1
|
Karamushko LI, Karamushko OV. Growth and Adaptive Significance of Various Forms of Energy Processes in Marine Fishes of Arctic. DOKLADY BIOLOGICAL SCIENCES : PROCEEDINGS OF THE ACADEMY OF SCIENCES OF THE USSR, BIOLOGICAL SCIENCES SECTIONS 2025; 520:69-72. [PMID: 39907894 DOI: 10.1134/s0012496624600647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/10/2024] [Accepted: 11/15/2024] [Indexed: 02/06/2025]
Abstract
Based on expeditions and experimental studies, energy characteristics underlying the interaction of energy exchange processes were assessed quantitatively in fishes of the Arctic. The linear and weight growth was studied for the first time in the nonmigratory species Arctic flounder Liopsetta glacialis (Pallas, 1776) of the Kara Sea. It was found that deceleration of biosynthetic processes leads to a relative decrease in the proportion of entropy generated by metabolic processes in cold-water marine fish species, while the growth becomes more efficient at low temperatures.
Collapse
Affiliation(s)
- L I Karamushko
- Murmansk Marine Biological Institute, Russian Academy of Sciences, Murmansk, Russia.
| | - O V Karamushko
- Murmansk Marine Biological Institute, Russian Academy of Sciences, Murmansk, Russia
| |
Collapse
|
2
|
Hematyar N, Policar T, Rustad T. Importance of proteins and mitochondrial changes as freshness indicators in fish muscle post-mortem. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024. [PMID: 39614681 DOI: 10.1002/jsfa.14044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 11/04/2024] [Accepted: 11/09/2024] [Indexed: 12/01/2024]
Abstract
Evaluating protein and mitochondrial alterations post-mortem can contribute to determining correlations between fish-processing parameters and ultimate fish muscle quality. The myofibrillar protein alteration during rigor mortis directly affects the texture of fish muscle. To identify the mechanisms behind post-mortem softness and quality deterioration, it is crucial to understand the conditions linked to the breakdown of myofibrillar proteins in fish skeletal muscle. Therefore, monitoring protein breakdown at the molecular level and finding target proteins would be considered a marker for fish freshness. Mitochondria play an important role in executing and regulating cell death processes, including apoptosis and necrosis. The mitochondria are the seat of cellular respiration and experience significant alterations in post-mortem tissues. Processes used to reduce protein degradation, such as optimizing chilling and handling practices, would also minimize mitochondrial changes in fillet quality. Moreover, pH fluctuations are considered a critical point that influences both protein and mitochondrial changes. This review considered the implications of protein and mitochondrial alteration during post-mortem storage in fish fillets and the possible pathways of their interaction on fillet quality. Mitochondrial characteristics, such as membrane integrity, pH, and ATP levels, are important for post-mortem muscle cell changes, serving as an early indicator of fish freshness. Understanding the mechanisms behind protein degradation in fish muscle led to maintaining fillet quality and requires further experiments. Label-free proteomics combined with bioinformatics is crucial for comprehending protein degradation mechanisms to provide customers with safe and fresh fish products while minimizing economic losses associated with fillet deterioration. © 2024 The Author(s). Journal of the Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Nima Hematyar
- Research Institute of Fish Culture and Hydrobiology, Zátiší, Czech Republic
| | - Tomas Policar
- Research Institute of Fish Culture and Hydrobiology, Zátiší, Czech Republic
| | - Turid Rustad
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
3
|
Oefele M, Hau M, Ruuskanen S, Casagrande S. Mitochondrial function is enhanced by thyroid hormones during zebra finch development. ROYAL SOCIETY OPEN SCIENCE 2024; 11:240417. [PMID: 39086825 PMCID: PMC11288688 DOI: 10.1098/rsos.240417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 06/25/2024] [Accepted: 06/25/2024] [Indexed: 08/02/2024]
Abstract
An organism's response to its environment is largely determined by changes in the energy supplied by aerobic mitochondrial metabolism via adenosine triphosphate (ATP) production. ATP is especially important under energy-demanding conditions, such as during rapid growth. It is currently poorly understood how environmental factors influence energy metabolism and mitochondrial functioning, but recent studies suggest the role of thyroid hormones (TH). TH are key regulators of growth and metabolism and can be flexibly adjusted to environmental conditions, such as environmental temperature or food availability. To test whether TH enhancement is causally linked to mitochondrial function and growth, we provided TH orally at physiological concentrations during the main growth phase in zebra finch (Taeniopygia guttata) nestlings reared in a challenging environment. TH treatment accelerated maximal mitochondrial working capacity-a trait that reflects mitochondrial ATP production, without affecting growth. To our knowledge, this is the first study to characterize the regulation of mitochondria by TH during development in a semi-naturalistic context and to address implications for fitness-related traits, such as growth.
