1
|
Petit LM, Saber Cherif L, Devilliers MA, Hatoum S, Ancel J, Delepine G, Durlach A, Dubernard X, Mérol JC, Ruaux C, Polette M, Deslée G, Perotin JM, Dormoy V. Glypican-3 is a key tuner of the Hedgehog pathway in COPD. Heliyon 2025; 11:e41564. [PMID: 39844999 PMCID: PMC11751517 DOI: 10.1016/j.heliyon.2024.e41564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 12/12/2024] [Accepted: 12/27/2024] [Indexed: 01/24/2025] Open
Abstract
Hedgehog (HH) pathway is involved in pulmonary development and lung homeostasis. It orchestrates airway epithelial cell (AEC) differentiation and contributes to respiratory pathogenesis. The core elements Gli2, Smo, and Shh were found altered in the bronchial epithelium of patients with chronic obstructive pulmonary disease (COPD). Here, we investigated the co-receptors to fully decipher the complex machinery of airway HH pathway activation in health and COPD. The core elements and co-receptors of HH signalling were investigated in lung cell populations using single-cell RNAseq analysis. The transcript levels of the principal co-receptor GPC3 were investigated on public RNAseq datasets and by RT-qPCR. The localisation of GPC3 was evaluated through immunofluorescent stainings on isolated bronchial AEC and tissues from non-COPD and COPD patients. GPC3 pharmacological modulation was achieved with Codrituzumab during AEC differentiation. We demonstrated that the core elements were not abundant in pulmonary cell populations. Focusing on co-receptors, GPC3 was the most expressed transcript in tracheobronchial epithelial cells. The decrease in GPC3 transcript levels correlated with the severity of airway obstrution in COPD patients. Finally, interfering with GPC3 signalling during AEC differentiation induced downregulation of the HH pathway attested by a decrease of Gli2 leading to reduced ciliogenesis and altered mucin production. GPC3 appears as a crucial co-receptor for the HH pathway in the respiratory context. The modulation of GPC3 may represent a novel experimental strategy to tune HH signalling in therapeutic perspectives.
Collapse
Affiliation(s)
- Laure M.G. Petit
- Université de Reims Champagne-Ardenne, INSERM, P3Cell UMR-S1250, Reims, France
| | - Lynda Saber Cherif
- Université de Reims Champagne-Ardenne, INSERM, P3Cell UMR-S1250, Reims, France
| | - Maëva A. Devilliers
- Université de Reims Champagne-Ardenne, INSERM, P3Cell UMR-S1250, Reims, France
| | - Sarah Hatoum
- Université de Reims Champagne-Ardenne, INSERM, P3Cell UMR-S1250, Reims, France
| | - Julien Ancel
- Université de Reims Champagne-Ardenne, INSERM, CHU de Reims, P3Cell UMR-S1250, Reims, France
| | - Gonzague Delepine
- Université de Reims Champagne-Ardenne, INSERM, P3Cell UMR-S1250, Reims, France
| | - Anne Durlach
- Université de Reims Champagne-Ardenne, INSERM, P3Cell UMR-S1250, Reims, France
| | - Xavier Dubernard
- Université de Reims Champagne-Ardenne, CHU de Reims, Reims, France
| | - Jean-Claude Mérol
- Université de Reims Champagne-Ardenne, INSERM, P3Cell UMR-S1250, Reims, France
| | - Christophe Ruaux
- Clinique Mutualiste La Sagesse, Département d’Otorhinolaryngologie, Rennes, France
| | - Myriam Polette
- Université de Reims Champagne-Ardenne, INSERM, CHU de Reims, P3Cell UMR-S1250, Reims, France
| | - Gaëtan Deslée
- Université de Reims Champagne-Ardenne, INSERM, CHU de Reims, P3Cell UMR-S1250, Reims, France
| | - Jeanne-Marie Perotin
- Université de Reims Champagne-Ardenne, INSERM, CHU de Reims, P3Cell UMR-S1250, Reims, France
| | - Valérian Dormoy
- Université de Reims Champagne-Ardenne, INSERM, P3Cell UMR-S1250, Reims, France
| |
Collapse
|
2
|
Bridges JP, Vladar EK, Kurche JS, Krivoi A, Stancil IT, Dobrinskikh E, Hu Y, Sasse SK, Lee JS, Blumhagen RZ, Yang IV, Gerber AN, Peljto AL, Evans CM, Redente EF, Riches DW, Schwartz DA. Progressive lung fibrosis: reprogramming a genetically vulnerable bronchoalveolar epithelium. J Clin Invest 2025; 135:e183836. [PMID: 39744946 PMCID: PMC11684817 DOI: 10.1172/jci183836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is etiologically complex, with well-documented genetic and nongenetic origins. In this Review, we speculate that the development of IPF requires two hits: the first establishes a vulnerable bronchoalveolar epithelium, and the second triggers mechanisms that reprogram distal epithelia to initiate and perpetuate a profibrotic phenotype. While vulnerability of the bronchoalveolar epithelia is most often driven by common or rare genetic variants, subsequent injury of the bronchoalveolar epithelia results in persistent changes in cell biology that disrupt tissue homeostasis and activate fibroblasts. The dynamic biology of IPF can best be contextualized etiologically and temporally, including stages of vulnerability, early disease, and persistent and progressive lung fibrosis. These dimensions of IPF highlight critical mechanisms that adversely disrupt epithelial function, activate fibroblasts, and lead to lung remodeling. Together with better recognition of early disease, this conceptual approach should lead to the development of novel therapeutics directed at the etiologic and temporal drivers of lung fibrosis that will ultimately transform the care of patients with IPF from palliative to curative.
Collapse
Affiliation(s)
- James P. Bridges
- Department of Medicine, National Jewish Health, Denver, Colorado, USA
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Eszter K. Vladar
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Jonathan S. Kurche
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Rocky Mountain Regional Veteran Affairs Medical Center, Aurora, Colorado, USA
| | - Andrei Krivoi
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Ian T. Stancil
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Stanford University, School of Medicine, Stanford, California, USA
| | - Evgenia Dobrinskikh
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Yan Hu
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Sarah K. Sasse
- Department of Medicine, National Jewish Health, Denver, Colorado, USA
| | - Joyce S. Lee
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Rachel Z. Blumhagen
- Department of Immunology and Genomic Medicine, National Jewish Health, Denver, Colorado, USA
| | - Ivana V. Yang
- Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Anthony N. Gerber
- Department of Medicine, National Jewish Health, Denver, Colorado, USA
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Program in Cell Biology, Department of Pediatrics, National Jewish Health, Denver, Colorado, USA
| | - Anna L. Peljto
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Christopher M. Evans
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Rocky Mountain Regional Veteran Affairs Medical Center, Aurora, Colorado, USA
| | - Elizabeth F. Redente
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Program in Cell Biology, Department of Pediatrics, National Jewish Health, Denver, Colorado, USA
| | - David W.H. Riches
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Rocky Mountain Regional Veteran Affairs Medical Center, Aurora, Colorado, USA
- Program in Cell Biology, Department of Pediatrics, National Jewish Health, Denver, Colorado, USA
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - David A. Schwartz
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Rocky Mountain Regional Veteran Affairs Medical Center, Aurora, Colorado, USA
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
3
|
Gautam RK, Laltanpuia, Singh N, Kushwaha S. A particle of concern: explored and proposed underlying mechanisms of microplastic-induced lung damage and pulmonary fibrosis. Inhal Toxicol 2025; 37:1-17. [PMID: 39932476 DOI: 10.1080/08958378.2025.2461048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 01/27/2025] [Indexed: 02/21/2025]
Abstract
PURPOSE In the past decade, microplastics (MPs) have drawn significant attention as widespread environmental contaminants, with research increasingly highlighting their harmful effects on respiratory health in aquatic and terrestrial organisms. Findings revealed microplastics in human lung tissues, raising concerns about their potential role in damaging lung tissue integrity and contributing to pulmonary fibrosis-a chronic inflammatory condition characterized by scarring of lung epithelial tissues due to accumulated extracellular matrix, triggered by factors such as alcohol, pathogens, genetic mutations, and environmental pollutants. OBJECTIVE In this review, we explore both well-studied and lesser-studied mechanisms and signaling pathways, aiming to shed light on how microplastics might act as mediators that activate distinct, often overlooked signaling cascades. MATERIALS AND METHODS This review searched PubMed and Google Scholar using keywords like "plastic," "microplastic," "lung fibrosis," "pulmonary system," "exposure route," and "signaling pathways," combined with "OR" and "AND" in singular and plural forms. RESULTS These pathways could not only induce lung damage but also play a significant role in the development of pulmonary fibrosis. DISCUSSION AND CONCLUSIONS These signaling pathways could also be targeted to reduce microplastic-induced pulmonary fibrosis, opening new avenues for future treatments.
Collapse
Affiliation(s)
- Rohit Kumar Gautam
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli (NIPER-R), Lucknow, India
| | - Laltanpuia
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli (NIPER-R), Lucknow, India
| | - Nishant Singh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli (NIPER-R), Lucknow, India
| | - Sapana Kushwaha
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli (NIPER-R), Lucknow, India
| |
Collapse
|
4
|
Ilg MM, Harding S, Lapthorn AR, Kirvell S, Ralph DJ, Bustin SA, Ball G, Cellek S. Temporal gene signature of myofibroblast transformation in Peyronie's disease: first insights into the molecular mechanisms of irreversibility. J Sex Med 2024; 21:278-287. [PMID: 38383071 DOI: 10.1093/jsxmed/qdae006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/09/2023] [Accepted: 11/27/2023] [Indexed: 02/23/2024]
Abstract
BACKGROUND Transformation of resident fibroblasts to profibrotic myofibroblasts in the tunica albuginea is a critical step in the pathophysiology of Peyronie's disease (PD). We have previously shown that myofibroblasts do not revert to the fibroblast phenotype and we suggested that there is a point of no return at 36 hours after induction of the transformation. However, the molecular mechanisms that drive this proposed irreversibility are not known. AIM Identify molecular pathways that drive the irreversibility of myofibroblast transformation by analyzing the expression of the genes involved in the process in a temporal fashion. METHODS Human primary fibroblasts obtained from tunica albuginea of patients with Peyronie's disease were transformed to myofibroblasts using transforming growth factor beta 1 (TGF-β1). The mRNA of the cells was collected at 0, 24, 36, 48, and 72 hours after stimulation with TGF-β1 and then analyzed using a Nanostring nCounter Fibrosis panel. The gene expression results were analyzed using Reactome pathway analysis database and ANNi, a deep learning-based inference algorithm based on a swarm approach. OUTCOMES The study outcome was the time course of changes in gene expression during transformation of PD-derived fibroblasts to myofibroblasts. RESULTS The temporal analysis of the gene expression revealed that the majority of the changes at the gene expression level happened within the first 24 hours and remained so throughout the 72-hour period. At 36 hours, significant changes were observed in genes involved in MAPK-Hedgehog signaling pathways. CLINICAL TRANSLATION This study highlights the importance of early intervention in clinical management of PD and the future potential of new drugs targeting the point of no return. STRENGTHS AND LIMITATIONS The use of human primary cells and confirmation of results with further RNA analysis are the strengths of this study. The study was limited to 760 genes rather than the whole transcriptome. CONCLUSION This study is to our knowledge the first analysis of temporal gene expression associated with the regulation of the transformation of resident fibroblasts to profibrotic myofibroblasts in PD. Further research is warranted to investigate the role of the MAPK-Hedgehog signaling pathways in reversibility of PD.
Collapse
Affiliation(s)
- Marcus M Ilg
- Medical Technology Research Centre, Anglia Ruskin University, Chelmsford, CM1 1SQ, United Kingdom
| | - Sophie Harding
- Medical Technology Research Centre, Anglia Ruskin University, Chelmsford, CM1 1SQ, United Kingdom
| | - Alice R Lapthorn
- Medical Technology Research Centre, Anglia Ruskin University, Chelmsford, CM1 1SQ, United Kingdom
| | - Sara Kirvell
- Medical Technology Research Centre, Anglia Ruskin University, Chelmsford, CM1 1SQ, United Kingdom
| | - David J Ralph
- Medical Technology Research Centre, Anglia Ruskin University, Chelmsford, CM1 1SQ, United Kingdom
- Urology Department, University College London, London, W1G 8PH, United Kingdom
| | - Stephen A Bustin
- Medical Technology Research Centre, Anglia Ruskin University, Chelmsford, CM1 1SQ, United Kingdom
| | - Graham Ball
- Medical Technology Research Centre, Anglia Ruskin University, Chelmsford, CM1 1SQ, United Kingdom
| | - Selim Cellek
- Medical Technology Research Centre, Anglia Ruskin University, Chelmsford, CM1 1SQ, United Kingdom
| |
Collapse
|
5
|
Ritzefeld M, Zhang L, Xiao Z, Andrei SA, Boyd O, Masumoto N, Rodgers UR, Artelsmair M, Sefer L, Hayes A, Gavriil ES, Raynaud FI, Burke R, Blagg J, Rzepa HS, Siebold C, Magee AI, Lanyon-Hogg T, Tate EW. Design, Synthesis, and Evaluation of Inhibitors of Hedgehog Acyltransferase. J Med Chem 2024; 67:1061-1078. [PMID: 38198226 PMCID: PMC10823475 DOI: 10.1021/acs.jmedchem.3c01363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 11/08/2023] [Accepted: 12/12/2023] [Indexed: 01/12/2024]
Abstract
Hedgehog signaling is involved in embryonic development and cancer growth. Functional activity of secreted Hedgehog signaling proteins is dependent on N-terminal palmitoylation, making the palmitoyl transferase Hedgehog acyltransferase (HHAT), a potential drug target and a series of 4,5,6,7-tetrahydrothieno[3,2-c]pyridines have been identified as HHAT inhibitors. Based on structural data, we designed and synthesized 37 new analogues which we profiled alongside 13 previously reported analogues in enzymatic and cellular assays. Our results show that a central amide linkage, a secondary amine, and (R)-configuration at the 4-position of the core are three key factors for inhibitory potency. Several potent analogues with low- or sub-μM IC50 against purified HHAT also inhibit Sonic Hedgehog (SHH) palmitoylation in cells and suppress the SHH signaling pathway. This work identifies IMP-1575 as the most potent cell-active chemical probe for HHAT function, alongside an inactive control enantiomer, providing tool compounds for validation of HHAT as a target in cellular assays.
Collapse
Affiliation(s)
- Markus Ritzefeld
- Department
of Chemistry, Imperial College London, London W12 0BZ, U.K.
| | - Leran Zhang
- Department
of Chemistry, Imperial College London, London W12 0BZ, U.K.
| | - Zhangping Xiao
- Department
of Chemistry, Imperial College London, London W12 0BZ, U.K.
| | | | - Olivia Boyd
- Department
of Chemistry, Imperial College London, London W12 0BZ, U.K.
| | - Naoko Masumoto
- Department
of Chemistry, Imperial College London, London W12 0BZ, U.K.
| | - Ursula R. Rodgers
- National
Heart and Lung Institute, Imperial College
London, London SW7 2AZ, U.K.
| | - Markus Artelsmair
- Department
of Chemistry, Imperial College London, London W12 0BZ, U.K.
| | - Lea Sefer
- Division
of Structural Biology, University of Oxford, Oxford OX3 7BN, U.K.
| | - Angela Hayes
- Division
of Cancer Therapeutics, Centre for Cancer Drug Discovery, Institute of Cancer Research, London SM2 5NG, U.K.
| | | | - Florence I. Raynaud
- Division
of Cancer Therapeutics, Centre for Cancer Drug Discovery, Institute of Cancer Research, London SM2 5NG, U.K.
| | - Rosemary Burke
- Division
of Cancer Therapeutics, Centre for Cancer Drug Discovery, Institute of Cancer Research, London SM2 5NG, U.K.
| | - Julian Blagg
- Division
of Cancer Therapeutics, Centre for Cancer Drug Discovery, Institute of Cancer Research, London SM2 5NG, U.K.
| | - Henry S. Rzepa
- Department
of Chemistry, Imperial College London, London W12 0BZ, U.K.
| | - Christian Siebold
- Division
of Structural Biology, University of Oxford, Oxford OX3 7BN, U.K.
| | - Anthony I. Magee
- National
Heart and Lung Institute, Imperial College
London, London SW7 2AZ, U.K.
| | | | - Edward W. Tate
- Department
of Chemistry, Imperial College London, London W12 0BZ, U.K.
| |
Collapse
|
6
|
Cai Q, Luo M, Tang Y, Yu M, Yuan F, Gasser GN, Liu X, Engelhardt JF. Sonic Hedgehog Signaling Is Essential for Pulmonary Ionocyte Specification in Human and Ferret Airway Epithelia. Am J Respir Cell Mol Biol 2023; 69:295-309. [PMID: 37141531 PMCID: PMC10503308 DOI: 10.1165/rcmb.2022-0280oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 05/03/2023] [Indexed: 05/06/2023] Open
Abstract
Pulmonary ionocytes express high levels of cystic fibrosis transmembrane conductance regulator (CFTR), an anion channel that is critical for hydration of the airways and mucociliary clearance. However, the cellular mechanisms that govern ionocyte specification and function remain unclear. We observed that increased abundance of ionocytes in cystic fibrosis (CF) airway epithelium was associated with enhanced expression of Sonic Hedgehog (SHH) effectors. In this study, we evaluated whether the SHH pathway directly impacts ionocyte differentiation and CFTR function in airway epithelia. Pharmacological HPI1-mediated inhibition of SHH signaling component GLI1 significantly impaired human basal cell specification of ionocytes and ciliated cells but significantly enhanced specification of secretory cells. By contrast, activation of the SHH pathway effector smoothened (SMO) with the chemical agonist SAG significantly enhanced ionocyte specification. The abundance of CFTR+ BSND+ ionocytes under these conditions had a direct relationship with CFTR-mediated currents in differentiated air-liquid interface (ALI) airway cultures. These findings were corroborated in ferret ALI airway cultures generated from basal cells in which the genes encoding the SHH receptor PTCH1 or its intracellular effector SMO were genetically ablated using CRISPR-Cas9, causing aberrant activation or suppression of SHH signaling, respectively. These findings demonstrate that SHH signaling is directly involved in airway basal cell specification of CFTR-expressing pulmonary ionocytes and is likely responsible for enhanced ionocyte abundance in the CF proximal airways. Pharmacologic approaches to enhance ionocyte and reduce secretory cell specification after CFTR gene editing of basal cells may have utility in the treatment of CF.
