1
|
Alpaslan Ağaçdiken A, Göktaş Z. Berberine-induced browning and energy metabolism: mechanisms and implications. PeerJ 2025; 13:e18924. [PMID: 39931072 PMCID: PMC11809318 DOI: 10.7717/peerj.18924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 01/13/2025] [Indexed: 02/13/2025] Open
Abstract
Obesity has become a global pandemic. The approaches researched to prevent it include decreasing energy intake and/or enhancing energy expenditure. Therefore, research on brown adipose tissue is of great importance. Brown adipose tissue is characterized by its high mitochondrial content. Mitochondrial uncoupling protein 1 (UCP1) releases energy as heat instead of chemical energy. Thermogenesis increases energy expenditure. Berberine, a phytochemical widely used in Asian countries, has positive effects on body weight control. While the precise mechanisms behind this effect remain unclear, the adenosine monophosphate-activated protein kinase (AMPK) pathway is known to play a crucial role. Berberine activates AMPK through phosphorylation, significantly impacting brown adipose tissue by enhancing lipolytic activity and increasing the expression of UCP1, peroxisome proliferator-activated receptor γ-co-activator-1α (PGC1α), and PR domain containing 16 (PRDM16). While investigating the mechanism of action of berberine, both the AMPK pathway is being examined in more detail and alternative pathways are being explored. One such pathway is growth differentiation factor 15 (GDF15), known for its appetite-suppressing effect. Berberine's low stability and bioavailability, which are the main obstacles to its clinical use, have been improved through the development of nanotechnological methods. This review examines the potential mechanisms of berberine on browning and summarizes the methods developed to enhance its effect.
Collapse
Affiliation(s)
| | - Zeynep Göktaş
- Department of Nutrition and Dietetics, Hacettepe University, Ankara, Turkey
| |
Collapse
|
2
|
Reynés B, García-Ruiz E, van Schothorst EM, Keijer J, Oliver P, Palou A. TLCD4 as Potential Transcriptomic Biomarker of Cold Exposure. Biomolecules 2024; 14:935. [PMID: 39199323 PMCID: PMC11352221 DOI: 10.3390/biom14080935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/26/2024] [Accepted: 07/31/2024] [Indexed: 09/01/2024] Open
Abstract
(1) Background: Cold exposure induces metabolic adaptations that can promote health benefits, including increased energy disposal due to lipid mobilization in adipose tissue (AT). This study aims to identify easily measurable biomarkers mirroring the effect of cold exposure on AT. (2) Methods: Transcriptomic analysis was performed in peripheral blood mononuclear cells (PBMCs) and distinct AT depots of two animal models (ferrets and rats) exposed to cold, and in PBMCs of cold-exposed humans. (3) Results: One week of cold exposure (at 4 °C) affected different metabolic pathways and gene expression in the AT of ferrets, an animal model with an AT more similar to humans than that of rodents. However, only one gene, Tlcd4, was affected in the same way (overexpressed) in aortic perivascular and inguinal AT depots and in PBMCs, making it a potential biomarker of interest. Subsequent targeted analysis in rats showed that 1 week at 4 °C also induced Tlcd4 expression in brown AT and PBMCs, while 1 h at 4 °C resulted in reduced Tlcd4 mRNA levels in retroperitoneal white AT. In humans, no clear effects were observed. Nevertheless, decreased PBMC TLCD4 expression was observed after acute cold exposure in women with normal weight, although this effect could be attributed to short-term fasting during the procedure. No effect was evident in women with overweight or in normal-weight men. (4) Conclusions: Our results obtained for different species point toward TLCD4 gene expression as a potential biomarker of cold exposure/fat mobilization that could tentatively be used to address the effectiveness of cold exposure-mimicking therapies.
Collapse
Affiliation(s)
- Bàrbara Reynés
- Nutrigenomics, Biomarkers and Risk Evaluation (NuBE) Group, University of the Balearic Islands, 07122 Palma, Spain; (B.R.)
- Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma, Spain
- CIBER of Physiopathology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Estefanía García-Ruiz
- Nutrigenomics, Biomarkers and Risk Evaluation (NuBE) Group, University of the Balearic Islands, 07122 Palma, Spain; (B.R.)
- CIBER of Physiopathology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Evert M. van Schothorst
- Human and Animal Physiology, Wageningen University, 6708 WD Wageningen, The Netherlands; (E.M.v.S.)
| | - Jaap Keijer
- Human and Animal Physiology, Wageningen University, 6708 WD Wageningen, The Netherlands; (E.M.v.S.)
| | - Paula Oliver
- Nutrigenomics, Biomarkers and Risk Evaluation (NuBE) Group, University of the Balearic Islands, 07122 Palma, Spain; (B.R.)
- Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma, Spain
- CIBER of Physiopathology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Andreu Palou
- Nutrigenomics, Biomarkers and Risk Evaluation (NuBE) Group, University of the Balearic Islands, 07122 Palma, Spain; (B.R.)
- Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma, Spain
- CIBER of Physiopathology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
3
|
Iida T, Ueda Y, Tsukada H, Fukumoto D, Hamaoka T. Brown adipose tissue evaluation using water and triglyceride as indices by diffuse reflectance spectroscopy. JOURNAL OF BIOPHOTONICS 2024; 17:e202300183. [PMID: 37885352 DOI: 10.1002/jbio.202300183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 10/06/2023] [Accepted: 10/24/2023] [Indexed: 10/28/2023]
Abstract
Brown adipose tissue (BAT) is related to lipid and glucose metabolism, and BAT evaluation is expected to contribute to disease prevention and treatment. We aimed to establish a BAT evaluation method using simple and non-invasive diffuse reflectance spectroscopy (DRS). We acquired diffuse reflectance spectra of BAT using DRS from rats with cold stimulation and analyzed the second-derivative spectra. To predict the amount of triglyceride in BAT from the second-derivative spectra, partial least-squares regression analysis was performed, and we examined whether BAT weight can be predicted from the amount of triglyceride by single regression analysis. By focusing on changes in the amount of triglyceride in BAT with cold stimulation, it was suggested that this amount could be predicted spectroscopically, and the predicted amount of triglyceride could be used to estimate the BAT weight with cold stimulation. If these results can be translated into humans, they may contribute to preventing metabolic disorders.
Collapse
Affiliation(s)
- Tomomi Iida
- Central Research Laboratory, Hamamatsu Photonics K.K., Hamamatsu, Shizuoka, Japan
| | - Yukio Ueda
- Central Research Laboratory, Hamamatsu Photonics K.K., Hamamatsu, Shizuoka, Japan
| | - Hideo Tsukada
- Central Research Laboratory, Hamamatsu Photonics K.K., Hamamatsu, Shizuoka, Japan
| | - Dai Fukumoto
- Central Research Laboratory, Hamamatsu Photonics K.K., Hamamatsu, Shizuoka, Japan
| | - Takafumi Hamaoka
- Department of Sports Medicine for Health Promotion, Tokyo Medical University, Tokyo, Japan
| |
Collapse
|
4
|
Maushart CI, Sun W, Othman A, Ghosh A, Senn JR, Fischer JGW, Madoerin P, Loeliger RC, Benz RM, Takes M, Zech CJ, Chirindel A, Beuschlein F, Reincke M, Wild D, Bieri O, Zamboni N, Wolfrum C, Betz MJ. Effect of high-dose glucocorticoid treatment on human brown adipose tissue activity: a randomised, double-blinded, placebo-controlled cross-over trial in healthy men. EBioMedicine 2023; 96:104771. [PMID: 37659283 PMCID: PMC10483510 DOI: 10.1016/j.ebiom.2023.104771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 09/04/2023] Open
Abstract
BACKGROUND Glucocorticoids (GCs) are widely applied anti-inflammatory drugs that are associated with adverse metabolic effects including insulin resistance and weight gain. Previous research indicates that GCs may negatively impact brown adipose tissue (BAT) activity in rodents and humans. METHODS We performed a randomised, double-blinded cross-over trial in 16 healthy men (clinicaltrials.govNCT03269747). Participants received 40 mg of prednisone per day for one week or placebo. After a washout period of four weeks, participants crossed-over to the other treatment arm. Primary endpoint was the increase in resting energy expenditure (EE) in response to a mild-cold stimulus (cold-induced thermogenesis, CIT). Secondary outcomes comprised mean 18F-FDG uptake into supraclavicular BAT (SUVmean) as determined by FDG-PET/CT, volume of the BAT depot as well as fat content determined by MRI. The plasma metabolome and the transcriptome of supraclavicular BAT and of skeletal muscle biopsies after each treatment period were analysed. FINDINGS Sixteen participants were recruited to the trial and completed it successfully per protocol. After prednisone treatment resting EE was higher both during warm and cold conditions. However, CIT was similar, 153 kcal/24 h (95% CI 40-266 kcal/24 h) after placebo and 186 kcal/24 h (95% CI 94-277 kcal/24 h, p = 0.38) after prednisone. SUVmean of BAT after cold exposure was not significantly affected by prednisone (3.36 g/ml, 95% CI 2.69-4.02 g/ml, vs 3.07 g/ml, 95% CI 2.52-3.62 g/ml, p = 0.28). Results of plasma metabolomics and BAT transcriptomics corroborated these findings. RNA sequencing of muscle biopsies revealed higher expression of genes involved in calcium cycling. No serious adverse events were reported and adverse events were evenly distributed between the two treatments. INTERPRETATION Prednisone increased EE in healthy men possibly by altering skeletal muscle calcium cycling. Cold-induced BAT activity was not affected by GC treatment, which indicates that the unfavourable metabolic effects of GCs are independent from thermogenic adipocytes. FUNDING Grants from Swiss National Science Foundation (PZ00P3_167823), Bangerter-Rhyner Foundation and from Nora van der Meeuwen-Häfliger Foundation to MJB. A fellowship-grant from the Swiss National Science Foundation (SNF211053) to WS. Grants from German Research Foundation (project number: 314061271-TRR 205) and Else Kröner-Fresenius (grant support 2012_A103 and 2015_A228) to MR.
Collapse
Affiliation(s)
- Claudia Irene Maushart
- Department of Endocrinology, Diabetes and Metabolism, University Hospital Basel and University of Basel, Basel, Switzerland.
| | - Wenfei Sun
- Institute of Food, Nutrition, and Health, ETH Zurich, Schwerzenbach, Switzerland.
| | - Alaa Othman
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland.
| | - Adhideb Ghosh
- Institute of Food, Nutrition, and Health, ETH Zurich, Schwerzenbach, Switzerland; Functional Genomics Center Zurich, ETH Zurich and University of Zurich, Zurich, Switzerland.
| | - Jaël Rut Senn
- Department of Endocrinology, Diabetes and Metabolism, University Hospital Basel and University of Basel, Basel, Switzerland.
| | - Jonas Gabriel William Fischer
- Department of Endocrinology, Diabetes and Metabolism, University Hospital Basel and University of Basel, Basel, Switzerland.
| | - Philipp Madoerin
- Department of Radiology and Nuclear Medicine, University Hospital Basel, University of Basel, Basel, Switzerland.
| | - Rahel Catherina Loeliger
- Department of Endocrinology, Diabetes and Metabolism, University Hospital Basel and University of Basel, Basel, Switzerland.
| | - Robyn Melanie Benz
- Functional Genomics Center Zurich, ETH Zurich and University of Zurich, Zurich, Switzerland.
| | - Martin Takes
- Department of Radiology and Nuclear Medicine, University Hospital Basel, University of Basel, Basel, Switzerland.
| | - Christoph Johannes Zech
- Department of Radiology and Nuclear Medicine, University Hospital Basel, University of Basel, Basel, Switzerland.
| | - Alin Chirindel
- Department of Radiology and Nuclear Medicine, University Hospital Basel, University of Basel, Basel, Switzerland.
| | - Felix Beuschlein
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich (USZ) and University Zurich (UZH), Zurich, Switzerland; Department of Medicine IV, University Hospital, LMU Munich, Munich, Germany.
| | - Martin Reincke
- Department of Medicine IV, University Hospital, LMU Munich, Munich, Germany.
| | - Damian Wild
- Department of Radiology and Nuclear Medicine, University Hospital Basel, University of Basel, Basel, Switzerland.
| | - Oliver Bieri
- Department of Radiology and Nuclear Medicine, University Hospital Basel, University of Basel, Basel, Switzerland.
| | - Nicola Zamboni
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland.
| | - Christian Wolfrum
- Institute of Food, Nutrition, and Health, ETH Zurich, Schwerzenbach, Switzerland.
| | - Matthias Johannes Betz
- Department of Endocrinology, Diabetes and Metabolism, University Hospital Basel and University of Basel, Basel, Switzerland.
| |
Collapse
|
5
|
Li J, Guo Y, Ren P, Zhang Y, Han R, Xiong L. Triglyceride-Rich Lipoprotein-Mediated Polymer Dots for Multimodal Imaging Interscapular Brown Adipose Tissue Capillaries. ACS APPLIED MATERIALS & INTERFACES 2023; 15:28981-28992. [PMID: 37289581 DOI: 10.1021/acsami.3c04525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Brown adipose tissues (BATs) have been identified as a promising target of metabolism disorders. [18F]FDG-PET (FDG = fluorodeoxyglucose; PET = positron emission tomography) has been predominantly employed for BAT imaging, but its limitations drive the urgent need for novel functional probes combined with multimodal imaging approaches. It has been reported that polymer dots (Pdots) display rapid BAT imaging without additional cold stimulation. However, the mechanism by which Pdots image BAT remains unclear. Here, we made an intensive study of the imaging mechanism and found that Pdots can bind to triglyceride-rich lipoproteins (TRLs). By virtue of their high affinity to TRLs, Pdots selectively accumulate in capillary endothelial cells (ECs) in interscapular brown adipose tissues (iBATs). Compared to poly(styrene-co-maleic anhydride)cumene terminated (PSMAC)-Pdots with a short half-life and polyethylene glycol (PEG)-Pdots with low lipophilicity, naked-Pdots have good lipophilicity, with a half-life of about 30 min and up to 94% uptake in capillary ECs within 5 min, increasing rapidly after acute cold stimulation. These results suggested that the accumulation changes of Pdots in iBAT can reflect iBAT activity sensitively. Based on this mechanism, we further developed a strategy to detect iBAT activity and quantify the TRL uptake in vivo using multimodal Pdots.
Collapse
Affiliation(s)
- Jingru Li
- Shanghai Med-X Engineering Center for Medical Equipment and Technology, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
| | - Yixiao Guo
- Shanghai Med-X Engineering Center for Medical Equipment and Technology, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
| | - Panting Ren
- Shanghai Med-X Engineering Center for Medical Equipment and Technology, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
| | - Yufan Zhang
- Shanghai Med-X Engineering Center for Medical Equipment and Technology, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
| | - Ruijun Han
- Department of Ultrasound, Renji Hospital of Shanghai Jiaotong University, Shanghai 200127, P. R. China
| | - Liqin Xiong
- Shanghai Med-X Engineering Center for Medical Equipment and Technology, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
| |
Collapse
|
6
|
Tarantini S, Subramanian M, Butcher JT, Yabluchanskiy A, Li X, Miller RA, Balasubramanian P. Revisiting adipose thermogenesis for delaying aging and age-related diseases: Opportunities and challenges. Ageing Res Rev 2023; 87:101912. [PMID: 36924940 PMCID: PMC10164698 DOI: 10.1016/j.arr.2023.101912] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/03/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023]
Abstract
Adipose tissue undergoes significant changes in structure, composition, and function with age including altered adipokine secretion, decreased adipogenesis, altered immune cell profile and increased inflammation. Considering the role of adipose tissue in whole-body energy homeostasis, age-related dysfunction in adipose metabolism could potentially contribute to an increased risk for metabolic diseases and accelerate the onset of other age-related diseases. Increasing cellular energy expenditure in adipose tissue, also referred to as thermogenesis, has emerged as a promising strategy to improve adipose metabolism and treat obesity-related metabolic disorders. However, translating this strategy to the aged population comes with several challenges such as decreased thermogenic response and the paucity of safe pharmacological agents to activate thermogenesis. This mini-review aims to discuss the current body of knowledge on aging and thermogenesis and highlight the unexplored opportunities (cellular mechanisms and secreted factors) to target thermogenic mechanisms for delaying aging and age-related diseases. Finally, we also discuss the emerging role of thermogenic adipocytes in healthspan and lifespan extension.
