Chem Bull 2014. [DOI: 10.1007/s11172-013-0381-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
22
|
Nagai T, Nitta K, Kanasaki M, Koya D, Kanasaki K. The biological significance of angiotensin-converting enzyme inhibition to combat kidney fibrosis. Clin Exp Nephrol 2014; 19:65-74. [PMID: 24975544 DOI: 10.1007/s10157-014-1000-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 06/08/2014] [Indexed: 12/23/2022]
Abstract
Both angiotensin-converting enzyme inhibitor (ACE-I) and angiotensin II receptor blocker have been recognized as renin-angiotensin system (RAS) inhibitors. These two RAS inhibitors are rarely recognized as drugs with distinct pharmacological effects in the clinic or most clinical trials. Some preclinical basic research and clinical trials indicate that ACE-I might display superior organ-protective effects, especially anti-fibrotic effects. Such anti-fibrotic effects of ACE-I could be associated with an endogenous anti-fibrotic peptide, N-acetyl-seryl-aspartyl-lysyl-proline (AcSDKP). In this review, we focused on the anti-fibrotic effects of RAS inhibition and the endogenous anti-fibrotic peptide AcSDKP.
Collapse
Affiliation(s)
- Takako Nagai
- Department of Diabetology and Endocrinology, Kanazawa Medical University, Uchinada, Ishikawa, 920-0293, Japan
| | | | | | | | | |
Collapse
|
23
|
AlMalki WH, Shahid I, Mehdi AY, Hafeez MH. Assessment methods for angiogenesis and current approaches for its quantification. Indian J Pharmacol 2014; 46:251-6. [PMID: 24987169 PMCID: PMC4071699 DOI: 10.4103/0253-7613.132152] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Revised: 03/18/2014] [Accepted: 03/24/2014] [Indexed: 12/28/2022] Open
Abstract
Angiogenesis is a physiological process which describes the development of new blood vessels from the existing vessels. It is a common and the most important process in the formation and development of blood vessels, so it is supportive in the healing of wounds and granulation of tissues. The different assays for the evaluation of angiogenesis have been described with distinct advantages and some limitations. In order to develop angiogenic and antiangiogenic techniques, continuous efforts have been resulted to give animal models for more quantitative analysis of angiogenesis. Most of the studies on angiogenic inducers and inhibitors rely on various models, both in vitro, in vivo and in ova, as indicators of efficacy. The angiogenesis assays are very much helpful to test efficacy of both pro- and anti- angiogenic agents. The development of non-invasive procedures for quantification of angiogenesis will facilitate this process significantly. The main objective of this review article is to focus on the novel and existing methods of angiogenesis and their quantification techniques. These findings will be helpful to establish the most convenient methods for the detection, quantification of angiogenesis and to develop a novel, well tolerated and cost effective anti-angiogenic treatment in the near future.
Collapse
Affiliation(s)
- Waleed Hassan AlMalki
- Departments of Pharmacology and Toxicology, College of Pharmacy, Umm Al Qura University, Makkah, The Kingdom of Saudi Arabia
| | - Imran Shahid
- Departments of Pharmacology and Toxicology, College of Pharmacy, Umm Al Qura University, Makkah, The Kingdom of Saudi Arabia
| | - Abeer Yousaf Mehdi
- Departments of Pharmacology and Toxicology, College of Pharmacy, Umm Al Qura University, Makkah, The Kingdom of Saudi Arabia
| | | |
Collapse
|
24
|
Ding G, Zhang Z, Chopp M, Li L, Zhang L, Li Q, Wei M, Jiang Q. MRI evaluation of BBB disruption after adjuvant AcSDKP treatment of stroke with tPA in rat. Neuroscience 2014; 271:1-8. [PMID: 24769225 DOI: 10.1016/j.neuroscience.2014.04.025] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 04/15/2014] [Accepted: 04/17/2014] [Indexed: 12/24/2022]
Abstract
The primary limitation of thrombolytic treatment of ischemic stroke with tissue plasminogen activator (tPA) is the hemorrhagic risk. We tested AcSDKP (N-acetyl-seryl-aspartyl-lysyl-proline), as an auxiliary therapeutic agent, to reduce blood-brain barrier (BBB) disruption in a combination tPA thrombolytic treatment of stroke. Wistar rats subjected to embolic stroke were randomly assigned to either the tPA monotherapy group (n=9) or combination of tPA and AcSDKP treatment group (n=9) initiated at 4 h after ischemia. Magnetic resonance imaging (MRI) measurements were performed before and after the treatments. Immunohistochemical staining and measurements were performed to confirm MRI findings. Longitudinal MRI permeability measurements with gadolinium-diethylenetriamine penta-acetic acid (Gd-DTPA) demonstrated that combination treatment of acute embolic stroke with AcSDKP and tPA significantly reduced BBB leakage, compared to tPA monotherapy, at 3 and 6 days (18.3±9.8 mm3 vs. 65.0±21.0 mm3, p<0.001) after the onset of stroke, although BBB leakage was comparable between the two groups prior to the treatments (6.8±4.4 mm3 vs. 4.3±3.3 mm3, p>0.18). The substantial reduction of BBB leakage observed in the combination treatment group was closely associated with reduced ischemic lesions measured by T2 maps (113.6±24.9 mm3 vs. 188.1±60.8 mm3, p<0.04 at 6 days). Histopathological analysis of the same population of rats showed that the combination treatment significantly reduced parenchymal fibrin deposition (0.063±0.059 mm2 vs. 0.172±0.103 mm2, p<0.03) and infarct volume (146.7±35.9 mm3 vs. 199.3±60.4 mm3, p<0.05) compared to the tPA monotherapy at 6days after stroke. MRI provides biological insight into the therapeutic benefit of combination treatment of stroke with tPA and AcSDKP 4h after onset, and demonstrates significantly improved cerebrovascular integrity with neuroprotective effects compared with tPA monotherapy.