Collapse
Affiliation(s)
- Qian Cai
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, Iowa
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in Western China, Ningxia University, Yinchuan, China; and
- School of Public Health and Management, Ningxia Medical University, Yinchuan, China
| | - Meihui Luo
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Yinghua Tang
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Miao Yu
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, Iowa
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in Western China, Ningxia University, Yinchuan, China; and
| | - Feng Yuan
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Grace N. Gasser
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Xiaoming Liu
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - John F. Engelhardt
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| |
Collapse
|
7
|
Jiang B, Wang S, Song G, Jiang Q, Fan M, Fang C, Li X, Soh CL, Manes TD, Cheru N, Qin L, Ren P, Jortner B, Wang Q, Quaranta E, Yoo P, Geirsson A, Davis RP, Tellides G, Pober JS, Jane-Wit D. Hedgehog-induced ZFYVE21 promotes chronic vascular inflammation by activating NLRP3 inflammasomes in T cells. Sci Signal 2023; 16:eabo3406. [PMID: 36943921 PMCID: PMC10061549 DOI: 10.1126/scisignal.abo3406] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 02/24/2023] [Indexed: 03/23/2023]
Abstract
The zinc finger protein ZFYVE21 is involved in immune signaling. Using humanized mouse models, primary human cells, and patient samples, we identified a T cell-autonomous role for ZFYVE21 in promoting chronic vascular inflammation associated with allograft vasculopathy. Ischemia-reperfusion injury (IRI) stimulated endothelial cells to produce Hedgehog (Hh) ligands, which in turn induced the production of ZFYVE21 in a population of T memory cells with high amounts of the Hh receptor PTCH1 (PTCHhi cells, CD3+CD4+CD45RO+PTCH1hiPD-1hi), vigorous recruitment to injured endothelia, and increased effector responses in vivo. After priming by interferon-γ (IFN-γ), Hh-induced ZFYVE21 activated NLRP3 inflammasome activity in T cells, which potentiated IFN-γ responses. Hh-induced NLRP3 inflammasomes and T cell-specific ZFYVE21 augmented the vascular sequelae of chronic inflammation in mice engrafted with human endothelial cells or coronary arteries that had been subjected to IRI before engraftment. Moreover, the population of PTCHhi T cells producing high amounts of ZFYVE21 was expanded in patients with renal transplant-associated IRI, and sera from these patients expanded this population in control T cells in a manner that depended on Hh signaling. We conclude that Hh-induced ZFYVE21 activates NLRP3 inflammasomes in T cells, thereby promoting chronic inflammation.
Collapse
Affiliation(s)
- Bo Jiang
- Department of Surgery, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Shaoxun Wang
- Department of Surgery, Yale University School of Medicine, New Haven, CT 06520, USA
- Division of Cardiology, West Haven VA Medical Center, West Haven, CT 06516, USA
| | - Guiyu Song
- Division of Cardiology, West Haven VA Medical Center, West Haven, CT 06516, USA
- Section of Cardiovascular Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China.
| | - Quan Jiang
- Division of Cardiology, West Haven VA Medical Center, West Haven, CT 06516, USA
- Section of Cardiovascular Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Matthew Fan
- Division of Cardiology, West Haven VA Medical Center, West Haven, CT 06516, USA
- Section of Cardiovascular Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Caodi Fang
- Section of Cardiovascular Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Xue Li
- Section of Cardiovascular Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Chien Lin Soh
- University of Cambridge, School of Clinical Medicine, Hills Rd., Cambridge CB2 0SP, UK
| | - Thomas D Manes
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Nardos Cheru
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Lingfeng Qin
- Department of Surgery, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Pengwei Ren
- Department of Surgery, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Bianca Jortner
- Section of Cardiovascular Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Qianxun Wang
- Division of Cardiology, West Haven VA Medical Center, West Haven, CT 06516, USA
- Section of Cardiovascular Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Emma Quaranta
- Section of Cardiovascular Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Peter Yoo
- Department of Surgery, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Arnar Geirsson
- Department of Surgery, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Robert P Davis
- Department of Surgery, Yale University School of Medicine, New Haven, CT 06520, USA
| | - George Tellides
- Department of Surgery, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Jordan S Pober
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Dan Jane-Wit
- Division of Cardiology, West Haven VA Medical Center, West Haven, CT 06516, USA
- Section of Cardiovascular Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
8
|
Gu D, Soepriatna AH, Zhang W, Li J, Zhao J, Zhang X, Shu X, Wang Y, Landis BJ, Goergen CJ, Xie J. Activation of the Hedgehog signaling pathway leads to fibrosis in aortic valves. Cell Biosci 2023; 13:43. [PMID: 36864465 PMCID: PMC9983197 DOI: 10.1186/s13578-023-00980-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 02/03/2023] [Indexed: 03/04/2023] Open
Abstract
BACKGROUND Fibrosis is a pathological wound healing process characterized by excessive extracellular matrix deposition, which interferes with normal organ function and contributes to ~ 45% of human mortality. Fibrosis develops in response to chronic injury in nearly all organs, but the a cascade of events leading to fibrosis remains unclear. While hedgehog (Hh) signaling activation has been associated with fibrosis in the lung, kidney, and skin, it is unknown whether hedgehog signaling activation is the cause or the consequence of fibrosis. We hypothesize that activation of hedgehog signaling is sufficient to drive fibrosis in mouse models. RESULTS In this study, we provide direct evidence to show that activation of Hh signaling via expression of activated smoothened, SmoM2, is sufficient to induce fibrosis in the vasculature and aortic valves. We showed that activated SmoM2 -induced fibrosis is associated with abnormal function of aortic valves and heart. The relevance of this mouse model to human health is reflected in our findings that elevated GLI expression is detected in 6 out of 11 aortic valves from patients with fibrotic aortic valves. CONCLUSIONS Our data show that activating hedgehog signaling is sufficient to drive fibrosis in mice, and this mouse model is relevant to human aortic valve stenosis.
Collapse
Affiliation(s)
- Dongsheng Gu
- grid.257413.60000 0001 2287 3919Department of Pediatrics, Indiana University School of Medicine, Wells Center for Pediatric Research, 1040 W. Walnut Street., Indianapolis, IN 46202 USA
| | - Arvin H. Soepriatna
- grid.169077.e0000 0004 1937 2197Purdue University Weldon School of Biomedical Engineering, 206 S. Martin Jischke Drive, Room 3025, West Lafayette, IN 47907 USA ,grid.40263.330000 0004 1936 9094School of Engineering, Center for Biomedical Engineering, Brown University, 184 Hope Street, Providence, RI 02912 USA
| | - Wenjun Zhang
- grid.257413.60000 0001 2287 3919Department of Pediatrics, Indiana University School of Medicine, Wells Center for Pediatric Research, 1040 W. Walnut Street., Indianapolis, IN 46202 USA
| | - Jun Li
- grid.413087.90000 0004 1755 3939Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital Fudan University, 180 Fenglin Road, Shanghai, 200032 China
| | - Jenny Zhao
- grid.257413.60000 0001 2287 3919Department of Pediatrics, Indiana University School of Medicine, Wells Center for Pediatric Research, 1040 W. Walnut Street., Indianapolis, IN 46202 USA ,grid.189504.10000 0004 1936 7558Boston University School of Medicine, 72 E. Concord St., Boston, MA 02118 USA
| | - Xiaoli Zhang
- grid.257413.60000 0001 2287 3919Department of Pediatrics, Indiana University School of Medicine, Wells Center for Pediatric Research, 1040 W. Walnut Street., Indianapolis, IN 46202 USA
| | - Xianhong Shu
- grid.413087.90000 0004 1755 3939Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital Fudan University, 180 Fenglin Road, Shanghai, 200032 China
| | - Yongshi Wang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital Fudan University, 180 Fenglin Road, Shanghai, 200032, China.
| | - Benjamin J. Landis
- grid.257413.60000 0001 2287 3919Department of Pediatrics, Indiana University School of Medicine, Wells Center for Pediatric Research, 1040 W. Walnut Street., Indianapolis, IN 46202 USA
| | - Craig J. Goergen
- grid.169077.e0000 0004 1937 2197Purdue University Weldon School of Biomedical Engineering, 206 S. Martin Jischke Drive, Room 3025, West Lafayette, IN 47907 USA
| | - Jingwu Xie
- Department of Pediatrics, Indiana University School of Medicine, Wells Center for Pediatric Research, 1040 W. Walnut Street., Indianapolis, IN, 46202, USA. .,Basic and Translational Cancer Review Branch (BTC), Division of Basic and Integrative Biological Sciences (DBIB), Center for Scientific Review, National Institutes of Health, 6701 Rockledge Drive, Bethesda, MD, 20892, USA.
| |
Collapse
|
9
|
Wasnick R, Korfei M, Piskulak K, Henneke I, Wilhelm J, Mahavadi P, Dartsch RC, von der Beck D, Koch M, Shalashova I, Weiss A, Klymenko O, Askevold I, Fink L, Witt H, Hackstein H, El Agha E, Bellusci S, Klepetko W, Königshoff M, Eickelberg O, Schermuly RT, Braun T, Seeger W, Ruppert C, Guenther A. Notch1 Induces Defective Epithelial Surfactant Processing and Pulmonary Fibrosis. Am J Respir Crit Care Med 2023; 207:283-299. [PMID: 36047984 DOI: 10.1164/rccm.202105-1284oc] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Rationale: Although type II alveolar epithelial cells (AEC2s) are chronically injured in idiopathic pulmonary fibrosis (IPF), they contribute to epithelial regeneration in IPF. Objectives: We hypothesized that Notch signaling may contribute to AEC2 proliferation, dedifferentiation characterized by loss of surfactant processing machinery, and lung fibrosis in IPF. Methods: We applied microarray analysis, kinome profiling, flow cytometry, immunofluorescence analysis, western blotting, quantitative PCR, and proliferation and surface activity analysis to study epithelial differentiation, proliferation, and matrix deposition in vitro (AEC2 lines, primary murine/human AEC2s), ex vivo (human IPF-derived precision-cut lung slices), and in vivo (bleomycin and pepstatin application, Notch1 [Notch receptor 1] intracellular domain overexpression). Measurements and Main Results: We document here extensive SP-B and -C (surfactant protein-B and -C) processing defects in IPF AEC2s, due to loss of Napsin A, resulting in increased intra-alveolar surface tension and alveolar collapse and induction of endoplasmic reticulum stress in AEC2s. In vivo pharmacological inhibition of Napsin A results in the development of AEC2 injury and overt lung fibrosis. We also demonstrate that Notch1 signaling is already activated early in IPF and determines AEC2 fate by inhibiting differentiation (reduced lamellar body compartment, reduced capacity to process hydrophobic SP) and by causing increased epithelial proliferation and development of lung fibrosis, putatively via altered JAK (Janus kinase)/Stat (signal transducer and activator of transcription) signaling in AEC2s. Conversely, inhibition of Notch signaling in IPF-derived precision-cut lung slices improved the surfactant processing capacity of AEC2s and reversed fibrosis. Conclusions: Notch1 is a central regulator of AEC2 fate in IPF. It induces alveolar epithelial proliferation and loss of Napsin A and of surfactant proprotein processing, and it contributes to fibroproliferation.
Collapse
Affiliation(s)
- Roxana Wasnick
- University of Giessen and Marburg Lung Center (UGMLC), member of the German Center for Lung Research (DZL), 35392 Giessen, Germany
| | - Martina Korfei
- University of Giessen and Marburg Lung Center (UGMLC), member of the German Center for Lung Research (DZL), 35392 Giessen, Germany
| | - Katarzyna Piskulak
- University of Giessen and Marburg Lung Center (UGMLC), member of the German Center for Lung Research (DZL), 35392 Giessen, Germany
| | - Ingrid Henneke
- University of Giessen and Marburg Lung Center (UGMLC), member of the German Center for Lung Research (DZL), 35392 Giessen, Germany.,Excellence Cluster Cardiopulmonary Institute (CPI), 35392 Giessen, Germany.,Institute for Lung Health (ILH), 35392 Giessen, Germany
| | - Jochen Wilhelm
- University of Giessen and Marburg Lung Center (UGMLC), member of the German Center for Lung Research (DZL), 35392 Giessen, Germany.,Excellence Cluster Cardiopulmonary Institute (CPI), 35392 Giessen, Germany.,Institute for Lung Health (ILH), 35392 Giessen, Germany
| | - Poornima Mahavadi
- University of Giessen and Marburg Lung Center (UGMLC), member of the German Center for Lung Research (DZL), 35392 Giessen, Germany.,Excellence Cluster Cardiopulmonary Institute (CPI), 35392 Giessen, Germany
| | - Ruth Charlotte Dartsch
- University of Giessen and Marburg Lung Center (UGMLC), member of the German Center for Lung Research (DZL), 35392 Giessen, Germany
| | - Daniel von der Beck
- University of Giessen and Marburg Lung Center (UGMLC), member of the German Center for Lung Research (DZL), 35392 Giessen, Germany
| | - Miriam Koch
- University of Giessen and Marburg Lung Center (UGMLC), member of the German Center for Lung Research (DZL), 35392 Giessen, Germany.,Lung Clinic, Evangelisches Krankenhaus Mittelhessen, 35398 Giessen, Germany
| | - Irina Shalashova
- University of Giessen and Marburg Lung Center (UGMLC), member of the German Center for Lung Research (DZL), 35392 Giessen, Germany
| | - Astrid Weiss
- University of Giessen and Marburg Lung Center (UGMLC), member of the German Center for Lung Research (DZL), 35392 Giessen, Germany
| | - Oleksiy Klymenko
- University of Giessen and Marburg Lung Center (UGMLC), member of the German Center for Lung Research (DZL), 35392 Giessen, Germany
| | - Ingolf Askevold
- Department of Surgery, Justus-Liebig-University Giessen, 35392 Giessen, Germany
| | - Ludger Fink
- Institut für Pathologie, Überregionale Gemeinschaftspraxis für Pathologie und Zytologie, 35578 Wetzlar, Germany
| | - Heiko Witt
- Pediatric Nutritional Medicine, Else-Kröner-Fresenius-Fresenius-Ceter for Nutritional Sciences, Technical University Munich, 85354 Freising, Germany
| | - Holger Hackstein
- Department of Clinical Immunology and Transfusion Medicine, Justus-Liebig University Giessen, 35392 Giessen, Germany
| | - Elie El Agha
- University of Giessen and Marburg Lung Center (UGMLC), member of the German Center for Lung Research (DZL), 35392 Giessen, Germany.,Excellence Cluster Cardiopulmonary Institute (CPI), 35392 Giessen, Germany.,Institute for Lung Health (ILH), 35392 Giessen, Germany
| | - Saverio Bellusci
- University of Giessen and Marburg Lung Center (UGMLC), member of the German Center for Lung Research (DZL), 35392 Giessen, Germany.,Excellence Cluster Cardiopulmonary Institute (CPI), 35392 Giessen, Germany.,Institute for Lung Health (ILH), 35392 Giessen, Germany
| | - Walter Klepetko
- Department of Thoracic Surgery, Vienna General Hospital, 1090 Vienna, Austria
| | - Melanie Königshoff
- Comprehensive Pneumology Center, Research Unit Lung Repair and Regeneration, Helmholtz Center Munich, Ludwig Maximilians University Munich, 81377 Munich, Germany.,Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA 15261
| | - Oliver Eickelberg
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA 15261
| | - Ralph Theo Schermuly
- University of Giessen and Marburg Lung Center (UGMLC), member of the German Center for Lung Research (DZL), 35392 Giessen, Germany.,Excellence Cluster Cardiopulmonary Institute (CPI), 35392 Giessen, Germany.,Institute for Lung Health (ILH), 35392 Giessen, Germany
| | - Thomas Braun
- University of Giessen and Marburg Lung Center (UGMLC), member of the German Center for Lung Research (DZL), 35392 Giessen, Germany.,Excellence Cluster Cardiopulmonary Institute (CPI), 35392 Giessen, Germany.,Institute for Lung Health (ILH), 35392 Giessen, Germany.,Max-Planck-Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany; and
| | - Werner Seeger
- University of Giessen and Marburg Lung Center (UGMLC), member of the German Center for Lung Research (DZL), 35392 Giessen, Germany.,Excellence Cluster Cardiopulmonary Institute (CPI), 35392 Giessen, Germany.,Institute for Lung Health (ILH), 35392 Giessen, Germany.,Max-Planck-Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany; and
| | - Clemens Ruppert
- University of Giessen and Marburg Lung Center (UGMLC), member of the German Center for Lung Research (DZL), 35392 Giessen, Germany.,Excellence Cluster Cardiopulmonary Institute (CPI), 35392 Giessen, Germany.,European IPF Registry/Biobank, 35392 Giessen, Germany
| | - Andreas Guenther
- University of Giessen and Marburg Lung Center (UGMLC), member of the German Center for Lung Research (DZL), 35392 Giessen, Germany.,Excellence Cluster Cardiopulmonary Institute (CPI), 35392 Giessen, Germany.,Institute for Lung Health (ILH), 35392 Giessen, Germany.,Lung Clinic, Evangelisches Krankenhaus Mittelhessen, 35398 Giessen, Germany.,European IPF Registry/Biobank, 35392 Giessen, Germany
| |
Collapse
|
10
|
Lau CI, Yánez DC, Papaioannou E, Ross S, Crompton T. Sonic Hedgehog signalling in the regulation of barrier tissue homeostasis and inflammation. FEBS J 2022; 289:8050-8061. [PMID: 34614300 DOI: 10.1111/febs.16222] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 09/10/2021] [Accepted: 10/05/2021] [Indexed: 01/14/2023]
Abstract
Epithelial barrier tissues such as the skin and airway form an essential interface between the mammalian host and its external environment. These physical barriers are crucial to prevent damage and disease from environmental insults and allergens. Failure to maintain barrier function against such risks can lead to severe inflammatory disorders, including atopic dermatitis and asthma. Here, we discuss the role of the morphogen Sonic Hedgehog in postnatal skin and lung and the impact of Shh signalling on repair, inflammation, and atopic disease in these tissues.