Collapse
Affiliation(s)
- Marlene Oefele
- Evolutionary Physiology Research Group, Max Planck Institute for Biological Intelligence, Eberhard-Gwinner-Strasse, Seewiesen82319, Germany
| | - Michaela Hau
- Evolutionary Physiology Research Group, Max Planck Institute for Biological Intelligence, Eberhard-Gwinner-Strasse, Seewiesen82319, Germany
- Department of Biology, University of Konstanz, KonstanzD-78464, Germany
| | - Suvi Ruuskanen
- Environmental Physiology Research Group, University of Jyväskylä, Seminaarinkatu 15, University of Jyväskylä, JyväskyläFI-40014, Finland
| | - Stefania Casagrande
- Evolutionary Physiology Research Group, Max Planck Institute for Biological Intelligence, Eberhard-Gwinner-Strasse, Seewiesen82319, Germany
| |
Collapse
|
4
|
Makri V, Giantsis IA, Nathanailides C, Feidantsis K, Antonopoulou E, Theodorou JA, Michaelidis B. Seasonal energy investment and metabolic patterns in a farmed fish. J Therm Biol 2024; 123:103894. [PMID: 38879912 DOI: 10.1016/j.jtherbio.2024.103894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 06/09/2024] [Accepted: 06/11/2024] [Indexed: 06/18/2024]
Abstract
The present research focuses on the seasonal changes in the energy content and metabolic patterns of red porgy (Pagrus pagrus) sampled in a fish farm in North Evoikos Gulf (Greece). The study was designed in an effort to evaluate the influence of seasonality in several physiological feauteres of high commercial importance that may affect feed intake and growth. We determined glycogen, lipids and proteins levels, and cellular energy allocation (CEA) as a valuable marker of exposure to stress, which integrates available energy (Ea) and energy consumption (Ec). Metabolic patterns and aerobic oxidation potential were based on the determination of glucose transporter (GLU), carnitine transporter (CTP), L-lactate dehydrogenase (L-LDH), citrate synthase (CS), cytochrome C oxidase subunit IV isoform 1 (COX1) and 3-hydroxyacyl CoA dehydrogenase (HOAD) relative gene expression. To integrate metabolic patterns and gene expression, L-LDH, CS, COX and HOAD activities were also determined. For further estimation of biological stores oxidized during seasonal acclimatization, we determined the blood levels of glucose, lipids and lactate. The results indicated seasonal changes in energy content, different patterns in gene expression and reorganization of metabolic patterns during cool acclimatization with increased lipid oxidation. During warm acclimatization, however, energy consumption was mostly based on carbohydrates oxidation. The decrease of Ec and COX1 activity in the warm exposed heart seem to be consistent with the OCLTT hypothesis, suggesting that the heart may be one of the first organs to be limited during seasonal warming. Overall, this study has profiled changes in energetics and metabolic patterns occurring at annual temperatures at which P. pagrus is currently farmed, suggesting that this species is living at the upper edge of their thermal window, at least during summer.
Collapse
Affiliation(s)
- Vasiliki Makri
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Faculty of Science, Aristotle University of Thessaloniki, Thessaloniki, GR-54124, Greece
| | - Ioannis A Giantsis
- Department of Animal Science, Faculty of Agriculture, Forestry and Natural Environment, Aristotle University of Thessaloniki, GR-54124, Thessaloniki, Greece
| | | | | | - Efthimia Antonopoulou
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Faculty of Science, Aristotle University of Thessaloniki, Thessaloniki, GR-54124, Greece
| | - John A Theodorou
- Department of Fisheries & Aquaculture, University of Patras, GR-26504, Mesolonghi, Greece
| | - Basile Michaelidis
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Faculty of Science, Aristotle University of Thessaloniki, Thessaloniki, GR-54124, Greece.