Collapse
Affiliation(s)
- G Ding
- Department of Neurology, Henry Ford Hospital, 2799 West Grand Boulevard, Detroit, MI 48202, USA
| | - Z Zhang
- Department of Neurology, Henry Ford Hospital, 2799 West Grand Boulevard, Detroit, MI 48202, USA
| | - M Chopp
- Department of Neurology, Henry Ford Hospital, 2799 West Grand Boulevard, Detroit, MI 48202, USA; Department of Physics, Oakland University, Rochester, MI 48309, USA
| | - L Li
- Department of Neurology, Henry Ford Hospital, 2799 West Grand Boulevard, Detroit, MI 48202, USA
| | - L Zhang
- Department of Neurology, Henry Ford Hospital, 2799 West Grand Boulevard, Detroit, MI 48202, USA
| | - Q Li
- Department of Neurology, Henry Ford Hospital, 2799 West Grand Boulevard, Detroit, MI 48202, USA
| | - M Wei
- Department of Neurology, Henry Ford Hospital, 2799 West Grand Boulevard, Detroit, MI 48202, USA
| | - Q Jiang
- Department of Neurology, Henry Ford Hospital, 2799 West Grand Boulevard, Detroit, MI 48202, USA.
| |
Collapse
|
25
|
Kanasaki K, Nagai T, Nitta K, Kitada M, Koya D. N-acetyl-seryl-aspartyl-lysyl-proline: a valuable endogenous anti-fibrotic peptide for combating kidney fibrosis in diabetes. Front Pharmacol 2014; 5:70. [PMID: 24782774 PMCID: PMC3995071 DOI: 10.3389/fphar.2014.00070] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Accepted: 03/25/2014] [Indexed: 12/11/2022] Open
Abstract
Fibroproliferative diseases are responsible for 45% of deaths in the developed world. Curing organ fibrosis is essential for fibroproliferative diseases. Diabetic nephropathy is a common fibroproliferative disease of the kidney and is associated with multiorgan dysfunction. However, therapy to combat diabetic nephropathy has not yet been established. In this review, we discuss the novel therapeutic possibilities for kidney fibrosis in diabetes focusing on the endogenous anti-fibrotic peptide, N-acetyl-seryl-aspartyl-lysyl-proline (AcSDKP), which is the substrate for angiotensin-converting enzyme and exhibits meaningful anti-fibrotic effects in various experimental models of fibrotic disease.
Collapse
Affiliation(s)
- Keizo Kanasaki
- Department of Diabetology and Endocrinology, Kanazawa Medical University Uchinada, Ishikawa, Japan
| | - Takako Nagai
- Department of Diabetology and Endocrinology, Kanazawa Medical University Uchinada, Ishikawa, Japan
| | - Kyoko Nitta
- Department of Diabetology and Endocrinology, Kanazawa Medical University Uchinada, Ishikawa, Japan
| | - Munehiro Kitada
- Department of Diabetology and Endocrinology, Kanazawa Medical University Uchinada, Ishikawa, Japan
| | - Daisuke Koya
- Department of Diabetology and Endocrinology, Kanazawa Medical University Uchinada, Ishikawa, Japan
| |
Collapse
|
26
|
N-acetyl-seryl-aspartyl-lysyl-proline inhibits diabetes-associated kidney fibrosis and endothelial-mesenchymal transition. BIOMED RESEARCH INTERNATIONAL 2014; 2014:696475. [PMID: 24783220 PMCID: PMC3982268 DOI: 10.1155/2014/696475] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 01/26/2014] [Indexed: 12/18/2022]
Abstract
Endothelial-to-mesenchymal transition (EndMT) emerges as an important source of fibroblasts. MicroRNA let-7 exhibits anti-EndMT effects and fibroblast growth factor (FGF) receptor has been shown to be an important in microRNA let-7 expression. The endogenous antifibrotic peptide N-acetyl-seryl-aspartyl-lysyl-proline (AcSDKP) is a substrate of angiotensin-converting enzyme (ACE). Here, we found that AcSDKP inhibited the EndMT and exhibited fibrotic effects that were associated with FGF receptor-mediated anti-fibrotic program. Conventional ACE inhibitor plus AcSDKP ameliorated kidney fibrosis and inhibited EndMT compared to therapy with the ACE inhibitor alone in diabetic CD-1 mice. The endogenous AcSDKP levels were suppressed in diabetic animals. Cytokines induced cultured endothelial cells into EndMT; coincubation with AcSDKP inhibited EndMT. Expression of microRNA let-7 family was suppressed in the diabetic kidney; antifibrotic and anti-EndMT effects of AcSDKP were associated with the restoration of microRNA let-7 levels. AcSDKP restored diabetes- or cytokines-suppressed FGF receptor expression/phosphorylation into normal levels both in vivo and in vitro. These results suggest that AcSDKP is an endogenous antifibrotic molecule that has the potential to cure diabetic kidney fibrosis via an inhibition of the EndMT associated with the restoration of FGF receptor and microRNA let-7.
Collapse
|
27
|
Song M, Jang H, Lee J, Kim JH, Kim SH, Sun K, Park Y. Regeneration of chronic myocardial infarction by injectable hydrogels containing stem cell homing factor SDF-1 and angiogenic peptide Ac-SDKP. Biomaterials 2013; 35:2436-45. [PMID: 24378015 DOI: 10.1016/j.biomaterials.2013.12.011] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Accepted: 12/08/2013] [Indexed: 01/09/2023]
Abstract
Regeneration of chronic myocardial infarction (CMI) is one of the challenging issues due to its limited regeneration activity compared to acute or sub-acute stage. In this study, we examined whether combination of stem cell homing factor (SDF-1) and angiogenic peptides (Ac-SDKP) injected with biomimetic hydrogels promote regeneration of cardiac function in a CMI model. We evaluated the regeneration of chronically infarcted myocardium using injectable biomimetic hydrogels containing two therapeutic factors; stromal-derived factor-1 (SDF-1) and Ac-SDKP for stem cell homing and angiogenesis, respectively. Injection of the two therapeutic factors into the infarct region of the left ventricle showed that the biomimetic hydrogels containing two therapeutic factor exhibited significantly improved left ventricle function, increased angiogenesis, decreased infarct size and greatest wall thickness within the infarct region at 4 weeks post-treatment. From these results, it is clear that hydrogels containing two therapeutic factors showed synergistic effects on regeneration in the chronic heart failure model. In conclusion, these results suggest that combination of stem cell homing factor with angiogenic peptides recruit stem cells to the microenvironments, increase the expression of angiogenic genes, enhance the matured vessel formation and improve the cardiac function in chronic MI.