Collapse
Affiliation(s)
- Ching-In Lau
- UCL Great Ormond Street Institute of Child Health, London, UK
| | - Diana C Yánez
- UCL Great Ormond Street Institute of Child Health, London, UK.,School of Medicine, Universidad San Francisco de Quito, Ecuador
| | - Eleftheria Papaioannou
- UCL Great Ormond Street Institute of Child Health, London, UK.,Department of Biochemistry, Universidad Autónoma de Madrid and Instituto de Investigaciones Biomédicas Alberto Sols, Madrid, Spain
| | - Susan Ross
- UCL Great Ormond Street Institute of Child Health, London, UK
| | - Tessa Crompton
- UCL Great Ormond Street Institute of Child Health, London, UK
| |
Collapse
|
11
|
Pulmonary Fibrosis as a Result of Acute Lung Inflammation: Molecular Mechanisms, Relevant In Vivo Models, Prognostic and Therapeutic Approaches. Int J Mol Sci 2022; 23:ijms232314959. [PMID: 36499287 PMCID: PMC9735580 DOI: 10.3390/ijms232314959] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 12/03/2022] Open
Abstract
Pulmonary fibrosis is a chronic progressive lung disease that steadily leads to lung architecture disruption and respiratory failure. The development of pulmonary fibrosis is mostly the result of previous acute lung inflammation, caused by a wide variety of etiological factors, not resolved over time and causing the deposition of fibrotic tissue in the lungs. Despite a long history of study and good coverage of the problem in the scientific literature, the effective therapeutic approaches for pulmonary fibrosis treatment are currently lacking. Thus, the study of the molecular mechanisms underlying the transition from acute lung inflammation to pulmonary fibrosis, and the search for new molecular markers and promising therapeutic targets to prevent pulmonary fibrosis development, remain highly relevant tasks. This review focuses on the etiology, pathogenesis, morphological characteristics and outcomes of acute lung inflammation as a precursor of pulmonary fibrosis; the pathomorphological changes in the lungs during fibrosis development; the known molecular mechanisms and key players of the signaling pathways mediating acute lung inflammation and pulmonary fibrosis, as well as the characteristics of the most common in vivo models of these processes. Moreover, the prognostic markers of acute lung injury severity and pulmonary fibrosis development as well as approved and potential therapeutic approaches suppressing the transition from acute lung inflammation to fibrosis are discussed.
Collapse
|
12
|
Saifi MA, Bansod S, Godugu C. COVID-19 and fibrosis: Mechanisms, clinical relevance, and future perspectives. Drug Discov Today 2022; 27:103345. [PMID: 36075378 PMCID: PMC9444298 DOI: 10.1016/j.drudis.2022.103345] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 07/19/2022] [Accepted: 09/01/2022] [Indexed: 01/08/2023]
Abstract
Coronavirus 2019 (COVID-19), caused by severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) has had significant impacts worldwide since its emergence in December, 2019. Despite a high recovery rate, there is a growing concern over its residual, long-term effects. However, because of a lack of long-term data, we are still far from establishing a consensus on post-COVID-19 complications. The deposition of excessive extracellular matrix (ECM), known as fibrosis, has been observed in numerous survivors of COVID-19. Given the exceptionally high number of individuals affected, there is an urgent need to address the emergence of fibrosis post-COVID-19. In this review, we discuss the clinical relevance of COVID-19-associated fibrosis, the current status of antifibrotic agents, novel antifibrotic targets, and challenges to its management.
Collapse
Affiliation(s)
- Mohd Aslam Saifi
- Department of Biological Sciences (Regulatory Toxicology), National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana 500 037, India
| | - Sapana Bansod
- Department of Internal Medicine, Oncology Division, Washington University, School of Medicine, St Louis, MO 63110, USA
| | - Chandraiah Godugu
- Department of Biological Sciences (Regulatory Toxicology), National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana 500 037, India.
| |
Collapse
|
13
|
Wong KY, Cheung AH, Chen B, Chan WN, Yu J, Lo KW, Kang W, To KF. Cancer-associated fibroblasts in nonsmall cell lung cancer: From molecular mechanisms to clinical implications. Int J Cancer 2022; 151:1195-1215. [PMID: 35603909 PMCID: PMC9545594 DOI: 10.1002/ijc.34127] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 05/08/2022] [Accepted: 05/12/2022] [Indexed: 11/14/2022]
Abstract
Lung cancer is the common and leading cause of cancer death worldwide. The tumor microenvironment has been recognized to be instrumental in tumorigenesis. To have a deep understanding of the molecular mechanism of nonsmall cell lung carcinoma (NSCLC), cancer-associated fibroblasts (CAFs) have gained increasing research interests. CAFs belong to the crucial and dominant cell population in the tumor microenvironment to support the cancer cells. The interplay and partnership between cancer cells and CAFs contribute to each stage of tumorigenesis. CAFs exhibit prominent heterogeneity and secrete different kinds of cytokines and chemokines, growth factors and extracellular matrix proteins involved in cancer cell proliferation, invasion, metastasis and chemoresistance. Many studies focused on the protumorigenic functions of CAFs, yet many challenges about the heterogeneity of CAFS remain unresolved. This review comprehensively summarized the tumor-promoting role and molecular mechanisms of CAFs in NSCLC, including their origin, phenotypic changes and heterogeneity and their functional roles in carcinogenesis. Meanwhile, we also highlighted the updated molecular classifications based on the molecular features and functional roles of CAFs. With the development of cutting-edge platforms and further investigations of CAFs, novel therapeutic strategies for accurately targeting CAFs in NSCLC may be developed based on the increased understanding of the relevant molecular mechanisms.
Collapse
Affiliation(s)
- Kit Yee Wong
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational OncologyPrince of Wales Hospital, The Chinese University of Hong KongHong KongSARChina
- Institute of Digestive Disease, State Key Laboratory of Digestive Disease, The Chinese University of Hong KongHong KongSARChina
- Li Ka Shing Institute of Health Science, Sir Y.K. Pao Cancer Center, The Chinese University of Hong KongHong KongSARChina
| | - Alvin Ho‐Kwan Cheung
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational OncologyPrince of Wales Hospital, The Chinese University of Hong KongHong KongSARChina
- Institute of Digestive Disease, State Key Laboratory of Digestive Disease, The Chinese University of Hong KongHong KongSARChina
- Li Ka Shing Institute of Health Science, Sir Y.K. Pao Cancer Center, The Chinese University of Hong KongHong KongSARChina
| | - Bonan Chen
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational OncologyPrince of Wales Hospital, The Chinese University of Hong KongHong KongSARChina
- Institute of Digestive Disease, State Key Laboratory of Digestive Disease, The Chinese University of Hong KongHong KongSARChina
- Li Ka Shing Institute of Health Science, Sir Y.K. Pao Cancer Center, The Chinese University of Hong KongHong KongSARChina
| | - Wai Nok Chan
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational OncologyPrince of Wales Hospital, The Chinese University of Hong KongHong KongSARChina
- Institute of Digestive Disease, State Key Laboratory of Digestive Disease, The Chinese University of Hong KongHong KongSARChina
- Li Ka Shing Institute of Health Science, Sir Y.K. Pao Cancer Center, The Chinese University of Hong KongHong KongSARChina
| | - Jun Yu
- Institute of Digestive Disease, State Key Laboratory of Digestive Disease, The Chinese University of Hong KongHong KongSARChina
- Department of Medicine and TherapeuticsThe Chinese University of Hong KongHong KongSARChina
| | - Kwok Wai Lo
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational OncologyPrince of Wales Hospital, The Chinese University of Hong KongHong KongSARChina
- Institute of Digestive Disease, State Key Laboratory of Digestive Disease, The Chinese University of Hong KongHong KongSARChina
- Li Ka Shing Institute of Health Science, Sir Y.K. Pao Cancer Center, The Chinese University of Hong KongHong KongSARChina
| | - Wei Kang
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational OncologyPrince of Wales Hospital, The Chinese University of Hong KongHong KongSARChina
- Institute of Digestive Disease, State Key Laboratory of Digestive Disease, The Chinese University of Hong KongHong KongSARChina
- Li Ka Shing Institute of Health Science, Sir Y.K. Pao Cancer Center, The Chinese University of Hong KongHong KongSARChina
| | - Ka Fai To
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational OncologyPrince of Wales Hospital, The Chinese University of Hong KongHong KongSARChina
- Institute of Digestive Disease, State Key Laboratory of Digestive Disease, The Chinese University of Hong KongHong KongSARChina
- Li Ka Shing Institute of Health Science, Sir Y.K. Pao Cancer Center, The Chinese University of Hong KongHong KongSARChina
| |
Collapse
|
14
|
Romero Y, Balderas-Martínez YI, Vargas-Morales MA, Castillejos-López M, Vázquez-Pérez JA, Calyeca J, Torres-Espíndola LM, Patiño N, Camarena A, Carlos-Reyes Á, Flores-Soto E, León-Reyes G, Sierra-Vargas MP, Herrera I, Luis-García ER, Ruiz V, Velázquez-Cruz R, Aquino-Gálvez A. Effect of Hypoxia in the Transcriptomic Profile of Lung Fibroblasts from Idiopathic Pulmonary Fibrosis. Cells 2022; 11:cells11193014. [PMID: 36230977 PMCID: PMC9564151 DOI: 10.3390/cells11193014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/14/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is an aging-associated disease characterized by exacerbated extracellular matrix deposition that disrupts oxygen exchange. Hypoxia and its transcription factors (HIF-1α and 2α) influence numerous circuits that could perpetuate fibrosis by increasing myofibroblasts differentiation and by promoting extracellular matrix accumulation. Therefore, this work aimed to elucidate the signature of hypoxia in the transcriptomic circuitry of IPF-derived fibroblasts. To determine this transcriptomic signature, a gene expression analysis with six lines of lung fibroblasts under normoxia or hypoxia was performed: three cell lines were derived from patients with IPF, and three were from healthy donors, a total of 36 replicates. We used the Clariom D platform, which allows us to evaluate a huge number of transcripts, to analyze the response to hypoxia in both controls and IPF. The control′s response is greater by the number of genes and complexity. In the search for specific genes responsible for the IPF fibroblast phenotype, nineteen dysregulated genes were found in lung fibroblasts from IPF patients in hypoxia (nine upregulated and ten downregulated). In this sense, the signaling pathways revealed to be affected in the pulmonary fibroblasts of patients with IPF may represent an adaptation to chronic hypoxia.
Collapse
Affiliation(s)
- Yair Romero
- Facultad de Ciencias, Universidad Nacional Autónoma México (UNAM), Mexico City 04510, Mexico
| | - Yalbi Itzel Balderas-Martínez
- Laboratorio de Biología Computacional, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas (INER), Mexico City 14080, Mexico
| | - Miguel Angel Vargas-Morales
- Laboratorio de Biología Molecular, Departamento de Fibrosis Pulmonar, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas (INER), Mexico City 14080, Mexico
| | - Manuel Castillejos-López
- Departamento de Epidemiología y Estadística, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas (INER), Mexico City 14080, Mexico
| | - Joel Armando Vázquez-Pérez
- Laboratorio de Biología Molecular de Enfermedades Emergentes y EPOC, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas (INER), Mexico City 14080, Mexico
| | - Jazmín Calyeca
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA
| | | | - Nelly Patiño
- Unidad de Citometría de Flujo (UCiF), Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City 14610, Mexico
| | - Angel Camarena
- Laboratorio de HLA, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas (INER), Mexico City 14080, Mexico
| | - Ángeles Carlos-Reyes
- Laboratorio de Onco-Inmunobiología, Departamento de Enfermedades Crónico-Degenerativas, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas (INER), Mexico City 14080, Mexico
| | - Edgar Flores-Soto
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City 04510, Mexico
| | - Guadalupe León-Reyes
- Laboratorio de Genómica del Metabolismo Óseo, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City 14610, Mexico
| | - Martha Patricia Sierra-Vargas
- Departamento de Investigación en Toxicología y Medicina Ambiental, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas (INER), Mexico City 14080, México
| | - Iliana Herrera
- Laboratorio de Biología Celular, Departamento de Fibrosis Pulmonar, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas (INER), Mexico City 14080, Mexico
| | - Erika Rubí Luis-García
- Laboratorio de Biología Celular, Departamento de Fibrosis Pulmonar, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas (INER), Mexico City 14080, Mexico
| | - Víctor Ruiz
- Laboratorio de Biología Molecular, Departamento de Fibrosis Pulmonar, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas (INER), Mexico City 14080, Mexico
| | - Rafael Velázquez-Cruz
- Laboratorio de Genómica del Metabolismo Óseo, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City 14610, Mexico
- Correspondence: (R.V.-C.); (A.A.-G.)
| | - Arnoldo Aquino-Gálvez
- Laboratorio de Biología Molecular, Departamento de Fibrosis Pulmonar, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas (INER), Mexico City 14080, Mexico
- Correspondence: (R.V.-C.); (A.A.-G.)
| |
Collapse
|
15
|
Li L, Gan H. Intact Fibroblast Growth Factor 23 Regulates Chronic Kidney Disease–Induced Myocardial Fibrosis by Activating the Sonic Hedgehog Signaling Pathway. J Am Heart Assoc 2022; 11:e026365. [DOI: 10.1161/jaha.122.026365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background
Clinically, myocardial fibrosis is one of the most common complications caused by chronic kidney disease (CKD). However, the potential mechanisms of CKD‐induced myocardial fibrosis have not been clarified.
Methods and Results
In our in vivo study, a rat model of CKD with 5/6 nephrectomy was established. The CKD model was treated with the glioma 1 (Gli‐1) inhibitor GANT‐61, and myocardial fibrosis and serum intact fibroblast growth factor 23 levels were assessed 16 weeks after nephrectomy. Finally, we found that Gli‐1 and Smoothened in the Sonic Hedgehog (Shh) signaling pathway were activated and that collagen‐1 and collagen‐3, which constitute the fibrotic index, were expressed in CKD myocardial tissue. After administering the Gli‐1 inhibitor GANT‐61, the degree of myocardial fibrosis was reduced, and Gli‐1 expression was also inhibited. We also measured blood pressure, cardiac biomarkers, and other indicators in rats and performed hematoxylin‐eosin staining of myocardial tissue. Furthermore, in vitro studies showed that intact fibroblast growth factor 23 promoted cardiac fibroblast proliferation and transdifferentiation into myofibroblasts by activating the Shh signaling pathway, thereby promoting cardiac fibrosis, as manifested by increased expression of the Shh, Patch 1, and Gli‐1 mRNAs and Shh, Smoothened, and Gli‐1 proteins in the Shh signaling pathway. The protein and mRNA levels of other fibrosis indicators, such as α‐smooth muscle actin, which are also markers of transdifferentiation, collagen‐1, and collagen‐3, were increased.
Conclusions
On the basis of these results, intact fibroblast growth factor 23 promotes CKD‐induced myocardial fibrosis by activating the Shh signaling pathway.
Collapse
Affiliation(s)
- Lanlan Li
- Department of Nephrology The First Affiliated Hospital of Chongqing Medical University Chongqing China
| | - Hua Gan
- Department of Nephrology The First Affiliated Hospital of Chongqing Medical University Chongqing China
| |
Collapse
|
16
|
Lack of ZNF365 Drives Senescence and Exacerbates Experimental Lung Fibrosis. Cells 2022; 11:cells11182848. [PMID: 36139424 PMCID: PMC9497065 DOI: 10.3390/cells11182848] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/31/2022] [Accepted: 09/06/2022] [Indexed: 11/17/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is characterized by aberrant activation of the alveolar epithelium, the expansion of the fibroblast population, and the accumulation of extracellular matrix. Global gene expression of human lung fibroblasts stimulated with TGFβ-1, a strong fibrotic mediator revealed the overexpression of ZNF365, a zinc finger protein implicated in cell cycle control and telomere stabilization. We evaluated the expression and localization of ZNF365 in IPF lungs and in the fibrotic response induced by bleomycin in WT and deficient mice of the orthologous gene Zfp365. In IPF, ZNF365 was overexpressed and localized in fibroblasts/myofibroblasts and alveolar epithelium. Bleomycin-induced lung fibrosis showed an upregulation of Zfp365 localized in lung epithelium and stromal cell populations. Zfp365 KO mice developed a significantly higher fibrotic response compared with WT mice by morphology and hydroxyproline content. Silencing ZNF365 in human lung fibroblasts and alveolar epithelial cells induced a significant reduction of growth rate and increased senescence markers, including Senescence Associated β Galactosidase activity, p53, p21, and the histone variant γH2AX. Our findings demonstrate that ZNF365 is upregulated in IPF and experimental lung fibrosis and suggest a protective role since its absence increases experimental lung fibrosis mechanistically associated with the induction of cell senescence.
Collapse
|
17
|
Kim E, Mathai SK, Stancil IT, Ma X, Hernandez-Gutierrez A, Becerra JN, Marrero-Torres E, Hennessy CE, Hatakka K, Wartchow EP, Estrella A, Huber JP, Cardwell JH, Burnham EL, Zhang Y, Evans CM, Vladar EK, Schwartz DA, Dobrinskikh E, Yang IV. Aberrant Multiciliogenesis in Idiopathic Pulmonary Fibrosis. Am J Respir Cell Mol Biol 2022; 67:188-200. [PMID: 35608953 PMCID: PMC9348560 DOI: 10.1165/rcmb.2021-0554oc] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 05/18/2022] [Indexed: 11/24/2022] Open
Abstract
We previously identified a novel molecular subtype of idiopathic pulmonary fibrosis (IPF) defined by increased expression of cilium-associated genes, airway mucin gene MUC5B, and KRT5 marker of basal cell airway progenitors. Here we show the association of MUC5B and cilia gene expression in human IPF airway epithelial cells, providing further rationale for examining the role of cilium genes in the pathogenesis of IPF. We demonstrate increased multiciliogenesis and changes in motile cilia structure of multiciliated cells both in IPF and bleomycin lung fibrosis models. Importantly, conditional deletion of a cilium gene, Ift88 (intraflagellar transport 88), in Krt5 basal cells reduces Krt5 pod formation and lung fibrosis, whereas no changes are observed in Ift88 conditional deletion in club cell progenitors. Our findings indicate that aberrant injury-activated primary ciliogenesis and Hedgehog signaling may play a causative role in Krt5 pod formation, which leads to aberrant multiciliogenesis and lung fibrosis. This implies that modulating cilium gene expression in Krt5 cell progenitors is a potential therapeutic target for IPF.