| |
Collapse
|
5
|
Ishimota M, Kodama M, Tomiyama N, Ohyama K. Chemical tolerance related to the ABC transporter gene and DNA methylation in cladocera (Daphnia magna). ENVIRONMENTAL TOXICOLOGY 2024; 39:1978-1988. [PMID: 38073494 DOI: 10.1002/tox.24077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 10/10/2023] [Accepted: 11/28/2023] [Indexed: 03/09/2024]
Abstract
We performed multigenerational tests to clarify the chemical tolerance mechanisms of a nontarget aquatic organism, Daphnia magna. We continuously exposed D. magna to a carbamate insecticide (pirimicarb) at lethal or sublethal concentrations (0, 3.8, 7.5, and 15 μg/L) for 15 generations (F0-F14). We then determined the 48 h-EC50 values and mRNA expression levels of acetylcholinesterase, glutathione S-transferase, and ATP (Adenosine triphosphate)-binding cassette transporter (ABCt) in neonates (<24 h old) from F0, F4, F9, and F14. To ascertain the effects of DNA methylation on pirimicarb sensitivity, we measured 5-methylcytosine levels (DNA methylation levels) in neonates of parents in the last generation (F14). In addition, we cultured groups exposed to 0 and 7.5 μg/L (the latter of which acquired chemical tolerance to pirimicarb) with or without 5-azacytidine (de-methylating agent) and determined methylation levels and 48 h-EC50 values in neonates (<24 h old) from the treated parents. The EC50 values (30.3-31.6 μg/L) in F14 of the 7.5 and 15 μg/L groups were approximately two times higher than that in the control (16.0 μg/L). A linear mixed model analysis showed that EC50 and ABCt mRNA levels were significantly increased with generational alterations; further analysis showed that the ABCt mRNA level was positively related to the EC50 . Therefore, ABCt may be associated with altered pirimicarb sensitivity. In addition, the EC50 value and DNA methylation levels in pirimicarb-tolerant clones decreased after exposure to 5-azacytidine, suggesting that DNA methylation contributes to chemical tolerance. These findings improved our knowledge regarding the acquisition of chemical tolerance in aquatic organisms.
Collapse
Affiliation(s)
- Makoto Ishimota
- The Institute of Environmental Toxicology, Laboratory of Residue Analysis II, Chemistry Division, Joso-shi, Ibaraki, Japan
| | - Mebuki Kodama
- The Institute of Environmental Toxicology, Laboratory of Residue Analysis II, Chemistry Division, Joso-shi, Ibaraki, Japan
| | - Naruto Tomiyama
- The Institute of Environmental Toxicology, Laboratory of Residue Analysis II, Chemistry Division, Joso-shi, Ibaraki, Japan
| | - Kazutoshi Ohyama
- The Institute of Environmental Toxicology, Laboratory of Residue Analysis II, Chemistry Division, Joso-shi, Ibaraki, Japan
| |
Collapse
|
6
|
Guscelli E, Noisette F, Chabot D, Blier PU, Hansen T, Cassista-Da Ros M, Pepin P, Skanes KR, Calosi P. Northern shrimp from multiple origins show similar sensitivity to global change drivers, but different cellular energetic capacity. J Exp Biol 2023; 226:jeb245400. [PMID: 37497774 DOI: 10.1242/jeb.245400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 07/19/2023] [Indexed: 07/28/2023]
Abstract
Species with a wide distribution can experience significant regional variation in environmental conditions, to which they can acclimatize or adapt. Consequently, the geographic origin of an organism can influence its responses to environmental changes, and therefore its sensitivity to combined global change drivers. This study aimed at determining the physiological responses of the northern shrimp, Pandalus borealis, at different levels of biological organization and from four different geographic origins, exposed to elevated temperature and low pH to define its sensitivity to future ocean warming and acidification. Shrimp sampled within the northwest Atlantic were exposed for 30 days to combinations of three temperature (2, 6 or 10°C) and two pH levels (7.75 or 7.40). Survival, metabolic rates, whole-organism aerobic performance and cellular energetic capacity were assessed at the end of the exposure. Our results show that shrimp survival was negatively affected by temperature above 6°C and low pH, regardless of their origin. Additionally, shrimp from different origins show overall similar whole-organism performances: aerobic scope increasing with increasing temperature and decreasing with decreasing pH. Finally, the stability of aerobic metabolism appears to be related to cellular adjustments specific to shrimp origin. Our results show that the level of intraspecific variation differs among levels of biological organization: different cellular capacities lead to similar individual performances. Thus, the sensitivity of the northern shrimp to ocean warming and acidification is overall comparable among origins. Nonetheless, shrimp vulnerability to predicted global change scenarios for 2100 could differ among origins owing to different regional environmental conditions.