Collapse
Affiliation(s)
- Myeongjin Song
- Korea Artificial Organ Center, Korea University, Seoul 136-705, Republic of Korea
| | - Hwanseok Jang
- Korea Artificial Organ Center, Korea University, Seoul 136-705, Republic of Korea; Department of Biomedical Engineering, College of Medicine, Korea University, Seoul 136-705, Republic Korea
| | - Jaeyeon Lee
- Korea Artificial Organ Center, Korea University, Seoul 136-705, Republic of Korea
| | - Ji Hyun Kim
- Biomaterials Research Center, Korea Institute of Science and Technology, Seoul 136-791, Republic of Korea
| | - Soo Hyun Kim
- Biomaterials Research Center, Korea Institute of Science and Technology, Seoul 136-791, Republic of Korea
| | - Kyung Sun
- Department of Biomedical Engineering, College of Medicine, Korea University, Seoul 136-705, Republic Korea; Department of Thoracic and Cardiovascular Surgery, College of Medicine, Korea University, Seoul 136-705, Republic of Korea
| | - Yongdoo Park
- Korea Artificial Organ Center, Korea University, Seoul 136-705, Republic of Korea; Department of Biomedical Engineering, College of Medicine, Korea University, Seoul 136-705, Republic Korea.
| |
Collapse
|
28
|
Hu P, Li B, Zhang W, Li Y, Li G, Jiang X, Wdzieczak-Bakala J, Liu J. AcSDKP regulates cell proliferation through the PI3KCA/Akt signaling pathway. PLoS One 2013; 8:e79321. [PMID: 24244481 PMCID: PMC3820705 DOI: 10.1371/journal.pone.0079321] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Accepted: 09/20/2013] [Indexed: 12/15/2022] Open
Abstract
The natural tetrapeptide acetyl-N-Ser-Asp-Lys-Pro (AcSDKP) is generated from the N-terminus of thymosin-β4 through enzymatic cleavage by prolyl oligopeptidase (POP). AcSDKP regulation of proliferation of different cells is implicated in hematopoiesis and angiogenesis. This tetrapeptide present in almost all cells was recently detected at elevated concentrations in neoplastic diseases. However, previously reported in vitro and in vivo studies indicate that AcSDKP does not contribute to the pathogenesis of cancers. Here we show that exogenous AcSDKP exerts no effect on the proliferation of actively dividing malignant cells. Using S17092, a specific POP inhibitor (POPi), to suppress the biosynthesis of AcSDKP in U87-MG glioblastoma cells characterized by high intracellular levels of this peptide, we found that all tested doses of POPi resulted in an equally effective depletion of AcSDKP, which was not correlated with the dose-dependent decreases in the proliferation rate of treated cells. Interestingly, addition of exogenous AcSDKP markedly reversed the reduction in the proliferation of U87-MG cells treated with the highest dose of POPi, and this effect was associated with activation of the phosphatidylinositol-3 kinase (PI3K)/Akt pathway. However, extracellular-regulated protein kinase (ERK) activation was unaltered by S17092 and AcSDKP co-treatment. Knockdown of individual PI3K catalytic subunits revealed that p110α and p110β contributed differently to AcSDKP regulation of U87-MG cell proliferation. Disruption of p110α expression by small interfering RNA (siRNA) abrogated AcSDKP-stimulated Akt phosphorylation, whereas knockdown of p110β expression exhibited no such effect. Our findings indicate for the first time that the PI3KCA/Akt pathway mediates AcSDKP regulation of cell proliferation and suggest a role for this ubiquitous intracellular peptide in cell survival.
Collapse
Affiliation(s)
- Ping Hu
- Sino-France Laboratory for Drug Screening, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Bin Li
- Sino-France Laboratory for Drug Screening, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wenhua Zhang
- Sino-France Laboratory for Drug Screening, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yijian Li
- Sino-France Laboratory for Drug Screening, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Guang Li
- Sino-France Laboratory for Drug Screening, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xinnong Jiang
- Sino-France Laboratory for Drug Screening, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | | | - Jianmiao Liu
- Institut de Chimie des Substances Naturelles, CNRS UPR2301, Gif sur Yvette, France
- * E-mail:
| |
Collapse
|
29
|
Hajem N, Chapelle A, Bignon J, Pinault A, Liu JM, Salah-Mohellibi N, Lati E, Wdzieczak-Bakala J. The regulatory role of the tetrapeptide AcSDKP in skin and hair physiology and the prevention of ageing effects in these tissues--a potential cosmetic role. Int J Cosmet Sci 2013; 35:286-98. [PMID: 23488645 DOI: 10.1111/ics.12046] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 03/08/2013] [Indexed: 01/25/2023]
Abstract
The naturally occurring tetrapeptide acetyl-N-Ser-Asp-Lys-Pro (AcSDKP) recognized as a potent angiogenic factor was shown recently to contribute to the repair of cutaneous injuries. In the current article, we report the ability of AcSDKP to exert a beneficial effect on normal healthy skin and scalp and to compensate for the ageing process. In vitro AcSDKP at 10⁻¹¹-10⁻⁷ M significantly stimulates the growth of human keratinocytes, fibroblasts and follicle dermal papilla cells. Moreover, it enhances the growth of human epidermal keratinocyte progenitor and stem cells as shown in a clonogenic survival assay. Topical treatment of ex vivo cultured skin explants with 10⁻⁵ M AcSDKP increases the thickness of the epidermis and upregulates the synthesis of keratins 14 and 19, fibronectin, collagen III and IV as well as the glycoaminoglycans (GAGs). In the ex vivo-cultured hair follicles, AcSDKP promotes hair shaft elongation and induces morphological and molecular modifications matching the criteria of hair growth. Furthermore, AcSDKP at 10⁻¹¹-10⁻⁷ M was shown to improve epidermal barrier, stimulating expression of three protein components of tight junctions (claudin-1, occludin, ZO-1) playing an important role in connecting neighbouring cells. This tetrapeptide exercises also activation of SIRT1 implicated in the control of cell longevity. Indeed, a two-fold increase in the synthesis of SIRT1 by cultured keratinocytes was observed in the presence of 10⁻¹¹-10⁻⁷ M AcSDKP. In conclusion, these findings provide convincing evidence of the regulatory role of AcSDKP in skin and hair physiology and suggest a cosmetic use of this natural tetrapeptide to prevent skin ageing and hair loss and to promote the cutaneous regeneration and hair growth.