Collapse
Affiliation(s)
- Eunjoo Kim
- Department of Medicine, School of Medicine and
| | | | | | - Xiaoqian Ma
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, National Centre for Respiratory Medicine, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | | | | | - Emilette Marrero-Torres
- Department of Medicine-M.D. Program, San Juan Bautista School of Medicine, Caguas, Puerto Rico
| | | | | | - Eric P. Wartchow
- Department of Pathology, Children's Hospital Colorado, Aurora, Colorado
| | | | | | | | | | - Yingze Zhang
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania; and
| | | | | | | | - Evgenia Dobrinskikh
- Department of Medicine, School of Medicine and
- Department of Pediatrics, University of Colorado Anschutz Medical Center, Aurora, Colorado
| | - Ivana V. Yang
- Department of Medicine, School of Medicine and
- Department of Epidemiology, Colorado School of Public Health, Aurora, Colorado
| |
Collapse
|
18
|
Oatis D, Simon-Repolski E, Balta C, Mihu A, Pieretti G, Alfano R, Peluso L, Trotta MC, D’Amico M, Hermenean A. Cellular and Molecular Mechanism of Pulmonary Fibrosis Post-COVID-19: Focus on Galectin-1, -3, -8, -9. Int J Mol Sci 2022; 23:8210. [PMID: 35897786 PMCID: PMC9332679 DOI: 10.3390/ijms23158210] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/21/2022] [Accepted: 07/22/2022] [Indexed: 11/17/2022] Open
Abstract
Pulmonary fibrosis is a consequence of the pathological accumulation of extracellular matrix (ECM), which finally leads to lung scarring. Although the pulmonary fibrogenesis is almost known, the last two years of the COVID-19 pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its post effects added new particularities which need to be explored. Many questions remain about how pulmonary fibrotic changes occur within the lungs of COVID-19 patients, and whether the changes will persist long term or are capable of resolving. This review brings together existing knowledge on both COVID-19 and pulmonary fibrosis, starting with the main key players in promoting pulmonary fibrosis, such as alveolar and endothelial cells, fibroblasts, lipofibroblasts, and macrophages. Further, we provide an overview of the main molecular mechanisms driving the fibrotic process in connection with Galactin-1, -3, -8, and -9, together with the currently approved and newly proposed clinical therapeutic solutions given for the treatment of fibrosis, based on their inhibition. The work underlines the particular pathways and processes that may be implicated in pulmonary fibrosis pathogenesis post-SARS-CoV-2 viral infection. The recent data suggest that galectin-1, -3, -8, and -9 could become valuable biomarkers for the diagnosis and prognosis of lung fibrosis post-COVID-19 and promising molecular targets for the development of new and original therapeutic tools to treat the disease.
Collapse
Affiliation(s)
- Daniela Oatis
- Department of Infectious Disease, Faculty of Medicine, Vasile Goldis Western University of Arad, 310414 Arad, Romania;
- Doctoral School of Biology, Vasile Goldis Western University of Arad, 310414 Arad, Romania
| | - Erika Simon-Repolski
- Doctoral School of Medicine, Vasile Goldis Western University of Arad, 310414 Arad, Romania;
- Department of Pneumology, Arad Clinical Emergency Hospital, 310031 Arad, Romania
| | - Cornel Balta
- “Aurel Ardelean” Institute of Life Sciences, Vasile Goldis Western University of Arad, 310144 Arad, Romania;
| | - Alin Mihu
- Department of Microbiology, Faculty of Medicine, Vasile Goldis Western University of Arad, 310414 Arad, Romania;
| | - Gorizio Pieretti
- Department of Plastic Surgery, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy;
| | - Roberto Alfano
- Department of Advanced Medical and Surgical Sciences “DAMSS”, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy;
| | - Luisa Peluso
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (L.P.); (M.C.T.); (M.D.)
| | - Maria Consiglia Trotta
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (L.P.); (M.C.T.); (M.D.)
| | - Michele D’Amico
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (L.P.); (M.C.T.); (M.D.)
| | - Anca Hermenean
- “Aurel Ardelean” Institute of Life Sciences, Vasile Goldis Western University of Arad, 310144 Arad, Romania;
- Department of Histology, Faculty of Medicine, Vasile Goldis Western University of Arad, 310414 Arad, Romania
| |
Collapse
|
19
|
Zeng LH, Barkat MQ, Syed SK, Shah S, Abbas G, Xu C, Mahdy A, Hussain N, Hussain L, Majeed A, Khan KUR, Wu X, Hussain M. Hedgehog Signaling: Linking Embryonic Lung Development and Asthmatic Airway Remodeling. Cells 2022; 11:1774. [PMID: 35681469 PMCID: PMC9179967 DOI: 10.3390/cells11111774] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/05/2022] [Accepted: 05/16/2022] [Indexed: 12/28/2022] Open
Abstract
The development of the embryonic lung demands complex endodermal-mesodermal interactions, which are regulated by a variety of signaling proteins. Hedgehog (Hh) signaling is vital for lung development. It plays a key regulatory role during several morphogenic mechanisms, such as cell growth, differentiation, migration, and persistence of cells. On the other hand, abnormal expression or loss of regulation of Hh signaling leads to airway asthmatic remodeling, which is characterized by cellular matrix modification in the respiratory system, goblet cell hyperplasia, deposition of collagen, epithelial cell apoptosis, proliferation, and activation of fibroblasts. Hh also targets some of the pathogens and seems to have a significant function in tissue repairment and immune-related disorders. Similarly, aberrant Hh signaling expression is critically associated with the etiology of a variety of other airway lung diseases, mainly, bronchial or tissue fibrosis, lung cancer, and pulmonary arterial hypertension, suggesting that controlled regulation of Hh signaling is crucial to retain healthy lung functioning. Moreover, shreds of evidence imply that the Hh signaling pathway links to lung organogenesis and asthmatic airway remodeling. Here, we compiled all up-to-date investigations linked with the role of Hh signaling in the development of lungs as well as the attribution of Hh signaling in impairment of lung expansion, airway remodeling, and immune response. In addition, we included all current investigational and therapeutic approaches to treat airway asthmatic remodeling and immune system pathway diseases.
Collapse
Affiliation(s)
- Ling-Hui Zeng
- Department of Pharmacology, Zhejiang University City College, 51 Huzhou Street, Hangzhou 310015, China;
| | - Muhammad Qasim Barkat
- Key Laboratory of CFDA for Respiratory Drug Research, Department of Pharmacology, School of Medicine, Zhejiang University, Hangzhou 310058, China; (M.Q.B.); (C.X.)
| | - Shahzada Khurram Syed
- Department of Basic Medical Sciences, School of Health Sciences, University of Management and Technology Lahore, Lahore 54000, Pakistan;
| | - Shahid Shah
- Faculty of Pharmaceutical Sciences, Government College University, Faisalabad 38000, Pakistan; (S.S.); (G.A.); (L.H.)
| | - Ghulam Abbas
- Faculty of Pharmaceutical Sciences, Government College University, Faisalabad 38000, Pakistan; (S.S.); (G.A.); (L.H.)
| | - Chengyun Xu
- Key Laboratory of CFDA for Respiratory Drug Research, Department of Pharmacology, School of Medicine, Zhejiang University, Hangzhou 310058, China; (M.Q.B.); (C.X.)
| | - Amina Mahdy
- Medical Pharmacology Department, International School of Medicine, Istanbul Medipol University, Istanbul 34000, Turkey;
| | - Nadia Hussain
- Department of Pharmaceutical Sciences, College of Pharmacy, Al Ain University, Al Ain 64141, United Arab Emirates;
| | - Liaqat Hussain
- Faculty of Pharmaceutical Sciences, Government College University, Faisalabad 38000, Pakistan; (S.S.); (G.A.); (L.H.)
| | - Abdul Majeed
- Faculty of Pharmacy, Bahauddin Zakariya University, Mulatn 60000, Pakistan;
| | - Kashif-ur-Rehman Khan
- Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan;
| | - Ximei Wu
- Department of Pharmacology, Zhejiang University City College, 51 Huzhou Street, Hangzhou 310015, China;
| | - Musaddique Hussain
- Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan;
| |
Collapse
|
20
|
Wilson C, Mertens TC, Shivshankar P, Bi W, Collum SD, Wareing N, Ko J, Weng T, Naikawadi RP, Wolters PJ, Maire P, Jyothula SS, Thandavarayan RA, Ren D, Elrod ND, Wagner EJ, Huang HJ, Dickey BF, Ford HL, Karmouty-Quintana H. Sine oculis homeobox homolog 1 plays a critical role in pulmonary fibrosis. JCI Insight 2022; 7:e142984. [PMID: 35420997 PMCID: PMC9220956 DOI: 10.1172/jci.insight.142984] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 04/12/2022] [Indexed: 11/30/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a fatal disease with limited treatment options. The role of the developmental transcription factor Sine oculis homeobox homolog 1 (SIX1) in the pathophysiology of lung fibrosis is not known. IPF lung tissue samples and IPF-derived alveolar type II cells (AT2) showed a significant increase in SIX1 mRNA and protein levels, and the SIX1 transcriptional coactivators EYA1 and EYA2 were elevated. Six1 was also upregulated in bleomycin-treated (BLM-treated) mice and in a model of spontaneous lung fibrosis driven by deletion of Telomeric Repeat Binding Factor 1 (Trf1) in AT2 cells. Conditional deletion of Six1 in AT2 cells prevented or halted BLM-induced lung fibrosis, as measured by a significant reduction in histological burden of fibrosis, reduced fibrotic mediator expression, and improved lung function. These effects were associated with increased macrophage migration inhibitory factor (MIF) in lung epithelial cells in vivo following SIX1 overexpression in BLM-induced fibrosis. A MIF promoter-driven luciferase assay demonstrated direct binding of Six1 to the 5'-TCAGG-3' consensus sequence of the MIF promoter, identifying a likely mechanism of SIX1-driven MIF expression in the pathogenesis of lung fibrosis and providing a potentially novel pathway for targeting in IPF therapy.
Collapse
Affiliation(s)
- Cory Wilson
- Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth Houston), Houston, Texas, USA
| | - Tinne C.J. Mertens
- Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth Houston), Houston, Texas, USA
| | - Pooja Shivshankar
- Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth Houston), Houston, Texas, USA
| | - Weizen Bi
- Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth Houston), Houston, Texas, USA
| | - Scott D. Collum
- Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth Houston), Houston, Texas, USA
| | - Nancy Wareing
- Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth Houston), Houston, Texas, USA
| | - Junsuk Ko
- Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth Houston), Houston, Texas, USA
| | - Tingting Weng
- Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth Houston), Houston, Texas, USA
| | - Ram P. Naikawadi
- Pulmonary, Critical Care, Allergy and Sleep Medicine, UCSF, San Francisco, California, USA
| | - Paul J. Wolters
- Pulmonary, Critical Care, Allergy and Sleep Medicine, UCSF, San Francisco, California, USA
| | - Pascal Maire
- Université de Paris Cité, Institut Cochin, INSERM, CNRS, Paris, France
| | - Soma S.K. Jyothula
- Divisions of Critical Care, Pulmonary and Sleep Medicine, Department of Internal Medicine, McGovern Medical School, UTHealth, Houston, Texas, USA
| | | | - Dewei Ren
- Methodist J.C. Walter Jr. Transplant Center, Houston Methodist Hospital, Houston, Texas, USA
| | - Nathan D. Elrod
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch at Galveston, Galveston, Texas, USA
| | - Eric J. Wagner
- Department of Biochemistry and Biophysics, Center for RNA Biology, Wilmot Cancer Institute, University of Rochester School of Medicine and Dentistry, KMRB G.9629, Rochester, New York, USA
| | - Howard J. Huang
- Methodist J.C. Walter Jr. Transplant Center, Houston Methodist Hospital, Houston, Texas, USA
| | - Burton F. Dickey
- Department of Pulmonary Medicine, Division of Internal Medicine, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, USA
| | - Heide L. Ford
- Department of Pharmacology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Harry Karmouty-Quintana
- Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth Houston), Houston, Texas, USA
- Divisions of Critical Care, Pulmonary and Sleep Medicine, Department of Internal Medicine, McGovern Medical School, UTHealth, Houston, Texas, USA
| |
Collapse
|
21
|
Yang X, Sun W, Jing X, Zhang Q, Huang H, Xu Z. C/EBP homologous protein promotes Sonic Hedgehog secretion from type II alveolar epithelial cells and activates Hedgehog signaling pathway of fibroblast in pulmonary fibrosis. Respir Res 2022; 23:86. [PMID: 35395850 PMCID: PMC8991723 DOI: 10.1186/s12931-022-02012-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 04/02/2022] [Indexed: 01/04/2023] Open
Abstract
Background Endoplasmic reticulum (ER) stress is involved in the pathological process of pulmonary fibrosis, including IPF. It affects a broad scope of cellular types during pulmonary fibrosis but the role in epithelial-mesenchymal crosstalk has not been fully defined. The present study aimed to investigate the effects of Shh secretion by ER stress-challenged type II alveolar epithelial cells (AECII) on fibroblast and pulmonary fibrosis. Methods Conditioned medium (CM) from tunicamycin (TM)-treated AECII was collected and incubated with fibroblast. Short hairpin RNA (shRNA) was used for RNA interference of C/EBP homologous protein (CHOP). The effects of CHOP and HH signaling were evaluated by TM administration under the background of bleomycin-induced pulmonary fibrosis in mice. Results Both expression of CHOP and Shh in AECII, and HH signaling in mesenchyme were upregulated in IPF lung. TM-induced Shh secretion from AECII activates HH signaling and promotes pro-fibrotic effects of fibroblast. Interfering CHOP expression reduced ER stress-induced Shh secretion and alleviated pulmonary fibrosis in mice. Conclusions Our work identified a novel mechanism by which ER stress is involved in pulmonary fibrosis. Inhibition of ER stress or CHOP in epithelial cells alleviated pulmonary fibrosis by suppressing Shh/HH signaling pathway of fibroblasts. Supplementary Information The online version contains supplementary material available at 10.1186/s12931-022-02012-x.
Collapse
Affiliation(s)
- Xiaoyu Yang
- Department of Respiratory and Critical Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuai Fu Yuan Street, Dong Cheng District, Beijing, 100730, China
| | - Wei Sun
- Department of Respiratory and Critical Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuai Fu Yuan Street, Dong Cheng District, Beijing, 100730, China.,Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuai Fu Yuan Street, Dong Cheng District, Beijing, China
| | - Xiaoyan Jing
- Department of Respiratory and Critical Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuai Fu Yuan Street, Dong Cheng District, Beijing, 100730, China
| | - Qian Zhang
- Department of Respiratory and Critical Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuai Fu Yuan Street, Dong Cheng District, Beijing, 100730, China
| | - Hui Huang
- Department of Respiratory and Critical Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuai Fu Yuan Street, Dong Cheng District, Beijing, 100730, China
| | - Zuojun Xu
- Department of Respiratory and Critical Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuai Fu Yuan Street, Dong Cheng District, Beijing, 100730, China.
| |
Collapse
|
22
|
Chakraborty A, Mastalerz M, Ansari M, Schiller HB, Staab-Weijnitz CA. Emerging Roles of Airway Epithelial Cells in Idiopathic Pulmonary Fibrosis. Cells 2022; 11:cells11061050. [PMID: 35326501 PMCID: PMC8947093 DOI: 10.3390/cells11061050] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 12/24/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a fatal disease with incompletely understood aetiology and limited treatment options. Traditionally, IPF was believed to be mainly caused by repetitive injuries to the alveolar epithelium. Several recent lines of evidence, however, suggest that IPF equally involves an aberrant airway epithelial response, which contributes significantly to disease development and progression. In this review, based on recent clinical, high-resolution imaging, genetic, and single-cell RNA sequencing data, we summarize alterations in airway structure, function, and cell type composition in IPF. We furthermore give a comprehensive overview on the genetic and mechanistic evidence pointing towards an essential role of airway epithelial cells in IPF pathogenesis and describe potentially implicated aberrant epithelial signalling pathways and regulation mechanisms in this context. The collected evidence argues for the investigation of possible therapeutic avenues targeting these processes, which thus represent important future directions of research.
Collapse
|
23
|
CGRP: A New Endogenous Cell Stemness Maintenance Molecule. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:4107433. [PMID: 35132349 PMCID: PMC8817839 DOI: 10.1155/2022/4107433] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 01/11/2022] [Indexed: 12/17/2022]
Abstract
Stem cells have the ability of self-replication and multidirectional differentiation, but the mechanism of how stem cells “maintain” this ability and how to “decide” to give up this state and differentiate into cells with specific functions is still unknown. The Nobel Prize in physiology and medicine in 2021 was awarded to “temperature and tactile receptor,” which made the pain receptor TRPV1-calcitonin gene-related peptide (CGRP) pathway active again. The activation and blocking technology of CGRP has been applied to many clinical diseases. CGRP gene has complex structure and transcription process, with multiple methylation and other modification sites. It has been considered as a research hotspot and difficulty since its discovery. Drug manipulation of TRPV1 and inhibition of CGRP might improve metabolism and prolong longevity. However, whether the TRPV1-neuropeptide-CGRP pathway is directly or indirectly involved in stem cell self-replication and multidirectional differentiation is unclear. Recent studies have found that CGRP is closely related to the migration and differentiation of tumor stem cells, which may be realized by turning off or turning on the CGRP gene expression in stem cells and activating a variety of ways to regulate stem cell niches. In this study, we reviewed the advances in researches concentrated on the biological effects of CGRP as a new endogenous switching of cell stemness.
Collapse
|
24
|
Gao Q, Chang X, Yang M, Zheng J, Gong X, Liu H, Li K, Wang X, Zhan H, Li S, Feng S, Sun X, Sun Y. LncRNA MEG3 restrained pulmonary fibrosis induced by NiO NPs via regulating hedgehog signaling pathway-mediated autophagy. ENVIRONMENTAL TOXICOLOGY 2022; 37:79-91. [PMID: 34608745 DOI: 10.1002/tox.23379] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/18/2021] [Accepted: 09/23/2021] [Indexed: 06/13/2023]
Abstract
Long noncoding RNA maternally expressed gene 3 (lncRNA MEG3) was down-regulated in pulmonary fibrosis of rats induced by Nickel oxide nanoparticles (NiO NPs), while the downstream regulatory mechanisms of MEG3 remain unclear. This study aimed to investigate the relationship among MEG3, Hedgehog (Hh) signaling pathway and autophagy in pulmonary fibrosis caused by NiO NPs. The pulmonary fibrosis model in rats was constructed by intratracheal instillation of 0.015, 0.06, and 0.24 mg/kg NiO NPs twice a week for 9 weeks. Collagen deposition model was established by treating A549 cells with 25, 50, and 100 μg/mL NiO NPs for 24 h. Our results indicated that NiO NPs activated Hh pathway, down-regulated the expression of MEG3, and reduced autophagy activity in vivo and in vitro. Meanwhile, the autophagy process was promoted by Hh pathway inhibitor (CDG-0449), while the collagen formation in A549 cells was reduced by autophagy activator (Rapamycin). Furthermore, the overexpressed MEG3 inhibited the activation of Hh pathway, resulting in autophagy activity enhancement along with collagen formation reduction. In summary, lncRNA MEG3 can restrain pulmonary fibrosis induced by NiO NPs via regulating hedgehog signaling pathway-mediated autophagy, which may serve as a potential therapeutic strategy for pulmonary fibrosis.