Collapse
Affiliation(s)
- Ella Guscelli
- Département de Biologie, Chimie et Géographie, Université du Québec à Rimouski, 300 Allée des Ursulines, Rimouski, QC G5L 3A1, Canada
| | - Fanny Noisette
- Institut des sciences de la mer, Université du Québec à Rimouski, 300 Allée des Ursulines, Rimouski, QC G5L 3A1, Canada
| | - Denis Chabot
- Institut Maurice-Lamontagne, Fisheries and Oceans Canada, 850 Rte de la Mer, Mont-Joli, QC G5H 3Z4, Canada
| | - Pierre U Blier
- Département de Biologie, Chimie et Géographie, Université du Québec à Rimouski, 300 Allée des Ursulines, Rimouski, QC G5L 3A1, Canada
| | - Tanya Hansen
- Institut Maurice-Lamontagne, Fisheries and Oceans Canada, 850 Rte de la Mer, Mont-Joli, QC G5H 3Z4, Canada
| | | | - Pierre Pepin
- Northwest Atlantic Fisheries Centre, Fisheries and Oceans Canada, 80 E White Hills Rd, St. John's, NL A1C 5X1, Canada
| | - Katherine R Skanes
- Northwest Atlantic Fisheries Centre, Fisheries and Oceans Canada, 80 E White Hills Rd, St. John's, NL A1C 5X1, Canada
| | - Piero Calosi
- Département de Biologie, Chimie et Géographie, Université du Québec à Rimouski, 300 Allée des Ursulines, Rimouski, QC G5L 3A1, Canada
| |
Collapse
|
7
|
Drown MK, Crawford DL, Oleksiak MF. Transcriptomic analysis provides insights into molecular mechanisms of thermal physiology. BMC Genomics 2022; 23:421. [PMID: 35659182 PMCID: PMC9167525 DOI: 10.1186/s12864-022-08653-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 05/18/2022] [Indexed: 11/15/2022] Open
Abstract
Physiological trait variation underlies health, responses to global climate change, and ecological performance. Yet, most physiological traits are complex, and we have little understanding of the genes and genomic architectures that define their variation. To provide insight into the genetic architecture of physiological processes, we related physiological traits to heart and brain mRNA expression using a weighted gene co-expression network analysis. mRNA expression was used to explain variation in six physiological traits (whole animal metabolism (WAM), critical thermal maximum (CTmax), and four substrate specific cardiac metabolic rates (CaM)) under 12 °C and 28 °C acclimation conditions. Notably, the physiological trait variations among the three geographically close (within 15 km) and genetically similar F. heteroclitus populations are similar to those found among 77 aquatic species spanning 15–20° of latitude (~ 2,000 km). These large physiological trait variations among genetically similar individuals provide a powerful approach to determine the relationship between mRNA expression and heritable fitness related traits unconfounded by interspecific differences. Expression patterns explained up to 82% of metabolic trait variation and were enriched for multiple signaling pathways known to impact metabolic and thermal tolerance (e.g., AMPK, PPAR, mTOR, FoxO, and MAPK) but also contained several unexpected pathways (e.g., apoptosis, cellular senescence), suggesting that physiological trait variation is affected by many diverse genes.
