1
|
Dai Q, Ain Q, Seth N, Rooney M, Zipprich A. Liver sinusoidal endothelial cells: Friend or foe in metabolic dysfunction- associated steatotic liver disease/metabolic dysfunction-associated steatohepatitis. Dig Liver Dis 2025; 57:493-503. [PMID: 39904692 DOI: 10.1016/j.dld.2025.01.189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/27/2024] [Accepted: 01/15/2025] [Indexed: 02/06/2025]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is the predominant liver disease and is becoming the paramount contributor to end-stage liver disease and liver-related deaths. Liver sinusoidal endothelial cells (LSECs) located between the hepatic parenchyma and blood from viscera and gastrointestinal tract are the gatekeepers for the hepatic microenvironment and normal function. In normal physiological conditions, LSECs govern the substance exchange between hepatic parenchyma and blood through dynamic regulation of fenestration and maintain the quiescent state of Kupffer cells (KCs) and hepatic stellate cells. In MASLD, lipotoxicity, insulin resistance, gastrointestinal microbiota dysbiosis, and mechanical compression caused by fat-laden hepatocytes result in LSECs capillarization and dysfunction. The altered LSECs progressively shift from healer to injurer, exacerbating liver inflammation and advancing liver fibrosis. This review focuses on the deteriorative roles of LSECs and related molecular mechanisms involved in MASLD and their contribution to metabolic dysfunction-associated steatohepatitis (MASH) and liver fibrosis development and progression. Furthermore, in this review, we propose that targeting LSECs dysfunction is a prospective therapeutic strategy to restore the physiological function of LSECs and mitigate MASLD progression.
Collapse
Affiliation(s)
- Qingqing Dai
- Department of Internal Medicine IV (Gastroenterology, Hepatology, and Infectious Diseases), Jena University Hospital, 07747, Jena, Thuringia, Germany
| | - Quratul Ain
- Department of Internal Medicine IV (Gastroenterology, Hepatology, and Infectious Diseases), Jena University Hospital, 07747, Jena, Thuringia, Germany
| | - Navodita Seth
- Department of Internal Medicine IV (Gastroenterology, Hepatology, and Infectious Diseases), Jena University Hospital, 07747, Jena, Thuringia, Germany
| | - Michael Rooney
- Department of Internal Medicine IV (Gastroenterology, Hepatology, and Infectious Diseases), Jena University Hospital, 07747, Jena, Thuringia, Germany
| | - Alexander Zipprich
- Department of Internal Medicine IV (Gastroenterology, Hepatology, and Infectious Diseases), Jena University Hospital, 07747, Jena, Thuringia, Germany.
| |
Collapse
|
2
|
Li Y, Lyu L, Ding H. The potential roles of gut microbiome in porto-sinusoidal vascular disease: an under-researched crossroad. Front Microbiol 2025; 16:1556667. [PMID: 40099185 PMCID: PMC11911366 DOI: 10.3389/fmicb.2025.1556667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 02/14/2025] [Indexed: 03/19/2025] Open
Abstract
Accumulating evidence indicates that patients with liver diseases exhibit distinct microbiological profiles, which can be attributed to the bidirectional relationship of the gut-liver axis. Porto-sinusoidal vascular disease (PSVD) has recently been introduced to describe a group of vascular diseases of the liver, involving the portal venules and sinusoids. Although the pathophysiology of PSVD is not yet fully understood, several predisposing conditions, including immunodeficiency, inflammatory bowel disease, abdominal bacterial infections are associated with the increasing in intestinal permeability and microbial translocation, supporting the role of altered gut microbiota and gut-derived endotoxins in PSVD etiopathogenesis. Recent studies have proposed that the gut microbiome may play a crucial role in the pathophysiology of intrahepatic vascular lesions, potentially influencing the onset and progression of PSVD in this context. This review aims to summarize the current understanding of the gut microbiome's potential role in the pathogenesis of hepatic microvascular abnormalities and thrombosis, and to briefly describe their interactions with PSVD. The insights into gut microbiota and their potential influence on the onset and progression of PSVD may pave the way for new diagnostic, prognostic, and therapeutic strategies.
Collapse
Affiliation(s)
| | | | - Huiguo Ding
- Department of Gastroenterology and Hepatology, Beijing Youan Hospital Affiliated with Capital Medical University, Beijing, China
| |
Collapse
|
3
|
Mak KM, Shekhar AC. Lipopolysaccharide, arbiter of the gut-liver axis, modulates hepatic cell pathophysiology in alcoholism. Anat Rec (Hoboken) 2025; 308:975-1004. [PMID: 39166429 DOI: 10.1002/ar.25562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/18/2024] [Accepted: 08/06/2024] [Indexed: 08/22/2024]
Abstract
Over the last four decades, clinical research and experimental studies have established that lipopolysaccharide (LPS)-a component of the outer membrane of gram-negative bacteria-is a potent hepatotoxic molecule in humans and animals. Alcohol abuse is commonly associated with LPS endotoxemia. This review highlights LPS molecular structures and modes of release from bacteria, plasma LPS concentrations, induction of microbiota dysbiosis, disruption of gut epithelial barrier, and translocation of LPS into the portal circulation impacting the pathophysiology of hepatic cells via the gut-liver axis. We describe and illustrate the portal vein circulation and its distributaries draining the gastrointestinal tract. We also elaborate on the gut-liver axis coupled with enterohepatic circulation that represents a bidirectional communication between the gut and liver. The review also updates the data on how circulating LPS is cleared in a coordinated effort between Kupffer cells, hepatocytes, and liver sinusoidal endothelial cells. Significantly, the article reviews and updates the modes/mechanisms of action by which LPS mediates the diverse pathophysiology of Kupffer cells, hepatocytes, sinusoidal endothelial cells, and hepatic stellate cells primarily in association with alcohol consumption. Specifically, we review the intricate linkages between ethanol, microbiota dysbiosis, LPS production, gut-liver axis, and pathophysiology of various hepatic cells. The maintenance of the gut barrier structural and functional integrity and microbiome homeostasis is essential in mitigating alcoholic liver disease and improving liver health.
Collapse
Affiliation(s)
- Ki M Mak
- Department of Medical Education, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Aditya C Shekhar
- Department of Medical Education, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
4
|
Mo H, Yue P, Li Q, Tan Y, Yan X, Liu X, Xu Y, Luo Y, Palihati S, Yi C, Zhang H, Yuan M, Yang B. The role of liver sinusoidal endothelial cells in metabolic dysfunction-associated steatotic liver diseases and liver cancer: mechanisms and potential therapies. Angiogenesis 2025; 28:14. [PMID: 39899173 DOI: 10.1007/s10456-025-09969-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 01/15/2025] [Indexed: 02/04/2025]
Abstract
Liver sinusoidal endothelial cells (LSECs), with their unique morphology and function, have garnered increasing attention in chronic liver disease research. This review summarizes the critical roles of LSECs under physiological conditions and in two representative chronic liver diseases: metabolic dysfunction-associated steatotic liver disease (MASLD) and liver cancer. Under physiological conditions, LSECs act as selective barriers, regulating substance exchange and hepatic blood flow. Interestingly, LSECs exhibit contrasting roles at different stages of disease progression: in the early stages, they actively resist disease advancement and help restore sinusoidal homeostasis; whereas in later stages, they contribute to disease worsening. During this transition, LSECs undergo capillarization, lose their characteristic markers, and become dysfunctional. As the disease progresses, LSECs closely interact with hepatocytes, hepatic stellate cells, various immune cells, and tumor cells, driving processes such as steatosis, inflammation, fibrosis, angiogenesis, and carcinogenesis. Consequently, targeting LSECs represents a promising therapeutic strategy for chronic liver diseases. Relevant therapeutic targets and potential drugs are summarized in this review.
Collapse
Affiliation(s)
- Hanjun Mo
- Abdominal Oncology Ward, Division of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, Sichuan, China
| | - Pengfei Yue
- Abdominal Oncology Ward, Division of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, Sichuan, China
| | - Qiaoqi Li
- Abdominal Oncology Ward, Division of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, Sichuan, China
| | - Yinxi Tan
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing, China
| | - Xinran Yan
- Department of Nutrition, School of Public Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Xinyue Liu
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Yuanwei Xu
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yingzhe Luo
- Department of Medical Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, No. 39 Shierqiao Road, Chengdu, 610075, Sichuan, China
| | - Suruiya Palihati
- Abdominal Oncology Ward, Division of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, Sichuan, China
| | - Cheng Yi
- Abdominal Oncology Ward, Division of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, Sichuan, China.
| | - Hua Zhang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, West China Second University Hospital, Sichuan University, No. 20, Section 3, South Renmin Road, Chengdu, 610041, China.
- Key Laboratory of Chronobiology (Sichuan University), National Health Commission of China, Chengdu, 610041, China.
| | - Minlan Yuan
- Mental Health Center and Psychiatric Laboratory, The State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, China.
| | - Biao Yang
- Abdominal Oncology Ward, Division of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
5
|
Senior AM, Raubenheimer D, Couteur DGL, Simpson SJ. The Geometric Framework for Nutrition and Its Application to Rodent Models. Annu Rev Anim Biosci 2025; 13:389-410. [PMID: 39546416 DOI: 10.1146/annurev-animal-111523-102327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
Rodents have been the primary model for mammalian nutritional physiology for decades. Despite an extensive body of literature, controversies remain around the effects of specific nutrients and total energy intake on several aspects of nutritional biology, even in this well-studied model. One approach that is helping to bring clarity to the field is the geometric framework for nutrition (GFN). The GFN is a multidimensional paradigm that can be used to conceptualize nutrition and nutritional effects, design experiments, and interpret results. To date, more than 30 publications have applied the GFN to data from rodent models of nutrition. Here we review the major conclusions from these studies. We pay particular attention to the effects of macronutrients on satiety, glucose metabolism, lifespan and the biology of aging, reproductive function, immune function, and the microbiome. We finish by highlighting several knowledge gaps that became evident upon reviewing this literature.
Collapse
Affiliation(s)
- Alistair M Senior
- Sydney Precision Data Science Centre, University of Sydney, Camperdown, New South Wales, Australia
- School of Life and Environmental Sciences, University of Sydney, Camperdown, New South Wales, Australia
- Charles Perkins Centre, University of Sydney, Camperdown, New South Wales, Australia; , , ,
| | - David Raubenheimer
- School of Life and Environmental Sciences, University of Sydney, Camperdown, New South Wales, Australia
- Charles Perkins Centre, University of Sydney, Camperdown, New South Wales, Australia; , , ,
| | - David G Le Couteur
- ANZAC Research Institute, The Concord Hospital, Concord, New South Wales, Australia
- Charles Perkins Centre, University of Sydney, Camperdown, New South Wales, Australia; , , ,
| | - Stephen J Simpson
- School of Life and Environmental Sciences, University of Sydney, Camperdown, New South Wales, Australia
- Charles Perkins Centre, University of Sydney, Camperdown, New South Wales, Australia; , , ,
| |
Collapse
|
6
|
He Q, He W, Dong H, Guo Y, Yuan G, Shi X, Wang D, Lu F. Role of liver sinusoidal endothelial cell in metabolic dysfunction-associated fatty liver disease. Cell Commun Signal 2024; 22:346. [PMID: 38943171 PMCID: PMC11214243 DOI: 10.1186/s12964-024-01720-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 06/20/2024] [Indexed: 07/01/2024] Open
Abstract
Liver sinusoidal endothelial cells (LSECs) are highly specialized endothelial cells that represent the interface between blood cells on one side and hepatocytes on the other side. LSECs not only form a barrier within the hepatic sinus, but also play important physiological functions such as regulating hepatic vascular pressure, anti-inflammatory and anti-fibrotic. Pathologically, pathogenic factors can induce LSECs capillarization, that is, loss of fenestra and dysfunction, which are conducive to early steatosis, lay the foundation for the progression of metabolic dysfunction-associated fatty liver disease (MAFLD), and accelerate metabolic dysfunction-associated steatohepatitis (MASH) and liver fibrosis. The unique localization, phenotype, and function of LSECs make them potential candidates for reducing liver injury, inflammation, and preventing or reversing fibrosis in the future.
Collapse
Affiliation(s)
- Qiongyao He
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Wu He
- Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, China
| | - Hui Dong
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yujin Guo
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Gang Yuan
- Department of Endocrinology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiaoli Shi
- Department of Endocrinology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Dingkun Wang
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Fuer Lu
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
7
|
Eberhard D, Balkenhol S, Köster A, Follert P, Upschulte E, Ostermann P, Kirschner P, Uhlemeyer C, Charnay I, Preuss C, Trenkamp S, Belgardt BF, Dickscheid T, Esposito I, Roden M, Lammert E. Semaphorin-3A regulates liver sinusoidal endothelial cell porosity and promotes hepatic steatosis. NATURE CARDIOVASCULAR RESEARCH 2024; 3:734-753. [PMID: 39196233 PMCID: PMC11358038 DOI: 10.1038/s44161-024-00487-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 05/07/2024] [Indexed: 08/29/2024]
Abstract
Prevalence of metabolic dysfunction-associated steatotic liver disease (MASLD), formerly known as non-alcoholic fatty liver disease, increases worldwide and associates with type 2 diabetes and other cardiometabolic diseases. Here we demonstrate that Sema3a is elevated in liver sinusoidal endothelial cells of animal models for obesity, type 2 diabetes and MASLD. In primary human liver sinusoidal endothelial cells, saturated fatty acids induce expression of SEMA3A, and loss of a single allele is sufficient to reduce hepatic fat content in diet-induced obese mice. We show that semaphorin-3A regulates the number of fenestrae through a signaling cascade that involves neuropilin-1 and phosphorylation of cofilin-1 by LIM domain kinase 1. Finally, inducible vascular deletion of Sema3a in adult diet-induced obese mice reduces hepatic fat content and elevates very low-density lipoprotein secretion. Thus, we identified a molecular pathway linking hyperlipidemia to microvascular defenestration and early development of MASLD.