Collapse
Affiliation(s)
- Stefano Tarantini
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; The Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Madhan Subramanian
- Department of Physiological Sciences, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK, USA
| | - Joshua T Butcher
- Department of Physiological Sciences, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK, USA
| | - Andriy Yabluchanskiy
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; The Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Xinna Li
- Department of Pathology and Geriatrics Center, University of Michigan, Ann Arbor, MI, USA
| | - Richard A Miller
- Department of Pathology and Geriatrics Center, University of Michigan, Ann Arbor, MI, USA
| | - Priya Balasubramanian
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; The Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| |
Collapse
|
7
|
Martinez-Tellez B, Sanchez-Delgado G, Acosta FM, Alcantara JMA, Amaro-Gahete FJ, Martinez-Avila WD, Merchan-Ramirez E, Muñoz-Hernandez V, Osuna-Prieto FJ, Jurado-Fasoli L, Xu H, Ortiz-Alvarez L, Arias-Tellez MJ, Mendez-Gutierrez A, Labayen I, Ortega FB, Schönke M, Rensen PCN, Aguilera CM, Llamas-Elvira JM, Gil Á, Ruiz JR. No evidence of brown adipose tissue activation after 24 weeks of supervised exercise training in young sedentary adults in the ACTIBATE randomized controlled trial. Nat Commun 2022; 13:5259. [PMID: 36097264 PMCID: PMC9467993 DOI: 10.1038/s41467-022-32502-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 08/02/2022] [Indexed: 01/06/2023] Open
Abstract
Exercise modulates both brown adipose tissue (BAT) metabolism and white adipose tissue (WAT) browning in murine models. Whether this is true in humans, however, has remained unknown. An unblinded randomized controlled trial (ClinicalTrials.gov ID: NCT02365129) was therefore conducted to study the effects of a 24-week supervised exercise intervention, combining endurance and resistance training, on BAT volume and activity (primary outcome). The study was carried out in the Sport and Health University Research Institute and the Virgen de las Nieves University Hospital of the University of Granada (Spain). One hundred and forty-five young sedentary adults were assigned to either (i) a control group (no exercise, n = 54), (ii) a moderate intensity exercise group (MOD-EX, n = 48), or (iii) a vigorous intensity exercise group (VIG-EX n = 43) by unrestricted randomization. No relevant adverse events were recorded. 97 participants (34 men, 63 women) were included in the final analysis (Control; n = 35, MOD-EX; n = 31, and VIG-EX; n = 31). We observed no changes in BAT volume (Δ Control: −22.2 ± 52.6 ml; Δ MOD-EX: −15.5 ± 62.1 ml, Δ VIG-EX: −6.8 ± 66.4 ml; P = 0.771) or 18F-fluorodeoxyglucose uptake (SUVpeak Δ Control: −2.6 ± 3.1 ml; Δ MOD-EX: −1.2 ± 4.8, Δ VIG-EX: −2.2 ± 5.1; p = 0.476) in either the control or the exercise groups. Thus, we did not find any evidence of an exercise-induced change on BAT volume or activity in young sedentary adults. Exercise modulates brown adipose tissue (BAT) metabolism in murine models. Here the authors report that there is no evidence that 24 weeks of supervised exercise training modulates BAT volume or function in young sedentary adults in the ACTIBATE randomized controlled trial.
Collapse
Affiliation(s)
- Borja Martinez-Tellez
- PROFITH (PROmoting FITness and Health through Physical Activity) Research Group, Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Granada, Spain.,Department of Medicine, Division of Endocrinology and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands.,Department of Education, Faculty of Education Sciences and SPORT Research Group (CTS-1024), CERNEP Research Center, University of Almería, Almería, Spain
| | - Guillermo Sanchez-Delgado
- PROFITH (PROmoting FITness and Health through Physical Activity) Research Group, Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Granada, Spain.,Pennington Biomedical Research Center, Baton Rouge, LA, USA
| | - Francisco M Acosta
- PROFITH (PROmoting FITness and Health through Physical Activity) Research Group, Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Granada, Spain.,Turku PET Centre, University of Turku, Turku, Finland.,Turku PET Centre, Turku University Hospital, Turku, Finland.,InFLAMES Research Flagship Center, University of Turku, Turku, Finland
| | - Juan M A Alcantara
- PROFITH (PROmoting FITness and Health through Physical Activity) Research Group, Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Granada, Spain
| | - Francisco J Amaro-Gahete
- PROFITH (PROmoting FITness and Health through Physical Activity) Research Group, Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Granada, Spain.,EFFECTS-262 Research Group, Department of Physiology, School of Medicine, University of Granada, Granada, Spain
| | - Wendy D Martinez-Avila
- PROFITH (PROmoting FITness and Health through Physical Activity) Research Group, Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Granada, Spain
| | - Elisa Merchan-Ramirez
- PROFITH (PROmoting FITness and Health through Physical Activity) Research Group, Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Granada, Spain
| | - Victoria Muñoz-Hernandez
- PROFITH (PROmoting FITness and Health through Physical Activity) Research Group, Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Granada, Spain
| | - Francisco J Osuna-Prieto
- PROFITH (PROmoting FITness and Health through Physical Activity) Research Group, Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Granada, Spain.,Department of Analytical Chemistry, University of Granada, Granada, Spain.,Research and Development of Functional Food Center (CIDAF), Granada, Spain
| | - Lucas Jurado-Fasoli
- PROFITH (PROmoting FITness and Health through Physical Activity) Research Group, Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Granada, Spain
| | - Huiwen Xu
- PROFITH (PROmoting FITness and Health through Physical Activity) Research Group, Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Granada, Spain.,Department of Biochemistry and Molecular Biology II, "José Mataix Verdú" Institute of Nutrition and Food Technology (INYTA), Biomedical Research Center (CIBM), University of Granada, Granada, Spain
| | - Lourdes Ortiz-Alvarez
- PROFITH (PROmoting FITness and Health through Physical Activity) Research Group, Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Granada, Spain.,Department of Biochemistry and Molecular Biology II, "José Mataix Verdú" Institute of Nutrition and Food Technology (INYTA), Biomedical Research Center (CIBM), University of Granada, Granada, Spain
| | - María J Arias-Tellez
- PROFITH (PROmoting FITness and Health through Physical Activity) Research Group, Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Granada, Spain.,Department of Nutrition, Faculty of Medicine, University of Chile, Independence, 1027, Santiago, Chile
| | - Andrea Mendez-Gutierrez
- PROFITH (PROmoting FITness and Health through Physical Activity) Research Group, Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Granada, Spain.,Department of Biochemistry and Molecular Biology II, "José Mataix Verdú" Institute of Nutrition and Food Technology (INYTA), Biomedical Research Center (CIBM), University of Granada, Granada, Spain.,Instituto de Investigación Biosanitaria, ibs.Granada, Granada, Spain.,CIBER Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Madrid, Spain
| | - Idoia Labayen
- Institute for Innovation & Sustainable Development in Food Chain (IS-FOOD), Public University of Navarra, Campus de Arrosadía, 31008, Pamplona, Spain
| | - Francisco B Ortega
- PROFITH (PROmoting FITness and Health through Physical Activity) Research Group, Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Granada, Spain.,Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Milena Schönke
- Department of Medicine, Division of Endocrinology and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Patrick C N Rensen
- Department of Medicine, Division of Endocrinology and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Concepción M Aguilera
- Department of Biochemistry and Molecular Biology II, "José Mataix Verdú" Institute of Nutrition and Food Technology (INYTA), Biomedical Research Center (CIBM), University of Granada, Granada, Spain.,Instituto de Investigación Biosanitaria, ibs.Granada, Granada, Spain.,CIBER Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Madrid, Spain
| | - José M Llamas-Elvira
- Instituto de Investigación Biosanitaria, ibs.Granada, Granada, Spain.,Nuclear Medicine Service, Virgen de las Nieves University Hospital, Granada, Spain.,Nuclear Medicine Department, Biohealth Research Institute in Granada, Granada, Spain
| | - Ángel Gil
- Department of Biochemistry and Molecular Biology II, "José Mataix Verdú" Institute of Nutrition and Food Technology (INYTA), Biomedical Research Center (CIBM), University of Granada, Granada, Spain.,Instituto de Investigación Biosanitaria, ibs.Granada, Granada, Spain.,CIBER Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Madrid, Spain
| | - Jonatan R Ruiz
- PROFITH (PROmoting FITness and Health through Physical Activity) Research Group, Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Granada, Spain. .,Instituto de Investigación Biosanitaria, ibs.Granada, Granada, Spain.
| |
Collapse
|
8
|
Garside JC, Kavanagh K, Block MR, Williams AG, Branca RT. Xenon-enhanced computed tomography assessment of brown adipose tissue distribution and perfusion in lean, obese, and diabetic primates. Obesity (Silver Spring) 2022; 30:1831-1841. [PMID: 35912825 PMCID: PMC9420818 DOI: 10.1002/oby.23519] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/06/2022] [Accepted: 05/24/2022] [Indexed: 11/29/2022]
Abstract
OBJECTIVE This study aimed to validate xenon-enhanced computed tomography (XECT) for the detection of brown adipose tissue (BAT) and to use XECT to assess differences in BAT distribution and perfusion between lean, obese, and diabetic nonhuman primates (NHPs). METHODS Whole-body XECT imaging was performed in anesthetized rhesus and vervet monkeys during adrenergic stimulation of BAT thermogenesis. In XECT images, BAT was identified as fat tissue that, during xenon inhalation, underwent significant radiodensity enhancement compared with subcutaneous fat. To measure BAT blood flow, BAT radiodensity enhancement was measured over time on the six computed tomography scans acquired during xenon inhalation. Postmortem immunohistochemical staining was used to confirm imaging findings. RESULTS XECT was able to correctly identify all BAT depots that were confirmed at necropsy, enabling construction of the first comprehensive anatomical map of BAT in NHPs. A significant decrease in BAT perfusion was found in diabetic animals compared with obese animals and healthy animals, as well as absence of axillary BAT and significant reduction of supraclavicular BAT in diabetic animals compared with obese and lean animals. CONCLUSIONS The use of XECT in NHP models of obesity and diabetes allows the analysis of the impact of metabolic status on BAT mass and perfusion.
Collapse
Affiliation(s)
- John C. Garside
- Department of Physics and AstronomyUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
- Biomedical Research Imaging CenterUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Kylie Kavanagh
- Department of PathologyWake Forest University School of MedicineWinston‐SalemNorth CarolinaUSA
- College of Health and MedicineUniversity of TasmaniaHobartTasmaniaAustralia
| | - Masha R. Block
- Department of PathologyWake Forest University School of MedicineWinston‐SalemNorth CarolinaUSA
| | - Abigail G. Williams
- Department of PathologyWake Forest University School of MedicineWinston‐SalemNorth CarolinaUSA
| | - Rosa T. Branca
- Department of Physics and AstronomyUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
- Biomedical Research Imaging CenterUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| |
Collapse
|
9
|
Dose-Dependent Effect of Melatonin on BAT Thermogenesis in Zücker Diabetic Fatty Rat: Future Clinical Implications for Obesity. Antioxidants (Basel) 2022; 11:antiox11091646. [PMID: 36139720 PMCID: PMC9495691 DOI: 10.3390/antiox11091646] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 08/08/2022] [Accepted: 08/22/2022] [Indexed: 11/18/2022] Open
Abstract
Experimental data have revealed that melatonin at high doses reduced obesity and improved metabolic outcomes in experimental models of obesity, mainly by enhancing brown adipose tissue (BAT) thermogenesis. A potential dose-response relationship has yet to be performed to translate these promising findings into potential clinical therapy. This study aimed to assess the effects of different doses of melatonin on interscapular BAT (iBAT) thermogenic capacity in Zücker diabetic fatty (ZDF) rats. At 6 wk of age, male ZDF rats were divided into four groups (n = 4 per group): control and those treated with different doses of melatonin (0.1, 1, and 10 mg/kg of body weight) in their drinking water for 6 wk. Body weight (BW) was significantly decreased at doses of 1 and 10 mg/kg of melatonin, but not at 0.1 mg/kg compared with the control, with a similar rate of BW decrease being reached at the dose of 1 mg/kg (by ~11%) and 10 mg/kg (by ~12%). This effect was associated with a dose-dependent increase in the thermal response to the baseline condition or acute cold challenge in the interscapular area measurable by infrared thermography, with the highest thermal response being recorded at the 10 mg/kg dose. Upon histology, melatonin treatment markedly restored the typical brownish appearance of the tissue and promoted a shift in size distribution toward smaller adipocytes in a dose-dependent fashion, with the most pronounced brownish phenotype being observed at 10 mg/kg of melatonin. As a hallmark of thermogenesis, the protein level of uncoupled protein 1 (UCP1) from immunofluorescence and Western blot analysis increased significantly and dose-dependently at all three doses of melatonin, reaching the highest level at the dose of 10 mg/kg. Likewise, all three doses of melatonin modulated iBAT mitochondrial dynamics by increasing protein expression of the optic atrophy protein type 1 (OPA1) fusion marker and decreasing that of the dynamin-related protein1 (DRP1) fission marker, again dose-dependently, with the highest and lowest expression levels, respectively, being reached at the 10 mg/kg dose. These findings highlight for the first time the relevance of the dose-dependency of melatonin toward BW control and BAT thermogenic activation, which may have potential therapeutic implications for the treatment of obesity. To clinically apply the potential therapeutic of melatonin for obesity, we consider that the effective animal doses that should be extrapolated to obese individuals may be within the dose range of 1 to 10 mg/kg.
Collapse
|
10
|
Van Schaik L, Kettle C, Green R, Wundersitz D, Gordon B, Irving HR, Rathner JA. Both caffeine and Capsicum annuum fruit powder lower blood glucose levels and increase brown adipose tissue temperature in healthy adult males. Front Physiol 2022; 13:870154. [PMID: 36017333 PMCID: PMC9395699 DOI: 10.3389/fphys.2022.870154] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 07/05/2022] [Indexed: 01/28/2023] Open
Abstract
Using a combination of respiratory gas exchange, infrared thermography, and blood glucose (BGL) analysis, we have investigated the impact of Capsicum annuum (C. annuum) fruit powder (475 mg) or caffeine (100 mg) on metabolic activity in a placebo controlled (lactose, 100 mg) double-blinded three-way cross-over-design experiment. Metabolic measurements were made on day 1 and day 7 of supplementation in eight adult male participants (22.2 ± 2 years of age, BMI 23 ± 2 kg/m2, x̅ ± SD). Participants arrived fasted overnight and were fed a high carbohydrate meal (90 g glucose), raising BGL from fasting baseline (4.4 ± 0.3 mmol/L) to peak BGL (8.5 ± 0.3 mmol/L) 45 min after the meal. Participants consumed the supplement 45 min after the meal, and both caffeine and C. annuum fruit powder restored BGL (F (8,178) = 2.2, p = 0.02) to near fasting levels within 15 min of supplementation compared to placebo (120 min). In parallel both supplements increased energy expenditure (F (2, 21) = 175.6, p < 0.001) over the 120-min test period (caffeine = 50.74 ± 2 kcal/kg/min, C. annuum fruit = 50.95 ± 1 kcal/kg/min, placebo = 29.34 ± 1 kcal/kg/min). Both caffeine and C. annuum fruit powder increased supraclavicular fossa temperature (F (2,42) = 32, p < 0.001) on both day 1 and day 7 of testing over the 120-min test period. No statistical difference in core temperature or reference point temperature, mean arterial pressure or heart rate was observed due to supplementation nor was any statistical difference seen between day 1 and day 7 of intervention. This is important for implementing dietary ingredients as potential metabolism increasing supplements. Together the results imply that through dietary supplements such as caffeine and C. annuum, mechanisms for increasing metabolism can be potentially targeted to improve metabolic homeostasis in people.
Collapse
Affiliation(s)
- Lachlan Van Schaik
- Department of Rural Clinical Sciences, La Trobe Institute for Molecular Science, La Trobe University, Bendigo, VIC, Australia,*Correspondence: Lachlan Van Schaik,
| | - Christine Kettle
- Department of Rural Clinical Sciences, La Trobe Institute for Molecular Science, La Trobe University, Bendigo, VIC, Australia
| | - Rod Green
- Department of Rural Clinical Sciences, La Trobe Institute for Molecular Science, La Trobe University, Bendigo, VIC, Australia
| | - Daniel Wundersitz
- Department of Rural Allied Health, Holsworth Research Initiative, La Trobe Rural Health School, La Trobe University, Bendigo, VIC, Australia
| | - Brett Gordon
- Department of Rural Allied Health, Holsworth Research Initiative, La Trobe Rural Health School, La Trobe University, Bendigo, VIC, Australia
| | - Helen R. Irving
- Department of Rural Clinical Sciences, La Trobe Institute for Molecular Science, La Trobe University, Bendigo, VIC, Australia
| | - Joseph A. Rathner
- Department of Rural Clinical Sciences, La Trobe Institute for Molecular Science, La Trobe University, Bendigo, VIC, Australia,Department of Anatomy and Physiology, School of Biomedical Sciences, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
11
|
Sardjoe Mishre AS, Martinez-Tellez B, Acosta FM, Sanchez-Delgado G, Straat ME, Webb AG, Kan HE, Rensen PC, Ruiz JR. Association of shivering threshold time with body composition and brown adipose tissue in young adults. J Therm Biol 2022; 108:103277. [DOI: 10.1016/j.jtherbio.2022.103277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 05/06/2022] [Accepted: 06/03/2022] [Indexed: 11/26/2022]
|
12
|
Scheel AK, Espelage L, Chadt A. Many Ways to Rome: Exercise, Cold Exposure and Diet-Do They All Affect BAT Activation and WAT Browning in the Same Manner? Int J Mol Sci 2022; 23:ijms23094759. [PMID: 35563150 PMCID: PMC9103087 DOI: 10.3390/ijms23094759] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/19/2022] [Accepted: 04/22/2022] [Indexed: 02/08/2023] Open
Abstract
The discovery of functional brown adipose tissue (BAT) in adult humans and the possibility to recruit beige cells with high thermogenic potential within white adipose tissue (WAT) depots opened the field for new strategies to combat obesity and its associated comorbidities. Exercise training as well as cold exposure and dietary components are associated with the enhanced accumulation of metabolically-active beige adipocytes and BAT activation. Both activated beige and brown adipocytes increase their metabolic rate by utilizing lipids to generate heat via non-shivering thermogenesis, which is dependent on uncoupling protein 1 (UCP1) in the inner mitochondrial membrane. Non-shivering thermogenesis elevates energy expenditure and promotes a negative energy balance, which may ameliorate metabolic complications of obesity and Type 2 Diabetes Mellitus (T2DM) such as insulin resistance (IR) in skeletal muscle and adipose tissue. Despite the recent advances in pharmacological approaches to reduce obesity and IR by inducing non-shivering thermogenesis in BAT and WAT, the administered pharmacological compounds are often associated with unwanted side effects. Therefore, lifestyle interventions such as exercise, cold exposure, and/or specified dietary regimens present promising anchor points for future disease prevention and treatment of obesity and T2DM. The exact mechanisms where exercise, cold exposure, dietary interventions, and pharmacological treatments converge or rather diverge in their specific impact on BAT activation or WAT browning are difficult to determine. In the past, many reviews have demonstrated the mechanistic principles of exercise- and/or cold-induced BAT activation and WAT browning. In this review, we aim to summarize not only the current state of knowledge on the various mechanistic principles of diverse external stimuli on BAT activation and WAT browning, but also present their translational potential in future clinical applications.