Collapse
Affiliation(s)
- N Hajem
- Institut de Chimie des Substances Naturelles, Centre National de la Recherche Scientifique, Avenue de la Terrasse, 91198 Gif-sur-Yvette, France
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Chiu LLY, Reis LA, Radisic M. Controlled delivery of thymosin β4 for tissue engineering and cardiac regenerative medicine. Ann N Y Acad Sci 2012; 1269:16-25. [PMID: 23045966 DOI: 10.1111/j.1749-6632.2012.06718.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Thymosin β4 (Tβ4) is a peptide with multiple biological functions. Here, we focus on the role of Tβ4 in vascularization, and review our studies of the controlled delivery of Tβ4 through its incorporation in biomaterials. Tβ4 promotes vascularization through VEGF induction and AcSDKP-induced migration and differentiation of endothelial cells. We developed a collagen-chitosan hydrogel for the controlled release of Tβ4 over 28 days. In vitro, the Tβ4-encapsulated hydrogel increased migration of endothelial cells and tube formation from epicardial explants that were cultivated on top of the hydrogel, compared to Tβ4-free hydrogel and soluble Tβ4 in the culture medium. In vivo, subcutaneously injected Tβ4-containing collagen-chitosan hydrogel in rats led to enhanced vascularization compared to Tβ4-free hydrogel and collagen hydrogel with Tβ4. Furthermore, the injection of the Tβ4-encapsulated hydrogel in the infarct region improved angiogenesis, reduced tissue loss, and retained left ventricular wall thickness after myocardial infarction in rats.
Collapse
Affiliation(s)
- Loraine L Y Chiu
- Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Canada
| | | | | |
Collapse
|
31
|
Orlova MA, Kost OA, Krukova OV, Saveliev MI. Behavior of angiotensin-converting enzyme containing 67Zn. Russ Chem Bull 2012. [DOI: 10.1007/s11172-012-0069-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
32
|
Myöhänen TT, Tenorio-Laranga J, Jokinen B, Vázquez-Sánchez R, Moreno-Baylach MJ, García-Horsman JA, Männistö PT. Prolyl oligopeptidase induces angiogenesis both in vitro and in vivo in a novel regulatory manner. Br J Pharmacol 2012; 163:1666-78. [PMID: 21133893 DOI: 10.1111/j.1476-5381.2010.01146.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND AND PURPOSE A serine protease, prolyl oligopeptidase (POP) has been reported to be involved in the release of the pro-angiogenic tetrapeptide acetyl-N-Ser-Asp-Lys-Pro (Ac-SDKP) from its precursor, 43-mer thymosin β4 (Tβ4). Recently, it was shown that both POP activity and the levels of Ac-SDKP are increased in malignant tumours. The aim of this study was to clarify the release of Ac-SDKP, and test if POP and a POP inhibitor, 4-phenyl-butanoyl-L-prolyl-2(S)-cyanopyrrolidine (KYP-2047), can affect angiogenesis. EXPERIMENTAL APPROACH We used HPLC for bioanalytical and an enzyme immunoassay for pharmacological analysis. Angiogenesis of human umbilical vein endothelial cells was assessed in vitro using a 'tube formation' assay and in vivo using a Matrigel plug assay (BD Biosciences, San Jose, CA, USA) in adult male rats. Moreover, co-localization of POP and blood vessels was studied. KEY RESULTS We showed the sequential hydrolysis of Tβ4: the first-step hydrolysis by proteases to <30-mer peptides is followed by an action of POP. Unexpectedly, POP inhibited the first hydrolysis step, revealing a novel regulation system. POP with Tβ4 significantly induced, while KYP-2047 effectively prevented, angiogenesis in both models compared with Tβ4 addition itself. POP and endothelial cells were abundantly co-localized in vivo. CONCLUSIONS AND IMPLICATIONS We have now revealed that POP is a second-step enzyme in the release of Ac-SDKP from Tβ4, and it has novel autoregulatory effect in the first step. Our results also advocate a role for Ac-SDKP in angiogenesis, and suggest that POP has a pro-angiogenic role via the release of Ac-SDKP from its precursor Tβ4 and POP inhibitors can block this action.
Collapse
Affiliation(s)
- T T Myöhänen
- Division of Pharmacology and Toxicology, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5E, Helsinki, Finland.
| | | | | | | | | | | | | |
Collapse
|
33
|
Prabhu VV, Chidambaranathan N, Gopal V. Evaluation and quantification of angiogenesis activity of terminalia bellirica roxb, by mice sponge implantation method. J Young Pharm 2012; 4:22-7. [PMID: 22523456 PMCID: PMC3326777 DOI: 10.4103/0975-1483.93577] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Angiogenesis represents an excellent therapeutic target for the treatment of cardiovascular diseases. It is a potent physiological process that underlies the natural manner in which our bodies respond to a diminution of blood supply to vital organs, namely the production of new collateral vessels to overcome the ischemic state. This present study is aimed to evaluate and quantify the Angiogenic potential of Terminalia bellirica Roxb, by in vivo mice sponge implantation assay. Here, gelatin sponge with or without Ethanolic extract of Terminalia bellirica leaf (EETB - 0.3 mg and 0.5 mg, respectively) were subcutaneously injected into Swiss albino mice, and 14 days later, the implanted sponges was excised and histologically examined. The stained section showed that sponge containing EETB had produced more vessels in gels than sponges alone. The new vessels were abundantly filled with intact Red blood corpuscles (RBCs), which indicate the formation of a functional vasculature inside the sponges and blood circulation in newly formed vessels by angiogenesis which is induced by EETB. It also measured that the hemoglobin content inside the sponges: Whereas, hemoglobin in control was nearly 0.3 μg, EETB cases the hemoglobin quantity was markedly enhanced to about 17 μg. Taken together, it demonstrated that Ethanolic extract of Terminalia bellirica leaf exhibited a profound angiogenic activity in vivo. The phytochemical screening and qualitative instrumental analysis of EETB reveals the presence of proteins and Phytosterols. The promising angiogenic potential may be due to the presence of the above chemical constituents. Further study is required to define more precisely the molecular mechanisms by which Ethanolic extract of Terminalia bellirica leaf modulates endothelial cell function and gene expression, as well as the pathological relevance of these findings.