Collapse
Affiliation(s)
- Daniel Eberhard
- Heinrich Heine University Düsseldorf, Faculty of Mathematics and Natural Sciences, Institute of Metabolic Physiology, Düsseldorf, Germany
| | - Sydney Balkenhol
- Heinrich Heine University Düsseldorf, Faculty of Mathematics and Natural Sciences, Institute of Metabolic Physiology, Düsseldorf, Germany
- Institute for Vascular and Islet Cell Biology, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Andrea Köster
- Heinrich Heine University Düsseldorf, Faculty of Mathematics and Natural Sciences, Institute of Metabolic Physiology, Düsseldorf, Germany
| | - Paula Follert
- Heinrich Heine University Düsseldorf, Faculty of Mathematics and Natural Sciences, Institute of Metabolic Physiology, Düsseldorf, Germany
| | - Eric Upschulte
- Cécile & Oskar Vogt Institute of Brain Research, Medical Faculty and University Hospital Düsseldorf, Düsseldorf, Germany
- Institute of Neuroscience and Medicine (INM-1), Research Center Jülich, Jülich, Germany
- Helmholtz AI, Research Center Jülich, Jülich, Germany
| | - Philipp Ostermann
- Heinrich Heine University Düsseldorf, Faculty of Mathematics and Natural Sciences, Institute of Metabolic Physiology, Düsseldorf, Germany
| | - Philip Kirschner
- Heinrich Heine University Düsseldorf, Faculty of Mathematics and Natural Sciences, Institute of Metabolic Physiology, Düsseldorf, Germany
| | - Celina Uhlemeyer
- Institute for Vascular and Islet Cell Biology, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Iannis Charnay
- Heinrich Heine University Düsseldorf, Faculty of Mathematics and Natural Sciences, Institute of Metabolic Physiology, Düsseldorf, Germany
| | - Christina Preuss
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
| | - Sandra Trenkamp
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
| | - Bengt-Frederik Belgardt
- Institute for Vascular and Islet Cell Biology, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Timo Dickscheid
- Institute of Neuroscience and Medicine (INM-1), Research Center Jülich, Jülich, Germany
- Helmholtz AI, Research Center Jülich, Jülich, Germany
- Heinrich Heine University Düsseldorf, Faculty of Mathematics and Natural Sciences, Institute of Computer Science, Düsseldorf, Germany
| | - Irene Esposito
- Institute of Pathology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| | - Michael Roden
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
- Division of Endocrinology and Diabetology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| | - Eckhard Lammert
- Heinrich Heine University Düsseldorf, Faculty of Mathematics and Natural Sciences, Institute of Metabolic Physiology, Düsseldorf, Germany.
- Institute for Vascular and Islet Cell Biology, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany.
- German Center for Diabetes Research (DZD), Neuherberg, Germany.
| |
Collapse
|
8
|
Minciuna I, Taru MG, Procopet B, Stefanescu H. The Interplay between Liver Sinusoidal Endothelial Cells, Platelets, and Neutrophil Extracellular Traps in the Development and Progression of Metabolic Dysfunction-Associated Steatotic Liver Disease. J Clin Med 2024; 13:1406. [PMID: 38592258 PMCID: PMC10932189 DOI: 10.3390/jcm13051406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/23/2024] [Accepted: 02/27/2024] [Indexed: 04/10/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) represents a societal burden due to the lack of effective treatment and incomplete pathophysiology understanding. This review explores the intricate connections among liver sinusoidal endothelial cells (LSECs), platelets, neutrophil extracellular traps (NETs), and coagulation disruptions in MASLD pathogenesis. In MASLD's early stages, LSECs undergo capillarization and dysfunction due to excessive dietary macronutrients and gut-derived products. Capillarization leads to ischemic changes in hepatocytes, triggering pro-inflammatory responses in Kupffer cells (KCs) and activating hepatic stellate cells (HSCs). Capillarized LSECs show a pro-inflammatory phenotype through adhesion molecule overexpression, autophagy loss, and increased cytokines production. Platelet interaction favors leucocyte recruitment, NETs formation, and liver inflammatory foci. Liver fibrosis is facilitated by reduced nitric oxide, HSC activation, profibrogenic mediators, and increased angiogenesis. Moreover, platelet attachment, activation, α-granule cargo release, and NETs formation contribute to MASLD progression. Platelets foster fibrosis and microthrombosis, leading to parenchymal extinction and fibrotic healing. Additionally, platelets promote tumor growth, epithelial-mesenchymal transition, and tumor cell metastasis. MASLD's prothrombotic features are exacerbated by insulin resistance, diabetes, and obesity, manifesting as increased von Willebrand factor, platelet hyperaggregability, hypo-fibrinolysis, and a prothrombotic fibrin clot structure. Improving LSEC health and using antiplatelet treatment appear promising for preventing MASLD development and progression.
Collapse
Affiliation(s)
- Iulia Minciuna
- Regional Institute of Gastroenterology and Hepatology “Prof. Dr. Octavian Fodor”, 400394 Cluj-Napoca, Romania (H.S.)
- Deaprtment IV, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania
| | - Madalina Gabriela Taru
- Regional Institute of Gastroenterology and Hepatology “Prof. Dr. Octavian Fodor”, 400394 Cluj-Napoca, Romania (H.S.)
- Deaprtment IV, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania
| | - Bogdan Procopet
- Regional Institute of Gastroenterology and Hepatology “Prof. Dr. Octavian Fodor”, 400394 Cluj-Napoca, Romania (H.S.)
- Deaprtment IV, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania
| | - Horia Stefanescu
- Regional Institute of Gastroenterology and Hepatology “Prof. Dr. Octavian Fodor”, 400394 Cluj-Napoca, Romania (H.S.)
| |
Collapse
|
9
|
Piotrowska K, Zgutka K, Tomasiak P, Tarnowski M, Pawlik A. Every-other day (EOD) feeding regime decreases oxidative stress and inflammatory cascade in mouse liver: The immunohistochemical study. Tissue Cell 2023; 85:102236. [PMID: 37812950 DOI: 10.1016/j.tice.2023.102236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/05/2023] [Accepted: 10/05/2023] [Indexed: 10/11/2023]
Abstract
INTRODUCTION Positive effects of calorie restrictions (CR) and EOD include decreased body weight, prolonged life span, but also changes in metabolism of the liver. In present paper our aim was to examine antioxidative enzymes: Catalase (CAT) and Manganese superoxidative dismutase (MnSOD, SOD2) and Glutathione peroxidase 4 (Gpx-4) in connection to caspase-3 and inflammatory mediators (IL-1β and TNF- α) in EOD liver tissue in comparison to control mice. METHODS After 9 months of EOD treatment male mouse liver tissue was harvested and prepared for analysis. Protein semi-quantitative estimation and cellular immunolocalization was performed for CAT, SOD2, Gpx-4, caspase-3, IL-1β and TNF- α in liver tissue of mice fed every-other day in comparison to control (AL fed) animals. RESULTS After prolonged EOD feeding in mice we observed decreased level of SOD2 and Gpx-4, decreased caspase-3, IL-1β and TNF-α expression in liver tissue on protein level measured by semi-quantitative DAB staining intensity. CONCLUSION For the first time we showed immunolocalization of major antioxidative enzymes (CAT, SOD2, Gpx-4) in liver tissue after DR. Decrease of two major antioxidant enzymes combined with decrease of apoptotic marker and inflammatory factors indicate decrease in oxidative stress as the result of fast in EOD feeding regime.
Collapse
Affiliation(s)
- Katarzyna Piotrowska
- Department of Physiology Pomeranian Medical University in Szczecin, al. Powstancow Wlkp.72, 70-111 Szczecin, Poland,.
| | - Katarzyna Zgutka
- Department of Physiology in Health Sciences, Pomeranian Medical University in Szczecin, ul. Żołnierska 54, 71-210 Szczecin, Poland
| | - Patrycja Tomasiak
- Institute of Physical Culture Sciences, University of Szczecin, al. Piastow 40b, 71-065 Szczecin, Poland
| | - Maciej Tarnowski
- Department of Physiology in Health Sciences, Pomeranian Medical University in Szczecin, ul. Żołnierska 54, 71-210 Szczecin, Poland
| | - Andrzej Pawlik
- Department of Physiology Pomeranian Medical University in Szczecin, al. Powstancow Wlkp.72, 70-111 Szczecin, Poland
| |
Collapse
|
10
|
Velliou RI, Legaki AI, Nikolakopoulou P, Vlachogiannis NI, Chatzigeorgiou A. Liver endothelial cells in NAFLD and transition to NASH and HCC. Cell Mol Life Sci 2023; 80:314. [PMID: 37798474 PMCID: PMC11072568 DOI: 10.1007/s00018-023-04966-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/04/2023] [Accepted: 09/15/2023] [Indexed: 10/07/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is considered as the hepatic manifestation of metabolic syndrome, which is characterised by obesity, insulin resistance, hypercholesterolemia and hypertension. NAFLD is the most frequent liver disease worldwide and more than 10% of NAFLD patients progress to the inflammatory and fibrotic stage of non-alcoholic steatohepatitis (NASH), which can lead to end-stage liver disease including hepatocellular carcinoma (HCC), the most frequent primary malignant liver tumor. Liver sinusoidal endothelial cells (LSEC) are strategically positioned at the interface between blood and hepatic parenchyma. LSECs are highly specialized cells, characterised by the presence of transcellular pores, called fenestrae, and exhibit anti-inflammatory and anti-fibrotic characteristics under physiological conditions. However, during NAFLD development they undergo capillarisation and acquire a phenotype similar to vascular endothelial cells, actively promoting all pathophysiological aspects of NAFLD, including steatosis, inflammation, and fibrosis. LSEC dysfunction is critical for the progression to NASH and HCC while restoring LSEC homeostasis appears to be a promising approach to prevent NAFLD progression and its complications and even reverse tissue damage. In this review we present current information on the role of LSEC throughout the progressive phases of NAFLD, summarising in vitro and in vivo experimental evidence and data from human studies.
Collapse
Affiliation(s)
- Rallia-Iliana Velliou
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Str., 11527, Athens, Greece
| | - Aigli-Ioanna Legaki
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Str., 11527, Athens, Greece
| | - Polyxeni Nikolakopoulou
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Str., 11527, Athens, Greece
| | - Nikolaos I Vlachogiannis
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Str., 11527, Athens, Greece
| | - Antonios Chatzigeorgiou
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Str., 11527, Athens, Greece.
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital and Faculty of Medicine Carl Gustav Carus of TU Dresden, Fetscherstrasse 74, 01307, Dresden, Germany.
| |
Collapse
|
11
|
McConnell MJ, Kostallari E, Ibrahim SH, Iwakiri Y. The evolving role of liver sinusoidal endothelial cells in liver health and disease. Hepatology 2023; 78:649-669. [PMID: 36626620 PMCID: PMC10315420 DOI: 10.1097/hep.0000000000000207] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 11/25/2022] [Indexed: 01/12/2023]
Abstract
LSECs are a unique population of endothelial cells within the liver and are recognized as key regulators of liver homeostasis. LSECs also play a key role in liver disease, as dysregulation of their quiescent phenotype promotes pathological processes within the liver including inflammation, microvascular thrombosis, fibrosis, and portal hypertension. Recent technical advances in single-cell analysis have characterized distinct subpopulations of the LSECs themselves with a high resolution and defined their gene expression profile and phenotype, broadening our understanding of their mechanistic role in liver biology. This article will review 4 broad advances in our understanding of LSEC biology in general: (1) LSEC heterogeneity, (2) LSEC aging and senescence, (3) LSEC role in liver regeneration, and (4) LSEC role in liver inflammation and will then review the role of LSECs in various liver pathologies including fibrosis, DILI, alcohol-associated liver disease, NASH, viral hepatitis, liver transplant rejection, and ischemia reperfusion injury. The review will conclude with a discussion of gaps in knowledge and areas for future research.
Collapse
Affiliation(s)
- Matthew J. McConnell
- Section of Digestive Disease, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut
| | | | - Samar H. Ibrahim
- Division of Gastroenterology, Mayo Clinic, Rochester, MN
- Division of Pediatric Gastroenterology, Mayo Clinic, Rochester, MN
| | - Yasuko Iwakiri
- Section of Digestive Disease, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut
| |
Collapse
|
12
|
Kiouptsi K, Pontarollo G, Reinhardt C. Gut Microbiota and the Microvasculature. Cold Spring Harb Perspect Med 2023; 13:a041179. [PMID: 37460157 PMCID: PMC10411863 DOI: 10.1101/cshperspect.a041179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
The gut microbiota is increasingly recognized as an actuating variable shaping vascular development and endothelial cell function in the intestinal mucosa but also affecting the microvasculature of remote organs. In the small intestine, colonization with gut microbiota and subsequent activation of innate immune pathways promotes the development of intricate capillary networks and lacteals, influencing the integrity of the gut-vascular barrier as well as nutrient uptake. Since the liver yields most of its blood supply via the portal circulation, the hepatic microcirculation steadily encounters microbiota-derived patterns and active signaling metabolites that induce changes in the organization of the liver sinusoidal endothelium, influencing immune zonation of sinusoids and impacting on metabolic processes. In addition, microbiota-derived signals may affect the vasculature of distant organ systems such as the brain and the eye microvasculature. In recent years, this gut-resident microbial ecosystem was revealed to contribute to the development of several vascular disease phenotypes.
Collapse
Affiliation(s)
- Klytaimnistra Kiouptsi
- Center for Thrombosis and Hemostasis (CTH), Partner Site Rhine Main, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine Main, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Giulia Pontarollo
- Center for Thrombosis and Hemostasis (CTH), Partner Site Rhine Main, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Christoph Reinhardt
- Center for Thrombosis and Hemostasis (CTH), Partner Site Rhine Main, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine Main, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| |
Collapse
|
13
|
Messelmani T, Le Goff A, Soncin F, Gilard F, Souguir Z, Maubon N, Gakière B, Legallais C, Leclerc E, Jellali R. Investigation of the metabolomic crosstalk between liver sinusoidal endothelial cells and hepatocytes exposed to paracetamol using organ-on-chip technology. Toxicology 2023; 492:153550. [PMID: 37209942 DOI: 10.1016/j.tox.2023.153550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/09/2023] [Accepted: 05/17/2023] [Indexed: 05/22/2023]
Abstract
Organ-on-chip technology is a promising in vitro approach recapitulating human physiology for the study of responses to drug exposure. Organ-on-chip cell cultures have paved new grounds for testing and understanding metabolic dose-responses when evaluating pharmaceutical and environmental toxicity. Here, we present a metabolomic investigation of a coculture of liver sinusoidal endothelial cells (LSECs, SK-HEP-1) with hepatocytes (HepG2/C3a) using advanced organ-on-chip technology. To reproduce the physiology of the sinusoidal barrier, LSECs were separated from hepatocytes by a membrane (culture insert integrated organ-on-chip platform). The tissues were exposed to acetaminophen (APAP), an analgesic drug widely used as a xenobiotic model in liver and HepG2/C3a studies. The differences between the SK-HEP-1, HepG2/C3a monocultures and SK-HEP-1/HepG2/C3a cocultures, treated or not with APAP, were identified from metabolomic profiles using supervised multivariate analysis. The pathway enrichment coupled with metabolite analysis of the corresponding metabolic fingerprints contributed to extracting the specificity of each type of culture and condition. In addition, we analysed the responses to APAP treatment by mapping the signatures with significant modulation of the biological processes of the SK-HEP-1 APAP, HepG2/C3a APAP and SK-HEP-1/HepG2/C3a APAP conditions. Furthermore, our model shows how the presence of the LSECs barrier and APAP first pass can modify the metabolism of HepG2/C3a. Altogether, this study demonstrates the potential of a "metabolomic-on-chip" strategy for pharmaco-metabolomic applications predicting individual response to drugs.