Collapse
Affiliation(s)
- Anna K. Scheel
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Leibniz-Center for Diabetes Research at the Heinrich Heine University, Medical Faculty, Düsseldorf, Auf’m Hennekamp 65, 40225 Duesseldorf, Germany; (A.K.S.); (L.E.)
- German Center for Diabetes Research (DZD), Partner Düsseldorf, München-Neuherberg, 85764 München, Germany
| | - Lena Espelage
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Leibniz-Center for Diabetes Research at the Heinrich Heine University, Medical Faculty, Düsseldorf, Auf’m Hennekamp 65, 40225 Duesseldorf, Germany; (A.K.S.); (L.E.)
- German Center for Diabetes Research (DZD), Partner Düsseldorf, München-Neuherberg, 85764 München, Germany
| | - Alexandra Chadt
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Leibniz-Center for Diabetes Research at the Heinrich Heine University, Medical Faculty, Düsseldorf, Auf’m Hennekamp 65, 40225 Duesseldorf, Germany; (A.K.S.); (L.E.)
- German Center for Diabetes Research (DZD), Partner Düsseldorf, München-Neuherberg, 85764 München, Germany
- Correspondence: ; Tel./Fax: +49-211-3382-577/430
| |
Collapse
|
13
|
Sanders KJC, Wierts R, van Marken Lichtenbelt WD, de Vos-Geelen J, Plasqui G, Kelders MCJM, Schrauwen-Hinderling VB, Bucerius J, Dingemans AMC, Mottaghy FM, Schols AMWJ. Brown adipose tissue activation is not related to hypermetabolism in emphysematous chronic obstructive pulmonary disease patients. J Cachexia Sarcopenia Muscle 2022; 13:1329-1338. [PMID: 35166050 PMCID: PMC8978002 DOI: 10.1002/jcsm.12881] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 09/27/2021] [Accepted: 11/01/2021] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Brown adipose tissue (BAT) has been primarily researched as a potential target for mitigating obesity. However, the physiological significance of BAT in relation to cachexia remains poorly understood. The objective of this study was to investigate the putative contribution of BAT on different components of energy metabolism in emphysematous chronic obstructive pulmonary disease (COPD) patients. METHODS Twenty COPD patients (mean ± SD age 62 ± 6, 50% female, median [range] BMI 22.4 [15.1-32.5] kg/m2 and 85% low FFMI) were studied. Basal metabolic rate (BMR) was assessed by ventilated hood, total daily energy expenditure (TDEE) by doubly labelled water and physical activity by triaxial accelerometry. BMR was adjusted for fat-free mass (FFM) as assessed by deuterium dilution. Analysis of BAT and WAT was conducted in a subset of ten patients and six age-matched, gender-matched and BMI-matched healthy controls. BAT glucose uptake was assessed by means of cold-stimulated integrated [18F]FDG positron-emission tomography and magnetic resonance imaging. WAT was collected from subcutaneous abdominal biopsies to analyse metabolic and inflammatory gene expression levels. Lung function was assessed by spirometry and body plethysmography and systemic inflammation by high sensitivity C-reactive protein. RESULTS Mean TDEE was 2209 ± 394 kcal/day, and mean BMR was 1449 ± 214 kcal/day corresponding to 120% of predicted. FFM-adjusted BMR did not correlate with lung function or C-reactive protein. Upon cooling, energy expenditure increased, resulting in a non-shivering thermogenesis of (median [range]) 20.1% [3.3-41.3] in patients and controls. Mean BAT glucose uptake was comparable between COPD and controls (1.5 [0.1-6.2] vs. 1.1 [0.7-3.9]). In addition, no correlation was found between BMR adjusted for FFM and BAT activity or between cold-induced non-shivering energy expenditure and BAT activity. Gene expression levels of the brown adipocyte or beige markers were also comparable between the groups. No (serious) adverse events were reported. CONCLUSIONS Although COPD patients were hypermetabolic at rest, no correlation was found between BMR or TDEE and BAT activity. Furthermore, both BAT activity and gene expression levels of the brown adipocyte or beige markers were comparable between COPD patients and controls.
Collapse
Affiliation(s)
- Karin J C Sanders
- Department of Respiratory Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Roel Wierts
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Wouter D van Marken Lichtenbelt
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Judith de Vos-Geelen
- Department of Internal Medicine, Division of Medical Oncology, GROW School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Guy Plasqui
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Marco C J M Kelders
- Department of Respiratory Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Vera B Schrauwen-Hinderling
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, Maastricht, The Netherlands.,Department of Radiology and Nuclear Medicine, NUTRIM School for Nutrition and Translational Research in Maastricht, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Jan Bucerius
- Department of Radiology and Nuclear Medicine and CARIM School for Cardiovascular Research Institute Maastricht, Maastricht University Medical Centre, Maastricht, The Netherlands.,Department of Nuclear Medicine, University Medicine Göttingen, Georg-August-University Göttingen, Göttingen, Germany
| | | | - Felix M Mottaghy
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Centre, Maastricht, The Netherlands.,Department of Nuclear Medicine and CIO ABCD, University Hospital RWTH Aachen University, Aachen, Germany
| | - Annemie M W J Schols
- Department of Respiratory Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, Maastricht, The Netherlands
| |
Collapse
|
14
|
Doukbi E, Soghomonian A, Sengenès C, Ahmed S, Ancel P, Dutour A, Gaborit B. Browning Epicardial Adipose Tissue: Friend or Foe? Cells 2022; 11:991. [PMID: 35326442 PMCID: PMC8947372 DOI: 10.3390/cells11060991] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/04/2022] [Accepted: 03/09/2022] [Indexed: 02/08/2023] Open
Abstract
The epicardial adipose tissue (EAT) is the visceral fat depot of the heart which is highly plastic and in direct contact with myocardium and coronary arteries. Because of its singular proximity with the myocardium, the adipokines and pro-inflammatory molecules secreted by this tissue may directly affect the metabolism of the heart and coronary arteries. Its accumulation, measured by recent new non-invasive imaging modalities, has been prospectively associated with the onset and progression of coronary artery disease (CAD) and atrial fibrillation in humans. Recent studies have shown that EAT exhibits beige fat-like features, and express uncoupling protein 1 (UCP-1) at both mRNA and protein levels. However, this thermogenic potential could be lost with age, obesity and CAD. Here we provide an overview of the physiological and pathophysiological relevance of EAT and further discuss whether its thermogenic properties may serve as a target for obesity therapeutic management with a specific focus on the role of immune cells in this beiging phenomenon.
Collapse
Affiliation(s)
- Elisa Doukbi
- INSERM, INRAE, C2VN, Aix-Marseille University, F-13005 Marseille, France; (E.D.); (A.S.); (S.A.); (P.A.); (A.D.)
| | - Astrid Soghomonian
- INSERM, INRAE, C2VN, Aix-Marseille University, F-13005 Marseille, France; (E.D.); (A.S.); (S.A.); (P.A.); (A.D.)
- Department of Endocrinology, Metabolic Diseases and Nutrition, Pôle ENDO, APHM, F-13005 Marseille, France
| | - Coralie Sengenès
- Stromalab, CNRS ERL5311, EFS, INP-ENVT, INSERM U1031, University of Toulouse, F-31100 Toulouse, France;
- Institut National de la Santé et de la Recherche Médicale, University Paul Sabatier, F-31100 Toulouse, France
| | - Shaista Ahmed
- INSERM, INRAE, C2VN, Aix-Marseille University, F-13005 Marseille, France; (E.D.); (A.S.); (S.A.); (P.A.); (A.D.)
| | - Patricia Ancel
- INSERM, INRAE, C2VN, Aix-Marseille University, F-13005 Marseille, France; (E.D.); (A.S.); (S.A.); (P.A.); (A.D.)
| | - Anne Dutour
- INSERM, INRAE, C2VN, Aix-Marseille University, F-13005 Marseille, France; (E.D.); (A.S.); (S.A.); (P.A.); (A.D.)
- Department of Endocrinology, Metabolic Diseases and Nutrition, Pôle ENDO, APHM, F-13005 Marseille, France
| | - Bénédicte Gaborit
- INSERM, INRAE, C2VN, Aix-Marseille University, F-13005 Marseille, France; (E.D.); (A.S.); (S.A.); (P.A.); (A.D.)
- Department of Endocrinology, Metabolic Diseases and Nutrition, Pôle ENDO, APHM, F-13005 Marseille, France
| |
Collapse
|
15
|
Suvaddhana Loap S, SidAhmed-Mezi M, Meningaud JP, Hersant B. A Prospective, Comparative Study (before and after) for the Evaluation of Cryothermogenesis' Efficacy in Body Contouring: Abdomen and Saddlebags. Plast Reconstr Surg 2022; 149:424e-428e. [PMID: 35196676 DOI: 10.1097/prs.0000000000008857] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Cryolipolysis is a noninvasive method that allows selective reduction of adipose tissue. The aim of the present study was to evaluate the efficacy of cryothermogenesis, the repetitive applications of cryotherapy, in body contouring of the abdomen and saddlebag areas. METHODS Thirty participants were included in the study. Premenopausal women with an overload of subcutaneous abdominal and saddlebag adipose tissue were enrolled. For each participant, five cryothermogenesis sessions were carried out using a medical device equipped with two cooling probes. The primary endpoint was metric measurement. The secondary endpoints were the measurement of subcutaneous fat mass using a Lunar iDXA whole-body scanner (GE Healthcare, Madison, Wis.) and a metabolic assessment conducted before treatment and 15 days after treatment. RESULTS The mean age of participants was 36.72 ± 7 years. Participants had different phototypes and an average body mass index of 23.0 ± 1.41 kg/m2. A decrease in body mass index was observed 3 months after the last session; the body mass index dropped to 20.5 ± 2.1 kg/m2 (p = 0.004 compared to baseline). Waist measurements showed a significant decrease, with an average loss of 4.1 cm after 15 days and 4.62 cm after 3 months. Concerning the circumference of saddlebags, a decrease was observed 3 months after treatment. These results were confirmed by iDXA computed tomographic measurements, showing a significant fat mass reduction in the treated areas. CONCLUSION The results indicate that subcutaneous fat in the abdomen and saddlebags was reduced after five successive cryothermogenesis sessions, without any complications, in a cohort of participants with different phototypes. CLINICAL QUESTION/LEVEL OF EVIDENCE Therapeutic, IV.
Collapse
Affiliation(s)
- Sarin Suvaddhana Loap
- From the Clinic Cryo Esthetic; and Department of Plastic, Reconstructive, Aesthetic, and Maxillofacial Surgery, Henri Mondor Hospital
| | - Mounia SidAhmed-Mezi
- From the Clinic Cryo Esthetic; and Department of Plastic, Reconstructive, Aesthetic, and Maxillofacial Surgery, Henri Mondor Hospital
| | - Jean Paul Meningaud
- From the Clinic Cryo Esthetic; and Department of Plastic, Reconstructive, Aesthetic, and Maxillofacial Surgery, Henri Mondor Hospital
| | - Barbara Hersant
- From the Clinic Cryo Esthetic; and Department of Plastic, Reconstructive, Aesthetic, and Maxillofacial Surgery, Henri Mondor Hospital
| |
Collapse
|
16
|
Bjertnæs LJ, Næsheim TO, Reierth E, Suborov EV, Kirov MY, Lebedinskii KM, Tveita T. Physiological Changes in Subjects Exposed to Accidental Hypothermia: An Update. Front Med (Lausanne) 2022; 9:824395. [PMID: 35280892 PMCID: PMC8904885 DOI: 10.3389/fmed.2022.824395] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 01/28/2022] [Indexed: 12/01/2022] Open
Abstract
Background Accidental hypothermia (AH) is an unintended decrease in body core temperature (BCT) to below 35°C. We present an update on physiological/pathophysiological changes associated with AH and rewarming from hypothermic cardiac arrest (HCA). Temperature Regulation and Metabolism Triggered by falling skin temperature, Thyrotropin-Releasing Hormone (TRH) from hypothalamus induces release of Thyroid-Stimulating Hormone (TSH) and Prolactin from pituitary gland anterior lobe that stimulate thyroid generation of triiodothyronine and thyroxine (T4). The latter act together with noradrenaline to induce heat production by binding to adrenergic β3-receptors in fat cells. Exposed to cold, noradrenaline prompts degradation of triglycerides from brown adipose tissue (BAT) into free fatty acids that uncouple metabolism to heat production, rather than generating adenosine triphosphate. If BAT is lacking, AH occurs more readily. Cardiac Output Assuming a 7% drop in metabolism per °C, a BCT decrease of 10°C can reduce metabolism by 70% paralleled by a corresponding decline in CO. Consequently, it is possible to maintain adequate oxygen delivery provided correctly performed cardiopulmonary resuscitation (CPR), which might result in approximately 30% of CO generated at normal BCT. Liver and Coagulation AH promotes coagulation disturbances following trauma and acidosis by reducing coagulation and platelet functions. Mean prothrombin and partial thromboplastin times might increase by 40-60% in moderate hypothermia. Rewarming might release tissue factor from damaged tissues, that triggers disseminated intravascular coagulation. Hypothermia might inhibit platelet aggregation and coagulation. Kidneys Renal blood flow decreases due to vasoconstriction of afferent arterioles, electrolyte and fluid disturbances and increasing blood viscosity. Severely deranged renal function occurs particularly in the presence of rhabdomyolysis induced by severe AH combined with trauma. Conclusion Metabolism drops 7% per °C fall in BCT, reducing CO correspondingly. Therefore, it is possible to maintain adequate oxygen delivery after 10°C drop in BCT provided correctly performed CPR. Hypothermia may facilitate rhabdomyolysis in traumatized patients. Victims suspected of HCA should be rewarmed before being pronounced dead. Rewarming avalanche victims of HCA with serum potassium > 12 mmol/L and a burial time >30 min with no air pocket, most probably be futile.
Collapse
Affiliation(s)
- Lars J. Bjertnæs
- Department of Clinical Medicine, Faculty of Health Sciences, Anesthesia and Critical Care Research Group, University of Tromsø, UiT The Arctic University of Norway, Tromsø, Norway
- Division of Surgical Medicine and Intensive Care, University Hospital of North Norway, Tromsø, Norway
| | - Torvind O. Næsheim
- Division of Surgical Medicine and Intensive Care, University Hospital of North Norway, Tromsø, Norway
- Department of Clinical Medicine, Faculty of Health Sciences, Cardiovascular Research Group, University of Tromsø, UiT The Arctic University of Norway, Tromsø, Norway
| | - Eirik Reierth
- Science and Health Library, University of Tromsø, UiT The Arctic University of Norway, Tromsø, Norway
| | - Evgeny V. Suborov
- The Nikiforov Russian Center of Emergency and Radiation Medicine, St. Petersburg, Russia
| | - Mikhail Y. Kirov
- Department of Anesthesiology and Intensive Care, Northern State Medical University, Arkhangelsk, Russia
| | - Konstantin M. Lebedinskii
- Department of Anesthesiology and Intensive Care, North-Western State Medical University named after I.I. Mechnikov, St. Petersburg, Russia
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, Moscow, Russia
| | - Torkjel Tveita
- Department of Clinical Medicine, Faculty of Health Sciences, Anesthesia and Critical Care Research Group, University of Tromsø, UiT The Arctic University of Norway, Tromsø, Norway
- Division of Surgical Medicine and Intensive Care, University Hospital of North Norway, Tromsø, Norway
| |
Collapse
|
17
|
Maushart CI, Senn JR, Loeliger RC, Siegenthaler J, Bur F, Fischer JGW, Betz MJ. Resting Energy Expenditure and Cold-induced Thermogenesis in Patients With Overt Hyperthyroidism. J Clin Endocrinol Metab 2022; 107:450-461. [PMID: 34570185 PMCID: PMC8764338 DOI: 10.1210/clinem/dgab706] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Indexed: 11/19/2022]
Abstract
CONTEXT Thyroid hormone (TH) is crucial for the adaptation to cold. OBJECTIVE To evaluate the effect of hyperthyroidism on resting energy expenditure (REE), cold-induced thermogenesis (CIT) and changes in body composition and weight. METHODS This was a prospective cohort study at the endocrine outpatient clinic of a tertiary referral center. Eighteen patients with overt hyperthyroidism were included. We measured REE during hyperthyroidism, after restoring euthyroid TH levels and after 3 months of normal thyroid function. In 14 of the 18 patients, energy expenditure (EE) was measured before and after a mild cold exposure of 2 hours and CIT was the difference between EEcold and EEwarm. Skin temperatures at 8 positions were recorded during the study visits. Body composition was assessed by dual X-ray absorption. RESULTS Free thyroxine (fT4) and free triiodothyronine (fT3) decreased significantly over time (fT4, P = .0003; fT3, P = .0001). REE corrected for lean body mass (LBM) decreased from 42 ± 6.7 kcal/24 hour/kg LBM in the hyperthyroid to 33 ± 4.4 kcal/24 hour/kg LBM (-21%, P < .0001 vs hyperthyroid) in the euthyroid state and 3 months later to 33 ± 5.2 kcal/24 hour/kg LBM (-21%, P = .0022 vs hyperthyroid, overall P < .0001). fT4 (P = .0001) and fT3 (P < 0.0001) were predictors of REE. CIT did not change from the hyperthyroid to the euthyroid state (P = .96). Hyperthyroidism led to increased skin temperature at warm ambient conditions but did not alter core body temperature, nor skin temperature after cold exposure. Weight regain and body composition were not influenced by REE and CIT during the hyperthyroid state. CONCLUSION CIT is not increased in patients with overt hyperthyroidism.