Collapse
Affiliation(s)
- Vinoth V Prabhu
- Department of Pharmacology, Faculty of Pharmacy, PRIST University, Thanjavur, India
- Department of Pharmacology, KM College of Pharmacy, Madurai, Tamil Nadu, India
| | - N Chidambaranathan
- Department of Pharmacology, KM College of Pharmacy, Madurai, Tamil Nadu, India
| | - V Gopal
- Department of Pharmacognosy, College of Pharmacy, Mother Theresa Post Graduate and Research Institute of Health Sciences, Puducherry, India
| |
Collapse
|
34
|
Kanasaki M, Nagai T, Kitada M, Koya D, Kanasaki K. Elevation of the antifibrotic peptide N-acetyl-seryl-aspartyl-lysyl-proline: a blood pressure-independent beneficial effect of angiotensin I-converting enzyme inhibitors. FIBROGENESIS & TISSUE REPAIR 2011; 4:25. [PMID: 22126210 PMCID: PMC3253677 DOI: 10.1186/1755-1536-4-25] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Accepted: 11/30/2011] [Indexed: 12/15/2022]
Abstract
Blockade of the renin-angiotensin system (RAS) is well recognized as an essential therapy in hypertensive, heart, and kidney diseases. There are several classes of drugs that block the RAS; these drugs are known to exhibit antifibrotic action. An analysis of the molecular mechanisms of action for these drugs can reveal potential differences in their antifibrotic roles. In this review, we discuss the antifibrotic action of RAS blockade with an emphasis on the potential importance of angiotensin I-converting enzyme (ACE) inhibition associated with the antifibrotic peptide N-acetyl-seryl-aspartyl-lysyl-proline (AcSDKP).
Collapse
Affiliation(s)
- Megumi Kanasaki
- Division of Diabetes & Endocrinology, Kanazawa Medical University, Uchinada, Ishikawa, Japan.
| | | | | | | | | |
Collapse
|
35
|
Goldstein AL, Hannappel E, Sosne G, Kleinman HK. Thymosin β4: a multi-functional regenerative peptide. Basic properties and clinical applications. Expert Opin Biol Ther 2011; 12:37-51. [DOI: 10.1517/14712598.2012.634793] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
36
|
Abstract
Thymosins are a family of highly conserved small peptides originally isolated from calf thymus. One representative member of the family is thymosin-β₄ (Tβ₄), a major G-actin-sequestering peptide present in many tissues. In the last decade, various studies have uncovered several important functions for Tβ₄ related to the regeneration of injured tissues including skin and heart. In particular, Tβ₄ promotes endothelial cell migration via the activation of Akt2 kinase at the leading edge of the cell. In the case of skeletal muscle injury, increased levels of Tβ₄ are produced by muscle fibers and surrounding immune cells. Satellite cell-derived myoblasts and myocytes are chemoattracted by Tβ₄, which facilitates skeletal muscle regeneration. Recently, it was reported that Tβ₄ interacts physically with F₁-F₀ ATP synthase on the plasma membrane to increase the local concentration of ATP, which stimulates the P2X₄ purinergic receptor to elicit a migratory response from endothelial cells. Thus, it is clear that Tβ₄ is an important chemotactic factor involved in stem/progenitor cell-mediated tissue regeneration.
Collapse
Affiliation(s)
- Takahiko Hara
- Stem Cell Project, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo, Japan
| |
Collapse
|
37
|
Volpe M, Azizi M, Danser AHJ, Nguyen G, Ruilope LM. Twisting arms to angiotensin receptor blockers/antagonists: the turn of cancer. Eur Heart J 2010; 32:19-22. [DOI: 10.1093/eurheartj/ehq382] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
38
|
Liu JM, Garcia-Alvarez MC, Bignon J, Kusinski M, Kuzdak K, Riches A, Wdzieczak-Bakala J. Overexpression of the natural tetrapeptide acetyl-N-ser-asp-lys-pro derived from thymosin beta4 in neoplastic diseases. Ann N Y Acad Sci 2010; 1194:53-9. [PMID: 20536450 DOI: 10.1111/j.1749-6632.2010.05488.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The natural tetrapeptide acetyl-ser-asp-lys-pro (AcSDKP) is formed in vivo by enzymatic cleavage of the N terminus of thymosin beta4 by prolyl oligopeptidase (POP). Recently, AcSDKP was shown to promote angiogenesis. Because of the critical role of neovascularization in cancer development, the levels of AcSDKP and POP activity in a number of different malignant tissues were investigated. Our studies revealed that AcSDKP levels were markedly elevated in neoplastic diseases including hematologic malignancies and solid neoplasms. Consistent with this finding, the enhanced activity of POP was also detected in all analyzed specimens of cancer tissues. Both these novel findings are in concert with the previously reported overexpression of thymosin beta4 in a large variety of malignant tumors and with its potential role in cancerogenesis. The physiological relevance of these findings awaits further studies; however, our first results strongly suggest a key role for AcSDKP in the pathogenesis of cancer.
Collapse
Affiliation(s)
- Jian-Miao Liu
- Centre de Recherche de Gif, Institut de Chimie des Substances Naturelles, CNRS, Gif-sur-Yvette, France
| | | | | | | | | | | | | |
Collapse
|
39
|
Li GX, Chen YK, Hou Z, Xiao H, Jin H, Lu G, Lee MJ, Liu B, Guan F, Yang Z, Yu A, Yang CS. Pro-oxidative activities and dose-response relationship of (-)-epigallocatechin-3-gallate in the inhibition of lung cancer cell growth: a comparative study in vivo and in vitro. Carcinogenesis 2010; 31:902-10. [PMID: 20159951 DOI: 10.1093/carcin/bgq039] [Citation(s) in RCA: 177] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
(-)-Epigallocatechin-3-gallate (EGCG), the major polyphenol in green tea, has been shown to inhibit tumorigenesis and cancer cell growth in animal models. Nevertheless, the dose-response relationship of the inhibitory activity in vivo has not been systematically characterized. The present studies were conducted to address these issues, as well as the involvement of reactive oxygen species (ROS), in the inhibitory action of EGCG in vivo and in vitro. We characterized the inhibitory actions of EGCG against human lung cancer H1299 cells in culture and in xenograft tumors. The growth of tumors was dose dependently inhibited by EGCG at doses of 0.1, 0.3 and 0.5% in the diet. Tumor cell apoptosis and oxidative DNA damage, assessed by the formation of 8-hydroxy-2'-deoxyguanosine (8-OHdG) and phosphorylated histone 2A variant X (gamma-H2AX), were dose dependently increased by EGCG treatment. However, the levels of 8-OHdG and gamma-H2AX were not changed by the EGCG treatment in host organs. In culture, the growth of viable H1299 cells was dose dependently reduced by EGCG; the estimated concentration that causes 50% inhibition (IC(50)) (20 microM) was much higher than the IC(50) (0.15 microM) observed in vivo. The action of EGCG was mostly abolished by the presence of superoxide dismutase (SOD) and catalase, which decompose the ROS formed in the culture medium. Treatment with EGCG also caused the generation of intracellular ROS and mitochondrial ROS. Although EGCG is generally considered to be an antioxidant, the present study demonstrates the pro-oxidative activities of EGCG in vivo and in vitro in the described experimental system.