Collapse
Affiliation(s)
- Taha Messelmani
- Université de technologie de Compiègne, CNRS, Biomechanics and Bioengineering, Centre de recherche Royallieu CS 60319, 60203 Compiègne Cedex, France
| | - Anne Le Goff
- Université de technologie de Compiègne, CNRS, Biomechanics and Bioengineering, Centre de recherche Royallieu CS 60319, 60203 Compiègne Cedex, France
| | - Fabrice Soncin
- CNRS/IIS/Centre Oscar Lambret/Lille University SMMiL-E Project, CNRS Délégation Hauts-de-France, 43 Avenue le Corbusier, 59800 Lille, France; CNRS IRL 2820, Laboratory for Integrated Micro Mechatronic Systems, Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, Japan
| | - Françoise Gilard
- Institute of Plant Sciences Paris-Saclay (IPS2), UMR 9213/UMR1403, CNRS, INRA, Université Paris-Sud, Université d'Evry, Université Paris-Diderot, Université Paris Saclay, Bâtiment 630 Rue Noetzlin, 91192, Gif-sur-Yvette Cedex, France
| | - Zied Souguir
- HCS Pharma, 250 rue Salvador Allende, Biocentre Fleming Bâtiment A, 59120 Loos, France
| | - Nathalie Maubon
- HCS Pharma, 250 rue Salvador Allende, Biocentre Fleming Bâtiment A, 59120 Loos, France
| | - Bertrand Gakière
- Institute of Plant Sciences Paris-Saclay (IPS2), UMR 9213/UMR1403, CNRS, INRA, Université Paris-Sud, Université d'Evry, Université Paris-Diderot, Université Paris Saclay, Bâtiment 630 Rue Noetzlin, 91192, Gif-sur-Yvette Cedex, France
| | - Cécile Legallais
- Université de technologie de Compiègne, CNRS, Biomechanics and Bioengineering, Centre de recherche Royallieu CS 60319, 60203 Compiègne Cedex, France
| | - Eric Leclerc
- Université de technologie de Compiègne, CNRS, Biomechanics and Bioengineering, Centre de recherche Royallieu CS 60319, 60203 Compiègne Cedex, France; CNRS IRL 2820, Laboratory for Integrated Micro Mechatronic Systems, Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, Japan
| | - Rachid Jellali
- Université de technologie de Compiègne, CNRS, Biomechanics and Bioengineering, Centre de recherche Royallieu CS 60319, 60203 Compiègne Cedex, France.
| |
Collapse
|
14
|
Harris EN. Will inhibition of cellular crosstalk resolve liver fibrosis? Hepatology 2022; 76:558-560. [PMID: 35080050 PMCID: PMC9429820 DOI: 10.1002/hep.32361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 01/20/2022] [Indexed: 12/08/2022]
Affiliation(s)
- Edward N. Harris
- Department of Biochemistry University of Nebraska Lincoln Nebraska USA
| |
Collapse
|
15
|
Fang ZQ, Ruan B, Liu JJ, Duan JL, Yue ZS, Song P, Xu H, Ding J, Xu C, Dou GR, Wang L. Notch-triggered maladaptation of liver sinusoidal endothelium aggravates nonalcoholic steatohepatitis through endothelial nitric oxide synthase. Hepatology 2022; 76:742-758. [PMID: 35006626 DOI: 10.1002/hep.32332] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 01/06/2022] [Accepted: 01/06/2022] [Indexed: 01/04/2023]
Abstract
BACKGROUND AND AIMS Although NASH can lead to severe clinical consequences, including cirrhosis and hepatocellular carcinoma, no effective treatment is currently available for this disease. Increasing evidence indicates that LSECs play a critical role in NASH pathogenesis; however, the mechanisms involved in LSEC-mediated NASH remain to be fully elucidated. APPROACH AND RESULTS In the current study, we found that LSEC homeostasis was disrupted and LSEC-specific gene profiles were altered in methionine-choline-deficient (MCD) diet-induced NASH mouse models. Importantly, Notch signaling was found to be activated in LSECs of NASH mice. To then investigate the role of endothelial Notch in NASH progression, we generated mouse lines with endothelial-specific Notch intracellular domain (NICD) overexpression or RBP-J knockout to respectively activate or inhibit Notch signaling in endothelial cells. Notably, endothelial-specific overexpression of the NICD accelerated LSEC maladaptation and aggravated NASH, whereas endothelial cell-specific inhibition of Notch signaling restored LSEC homeostasis and improved NASH phenotypes. Furthermore, we demonstrated that endothelial-specific Notch activation exacerbated NASH by inhibiting endothelial nitric oxide synthase (eNOS) transcription, whereas administration of the pharmacological eNOS activator YC-1 alleviated hepatic steatosis and lipid accumulation resulting from Notch activation. Finally, to explore the therapeutic potential of using Notch inhibitors in NASH treatment, we applied two gamma-secretase inhibitors-DAPT and LY3039478-in an MCD diet-induced mouse model of NASH, and found that both inhibitors effectively ameliorated hepatic steatosis, inflammation, and liver fibrosis. CONCLUSIONS Endothelial-specific Notch activation triggered LSEC maladaptation and exacerbated NASH phenotypes in an eNOS-dependent manner. Genetic and pharmacological inhibition of Notch signaling effectively restored LSEC homeostasis and ameliorated NASH progression.
Collapse
Affiliation(s)
- Zhi-Qiang Fang
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, Fourth Military Medical University, Xi'an, China
| | - Bai Ruan
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, Fourth Military Medical University, Xi'an, China.,State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, China.,Center of Clinical Aerospace Medicine & Department of Aviation Medicine, Fourth Military Medical University, Xi'an, China
| | - Jing-Jing Liu
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, Fourth Military Medical University, Xi'an, China
| | - Juan-Li Duan
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, Fourth Military Medical University, Xi'an, China
| | - Zhen-Sheng Yue
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, Fourth Military Medical University, Xi'an, China.,Department of Ophthalmology, Xi-Jing Hospital, Fourth Military Medical University, Xi'an, China
| | - Ping Song
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, Fourth Military Medical University, Xi'an, China
| | - Hao Xu
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, Fourth Military Medical University, Xi'an, China
| | - Jian Ding
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, Fourth Military Medical University, Xi'an, China
| | - Chen Xu
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, Fourth Military Medical University, Xi'an, China
| | - Guo-Rui Dou
- Department of Ophthalmology, Xi-Jing Hospital, Fourth Military Medical University, Xi'an, China
| | - Lin Wang
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, Fourth Military Medical University, Xi'an, China.,State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
16
|
Wallace SJ, Tacke F, Schwabe RF, Henderson NC. Understanding the cellular interactome of non-alcoholic fatty liver disease. JHEP Rep 2022; 4:100524. [PMID: 35845296 PMCID: PMC9284456 DOI: 10.1016/j.jhepr.2022.100524] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/20/2022] [Accepted: 05/27/2022] [Indexed: 02/08/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is reaching epidemic proportions, with a global prevalence of 25% in the adult population. Non-alcoholic steatohepatitis (NASH), which can lead to cirrhosis, has become the leading indication for liver transplantation in both Europe and the USA. Liver fibrosis is the consequence of sustained, iterative liver injury, and the main determinant of outcomes in NASH. The liver possesses remarkable inherent plasticity, and liver fibrosis can regress when the injurious agent is removed, thus providing opportunities to alter long-term outcomes through therapeutic interventions. Although hepatocyte injury is a key driver of NASH, multiple other cell lineages within the hepatic fibrotic niche play major roles in the perpetuation of inflammation, mesenchymal cell activation, extracellular matrix accumulation as well as fibrosis resolution. The constituents of this cellular interactome, and how the various subpopulations within the fibrotic niche interact to drive fibrogenesis is an area of active research. Important cellular components of the fibrotic niche include endothelial cells, macrophages, passaging immune cell populations and myofibroblasts. In this review, we will describe how rapidly evolving technologies such as single-cell genomics, spatial transcriptomics and single-cell ligand-receptor analyses are transforming our understanding of the cellular interactome in NAFLD/NASH, and how this new, high-resolution information is being leveraged to develop rational new therapies for patients with NASH.
Collapse
Key Words
- BAs, bile acids
- CCL, C-C motif chemokine ligand
- CCR, C-C motif chemokine receptor
- CLD, chronic liver disease
- CTGF, connective tissue growth factor
- CXCL, C-X-C motif chemokine ligand
- CXCR, C-X-C motif chemokine receptor
- DAMP, damage-associated molecular pattern
- ECM, extracellular matrix
- ER, endoplasmic reticulum
- FGF, fibroblast growth factor
- FXR, farnesoid X receptor
- HSCs, hepatic stellate cells
- IL, interleukin
- ILC, innate lymphoid cell
- KCs, Kupffer cells
- LSECs, liver sinusoidal endothelial cells
- MAIT, mucosal-associated invariant T
- MAMPS, microbiota-associated molecular patterns
- NAFLD, non-alcoholic fatty liver disease
- NASH, non-alcoholic steatohepatitis
- NK(T), natural killer (T)
- NLR, Nod like receptors
- Non-alcoholic fatty liver disease (NAFLD)
- PDGF, platelet-derived growth factor
- PFs, portal fibroblasts
- SASP, senescence-associated secretory phenotype
- TGF, transforming growth factor
- TLR, Toll-like receptor
- TNF, tumour necrosis factor
- VEGF, vascular endothelial growth factor
- antifibrotic therapies
- cellular interactome
- cirrhosis
- fibrosis
- single-cell genomics
Collapse
Affiliation(s)
- Sebastian J. Wallace
- Centre for Inflammation Research, The Queen’s Medical Research Institute, Edinburgh BioQuarter, University of Edinburgh, Edinburgh, UK
| | - Frank Tacke
- Department of Hepatology and Gastroenterology, Campus Virchow-Klinikum (CVK) and Campus Charité Mitte (CCM), Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Robert F. Schwabe
- Department of Hepatology and Gastroenterology, Campus Virchow-Klinikum (CVK) and Campus Charité Mitte (CCM), Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany
- Department of Medicine, Columbia University, New York, NY 10032, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY 10032, USA
- Institute of Human Nutrition, Columbia University, New York, NY 10032, USA
| | - Neil C. Henderson
- Centre for Inflammation Research, The Queen’s Medical Research Institute, Edinburgh BioQuarter, University of Edinburgh, Edinburgh, UK
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road South, Edinburgh, UK
| |
Collapse
|
17
|
Li Y, Adeniji NT, Fan W, Kunimoto K, Török NJ. Non-alcoholic Fatty Liver Disease and Liver Fibrosis during Aging. Aging Dis 2022; 13:1239-1251. [PMID: 35855331 PMCID: PMC9286912 DOI: 10.14336/ad.2022.0318] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/18/2022] [Indexed: 01/10/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) and its progressive form non-alcoholic steatohepatitis (NASH) have emerged as the leading causes of chronic liver disease-related mortality. The prevalence of NAFLD/NASH is expected to increase given the epidemics of obesity and type 2 diabetes mellitus. Older patients are disproportionally affected by NASH and related complications such as progressive fibrosis, cirrhosis and hepatocellular carcinoma; however, they are often ineligible for liver transplantation due to their frailty and comorbidities, and effective medical treatments are still lacking. In this review we focused on pathways that are key to the aging process in the liver and perpetuate NAFLD/NASH, leading to fibrosis. In addition, we highlighted recent findings and cross-talks of normal and/or senescent liver cells, dysregulated nutrient sensing, proteostasis and mitochondrial dysfunction in the framework of changing metabolic milieu. Better understanding these pathways during preclinical and clinical studies will be essential to design novel and specific therapeutic strategies to treat NASH in the elderly.
Collapse
Affiliation(s)
- Yuan Li
- Gastroenterology and Hepatology, Stanford University, Palo Alto, CA 94305, USA
| | - Nia T. Adeniji
- Gastroenterology and Hepatology, Stanford University, Palo Alto, CA 94305, USA
| | - Weiguo Fan
- Gastroenterology and Hepatology, Stanford University, Palo Alto, CA 94305, USA
| | - Koshi Kunimoto
- Gastroenterology and Hepatology, Stanford University, Palo Alto, CA 94305, USA
| | - Natalie J. Török
- Gastroenterology and Hepatology, Stanford University, Palo Alto, CA 94305, USA
| |
Collapse
|
18
|
Du W, Wang L. The Crosstalk Between Liver Sinusoidal Endothelial Cells and Hepatic Microenvironment in NASH Related Liver Fibrosis. Front Immunol 2022; 13:936196. [PMID: 35837401 PMCID: PMC9274003 DOI: 10.3389/fimmu.2022.936196] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 06/03/2022] [Indexed: 11/13/2022] Open
Abstract
Chronic liver injury can be caused by many factors, including virus infection, alcohol intake, cholestasis and abnormal fat accumulation. Nonalcoholic steatohepatitis (NASH) has become the main cause of liver fibrosis worldwide. Recently, more and more evidences show that hepatic microenvironment is involved in the pathophysiological process of liver fibrosis induced by NASH. Hepatic microenvironment consists of various types of cells and intercellular crosstalk among different cells in the liver sinusoids. Liver sinusoidal endothelial cells (LSECs), as the gatekeeper of liver microenvironment, play an irreplaceable role in the homeostasis and alterations of liver microenvironment. Many recent studies have reported that during the progression of NASH to liver fibrosis, LSECs are involved in various stages mediated by a series of mechanisms. Therefore, here we review the key role of crosstalk between LSECs and hepatic microenvironment in the progression of NASH to liver fibrosis (steatosis, inflammation, and fibrosis), as well as promising therapeutic strategies targeting LSECs.