Collapse
Affiliation(s)
- Claudia I Maushart
- Department of Endocrinology, Diabetes and Metabolism, University Hospital Basel, University of Basel, Petersgraben 4, CH-4031 Basel, Switzerland
| | - Jaël R Senn
- Department of Endocrinology, Diabetes and Metabolism, University Hospital Basel, University of Basel, Petersgraben 4, CH-4031 Basel, Switzerland
| | - Rahel C Loeliger
- Department of Endocrinology, Diabetes and Metabolism, University Hospital Basel, University of Basel, Petersgraben 4, CH-4031 Basel, Switzerland
| | - Judith Siegenthaler
- Department of Endocrinology, Diabetes and Metabolism, University Hospital Basel, University of Basel, Petersgraben 4, CH-4031 Basel, Switzerland
| | - Fabienne Bur
- Department of Endocrinology, Diabetes and Metabolism, University Hospital Basel, University of Basel, Petersgraben 4, CH-4031 Basel, Switzerland
| | - Jonas G W Fischer
- Department of Endocrinology, Diabetes and Metabolism, University Hospital Basel, University of Basel, Petersgraben 4, CH-4031 Basel, Switzerland
| | - Matthias J Betz
- Department of Endocrinology, Diabetes and Metabolism, University Hospital Basel, University of Basel, Petersgraben 4, CH-4031 Basel, Switzerland
| |
Collapse
|
18
|
The acclimatization of Haenyeo to a cold environment and occupational characteristics evaluated by orexin and irisin levels. Ann Occup Environ Med 2022; 34:e28. [DOI: 10.35371/aoem.2022.34.e28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 08/25/2022] [Accepted: 09/20/2022] [Indexed: 11/05/2022] Open
|
19
|
Comparative Transcriptome Profiling of Young and Old Brown Adipose Tissue Thermogenesis. Int J Mol Sci 2021; 22:ijms222313143. [PMID: 34884947 PMCID: PMC8658479 DOI: 10.3390/ijms222313143] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/02/2021] [Accepted: 12/03/2021] [Indexed: 12/13/2022] Open
Abstract
Brown adipose tissue (BAT) is a major site for uncoupling protein 1 (UCP1)-mediated non-shivering thermogenesis. BAT dissipates energy via heat generation to maintain the optimal body temperature and increases energy expenditure. These energetic processes in BAT use large amounts of glucose and fatty acid. Therefore, the thermogenesis of BAT may be harnessed to treat obesity and related diseases. In mice and humans, BAT levels decrease with aging, and the underlying mechanism is elusive. Here, we compared the transcriptomic profiles of both young and aged BAT in response to thermogenic stimuli. The profiles were extracted from the GEO database. Intriguingly, aging does not cause transcriptional changes in thermogenic genes but upregulates several pathways related to the immune response and downregulates metabolic pathways. Acute severe CE upregulates several pathways related to protein folding. Chronic mild CE upregulates metabolic pathways, especially related to carbohydrate metabolism. Our findings provide a better understanding of the effects of aging and metabolic responses to thermogenic stimuli in BAT at the transcriptome level.
Collapse
|
20
|
Greenfield AM, Charkoudian N, Alba BK. Influences of ovarian hormones on physiological responses to cold in women. Temperature (Austin) 2021; 9:23-45. [DOI: 10.1080/23328940.2021.1953688] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Andrew Martin Greenfield
- Thermal & Mountain Medicine Division, US Army Research Institute of Environmental Medicine, Natick, MA, USA
- Oak Ridge Institute of Science and Education, Belcamp, MD, USA
| | - Nisha Charkoudian
- Thermal & Mountain Medicine Division, US Army Research Institute of Environmental Medicine, Natick, MA, USA
| | - Billie Katherine Alba
- Thermal & Mountain Medicine Division, US Army Research Institute of Environmental Medicine, Natick, MA, USA
| |
Collapse
|
21
|
Mig-6 is essential for glucose homeostasis and thermogenesis in brown adipose tissue. Biochem Biophys Res Commun 2021; 572:92-97. [PMID: 34358969 DOI: 10.1016/j.bbrc.2021.07.088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 07/23/2021] [Accepted: 07/26/2021] [Indexed: 01/06/2023]
Abstract
Brown adipose tissue (BAT) is an anti-obese and anti-diabetic tissue that stimulates energy expenditure in the form of adaptive thermogenesis through uncoupling protein 1 (UCP1). Mitogen-inducible gene-6 (Mig-6) is a negative regulator of epidermal growth factor receptor (EGFR) that interacts with many cellular partners and has multiple cellular functions. We have recently reported that Mig-6 is associated with diabetes and metabolic syndrome. However, its function in BAT is unknown. We generated a brown adipocyte-specific Mig-6 knock-in mouse (BKI) to examine the role of Mig-6 in BAT. Mig-6 BKI mice had improved glucose tolerance on a normal chow diet. Mig-6 BKI mice also revealed activated thermogenesis and the size of the BAT lipid droplets was reduced. Additionally, Mig-6 regulated cAMP-PKA signaling-induced UCP1 expression in brown adipocytes. Taken together, these results demonstrate that Mig-6 affects glucose tolerance and thermogenesis in BAT.
Collapse
|
22
|
Sanchez-Delgado G, Martinez-Tellez B, Acosta FM, Virtue S, Vidal-Puig A, Gil A, Llamas-Elvira JM, Ruiz JR. Brown Adipose Tissue Volume and Fat Content Are Positively Associated With Whole-Body Adiposity in Young Men-Not in Women. Diabetes 2021; 70:1473-1485. [PMID: 33858825 DOI: 10.2337/db21-0011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 04/05/2021] [Indexed: 11/13/2022]
Abstract
Human brown adipose tissue (BAT) volume has consistently been claimed to be inversely associated with whole-body adiposity. However, recent advances in the assessment of human BAT suggest that previously reported associations may have been biased. The present cross-sectional study investigates the association of BAT volume, mean radiodensity, and 18F-fluorodeoxyglucose (18F-FDG) uptake (assessed via a static positron emission tomography [PET]-computed tomography [CT] scan after a 2-h personalized cold exposure) with whole-body adiposity (measured by DXA) in 126 young adults (42 men and 84 women; mean ± SD BMI 24.9 ± 4.7 kg/m2). BAT volume, but not 18F-FDG uptake, was positively associated with BMI, fat mass, and visceral adipose tissue (VAT) mass in men but not in women. These associations were independent of the date when the PET-CT was performed, insulin sensitivity, and body surface area. BAT mean radiodensity, an inverse proxy of BAT fat content, was negatively associated with BMI, fat mass, and VAT mass in men and in women. These results refute the widely held belief that human BAT volume is reduced in obese persons, at least in young adults, and suggest that it might even be the opposite in young men.
Collapse
Affiliation(s)
- Guillermo Sanchez-Delgado
- PROFITH "PROmoting FITness and Health through Physical Activity" Research Group, Sport and Health University Research Institute (iMUDS), Department of Physical Education and Sports, Faculty of Sport Sciences, University of Granada, Granada, Spain
- Pennington Biomedical Research Center, Baton Rouge, LA
| | - Borja Martinez-Tellez
- PROFITH "PROmoting FITness and Health through Physical Activity" Research Group, Sport and Health University Research Institute (iMUDS), Department of Physical Education and Sports, Faculty of Sport Sciences, University of Granada, Granada, Spain
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, the Netherlands
| | - Francisco M Acosta
- PROFITH "PROmoting FITness and Health through Physical Activity" Research Group, Sport and Health University Research Institute (iMUDS), Department of Physical Education and Sports, Faculty of Sport Sciences, University of Granada, Granada, Spain
| | - Samuel Virtue
- The University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, U.K
| | - Antonio Vidal-Puig
- The University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, U.K
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, U.K
| | - Angel Gil
- Department of Biochemistry and Molecular Biology II, Institute of Nutrition and Food Technology, Centre for Biomedical Research, University of Granada, Granada, Spain
- CIBEROBN, Carlos III Health Institute, Madrid, Spain
| | - Jose M Llamas-Elvira
- Nuclear Medicine Services, "Virgen de las Nieves" University Hospital, Granada, Spain
- Biohealth Research Institute in Granada (ibs.GRANADA), Granada, Spain
| | - Jonatan R Ruiz
- PROFITH "PROmoting FITness and Health through Physical Activity" Research Group, Sport and Health University Research Institute (iMUDS), Department of Physical Education and Sports, Faculty of Sport Sciences, University of Granada, Granada, Spain
| |
Collapse
|
23
|
Sanders OD, Rajagopal JA, Rajagopal L. Menthol to Induce Non-shivering Thermogenesis via TRPM8/PKA Signaling for Treatment of Obesity. J Obes Metab Syndr 2021; 30:4-11. [PMID: 33071240 PMCID: PMC8017329 DOI: 10.7570/jomes20038] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 05/25/2020] [Accepted: 06/12/2020] [Indexed: 12/25/2022] Open
Abstract
Increasing basal energy expenditure via uncoupling protein 1 (UCP1)-dependent non-shivering thermogenesis is an attractive therapeutic strategy for treatment of obesity. Transient receptor potential melastatin 8 (TRPM8) channel activation by cold and cold mimetics induces UCP1 transcription and prevents obesity in animals, but the clinical relevance of this relationship remains incompletely understood. A review of TRPM8 channel agonism for treatment of obesity focusing on menthol was undertaken. Adipocyte TRPM8 activation results in Ca2+ influx and protein kinase A (PKA) activation, which induces mitochondrial elongation, mitochondrial localization to lipid droplets, lipolysis, β-oxidation, and UCP1 expression. Ca2+-induced mitochondrial reactive oxygen species activate UCP1. In animals, TRPM8 agonism increases basal metabolic rate, non-shivering thermogenesis, oxygen consumption, exercise endurance, and fatty acid oxidation and decreases abdominal fat percentage. Menthol prevents high-fat diet-induced obesity, glucose intolerance, insulin resistance, and liver triacylglycerol accumulation. Hypothalamic TRPM8 activation releases glucagon, which activates PKA and promotes catabolism. TRPM8 polymorphisms are associated with obesity. In humans, oral menthol and other TRPM8 agonists have little effect. However, topical menthol appears to increase core body temperature and metabolic rate. A randomized clinical control trial of topical menthol in obese patients is warranted.
Collapse
Affiliation(s)
| | | | - Lekshmy Rajagopal
- Oto-Rhino-Laryngology, College of Physicians and Surgeons, Mumbai, India
| |
Collapse
|
24
|
Hu Q, Cao H, Zhou L, Liu J, Di W, Lv S, Ding G, Tang L. Measurement of BAT activity by targeted molecular magnetic resonance imaging. Magn Reson Imaging 2020; 77:1-6. [PMID: 33309921 DOI: 10.1016/j.mri.2020.12.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 10/29/2020] [Accepted: 12/08/2020] [Indexed: 11/18/2022]
Abstract
OBJECTIVE The aim of this study was to measure brown adipose tissue (BAT) activity by targeted peptide (CKGGRAKDC-NH2)-coupled, polyethylene glycol (PEG)-coated ultrasmall superparamagnetic iron oxide (USPIO) nanoparticles with magnetic resonance imaging (MRI). METHODS The peptide was conjugated with PEG-coated USPIO to obtain targeted probes. Male C57BL/6 J mice were randomly divided into cold exposing and control group (n = 5 per group). T2*-weighted images were obtained pre- and post-contrast probes. Histological and gene expression analyses were carried out. RESULTS T2* relaxation time of BAT in the cold exposing group decreased more significantly compared to the control group. The calculated R2* increased with the reduction of T2* value. The ΔR2* (26.68 s-1) of BAT in the cold exposing group was significantly higher (P < 0.05) than the control group. Iron particle sediments in BAT of the cold exposing group were revealed more than the control group with Prussian blue staining. The UCP1 expression level was up-regulated after cold activation. CONCLUSIONS BAT activity could be measured in vivo by the targeted peptide-coupled, PEG-coated USPIOs with MRI.
Collapse
Affiliation(s)
- Qingqiao Hu
- Departments of Nuclear Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, People's Republic of China
| | - Huixiao Cao
- Departments of Nuclear Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, People's Republic of China
| | - Lu Zhou
- Departments of Nuclear Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, People's Republic of China
| | - Juan Liu
- Department of Geratology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, People's Republic of China
| | - Wenjuan Di
- Department of Geratology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, People's Republic of China
| | - Shan Lv
- Department of Geratology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, People's Republic of China
| | - Guoxian Ding
- Department of Geratology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, People's Republic of China.
| | - Lijun Tang
- Departments of Nuclear Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, People's Republic of China.
| |
Collapse
|
25
|
Soundarrajan M, Deng J, Kwasny M, Rubert NC, Nelson PC, El-Seoud DA, Landsberg L, Neff LM. Activated brown adipose tissue and its relationship to adiposity and metabolic markers: an exploratory study. Adipocyte 2020; 9:87-95. [PMID: 32043413 PMCID: PMC7039639 DOI: 10.1080/21623945.2020.1724740] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 01/23/2020] [Accepted: 01/27/2020] [Indexed: 11/26/2022] Open
Abstract
Objective: To explore relationships between PET/CT characteristics of cold-activated brown adipose tissue (BAT), measures of adiposity and metabolic markers.Methods: We conducted a post-hoc analysis of a study which utilized PET/CT to characterize BAT. 25 men ages 18-24 (BMI 19.4 to 35.9 kg/m2) were studied. Fasting blood samples were collected. Body composition was measured using DXA. An individualized cooling protocol was utilized to activate BAT prior to imaging with PET/CT.Results: There was an inverse relationship between fasting serum glucose and BAT volume (r = -0.40, p = 0.048). A marginally significant inverse relationship was also noted between fasting glucose and total BAT activity (r = -0.40, p = 0.05). In addition, a positive correlation was observed between serum FGF21 and SUVmax (r = 0.51, p = 0.01). No significant correlations were noted for measures of BAT activity or volume and other indicators of adiposity or glucose metabolism.Conclusions: The presence of active BAT may be associated with lower fasting glucose in young men. BAT activity may also be correlated with levels of FGF21, suggesting that BAT may lower glucose levels via an FGF21 dependent pathway. Further studies are needed to clarify mechanisms by which BAT may impact glucose metabolism.
Collapse
Affiliation(s)
- Malini Soundarrajan
- Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Jie Deng
- Department of Diagnostic Radiology and Nuclear Medicine, Rush University Medical Center, Chicago, IL, USA
| | - Mary Kwasny
- Department of Preventive Medicine, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Nicholas C. Rubert
- Department of Medical Imaging, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL, USA
| | - Paige C. Nelson
- Department of Medical Imaging, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL, USA
| | - Dalya A. El-Seoud
- Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Lewis Landsberg
- Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Lisa M. Neff
- Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
26
|
McHugh CT, Garside J, Barkes J, Frank J, Dragicevich C, Yuan H, Branca RT. Differences in [ 18F]FDG uptake in BAT of UCP1 -/- and UCP1 +/+ during adrenergic stimulation of non-shivering thermogenesis. EJNMMI Res 2020; 10:136. [PMID: 33159596 PMCID: PMC7648812 DOI: 10.1186/s13550-020-00726-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 10/27/2020] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Brown adipose tissue (BAT) is a fat tissue found in most mammals that helps regulate energy balance and core body temperature through a sympathetic process known as non-shivering thermogenesis. BAT activity is commonly detected and quantified in [18F]FDG positron emission tomography/computed tomography (PET/CT) scans, and radiotracer uptake in BAT during adrenergic stimulation is often used as a surrogate measure for identifying thermogenic activity in the tissue. BAT thermogenesis is believed to be contingent upon the expression of the protein UCP1, but conflicting results have been reported in the literature concerning [18F]FDG uptake within BAT of mice with and without UCP1. Differences in animal handling techniques such as feeding status, type of anesthetic, type of BAT stimulation, and estrogen levels were identified as possible confounding variables for [18F]FDG uptake. In this study, we aimed to assess differences in BAT [18F]FDG uptake between wild-type and UCP1-knockout mice using a protocol that minimizes possible variations in BAT stimulation caused by different stress responses to mouse handling. RESULTS [18F]FDG PET/CT scans were run on mice that were anesthetized with pentobarbital after stimulation of non-shivering thermogenesis by norepinephrine. While in wild-type mice [18F]FDG uptake in BAT increased significantly with norepinephrine stimulation of BAT, there was no consistent change in [18F]FDG uptake in BAT of mice lacking UCP1. CONCLUSIONS [18F]FDG uptake within adrenergically stimulated BAT of wild-type and UCP1-knockout mice can significantly vary such that an [18F]FDG uptake threshold cannot be used to differentiate wild-type from UCP1-knockout mice. However, while an increase in BAT [18F]FDG uptake during adrenergic stimulation is consistently observed in wild-type mice, in UCP1-knockout mice [18F]FDG uptake in BAT seems to be independent of β3-adrenergic stimulation of non-shivering thermogenesis.