Collapse
Affiliation(s)
- Guang-Xun Li
- Susan Lehman Cullman Laboratory for Cancer Research, Department of Chemical Biology and Center for Cancer Prevention Research, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
The renin-angiotensin system (RAS) plays key roles throughout the cardiovascular continuum, and blockade of this system--either through angiotensin-converting enzyme (ACE) inhibition or through angiotensin II type 1 (AT(1)) receptor antagonism--now occupies a central place in the management of cardiovascular disease (CVD). Understanding of the RAS has expanded in recent years with the identification of new pathways for formation of angiotensin II and novel effector peptides, such as angiotensin-(1-7), which may constitute new therapeutic targets. A substantial proportion of the benefits of ACE inhibitors, including vasodilation, improvements in endothelial function, and inhibition of cell proliferation, appear to be attributable to decreases in angiotensin II and increases in bradykinin. In addition, however, there is evidence that other mechanisms, such as modulation of ACE signaling, may also contribute. Angiotensin receptor blockers (ARBs) selectively block AT(1) receptors and allow unopposed stimulation of AT(2) receptors, with potentially beneficial vasodilatory, anti-inflammatory, and antiproliferative effects. As a result, these agents share many of the clinical benefits of ACE inhibitors. Both ACE inhibitors and ARBs have been shown to exert multiple antiatherogenic actions, and to reduce clinical events in high-risk participants; their use is recommended in current guidelines for the secondary prevention of CVD.
Collapse
Affiliation(s)
- Jeffrey L Probstfield
- Clinical Trials Service Unit, Division of Cardiology, Department of Medicine, University of Washington School of Medicine, Seattle, Washington, USA.
| | | |
Collapse
|
41
|
Liu JM, Gora-Tybor J, Grzybowska-Izydorczyk O, Bignon J, Robak T, Wdzieczak-Bakala J. Elevated plasma levels of the angiogenic tetrapeptide acetyl-ser-asp-lys-pro are found in some patients with hematologic malignancies. Leuk Lymphoma 2009; 50:2096-7. [DOI: 10.3109/10428190903331074] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Jian-Miao Liu
- Institut de Chimie des Substances Naturelles, Centre National de la Recherche Scientifique, Gif-sur-Yvette, France
| | | | | | - Jerome Bignon
- Institut de Chimie des Substances Naturelles, Centre National de la Recherche Scientifique, Gif-sur-Yvette, France
| | - Tadeusz Robak
- Department of Hematology, Medical University of Lodz, Lodz, Poland
| | - Joanna Wdzieczak-Bakala
- Institut de Chimie des Substances Naturelles, Centre National de la Recherche Scientifique, Gif-sur-Yvette, France
| |
Collapse
|
42
|
Liu JM, Bignon J, Ilic V, Briscoe C, Lallemand JY, Riches A, Wdzieczak-Bakala J. Evidence for an association of high levels of endogenous Acetyl-Ser-Asp-Lys-Pro, a potent mediator of angiogenesis, with acute myeloid leukemia development. Leuk Lymphoma 2009; 47:1915-20. [PMID: 17065006 DOI: 10.1080/10428190600688131] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Evidence from clinical and laboratory studies suggests that angiogenesis is important in the progression of solid tumours and hematologic malignancies. We have shown that the naturally occurring tetrapeptide Acetyl-Ser-Asp-Lys-Pro (AcSDKP) is a potent angiogenic factor normally present at nanomolar concentrations in the blood. A murine leukemia model was used to assess whether there was a correlation between levels of endogenous AcSDKP and the development of disease. Levels of AcSDKP in the plasma and bone marrow (BM) cells from mice bearing an acute myeloid leukemia (AML) were five- to ten-fold greater than those in non-leukemic mice. Furthermore, a strong correlation between the concentration of endogenous AcSDKP and the progression of AML was demonstrated. These results are consistent with the marked increase in BM vascularity observed in leukemic mice. The physiologic relevance of these findings awaits further studies and the contribution of AcSDKP to the pathogenesis of leukemia is under investigation.
Collapse
Affiliation(s)
- Jian-Miao Liu
- Institut de Chimie des Substances Naturelles, Centre National de la Recherche Scientifique, 91198 Gif-sur-Yvette, France
| | | | | | | | | | | | | |
Collapse
|
43
|
The role of the renin-angiotensin-aldosterone system in cardiovascular progenitor cell function. Clin Sci (Lond) 2009; 116:301-14. [PMID: 19138171 DOI: 10.1042/cs20080157] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Intervention in the RAAS (renin-angiotensin-aldosterone system) is one of the leading pharmacotherapeutic strategies, among others, used for the treatment of cardiovascular disease to improve the prognosis after myocardial infarction and to reduce hypertension. Recently, regenerative progenitor cell therapy has emerged as a possible alternative for pharmacotherapy in patients after myocardial infarction or ischaemic events elsewhere, e.g. in the limbs. Angiogenic cell therapy to restore the vascular bed in ischaemic tissues is currently being tested in a multitude of clinical studies. This has prompted researchers to investigate the effect of modulation of the RAAS on progenitor cells. Furthermore, the relationship between hypertension and endothelial progenitor cell function is being studied. Pharmacotherapy by means of angiotensin II type 1 receptor antagonists or angiotensin-converting enzyme inhibitors has varying effects on progenitor cell levels and function. These controversial effects may be explained by involvement of multiple mediators, e.g. angiotensin II and angiotensin-(1-7), that have differential effects on mesenchymal stem cells, haematopoietic progenitor cells and endothelial progenitor cells. Importantly, angiotensin II can either stimulate endothelial progenitor cells by improvement of vascular endothelial growth factor signalling, or invoke excessive production of reactive oxygen species causing premature senescence of these cells. On the other hand, angiotensin-(1-7) stimulates haematopoietic cells and possibly also endothelial progenitor cells. Furthermore, aldosterone, bradykinin and Ac-SDKP (N-acetyl-Ser-Asp-Lys-Pro) may also affect progenitor cell populations. Alternatively, the variability in effects of angiotensin II type 1 receptor and angiotensin-converting enzyme inhibition on cardiovascular progenitor cells might reflect differences between the various models or diseases with respect to circulating and local tissue RAAS activation. In the present review we discuss what is currently known with respect to the role of the RAAS in the regulation of cardiovascular progenitor cells.