Collapse
Affiliation(s)
- Wei Du
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Lin Wang
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, The Fourth Military Medical University, Xi'an, China
| |
Collapse
|
19
|
James BH, Papakyriacou P, Gardener MJ, Gliddon L, Weston CJ, Lalor PF. The Contribution of Liver Sinusoidal Endothelial Cells to Clearance of Therapeutic Antibody. Front Physiol 2022; 12:753833. [PMID: 35095549 PMCID: PMC8795706 DOI: 10.3389/fphys.2021.753833] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 10/25/2021] [Indexed: 12/12/2022] Open
Abstract
Many chronic inflammatory diseases are treated by administration of “biological” therapies in terms of fully human and humanized monoclonal antibodies or Fc fusion proteins. These tools have widespread efficacy and are favored because they generally exhibit high specificity for target with a low toxicity. However, the design of clinically applicable humanized antibodies is complicated by the need to circumvent normal antibody clearance mechanisms to maintain therapeutic dosing, whilst avoiding development of off target antibody dependent cellular toxicity. Classically, professional phagocytic immune cells are responsible for scavenging and clearance of antibody via interactions with the Fc portion. Immune cells such as macrophages, monocytes, and neutrophils express Fc receptor subsets, such as the FcγR that can then clear immune complexes. Another, the neonatal Fc receptor (FcRn) is key to clearance of IgG in vivo and serum half-life of antibody is explicitly linked to function of this receptor. The liver is a site of significant expression of FcRn and indeed several hepatic cell populations including Kupffer cells and liver sinusoidal endothelial cells (LSEC), play key roles in antibody clearance. This combined with the fact that the liver is a highly perfused organ with a relatively permissive microcirculation means that hepatic binding of antibody has a significant effect on pharmacokinetics of clearance. Liver disease can alter systemic distribution or pharmacokinetics of antibody-based therapies and impact on clinical effectiveness, however, few studies document the changes in key membrane receptors involved in antibody clearance across the spectrum of liver disease. Similarly, the individual contribution of LSEC scavenger receptors to antibody clearance in a healthy or chronically diseased organ is not well characterized. This is an important omission since pharmacokinetic studies of antibody distribution are often based on studies in healthy individuals and thus may not reflect the picture in an aging or chronically diseased population. Therefore, in this review we consider the expression and function of key antibody-binding receptors on LSEC, and the features of therapeutic antibodies which may accentuate clearance by the liver. We then discuss the implications of this for the design and utility of monoclonal antibody-based therapies.
Collapse
Affiliation(s)
- Bethany H. James
- Centre for Liver and Gastroenterology Research and National Institute for Health Research (NIHR) Birmingham Biomedical Research Centre, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Pantelitsa Papakyriacou
- Centre for Liver and Gastroenterology Research and National Institute for Health Research (NIHR) Birmingham Biomedical Research Centre, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Matthew J. Gardener
- Antibody Pharmacology, Biopharm Discovery, Glaxo Smith Kline Research and Development, Stevenage, United Kingdom
| | - Louise Gliddon
- Antibody Pharmacology, Biopharm Discovery, Glaxo Smith Kline Research and Development, Stevenage, United Kingdom
| | - Christopher J. Weston
- Centre for Liver and Gastroenterology Research and National Institute for Health Research (NIHR) Birmingham Biomedical Research Centre, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Patricia F. Lalor
- Centre for Liver and Gastroenterology Research and National Institute for Health Research (NIHR) Birmingham Biomedical Research Centre, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
- *Correspondence: Patricia F. Lalor,
| |
Collapse
|
20
|
Fotheringham AK, Solon-Biet SM, Bielefeldt-Ohmann H, McCarthy DA, McMahon AC, Ruohonen K, Li I, Sullivan MA, Whiddett RO, Borg DJ, Cogger VC, Ballard WO, Turner N, Melvin RG, Raubenheimer D, Le Couteur DG, Simpson SJ, Forbes JM. Kidney disease risk factors do not explain impacts of low dietary protein on kidney function and structure. iScience 2021; 24:103308. [PMID: 34820603 PMCID: PMC8602032 DOI: 10.1016/j.isci.2021.103308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 04/29/2021] [Accepted: 10/15/2021] [Indexed: 02/06/2023] Open
Abstract
The kidneys balance many byproducts of the metabolism of dietary components. Previous studies examining dietary effects on kidney health are generally of short duration and manipulate a single macronutrient. Here, kidney function and structure were examined in C57BL/6J mice randomized to consume one of a spectrum of macronutrient combinations (protein [5%–60%], carbohydrate [20%–75%], and fat [20%–75%]) from weaning to late-middle age (15 months). Individual and interactive impacts of macronutrients on kidney health were modeled. Dietary protein had the greatest influence on kidney function, where chronic low protein intake decreased glomerular filtration rates and kidney mass, whereas it increased kidney immune infiltration and structural injury. Kidney outcomes did not align with cardiometabolic risk factors including glucose intolerance, overweight/obesity, dyslipidemia, and hypertension in mice with chronic low protein consumption. This study highlights that protein intake over a lifespan is an important determinant of kidney function independent of cardiometabolic changes. Chronic high macronutrient intake from any source increases kidney function (GFR) Low protein intake led to greater kidney tubular structural injury and inflammation Lower protein intake decreased kidney mass and glomerular filtration capacity Kidney outcomes did not align with longevity or cardiometabolic outcomes
Collapse
Affiliation(s)
- Amelia K Fotheringham
- Glycation and Diabetes Complications Group, Mater Research Institute-The University of Queensland, Translational Research Institute, 37 Kent Street, Woolloongabba, Brisbane 4072, QLD, Australia.,Faculty of Medicine, University of Queensland, Brisbane 4067, QLD, Australia
| | - Samantha M Solon-Biet
- Charles Perkins Centre, University of Sydney, Sydney 2006, NSW, Australia.,School of Medical Sciences, University of Sydney, Sydney 2006, NSW, Australia
| | - Helle Bielefeldt-Ohmann
- School of Veterinary Science, University of Queensland, Gatton Campus, Gatton 4343, QLD, Australia.,School of Chemistry & Molecular Biosciences, University of Queensland, Brisbane 4067, QLD, Australia
| | - Domenica A McCarthy
- Glycation and Diabetes Complications Group, Mater Research Institute-The University of Queensland, Translational Research Institute, 37 Kent Street, Woolloongabba, Brisbane 4072, QLD, Australia
| | - Aisling C McMahon
- Charles Perkins Centre, University of Sydney, Sydney 2006, NSW, Australia.,Centre for Education and Research on Aging, and Aging and Alzheimer's Institute, Concord Hospital, Sydney 2139, NSW, Australia.,ANZAC Research Institute, Concord Hospital, University of Sydney, Sydney 2139, NSW, Australia
| | - Kari Ruohonen
- Animal Nutrition and Health, Cargill, Sandnes, Norway
| | - Isaac Li
- Faculty of Medicine, University of Queensland, Brisbane 4067, QLD, Australia
| | - Mitchell A Sullivan
- Glycation and Diabetes Complications Group, Mater Research Institute-The University of Queensland, Translational Research Institute, 37 Kent Street, Woolloongabba, Brisbane 4072, QLD, Australia
| | - Rani O Whiddett
- Glycation and Diabetes Complications Group, Mater Research Institute-The University of Queensland, Translational Research Institute, 37 Kent Street, Woolloongabba, Brisbane 4072, QLD, Australia
| | - Danielle J Borg
- Glycation and Diabetes Complications Group, Mater Research Institute-The University of Queensland, Translational Research Institute, 37 Kent Street, Woolloongabba, Brisbane 4072, QLD, Australia.,Faculty of Medicine, University of Queensland, Brisbane 4067, QLD, Australia
| | - Victoria C Cogger
- Charles Perkins Centre, University of Sydney, Sydney 2006, NSW, Australia.,Centre for Education and Research on Aging, and Aging and Alzheimer's Institute, Concord Hospital, Sydney 2139, NSW, Australia.,ANZAC Research Institute, Concord Hospital, University of Sydney, Sydney 2139, NSW, Australia
| | - William O Ballard
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney 2052, NSW, Australia
| | - Nigel Turner
- Department of Pharmacology, School of Medical Sciences, Faculty of Medicine, University of New South Wales Sydney, NSW 2052, Australia
| | - Richard G Melvin
- Department of Biomedical Sciences, University of Minnesota Medical School, 1035 University Drive, Duluth 55812, MN, USA
| | - David Raubenheimer
- Charles Perkins Centre, University of Sydney, Sydney 2006, NSW, Australia.,School of Life and Environmental Sciences, University of Sydney, NSW, Australia
| | - David G Le Couteur
- Charles Perkins Centre, University of Sydney, Sydney 2006, NSW, Australia.,Centre for Education and Research on Aging, and Aging and Alzheimer's Institute, Concord Hospital, Sydney 2139, NSW, Australia.,ANZAC Research Institute, Concord Hospital, University of Sydney, Sydney 2139, NSW, Australia
| | - Stephen J Simpson
- Charles Perkins Centre, University of Sydney, Sydney 2006, NSW, Australia.,School of Life and Environmental Sciences, University of Sydney, NSW, Australia
| | - Josephine M Forbes
- Glycation and Diabetes Complications Group, Mater Research Institute-The University of Queensland, Translational Research Institute, 37 Kent Street, Woolloongabba, Brisbane 4072, QLD, Australia.,Faculty of Medicine, University of Queensland, Brisbane 4067, QLD, Australia.,Department of Medicine, University of Melbourne, Heidelberg, VIC 3084, Australia
| |
Collapse
|
21
|
Cao JL, Yan JB, Wu JT, Chen ZY. Research progress of sinusoidal endothelial cells in nonalcoholic fatty liver disease. Shijie Huaren Xiaohua Zazhi 2021; 29:1254-1260. [DOI: 10.11569/wcjd.v29.i21.1254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a growing health problem associated with metabolic syndrome. Liver sinusoidal endothelial cells (LSECs) are highly specialized endothelial cells located between the blood and other liver cell types. They are composed of window pores, have high endocytosis, and play an important role in maintaining the overall liver homeostasis. Under pathological conditions, LSECs may be the key event of a variety of chronic liver diseases. In this review, we introduce the unique physiological structure and function of LSECs, summarize the main changes of LSECs in NAFLD (including sinohepatic capillarization, angiogenesis, vasoconstriction, proinflammatory effect, and fibrosis) and their pathogenesis, and discuss the influence of LSECs on the progression of NAFLD, with an aim to demonstrate the potential efficacy of LSECS targeted therapy for NAFLD.
Collapse
Affiliation(s)
- Jie-Lu Cao
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou Command, Hangzhou 310006, Zhejiang Province, China
| | - Jun-Bin Yan
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou Command, Hangzhou 310006, Zhejiang Province, China
| | - Jin-Ting Wu
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou Command, Hangzhou 310006, Zhejiang Province, China
| | - Zhi-Yun Chen
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou Command, Hangzhou 310006, Zhejiang Province, China
| |
Collapse
|
22
|
Wang XK, Peng ZG. Targeting Liver Sinusoidal Endothelial Cells: An Attractive Therapeutic Strategy to Control Inflammation in Nonalcoholic Fatty Liver Disease. Front Pharmacol 2021; 12:655557. [PMID: 33935770 PMCID: PMC8082362 DOI: 10.3389/fphar.2021.655557] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 03/10/2021] [Indexed: 12/12/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD), especially its advanced stage nonalcoholic steatohepatitis (NASH), has become a threatened public health problem worldwide. However, no specific drug has been approved for clinical use to treat patients with NASH, though there are many promising candidates against NAFLD in the drug development pipeline. Recently, accumulated evidence showed that liver sinusoidal endothelial cells (LSECs) play an essential role in the occurrence and development of liver inflammation in patients with NAFLD. LSECs, as highly specialized endothelial cells with unique structure and anatomical location, contribute to the maintenance of liver homeostasis and could be a promising therapeutic target to control liver inflammation of NAFLD. In this review, we outline the pathophysiological roles of LSECs related to inflammation of NAFLD, highlight the pro-inflammatory and anti-inflammatory effects of LSECs, and discuss the potential drug development strategies against NAFLD based on targeting to LSECs.
Collapse
Affiliation(s)
- Xue-Kai Wang
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zong-Gen Peng
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Key Laboratory of Biotechnology of Antibiotics, National Health and Family Planning Commission, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
23
|
Ma H, Liu X, Zhang M, Niu J. Liver sinusoidal endothelial cells are implicated in multiple fibrotic mechanisms. Mol Biol Rep 2021; 48:2803-2815. [PMID: 33730288 DOI: 10.1007/s11033-021-06269-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 03/05/2021] [Indexed: 02/07/2023]
Abstract
Chronic liver diseases are attributed to liver injury. Development of fibrosis from chronic liver diseases is a dynamic process that involves multiple molecular and cellular processes. As the first to be impacted by injury, liver sinusoidal endothelial cells (LSECs) are involved in the pathogenesis of liver diseases caused by a variety of etiologies. Moreover, capillarization of LSECs has been recognized as an important event in the development of chronic liver diseases and fibrosis. Studies have reported that various cytokines (such as vascular endothelial growth factor, transforming growth factor-β), and pathways (such as hedgehog, and Notch), as well as epigenetic and metabolic factors are involved in the development of LSEC-mediated liver fibrosis. This review describes the complexity and plasticity of LSECs in fibrotic liver diseases from several perspectives, including the cross-talk between LSECs and other intra-hepatic cells. Moreover, it summarizes the mechanisms of several kinds of LSECs-targeting anti-fibrosis chemicals, and provides a theoretical basis for future studies.