Collapse
Affiliation(s)
- Christian T McHugh
- Department of Physics and Astronomy, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Biomedical Research Imaging Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - John Garside
- Department of Physics and Astronomy, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jared Barkes
- Biomedical Research Imaging Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jonathan Frank
- Biomedical Research Imaging Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Constance Dragicevich
- Biomedical Research Imaging Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Hong Yuan
- Biomedical Research Imaging Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Department of Radiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Rosa T Branca
- Department of Physics and Astronomy, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA. .,Biomedical Research Imaging Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
27
|
Sanchez-Delgado G, Alcantara JMA, Acosta FM, Martinez-Tellez B, Amaro-Gahete FJ, Merchan-Ramirez E, Löf M, Labayen I, Ravussin E, Ruiz JR. Energy Expenditure and Macronutrient Oxidation in Response to an Individualized Nonshivering Cooling Protocol. Obesity (Silver Spring) 2020; 28:2175-2183. [PMID: 32985119 DOI: 10.1002/oby.22972] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 07/08/2020] [Accepted: 07/09/2020] [Indexed: 11/07/2022]
Abstract
OBJECTIVE This study aimed to describe the energy expenditure (EE) and macronutrient oxidation response to an individualized nonshivering cold exposure in young healthy adults. METHODS Two different groups of 44 (study 1: 22.1 [SD 2.1] years old, 25.6 [SD 5.2] kg/m2 , 34% men) and 13 young healthy adults (study 2: 25.6 [SD 3.0] years old, 23.6 [SD 2.4] kg/m2 , 54% men) participated in this study. Resting metabolic rate (RMR) and macronutrient oxidation rates were measured by indirect calorimetry under fasting conditions in a warm environment (for 30 minutes) and in mild cold conditions (for 65 minutes, with the individual wearing a water-perfused cooling vest set at an individualized temperature adjusted to the individual's shivering threshold). RESULTS In study 1, EE increased in the initial stage of cold exposure and remained stable for the whole cold exposure (P < 0.001). Mean cold-induced thermogenesis (9.56 ± 7.9 kcal/h) was 13.9% ± 11.6% of the RMR (range: -14.8% to 39.9% of the RMR). Carbohydrate oxidation decreased during the first 30 minutes of the cold exposure and later recovered up to the baseline values (P < 0.01) in parallel to opposite changes in fat oxidation (P < 0.01). Results were replicated in study 2. CONCLUSIONS A 1-hour mild cold exposure individually adjusted to elicit maximum nonshivering thermogenesis induces a very modest increase in EE and a shift of macronutrient oxidation that may underlie a shift in thermogenic tissue activity.
Collapse
Affiliation(s)
- Guillermo Sanchez-Delgado
- Promoting Fitness and Health Through Physical Activity Research Group, Sport and Health University Research Institute, Faculty of Sport Sciences, University of Granada, Granada, Spain
- Department of Physical Education and Sports, University of Granada, Granada, Spain
- Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| | - Juan M A Alcantara
- Promoting Fitness and Health Through Physical Activity Research Group, Sport and Health University Research Institute, Faculty of Sport Sciences, University of Granada, Granada, Spain
- Department of Physical Education and Sports, University of Granada, Granada, Spain
| | - Francisco M Acosta
- Promoting Fitness and Health Through Physical Activity Research Group, Sport and Health University Research Institute, Faculty of Sport Sciences, University of Granada, Granada, Spain
- Department of Physical Education and Sports, University of Granada, Granada, Spain
| | - Borja Martinez-Tellez
- Promoting Fitness and Health Through Physical Activity Research Group, Sport and Health University Research Institute, Faculty of Sport Sciences, University of Granada, Granada, Spain
- Department of Physical Education and Sports, University of Granada, Granada, Spain
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden University, Leiden, the Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Department of Medicine, Leiden University Medical Center, Leiden University, Leiden, the Netherlands
| | - Francisco J Amaro-Gahete
- Promoting Fitness and Health Through Physical Activity Research Group, Sport and Health University Research Institute, Faculty of Sport Sciences, University of Granada, Granada, Spain
- Department of Physical Education and Sports, University of Granada, Granada, Spain
- Department of Medical Physiology, School of Medicine, University of Granada, Granada, Spain
| | - Elisa Merchan-Ramirez
- Promoting Fitness and Health Through Physical Activity Research Group, Sport and Health University Research Institute, Faculty of Sport Sciences, University of Granada, Granada, Spain
- Department of Physical Education and Sports, University of Granada, Granada, Spain
| | - Marie Löf
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
- Department of Health, Medicine Caring Sciences, Linköping University, Linköping, Sweden
| | - Idoia Labayen
- Institute for Innovation and Sustainable Development in Food Chain, Navarra's Health Research Institute, Department of Health Sciences, Public University of Navarra, Pamplona, Spain
| | - Eric Ravussin
- Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| | - Jonatan R Ruiz
- Promoting Fitness and Health Through Physical Activity Research Group, Sport and Health University Research Institute, Faculty of Sport Sciences, University of Granada, Granada, Spain
- Department of Physical Education and Sports, University of Granada, Granada, Spain
| |
Collapse
|
28
|
Fischer JGW, Maushart CI, Becker AS, Müller J, Madoerin P, Chirindel A, Wild D, Ter Voert EEGW, Bieri O, Burger I, Betz MJ. Comparison of [ 18F]FDG PET/CT with magnetic resonance imaging for the assessment of human brown adipose tissue activity. EJNMMI Res 2020; 10:85. [PMID: 32699996 PMCID: PMC7376767 DOI: 10.1186/s13550-020-00665-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 06/25/2020] [Indexed: 12/26/2022] Open
Abstract
Background Brown adipose tissue (BAT) is a thermogenic tissue which can generate heat in response to mild cold exposure. As it constitutes a promising target in the fight against obesity, we need reliable techniques to quantify its activity in response to therapeutic interventions. The current standard for the quantification of BAT activity is [18F]FDG PET/CT. Various sequences in magnetic resonance imaging (MRI), including those measuring its relative fat content (fat fraction), have been proposed and evaluated in small proof-of-principle studies, showing diverging results. Here, we systematically compare the predictive value of adipose tissue fat fraction measured by MRI to the results of [18F]FDG PET/CT. Methods We analyzed the diagnostic reliability of MRI measured fat fraction (FF) for the estimation of human BAT activity in two cohorts of healthy volunteers participating in two prospective clinical trials (NCT03189511, NCT03269747). In both cohorts, BAT activity was stimulated by mild cold exposure. In cohort 1, we performed [18F]FDG PET/MRI; in cohort 2, we used [18F]FDG PET/CT followed by MRI. Fat fraction was determined by 2-point Dixon and 6-point Dixon measurement, respectively. Fat fraction values were compared to SUVmean in the corresponding tissue depot by simple linear regression. Results In total, 33 male participants with a mean age of 23.9 years and a mean BMI of 22.8 kg/m2 were recruited. In 32 participants, active BAT was visible. On an intra-individual level, FF was significantly lower in high-SUV areas compared to low-SUV areas (cohort 1: p < 0.0001 and cohort 2: p = 0.0002). The FF of the supraclavicular adipose tissue depot was inversely related to its metabolic activity (SUVmean) in both cohorts (cohort 1: R2 = 0.18, p = 0.09 and cohort 2: R2 = 0.42, p = 0.009). Conclusion MRI FF explains only about 40% of the variation in BAT glucose uptake. Thus, it can currently not be used to substitute [18F] FDG PET-based imaging for quantification of BAT activity. Trial registration ClinicalTrials.gov. NCT03189511, registered on June 17, 2017, actual study start date was on May 31, 2017, retrospectively registered. NCT03269747, registered on September 01, 2017.
Collapse
Affiliation(s)
- Jonas Gabriel William Fischer
- Department of Endocrinology, Diabetes and Metabolism, University Hospital Basel, Petersgraben 4, 4031 Basel, Switzerland, and University of Basel, Basel, Switzerland
| | - Claudia Irene Maushart
- Department of Endocrinology, Diabetes and Metabolism, University Hospital Basel, Petersgraben 4, 4031 Basel, Switzerland, and University of Basel, Basel, Switzerland
| | - Anton S Becker
- Institute of Diagnostic and Interventional Radiology, University Hospital Zürich, Rämistrasse 100, 8091, Zürich, Switzerland
| | - Julian Müller
- Department of Nuclear Medicine, University Hospital Zürich, Rämistrasse 100, Zürich, 8091, Switzerland
| | - Philipp Madoerin
- Department of Radiology, Division of Radiological Physics, University Hospital Basel, Basel, Switzerland
| | - Alin Chirindel
- Division of Nuclear Medicine, University Hospital Basel, Petersgraben 4, 4031, Basel, Switzerland
| | - Damian Wild
- Division of Nuclear Medicine, University Hospital Basel, Petersgraben 4, 4031, Basel, Switzerland
| | - Edwin E G W Ter Voert
- Department of Nuclear Medicine, University Hospital Zürich, Rämistrasse 100, Zürich, 8091, Switzerland
| | - Oliver Bieri
- Department of Radiology, University Hospital of Basel and University of Basel, Basel, Switzerland
| | - Irene Burger
- Department of Nuclear Medicine, University Hospital Zürich, Rämistrasse 100, Zürich, 8091, Switzerland
| | - Matthias Johannes Betz
- Department of Endocrinology, Diabetes and Metabolism, University Hospital Basel, Petersgraben 4, 4031 Basel, Switzerland, and University of Basel, Basel, Switzerland.
| |
Collapse
|
29
|
Mihalopoulos NL, Yap JT, Beardmore B, Holubkov R, Nanjee MN, Hoffman JM. Cold-Activated Brown Adipose Tissue is Associated with Less Cardiometabolic Dysfunction in Young Adults with Obesity. Obesity (Silver Spring) 2020; 28:916-923. [PMID: 32170839 PMCID: PMC7180112 DOI: 10.1002/oby.22767] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 01/07/2020] [Indexed: 01/02/2023]
Abstract
OBJECTIVE This study aimed to test the hypothesis that young adults with obesity and cold-activated brown adipose tissue (BAT) are less likely to have metabolic dysfunction (dyslipidemia, insulin resistance, and hypertension) than those without cold-activated BAT. Previous studies have noted a potentially protective effect of BAT and higher adiponectin/leptin ratios, but they have acknowledged that the clinical implications of these findings remain uncertain. METHODS Twenty-one females and twenty-three males with obesity (BMI ≥ 30 kg/m2 ) underwent a 2-hour cooling protocol before 18 F-fluorodeoxyglucose (18 F-FDG)-positron emission tomography/x-ray computed tomography scan to determine the prevalence, volume, and 18 F-FDG uptake of cold-activated BAT. RESULTS Cold-activated BAT was identified in 43% of participants (11 female, 8 male); females had greater 18 F-FDG uptake. Those with cold-activated BAT had a lesser degree of metabolic dysfunction. Cold-activated BAT volume correlated with triglycerides (inversely) and adiponectin (concordantly). Body-mass-adjusted cold-activated BAT activity correlated with high-density lipoprotein cholesterol (concordantly). Males with cold-activated BAT had lower leptin and higher adiponectin/leptin ratio. CONCLUSIONS A high prevalence of cold-activated BAT was found in the study participants. BAT could be important in decreasing metabolic dysfunction among young adults with obesity, making it a potential target for treating metabolically unhealthy obesity.
Collapse
Affiliation(s)
- Nicole L Mihalopoulos
- Division of Adolescent Medicine, Department of Pediatrics, University of Utah, Salt Lake City, Utah, USA
| | - Jeffrey T Yap
- Center for Quantitative Cancer Imaging, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, USA
- Department of Radiology and Imaging Science, University of Utah, Salt Lake City, Utah, USA
| | - Britney Beardmore
- Center for Quantitative Cancer Imaging, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, USA
| | - Richard Holubkov
- Division of Critical Care Medicine, Department of Pediatrics, University of Utah, Salt Lake City, Utah, USA
| | - M Nazeem Nanjee
- Department of Cardiovascular Genetics, University of Utah, Salt Lake City, Utah, USA
| | - John M Hoffman
- Center for Quantitative Cancer Imaging, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, USA
- Department of Radiology and Imaging Science, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
30
|
Fletcher LA, Kim K, Leitner BP, Cassimatis TM, O’Mara AE, Johnson JW, Halprin MS, McGehee SM, Brychta RJ, Cypess AM, Chen KY. Sexual Dimorphisms in Adult Human Brown Adipose Tissue. Obesity (Silver Spring) 2020; 28:241-246. [PMID: 31970907 PMCID: PMC6986330 DOI: 10.1002/oby.22698] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 10/09/2019] [Indexed: 12/18/2022]
Abstract
OBJECTIVE This study aimed to quantify and compare the amount, activity, and anatomical distribution of cold-activated brown adipose tissue (BAT) in healthy, young, lean women and men. METHODS BAT volume and 18 F-fluorodeoxyglucose uptake were measured by positron emission tomography and computerized tomography in 12 women and 12 men (BMI 18.5-25 kg/m2 , aged 18-35 years) after 5 hours of exposure to their coldest temperature before overt shivering. RESULTS Women had a lower detectable BAT volume than men (P = 0.03), but there was no difference after normalizing to body size. The mean BAT glucose uptake and relative distribution of BAT did not differ by sex. 18 F-fluorodeoxyglucose uptake consistent with BAT was observed in superficial dorsocervical adipose tissue of 6 of 12 women but only 1 of 12 men (P = 0.02). This potential BAT depot would pose fewer biopsy risks than other depots. CONCLUSIONS Despite differences in adiposity and total BAT volume, we found that healthy, lean, young women and men do not differ in the relative amount, glucose uptake, and distribution of BAT. Dorsocervical 18 F-fluorodeoxyglucose uptake was more prevalent in women and may be a remnant of interscapular BAT seen in human newborns. Future studies are needed to discern how BAT contributes to whole-body thermal physiology and body weight regulation in women and men.
Collapse
|
31
|
Wu M, Junker D, Branca RT, Karampinos DC. Magnetic Resonance Imaging Techniques for Brown Adipose Tissue Detection. Front Endocrinol (Lausanne) 2020; 11:421. [PMID: 32849257 PMCID: PMC7426399 DOI: 10.3389/fendo.2020.00421] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 05/27/2020] [Indexed: 12/11/2022] Open
Abstract
Magnetic resonance imaging (MRI) and magnetic resonance spectroscopy (MRS) methods can non-invasively assess brown adipose tissue (BAT) structure and function. Recently, MRI and MRS have been proposed as a means to differentiate BAT from white adipose tissue (WAT) and to extract morphological and functional information on BAT inaccessible by other means. Specifically, proton MR (1H) techniques, such as proton density fat fraction mapping, diffusion imaging, and intermolecular multiple quantum coherence imaging, have been employed to access BAT microstructure; MR thermometry, relaxometry, and MRI and MRS with 31P, 2H, 13C, and 129Xe have shown to provide complementary information on BAT function. The purpose of the present review is to provide a comprehensive overview of MR imaging and spectroscopy techniques used to detect BAT in rodents and in humans. The present work discusses common challenges of current methods and provides an outlook on possible future directions of using MRI and MRS in BAT studies.