Collapse
|
44
|
Abstract
Substantial evidence demonstrates a link of increased plasminogen activator inhibitor-1 (PAI-1) and glomerulosclerosis and kidney fibrosis, providing a novel therapeutic option for prevention and treatment of chronic kidney diseases. Several mechanisms contributing to increased PAI-1 will be addressed, including classic key profibrotic factors such as the renin-angiotensin-system (RAS) and transforming growth factor-beta (TGF-b???and novel molecules identified by proteomic analysis, such as thymosin- b4. The fibrotic sequelae caused by increased PAI-1 in kidney depend not only on its classic inhibition of tissue-type and urokinase-type plasminogen activators (tPA and uPA), but also its influence on cell migration.
Collapse
Affiliation(s)
- Li-Jun Ma
- Vanderbilt University Medical Center, Department of Pathology, Nashville, Tennessee, USA
| | | |
Collapse
|
45
|
Liu YH, D'Ambrosio M, Liao TD, Peng H, Rhaleb NE, Sharma U, André S, Gabius HJ, Carretero OA. N-acetyl-seryl-aspartyl-lysyl-proline prevents cardiac remodeling and dysfunction induced by galectin-3, a mammalian adhesion/growth-regulatory lectin. Am J Physiol Heart Circ Physiol 2008; 296:H404-12. [PMID: 19098114 DOI: 10.1152/ajpheart.00747.2008] [Citation(s) in RCA: 215] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Galectin-3 (Gal-3) is secreted by activated macrophages. In hypertension, Gal-3 is a marker for hypertrophic hearts prone to develop heart failure. Gal-3 infused in pericardial sac leads to cardiac inflammation, remodeling, and dysfunction. N-acetyl-seryl-aspartyl-lysyl-proline (Ac-SDKP), a naturally occurring tetrapeptide, prevents and reverses inflammation and collagen deposition in the heart in hypertension and heart failure postmyocardial infarction. In the present study, we hypothesize that Ac-SDKP prevents Gal-3-induced cardiac inflammation, remodeling, and dysfunction, and these effects are mediated by the transforming growth factor (TGF)-beta/Smad3 signaling pathway. Adult male rats were divided into four groups and received the following intrapericardial infusion for 4 wk: 1) vehicle (saline, n = 8); 2) Ac-SDKP (800 microg x kg(-1) x day(-1), n = 8); 3) Gal-3 (12 microg/day, n = 7); and 4) Ac-SDKP + Gal-3 (n = 7). Left ventricular ejection fraction, cardiac output, and transmitral velocity were measured by echocardiography; inflammatory cell infiltration, cardiomyocyte hypertrophy, and collagen deposition in the heart by histological and immunohistochemical staining; and TGF-beta expression and Smad3 phosphorylation by Western blot. We found that, in the left ventricle, Gal-3 1) enhanced macrophage and mast cell infiltration, increased cardiac interstitial and perivascular fibrosis, and causes cardiac hypertrophy; 2) increased TGF-beta expression and Smad3 phosphorylation; and 3) decreased negative change in pressure over time response to isoproterenol challenge, ratio of early left ventricular filling phase to atrial contraction phase, and left ventricular ejection fraction. Ac-SDKP partially or completely prevented these effects. We conclude that Ac-SDKP prevents Gal-3-induced cardiac inflammation, fibrosis, hypertrophy, and dysfunction, possibly via inhibition of the TGF-beta/Smad3 signaling pathway.
Collapse
Affiliation(s)
- Yun-He Liu
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, MI, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Sharma U, Rhaleb NE, Pokharel S, Harding P, Rasoul S, Peng H, Carretero OA. Novel anti-inflammatory mechanisms of N-Acetyl-Ser-Asp-Lys-Pro in hypertension-induced target organ damage. Am J Physiol Heart Circ Physiol 2008; 294:H1226-32. [PMID: 18178715 PMCID: PMC6824420 DOI: 10.1152/ajpheart.00305.2007] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
High blood pressure (HBP) is an important risk factor for cardiac, renal, and vascular dysfunction. Excess inflammation is the major pathogenic mechanism for HBP-induced target organ damage (TOD). N-acetyl-Ser-Asp-Lys-Pro (Ac-SDKP), a tetrapeptide specifically degraded by angiotensin converting enzyme (ACE), reduces inflammation, fibrosis, and TOD induced by HBP. Our hypothesis is that Ac-SDKP exerts its anti-inflammatory effects by inhibiting: 1) differentiation of bone marrow stem cells (BMSC) to macrophages, 2) activation and migration of macrophages, and 3) release of the proinflammatory cytokine TNF-alpha by activated macrophages. BMSC were freshly isolated and cultured in macrophage growth medium. Differentiation of murine BMSC to macrophages was analyzed by flow cytometry using F4/80 as a marker of macrophage maturation. Macrophage migration was measured in a modified Boyden chamber. TNF-alpha release by activated macrophages in culture was measured by ELISA. Myocardial macrophage activation in mice with ANG II-induced hypertension was studied by Western blotting of Mac-2 (galectin-3) protein. Interstitial collagen deposition was measured by picrosirius red staining. We found that Ac-SDKP (10 nM) reduced differentiation of cultured BMSC to mature macrophages by 24.5% [F4/80 positivity: 14.09 +/- 1.06 mean fluorescent intensity for vehicle and 10.63 +/- 0.35 for Ac-SDKP; P < 0.05]. Ac-SDKP also decreased galectin-3 and macrophage colony-stimulating factor-dependent macrophage migration. In addition, Ac-SDKP decreased secretion of TNF-alpha by macrophages stimulated with bacterial LPS. In mice with ANG II-induced hypertension, Ac-SDKP reduced expression of galectin-3, a protein produced by infiltrating macrophages in the myocardium, and interstitial collagen deposition. In conclusion, this study demonstrates that part of the anti-inflammatory effect of Ac-SDKP is due to its direct effect on BMSC and macrophage, inhibiting their differentiation, activation, and cytokine release. These effects explain some of the anti-inflammatory and antifibrotic properties of Ac-SDKP in hypertension.