Collapse
Affiliation(s)
- Heming Ma
- Department of Hepatology, The First Hospital of Jilin University, NO. 71, Xinmin Street, Changchun, 130021, Jilin, China
| | - Xu Liu
- Department of Hepatology, The First Hospital of Jilin University, NO. 71, Xinmin Street, Changchun, 130021, Jilin, China
| | - Mingyuan Zhang
- Department of Hepatology, The First Hospital of Jilin University, NO. 71, Xinmin Street, Changchun, 130021, Jilin, China
| | - Junqi Niu
- Department of Hepatology, The First Hospital of Jilin University, NO. 71, Xinmin Street, Changchun, 130021, Jilin, China.
| |
Collapse
|
24
|
Qi X, Yang M, Stenberg J, Dey R, Fogwe L, Alam MS, Kimchi ET, Staveley-O'Carroll KF, Li G. Gut microbiota mediated molecular events and therapy in liver diseases. World J Gastroenterol 2020; 26:7603-7618. [PMID: 33505139 PMCID: PMC7789060 DOI: 10.3748/wjg.v26.i48.7603] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/24/2020] [Accepted: 12/06/2020] [Indexed: 02/06/2023] Open
Abstract
Gut microbiota is a community of microorganisms that reside in the gastrointestinal tract. An increasing number of studies has demonstrated that the gut-liver axis plays a critical role in liver homeostasis. Dysbiosis of gut microbiota can cause liver diseases, including nonalcoholic fatty liver disease and alcoholic liver disease. Preclinical and clinical investigations have substantiated that the metabolites and other molecules derived from gut microbiota and diet interaction function as mediators to cause liver fibrosis, cirrhosis, and final cancer. This effect has been demonstrated to be associated with dysregulation of intrahepatic immunity and liver metabolism. Targeting these findings have led to the development of novel preventive and therapeutic strategies. Here, we review the cellular and molecular mechanisms underlying gut microbiota-mediated impact on liver disease. We also summarize the advancement of gut microbiota-based therapeutic strategies in the control of liver diseases.
Collapse
Affiliation(s)
- Xiaoqiang Qi
- Department of Surgery, University of Missouri, Columbia, MO 65212, United States
- Ellis Fischel Cancer Center, University of Missouri, Columbia, MO 65212, United States
- VA Hospital, Harry S Truman Memorial VA Hospital, Columbia, MO 65201, United States
| | - Ming Yang
- Department of Surgery, University of Missouri, Columbia, MO 65212, United States
- Ellis Fischel Cancer Center, University of Missouri, Columbia, MO 65212, United States
- VA Hospital, Harry S Truman Memorial VA Hospital, Columbia, MO 65201, United States
| | - Joseph Stenberg
- Department of Surgery, University of Missouri, Columbia, MO 65212, United States
| | - Rahul Dey
- Department of Surgery, University of Missouri, Columbia, MO 65212, United States
| | - Leslie Fogwe
- Department of Surgery, University of Missouri, Columbia, MO 65212, United States
| | | | - Eric T Kimchi
- Department of Surgery, University of Missouri, Columbia, MO 65212, United States
- Ellis Fischel Cancer Center, University of Missouri, Columbia, MO 65212, United States
- VA Hospital, Harry S Truman Memorial VA Hospital, Columbia, MO 65201, United States
| | - Kevin F Staveley-O'Carroll
- Department of Surgery, University of Missouri, Columbia, MO 65212, United States
- Ellis Fischel Cancer Center, University of Missouri, Columbia, MO 65212, United States
- VA Hospital, Harry S Truman Memorial VA Hospital, Columbia, MO 65201, United States
| | - Guangfu Li
- Department of Surgery, University of Missouri, Columbia, MO 65212, United States
- Ellis Fischel Cancer Center, University of Missouri, Columbia, MO 65212, United States
- VA Hospital, Harry S Truman Memorial VA Hospital, Columbia, MO 65201, United States
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, MO 65212, United States
| |
Collapse
|
25
|
Emerging Roles of Liver Sinusoidal Endothelial Cells in Nonalcoholic Steatohepatitis. BIOLOGY 2020; 9:biology9110395. [PMID: 33198153 PMCID: PMC7697091 DOI: 10.3390/biology9110395] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 11/04/2020] [Accepted: 11/06/2020] [Indexed: 12/11/2022]
Abstract
Simple Summary Nonalcoholic fatty liver disease (NAFLD) is a hepatic manifestation of the metabolic syndrome. With the prevalence of obesity and type 2 diabetes, NAFLD is becoming the most common liver disorder worldwide. More than 10% of NAFLD patients progress to an inflammatory and fibrotic form called nonalcoholic steatohepatitis (NASH), which can lead to end-stage liver disease. Liver sinusoidal endothelial cells (LSEC) are highly specialized cells located at the interface between the flowing blood in the liver and the other liver cells. The current review highlights the recent knowledge of the role of LSEC in the development of NASH, and how LSEC change their structure and function during NAFLD progression. Moreover, the review discusses the pathogenic role of nanometer-sized particles called extracellular vesicles that mediate intercellular communication in the NASH liver. The current manuscript has a special emphasis on the role of adhesion molecules expressed on the LSEC surface in the recruitment of circulating leukocytes to the liver, a critical step in liver inflammation in NASH. Furthermore, the review shed some lights on LSEC-targeted potential therapeutic strategies in NASH. Abstract Nonalcoholic steatohepatitis (NASH) has become a growing public health problem worldwide, yet its pathophysiology remains unclear. Liver sinusoidal endothelial cells (LSEC) have unique morphology and function, and play a critical role in liver homeostasis. Emerging literature implicates LSEC in many pathological processes in the liver, including metabolic dysregulation, inflammation, angiogenesis, and carcinogenesis. In this review, we highlight the current knowledge of the role of LSEC in each of the progressive phases of NASH pathophysiology (steatosis, inflammation, fibrosis, and the development of hepatocellular carcinoma). We discuss processes that have important roles in NASH progression including the detrimental transformation of LSEC called “capillarization”, production of inflammatory and profibrogenic mediators by LSEC as well as LSEC-mediated angiogenesis. The current review has a special emphasis on LSEC adhesion molecules, and their key role in the inflammatory response in NASH. Moreover, we discuss the pathogenic role of extracellular vesicles and their bioactive cargos in liver intercellular communication, inflammation, and fibrosis. Finally, we highlight LSEC-adhesion molecules and derived bioactive product as potential therapeutic targets for human NASH.
Collapse
|
26
|
Verhaegh P, Wisse E, de Munck T, Greve JW, Verheij J, Riedl R, Duimel H, Masclee A, Jonkers D, Koek G. Electron microscopic observations in perfusion-fixed human non-alcoholic fatty liver disease biopsies. Pathology 2020; 53:220-228. [PMID: 33143903 DOI: 10.1016/j.pathol.2020.07.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 07/23/2020] [Accepted: 07/29/2020] [Indexed: 12/19/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a widespread liver disease in Western society, but its multifactorial pathogenesis is not yet fully understood. Ultrastructural analysis of liver sinusoidal endothelial cells (LSECs) in animal models and in vitro studies shows defenestration early in the course of NAFLD, promoting steatosis. LSECs and fenestrae are important in the transport of lipids across the sinusoids. However, human ultrastructural data, especially on LSECs and fenestrae, are scarce. This study aimed to explore the ultrastructural changes in perfusion type fixed liver biopsies of NAFLD patients with and without non-alcoholic steatohepatitis (NASH), with a special focus on LSECs and their fenestration. Liver biopsies from patients with NAFLD were fixed using two perfusion techniques, jet and injection fixation, for needle and wedge biopsies, respectively. Ultrastructural changes were studied using transmission electron microscopy. NASH was diagnosed by bright-field microscopy using the SAF score (steatosis, activity, fibrosis). Thirty-seven patients were included, of which 12 (32.4%) had NASH. Significantly less defenestration was found in NASH compared to noNASH samples (p=0.002). Other features, i.e., giant mitochondria and fenestrae size did not differ between groups. Furthermore, we described new structures, i.e., single cell steatonecrosis and inflammatory fat follicles (IFF) that were observed in both groups. Concluding, defenestration was more common in noNASH compared to NASH in human liver samples. Defenestration was not related to the degree of steatosis or fibrosis. We speculate that defenestration can be a protective mechanism in simple steatosis which is lacking in NASH.
Collapse
Affiliation(s)
- Pauline Verhaegh
- Department of Internal Medicine, Division Gastroenterology-Hepatology, Maastricht University Medical Center, Maastricht, the Netherlands; School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, the Netherlands.
| | - Eddie Wisse
- Division of Nanoscopy, Maastricht Multimodal Molecular Imaging Institute, and Department of Internal Medicine/Hepatology, The University of Maastricht, Maastricht, the Netherlands
| | - Toon de Munck
- Department of Internal Medicine, Division Gastroenterology-Hepatology, Maastricht University Medical Center, Maastricht, the Netherlands; School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, the Netherlands
| | - Jan Willem Greve
- Department of Surgery, Zuyderland MC, Heerlen, the Netherlands; Department of Gastro-Intestinal Surgery, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Joanne Verheij
- Department of Pathology, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Robert Riedl
- Department of Pathology, Zuyderland MC, Heerlen, the Netherlands
| | - Hans Duimel
- Division of Nanoscopy, Maastricht Multimodal Molecular Imaging Institute, and Department of Internal Medicine/Hepatology, The University of Maastricht, Maastricht, the Netherlands
| | - Ad Masclee
- Department of Internal Medicine, Division Gastroenterology-Hepatology, Maastricht University Medical Center, Maastricht, the Netherlands; School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, the Netherlands
| | - Daisy Jonkers
- School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, the Netherlands
| | - Ger Koek
- Department of Internal Medicine, Division Gastroenterology-Hepatology, Maastricht University Medical Center, Maastricht, the Netherlands; School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, the Netherlands; Department of Visceral and Transplantation Surgery, Klinikum RWTH, Aachen, Germany
| |
Collapse
|
27
|
Witjes JJ, Smits LP, Pekmez CT, Prodan A, Meijnikman AS, Troelstra MA, Bouter KEC, Herrema H, Levin E, Holleboom AG, Winkelmeijer M, Beuers UH, van Lienden K, Aron-Wisnewky J, Mannisto V, Bergman JJ, Runge JH, Nederveen AJ, Dragsted LO, Konstanti P, Zoetendal EG, de Vos W, Verheij J, Groen AK, Nieuwdorp M. Donor Fecal Microbiota Transplantation Alters Gut Microbiota and Metabolites in Obese Individuals With Steatohepatitis. Hepatol Commun 2020; 4:1578-1590. [PMID: 33163830 PMCID: PMC7603524 DOI: 10.1002/hep4.1601] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/27/2020] [Accepted: 07/31/2020] [Indexed: 12/11/2022] Open
Abstract
The intestinal microbiota has been linked to the development and prevalence of steatohepatitis in humans. Interestingly, steatohepatitis is significantly lower in individuals taking a plant-based, low-animal-protein diet, which is thought to be mediated by gut microbiota. However, data on causality between these observations in humans is scarce. In this regard, fecal microbiota transplantation (FMT) using healthy donors is safe and is capable of changing microbial composition in human disease. We therefore performed a double-blind randomized controlled proof-of-principle study in which individuals with hepatic steatosis on ultrasound were randomized to two study arms: lean vegan donor (allogenic n = 10) or own (autologous n = 11) FMT. Both were performed three times at 8-week intervals. A liver biopsy was performed at baseline and after 24 weeks in every subject to determine histopathology (Nonalcoholic Steatohepatitis Clinical Research Network) classification and changes in hepatic gene expression based on RNA sequencing. Secondary outcome parameters were changes in intestinal microbiota composition and fasting plasma metabolomics. We observed a trend toward improved necro-inflammatory histology, and found significant changes in expression of hepatic genes involved in inflammation and lipid metabolism following allogenic FMT. Intestinal microbial community structure changed following allogenic FMT, which was associated with changes in plasma metabolites as well as markers of . Conclusion: Allogenic FMT using lean vegan donors in individuals with hepatic steatosis shows an effect on intestinal microbiota composition, which is associated with beneficial changes in plasma metabolites and markers of steatohepatitis.
Collapse
Affiliation(s)
- Julia J Witjes
- Department of Internal and Vascular Medicine Amsterdam University Medical Centers Location AMC Amsterdam the Netherlands
| | - Loek P Smits
- Department of Internal and Vascular Medicine Amsterdam University Medical Centers Location AMC Amsterdam the Netherlands
| | - Ceyda T Pekmez
- Department of Nutrition, Exercise and Sports University of Copenhagen Copenhagen Denmark
| | - Andrei Prodan
- Department of Internal and Vascular Medicine Amsterdam University Medical Centers Location AMC Amsterdam the Netherlands
| | - Abraham S Meijnikman
- Department of Internal and Vascular Medicine Amsterdam University Medical Centers Location AMC Amsterdam the Netherlands
| | - Marian A Troelstra
- Department of Radiology & Nuclear Medicine Amsterdam University Medical Centers Location AMC Amsterdam the Netherlands
| | - Kristien E C Bouter
- Department of Internal and Vascular Medicine Amsterdam University Medical Centers Location AMC Amsterdam the Netherlands
| | - Hilde Herrema
- Department of Internal and Vascular Medicine Amsterdam University Medical Centers Location AMC Amsterdam the Netherlands
| | - Evgeni Levin
- Department of Internal and Vascular Medicine Amsterdam University Medical Centers Location AMC Amsterdam the Netherlands
| | - Adriaan G Holleboom
- Department of Internal and Vascular Medicine Amsterdam University Medical Centers Location AMC Amsterdam the Netherlands
| | - Maaike Winkelmeijer
- Department of Internal and Vascular Medicine Amsterdam University Medical Centers Location AMC Amsterdam the Netherlands
| | - Ulrich H Beuers
- Department of Gastroenterology and Hepatology Amsterdam University Medical Centers Location AMC Amsterdam the Netherlands
| | - Krijn van Lienden
- Department of Radiology & Nuclear Medicine Amsterdam University Medical Centers Location AMC Amsterdam the Netherlands
| | - Judith Aron-Wisnewky
- Department of Internal and Vascular Medicine Amsterdam University Medical Centers Location AMC Amsterdam the Netherlands
| | - Ville Mannisto
- Department of Internal and Vascular Medicine Amsterdam University Medical Centers Location AMC Amsterdam the Netherlands
| | - Jacques J Bergman
- Department of Gastroenterology and Hepatology Amsterdam University Medical Centers Location AMC Amsterdam the Netherlands
| | - Jurgen H Runge
- Department of Radiology & Nuclear Medicine Amsterdam University Medical Centers Location AMC Amsterdam the Netherlands
| | - Aart J Nederveen
- Department of Radiology & Nuclear Medicine Amsterdam University Medical Centers Location AMC Amsterdam the Netherlands
| | - Lars O Dragsted
- Department of Nutrition, Exercise and Sports University of Copenhagen Copenhagen Denmark
| | - Prokopis Konstanti
- Laboratory of Microbiology Wageningen University Wageningen the Netherlands
| | - Erwin G Zoetendal
- Laboratory of Microbiology Wageningen University Wageningen the Netherlands
| | - Willem de Vos
- Laboratory of Microbiology Wageningen University Wageningen the Netherlands.,Faculty of Medicine Human Microbiome Research Program University of Helsinki Finland
| | - Joanne Verheij
- Department of Pathology Amsterdam University Medical Centers Location AMC Amsterdam the Netherlands
| | - Albert K Groen
- Department of Internal and Vascular Medicine Amsterdam University Medical Centers Location AMC Amsterdam the Netherlands.,Department of Laboratory Medicine University of Groningen University Medical Center Groningen the Netherlands
| | - Max Nieuwdorp
- Department of Internal and Vascular Medicine Amsterdam University Medical Centers Location AMC Amsterdam the Netherlands
| |
Collapse
|
28
|
Wei Z, Lei J, Shen F, Dai Y, Sun Y, Liu Y, Dai Y, Jian Z, Wang S, Chen Z, Liao K, Hong S. Cavin1 Deficiency Causes Disorder of Hepatic Glycogen Metabolism and Neonatal Death by Impacting Fenestrations in Liver Sinusoidal Endothelial Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2000963. [PMID: 33042738 PMCID: PMC7539207 DOI: 10.1002/advs.202000963] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 07/10/2020] [Indexed: 05/05/2023]
Abstract
It has been reported that Cavin1 deficiency causes lipodystrophy in both humans and mice by affecting lipid metabolism. The ablation of Cavin1 in rodents also causes a significant deviation from Mendelian ratio at weaning in a background-dependent manner, suggesting the presence of undiscovered functions of Cavin1. In the current study, the results show that Cavin1 deficiency causes neonatal death in C57BL/6J mice by dampening the storage and mobilization of glycogen in the liver, which leads to lethal neonatal hypoglycemia. Further investigation by electron microscopy reveals that Cavin1 deficiency impairs the fenestration in liver sinusoidal endothelial cells (LSECs) and impacts the permeability of endothelial barrier in the liver. Mechanistically, Cavin1 deficiency inhibits the RhoA-Rho-associated protein kinase 2-LIM domain kinase-Cofilin signaling pathway and suppresses the dynamics of the cytoskeleton, and eventually causes the reduction of fenestrae in LSECs. In addition, the defect of fenestration in LSECs caused by Cavin1 deficiency can be rescued by treatment with the F-actin depolymerization reagent latrunculin A. In summary, the current study reveals a novel function of Cavin1 on fenestrae formation in LSECs and liver glycogen metabolism, which provide an explanation for the neonatal death of Cavin1 null mice and a potential mechanism for metabolic disorders in patients with Cavin1 mutation.