Collapse
Affiliation(s)
- Qing Gao
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| | - Xuhong Chang
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| | - Mengmeng Yang
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| | - Jinfa Zheng
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| | - Xuefeng Gong
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| | - Han Liu
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| | - Kun Li
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| | - Xiaoxia Wang
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| | - Haibing Zhan
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| | - Sheng Li
- Department of Public Health, The First People's Hospital of Lanzhou city, Lanzhou, China
| | - Sanwei Feng
- Institute of Occupational Diseases, Gansu Baoshihua Hospital, Lanzhou, China
| | - Xingchang Sun
- Institute of Occupational Diseases, Gansu Baoshihua Hospital, Lanzhou, China
| | - Yingbiao Sun
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| |
Collapse
|
25
|
Modulation by 17,20S(OH) 2pD of Fibrosis-Related Mediators in Dermal Fibroblast Lines from Healthy Donors and from Patients with Systemic Sclerosis. Int J Mol Sci 2021; 23:ijms23010367. [PMID: 35008794 PMCID: PMC8745512 DOI: 10.3390/ijms23010367] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/16/2021] [Accepted: 12/27/2021] [Indexed: 12/15/2022] Open
Abstract
We previously demonstrated that the non-calcemic pregnacalciferol (pD) analog 17,20S (OH)2pD suppressed TGF-β1-induced type I collagen production in cultured normal human dermal fibroblasts. In the present studies, we examined fibroblasts cultured from the lesional skin of patients with systemic sclerosis (scleroderma (SSc)) and assessed the effects of 17,20S(OH)2pD on fibrosis-related mediators. Dermal fibroblast lines were established from skin biopsies from patients with SSc and healthy controls. Fibroblasts were cultured with either 17,20S(OH)2pD or 1,25(OH)2D3 (positive control) with/without TGF-β1 stimulation and extracted for protein and/or mRNA for collagen synthesis and mediators of fibrosis (MMP-1, TIMP-1, PAI-1, BMP-7, PGES, GLI1, and GLI2). 1 7,20S(OH)2pD (similar to 1,25(OH)2D3) significantly suppressed net total collagen production in TGF-β1-stimulated normal donor fibroblast cultures and in cultures of SSc dermal fibroblasts. 17,20S(OH)2pD (similar to 1,25(OH)2D3) also increased MMP-1, BMP-7, and PGES and decreased TIMP-1 and PAI1 expression in SSc fibroblasts. Although 17,20S(OH)2pD had no effect on Gli1 or Gli2 in SSc fibroblasts, it increased Gli2 expression when cultured with TGF-β1 in normal fibroblasts. These studies demonstrated that 17,20S(OH)2pD modulates mediators of fibrosis to favor the reduction of fibrosis and may offer new noncalcemic secosteroidal therapeutic approaches for treating SSc and fibrosis.
Collapse
|
26
|
Ng DCH, Ho UY, Grounds MD. Cilia, Centrosomes and Skeletal Muscle. Int J Mol Sci 2021; 22:9605. [PMID: 34502512 PMCID: PMC8431768 DOI: 10.3390/ijms22179605] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 08/30/2021] [Accepted: 09/01/2021] [Indexed: 12/13/2022] Open
Abstract
Primary cilia are non-motile, cell cycle-associated organelles that can be found on most vertebrate cell types. Comprised of microtubule bundles organised into an axoneme and anchored by a mature centriole or basal body, primary cilia are dynamic signalling platforms that are intimately involved in cellular responses to their extracellular milieu. Defects in ciliogenesis or dysfunction in cilia signalling underlie a host of developmental disorders collectively referred to as ciliopathies, reinforcing important roles for cilia in human health. Whilst primary cilia have long been recognised to be present in striated muscle, their role in muscle is not well understood. However, recent studies indicate important contributions, particularly in skeletal muscle, that have to date remained underappreciated. Here, we explore recent revelations that the sensory and signalling functions of cilia on muscle progenitors regulate cell cycle progression, trigger differentiation and maintain a commitment to myogenesis. Cilia disassembly is initiated during myoblast fusion. However, the remnants of primary cilia persist in multi-nucleated myotubes, and we discuss their potential role in late-stage differentiation and myofiber formation. Reciprocal interactions between cilia and the extracellular matrix (ECM) microenvironment described for other tissues may also inform on parallel interactions in skeletal muscle. We also discuss emerging evidence that cilia on fibroblasts/fibro-adipogenic progenitors and myofibroblasts may influence cell fate in both a cell autonomous and non-autonomous manner with critical consequences for skeletal muscle ageing and repair in response to injury and disease. This review addresses the enigmatic but emerging role of primary cilia in satellite cells in myoblasts and myofibers during myogenesis, as well as the wider tissue microenvironment required for skeletal muscle formation and homeostasis.
Collapse
Affiliation(s)
- Dominic C. H. Ng
- School of Biomedical Science, Faculty of Medicine, University of Queensland, St Lucia, Brisbane, QLD 4072, Australia;
| | - Uda Y. Ho
- School of Biomedical Science, Faculty of Medicine, University of Queensland, St Lucia, Brisbane, QLD 4072, Australia;
| | - Miranda D. Grounds
- School of Human Sciences, Faculty of Medicine, University of Western Australia, Perth, WA 6009, Australia
| |
Collapse
|
27
|
Samarelli AV, Tonelli R, Marchioni A, Bruzzi G, Gozzi F, Andrisani D, Castaniere I, Manicardi L, Moretti A, Tabbì L, Cerri S, Beghè B, Dominici M, Clini E. Fibrotic Idiopathic Interstitial Lung Disease: The Molecular and Cellular Key Players. Int J Mol Sci 2021; 22:8952. [PMID: 34445658 PMCID: PMC8396471 DOI: 10.3390/ijms22168952] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/05/2021] [Accepted: 08/10/2021] [Indexed: 12/12/2022] Open
Abstract
Interstitial lung diseases (ILDs) that are known as diffuse parenchymal lung diseases (DPLDs) lead to the damage of alveolar epithelium and lung parenchyma, culminating in inflammation and widespread fibrosis. ILDs that account for more than 200 different pathologies can be divided into two groups: ILDs that have a known cause and those where the cause is unknown, classified as idiopathic interstitial pneumonia (IIP). IIPs include idiopathic pulmonary fibrosis (IPF), non-specific interstitial pneumonia (NSIP), cryptogenic organizing pneumonia (COP) known also as bronchiolitis obliterans organizing pneumonia (BOOP), acute interstitial pneumonia (AIP), desquamative interstitial pneumonia (DIP), respiratory bronchiolitis-associated interstitial lung disease (RB-ILD), and lymphocytic interstitial pneumonia (LIP). In this review, our aim is to describe the pathogenic mechanisms that lead to the onset and progression of the different IIPs, starting from IPF as the most studied, in order to find both the common and standalone molecular and cellular key players among them. Finally, a deeper molecular and cellular characterization of different interstitial lung diseases without a known cause would contribute to giving a more accurate diagnosis to the patients, which would translate to a more effective treatment decision.
Collapse
Affiliation(s)
- Anna Valeria Samarelli
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena and Reggio Emilia, 41100 Modena, Italy; (A.V.S.); (R.T.); (A.M.); (G.B.); (F.G.); (D.A.); (I.C.); (L.M.); (A.M.); (S.C.); (B.B.); (M.D.)
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University Hospital of Modena, University of Modena Reggio Emilia, 41100 Modena, Italy;
| | - Roberto Tonelli
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena and Reggio Emilia, 41100 Modena, Italy; (A.V.S.); (R.T.); (A.M.); (G.B.); (F.G.); (D.A.); (I.C.); (L.M.); (A.M.); (S.C.); (B.B.); (M.D.)
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University Hospital of Modena, University of Modena Reggio Emilia, 41100 Modena, Italy;
- Clinical and Experimental Medicine PhD Program, University of Modena Reggio Emilia, 41100 Modena, Italy
| | - Alessandro Marchioni
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena and Reggio Emilia, 41100 Modena, Italy; (A.V.S.); (R.T.); (A.M.); (G.B.); (F.G.); (D.A.); (I.C.); (L.M.); (A.M.); (S.C.); (B.B.); (M.D.)
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University Hospital of Modena, University of Modena Reggio Emilia, 41100 Modena, Italy;
| | - Giulia Bruzzi
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena and Reggio Emilia, 41100 Modena, Italy; (A.V.S.); (R.T.); (A.M.); (G.B.); (F.G.); (D.A.); (I.C.); (L.M.); (A.M.); (S.C.); (B.B.); (M.D.)
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University Hospital of Modena, University of Modena Reggio Emilia, 41100 Modena, Italy;
| | - Filippo Gozzi
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena and Reggio Emilia, 41100 Modena, Italy; (A.V.S.); (R.T.); (A.M.); (G.B.); (F.G.); (D.A.); (I.C.); (L.M.); (A.M.); (S.C.); (B.B.); (M.D.)
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University Hospital of Modena, University of Modena Reggio Emilia, 41100 Modena, Italy;
- Clinical and Experimental Medicine PhD Program, University of Modena Reggio Emilia, 41100 Modena, Italy
| | - Dario Andrisani
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena and Reggio Emilia, 41100 Modena, Italy; (A.V.S.); (R.T.); (A.M.); (G.B.); (F.G.); (D.A.); (I.C.); (L.M.); (A.M.); (S.C.); (B.B.); (M.D.)
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University Hospital of Modena, University of Modena Reggio Emilia, 41100 Modena, Italy;
- Clinical and Experimental Medicine PhD Program, University of Modena Reggio Emilia, 41100 Modena, Italy
| | - Ivana Castaniere
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena and Reggio Emilia, 41100 Modena, Italy; (A.V.S.); (R.T.); (A.M.); (G.B.); (F.G.); (D.A.); (I.C.); (L.M.); (A.M.); (S.C.); (B.B.); (M.D.)
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University Hospital of Modena, University of Modena Reggio Emilia, 41100 Modena, Italy;
- Clinical and Experimental Medicine PhD Program, University of Modena Reggio Emilia, 41100 Modena, Italy
| | - Linda Manicardi
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena and Reggio Emilia, 41100 Modena, Italy; (A.V.S.); (R.T.); (A.M.); (G.B.); (F.G.); (D.A.); (I.C.); (L.M.); (A.M.); (S.C.); (B.B.); (M.D.)
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University Hospital of Modena, University of Modena Reggio Emilia, 41100 Modena, Italy;
| | - Antonio Moretti
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena and Reggio Emilia, 41100 Modena, Italy; (A.V.S.); (R.T.); (A.M.); (G.B.); (F.G.); (D.A.); (I.C.); (L.M.); (A.M.); (S.C.); (B.B.); (M.D.)
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University Hospital of Modena, University of Modena Reggio Emilia, 41100 Modena, Italy;
| | - Luca Tabbì
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University Hospital of Modena, University of Modena Reggio Emilia, 41100 Modena, Italy;
| | - Stefania Cerri
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena and Reggio Emilia, 41100 Modena, Italy; (A.V.S.); (R.T.); (A.M.); (G.B.); (F.G.); (D.A.); (I.C.); (L.M.); (A.M.); (S.C.); (B.B.); (M.D.)
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University Hospital of Modena, University of Modena Reggio Emilia, 41100 Modena, Italy;
| | - Bianca Beghè
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena and Reggio Emilia, 41100 Modena, Italy; (A.V.S.); (R.T.); (A.M.); (G.B.); (F.G.); (D.A.); (I.C.); (L.M.); (A.M.); (S.C.); (B.B.); (M.D.)
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University Hospital of Modena, University of Modena Reggio Emilia, 41100 Modena, Italy;
| | - Massimo Dominici
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena and Reggio Emilia, 41100 Modena, Italy; (A.V.S.); (R.T.); (A.M.); (G.B.); (F.G.); (D.A.); (I.C.); (L.M.); (A.M.); (S.C.); (B.B.); (M.D.)
- Oncology Unit, University Hospital of Modena, University of Modena and Reggio Emilia, 41100 Modena, Italy
| | - Enrico Clini
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena and Reggio Emilia, 41100 Modena, Italy; (A.V.S.); (R.T.); (A.M.); (G.B.); (F.G.); (D.A.); (I.C.); (L.M.); (A.M.); (S.C.); (B.B.); (M.D.)
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University Hospital of Modena, University of Modena Reggio Emilia, 41100 Modena, Italy;
| |
Collapse
|
28
|
Samarelli AV, Tonelli R, Heijink I, Martin Medina A, Marchioni A, Bruzzi G, Castaniere I, Andrisani D, Gozzi F, Manicardi L, Moretti A, Cerri S, Fantini R, Tabbì L, Nani C, Mastrolia I, Weiss DJ, Dominici M, Clini E. Dissecting the Role of Mesenchymal Stem Cells in Idiopathic Pulmonary Fibrosis: Cause or Solution. Front Pharmacol 2021; 12:692551. [PMID: 34290610 PMCID: PMC8287856 DOI: 10.3389/fphar.2021.692551] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 06/21/2021] [Indexed: 12/15/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is one of the most aggressive forms of idiopathic interstitial pneumonias, characterized by chronic and progressive fibrosis subverting the lung's architecture, pulmonary functional decline, progressive respiratory failure, and high mortality (median survival 3 years after diagnosis). Among the mechanisms associated with disease onset and progression, it has been hypothesized that IPF lungs might be affected either by a regenerative deficit of the alveolar epithelium or by a dysregulation of repair mechanisms in response to alveolar and vascular damage. This latter might be related to the progressive dysfunction and exhaustion of the resident stem cells together with a process of cellular and tissue senescence. The role of endogenous mesenchymal stromal/stem cells (MSCs) resident in the lung in the homeostasis of these mechanisms is still a matter of debate. Although endogenous MSCs may play a critical role in lung repair, they are also involved in cellular senescence and tissue ageing processes with loss of lung regenerative potential. In addition, MSCs have immunomodulatory properties and can secrete anti-fibrotic factors. Thus, MSCs obtained from other sources administered systemically or directly into the lung have been investigated for lung epithelial repair and have been explored as a potential therapy for the treatment of lung diseases including IPF. Given these multiple potential roles of MSCs, this review aims both at elucidating the role of resident lung MSCs in IPF pathogenesis and the role of administered MSCs from other sources for potential IPF therapies.
Collapse
Affiliation(s)
- Anna Valeria Samarelli
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children and Adults University Hospital of Modena and Reggio Emilia, Modena, Italy
- University Hospital of Modena, Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University of Modena Reggio Emilia, Modena, Italy
| | - Roberto Tonelli
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children and Adults University Hospital of Modena and Reggio Emilia, Modena, Italy
- University Hospital of Modena, Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University of Modena Reggio Emilia, Modena, Italy
- Clinical and Experimental Medicine PhD Program, University of Modena Reggio Emilia, Modena, Italy
| | - Irene Heijink
- University of Groningen, Departments of Pathology & Medical Biology and Pulmonology, GRIAC Research Institute, University Medical Center Groningen, Groningen, Netherlands
| | - Aina Martin Medina
- IdISBa (Institut d’Investigacio Sanitaria Illes Balears), Palma de Mallorca, Spain
| | - Alessandro Marchioni
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children and Adults University Hospital of Modena and Reggio Emilia, Modena, Italy
- University Hospital of Modena, Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University of Modena Reggio Emilia, Modena, Italy
| | - Giulia Bruzzi
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children and Adults University Hospital of Modena and Reggio Emilia, Modena, Italy
- University Hospital of Modena, Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University of Modena Reggio Emilia, Modena, Italy
| | - Ivana Castaniere
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children and Adults University Hospital of Modena and Reggio Emilia, Modena, Italy
- University Hospital of Modena, Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University of Modena Reggio Emilia, Modena, Italy
- Clinical and Experimental Medicine PhD Program, University of Modena Reggio Emilia, Modena, Italy
| | - Dario Andrisani
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children and Adults University Hospital of Modena and Reggio Emilia, Modena, Italy
- University Hospital of Modena, Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University of Modena Reggio Emilia, Modena, Italy
- Clinical and Experimental Medicine PhD Program, University of Modena Reggio Emilia, Modena, Italy
| | - Filippo Gozzi
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children and Adults University Hospital of Modena and Reggio Emilia, Modena, Italy
- University Hospital of Modena, Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University of Modena Reggio Emilia, Modena, Italy
- Clinical and Experimental Medicine PhD Program, University of Modena Reggio Emilia, Modena, Italy
| | - Linda Manicardi
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children and Adults University Hospital of Modena and Reggio Emilia, Modena, Italy
- University Hospital of Modena, Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University of Modena Reggio Emilia, Modena, Italy
| | - Antonio Moretti
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children and Adults University Hospital of Modena and Reggio Emilia, Modena, Italy
- University Hospital of Modena, Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University of Modena Reggio Emilia, Modena, Italy
| | - Stefania Cerri
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children and Adults University Hospital of Modena and Reggio Emilia, Modena, Italy
- University Hospital of Modena, Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University of Modena Reggio Emilia, Modena, Italy
| | - Riccardo Fantini
- University Hospital of Modena, Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University of Modena Reggio Emilia, Modena, Italy
| | - Luca Tabbì
- University Hospital of Modena, Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University of Modena Reggio Emilia, Modena, Italy
| | - Chiara Nani
- University Hospital of Modena, Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University of Modena Reggio Emilia, Modena, Italy
| | - Ilenia Mastrolia
- Laboratory of Cellular Therapy, Program of Cell Therapy and Immuno-Oncology, Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena and Reggio Emilia, Modena, Italy
| | - Daniel J. Weiss
- Department of Medicine, University of Vermont, Burlington, VT, United States
| | - Massimo Dominici
- Oncology Unit, University Hospital of Modena, University of Modena and Reggio Emilia, Modena, Italy
| | - Enrico Clini
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children and Adults University Hospital of Modena and Reggio Emilia, Modena, Italy
- University Hospital of Modena, Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University of Modena Reggio Emilia, Modena, Italy
| |
Collapse
|
29
|
Eleraky AF, Helal GK, Elshafie MF, Ismail RS. Concomitant inhibition of hedgehog signalling and activation of retinoid receptors abolishes bleomycin-induced lung fibrosis. Clin Exp Pharmacol Physiol 2021; 48:1024-1040. [PMID: 33576062 DOI: 10.1111/1440-1681.13486] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 09/03/2020] [Accepted: 02/09/2021] [Indexed: 12/19/2022]
Abstract
Pulmonary fibrosis is a devastating disease with unknown treatment. All-trans retinoic acid (ATRA) attenuates bleomycin-induced lung fibrosis by different mechanistic pathways. However, the role of retinoid receptors in lung fibrosis is still unclear. Forskolin (FSK), a potent inhibitor for the revolutionary hedgehog (Hh) signalling pathway, has a promising antifibrotic effect on other organs such as the liver. This study investigates the interplay between the retinoid receptors modulation and the Hh signalling pathway in bleomycin (BLM)-induced pulmonary fibrosis. Rats were randomised and administrated a single dose of 7.5 mg/kg of BLM alone and with ATRA, FSK and both of them. The effects of FSK and ATRA on lung functions, oxidative stress markers (malondialdehyde [MDA], glutathione [GSH], superoxide dismutase [SOD] and catalase [CAT]), retinoid markers (retinoic acid receptors [RAR] and rexinoid X receptors [RXR]) and Hh signalling markers (patched homolog 1 [Ptch-1], Smoothened [Smo] and glioblastoma-2 [Gli-2]) were assessed. In single therapies, ATRA and FSK ameliorated BLM-induced lung fibrosis. On the contrary, a combination of both drugs synergistically reversed the effect of BLM-induced lung fibrosis, as indicated by the enhancement of lung functions and the decrease of the α-smooth muscle actin (α-SMA) expression and collagen deposition. Additionally, FSK and ATRA ameliorated oxidative stress and inflammation, reduced transforming growth factor β1 (TGF-β1) levels and reversed the effect of BLM on the mRNA expression of Ptch-1, Smo and Gli-2. FSK inhibited the Hh pathway and also activated protein kinase A (PKA) that is, in part, involved in phosphorylation of RAR/RXR heterodimer (a key step in retinoid receptor activation). The present results suggest that a combination of FSK and ATRA has a promising therapeutic value for lung fibrosis management.