Collapse
Affiliation(s)
- Mingming Wu
- Department of Diagnostic and Interventional Radiology, School of Medicine, Technical University of Munich, Munich, Germany
- *Correspondence: Mingming Wu
| | - Daniela Junker
- Department of Diagnostic and Interventional Radiology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Rosa Tamara Branca
- Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Dimitrios C. Karampinos
- Department of Diagnostic and Interventional Radiology, School of Medicine, Technical University of Munich, Munich, Germany
| |
Collapse
|
32
|
Chen KY, Brychta RJ, Abdul Sater Z, Cassimatis TM, Cero C, Fletcher LA, Israni NS, Johnson JW, Lea HJ, Linderman JD, O'Mara AE, Zhu KY, Cypess AM. Opportunities and challenges in the therapeutic activation of human energy expenditure and thermogenesis to manage obesity. J Biol Chem 2019; 295:1926-1942. [PMID: 31914415 DOI: 10.1074/jbc.rev119.007363] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The current obesity pandemic results from a physiological imbalance in which energy intake chronically exceeds energy expenditure (EE), and prevention and treatment strategies remain generally ineffective. Approaches designed to increase EE have been informed by decades of experiments in rodent models designed to stimulate adaptive thermogenesis, a long-term increase in metabolism, primarily induced by chronic cold exposure. At the cellular level, thermogenesis is achieved through increased rates of futile cycling, which are observed in several systems, most notably the regulated uncoupling of oxidative phosphorylation from ATP generation by uncoupling protein 1, a tissue-specific protein present in mitochondria of brown adipose tissue (BAT). Physiological activation of BAT and other organ thermogenesis occurs through β-adrenergic receptors (AR), and considerable effort over the past 5 decades has been directed toward developing AR agonists capable of safely achieving a net negative energy balance while avoiding unwanted cardiovascular side effects. Recent discoveries of other BAT futile cycles based on creatine and succinate have provided additional targets. Complicating the current and developing pharmacological-, cold-, and exercise-based methods to increase EE is the emerging evidence for strong physiological drives toward restoring lost weight over the long term. Future studies will need to address technical challenges such as how to accurately measure individual tissue thermogenesis in humans; how to safely activate BAT and other organ thermogenesis; and how to sustain a negative energy balance over many years of treatment.
Collapse
Affiliation(s)
- Kong Y Chen
- Diabetes, Endocrinology, and Obesity Branch, Intramural Research Program, NIDDK, National Institutes of Health, Bethesda, Maryland 20892.
| | - Robert J Brychta
- Diabetes, Endocrinology, and Obesity Branch, Intramural Research Program, NIDDK, National Institutes of Health, Bethesda, Maryland 20892
| | - Zahraa Abdul Sater
- Diabetes, Endocrinology, and Obesity Branch, Intramural Research Program, NIDDK, National Institutes of Health, Bethesda, Maryland 20892
| | - Thomas M Cassimatis
- Diabetes, Endocrinology, and Obesity Branch, Intramural Research Program, NIDDK, National Institutes of Health, Bethesda, Maryland 20892
| | - Cheryl Cero
- Diabetes, Endocrinology, and Obesity Branch, Intramural Research Program, NIDDK, National Institutes of Health, Bethesda, Maryland 20892
| | - Laura A Fletcher
- Diabetes, Endocrinology, and Obesity Branch, Intramural Research Program, NIDDK, National Institutes of Health, Bethesda, Maryland 20892
| | - Nikita S Israni
- Diabetes, Endocrinology, and Obesity Branch, Intramural Research Program, NIDDK, National Institutes of Health, Bethesda, Maryland 20892
| | - James W Johnson
- Diabetes, Endocrinology, and Obesity Branch, Intramural Research Program, NIDDK, National Institutes of Health, Bethesda, Maryland 20892
| | - Hannah J Lea
- Diabetes, Endocrinology, and Obesity Branch, Intramural Research Program, NIDDK, National Institutes of Health, Bethesda, Maryland 20892
| | - Joyce D Linderman
- Diabetes, Endocrinology, and Obesity Branch, Intramural Research Program, NIDDK, National Institutes of Health, Bethesda, Maryland 20892
| | - Alana E O'Mara
- Diabetes, Endocrinology, and Obesity Branch, Intramural Research Program, NIDDK, National Institutes of Health, Bethesda, Maryland 20892
| | - Kenneth Y Zhu
- Diabetes, Endocrinology, and Obesity Branch, Intramural Research Program, NIDDK, National Institutes of Health, Bethesda, Maryland 20892
| | - Aaron M Cypess
- Diabetes, Endocrinology, and Obesity Branch, Intramural Research Program, NIDDK, National Institutes of Health, Bethesda, Maryland 20892.
| |
Collapse
|
33
|
Oreskovich SM, Ong FJ, Ahmed BA, Konyer NB, Blondin DP, Gunn E, Singh NP, Noseworthy MD, Haman F, Carpentier AC, Punthakee Z, Steinberg GR, Morrison KM. MRI Reveals Human Brown Adipose Tissue Is Rapidly Activated in Response to Cold. J Endocr Soc 2019; 3:2374-2384. [PMID: 31745532 PMCID: PMC6855213 DOI: 10.1210/js.2019-00309] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 10/08/2019] [Indexed: 01/05/2023] Open
Abstract
CONTEXT In rodents, cold exposure induces the activation of brown adipose tissue (BAT) and the induction of intracellular triacylglycerol (TAG) lipolysis. However, in humans, the kinetics of supraclavicular (SCV) BAT activation and the potential importance of TAG stores remain poorly defined. OBJECTIVE To determine the time course of BAT activation and changes in intracellular TAG using MRI assessment of the SCV (i.e., BAT depot) and fat in the posterior neck region (i.e., non-BAT). DESIGN Cross-sectional. SETTING Clinical research center. PATIENTS OR OTHER PARTICIPANTS Twelve healthy male volunteers aged 18 to 29 years [body mass index = 24.7 ± 2.8 kg/m2 and body fat percentage = 25.0% ± 7.4% (both, mean ± SD)]. INTERVENTIONS Standardized whole-body cold exposure (180 minutes at 18°C) and immediate rewarming (30 minutes at 32°C). MAIN OUTCOME MEASURES Proton density fat fraction (PDFF) and T2* of the SCV and posterior neck fat pads. Acquisitions occurred at 5- to 15-minute intervals during cooling and subsequent warming. RESULTS SCV PDFF declined significantly after only 10 minutes of cold exposure [-1.6% (SE: 0.44%; P = 0.007)] and continued to decline until 35 minutes, after which time it remained stable until 180 minutes. A similar time course was also observed for SCV T2*. In the posterior neck fat (non-BAT), there were no cold-induced changes in PDFF or T2*. Rewarming did not result in a change in SCV PDFF or T2*. CONCLUSIONS The rapid cold-induced decline in SCV PDFF suggests that in humans BAT is activated quickly in response to cold and that TAG is a primary substrate.
Collapse
Affiliation(s)
- Stephan M Oreskovich
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada
| | - Frank J Ong
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
| | - Basma A Ahmed
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Norman B Konyer
- Imaging Research Centre, St. Joseph’s Healthcare, Hamilton, Ontario, Canada
| | - Denis P Blondin
- Department of Pharmacology and Physiology, Faculty of Medicine and Health Sciences, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Elizabeth Gunn
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada
| | - Nina P Singh
- Department of Radiology, McMaster University Medical Center, Hamilton, Ontario, Canada
| | - Michael D Noseworthy
- Imaging Research Centre, St. Joseph’s Healthcare, Hamilton, Ontario, Canada
- Department of Electrical and Computer Engineering, McMaster University, Hamilton, Ontario, Canada
- McMaster School of Biomedical Engineering, McMaster University, Hamilton, Ontario, Canada
| | - Francois Haman
- School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada
| | - Andre C Carpentier
- Division of Endocrinology, Department of Medicine, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Zubin Punthakee
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Gregory R Steinberg
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Katherine M Morrison
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
34
|
Manolis AS, Manolis SA, Manolis AA, Manolis TA, Apostolaki N, Melita H. Winter Swimming. Curr Sports Med Rep 2019; 18:401-415. [DOI: 10.1249/jsr.0000000000000653] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
35
|
Deng Y, Cao B, Yang H, Liu B. Effects of local body heating on thermal comfort for audiences in open-air venues in 2022 Winter Olympics. BUILDING AND ENVIRONMENT 2019; 165:106363. [DOI: 10.1016/j.buildenv.2019.106363] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
36
|
Brown Adipocyte and Splenocyte Co-Culture Maintains Regulatory T Cell Subset in Intermittent Hypobaric Conditions. Tissue Eng Regen Med 2019; 16:539-548. [PMID: 31624708 PMCID: PMC6778593 DOI: 10.1007/s13770-019-00205-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 06/15/2019] [Accepted: 07/16/2019] [Indexed: 11/02/2022] Open
Abstract
Background Brown adipocytes have thermogenic characteristics in neonates and elicit anti-inflammatory responses. We postulated that thermogenic brown adipocytes produce distinctive intercellular effects in a hypobaric state. The purpose of this study is to analyze the correlation between brown adipocyte and regulatory T cell (Treg) expression under intermittent hypobaric conditions. Methods Brown and white adipocytes were harvested from the interscapular and flank areas of C57BL6 mice, respectively. Adipocytes were cultured with syngeneic splenocytes after isolation and differentiation. Intermittent hypobaric conditions were generated using cyclic negative pressure application for 48 h in both groups of adipocytes. Expression levels of Tregs (CD4 + CD25 + Foxp3 + T cells), cytokines [tumor necrosis factor-α (TNF-α) and interleukin-10 (IL-10), and the programmed death-ligand 1 (PD-L1)] co-inhibitory ligand were examined. Results Splenocytes, cultured with brown and white adipocytes, exhibited comparable Treg expression in a normobaric state. Under hypobaric conditions, brown adipocytes maintained a subset of Tregs. However, a decrease in Tregs was found in the white adipocyte group. TNF-α levels increased in both groups under hypobaric conditions. In the brown adipocyte group, anti-inflammatory IL-10 expression increased significantly; meanwhile, IL-10 expression decreased in the white adipocyte group. PD-L1 levels increased more significantly in brown adipocytes than in white adipocytes under hypobaric conditions. Conclusion Both brown and white adipocytes support Treg expression when they are cultured with splenocytes. Of note, brown adipocytes maintained Treg expression in intermittent hypobaric conditions. Anti-inflammatory cytokines and co-inhibitory ligands mediate the immunomodulatory effects of brown adipocytes under altered atmospheric conditions. Brown adipocytes showed the feasibility as a source of adjustment in physical stresses.
Collapse
|
37
|
Lundström E, Ljungberg J, Andersson J, Manell H, Strand R, Forslund A, Bergsten P, Weghuber D, Mörwald K, Zsoldos F, Widhalm K, Meissnitzer M, Ahlström H, Kullberg J. Brown adipose tissue estimated with the magnetic resonance imaging fat fraction is associated with glucose metabolism in adolescents. Pediatr Obes 2019; 14:e12531. [PMID: 31290284 PMCID: PMC6771901 DOI: 10.1111/ijpo.12531] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 02/25/2019] [Accepted: 03/06/2019] [Indexed: 11/28/2022]
Abstract
BACKGROUND Despite therapeutic potential against obesity and diabetes, the associations of brown adipose tissue (BAT) with glucose metabolism in young humans are relatively unexplored. OBJECTIVES To investigate possible associations between magnetic resonance imaging (MRI) estimates of BAT and glucose metabolism, whilst considering sex, age, and adiposity, in adolescents with normal and overweight/obese phenotypes. METHODS In 143 subjects (10-20 years), MRI estimates of BAT were assessed as cervical-supraclavicular adipose tissue (sBAT) fat fraction (FF) and T2* from water-fat MRI. FF and T2* of neighbouring subcutaneous adipose tissue (SAT) were also assessed. Adiposity was estimated with a standardized body mass index, the waist-to-height ratio, and abdominal visceral and subcutaneous adipose tissue volumes. Glucose metabolism was represented by the 2h plasma glucose concentration, the Matsuda index, the homeostatic model assessment of insulin resistance, and the oral disposition index; obtained from oral glucose tolerance tests. RESULTS sBAT FF and T2* correlated positively with adiposity before and after adjustment for sex and age. sBAT FF, but not T2* , correlated with 2h glucose and Matsuda index, also after adjustment for sex, age, and adiposity. The association with 2h glucose persisted after additional adjustment for SAT FF. CONCLUSIONS The association between sBAT FF and 2h glucose, observed independently of sex, age, adiposity, and SAT FF, indicates a role for BAT in glucose metabolism, which potentially could influence the risk of developing diabetes. The lacking association with sBAT T2* might be due to FF being a superior biomarker for BAT and/or to methodological limitations in the T2* quantification.
Collapse
Affiliation(s)
- Elin Lundström
- Department of Surgical Sciences, Section of RadiologyUppsala UniversityUppsalaSweden
| | - Joy Ljungberg
- Department of Surgical Sciences, Section of RadiologyUppsala UniversityUppsalaSweden
| | - Jonathan Andersson
- Department of Surgical Sciences, Section of RadiologyUppsala UniversityUppsalaSweden
| | - Hannes Manell
- Department of Women's and Children's HealthUppsala UniversityUppsalaSweden,Children Obesity ClinicUppsala University HospitalUppsalaSweden,Department of Medical Cell BiologyUppsala UniversityUppsalaSweden
| | - Robin Strand
- Department of Surgical Sciences, Section of RadiologyUppsala UniversityUppsalaSweden,Department of Information TechnologyUppsala UniversityUppsalaSweden
| | - Anders Forslund
- Department of Women's and Children's HealthUppsala UniversityUppsalaSweden,Children Obesity ClinicUppsala University HospitalUppsalaSweden
| | - Peter Bergsten
- Department of Women's and Children's HealthUppsala UniversityUppsalaSweden,Children Obesity ClinicUppsala University HospitalUppsalaSweden,Department of Medical Cell BiologyUppsala UniversityUppsalaSweden
| | - Daniel Weghuber
- Department of PediatricsParacelsus Medical UniversitySalzburgAustria,Obesity Research UnitParacelsus Medical UniversitySalzburgAustria
| | - Katharina Mörwald
- Department of PediatricsParacelsus Medical UniversitySalzburgAustria,Obesity Research UnitParacelsus Medical UniversitySalzburgAustria
| | - Fanni Zsoldos
- Department of PediatricsParacelsus Medical UniversitySalzburgAustria,Obesity Research UnitParacelsus Medical UniversitySalzburgAustria
| | - Kurt Widhalm
- Department of PediatricsParacelsus Medical UniversitySalzburgAustria,Obesity Research UnitParacelsus Medical UniversitySalzburgAustria,Department of PediatricsMedical University of ViennaViennaAustria
| | | | - Håkan Ahlström
- Department of Surgical Sciences, Section of RadiologyUppsala UniversityUppsalaSweden,Antaros MedicalBioVenture HubMölndalSweden
| | - Joel Kullberg
- Department of Surgical Sciences, Section of RadiologyUppsala UniversityUppsalaSweden,Antaros MedicalBioVenture HubMölndalSweden
| |
Collapse
|
38
|
Klepac K, Georgiadi A, Tschöp M, Herzig S. The role of brown and beige adipose tissue in glycaemic control. Mol Aspects Med 2019; 68:90-100. [PMID: 31283940 DOI: 10.1016/j.mam.2019.07.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 07/03/2019] [Accepted: 07/04/2019] [Indexed: 12/15/2022]
Abstract
For the past decade, brown adipose tissue (BAT) has been extensively studied as a potential therapy for obesity and metabolic diseases due to its thermogenic and glucose-consuming properties. It is now clear that the function of BAT goes beyond heat production, as it also plays an important endocrine role by secreting the so-called batokines to communicate with other metabolic tissues and regulate systemic energy homeostasis. However, despite numerous studies showing the benefits of BAT in rodents, it is still not clear whether recruitment of BAT can be utilized to treat human patients. Here, we review the advances on understanding the role of BAT in metabolism and its benefits on glucose and lipid homeostasis in both humans and rodents. Moreover, we discuss the latest methodological approaches to assess the contribution of BAT to human metabolism as well as the possibility to target BAT, pharmacologically or by lifestyle adaptations, to treat metabolic disorders.
Collapse
Affiliation(s)
- Katarina Klepac
- Institute for Diabetes and Cancer, Helmholtz Center Munich, Neuherberg, Germany; Joint Heidelberg-IDC Translational Diabetes Program, Heidelberg University Hospital, Inner Medicine 1, Heidelberg, Germany; Deutsches Zentrum für Diabetesforschung, Neuherberg, Germany
| | - Anastasia Georgiadi
- Institute for Diabetes and Cancer, Helmholtz Center Munich, Neuherberg, Germany; Joint Heidelberg-IDC Translational Diabetes Program, Heidelberg University Hospital, Inner Medicine 1, Heidelberg, Germany; Deutsches Zentrum für Diabetesforschung, Neuherberg, Germany
| | - Matthias Tschöp
- Deutsches Zentrum für Diabetesforschung, Neuherberg, Germany
| | - Stephan Herzig
- Institute for Diabetes and Cancer, Helmholtz Center Munich, Neuherberg, Germany; Joint Heidelberg-IDC Translational Diabetes Program, Heidelberg University Hospital, Inner Medicine 1, Heidelberg, Germany; Deutsches Zentrum für Diabetesforschung, Neuherberg, Germany; Chair Molecular Metabolic Control, Technical University Munich, Germany.
| |
Collapse
|
39
|
Wu L, Xia M, Duan Y, Zhang L, Jiang H, Hu X, Yan H, Zhang Y, Gu Y, Shi H, Li J, Gao X, Li J. Berberine promotes the recruitment and activation of brown adipose tissue in mice and humans. Cell Death Dis 2019; 10:468. [PMID: 31197160 PMCID: PMC6565685 DOI: 10.1038/s41419-019-1706-y] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 05/23/2019] [Indexed: 12/12/2022]
Abstract
Brown adipose tissue (BAT) dissipates metabolic energy and mediates non-shivering thermogenesis, thereby boosting energy expenditure. Increasing BAT mass and activity is expected to be a promising strategy for combating obesity; however, few medications effectively and safely recruit and activate BAT in humans. Berberine (BBR), a natural compound, is commonly used as a nonprescription drug to treat diarrhea. Here, we reported that 1-month BBR intervention increased BAT mass and activity, reduced body weight, and improved insulin sensitivity in mildly overweight patients with non-alcoholic fatty liver disease. Chronic BBR treatment promoted BAT development by stimulating the expression of brown adipogenic genes, enhanced BAT thermogenesis, and global energy expenditure in diet-induced obese mice and chow-fed lean mice, Consistently, BBR facilitated brown adipocyte differentiation in both mouse and human primary brown preadipocytes. We further found that BBR increased the transcription of PRDM16, a master regulator of brown/beige adipogenesis, by inducing the active DNA demethylation of PRDM16 promoter, which might be driven by the activation of AMPK and production of its downstream tricarboxylic acid cycle intermediate α-Ketoglutarate. Moreover, chronic BBR administration had no impact on the BAT thermogenesis in adipose-specific AMPKa1 and AMPKa2 knockout mice. In summary, we found that BBR intervention promoted recruitment and activation of BAT and AMPK-PRDM16 axis was indispensable for the pro-BAT and pro-energy expenditure properties of BBR. Our findings suggest that BBR may be a promising drug for obesity and related metabolic disorders in humans partially through activating BAT.