Collapse
Affiliation(s)
- Zhuang Wei
- State Key Laboratory of Genetic Engineering and School of Life SciencesHuman Phenome InstituteFudan UniversityShanghai200433China
- Key Laboratory of Systems BiologyInnovation Center for Cell Signaling NetworkCAS Center for Excellence in Molecular Cell ScienceInstitute of Biochemistry and Cell BiologyShanghai Institutes for Biological SciencesCAS320 Yueyang RoadShanghai200031China
| | - Jigang Lei
- Key Laboratory of Systems BiologyInnovation Center for Cell Signaling NetworkCAS Center for Excellence in Molecular Cell ScienceInstitute of Biochemistry and Cell BiologyShanghai Institutes for Biological SciencesCAS320 Yueyang RoadShanghai200031China
- The Department of BiologyTongji UniversityShanghai200092China
| | - Feng Shen
- Department of Hepatobiliary SurgeryDongfeng HospitalHubei University of MedicineShiyanHubei442001China
| | - Yuxiang Dai
- Department of CardiologyZhongshan HospitalFudan UniversityShanghai Institute of Cardiovascular DiseaseShanghai200031P. R. China
| | - Yan Sun
- Masonic Medical Research Institute2150 Bleecker StUticaNY13501USA
| | - Yilian Liu
- State Key Laboratory of Genetic Engineering and School of Life SciencesHuman Phenome InstituteFudan UniversityShanghai200433China
| | - Yan Dai
- Key Laboratory of Systems BiologyInnovation Center for Cell Signaling NetworkCAS Center for Excellence in Molecular Cell ScienceInstitute of Biochemistry and Cell BiologyShanghai Institutes for Biological SciencesCAS320 Yueyang RoadShanghai200031China
- State Key Laboratory of Cell BiologyKey Laboratory of Systems BiologyInnovation Center for Cell Signaling NetworkCAS Center for Excellence in Molecular Cell ScienceInstitute of Biochemistry and Cell BiologyShanghai Institutes for Biological SciencesCAS320 Yueyang RoadShanghai200031China
| | - Zhijie Jian
- Department of Radiologythe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'an710049China
| | - Shilong Wang
- The Department of BiologyTongji UniversityShanghai200092China
| | - Zhengjun Chen
- Key Laboratory of Systems BiologyInnovation Center for Cell Signaling NetworkCAS Center for Excellence in Molecular Cell ScienceInstitute of Biochemistry and Cell BiologyShanghai Institutes for Biological SciencesCAS320 Yueyang RoadShanghai200031China
- State Key Laboratory of Cell BiologyKey Laboratory of Systems BiologyInnovation Center for Cell Signaling NetworkCAS Center for Excellence in Molecular Cell ScienceInstitute of Biochemistry and Cell BiologyShanghai Institutes for Biological SciencesCAS320 Yueyang RoadShanghai200031China
| | - Kan Liao
- Key Laboratory of Systems BiologyInnovation Center for Cell Signaling NetworkCAS Center for Excellence in Molecular Cell ScienceInstitute of Biochemistry and Cell BiologyShanghai Institutes for Biological SciencesCAS320 Yueyang RoadShanghai200031China
| | - Shangyu Hong
- State Key Laboratory of Genetic Engineering and School of Life SciencesHuman Phenome InstituteFudan UniversityShanghai200433China
| |
Collapse
|
29
|
Bernier M, Mitchell SJ, Wahl D, Diaz A, Singh A, Seo W, Wang M, Ali A, Kaiser T, Price NL, Aon MA, Kim EY, Petr MA, Cai H, Warren A, Di Germanio C, Di Francesco A, Fishbein K, Guiterrez V, Harney D, Koay YC, Mach J, Enamorado IN, Pulpitel T, Wang Y, Zhang J, Zhang L, Spencer RG, Becker KG, Egan JM, Lakatta EG, O'Sullivan J, Larance M, LeCouteur DG, Cogger VC, Gao B, Fernandez-Hernando C, Cuervo AM, de Cabo R. Disulfiram Treatment Normalizes Body Weight in Obese Mice. Cell Metab 2020; 32:203-214.e4. [PMID: 32413333 PMCID: PMC7957855 DOI: 10.1016/j.cmet.2020.04.019] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/02/2020] [Accepted: 04/24/2020] [Indexed: 02/08/2023]
Abstract
Obesity is a top public health concern, and a molecule that safely treats obesity is urgently needed. Disulfiram (known commercially as Antabuse), an FDA-approved treatment for chronic alcohol addiction, exhibits anti-inflammatory properties and helps protect against certain types of cancer. Here, we show that in mice disulfiram treatment prevented body weight gain and abrogated the adverse impact of an obesogenic diet on insulin responsiveness while mitigating liver steatosis and pancreatic islet hypertrophy. Additionally, disulfiram treatment reversed established diet-induced obesity and metabolic dysfunctions in middle-aged mice. Reductions in feeding efficiency and increases in energy expenditure were associated with body weight regulation in response to long-term disulfiram treatment. Loss of fat tissue and an increase in liver fenestrations were also observed in rats on disulfiram. Given the potent anti-obesogenic effects in rodents, repurposing disulfiram in the clinic could represent a new strategy to treat obesity and its metabolic comorbidities.
Collapse
Affiliation(s)
- Michel Bernier
- Experimental Gerontology Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA.
| | - Sarah J Mitchell
- Experimental Gerontology Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Devin Wahl
- Experimental Gerontology Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA; Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia; Ageing and Alzheimer's Institute, ANZAC Research Institute, Concord Clinical School/Sydney Medical School, Concord, NSW 2139, Australia
| | - Antonio Diaz
- Department of Developmental and Molecular Biology, Institute for Aging Studies, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Abhishek Singh
- Vascular Biology and Therapeutics Program, Integrative Cell Signaling and Neurobiology of Metabolism Program, Department of Comparative Medicine, Department of Pathology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Wonhyo Seo
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mingy Wang
- Laboratory of Cardiovascular Science, Intramural Research Program, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Ahmed Ali
- Experimental Gerontology Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Tamzin Kaiser
- Experimental Gerontology Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Nathan L Price
- Vascular Biology and Therapeutics Program, Integrative Cell Signaling and Neurobiology of Metabolism Program, Department of Comparative Medicine, Department of Pathology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Miguel A Aon
- Experimental Gerontology Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA; Laboratory of Cardiovascular Science, Intramural Research Program, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Eun-Young Kim
- Experimental Gerontology Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA; Functional Genomics Research Center, KRIBB, Daejeon 305-806, Republic of Korea
| | - Michael A Petr
- Experimental Gerontology Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Huan Cai
- Laboratory of Clinical Investigation, Intramural Research Program, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Alessa Warren
- Ageing and Alzheimer's Institute, ANZAC Research Institute, Concord Clinical School/Sydney Medical School, Concord, NSW 2139, Australia
| | - Clara Di Germanio
- Experimental Gerontology Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Andrea Di Francesco
- Experimental Gerontology Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Ken Fishbein
- Laboratory of Clinical Investigation, Intramural Research Program, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Vince Guiterrez
- Experimental Gerontology Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Dylan Harney
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia
| | - Yen Chin Koay
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia; Heart Research Institute, The University of Sydney, Sydney, NSW 2042, Australia
| | - John Mach
- Kolling Institute of Medical Research and Sydney Medical School, University of Sydney, Sydney, NSW 2065, Australia
| | - Ignacio Navas Enamorado
- Experimental Gerontology Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Tamara Pulpitel
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia; Ageing and Alzheimer's Institute, ANZAC Research Institute, Concord Clinical School/Sydney Medical School, Concord, NSW 2139, Australia
| | - Yushi Wang
- Laboratory of Cardiovascular Science, Intramural Research Program, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Jing Zhang
- Laboratory of Cardiovascular Science, Intramural Research Program, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Li Zhang
- Laboratory of Cardiovascular Science, Intramural Research Program, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Richard G Spencer
- Laboratory of Clinical Investigation, Intramural Research Program, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Kevin G Becker
- Laboratory of Genetics, Intramural Research Program, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Josephine M Egan
- Laboratory of Clinical Investigation, Intramural Research Program, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Edward G Lakatta
- Laboratory of Cardiovascular Science, Intramural Research Program, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - John O'Sullivan
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia; Heart Research Institute, The University of Sydney, Sydney, NSW 2042, Australia
| | - Mark Larance
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia
| | - David G LeCouteur
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia; Ageing and Alzheimer's Institute, ANZAC Research Institute, Concord Clinical School/Sydney Medical School, Concord, NSW 2139, Australia
| | - Victoria C Cogger
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia; Ageing and Alzheimer's Institute, ANZAC Research Institute, Concord Clinical School/Sydney Medical School, Concord, NSW 2139, Australia
| | - Bin Gao
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA
| | - Carlos Fernandez-Hernando
- Vascular Biology and Therapeutics Program, Integrative Cell Signaling and Neurobiology of Metabolism Program, Department of Comparative Medicine, Department of Pathology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Ana Maria Cuervo
- Department of Developmental and Molecular Biology, Institute for Aging Studies, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Rafael de Cabo
- Experimental Gerontology Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA.
| |
Collapse
|
30
|
Guarino M, Kumar P, Felser A, Terracciano LM, Guixé-Muntet S, Humar B, Foti M, Nuoffer JM, St-Pierre MV, Dufour JF. Exercise Attenuates the Transition from Fatty Liver to Steatohepatitis and Reduces Tumor Formation in Mice. Cancers (Basel) 2020; 12:E1407. [PMID: 32486073 PMCID: PMC7352494 DOI: 10.3390/cancers12061407] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/18/2020] [Accepted: 05/26/2020] [Indexed: 02/06/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) leads to steatohepatitis (NASH), fibrosis, and hepatocellular carcinoma. For sedentary patients, lifestyle interventions combining exercise and dietary changes are a cornerstone of treatment. However, the benefit of exercise alone when dietary changes have failed is uncertain. We query whether exercise alone arrests the progression of NASH and tumorigenesis in a choline-deficient, high-fat diet (CD-HFD) murine model. Male C57Bl/6N mice received a control diet or CD-HFD for 12 weeks. CD-HFD mice were randomized further for 8 weeks of sedentariness (SED) or treadmill exercise (EXE). CD-HFD for 12 weeks produced NAFL. After 20 weeks, SED mice developed NASH and hepatic adenomas. Exercise attenuated the progression to NASH. EXE livers showed lower triglycerides and tumor necrosis factor-α expression, less fibrosis, less ballooning, and a lower NAFLD activity score than did SED livers. Plasma transaminases and triglycerides were lower. Exercise activated AMP-activated protein kinase (AMPK) with inhibition of mTORC1 and decreased S6 phosphorylation, reducing hepatocellular adenoma. Exercise activated autophagy with increased LC3-II/LC3-I and mitochondrial recruitment of phosphorylated PTEN-induced kinase. Therefore, exercise attenuates the transition from NAFL to NASH, improves biochemical and histological parameters of NAFLD, and impedes the progression of fibrosis and tumorigenesis associated with enhanced activation of AMPK signaling and favors liver autophagy. Our work supports the benefits of exercise independently of dietary changes.
Collapse
Affiliation(s)
- Maria Guarino
- Hepatology, Department for BioMedical Research, University of Bern, 3008 Bern, Switzerland; (M.G.); (P.K.); (S.G.-M.); (M.V.S.-P.)