Collapse
Affiliation(s)
- Ahmed Fawzy Eleraky
- Department of Pharmacology and Toxicology, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Gouda Kamel Helal
- Department of Pharmacology and Toxicology, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
- Department of Pharmacology, Faculty of Pharmacy, Heliopolis University, Cairo, Egypt
| | - Mohamed F Elshafie
- Department of Pharmacology and Toxicology, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Raed S Ismail
- Department of Pharmacology and Toxicology, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| |
Collapse
|
30
|
Immune Stroma in Lung Cancer and Idiopathic Pulmonary Fibrosis: A Common Biologic Landscape? Int J Mol Sci 2021; 22:ijms22062882. [PMID: 33809111 PMCID: PMC8000622 DOI: 10.3390/ijms22062882] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/06/2021] [Accepted: 03/10/2021] [Indexed: 02/07/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) identifies a specific entity characterized by chronic, progressive fibrosing interstitial pneumonia of unknown cause, still lacking effective therapies. Growing evidence suggests that the biologic processes occurring in IPF recall those which orchestrate cancer onset and progression and these findings have already been exploited for therapeutic purposes. Notably, the incidence of lung cancer in patients already affected by IPF is significantly higher than expected. Recent advances in the knowledge of the cancer immune microenvironment have allowed a paradigm shift in cancer therapy. From this perspective, recent experimental reports suggest a rationale for immune checkpoint inhibition in IPF. Here, we recapitulate the most recent knowledge on lung cancer immune stroma and how it can be translated into the IPF context, with both diagnostic and therapeutic implications.
Collapse
|
31
|
Hou J, Ji J, Chen X, Cao H, Tan Y, Cui Y, Xiang Z, Han X. Alveolar epithelial cell-derived Sonic hedgehog promotes pulmonary fibrosis through OPN-dependent alternative macrophage activation. FEBS J 2020; 288:3530-3546. [PMID: 33314622 DOI: 10.1111/febs.15669] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 11/03/2020] [Accepted: 12/11/2020] [Indexed: 12/16/2022]
Abstract
The alternative activation of macrophages in the lungs has been considered as a major factor promoting pulmonary fibrogenesis; however, the mechanisms underlying this phenomenon are still elusive. In this study, we investigated the interaction between macrophages and fibrosis-associated alveolar epithelial cells using a bleomycin-induced mouse pulmonary fibrosis model and a coculture system. We demonstrated that fibrosis-promoting macrophages are spatially proximate to alveolar type II (ATII) cells, permissive for paracrine-induced macrophage polarization. Importantly, we revealed that fibrosis-associated ATII cells secrete Sonic hedgehog (Shh), a hedgehog pathway ligand, and that ATII cell-derived Shh promotes the development of pulmonary fibrosis by osteopontin (OPN)-mediated macrophage alternative activation. Mechanistically, Shh promotes the secretion of OPN in macrophages via Shh/Gli signaling cascade. The secreted OPN acts on the surrounding macrophages in an autocrine or paracrine manner and induces macrophage alternative activation through activating the JAK2/STAT3 signaling pathway. Tissue samples from idiopathic pulmonary fibrosis patients confirmed the increased expression of Shh and OPN in ATII cells and macrophages, respectively. Together, our study illustrated an alveolar epithelium-dependent mechanism for macrophage M2 polarization and pulmonary fibrogenesis and suggested that targeting Shh may offer a selective and efficient therapeutic strategy for the development and progression of pulmonary fibrosis.
Collapse
Affiliation(s)
- Jiwei Hou
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, China.,Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, China
| | - Jie Ji
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, China.,Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, China
| | - Xiang Chen
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, China.,Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, China
| | - Honghui Cao
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, China.,Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, China
| | - Yi Tan
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, China.,Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, China
| | - Yu Cui
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, China.,Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, China
| | - Zou Xiang
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, China
| | - Xiaodong Han
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, China.,Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, China
| |
Collapse
|
32
|
Froidure A, Marchal-Duval E, Homps-Legrand M, Ghanem M, Justet A, Crestani B, Mailleux A. Chaotic activation of developmental signalling pathways drives idiopathic pulmonary fibrosis. Eur Respir Rev 2020; 29:29/158/190140. [PMID: 33208483 DOI: 10.1183/16000617.0140-2019] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 05/25/2020] [Indexed: 12/28/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is characterised by an important remodelling of lung parenchyma. Current evidence indicates that the disease is triggered by alveolar epithelium activation following chronic lung injury, resulting in alveolar epithelial type 2 cell hyperplasia and bronchiolisation of alveoli. Signals are then delivered to fibroblasts that undergo differentiation into myofibroblasts. These changes in lung architecture require the activation of developmental pathways that are important regulators of cell transformation, growth and migration. Among others, aberrant expression of profibrotic Wnt-β-catenin, transforming growth factor-β and Sonic hedgehog pathways in IPF fibroblasts has been assessed. In the present review, we will discuss the transcriptional integration of these different pathways during IPF as compared with lung early ontogeny. We will challenge the hypothesis that aberrant transcriptional integration of these pathways might be under the control of a chaotic dynamic, meaning that a small change in baseline conditions could be sufficient to trigger fibrosis rather than repair in a chronically injured lung. Finally, we will discuss some potential opportunities for treatment, either by suppressing deleterious mechanisms or by enhancing the expression of pathways involved in lung repair. Whether developmental mechanisms are involved in repair processes induced by stem cell therapy will also be discussed.
Collapse
Affiliation(s)
- Antoine Froidure
- Institut National de la Santé et de la Recherche Médical, UMR1152, Labex Inflamex, DHU FIRE, Université de Paris, Faculté de médecine Xavier Bichat, Paris, France.,Institut de Recherche Expérimentale et Clinique, Pôle de Pneumologie, Université catholique de Louvain, Belgium Service de pneumologie, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Emmeline Marchal-Duval
- Institut National de la Santé et de la Recherche Médical, UMR1152, Labex Inflamex, DHU FIRE, Université de Paris, Faculté de médecine Xavier Bichat, Paris, France
| | - Meline Homps-Legrand
- Institut National de la Santé et de la Recherche Médical, UMR1152, Labex Inflamex, DHU FIRE, Université de Paris, Faculté de médecine Xavier Bichat, Paris, France
| | - Mada Ghanem
- Institut National de la Santé et de la Recherche Médical, UMR1152, Labex Inflamex, DHU FIRE, Université de Paris, Faculté de médecine Xavier Bichat, Paris, France.,Assistance Publique des Hôpitaux de Paris, Hôpital Bichat, Service de Pneumologie A, DHU FIRE, Paris, France
| | - Aurélien Justet
- Institut National de la Santé et de la Recherche Médical, UMR1152, Labex Inflamex, DHU FIRE, Université de Paris, Faculté de médecine Xavier Bichat, Paris, France.,Assistance Publique des Hôpitaux de Paris, Hôpital Bichat, Service de Pneumologie A, DHU FIRE, Paris, France.,Service de pneumologie, CHU de Caen, Caen, France
| | - Bruno Crestani
- Institut National de la Santé et de la Recherche Médical, UMR1152, Labex Inflamex, DHU FIRE, Université de Paris, Faculté de médecine Xavier Bichat, Paris, France.,Assistance Publique des Hôpitaux de Paris, Hôpital Bichat, Service de Pneumologie A, DHU FIRE, Paris, France
| | - Arnaud Mailleux
- Institut National de la Santé et de la Recherche Médical, UMR1152, Labex Inflamex, DHU FIRE, Université de Paris, Faculté de médecine Xavier Bichat, Paris, France
| |
Collapse
|
33
|
Gli1 + mesenchymal stromal cells form a pathological niche to promote airway progenitor metaplasia in the fibrotic lung. Nat Cell Biol 2020; 22:1295-1306. [PMID: 33046884 PMCID: PMC7642162 DOI: 10.1038/s41556-020-00591-9] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 09/09/2020] [Indexed: 12/14/2022]
Abstract
Aberrant epithelial reprogramming can induce metaplastic differentiation at sites of tissue injury, culminating in transformed barriers composed of scar and metaplastic epithelium. While the plasticity of epithelial stem cells is well-characterized, the identity and role of the niche has not been delineated in metaplasia. Here we show that Gli1+ mesenchymal stromal cells (MSCs), previously shown to contribute to myofibroblasts during scarring, promote metaplastic differentiation of airway progenitors into KRT5+ basal cells. During fibrotic repair, Gli1+ MSCs integrate hedgehog activation to upregulate BMP antagonism in the progenitor niche that promotes metaplasia. Restoring the balance towards BMP activation attenuated metaplastic KRT5+ differentiation while promoting adaptive alveolar differentiation into SFTPC+ epithelium. Finally, fibrotic human lungs demonstrate altered BMP activation in the metaplastic epithelium. These findings show that Gli1+ MSCs integrate hedgehog signaling as a rheostat to control BMP activation in the progenitor niche to determine regenerative outcome in fibrosis.
Collapse
|
34
|
MiR-200a inversely correlates with Hedgehog and TGF-β canonical/non-canonical trajectories to orchestrate the anti-fibrotic effect of Tadalafil in a bleomycin-induced pulmonary fibrosis model. Inflammopharmacology 2020; 29:167-182. [PMID: 32914382 DOI: 10.1007/s10787-020-00748-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 08/25/2020] [Indexed: 12/17/2022]
Abstract
Few reports have documented the ability of phosphodiesterase-5 inhibitors (PDE-5-Is) to ameliorate idiopathic pulmonary fibrosis (IPF) mainly by their anti-inflammatory/antioxidant capacities, without unveiling the possible molecular mechanisms involved. Because of the recent role of miR-200 family and Sonic Hedgehog (SHH) trajectory in IPF, we have studied their impact on the anti-fibrotic potential of tadalafil against bleomycin-induced pulmonary fibrosis. Animals were allocated into normal-control, bleomycin-fibrotic control, and bleomycin post-treated with tadalafil or dexamethasone, as the reference drug. On the molecular level, tadalafil has reverted the bleomycin effect on all the assessed parameters. Tadalafil upregulated the gene expression of miR-200a, but decreased the smoothened (SMO) and the transcription factors glioma-associated oncogene homolog (Gli-1, Gli-2), members of SHH pathway. Additionally, tadalafil ebbed transforming growth factor (TGF)-β, its canonical (SMAD-3/alpha smooth muscle actin [α-SMA] and Snail), and non-canonical (p-Akt/p-Forkhead box O3 (FOXO3) a) pathways. Besides, a strong negative correlation between miR-200a and the analyzed pathways was proved. The effect of tadalafil was further confirmed by the improved lung structure and the reduced Ashcroft score/collagen deposition. The results were comparable to that of dexamethasone. In conclusion, our study has highlighted the involvement of miR-200a in the anti-fibrotic effect of tadalafil with the inhibition of SHH hub and the pro-fibrotic pathways (TGF-β/ SMAD-3/α-SMA, Snail and p-AKT/p-FOXO3a). Potential anti-fibrotic effect of tadalafil. Modulation of miR200a/SHH/canonical and non-canonical TGF-β trajectories. → : stimulatory effect; ┴: inhibitory effect.
Collapse
|
35
|
Ancel J, Belgacemi R, Perotin JM, Diabasana Z, Dury S, Dewolf M, Bonnomet A, Lalun N, Birembaut P, Polette M, Deslée G, Dormoy V. Sonic hedgehog signalling as a potential endobronchial biomarker in COPD. Respir Res 2020; 21:207. [PMID: 32767976 PMCID: PMC7412648 DOI: 10.1186/s12931-020-01478-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 08/02/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The hedgehog (HH) pathway has been associated with chronic obstructive pulmonary disease (COPD) in genome-wide association studies and recent studies suggest that HH signalling could be altered in COPD. We therefore used minimally invasive endobronchial procedures to assess activation of the HH pathway including the main transcription factor, Gli2, and the ligand, Sonic HH (Shh). METHODS Thirty non-COPD patients and 28 COPD patients were included. Bronchial brushings, bronchoalveolar lavage fluid (BALF) and bronchial biopsies were obtained from fiberoptic bronchoscopy. Characterization of cell populations and subcellular localization were evaluated by immunostaining. ELISA and RNAseq analysis were performed to identify Shh proteins in BAL and transcripts on lung tissues from non-COPD and COPD patients with validation in an external and independent cohort. RESULTS Compared to non-COPD patients, COPD patients exhibited a larger proportion of basal cells in bronchial brushings (26 ± 11% vs 13 ± 6%; p < 0.0001). Airway basal cells of COPD subjects presented less intense nuclear staining for Gli2 in bronchial brushings and biopsies (p < 0.05). Bronchial BALF from COPD patients contained lower Shh concentrations than non-COPD BALF (12.5 vs 40.9 pg/mL; p = 0.002); SHH transcripts were also reduced in COPD lungs in the validation cohort (p = 0.0001). CONCLUSION This study demonstrates the feasibility of assessing HH pathway activation in respiratory samples collected by bronchoscopy and identifies impaired bronchial epithelial HH signalling in COPD.
Collapse
Affiliation(s)
- Julien Ancel
- University of Reims Champagne-Ardenne, Inserm, P3Cell UMR-S 1250, SFR CAP-SANTE, 45 rue Cognacq-Jay, 51092, Reims, France.,Department of Pulmonary Medicine, University Hospital of Reims, Hôpital Maison Blanche, 51092, Reims, France
| | - Randa Belgacemi
- University of Reims Champagne-Ardenne, Inserm, P3Cell UMR-S 1250, SFR CAP-SANTE, 45 rue Cognacq-Jay, 51092, Reims, France
| | - Jeanne-Marie Perotin
- University of Reims Champagne-Ardenne, Inserm, P3Cell UMR-S 1250, SFR CAP-SANTE, 45 rue Cognacq-Jay, 51092, Reims, France.,Department of Pulmonary Medicine, University Hospital of Reims, Hôpital Maison Blanche, 51092, Reims, France
| | - Zania Diabasana
- University of Reims Champagne-Ardenne, Inserm, P3Cell UMR-S 1250, SFR CAP-SANTE, 45 rue Cognacq-Jay, 51092, Reims, France
| | - Sandra Dury
- Department of Pulmonary Medicine, University Hospital of Reims, Hôpital Maison Blanche, 51092, Reims, France
| | - Maxime Dewolf
- Department of Pulmonary Medicine, University Hospital of Reims, Hôpital Maison Blanche, 51092, Reims, France
| | - Arnaud Bonnomet
- University of Reims Champagne-Ardenne, Inserm, P3Cell UMR-S 1250, SFR CAP-SANTE, 45 rue Cognacq-Jay, 51092, Reims, France.,Platform of Cellular and Tissular Imaging (PICT), 51097, Reims, France
| | - Nathalie Lalun
- University of Reims Champagne-Ardenne, Inserm, P3Cell UMR-S 1250, SFR CAP-SANTE, 45 rue Cognacq-Jay, 51092, Reims, France
| | - Philippe Birembaut
- University of Reims Champagne-Ardenne, Inserm, P3Cell UMR-S 1250, SFR CAP-SANTE, 45 rue Cognacq-Jay, 51092, Reims, France.,University Hospital of Reims, Hôpital Maison Blanche, Laboratoire de Biopathologie, 51092, Reims, France
| | - Myriam Polette
- University of Reims Champagne-Ardenne, Inserm, P3Cell UMR-S 1250, SFR CAP-SANTE, 45 rue Cognacq-Jay, 51092, Reims, France.,University Hospital of Reims, Hôpital Maison Blanche, Laboratoire de Biopathologie, 51092, Reims, France
| | - Gaëtan Deslée
- University of Reims Champagne-Ardenne, Inserm, P3Cell UMR-S 1250, SFR CAP-SANTE, 45 rue Cognacq-Jay, 51092, Reims, France.,Department of Pulmonary Medicine, University Hospital of Reims, Hôpital Maison Blanche, 51092, Reims, France
| | - Valérian Dormoy
- University of Reims Champagne-Ardenne, Inserm, P3Cell UMR-S 1250, SFR CAP-SANTE, 45 rue Cognacq-Jay, 51092, Reims, France.