Collapse
|
8
|
Perelló-Amorós M, Fernández-Borràs J, Sánchez-Moya A, Vélez EJ, García-Pérez I, Gutiérrez J, Blasco J. Mitochondrial Adaptation to Diet and Swimming Activity in Gilthead Seabream: Improved Nutritional Efficiency. Front Physiol 2021; 12:678985. [PMID: 34220544 PMCID: PMC8249818 DOI: 10.3389/fphys.2021.678985] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 05/21/2021] [Indexed: 01/09/2023] Open
Abstract
Sustained exercise promotes growth in different fish species, and in gilthead seabream we have demonstrated that it improves nutrient use efficiency. This study assesses for differences in growth rate, tissue composition and energy metabolism in gilthead seabream juveniles fed two diets: high-protein (HP; 54% protein, 15% lipid) or high energy (HE; 50% protein, 20% lipid), under voluntary swimming (VS) or moderate-to-low-intensity sustained swimming (SS) for 6 weeks. HE fed fish under VS conditions showed lower body weight and higher muscle lipid content than HP fed fish, but no differences between the two groups were observed under SS conditions. Irrespective of the swimming regime, the white muscle stable isotopes profile of the HE group revealed increased nitrogen and carbon turnovers. Nitrogen fractionation increased in the HP fed fish under SS, indicating enhanced dietary protein oxidation. Hepatic gene expression markers of energy metabolism and mitochondrial biogenesis showed clear differences between the two diets under VS: a significant shift in the COX/CS ratio, modifications in UCPs, and downregulation of PGC1a in the HE-fed fish. Swimming induced mitochondrial remodeling through upregulation of fusion and fission markers, and removing almost all the differences observed under VS. In the HE-fed fish, white skeletal muscle benefited from the increased energy demand, amending the oxidative uncoupling produced under the VS condition by an excess of lipids and the pro-fission state observed in mitochondria. Contrarily, red muscle revealed more tolerant to the energy content of the HE diet, even under VS conditions, with higher expression of oxidative enzymes (COX and CS) without any sign of mitochondrial stress or mitochondrial biogenesis induction. Furthermore, this tissue had enough plasticity to shift its metabolism under higher energy demand (SS), again equalizing the differences observed between diets under VS condition. Globally, the balance between dietary nutrients affects mitochondrial regulation due to their use as energy fuels, but exercise corrects imbalances allowing practical diets with lower protein and higher lipid content without detrimental effects.
Collapse
Affiliation(s)
- Miquel Perelló-Amorós
- Department of Cell Biology, Physiology, and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Jaume Fernández-Borràs
- Department of Cell Biology, Physiology, and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Albert Sánchez-Moya
- Department of Cell Biology, Physiology, and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Emilio J Vélez
- Université de Pau et des Pays de l'Adour, E2S UPPA, INRAE, UMR 1419 Nutrition Métabolisme et Aquaculture, Saint-Pée-sur-Nivelle, France
| | - Isabel García-Pérez
- Department of Cell Biology, Physiology, and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Joaquin Gutiérrez
- Department of Cell Biology, Physiology, and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Josefina Blasco
- Department of Cell Biology, Physiology, and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| |
Collapse
|
9
|
Vereshchagina K, Kondrateva E, Mutin A, Jakob L, Bedulina D, Shchapova E, Madyarova E, Axenov-Gribanov D, Luckenbach T, Pörtner HO, Lucassen M, Timofeyev M. Low annual temperature likely prevents the Holarctic amphipod Gammarus lacustris from invading Lake Baikal. Sci Rep 2021; 11:10532. [PMID: 34006866 PMCID: PMC8131634 DOI: 10.1038/s41598-021-89581-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 04/15/2021] [Indexed: 01/24/2023] Open
Abstract
Species with effective thermal adaptation mechanisms allowing them to thrive within a wide temperature range can benefit from climatic changes as they can displace highly specialized species. Here, we studied the adaptive capabilities of the Baikal endemic amphipods Eulimnogammarus verrucosus (Gerstfeld, 1858) and Eulimnogammarus cyaneus (Dybowsky, 1874) compared to the potential Holarctic Baikal invader Gammarus lacustris Sars, 1863 at the cellular level including the energy metabolism and the antioxidant system. All species were long-term exposed to a range of temperatures (1.5 °C to mimic winter conditions and the three species-specific preferred temperatures (i.e., 6 °C for E. verrucosus, 12 °C for E. cyaneus and 15 °C for G. lacustris). At 1.5 °C, we found species-specific metabolic alterations (i.e., significantly reduced ATP content and lactate dehydrogenase activity) indicating limitations on the activity level in the Holarctic G. lacustris. Although the two Baikal endemic amphipod species largely differ in thermal tolerance, no such limitations were found at 1.5 °C. However, the cold-stenothermal Baikal endemic E. verrucosus showed changes indicating a higher involvement of anaerobic metabolism at 12 °C and 15 °C, while the metabolic responses of the more eurythermal Baikal endemic E. cyaneus may support aerobic metabolism and an active lifestyle at all exposure temperatures. Rising temperatures in summer may provide a competitive advantage for G. lacustris compared to the Baikal species but the inactive lifestyle in the cold is likely preventing G. lacustris from establishing a stable population in Lake Baikal.