- Gastroenterology, Department of Clinical Medicine and Surgery, University of Naples “Federico II”, 80131 Naples, Italy
| | - Pavitra Kumar
- Hepatology, Department for BioMedical Research, University of Bern, 3008 Bern, Switzerland; (M.G.); (P.K.); (S.G.-M.); (M.V.S.-P.)
| | - Andrea Felser
- University Institute of Clinical Chemistry, Bern University Hospital, 3010 Bern, Switzerland; (A.F.); (J.-M.N.)
| | | | - Sergi Guixé-Muntet
- Hepatology, Department for BioMedical Research, University of Bern, 3008 Bern, Switzerland; (M.G.); (P.K.); (S.G.-M.); (M.V.S.-P.)
| | - Bostjan Humar
- Laboratory of the Swiss Hepato-Pancreato-Biliary (HPB) and Transplantation Center, Department of Surgery, University Hospital Zürich, 8091 Zürich, Switzerland;
| | - Michelangelo Foti
- Department of Cell Physiology and Metabolism, University of Geneva, 1206 Geneva, Switzerland;
| | - Jean-Marc Nuoffer
- University Institute of Clinical Chemistry, Bern University Hospital, 3010 Bern, Switzerland; (A.F.); (J.-M.N.)
| | - Marie V. St-Pierre
- Hepatology, Department for BioMedical Research, University of Bern, 3008 Bern, Switzerland; (M.G.); (P.K.); (S.G.-M.); (M.V.S.-P.)
| | - Jean-François Dufour
- Hepatology, Department for BioMedical Research, University of Bern, 3008 Bern, Switzerland; (M.G.); (P.K.); (S.G.-M.); (M.V.S.-P.)
- University Clinic of Visceral Surgery and Medicine, Inselspital Bern, 3010 Bern, Switzerland
| |
Collapse
|
31
|
Wali JA, Raubenheimer D, Senior AM, Le Couteur DG, Simpson SJ. Cardio-metabolic consequences of dietary carbohydrates: reconciling contradictions using nutritional geometry. Cardiovasc Res 2020; 117:386-401. [PMID: 32386289 DOI: 10.1093/cvr/cvaa136] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/27/2020] [Accepted: 05/02/2020] [Indexed: 02/07/2023] Open
Abstract
Carbohydrates are the major source of dietary energy, but their role in health and disease remains controversial. Recent epidemiological evidence suggests that the increased consumption of carbohydrates is associated with obesity and increased risk of mortality and dietary trials show that carbohydrate restriction leads to weight loss and improved glycaemic status in obese and diabetic subjects. In contrast, the diets of populations with long and healthy lifespans (e.g. traditional Okinawans from Japan) are high in carbohydrate and low in protein, and several clinical and preclinical studies have linked low-carbohydrate-high-protein diets with increased mortality risk. In this paper we attempt to reconcile these contradictory findings by moving beyond traditional single-nutrient analyses to consider the interactions between nutrients on health outcomes. We do so using the Geometric Framework (GF), a nutritional modelling platform that explicitly considers the main and interactive effects of multiple nutrients on phenotypic characteristics. Analysis of human data by GF shows that weight loss and improved cardio-metabolic outcomes under carbohydrate restriction derive at least in part from reduced caloric intake due to the concomitantly increased proportion of protein in the diet. This is because, as in many animals, a specific appetite for protein is a major driver of food intake in humans. Conversely, dilution of protein in the diet leverages excess food intake through compensatory feeding for protein ('protein leverage'). When protein is diluted in the diet by readily digestible carbohydrates and fats, as is the case in modern ultra-processed foods, protein leverage results in excess calorie intake, leading to rising levels of obesity and metabolic disease. However, when protein is diluted in the diet by increased quantities of less readily digestible forms of carbohydrate and fibre, energy balance is maintained and health benefits accrue, especially during middle age and early late-life. We argue that other controversies in carbohydrate research can be resolved using the GF methodology in dietary studies.
Collapse
Affiliation(s)
- Jibran A Wali
- Charles Perkins Centre, The University of Sydney, Camperdown, Sydney, New South Wales 2006, Australia.,Faculty of Science, School of Life and Environmental Sciences, The University of Sydney, Camperdown, Sydney, New South Wales 2006, Australia
| | - David Raubenheimer
- Charles Perkins Centre, The University of Sydney, Camperdown, Sydney, New South Wales 2006, Australia.,Faculty of Science, School of Life and Environmental Sciences, The University of Sydney, Camperdown, Sydney, New South Wales 2006, Australia
| | - Alistair M Senior
- Charles Perkins Centre, The University of Sydney, Camperdown, Sydney, New South Wales 2006, Australia.,Faculty of Science, School of Life and Environmental Sciences, The University of Sydney, Camperdown, Sydney, New South Wales 2006, Australia
| | - David G Le Couteur
- Charles Perkins Centre, The University of Sydney, Camperdown, Sydney, New South Wales 2006, Australia.,ANZAC Research Institute, The University of Sydney, Concord, Sydney, New South Wales 2139, Australia
| | - Stephen J Simpson
- Charles Perkins Centre, The University of Sydney, Camperdown, Sydney, New South Wales 2006, Australia.,Faculty of Science, School of Life and Environmental Sciences, The University of Sydney, Camperdown, Sydney, New South Wales 2006, Australia
| |
Collapse
|
32
|
Schwabe RF, Tabas I, Pajvani UB. Mechanisms of Fibrosis Development in Nonalcoholic Steatohepatitis. Gastroenterology 2020; 158:1913-1928. [PMID: 32044315 PMCID: PMC7682538 DOI: 10.1053/j.gastro.2019.11.311] [Citation(s) in RCA: 409] [Impact Index Per Article: 81.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 11/18/2019] [Accepted: 11/20/2019] [Indexed: 02/06/2023]
Abstract
Nonalcoholic fatty liver disease is the most prevalent liver disease worldwide, affecting 20%-25% of the adult population. In 25% of patients, nonalcoholic fatty liver disease progresses to nonalcoholic steatohepatitis (NASH), which increases the risk for the development of cirrhosis, liver failure, and hepatocellular carcinoma. In patients with NASH, liver fibrosis is the main determinant of mortality. Here, we review how interactions between different liver cells culminate in fibrosis development in NASH, focusing on triggers and consequences of hepatocyte-macrophage-hepatic stellate cell (HSC) crosstalk. We discuss pathways through which stressed and dead hepatocytes instigate the profibrogenic crosstalk with HSC and macrophages, including the reactivation of developmental pathways such as TAZ, Notch, and hedgehog; how clearance of dead cells in NASH via efferocytosis may affect inflammation and fibrogenesis; and insights into HSC and macrophage heterogeneity revealed by single-cell RNA sequencing. Finally, we summarize options to therapeutically interrupt this profibrogenic hepatocyte-macrophage-HSC network in NASH.
Collapse
Affiliation(s)
- Robert F Schwabe
- Department of Medicine, Columbia University, New York, New York; Institute of Human Nutrition, Columbia University, New York, New York.
| | - Ira Tabas
- Department of Medicine, Columbia University, New York, New York; Institute of Human Nutrition, Columbia University, New York, New York; Department of Physiology and Cellular Biophysics, Columbia University, New York, New York
| | - Utpal B Pajvani
- Department of Medicine, Columbia University, New York, New York; Institute of Human Nutrition, Columbia University, New York, New York
| |
Collapse
|
33
|
Cornide-Petronio ME, Álvarez-Mercado AI, Jiménez-Castro MB, Peralta C. Current Knowledge about the Effect of Nutritional Status, Supplemented Nutrition Diet, and Gut Microbiota on Hepatic Ischemia-Reperfusion and Regeneration in Liver Surgery. Nutrients 2020; 12:284. [PMID: 31973190 PMCID: PMC7071361 DOI: 10.3390/nu12020284] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 01/13/2020] [Accepted: 01/15/2020] [Indexed: 02/06/2023] Open
Abstract
Ischemia-reperfusion (I/R) injury is an unresolved problem in liver resection and transplantation. The preexisting nutritional status related to the gut microbial profile might contribute to primary non-function after surgery. Clinical studies evaluating artificial nutrition in liver resection are limited. The optimal nutritional regimen to support regeneration has not yet been exactly defined. However, overnutrition and specific diet factors are crucial for the nonalcoholic or nonalcoholic steatohepatitis liver diseases. Gut-derived microbial products and the activation of innate immunity system and inflammatory response, leading to exacerbation of I/R injury or impaired regeneration after resection. This review summarizes the role of starvation, supplemented nutrition diet, nutritional status, and alterations in microbiota on hepatic I/R and regeneration. We discuss the most updated effects of nutritional interventions, their ability to alter microbiota, some of the controversies, and the suitability of these interventions as potential therapeutic strategies in hepatic resection and transplantation, overall highlighting the relevance of considering the extended criteria liver grafts in the translational liver surgery.
Collapse
Affiliation(s)
| | - Ana Isabel Álvarez-Mercado
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071 Granada, Spain;
- Institute of Nutrition and Food Technology “José Mataix,” Center of Biomedical Research, University of Granada, Avda. del Conocimiento s/n, 18016 Armilla, Granada, Spain
- Instituto de Investigación Biosanitaria ibs, GRANADA, Complejo Hospitalario Universitario de Granada, 18014 Granada, Spain
| | - Mónica B. Jiménez-Castro
- Institut d’Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), 08036 Barcelona, Spain; (M.E.C.-P.); (M.B.J.-C.)
| | - Carmen Peralta
- Institut d’Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), 08036 Barcelona, Spain; (M.E.C.-P.); (M.B.J.-C.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 08036 Barcelona, Spain
| |
Collapse
|
34
|
Hammoutene A, Rautou PE. Role of liver sinusoidal endothelial cells in non-alcoholic fatty liver disease. J Hepatol 2019; 70:1278-1291. [PMID: 30797053 DOI: 10.1016/j.jhep.2019.02.012] [Citation(s) in RCA: 222] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 02/10/2019] [Accepted: 02/13/2019] [Indexed: 12/12/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) and its complications are an expanding health problem associated with the metabolic syndrome. Liver sinusoidal endothelial cells (LSECs) are highly specialized endothelial cells localized at the interface between the blood derived from the gut and the adipose tissue on the one side, and other liver cells on the other side. In physiological conditions, LSECs are gatekeepers of liver homeostasis. LSECs display anti-inflammatory and anti-fibrogenic properties by preventing Kupffer cell and hepatic stellate cell activation and regulating intrahepatic vascular resistance and portal pressure. This review focusses on changes occurring in LSECs in NAFLD and on their consequences on NAFLD progression and complications. Capillarization, namely the loss of LSEC fenestrae, and LSEC dysfunction, namely the loss of the ability of LSECs to generate vasodilator agents in response to increased shear stress both occur early in NAFLD. These LSEC changes favour steatosis development and set the stage for NAFLD progression. At the stage of non-alcoholic steatohepatitis, altered LSECs release inflammatory mediators and contribute to the recruitment of inflammatory cells, thus promoting liver injury and inflammation. Altered LSECs also fail to maintain hepatic stellate cell quiescence and release fibrogenic mediators, including Hedgehog signalling molecules, promoting liver fibrosis. Liver angiogenesis is increased in NAFLD and contributes to liver inflammation and fibrosis, but also to hepatocellular carcinoma development. Thus, improving LSEC health appears to be a promising approach to prevent NAFLD progression and complications.
Collapse
Affiliation(s)
- Adel Hammoutene
- Inserm, UMR-970, Paris Cardiovascular Research Center, PARCC, Paris, France; University Paris Descartes, Paris, France
| | - Pierre-Emmanuel Rautou
- Inserm, UMR-970, Paris Cardiovascular Research Center, PARCC, Paris, France; INSERM, UMR1149, Centre de Recherche sur l'Inflammation, Paris, France; University Paris Diderot, Paris, France; Service d'Hépatologie, Centre de Référence des Maladies Vasculaires du Foie, DHU Unity, Pôle des Maladies de l'Appareil Digestif, Hôpital Beaujon, AP-HP, Clichy, France.
| |
Collapse
|
35
|
Csiszar A, Tarantini S, Yabluchanskiy A, Balasubramanian P, Kiss T, Farkas E, Baur JA, Ungvari Z. Role of endothelial NAD + deficiency in age-related vascular dysfunction. Am J Physiol Heart Circ Physiol 2019; 316:H1253-H1266. [PMID: 30875255 PMCID: PMC6620681 DOI: 10.1152/ajpheart.00039.2019] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 02/26/2019] [Accepted: 03/12/2019] [Indexed: 12/23/2022]
Abstract
Age-related alterations in endothelium and the resulting vascular dysfunction critically contribute to a range of pathological conditions associated with old age. To develop therapies rationally that improve vascular health and thereby increase health span and life span in older adults, it will be essential to understand the cellular and molecular mechanisms contributing to vascular aging. Preclinical studies in model organisms demonstrate that NAD+ availability decreases with age in multiple tissues and that supplemental NAD+ precursors can ameliorate many age-related cellular impairments. Here, we provide a comprehensive overview of NAD+-dependent pathways [including the NAD+-using silent information regulator-2-like enzymes and poly(ADP-ribose) polymerase enzymes] and the potential consequences of endothelial NAD+ deficiency in vascular aging. The multifaceted vasoprotective effects of treatments that reverse the age-related decline in cellular NAD+ levels, as well as their potential limitations, are discussed. The preventive and therapeutic potential of NAD+ intermediates as effective, clinically relevant interventions in older adults at risk for ischemic heart disease, vascular cognitive impairment, and other common geriatric conditions and diseases that involve vascular pathologies (e.g., sarcopenia, frailty) are critically discussed. We propose that NAD+ precursors [e.g., nicotinamide (Nam) riboside, Nam mononucleotide, niacin] should be considered as critical components of combination therapies to slow the vascular aging process and increase cardiovascular health span.