| |
Collapse
|
36
|
Gaikwad AV, Eapen MS, McAlinden KD, Chia C, Larby J, Myers S, Dey S, Haug G, Markos J, Glanville AR, Sohal SS. Endothelial to mesenchymal transition (EndMT) and vascular remodeling in pulmonary hypertension and idiopathic pulmonary fibrosis. Expert Rev Respir Med 2020; 14:1027-1043. [PMID: 32659128 DOI: 10.1080/17476348.2020.1795832] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
INTRODUCTION Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive, and irreversible fibrotic disease associated with respiratory failure. The disease remains idiopathic, but repeated alveolar epithelium injury, disruption of alveolar-capillary integrity, abnormal vascular repair, and pulmonary vascular remodeling are considered possible pathogenic mechanisms. Also, the development of comorbidities such as pulmonary hypertension (PH) could further impact disease outcome, quality of life and survival rates in IPF. AREAS COVERED The current review provides a comprehensive literature survey of the mechanisms involved in the development and manifestations of IPF and their links to PH pathology. This review also provides the current understanding of molecular mechanisms that link the two pathologies and will specifically decipher the role of endothelial to mesenchymal transition (EndMT) along with the possible triggers of EndMT. The possibility of targeting EndMT as a therapeutic option in IPF is discussed. EXPERT OPINION With a steady increase in prevalence and mortality, IPF is no longer considered a rare disease. Thus, it is of utmost importance and urgency that the underlying profibrotic pathways and mechanisms are fully understood, to enable the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Archana Vijay Gaikwad
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania , Launceston, Australia
| | - Mathew Suji Eapen
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania , Launceston, Australia
| | - Kielan D McAlinden
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania , Launceston, Australia
| | - Collin Chia
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania , Launceston, Australia.,Department of Respiratory Medicine, Launceston General Hospital , Launceston, Australia
| | - Josie Larby
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania , Launceston, Australia.,Department of Respiratory Medicine, Launceston General Hospital , Launceston, Australia
| | - Stephen Myers
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania , Launceston, Australia
| | - Surajit Dey
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania , Launceston, Australia
| | - Greg Haug
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania , Launceston, Australia.,Department of Respiratory Medicine, Launceston General Hospital , Launceston, Australia
| | - James Markos
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania , Launceston, Australia.,Department of Respiratory Medicine, Launceston General Hospital , Launceston, Australia
| | - Allan R Glanville
- Lung Transplant Unit, Department of Thoracic Medicine, St Vincent's Hospital , Sydney, Australia
| | - Sukhwinder Singh Sohal
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania , Launceston, Australia
| |
Collapse
|
37
|
Schönauer R, Baatz S, Nemitz-Kliemchen M, Frank V, Petzold F, Sewerin S, Popp B, Münch J, Neuber S, Bergmann C, Halbritter J. Matching clinical and genetic diagnoses in autosomal dominant polycystic kidney disease reveals novel phenocopies and potential candidate genes. Genet Med 2020; 22:1374-1383. [PMID: 32398770 PMCID: PMC7394878 DOI: 10.1038/s41436-020-0816-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 04/07/2020] [Accepted: 04/17/2020] [Indexed: 12/18/2022] Open
Abstract
Purpose Autosomal dominant polycystic kidney disease (ADPKD) represents the most common hereditary nephropathy. Despite growing evidence for genetic heterogeneity, ADPKD diagnosis is still primarily based upon clinical imaging criteria established before discovery of additional PKD genes. This study aimed at assessing the diagnostic value of genetic verification in clinical ADPKD. Methods In this prospective, diagnostic trial, 100 families with clinically diagnosed ADPKD were analyzed by PKD gene panel and multiplex ligation-dependent probe amplification (MLPA); exome sequencing (ES) was performed in panel/MLPA-negative families. Results Diagnostic PKD1/2 variants were identified in 81 families (81%), 70 of which in PKD1 and 11 in PKD2. PKD1 variants of unknown significance were detected in another 9 families (9%). Renal survival was significantly worse upon PKD1 truncation versus nontruncation and PKD2 alteration. Ten percent of the cohort were PKD1/2-negative, revealing alternative genetic diagnoses such as autosomal recessive PKD, Birt–Hogg–Dubé syndrome, and ALG9-associated PKD. In addition, among unsolved cases, ES yielded potential novel PKD candidates. Conclusion By illustrating vast genetic heterogeneity, this study demonstrates the value of genetic testing in a real-world PKD cohort by diagnostic verification, falsification, and disease prediction. In the era of specific treatment for fast progressive ADPKD, genetic confirmation should form the basis of personalized patient care.
Collapse
Affiliation(s)
- Ria Schönauer
- Department of Internal Medicine, Division of Nephrology, University Hospital Leipzig, Leipzig, Germany
| | - Sebastian Baatz
- Department of Internal Medicine, Division of Nephrology, University Hospital Leipzig, Leipzig, Germany
| | - Melanie Nemitz-Kliemchen
- Department of Internal Medicine, Division of Nephrology, University Hospital Leipzig, Leipzig, Germany
| | - Valeska Frank
- Institute of Human Genetics, Bioscientia, Ingelheim, Germany.,Medizinische Genetik Mainz, Limbach Genetics, Mainz, Germany
| | - Friederike Petzold
- Department of Internal Medicine, Division of Nephrology, University Hospital Leipzig, Leipzig, Germany
| | - Sebastian Sewerin
- Department of Internal Medicine, Division of Nephrology, University Hospital Leipzig, Leipzig, Germany
| | - Bernt Popp
- Institute of Human Genetics, University of Leipzig, Leipzig, Germany
| | - Johannes Münch
- Department of Internal Medicine, Division of Nephrology, University Hospital Leipzig, Leipzig, Germany
| | - Steffen Neuber
- Institute of Human Genetics, Bioscientia, Ingelheim, Germany
| | - Carsten Bergmann
- Institute of Human Genetics, Bioscientia, Ingelheim, Germany.,Medizinische Genetik Mainz, Limbach Genetics, Mainz, Germany.,Department of Medicine, Division of Nephrology, University Hospital Freiburg, Freiburg, Germany
| | - Jan Halbritter
- Department of Internal Medicine, Division of Nephrology, University Hospital Leipzig, Leipzig, Germany.
| |
Collapse
|
38
|
Chanda D, Thannickal VJ. Modeling Fibrosis in Three-Dimensional Organoids Reveals New Epithelial Restraints on Fibroblasts. Am J Respir Cell Mol Biol 2020; 61:556-557. [PMID: 31091962 DOI: 10.1165/rcmb.2019-0153ed] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Diptiman Chanda
- Department of MedicineUniversity of Alabama at BirminghamBirmingham, Alabama
| | - Victor J Thannickal
- Department of MedicineUniversity of Alabama at BirminghamBirmingham, Alabama
| |
Collapse
|
39
|
Parimon T, Yao C, Stripp BR, Noble PW, Chen P. Alveolar Epithelial Type II Cells as Drivers of Lung Fibrosis in Idiopathic Pulmonary Fibrosis. Int J Mol Sci 2020; 21:E2269. [PMID: 32218238 PMCID: PMC7177323 DOI: 10.3390/ijms21072269] [Citation(s) in RCA: 245] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 03/15/2020] [Accepted: 03/19/2020] [Indexed: 12/19/2022] Open
Abstract
: Alveolar epithelial type II cells (AT2) are a heterogeneous population that have critical secretory and regenerative roles in the alveolus to maintain lung homeostasis. However, impairment to their normal functional capacity and development of a pro-fibrotic phenotype has been demonstrated to contribute to the development of idiopathic pulmonary fibrosis (IPF). A number of factors contribute to AT2 death and dysfunction. As a mucosal surface, AT2 cells are exposed to environmental stresses that can have lasting effects that contribute to fibrogenesis. Genetical risks have also been identified that can cause AT2 impairment and the development of lung fibrosis. Furthermore, aging is a final factor that adds to the pathogenic changes in AT2 cells. Here, we will discuss the homeostatic role of AT2 cells and the studies that have recently defined the heterogeneity of this population of cells. Furthermore, we will review the mechanisms of AT2 death and dysfunction in the context of lung fibrosis.
Collapse
Affiliation(s)
- Tanyalak Parimon
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Women’s Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Changfu Yao
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Women’s Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Barry R Stripp
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Women’s Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Paul W Noble
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Women’s Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Peter Chen
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Women’s Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| |
Collapse
|
40
|
Cao H, Chen X, Hou J, Wang C, Xiang Z, Shen Y, Han X. The Shh/Gli signaling cascade regulates myofibroblastic activation of lung-resident mesenchymal stem cells via the modulation of Wnt10a expression during pulmonary fibrogenesis. J Transl Med 2020; 100:363-377. [PMID: 31541181 DOI: 10.1038/s41374-019-0316-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 08/16/2019] [Accepted: 08/16/2019] [Indexed: 01/08/2023] Open
Abstract
Lung-resident mesenchymal stem cells (LR-MSCs) are important regulators of lung repair and regeneration, and evidence suggests that this cell population also plays a vital role in fibrosis. Crosstalk between sonic hedgehog (Shh) signaling and wingless/integrated (Wnt) has been demonstrated in idiopathic pulmonary fibrosis (IPF). However, the underlying correlation between LR-MSCs and the Shh-Wnt signaling cascade remains poorly understood. Here, we identified Wnt10a as a key factor in pulmonary fibrosis. Using a bleomycin mouse model, we found that highly expressed Wnt10a was secreted by LR-MSCs undergoing myofibroblastic differentiation. LR-MSCs with myofibroblast characteristics isolated from fibrotic lungs exhibited increased Shh pathway activity, suggesting their role as Shh targets. In vitro, LR-MSCs responded to stimulation by recombinant Shh, acquiring a myofibroblast phenotype. We further demonstrated that the Shh/glioblastoma (Gli) system machinery regulated LR-MSC-to-myofibroblast transition and pulmonary fibrosis via manipulation of Wnt/β-catenin signaling. Accordingly, inhibition of the Shh-Wnt signaling cascade prevented LR-MSC transformation into myofibroblasts and ameliorated pulmonary fibrotic lesions. Moreover, induction of Wnt10a expression and activation of Shh/Gli signaling were confirmed in human pulmonary fibrosis. In summary, this study linking the Shh-Wnt signaling cascade with LR-MSC fibrogenic activity furthered the current understanding of pulmonary fibrosis pathogenesis and might provide a new perspective in the development of treatment strategies for IPF.
Collapse
Affiliation(s)
- Honghui Cao
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, 210093, Nanjing, China.,Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, 210093, Nanjing, China
| | - Xiang Chen
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, 210093, Nanjing, China.,Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, 210093, Nanjing, China
| | - Jiwei Hou
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, 210093, Nanjing, China.,Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, 210093, Nanjing, China
| | - Cong Wang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of New Drug Discovery, China Pharmaceutical University, 24 Tong Jia Xiang, 210009, Nanjing, China
| | - Zou Xiang
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Yi Shen
- Department of Cardiothoracic Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China.
| | - Xiaodong Han
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, 210093, Nanjing, China. .,Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, 210093, Nanjing, China.
| |
Collapse
|
41
|
Belgacemi R, Luczka E, Ancel J, Diabasana Z, Perotin JM, Germain A, Lalun N, Birembaut P, Dubernard X, Mérol JC, Delepine G, Polette M, Deslée G, Dormoy V. Airway epithelial cell differentiation relies on deficient Hedgehog signalling in COPD. EBioMedicine 2020; 51:102572. [PMID: 31877414 PMCID: PMC6931110 DOI: 10.1016/j.ebiom.2019.11.033] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 10/11/2019] [Accepted: 11/20/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Hedgehog (HH) pathway is constantly under scrutiny in the context of organ development. Lung morphogenesis requires HH signalling which participates thereafter to the pulmonary homeostasis by regulating epithelial cell quiescence and repair. Since epithelial remodelling is a hallmark of Chronic Obstructive Pulmonary Disease (COPD), we investigated whether the main molecular actors of HH pathway participate to airway epithelial cell differentiation and we analysed their alterations in COPD patients. METHODS Sonic HH (Shh) secretion was assessed by ELISA in airway epithelial cell (AEC) air-liquid interface culture supernatants. HH pathway activation was evaluated by RT-qPCR, western blot and immunostaining. Inhibition of HH signalling was achieved upon Shh chelation during epithelial cell differentiation. HH pathway core components localization was investigated in lung tissues from non-COPD and COPD patients. FINDINGS We demonstrate that progenitors of AEC produced Shh responsible for the activation of HH signalling during the process of differentiation. Preventing the ligand-induced HH activation led to the establishment of a remodelled epithelium with increased number of basal cells and reduced ciliogenesis. Gli2 activating transcription factor was demonstrated as a key-element in the regulation of AEC differentiation. More importantly, Gli2 and Smo were lost in AEC from COPD patients. INTERPRETATION Our data suggest that HH pathway is crucial for airway epithelial cell differentiation and highlight its role in COPD-associated epithelial remodelling.
Collapse
Affiliation(s)
- Randa Belgacemi
- Université de Reims Champagne-Ardenne, INSERM, P3Cell UMR-S1250, SFR CAP-SANTE, Reims 51097, France
| | - Emilie Luczka
- Université de Reims Champagne-Ardenne, INSERM, P3Cell UMR-S1250, SFR CAP-SANTE, Reims 51097, France
| | - Julien Ancel
- Université de Reims Champagne-Ardenne, INSERM, P3Cell UMR-S1250, SFR CAP-SANTE, Reims 51097, France; CHU Reims, Hôpital Maison Blanche, Service de pneumologie, Reims 51092, France
| | - Zania Diabasana
- Université de Reims Champagne-Ardenne, INSERM, P3Cell UMR-S1250, SFR CAP-SANTE, Reims 51097, France
| | - Jeanne-Marie Perotin
- Université de Reims Champagne-Ardenne, INSERM, P3Cell UMR-S1250, SFR CAP-SANTE, Reims 51097, France; CHU Reims, Hôpital Maison Blanche, Service de pneumologie, Reims 51092, France
| | - Adeline Germain
- Université de Reims Champagne-Ardenne, INSERM, P3Cell UMR-S1250, SFR CAP-SANTE, Reims 51097, France
| | - Nathalie Lalun
- Université de Reims Champagne-Ardenne, INSERM, P3Cell UMR-S1250, SFR CAP-SANTE, Reims 51097, France
| | - Philippe Birembaut
- Université de Reims Champagne-Ardenne, INSERM, P3Cell UMR-S1250, SFR CAP-SANTE, Reims 51097, France; CHU Reims, Hôpital Maison Blanche, Laboratoire de biopathologie, Reims 51092, France
| | - Xavier Dubernard
- CHU Reims, Hôpital Robert Debré, Service d'oto-rhino-laryngologie, Reims 51092, France
| | - Jean-Claude Mérol
- Université de Reims Champagne-Ardenne, INSERM, P3Cell UMR-S1250, SFR CAP-SANTE, Reims 51097, France; CHU Reims, Hôpital Robert Debré, Service d'oto-rhino-laryngologie, Reims 51092, France
| | - Gonzague Delepine
- Université de Reims Champagne-Ardenne, INSERM, P3Cell UMR-S1250, SFR CAP-SANTE, Reims 51097, France; CHU Reims, Hôpital Robert Debré, Service de chirurgie cardio-vasculaire et thoracique, Reims 51092, France
| | - Myriam Polette
- Université de Reims Champagne-Ardenne, INSERM, P3Cell UMR-S1250, SFR CAP-SANTE, Reims 51097, France; CHU Reims, Hôpital Maison Blanche, Laboratoire de biopathologie, Reims 51092, France
| | - Gaëtan Deslée
- Université de Reims Champagne-Ardenne, INSERM, P3Cell UMR-S1250, SFR CAP-SANTE, Reims 51097, France; CHU Reims, Hôpital Maison Blanche, Service de pneumologie, Reims 51092, France
| | - Valérian Dormoy
- Université de Reims Champagne-Ardenne, INSERM, P3Cell UMR-S1250, SFR CAP-SANTE, Reims 51097, France.
| |
Collapse
|
42
|
Intraflagellar transport 20: New target for the treatment of ciliopathies. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1867:118641. [PMID: 31893523 DOI: 10.1016/j.bbamcr.2019.118641] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 12/17/2019] [Accepted: 12/25/2019] [Indexed: 11/22/2022]
Abstract
Cilia are ubiquitous in mammalian cells. The formation and assembly of cilia depend on the normal functioning of the ciliary transport system. In recent years, various proteins involved in the intracellular transport of the cilium have attracted attention, as many diseases are caused by disorders in cilia formation. Intraflagellar transport 20 (IFT20) is a subunit of IFT complex B, which contains approximately 20 protein particles. Studies have shown that defects in IFT20 are associated with numerous system -related diseases, such as those of the urinary system, cardiovascular system, skeletal system, nervous system, immune system, reproductive system, and respiratory system. This review summarizes current research on IFT20.We describe studies related to the role of IFT20 in cilia formation and discuss new targets for treating diseases associated with ciliary dysplasia.
Collapse
|
43
|
Giarretta I, Gaetani E, Bigossi M, Tondi P, Asahara T, Pola R. The Hedgehog Signaling Pathway in Ischemic Tissues. Int J Mol Sci 2019; 20:ijms20215270. [PMID: 31652910 PMCID: PMC6862352 DOI: 10.3390/ijms20215270] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 10/22/2019] [Indexed: 12/19/2022] Open
Abstract
Hedgehog (Hh) proteins are prototypical morphogens known to regulate epithelial/mesenchymal interactions during embryonic development. In addition to its pivotal role in embryogenesis, the Hh signaling pathway may be recapitulated in post-natal life in a number of physiological and pathological conditions, including ischemia. This review highlights the involvement of Hh signaling in ischemic tissue regeneration and angiogenesis, with particular attention to the heart, the brain, and the skeletal muscle. Updated information on the potential role of the Hh pathway as a therapeutic target in the ischemic condition is also presented.
Collapse
Affiliation(s)
- Igor Giarretta
- Department of Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy.
| | - Eleonora Gaetani
- Department of Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy.
| | - Margherita Bigossi
- Department of Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy.
| | - Paolo Tondi
- Department of Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy.
| | - Takayuki Asahara
- Department of Regenerative Medicine Science, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan.
| | - Roberto Pola
- Department of Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy.
| |
Collapse
|
44
|
Zou Y, Song W, Zhou L, Mao Y, Hong W. House dust mite induces Sonic hedgehog signaling that mediates epithelial‑mesenchymal transition in human bronchial epithelial cells. Mol Med Rep 2019; 20:4674-4682. [PMID: 31702025 PMCID: PMC6797970 DOI: 10.3892/mmr.2019.10707] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 09/09/2019] [Indexed: 12/20/2022] Open
Abstract
Epithelial‑mesenchymal transition (EMT) provides a valuable source of fibroblasts that produce extracellular matrix in airway walls. The Sonic hedgehog (SHH) signaling pathway plays an essential role in regulating tissue turnover and homeostasis. SHH is strikingly upregulated in the bronchial epithelia during asthma. Snail1 is a major target of SHH signaling, which regulates EMT and fibroblast motility. The present study was designed to ascertain whether the combination of house dust mite (HDM) and transforming growth factor β1 (TGF‑β1) could induce EMT via the SHH signaling pathway in human bronchial epithelial cells (HBECs). HBEC cultures were treated with HDM/TGF‑β1 for different periods of time. The involvement of SHH signaling and EMT biomarkers was evaluated by quantitative real‑time PCR, western blotting and immunofluorescence staining. Small‑interfering RNA (siRNA) for glioma‑associated antigen‑1 (Gli1) or cyclopamine was used to inhibit SHH signaling in HBECs. HBECs stimulated by HDM/TGF‑β1 exhibited morphological features of EMT. E‑cadherin (an epithelial marker) was decreased after a 72‑h exposure to HDM/TGF‑β1 compared to that in the control cells, and the expression of type I collagen and FSP1 (mesenchymal markers) was increased. HDM/TGF‑β1 activated the SHH signaling pathway in HBECs, which led to Gli1 nuclear translocation and the transcriptional activation of Snail1 expression. Moreover, gene silencing or the pharmacological inhibition of Gli1 ameliorated EMT. In summary, these findings suggest that HDM/TGF‑β1 may induce EMT in HBECs via an SHH signaling mechanism. Inhibition of SHH signaling may be a novel therapeutic method for preventing airway remodeling in asthma.