Collapse
Affiliation(s)
- Umesh Sharma
- Hypertension and Vascular Research Division, Henry Ford Hospital, Detroit, MI 48202, USA
| | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
Vascular remodeling is the result of a close interplay of changes in vascular tone and structure. In this review, the role of angiotension-converting enzyme (ACE) and the impact of ACE inhibition on vascular remodeling processes during vascular injury and restenosis, hypertension, atherosclerosis, and aneurysm formation are discussed. The role of ACE and angiotensin II (Ang II) in neointimal thickening has been firmly established by animal studies and is mediated by Ang II type 1 (AT(1)) receptor signaling events via monocyte chemoattractant protein-1 and NAD(P)H oxidase. ACE and Ang II are involved in the remodeling of large and resistance arteries during hypertension; here, cell proliferation and matrix remodeling are also regulated by signaling events downstream of the AT(1) receptor. In atherosclerosis, Ang II is involved in the inflammatory and tissue response, mediated by various signaling pathways downstream of the AT(1) receptor. Although ACE inhibition has been shown to inhibit atherosclerotic processes in experimental animal models, results of large clinical trials with ACE inhibitors were not conclusive. Remodeling of vessel dimensions and structure during aneurysm formation is counteracted by ACE inhibition. Here, a direct effect of ACE inhibitors on matrix metalloproteinase activity has to be considered as part of the working mechanism. The role of ACE2 in vascular remodeling has yet to be established; however, ACE2 has been shown to be associated with vascular changes in hypertension and atherosclerosis.
Collapse
Affiliation(s)
- Sylvia Heeneman
- Department of Pathology, Maastricht University, Cardiovascular Research Institute Maastricht, Maastricht, The Netherlands.
| | | | | |
Collapse
|
48
|
Ma LJ, Fogo AB. Modulation of glomerulosclerosis. Semin Immunopathol 2007; 29:385-95. [PMID: 17828397 DOI: 10.1007/s00281-007-0087-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2007] [Accepted: 08/06/2007] [Indexed: 01/10/2023]
Abstract
Regardless of the initial injury, the long-term consequence for the patient depends upon the ensuing balance of profibrotic vs reparative modulators activated. The glomerulus has some capacity for repair. Even when sclerosis has developed with accumulation of extracellular matrix, this lesion may be remodeled, with a change in balance between profibrotic and antifibrotic and collagen synthesis vs proteolytic mediators. We will focus here on the interplay between mediators of fibrosis and reparative mechanisms and potential regression of fibrosis. Based on the clinical efficacy of interventions that inhibit angiotensin, we will focus on factors related to the renin-angiotensin system.
Collapse
Affiliation(s)
- Li-Jun Ma
- MCN C3310, Department of Pathology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | | |
Collapse
|
49
|
Rossdeutsch A, Smart N, Riley PR. Thymosin β4 and Ac-SDKP: Tools to mend a broken heart. J Mol Med (Berl) 2007; 86:29-35. [PMID: 17701149 DOI: 10.1007/s00109-007-0243-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2007] [Revised: 06/13/2007] [Accepted: 06/25/2007] [Indexed: 12/15/2022]
Abstract
Thymosin beta4 - an endogenously occurring 43 amino acid peptide - has recently been shown to possess cardioprotective properties in the setting of acute myocardial infarction. This review focuses on the reported mechanisms of action through which Thymosin beta4 might accomplish this effect and the clinical prospects for its use as a therapeutic agent.
Collapse
|
50
|
Smart N, Risebro CA, Melville AAD, Moses K, Schwartz RJ, Chien KR, Riley PR. Thymosin beta-4 is essential for coronary vessel development and promotes neovascularization via adult epicardium. Ann N Y Acad Sci 2007; 1112:171-88. [PMID: 17495252 DOI: 10.1196/annals.1415.000] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Ischemic heart disease leading to myocardial infarction causes irreversible cell loss and scarring and is a major cause of morbidity and mortality in humans. Significant effort in the field of cardiovascular medicine has been invested in the search for adult cardiac progenitor cells that may replace damaged muscle cells and/or contribute to new vessel formation (neovascularization) and in the identification of key factors, which may induce such progenitor cells to contribute to myocardial repair and collateral vessel growth. We recently demonstrated that the actin monomer-binding protein, thymosin beta-4 (Tbeta-4), when secreted from the myocardium provides a paracrine stimulus to the cells of the epicardium-derived cells (EPDCs) to promote their inward migration and differentiation into endothelial and smooth muscle cells to form the coronary vasculature. Translating this essential role for Tbeta-4 in coronary vessel development to the adult, we found that treatment of cultured adult explants with Tbeta-4 stimulated extensive outgrowth of epicardin-positive epicardial cells, which, as they migrated away from the explant, differentiated into procollagen type I, SMalphaA, and Flk1-positive cells indicative of fibroblasts, smooth muscle, and endothelial cells; thus releasing the adult epicardium from a quiescent state and restoring pluripotency. The ability of Tbeta-4 to promote coronary vessel development and potentially induce new vasculature in the adult is essential for cardiomyocyte survival and could contribute significantly toward the reported Tbeta4-induced cardioprotection and repair in the adult heart. Tbeta-4 is currently subject to multicenter phase 1 clinical trials for treatment of cardiovascular disease (http://www.regenerx.com), therefore, insight into the repair mechanism(s) induced by Tbeta-4 is an essential step toward harnessing therapeutic survival, migration, and repair properties of the peptide in the context of acute myocardial damage.
Collapse
Affiliation(s)
- Nicola Smart
- Molecular Medicine Unit, UCL Institute of Child Health, London, WC1N 1EH, UK
| | | | | | | | | | | | | |
Collapse
|