Collapse
Affiliation(s)
- Anna Csiszar
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center , Oklahoma City, Oklahoma
- Department of Medical Physics and Informatics, University of Szeged , Szeged , Hungary
| | - Stefano Tarantini
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center , Oklahoma City, Oklahoma
| | - Andriy Yabluchanskiy
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center , Oklahoma City, Oklahoma
| | - Priya Balasubramanian
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center , Oklahoma City, Oklahoma
| | - Tamas Kiss
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center , Oklahoma City, Oklahoma
- Department of Medical Physics and Informatics, University of Szeged , Szeged , Hungary
- Theoretical Medicine Doctoral School, University of Szeged , Szeged , Hungary
| | - Eszter Farkas
- Department of Medical Physics and Informatics, University of Szeged , Szeged , Hungary
| | - Joseph A Baur
- Department of Physiology and Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania , Philadelphia, Pennsylvania
| | - Zoltan Ungvari
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center , Oklahoma City, Oklahoma
- Department of Medical Physics and Informatics, University of Szeged , Szeged , Hungary
- Theoretical Medicine Doctoral School, University of Szeged , Szeged , Hungary
- Department of Pulmonology, Semmelweis University , Budapest , Hungary
- Department of Health Promotion Sciences, Hudson College of Public Health, University of Oklahoma Health Sciences Center , Oklahoma City, Oklahoma
| |
Collapse
|
36
|
Novel targets for delaying aging: The importance of the liver and advances in drug delivery. Adv Drug Deliv Rev 2018; 135:39-49. [PMID: 30248361 DOI: 10.1016/j.addr.2018.09.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 09/14/2018] [Accepted: 09/18/2018] [Indexed: 02/07/2023]
Abstract
Age-related changes in liver function have a significant impact on systemic aging and susceptibility to age-related diseases. Nutrient sensing pathways have emerged as important targets for the development of drugs that delay aging and the onset age-related diseases. This supports a central role for the hepatic regulation of metabolism in the association between nutrition and aging. Recently, a role for liver sinusoidal endothelial cells (LSECs) in the relationship between aging and metabolism has also been proposed. Age-related loss of fenestrations within LSECs impairs the transfer of substrates (such as lipoproteins and insulin) between sinusoidal blood and hepatocytes, resulting in post-prandial hyperlipidemia and insulin resistance. Targeted drug delivery methods such as nanoparticles and quantum dots will facilitate the direct delivery of drugs that regulate fenestrations in LSECs, providing an innovative approach to ameliorating age-related diseases and increasing healthspan.
Collapse
|
37
|
Simpson SJ, Raubenheimer D, Cogger VC, Macia L, Solon-Biet SM, Le Couteur DG, George J. The nutritional geometry of liver disease including non-alcoholic fatty liver disease. J Hepatol 2018; 68:316-325. [PMID: 29122389 DOI: 10.1016/j.jhep.2017.10.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 10/06/2017] [Accepted: 10/10/2017] [Indexed: 12/23/2022]
Abstract
Nutrition has a profound effect on chronic liver disease, especially non-alcoholic fatty liver disease (NAFLD). Most observational studies and clinical trials have focussed on the effects of total energy intake, or the intake of individual macronutrients and certain micronutrients, such as vitamin D, on liver disease. Although these studies have shown the importance of nutrition on hepatic outcomes, there is not yet any unifying framework for understanding the relationship between diet and liver disease. The Geometric Framework for Nutrition (GFN) is an innovative model for designing nutritional experiments or interpreting nutritional data that can determine the effects of nutrients and their interactions on animal behaviour and phenotypes. Recently the GFN has provided insights into the relationship between dietary energy and macronutrients on obesity and ageing in mammals including humans. Mouse studies using the GFN have disentangled the effects of macronutrients on fatty liver and the gut microbiome. The GFN is likely to play a significant role in disentangling the effects of nutrients on liver disease, especially NAFLD, in humans.
Collapse
Affiliation(s)
- Stephen J Simpson
- The University of Sydney, Charles Perkins Centre, Sydney, NSW, Australia.
| | - David Raubenheimer
- The University of Sydney, Charles Perkins Centre, Sydney, NSW, Australia; The University of Sydney, School of Life and Environmental Sciences, Sydney, NSW, Australia
| | - Victoria C Cogger
- The University of Sydney, Charles Perkins Centre, Sydney, NSW, Australia; Centre for Education and Research on Ageing and the ANZAC Research Institute, Concord Hospital and The University of Sydney, Sydney, NSW, Australia
| | - Laurence Macia
- The University of Sydney, Charles Perkins Centre, Sydney, NSW, Australia; The University of Sydney, School of Medical Sciences, Sydney Medical School, Sydney, NSW, Australia
| | - Samantha M Solon-Biet
- The University of Sydney, Charles Perkins Centre, Sydney, NSW, Australia; The University of Sydney, School of Life and Environmental Sciences, Sydney, NSW, Australia
| | - David G Le Couteur
- The University of Sydney, Charles Perkins Centre, Sydney, NSW, Australia; Centre for Education and Research on Ageing and the ANZAC Research Institute, Concord Hospital and The University of Sydney, Sydney, NSW, Australia
| | - Jacob George
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and The University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
38
|
Abstract
Liver sinusoidal endothelial cells (LSECs) line the low shear, sinusoidal capillary channels of the liver and are the most abundant non-parenchymal hepatic cell population. LSECs do not simply form a barrier within the hepatic sinusoids but have vital physiological and immunological functions, including filtration, endocytosis, antigen presentation and leukocyte recruitment. Reflecting these multifunctional properties, LSECs display unique structural and phenotypic features that differentiate them from the capillary endothelium present within other organs. It is now clear that LSECs have a critical role in maintaining immune homeostasis within the liver and in mediating the immune response during acute and chronic liver injury. In this Review, we outline how LSECs influence the immune microenvironment within the liver and discuss their contribution to immune-mediated liver diseases and the complications of fibrosis and carcinogenesis.
Collapse
|
39
|
Marinesco S, Ungvari Z, Galvan V. Age-related impairment of metabovascular coupling during cortical spreading depolarizations. Am J Physiol Heart Circ Physiol 2017; 313:H1209-H1212. [PMID: 28842440 PMCID: PMC5814652 DOI: 10.1152/ajpheart.00514.2017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 08/18/2017] [Indexed: 11/22/2022]
Affiliation(s)
- Stephane Marinesco
- Lyon Neuroscience Research Center, Team TIGER and AniRA-Neurochem Technological Platform, INSERM U1028, CNRS UMR5292, University Claude Bernard Lyon I, Lyon, France
| | - Zoltan Ungvari
- Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center , Oklahoma City, Oklahoma
| | - Veronica Galvan
- Barshop Institute for Longevity and Aging Studies and Department of Cellular and Integrative Physiology, University of Texas Health San Antonio , San Antonio, Texas
- South Texas Veterans Health Care System and Geriatric Research Education and Clinical Center, United States Department of Veterans Affairs , San Antonio, Texas
| |
Collapse
|
40
|
Alfaras I, Mitchell SJ, Mora H, Lugo DR, Warren A, Navas-Enamorado I, Hoffmann V, Hine C, Mitchell JR, Le Couteur DG, Cogger VC, Bernier M, de Cabo R. Health benefits of late-onset metformin treatment every other week in mice. NPJ Aging Mech Dis 2017; 3:16. [PMID: 29167747 PMCID: PMC5696465 DOI: 10.1038/s41514-017-0018-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 10/03/2017] [Accepted: 10/31/2017] [Indexed: 12/24/2022] Open
Abstract
Chronic 1% metformin treatment is nephrotoxic in mice, but this dose may nonetheless confer health benefits if given intermittently rather than continuously. Here, we examined the effects of 1% metformin given every-other week (EOW) or two consecutive weeks per month (2WM) on survival of 2-year-old male mice fed standard chow. EOW and 2WM mice had comparable life span compared with control mice. A significant reduction in body weight within the first few weeks of metformin treatment was observed without impact on food consumption and energy expenditure. Moreover, there were differences in the action of metformin on metabolic markers between the EOW and 2WM groups, with EOW metformin conferring greater benefits. Age-associated kidney lesions became more pronounced with metformin, although without pathological consequences. In the liver, metformin treatment led to an overall reduction in steatosis and was accompanied by distinct transcriptomic and metabolomic signatures in response to EOW versus 2WM regimens. Thus, the absence of adverse outcomes associated with chronic, intermittent use of 1% metformin in old mice has clinical translatability into the biology of aging in humans. Chronic daily exposure to a high dose of metformin (e.g., 1% w/w) shortens lifespan of non-diabetic mice, although in the short term this treatment confers a similar pattern of gene expression and phenotypes consistent with the benefits of caloric restriction. A team of researchers led by Rafael de Cabo at the National Institute on Aging, NIH tested whether a strategy of intermittent 1% metformin treatment in old mice alters the course of aging and avoids toxicity. They found that when metformin was given every-other-week, it significantly improved insulin sensitivity and reduced age-associated liver lesions without having a negative impact on maximum lifespan in male mice. The absence of adverse outcomes associated with the use of 1% metformin in old mice has clinical translatability into the biology of aging in humans.
Collapse
Affiliation(s)
- Irene Alfaras
- Experimental Gerontology Section, Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Baltimore, MD 21224 USA
| | - Sarah J Mitchell
- Experimental Gerontology Section, Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Baltimore, MD 21224 USA
| | - Hector Mora
- Experimental Gerontology Section, Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Baltimore, MD 21224 USA
| | - Darisbeth Rosario Lugo
- Experimental Gerontology Section, Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Baltimore, MD 21224 USA
| | - Alessandra Warren
- Centre for Education and Research on Ageing, ANZAC Research Institute, Sydney, NSW Australia
| | - Ignacio Navas-Enamorado
- Experimental Gerontology Section, Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Baltimore, MD 21224 USA
| | - Vickie Hoffmann
- Diagnostic & Research Services Branch, Division of Veterinary Resources, Office of Research Services, National Institutes of Health, Bethesda, MD 20892-2324 USA
| | - Christopher Hine
- Department of Genetics and Complex Diseases, Harvard University, Boston, MA 02115 USA
| | - James R Mitchell
- Department of Genetics and Complex Diseases, Harvard University, Boston, MA 02115 USA
| | - David G Le Couteur
- Centre for Education and Research on Ageing, ANZAC Research Institute, Sydney, NSW Australia.,Sydney Medical School, University of Sydney, Sydney, NSW Australia
| | - Victoria C Cogger
- Centre for Education and Research on Ageing, ANZAC Research Institute, Sydney, NSW Australia.,Sydney Medical School, University of Sydney, Sydney, NSW Australia
| | - Michel Bernier
- Experimental Gerontology Section, Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Baltimore, MD 21224 USA
| | - Rafael de Cabo
- Experimental Gerontology Section, Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Baltimore, MD 21224 USA
| |
Collapse
|
41
|
Wahl D, Cogger VC, Solon-Biet SM, Waern RVR, Gokarn R, Pulpitel T, Cabo RD, Mattson MP, Raubenheimer D, Simpson SJ, Le Couteur DG. Nutritional strategies to optimise cognitive function in the aging brain. Ageing Res Rev 2016; 31:80-92. [PMID: 27355990 PMCID: PMC5035589 DOI: 10.1016/j.arr.2016.06.006] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 06/17/2016] [Accepted: 06/23/2016] [Indexed: 12/15/2022]
Abstract
Old age is the greatest risk factor for most neurodegenerative diseases. During recent decades there have been major advances in understanding the biology of aging, and the development of nutritional interventions that delay aging including calorie restriction (CR) and intermittent fasting (IF), and chemicals that influence pathways linking nutrition and aging processes. CR influences brain aging in many animal models and recent findings suggest that dietary interventions can influence brain health and dementia in older humans. The role of individual macronutrients in brain aging also has been studied, with conflicting results about the effects of dietary protein and carbohydrates. A new approach known as the Geometric Framework (GF) has been used to unravel the complex interactions between macronutrients (protein, fat, and carbohydrate) and total energy on outcomes such as aging. These studies have shown that low-protein, high-carbohydrate (LPHC) diets are optimal for lifespan in ad libitum fed animals, while total calories have minimal effect once macronutrients are taken into account. One of the primary purposes of this review is to explore the notion that macronutrients may have a more translational potential than CR and IF in humans, and therefore there is a pressing need to use GF to study the impact of diet on brain aging. Furthermore, given the growing recognition of the role of aging biology in dementia, such studies might provide a new approach for dietary interventions for optimizing brain health and preventing dementia in older people.
Collapse
Affiliation(s)
- Devin Wahl
- Charles Perkins Centre, University of Sydney, Sydney 2006 Australia; Aging and Alzheimers Institute, ANZAC Research Institute, Concord Clinical School/Sydney Medical School, Concord, 2139 Australia
| | - Victoria C Cogger
- Charles Perkins Centre, University of Sydney, Sydney 2006 Australia; Aging and Alzheimers Institute, ANZAC Research Institute, Concord Clinical School/Sydney Medical School, Concord, 2139 Australia
| | - Samantha M Solon-Biet
- Charles Perkins Centre, University of Sydney, Sydney 2006 Australia; Aging and Alzheimers Institute, ANZAC Research Institute, Concord Clinical School/Sydney Medical School, Concord, 2139 Australia
| | - Rosilene V R Waern
- Charles Perkins Centre, University of Sydney, Sydney 2006 Australia; School of Life and Environmental Sciences, University of Sydney, Sydney 2006, Australia
| | - Rahul Gokarn
- Charles Perkins Centre, University of Sydney, Sydney 2006 Australia; Aging and Alzheimers Institute, ANZAC Research Institute, Concord Clinical School/Sydney Medical School, Concord, 2139 Australia
| | - Tamara Pulpitel
- Charles Perkins Centre, University of Sydney, Sydney 2006 Australia
| | - Rafael de Cabo
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Mark P Mattson
- Laboratory of Neurosciences, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - David Raubenheimer
- Charles Perkins Centre, University of Sydney, Sydney 2006 Australia; Faculty of Veterinary Science, University of Sydney, Sydney 2006, Australia; School of Life and Environmental Sciences, University of Sydney, Sydney 2006, Australia
| | - Stephen J Simpson
- Charles Perkins Centre, University of Sydney, Sydney 2006 Australia; School of Life and Environmental Sciences, University of Sydney, Sydney 2006, Australia
| | - David G Le Couteur
- Charles Perkins Centre, University of Sydney, Sydney 2006 Australia; Aging and Alzheimers Institute, ANZAC Research Institute, Concord Clinical School/Sydney Medical School, Concord, 2139 Australia.
| |
Collapse
|
42
|
Li GY, Wang YJ, Zhao TJ, Peng Y. Signaling pathways related to role of hepatic sinusoidal endothelial cells in liver fibrosis. Shijie Huaren Xiaohua Zazhi 2016; 24:3933-3939. [DOI: 10.11569/wcjd.v24.i28.3933] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Liver fibrosis is the pathological preprocess of liver cirrhosis or liver cancer progressing from chronic liver disease. Hepatic sinusoidal endothelial cells (HSECs) are involved in the formation and development of liver fibrosis through multiple signaling pathways. In this paper, we summarize and elaborate these signaling pathways including Rho-GTPase, CXCR7-Id1/FGFR1-CXCR4, VEGFR-2/p38 mitogen-activated protein kinases (MAPK), MAPK, and TLRs. Based on these signaling pathways, we put forward new ideas for the prevention and treatment of liver fibrosis.
Collapse
|