Collapse
Affiliation(s)
- Lingyan Wu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P. R. China
- University of Chinese Academy of Sciences, Beijing, P.R. China
| | - Mingfeng Xia
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, P. R. China
- Fudan Institute for Metabolic Diseases, Shanghai, P. R. China
| | - Yanan Duan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P. R. China
| | - Lina Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P. R. China
| | - Haowen Jiang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P. R. China
| | - Xiaobei Hu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P. R. China
| | - Hongmei Yan
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, P. R. China
- Fudan Institute for Metabolic Diseases, Shanghai, P. R. China
| | - Yiqiu Zhang
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, Shanghai, P. R. China
| | - Yushen Gu
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, Shanghai, P. R. China
| | - Hongcheng Shi
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, Shanghai, P. R. China
| | - Jia Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P. R. China.
| | - Xin Gao
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, P. R. China.
- Fudan Institute for Metabolic Diseases, Shanghai, P. R. China.
| | - Jingya Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P. R. China.
| |
Collapse
|
40
|
Martinez‐Tellez B, Adelantado‐Renau M, Acosta FM, Sanchez‐Delgado G, Martinez‐Nicolas A, Boon MR, Llamas‐Elvira JM, Martinez‐Vizcaino V, Ruiz JR. The Mediating Role of Brown Fat and Skeletal Muscle Measured by 18 F-Fluorodeoxyglucose in the Thermoregulatory System in Young Adults. Obesity (Silver Spring) 2019; 27:963-970. [PMID: 31006988 PMCID: PMC6594074 DOI: 10.1002/oby.22461] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 02/19/2019] [Indexed: 11/15/2022]
Abstract
OBJECTIVE This study aimed to examine whether brown adipose tissue (BAT) or skeletal muscle activity mediates the relationship between personal level of environmental temperature (Personal-ET) and wrist skin temperature (WT). Moreover, we examined whether BAT and skeletal muscle have a mediating role between Personal-ET and WT (as a proxy of peripheral vasoconstriction/vasodilation). METHODS The levels of BAT were quantified by cold-induced 18 F-fluorodeoxyglucose-positron emission tomography/computed tomography scan and measured the Personal-ET and WT by using iButtons (Maxim Integrated, Dallas, Texas) in 75 participants (74.6% women). RESULTS The study found that BAT volume and metabolic activity played a positive and significant role (up to 25.4%) in the association between Personal-ET and WT. In addition, at the coldest temperatures, the participants with lower levels of WT (inducing higher peripheral vasoconstriction) had higher levels of BAT outcomes, whereas in warm temperatures, participants with higher levels of WT (inducing higher peripheral vasodilation) had lower levels of BAT outcomes. The study did not find any mediating role of skeletal muscle activity. CONCLUSIONS BAT volume and metabolic activity play a role in the relationship between Personal-ET and WT. Moreover, the data suggest that there are two distinct phenotypes: individuals who respond better to the cold, both through nonshivering thermogenesis and peripheral vasoconstriction, and individuals who respond better to the heat.
Collapse
Affiliation(s)
- Borja Martinez‐Tellez
- Promoting Fitness & Health Through Physical Activity Research Group, Department of Physical Education and Sports, Faculty of Sport SciencesUniversity of GranadaGranadaSpain
- Department of Medicine, Division of Endocrinology, and Einthoven Laboratory for Experimental Vascular MedicineLeiden University Medical CenterLeidenthe Netherlands
| | | | - Francisco M. Acosta
- Promoting Fitness & Health Through Physical Activity Research Group, Department of Physical Education and Sports, Faculty of Sport SciencesUniversity of GranadaGranadaSpain
| | - Guillermo Sanchez‐Delgado
- Promoting Fitness & Health Through Physical Activity Research Group, Department of Physical Education and Sports, Faculty of Sport SciencesUniversity of GranadaGranadaSpain
| | - Antonio Martinez‐Nicolas
- Chronobiology Laboratory, Department of Physiology, College of BiologyMare Nostrum Campus, University of Murcia, Instituto Universitario de Investgiación e Envegecimiento (IUIE), Instituto Murciano de Investigación Biosanitaria (IMIB)‐ArrixacaSpain
- Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento SaludableMadridSpain
| | - Mariëtte R. Boon
- Department of Medicine, Division of Endocrinology, and Einthoven Laboratory for Experimental Vascular MedicineLeiden University Medical CenterLeidenthe Netherlands
| | - Jose M. Llamas‐Elvira
- Nuclear Medicine ServiceVirgen de las Nieves University HospitalGranadaSpain
- Nuclear Medicine DepartmentBiohealth Research Institute in GranadaGranadaSpain
| | - Vicente Martinez‐Vizcaino
- Health and Social Research Center, Castilla‐La Mancha UniversityCuencaSpain
- Faculty of Health SciencesAutonomous University of ChileTalcaChile
| | - Jonatan R. Ruiz
- Promoting Fitness & Health Through Physical Activity Research Group, Department of Physical Education and Sports, Faculty of Sport SciencesUniversity of GranadaGranadaSpain
| |
Collapse
|
41
|
Gordon K, Blondin DP, Friesen BJ, Tingelstad HC, Kenny GP, Haman F. Seven days of cold acclimation substantially reduces shivering intensity and increases nonshivering thermogenesis in adult humans. J Appl Physiol (1985) 2019; 126:1598-1606. [PMID: 30896355 PMCID: PMC6620656 DOI: 10.1152/japplphysiol.01133.2018] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 02/21/2019] [Accepted: 03/17/2019] [Indexed: 01/24/2023] Open
Abstract
Daily compensable cold exposure in humans reduces shivering by ~20% without changing total heat production, partly by increasing brown adipose tissue thermogenic capacity and activity. Although acclimation and acclimatization studies have long suggested that daily reductions in core temperature are essential to elicit significant metabolic changes in response to repeated cold exposure, this has never directly been demonstrated. The aim of the present study is to determine whether daily cold-water immersion, resulting in a significant fall in core temperature, can further reduce shivering intensity during mild acute cold exposure. Seven men underwent 1 h of daily cold-water immersion (14°C) for seven consecutive days. Immediately before and following the acclimation protocol, participants underwent a mild cold exposure using a novel skin temperature clamping cold exposure protocol to elicit the same thermogenic rate between trials. Metabolic heat production, shivering intensity, muscle recruitment pattern, and thermal sensation were measured throughout these experimental sessions. Uncompensable cold acclimation reduced total shivering intensity by 36% (P = 0.003), without affecting whole body heat production, double what was previously shown from a 4-wk mild acclimation. This implies that nonshivering thermogenesis increased to supplement the reduction in the thermogenic contribution of shivering. As fuel selection did not change following the 7-day cold acclimation, we suggest that the nonshivering mechanism recruited must rely on a similar fuel mixture to produce this heat. The more significant reductions in shivering intensity compared with a longer mild cold acclimation suggest important differential metabolic responses, resulting from an uncompensable compared with compensable cold acclimation. NEW & NOTEWORTHY Several decades of research have been dedicated to reducing the presence of shivering during cold exposure. The present study aims to determine whether as little as seven consecutive days of cold-water immersion is sufficient to reduce shivering and increase nonshivering thermogenesis. We provide evidence that whole body nonshivering thermogenesis can be increased to offset a reduction in shivering activity to maintain endogenous heat production. This demonstrates that short, but intense cold stimulation can elicit rapid metabolic changes in humans, thereby improving our comfort and ability to perform various motor tasks in the cold. Further research is required to determine the nonshivering processes that are upregulated within this short time period.
Collapse
Affiliation(s)
- Kyle Gordon
- Faculty of Health Sciences, University of Ottawa , Ottawa , Canada
| | - Denis P Blondin
- Faculty of Medicine, Department of Biochemistry, Microbiology and Immunology, Ottawa , Canada
| | - Brian J Friesen
- Faculty of Health Sciences, University of Ottawa , Ottawa , Canada
| | | | - Glen P Kenny
- Faculty of Health Sciences, University of Ottawa , Ottawa , Canada
| | - François Haman
- Faculty of Health Sciences, University of Ottawa , Ottawa , Canada
| |
Collapse
|
42
|
Repeatability of brown adipose tissue measurements on FDG PET/CT following a simple cooling procedure for BAT activation. PLoS One 2019; 14:e0214765. [PMID: 30995248 PMCID: PMC6469763 DOI: 10.1371/journal.pone.0214765] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 03/19/2019] [Indexed: 12/13/2022] Open
Abstract
Brown Adipose Tissue (BAT) is present in a significant number of adult humans and can be activated by exposure to cold. Measurement of active BAT presence, activity, and volume are desirable for determining the efficacy of potential treatments intended to activate BAT. The repeatability of 18F-fluorodeoxyglucose (FDG) positron emission tomography (PET) measurements of BAT presence, activity, and volume under controlled conditions has not been extensively studied. Eleven female volunteers underwent double baseline FDG PET imaging performed following a simple, regional cold intervention intended to activate brown fat. The cold intervention involved the lightly-clothed participants intermittently placing their feet on a block of ice while sitting in a cooled room. A repeat study was performed under the same conditions within a target of two weeks. FDG scans were obtained and maximum standardized uptake value adjusted for lean body mass (SULmax), CT Hounsfield units (HU), BAT metabolic volume (BMV), and total BAT glycolysis (TBG) were determined according to the Brown Adipose Reporting Criteria in Imaging STudies (BARCIST) 1.0. A Lin’s concordance correlation (CCC) of 0.80 was found for BMV between test and retest imaging. Intersession BAT SULmax was significantly correlated (r = 0.54; p < 0.05). The session #1 mean SULmax of 4.92 ± 4.49 g/mL was not significantly different from that of session #2 with a mean SULmax of 7.19 ± 7.34 g/mL (p = 0.16). BAT SULmax was highly correlated with BMV in test and retest studies (r ≥ 0.96, p < 0.001). Using a simplified ice-block cooling method, BAT was activated in the majority (9/11) of a group of young, lean female participants. Quantitative assessments of BAT SUL and BMV were not substantially different between test and retest imaging, but individual BMV could vary considerably. Intrasession BMV and SULmax were strongly correlated. The variability in estimates of BAT activity and volume on test-retest with FDG should inform sample size choice in studies quantifying BAT physiology and support the dynamic metabolic characteristics of this tissue. A more sophisticated cooling method potentially may reduce variations in test-retest BAT studies.
Collapse
|
43
|
Gashi G, Madoerin P, Maushart CI, Michel R, Senn JR, Bieri O, Betz MJ. MRI characteristics of supraclavicular brown adipose tissue in relation to cold-induced thermogenesis in healthy human adults. J Magn Reson Imaging 2019; 50:1160-1168. [PMID: 30945366 DOI: 10.1002/jmri.26733] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 03/13/2019] [Accepted: 03/14/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Brown adipose tissue (BAT) has been proposed as a target to treat obesity and metabolic disease. Currently, 18 F-Fluordeoxyglucose positron emission tomography (FDG-PET) is the standard for BAT-imaging. MRI might be a promising alternative, as it is not associated with ionizing radiation, offers a high resolution, and allows to discriminate different types of soft tissue. PURPOSE We sought to evaluate whether supraclavicular BAT (scBAT) volume, fat-fraction (FF), and relaxation rate (R2*) determined by MRI can predict its metabolic activity, which was assessed by measurement of cold-induced thermogenesis (CIT). STUDY TYPE Prospective cohort study. SUBJECTS Twenty healthy volunteers (9 female, 11 male), aged 18-47 years, with a body mass index (BMI) of 18-30 kg/m2 . FIELD STRENGTH/SEQUENCE Multiecho gradient MRI for water-fat separation was used on a 3T device to measure the FF and T2 * of BAT. ASSESSMENT Prior to imaging, CIT was determined by measuring the difference in energy expenditure (EE) during warm conditions and after cold exposure. Volume, FF, and R2* of scBAT was assessed and compared with CIT. In 11 participants, two MRI sessions with and without cold exposure were performed and the dynamic changes in FF and R2* assessed. STATISTICAL TESTS Linear regression was used to evaluate the relation of MRI measurements and CIT. P-values below 0.05 were considered significant; data are given as mean ± SD. RESULTS R2* correlated positively with CIT (r = 0.64, R2 = 0.41 P = 0.0041). Volume and FF did not correlate significantly with CIT. After mild cold exposure EE increased significantly (P = 0.0002), with a mean CIT of 147 kcal/day. The mean volume of scBAT was 72.4 ± 38.4 ml, mean FF was 74.3 ± 5.8%, and the mean R2* (1/T2 *) was 33.5 ± 12.7 s-1 . DATA CONCLUSION R2* of human scBAT can be used to estimate CIT. FF of scBAT was not associated with CIT. LEVEL OF EVIDENCE 2 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2019;50:1160-1168.
Collapse
Affiliation(s)
- Gani Gashi
- Department of Endocrinology, Diabetes and Metabolism, University Hospital of Basel and University of Basel, Basel, Switzerland
| | - Philipp Madoerin
- Department of Radiology, University Hospital of Basel and University of Basel, Basel, Switzerland
| | - Claudia I Maushart
- Department of Endocrinology, Diabetes and Metabolism, University Hospital of Basel and University of Basel, Basel, Switzerland
| | - Regina Michel
- Department of Endocrinology, Diabetes and Metabolism, University Hospital of Basel and University of Basel, Basel, Switzerland
| | - Jaël-Rut Senn
- Department of Endocrinology, Diabetes and Metabolism, University Hospital of Basel and University of Basel, Basel, Switzerland
| | - Oliver Bieri
- Department of Radiology, University Hospital of Basel and University of Basel, Basel, Switzerland
| | - Matthias J Betz
- Department of Endocrinology, Diabetes and Metabolism, University Hospital of Basel and University of Basel, Basel, Switzerland
| |
Collapse
|
44
|
Jespersen NZ, Feizi A, Andersen ES, Heywood S, Hattel HB, Daugaard S, Peijs L, Bagi P, Feldt-Rasmussen B, Schultz HS, Hansen NS, Krogh-Madsen R, Pedersen BK, Petrovic N, Nielsen S, Scheele C. Heterogeneity in the perirenal region of humans suggests presence of dormant brown adipose tissue that contains brown fat precursor cells. Mol Metab 2019; 24:30-43. [PMID: 31079959 PMCID: PMC6531810 DOI: 10.1016/j.molmet.2019.03.005] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 03/02/2019] [Accepted: 03/11/2019] [Indexed: 12/31/2022] Open
Abstract
Objective Increasing the amounts of functionally competent brown adipose tissue (BAT) in adult humans has the potential to restore dysfunctional metabolism and counteract obesity. In this study, we aimed to characterize the human perirenal fat depot, and we hypothesized that there would be regional, within-depot differences in the adipose signature depending on local sympathetic activity. Methods We characterized fat specimens from four different perirenal regions of adult kidney donors, through a combination of qPCR mapping, immunohistochemical staining, RNA-sequencing, and pre-adipocyte isolation. Candidate gene signatures, separated by adipocyte morphology, were recapitulated in a murine model of unilocular brown fat induced by thermoneutrality and high fat diet. Results We identified widespread amounts of dormant brown adipose tissue throughout the perirenal depot, which was contrasted by multilocular BAT, primarily found near the adrenal gland. Dormant BAT was characterized by a unilocular morphology and a distinct gene expression profile, which partly overlapped with that of subcutaneous white adipose tissue (WAT). Brown fat precursor cells, which differentiated into functional brown adipocytes were present in the entire perirenal fat depot, regardless of state. We identified SPARC as a candidate adipokine contributing to a dormant BAT state, and CLSTN3 as a novel marker for multilocular BAT. Conclusions We propose that perirenal adipose tissue in adult humans consists mainly of dormant BAT and provide a data set for future research on factors which can reactivate dormant BAT into active BAT, a potential strategy for combatting obesity and metabolic disease. Dormant brown adipose tissue (BAT) dominates the perirenal adipose depot of adult humans. Multilocular BAT accumulates adjacent to local sympathetic sources. Dormant BAT displays a transcriptomic signature distinct from multilocular BAT and white adipose tissue. Brown fat precursor cells are present in human dormant perirenal BAT. SPARC is associated with a dormant BAT phenotype.