Collapse
Affiliation(s)
- Yimin Zou
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Wenjuan Song
- Department of Economics, School of Economics and Management, Zhejiang Sci‑Tech University, Hangzhou, Zhejiang 310018, P.R. China
| | - Lingxiao Zhou
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Yanxiong Mao
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Wei Hong
- Biological Laboratory Center, Guangzhou Institute of Biomedicine and Health Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, Guangdong 510030, P.R. China
| |
Collapse
|
45
|
Li J, Zong D, Chen Y, Chen P. Anti-apoptotic effect of the Shh signaling pathway in cigarette smoke extract induced MLE 12 apoptosis. Tob Induc Dis 2019; 17:49. [PMID: 31516492 PMCID: PMC6662799 DOI: 10.18332/tid/109753] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 05/07/2019] [Accepted: 05/31/2019] [Indexed: 12/29/2022] Open
Abstract
INTRODUCTION Many studies have shown that COPD is associated with apoptosis of bronchial or alveolar epithelial cells. Alveolar type II epithelial cells (AECII) play an important role in the pathogenetic process. Cigarette smoke extract (CSE) can induce apoptosis of AECII. The Sonic hedgehog (Shh) pathway is involved in many adult lung diseases. We aimed to verify the anti-apoptotic effect of Shh in the AECII apoptosis induced by CSE. METHODS Mouse lung epithelial type II cells, MLE 12, were treated by 5% CSE for 24 hours. Apoptosis was measured using flow cytometry and expression of the anti-apoptotic factor BCL-2. The role of the hedgehog pathway in cell apoptosis was assessed by real-time RT-PCT and western blotting to measure the expression of Sonic hedgehog, Patched 1, and Gli1. Recombinant mouse Sonic hedgehog was used to overexpress the Shh pathway. RESULTS CSE could induce MLE 12 apoptosis. Sonic hedgehog, Patched 1 and the Gli1 were decreased in the CSE induced MLE 12 apoptosis. Overexpression Shh could partially reverse the CSE induced apoptosis. CONCLUSIONS Activation of the Shh pathway may relieve the CSE induced MLE 12 apoptosis.
Collapse
Affiliation(s)
- Jinhua Li
- Department of Respiratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, China.,Research Unit of Respiratory Disease, Central South University, Changsha, China.,Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, China
| | - Dandan Zong
- Department of Respiratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, China.,Research Unit of Respiratory Disease, Central South University, Changsha, China.,Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, China
| | - Yan Chen
- Department of Respiratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, China.,Research Unit of Respiratory Disease, Central South University, Changsha, China.,Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, China
| | - Ping Chen
- Department of Respiratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, China.,Research Unit of Respiratory Disease, Central South University, Changsha, China.,Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, China
| |
Collapse
|
46
|
Xu F, Xu F, Xie S, Zuo W, Wen G, Zhao T, Wan X. MicroRNA-448 overexpression inhibits fibroblast proliferation and collagen synthesis and promotes cell apoptosis via targeting ABCC3 through the JNK signaling pathway. J Cell Physiol 2019; 235:1374-1385. [PMID: 31506947 DOI: 10.1002/jcp.29056] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 06/12/2019] [Indexed: 01/14/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a condition that results in the progressive deterioration of lung function with poor prognosis. The current study is aimed at exploring how microRNA-448 (miR-448) targeting ABCC3 affects fibroblast proliferation, apoptosis, and collagen synthesis of mice with IPF via the Jun N-terminal kinase (JNK) signaling pathway. Bioinformatics and dual-luciferase polymerase chain reaction were used to predict the relationship of miR-448 and ABCC3. The expression of miR-448 and ABCC3 was detected in IPF tissues. Using IPF mouse models, lung fibroblasts for the experiments were treated with miR-448 mimic, miR-448 inhibitor, si-ABCC3, or SP600125 (inhibitor of JNK) to evaluate the cell proliferation and apoptosis in response to miR-448. Reverse transcription quantitative polymerase chain reaction and western blot analysis were used to identify the expression of miR-448, ABCC3, and the activation of the JNK signaling pathway. ABCC3 was targeted and downregulated by miR-448 based on bioinformatics prediction and dual-luciferase reporter gene assay. Additionally, miR-448 was found to be highly expressed in IPF lung tissues with low expression levels of ABCC3. In response to the treatment of miR-448 mimic or si-ABCC3, lung fibroblasts exhibited decreased cell proliferation and increased apoptotic rates, whereas the miR-448 inhibitor reversed the conditions. Notably, we also found that miR-448 mimic inhibited the JNK signaling pathway. In conclusion, by using miR-448 to target and downregulate ABCC3 to block the JNK signaling pathway in mice with IPF, we found an increase in fibroblast apoptosis, inhibited cell proliferation, and decreased collagen synthesis of fibroblasts.
Collapse
Affiliation(s)
- Feihong Xu
- Clinical Medicine, Queen Mary College, Nanchang University, Nanchang, China
| | - Fei Xu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Shiguang Xie
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Wei Zuo
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Guilan Wen
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Tiantian Zhao
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xuan Wan
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
47
|
Liang R, Kagwiria R, Zehender A, Dees C, Bergmann C, Ramming A, Krasowska D, Michalska-Jakubus M, Kreuter A, Kraner ME, Schett G, Distler JHW. Acyltransferase skinny hedgehog regulates TGFβ-dependent fibroblast activation in SSc. Ann Rheum Dis 2019; 78:1269-1273. [PMID: 31177096 DOI: 10.1136/annrheumdis-2019-215066] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 05/10/2019] [Accepted: 05/24/2019] [Indexed: 01/24/2023]
Abstract
OBJECTIVES Systemic sclerosis (SSc) is characterised by aberrant hedgehog signalling in fibrotic tissues. The hedgehog acyltransferase (HHAT) skinny hedgehog catalyses the attachment of palmitate onto sonic hedgehog (SHH). Palmitoylation of SHH is required for multimerisation of SHH proteins, which is thought to promote long-range, endocrine hedgehog signalling. The aim of this study was to evaluate the role of HHAT in the pathogenesis of SSc. METHODS Expression of HHAT was analysed by real-time polymerase chain reaction(RT-PCR), immunofluorescence and histomorphometry. The effects of HHAT knockdown were analysed by reporter assays, target gene studies and quantification of collagen release and myofibroblast differentiation in cultured human fibroblasts and in two mouse models. RESULTS The expression of HHAT was upregulated in dermal fibroblasts of patients with SSc in a transforming growth factor-β (TGFβ)/SMAD-dependent manner. Knockdown of HHAT reduced TGFβ-induced hedgehog signalling as well as myofibroblast differentiation and collagen release in human dermal fibroblasts. Knockdown of HHAT in the skin of mice ameliorated bleomycin-induced and topoisomerase-induced skin fibrosis. CONCLUSION HHAT is regulated in SSc in a TGFβ-dependent manner and in turn stimulates TGFβ-induced long-range hedgehog signalling to promote fibroblast activation and tissue fibrosis. Targeting of HHAT might be a novel approach to more selectively interfere with the profibrotic effects of long-range hedgehog signalling.
Collapse
Affiliation(s)
- Ruifang Liang
- Department of Internal Medicine 3- Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nuremberg and Universitätsklinikum Erlangen, Erlangen, Bayern, Germany
| | - Rosebeth Kagwiria
- Department of Internal Medicine 3- Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nuremberg and Universitätsklinikum Erlangen, Erlangen, Bayern, Germany
| | - Ariella Zehender
- Department of Internal Medicine 3- Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nuremberg and Universitätsklinikum Erlangen, Erlangen, Bayern, Germany
| | - Clara Dees
- Department of Internal Medicine 3- Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nuremberg and Universitätsklinikum Erlangen, Erlangen, Bayern, Germany
| | - Christina Bergmann
- Department of Internal Medicine 3- Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nuremberg and Universitätsklinikum Erlangen, Erlangen, Bayern, Germany
| | - Andreas Ramming
- Department of Internal Medicine 3- Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nuremberg and Universitätsklinikum Erlangen, Erlangen, Bayern, Germany
| | - Dorota Krasowska
- Department of Dermatology, Venereology and Pediatric Dermatology, Medical University of Lublin, Lublin, Poland
| | | | - Alexander Kreuter
- Department of Dermatology, Venereolog and Allergology, HELIOS St Elisabeth Hospital Oberhausen, University Witten-Herdecke, Oberhausen, Germany
| | - Max E Kraner
- Department of Biology, Division of Biochemistry, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Georg Schett
- Department of Internal Medicine 3- Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nuremberg and Universitätsklinikum Erlangen, Erlangen, Bayern, Germany
| | - Jörg H W Distler
- Department of Internal Medicine 3- Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nuremberg and Universitätsklinikum Erlangen, Erlangen, Bayern, Germany
| |
Collapse
|
48
|
Prasse A, Ramaswamy M, Mohan S, Pan L, Kenwright A, Neighbors M, Belloni P, LaCamera PP. A Phase 1b Study of Vismodegib with Pirfenidone in Patients with Idiopathic Pulmonary Fibrosis. Pulm Ther 2019; 5:151-163. [PMID: 32026407 PMCID: PMC6967289 DOI: 10.1007/s41030-019-0096-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Indexed: 12/25/2022] Open
Abstract
INTRODUCTION Components of the hedgehog signaling pathway are upregulated in patients with idiopathic pulmonary fibrosis (IPF). Vismodegib, a small-molecule inhibitor of hedgehog signaling, when used in combination with currently available antifibrotic therapy, may be more efficacious than antifibrotics alone. The objective of this study was to evaluate the safety and tolerability of vismodegib plus pirfenidone in patients with IPF. METHODS Twenty-one patients were enrolled in a phase 1b open-label trial to receive vismodegib 150 mg plus pirfenidone 2403 mg/day once daily. Key endpoints were safety, tolerability, and pharmacokinetics. Exploratory endpoints included change from baseline to week 24 in % predicted forced vital capacity (FVC) and University of California, San Diego Shortness of Breath Questionnaire (UCSD-SOBQ) scores, as well as pharmacodynamic changes in hedgehog biomarker C-X-C motif chemokine ligand 14 (CXCL14). RESULTS All patients reported at least one treatment-emergent adverse event (AE), most frequently muscle spasms (76.2%). Serious AEs were reported in 14.3% of patients; one event of dehydration was considered related to vismodegib. One patient died due to IPF progression, unrelated to either treatment. More patients discontinued vismodegib than pirfenidone (42.9% vs. 33.3%, respectively). Changes from baseline to week 24 in % predicted FVC and UCSD-SOBQ scores were within known endpoint variability. In contrast to findings in basal cell carcinoma, vismodegib had no effect on circulating CXCL14 levels. CONCLUSION The safety profile was generally consistent with the known profiles of both drugs, with no new safety signals observed in this small cohort. There was no pharmacodynamic effect on CXCL14 levels. Future development of vismodegib for IPF may be limited due to tolerability issues. TRIAL REGISTRATION ClinicalTrials.gov NCT02648048. Plain language summary available for this article. FUNDING F. Hoffmann-La Roche Ltd. and Genentech, Inc.
Collapse
Affiliation(s)
- Antje Prasse
- Hannover Medical School and Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany.
| | | | - Shaun Mohan
- Genentech, Inc., South San Francisco, CA, USA
| | - Lin Pan
- Genentech, Inc., South San Francisco, CA, USA
| | | | | | | | | |
Collapse
|
49
|
Wang C, Cassandras M, Peng T. The Role of Hedgehog Signaling in Adult Lung Regeneration and Maintenance. J Dev Biol 2019; 7:jdb7030014. [PMID: 31323955 PMCID: PMC6787692 DOI: 10.3390/jdb7030014] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 06/29/2019] [Accepted: 07/03/2019] [Indexed: 12/13/2022] Open
Abstract
As a secreted morphogen, Sonic Hedgehog (SHH) determines differential cell fates, behaviors, and functions by forming a gradient of Hedgehog (Hh) activation along an axis of Hh-receptive cells during development. Despite clearly delineated roles for Hh during organ morphogenesis, whether Hh continues to regulate cell fate and behavior in the same fashion in adult organs is less understood. Adult organs, particularly barrier organs interfacing with the ambient environment, are exposed to insults that require renewal of cellular populations to maintain structural integrity. Understanding key aspects of Hh’s ability to generate an organ could translate into conceptual understanding of Hh’s ability to maintain organ homeostasis and stimulate regeneration. In this review, we will summarize the current knowledge about Hh signaling in regulating adult lung regeneration and maintenance, and discuss how alteration of Hh signaling contributes to adult lung diseases.
Collapse
Affiliation(s)
- Chaoqun Wang
- Department of Medicine, Cardiovascular Research Institute, UCSF, San Francisco, CA 94143, USA
| | - Monica Cassandras
- Department of Medicine, Cardiovascular Research Institute, UCSF, San Francisco, CA 94143, USA
| | - Tien Peng
- Department of Medicine, Cardiovascular Research Institute, UCSF, San Francisco, CA 94143, USA.
| |
Collapse
|
50
|
Zhang B, Xu H, Zhang Y, Yi X, Zhang G, Zhang X, Xu D, Gao X, Li S, Zhu Y, Zhang H, Wei Z, Li S, Zhang L, Wang R, Yang F. Targeting the RAS axis alleviates silicotic fibrosis and Ang II-induced myofibroblast differentiation via inhibition of the hedgehog signaling pathway. Toxicol Lett 2019; 313:30-41. [PMID: 31181250 DOI: 10.1016/j.toxlet.2019.05.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 05/22/2019] [Accepted: 05/31/2019] [Indexed: 01/01/2023]
Abstract
The hedgehog (HH) signaling pathway plays an important role in lung development, but its significance in silicosis is unclear. We showed that in human coal pneumoconiosis autopsy specimens, Sonic Hedgehog (SHH) and the Glioma-associated oncogene homolog transcription factors family (GLI) 1 proteins were up-regulated, whereas Patch-1 (PTC) was down-regulated. The protein levels of SHH, smoothened (SMO), GLI1, GLI2, α-smooth muscle actin (α-SMA) and collagen type Ⅰ (Col Ⅰ) were also elevated gradually in the bronchoalveolar lavage fluid (BALF) of different stages of coal pneumoconiosis patients, dynamic silica-inhalation rat lung tissue and MRC-5 cells induced by Ang II at different time points, whereas the PTC and GLI3 levels were diminished gradually. Ac-SDKP, an active peptide of renin-angiotensin system (RAS), is an anti-fibrotic tetrapeptide. Targeting RAS axis also has anti-silicotic fibrosis effects. However, their roles on the HH pathway are still unknown. Here, we reported that Ac-SDKP + Captopril, Ac-SDKP, Captopril, or Ang (1-7) could alleviate silicotic fibrosis and collagen deposition, as well as improve the lung functions of silicotic rat. These treatments decreased the expression of SHH, SMO, GLI1, GLI2, α-SMA, and Col Ⅰ and increased the expression of PTC and GLI3 on both the silicotic rat lung tissue and MRC-5 cells induced by Ang II. We also reported that Ang II may promote myofibroblast differentiation via the GLI1 transcription factor and independently of the SMO receptor.
Collapse
Affiliation(s)
- Bonan Zhang
- School of Public Health, North China University of Science and Technology, Tangshan, China; Hebei Key Laboratory for Chronic Diseases, Tangshan Key Laboratory for Clinical and Basic Research on Chronic Diseases, School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, China; Hebei Key Laboratory for Organ Fibrosis, Medical Research Center, North China University of Science and Technology, Tangshan, China
| | - Hong Xu
- Hebei Key Laboratory for Organ Fibrosis, Medical Research Center, North China University of Science and Technology, Tangshan, China
| | - Yi Zhang
- Clinical Medical College, North China University of Science and Technology, Tangshan, China
| | - Xue Yi
- Key Laboratory of Functional and Clinical Translational Medicine, Fujian Province University, Department of Basic Medicine, Xiamen Medical College, Xiamen, China
| | - Guizhen Zhang
- Hebei Key Laboratory for Chronic Diseases, Tangshan Key Laboratory for Clinical and Basic Research on Chronic Diseases, School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, China; Hebei Key Laboratory for Organ Fibrosis, Medical Research Center, North China University of Science and Technology, Tangshan, China
| | - Xin Zhang
- Hebei Key Laboratory for Organ Fibrosis, Medical Research Center, North China University of Science and Technology, Tangshan, China
| | - Dingjie Xu
- College of Traditional Chinese Medicine, North China University of Science and Technology, Tangshan, China
| | - Xuemin Gao
- Basic Medical College, Hebei Medical University, Shijiazhuang, China
| | - Shifeng Li
- Basic Medical College, Hebei Medical University, Shijiazhuang, China
| | - Ying Zhu
- School of Public Health, North China University of Science and Technology, Tangshan, China; Hebei Key Laboratory for Organ Fibrosis, Medical Research Center, North China University of Science and Technology, Tangshan, China
| | - Hui Zhang
- Hebei Key Laboratory for Chronic Diseases, Tangshan Key Laboratory for Clinical and Basic Research on Chronic Diseases, School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, China; Hebei Key Laboratory for Organ Fibrosis, Medical Research Center, North China University of Science and Technology, Tangshan, China
| | - Zhongqiu Wei
- Hebei Key Laboratory for Chronic Diseases, Tangshan Key Laboratory for Clinical and Basic Research on Chronic Diseases, School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, China; Hebei Key Laboratory for Organ Fibrosis, Medical Research Center, North China University of Science and Technology, Tangshan, China
| | - Shumin Li
- School of Public Health, North China University of Science and Technology, Tangshan, China; Hebei Key Laboratory for Chronic Diseases, Tangshan Key Laboratory for Clinical and Basic Research on Chronic Diseases, School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, China; Hebei Key Laboratory for Organ Fibrosis, Medical Research Center, North China University of Science and Technology, Tangshan, China
| | - Lijuan Zhang
- Hebei Key Laboratory for Organ Fibrosis, Medical Research Center, North China University of Science and Technology, Tangshan, China
| | - Ruimin Wang
- School of Public Health, North China University of Science and Technology, Tangshan, China; Hebei Key Laboratory for Organ Fibrosis, Medical Research Center, North China University of Science and Technology, Tangshan, China
| | - Fang Yang
- School of Public Health, North China University of Science and Technology, Tangshan, China; Hebei Key Laboratory for Organ Fibrosis, Medical Research Center, North China University of Science and Technology, Tangshan, China.
| |
Collapse
|