Collapse
Affiliation(s)
- Naja Z Jespersen
- The Centre of Inflammation and Metabolism and Centre for Physical Activity Research Rigshospitalet, University Hospital of Copenhagen, 2100, Denmark; Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Danish PhD School of Molecular Metabolism, Odense, Denmark
| | - Amir Feizi
- Novo Nordisk Research Center Oxford, Denmark
| | - Eline S Andersen
- The Centre of Inflammation and Metabolism and Centre for Physical Activity Research Rigshospitalet, University Hospital of Copenhagen, 2100, Denmark
| | - Sarah Heywood
- The Centre of Inflammation and Metabolism and Centre for Physical Activity Research Rigshospitalet, University Hospital of Copenhagen, 2100, Denmark
| | - Helle B Hattel
- The Centre of Inflammation and Metabolism and Centre for Physical Activity Research Rigshospitalet, University Hospital of Copenhagen, 2100, Denmark
| | | | - Lone Peijs
- The Centre of Inflammation and Metabolism and Centre for Physical Activity Research Rigshospitalet, University Hospital of Copenhagen, 2100, Denmark; Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Per Bagi
- Department of Urology, Rigshospitalet, Denmark
| | | | | | - Ninna S Hansen
- Danish PhD School of Molecular Metabolism, Odense, Denmark; Department of Endocrinology, Diabetes and Metabolism, Rigshospitalet, Denmark
| | - Rikke Krogh-Madsen
- The Centre of Inflammation and Metabolism and Centre for Physical Activity Research Rigshospitalet, University Hospital of Copenhagen, 2100, Denmark
| | - Bente K Pedersen
- The Centre of Inflammation and Metabolism and Centre for Physical Activity Research Rigshospitalet, University Hospital of Copenhagen, 2100, Denmark; Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Natasa Petrovic
- Department of Molecular Biosciences, The Wenner-Gren Institute, The Arrhenius Laboratories F3, Stockholm University, 106 91, Stockholm, Sweden
| | - Søren Nielsen
- The Centre of Inflammation and Metabolism and Centre for Physical Activity Research Rigshospitalet, University Hospital of Copenhagen, 2100, Denmark
| | - Camilla Scheele
- The Centre of Inflammation and Metabolism and Centre for Physical Activity Research Rigshospitalet, University Hospital of Copenhagen, 2100, Denmark; Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark.
| |
Collapse
|
45
|
Zhang Y, Hu X, Hu S, Scotti A, Cai K, Wang J, Zhou X, Yang D, Figini M, Pan L, Shangguan J, Yang J, Zhang Z. Non-invasive Imaging Methods for Brown Adipose Tissue Detection and Function Evaluation. ACTA ACUST UNITED AC 2019; 8. [PMID: 31080698 PMCID: PMC6508884 DOI: 10.4172/2165-8048.1000299] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Brown Adipose Tissue (BAT) has a major role in thermoregulation, producing heat by non-shivering thermogenesis. Primarily found in animals and human infants, the presence of significant brown adipose tissue was identified only recently, and its metabolic role in adults was reconsidered. BAT is believed to have an important role in many metabolic diseases, such as obesity and diabetes, and also to be associated with cancer cachexia. Therefore, it is currently a topic of great interest in the research community, and many groups are investigating the mechanisms underlying BAT metabolism in normal and pathological conditions. However, well established non-invasive methods for assessing BAT distribution and function are still lacking. The purpose of this review is to summarize the current state of the art of these methods, with a particular focus on PET, CT and MRI.
Collapse
Affiliation(s)
- Yaqi Zhang
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Xiaofei Hu
- Department of Radiology, Third Military Medical University Southwest Hospital, Chongqing, China
| | - Su Hu
- Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.,Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Alessandro Scotti
- Department of Radiology, University of Illinois at Chicago, Chicago, IL, USA.,Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, USA
| | - Kejia Cai
- Department of Radiology, University of Illinois at Chicago, Chicago, IL, USA.,Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, USA
| | - Jian Wang
- Department of Radiology, Third Military Medical University Southwest Hospital, Chongqing, China
| | - Xin Zhou
- Department of Cardiology, Pingjin Hospital, Tianjin, China
| | - Ding Yang
- Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Matteo Figini
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Liang Pan
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.,Department of Radiology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Junjie Shangguan
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Jia Yang
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Zhuoli Zhang
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.,Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA
| |
Collapse
|
46
|
Karampinos DC, Weidlich D, Wu M, Hu HH, Franz D. Techniques and Applications of Magnetic Resonance Imaging for Studying Brown Adipose Tissue Morphometry and Function. Handb Exp Pharmacol 2019; 251:299-324. [PMID: 30099625 DOI: 10.1007/164_2018_158] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The present review reports on the current knowledge and recent findings in magnetic resonance imaging (MRI) and spectroscopy (MRS) of brown adipose tissue (BAT). The work summarizes the features and mechanisms that allow MRI to differentiate BAT from white adipose tissue (WAT) by making use of their distinct morphological appearance and the functional characteristics of BAT. MR is a versatile imaging modality with multiple contrast mechanisms as potential candidates in the study of BAT, targeting properties of 1H, 13C, or 129Xe nuclei. Techniques for assessing BAT morphometry based on fat fraction and markers of BAT microstructure, including intermolecular quantum coherence and diffusion imaging, are first described. Techniques for assessing BAT function based on the measurement of BAT metabolic activity, perfusion, oxygenation, and temperature are then presented. The application of the above methods in studies of BAT in animals and humans is described, and future directions in MR study of BAT are finally discussed.
Collapse
Affiliation(s)
- Dimitrios C Karampinos
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.
| | - Dominik Weidlich
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Mingming Wu
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Houchun H Hu
- Department of Radiology, Nationwide Children's Hospital, Columbus, OH, USA
| | - Daniela Franz
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| |
Collapse
|
47
|
Association between brown adipose tissue and bone mineral density in humans. Int J Obes (Lond) 2018; 43:1516-1525. [PMID: 30518823 DOI: 10.1038/s41366-018-0261-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 09/12/2018] [Accepted: 09/18/2018] [Indexed: 12/31/2022]
Abstract
BACKGROUND Brown adipose tissue (BAT) seems to play a role in bone morphogenesis. A negative association has been reported between BAT and bone mineral density (BMD) in women, but not in men. A panel of experts has recently published a set of recommendations for BAT assessment, and thus, to re-address previously reported associations is needed. This study aimed to investigate the association between cold-induced BAT 18F-Fluorodeoxyglucose (18F-FDG) uptake and BMD in young healthy adults. METHODS Ninety-eight healthy adults (68 women; 22 ± 2.2 years old; 24.3 ± 4.5 kg/m2) cold-induced BAT was assessed by means of an 18F-FDG positron emission tomography-computed tomography (PET-CT) scan preceded by a personalized cold stimulation. The cold exposure consisted in 2 h in a mild cold room at 19.5-20 °C wearing a water perfused cooling vest set 4 °C above the individual shivering threshold. Total body and lumbar spine BMD were assessed by a whole-body DXA scan. RESULTS We found no association between BMD and cold-induced BAT volume, mean, and maximal activity (all P > 0.1) in neither young and healthy men nor women. These results remained unchanged when adjusting by height, by body composition, and by objectively assessed physical activity. Sensitivity analyses using the criteria to quantify cold-induced BAT-related parameters applied in previous studies did not change the results. CONCLUSIONS In summary, our study shows that there is no association between cold-induced BAT and BMD in young healthy adults. Moreover, our data support the notion that previously shown associations between BAT and BMD in healthy non-calorically restricted individuals, could be driven by methodological issues related to BAT assessment and/or sample size limitations.
Collapse
|
48
|
Martinez-Tellez B, Xu H, Sanchez-Delgado G, Acosta FM, Rensen PCN, Llamas-Elvira JM, Ruiz JR. Association of wrist and ambient temperature with cold-induced brown adipose tissue and skeletal muscle [18F]FDG uptake in young adults. Am J Physiol Regul Integr Comp Physiol 2018; 315:R1281-R1288. [DOI: 10.1152/ajpregu.00238.2018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Brown adipose tissue (BAT) activity is influenced by the outdoor temperature variation. However, people spend most of their time indoors, especially in colder regions and during cold seasons. Therefore, outdoor temperature is probably not an accurate tool to quantify the exposure of the participants before BAT quantification. We studied the association of wrist and personal environmental temperatures with cold-induced BAT and skeletal muscle [18F]fluorodeoxyglucose ([18F]FDG) uptake in adults. A total of 74 participants wore two iButtons during 7 days to measure wrist temperature (WT) and personal level of environmental temperature (Personal-ET). Thereafter, we performed a 2-h personalized cooling protocol before performing an [18F]FDG-PET/CT scan. WT was negatively associated with BAT volume ( R2 = 0.122; P = 0.002) and BAT activity [standardized uptake value (SUV)peak, R2 = 0.083; P = 0.012]. Moreover, Personal-ET was negatively associated with BAT volume ( R2 = 0.164; P < 0.001), BAT activity (SUVmean and SUVpeak, all R2 ≥ 0.167; P < 0.001), and skeletal muscle activity (SUVpeak, R2 = 0.122; P = 0.002). Interestingly, the time exposed to a certain Personal-ET (16–20°C) positively correlated only with [18F]FDG uptake by BAT (volume and activity; all P ≤ 0.05), whereas the time exposed to 12–15°C positively correlated only with measures of [18F]FDG uptake by skeletal muscle activity (all P ≤ 0.05). This study shows that WT and Personal-ET are associated with [18F]FDG uptake by BAT and skeletal muscle activity in adults within certain temperature thresholds. Moreover, our results suggest that [18F]FDG uptake by human BAT or skeletal muscle can be activated or inhibited in different ranges of ambient temperatures exposures. Results should be taken with caution because the observed associations were relatively weak.
Collapse
Affiliation(s)
- Borja Martinez-Tellez
- PROFITH (PROmoting FITness and Health through Physical Activity) Research Group, Department of Physical and Sports Education, Faculty of Sports Science, University of Granada, Granada, Spain
- Department of Medicine, Division of Endocrinology, and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Huiwen Xu
- PROFITH (PROmoting FITness and Health through Physical Activity) Research Group, Department of Physical and Sports Education, Faculty of Sports Science, University of Granada, Granada, Spain
| | - Guillermo Sanchez-Delgado
- PROFITH (PROmoting FITness and Health through Physical Activity) Research Group, Department of Physical and Sports Education, Faculty of Sports Science, University of Granada, Granada, Spain
| | - Francisco M. Acosta
- PROFITH (PROmoting FITness and Health through Physical Activity) Research Group, Department of Physical and Sports Education, Faculty of Sports Science, University of Granada, Granada, Spain
| | - Patrick C. N. Rensen
- Department of Medicine, Division of Endocrinology, and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Jose M. Llamas-Elvira
- Nuclear Medicine Department, “Virgen de las Nieves” University Hospital, Granada, Spain
- Biohealth Research Institute in Granada, Nuclear Medicine Department, Granada, Spain
| | - Jonatan R. Ruiz
- PROFITH (PROmoting FITness and Health through Physical Activity) Research Group, Department of Physical and Sports Education, Faculty of Sports Science, University of Granada, Granada, Spain
| |
Collapse
|
49
|
Senn JR, Maushart CI, Gashi G, Michel R, Lalive d'Epinay M, Vogt R, Becker AS, Müller J, Baláz M, Wolfrum C, Burger IA, Betz MJ. Outdoor Temperature Influences Cold Induced Thermogenesis in Humans. Front Physiol 2018; 9:1184. [PMID: 30190681 PMCID: PMC6115528 DOI: 10.3389/fphys.2018.01184] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 08/06/2018] [Indexed: 11/16/2022] Open
Abstract
Objective: Energy expenditure (EE) increases in response to cold exposure, which is called cold induced thermogenesis (CIT). Brown adipose tissue (BAT) has been shown to contribute significantly to CIT in human adults. BAT activity and CIT are acutely influenced by ambient temperature. In the present study, we investigated the long-term effect of seasonal temperature variation on human CIT. Materials and Methods: We measured CIT in 56 healthy volunteers by indirect calorimetry. CIT was determined as difference between EE during warm conditions (EEwarm) and after a defined cold stimulus (EEcold). We recorded skin temperatures at eleven anatomically predefined locations, including the supraclavicular region, which is adjacent to the main human BAT depot. We analyzed the relation of EE, CIT and skin temperatures to the daily minimum, maximum and mean outdoor temperature averaged over 7 or 30 days, respectively, prior to the corresponding study visit by linear regression. Results: We observed a significant inverse correlation between outdoor temperatures and EEcold and CIT, respectively, while EEwarm was not influenced. The daily maximum temperature averaged over 7 days correlated best with EEcold (R2 = 0.123, p = 0.008) and CIT (R2 = 0.200, p = 0.0005). The mean skin temperatures before and after cold exposure were not related to outdoor temperatures. However, the difference between supraclavicular and parasternal skin temperature after cold exposure was inversely related to the average maximum temperature during the preceding 7 days (R2 = 0.07575, p = 0.0221). Conclusion: CIT is significantly related to outdoor temperatures indicating dynamic adaption of thermogenesis and BAT activity to environmental stimuli in adult humans. Clinical Trial Registration:www.ClinicalTrials.gov, Identifier NCT02682706.
Collapse
Affiliation(s)
- Jaël R Senn
- Department of Endocrinology, Diabetes & Metabolism, University Hospital of Basel, Basel, Switzerland
| | - Claudia I Maushart
- Department of Endocrinology, Diabetes & Metabolism, University Hospital of Basel, Basel, Switzerland
| | - Gani Gashi
- Department of Endocrinology, Diabetes & Metabolism, University Hospital of Basel, Basel, Switzerland
| | - Regina Michel
- Department of Endocrinology, Diabetes & Metabolism, University Hospital of Basel, Basel, Switzerland
| | - Murielle Lalive d'Epinay
- Department of Endocrinology, Diabetes & Metabolism, University Hospital of Basel, Basel, Switzerland
| | - Roland Vogt
- Department of Environmental Sciences, Atmospheric Sciences, Basel, Switzerland
| | - Anton S Becker
- Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland.,Department of Nuclear Medicine, University Hospital Zürich, Zürich, Switzerland.,Institute of Diagnostic and Interventional Radiology, University Hospital Zürich, Zürich, Switzerland
| | - Julian Müller
- Department of Nuclear Medicine, University Hospital Zürich, Zürich, Switzerland
| | - Miroslav Baláz
- Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland
| | - Christian Wolfrum
- Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland
| | - Irene A Burger
- Department of Nuclear Medicine, University Hospital Zürich, Zürich, Switzerland
| | - Matthias J Betz
- Department of Endocrinology, Diabetes & Metabolism, University Hospital of Basel, Basel, Switzerland
| |
Collapse
|
50
|
Kaikaew K, van den Beukel JC, Neggers SJCMM, Themmen APN, Visser JA, Grefhorst A. Sex difference in cold perception and shivering onset upon gradual cold exposure. J Therm Biol 2018; 77:137-144. [PMID: 30196892 DOI: 10.1016/j.jtherbio.2018.08.016] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 08/21/2018] [Accepted: 08/22/2018] [Indexed: 01/22/2023]
Abstract
To maintain a thermal balance when experiencing cold, humans reduce heat loss and enhance heat production. A potent and rapid mechanism for heat generation is shivering. Research has shown that women prefer a warmer environment and feel less comfortable than men in the same thermal condition. Using the Blanketrol® III, a temperature management device commonly used to study brown adipose tissue activity, we tested whether the experimental temperature (TE) at which men and women start to shiver differs. Twenty male and 23 female volunteers underwent a cooling protocol, starting at 24 °C and gradually decreasing by 1-2 °C every 5 min until an electromyogram detected the shivering or the temperature reached 9 °C. Women started shivering at a higher TE than men (11.3 ± 1.8 °C for women vs 9.6 ± 1.8 °C for men, P = 0.003). In addition, women felt cool, scored by a visual analogue scale, at a higher TE than men (18.3 ± 3.0 °C for women vs 14.6 ± 2.6 °C for men, P < 0.001). This study demonstrates a sex difference in response to cold exposure: women require shivering as a source of heat production earlier than men. This difference could be important and sex should be considered when using cooling protocols in physiological studies.
Collapse
Affiliation(s)
- Kasiphak Kaikaew
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, PO Box 2040, 3000 CA Rotterdam, the Netherlands; Department of Physiology, Faculty of Medicine, Chulalongkorn University, 1873, Rama IV Road, Pathumwan, Bangkok 10330, Thailand
| | - Johanna C van den Beukel
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, PO Box 2040, 3000 CA Rotterdam, the Netherlands
| | - Sebastian J C M M Neggers
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, PO Box 2040, 3000 CA Rotterdam, the Netherlands
| | - Axel P N Themmen
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, PO Box 2040, 3000 CA Rotterdam, the Netherlands
| | - Jenny A Visser
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, PO Box 2040, 3000 CA Rotterdam, the Netherlands.
| | - Aldo Grefhorst
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, PO Box 2040, 3000 CA Rotterdam, the Netherlands
| |
Collapse
|