Collapse
Affiliation(s)
- Kseniya Vereshchagina
- Institute of Biology, Irkutsk State University, Karl Marx str.1, Irkutsk, 664003, Russia
| | - Elizaveta Kondrateva
- Institute of Biology, Irkutsk State University, Karl Marx str.1, Irkutsk, 664003, Russia
| | - Andrei Mutin
- Institute of Biology, Irkutsk State University, Karl Marx str.1, Irkutsk, 664003, Russia
| | - Lena Jakob
- Department of Integrative Ecophysiology, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Am Handelshafen 12, 27570, Bremerhaven, Germany
| | - Daria Bedulina
- Institute of Biology, Irkutsk State University, Karl Marx str.1, Irkutsk, 664003, Russia
| | - Ekaterina Shchapova
- Institute of Biology, Irkutsk State University, Karl Marx str.1, Irkutsk, 664003, Russia
| | - Ekaterina Madyarova
- Institute of Biology, Irkutsk State University, Karl Marx str.1, Irkutsk, 664003, Russia
| | | | - Till Luckenbach
- Department of Bioanalytical Ecotoxicology, UFZ-Helmholtz Centre for Environmental Research, Permoserstr. 15, 04318, Leipzig, Germany
| | - Hans-Otto Pörtner
- Department of Integrative Ecophysiology, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Am Handelshafen 12, 27570, Bremerhaven, Germany
| | - Magnus Lucassen
- Department of Integrative Ecophysiology, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Am Handelshafen 12, 27570, Bremerhaven, Germany
| | - Maxim Timofeyev
- Institute of Biology, Irkutsk State University, Karl Marx str.1, Irkutsk, 664003, Russia.
| |
Collapse
|
10
|
Chang CH, Liu ZZ, Lee TH. Changes in hypothermal stress-induced hepatic mitochondrial metabolic patterns between fresh water- and seawater-acclimated milkfish, Chanos chanos. Sci Rep 2019; 9:18502. [PMID: 31811227 PMCID: PMC6897891 DOI: 10.1038/s41598-019-55055-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 11/21/2019] [Indexed: 11/09/2022] Open
Abstract
Milkfish (Chanos chanos) is a tropical euryhaline species. It can acclimate to fresh water (FW) or seawater (SW) and be cultured in both. In winter, cold snaps cause huge losses in milkfish revenue. Compared to FW-acclimated individuals, SW-acclimated milkfish have better low-temperature tolerance. Under hypothermal stress, a stable energy supply is critical to maintain normal liver function. In this study, the levels of key mitochondrial enzymes (citrate synthase (CS) and cytochrome c oxidase (COX)) in milkfish livers were examined. The CS:COX activity ratio in FW milkfish significantly increased under hypothermal stress (18 °C) whereas ATP (the end product of aerobic metabolism) was downregulated. Therefore, the activities of the enzymes involved in mitochondrial amino acid biosynthesis (aspartate aminotransferase (AST) and glutamate dehydrogenase (GDH)) were evaluated to elucidate energy flow in milkfish livers under hypothermal stress. In FW milkfish, GDH activity was upregulated whereas AST activity was downregulated. Nevertheless, the levels of all the aforementioned enzymes did not significantly change in SW milkfish under hypothermal stress. In summary, we clarified the mechanism accounting for the fact that SW milkfish have superior low-temperature tolerance to FW milkfish and demonstrated that SW and FW milkfish have different and unique strategies for regulating energy flow.
Collapse
Affiliation(s)
- Chia-Hao Chang
- Department of Life Sciences, National Chung Hsing University, Taichung, 402, Taiwan.,iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung, 402, Taiwan
| | - Zong-Zheng Liu
- Department of Life Sciences, National Chung Hsing University, Taichung, 402, Taiwan
| | - Tsung-Han Lee
- Department of Life Sciences, National Chung Hsing University, Taichung, 402, Taiwan. .,iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung, 402, Taiwan.
| |
Collapse
|
11
|
Havird JC, Shah AA, Chicco AJ. Powerhouses in the cold: mitochondrial function during thermal acclimation in montane mayflies. Philos Trans R Soc Lond B Biol Sci 2019; 375:20190181. [PMID: 31787050 DOI: 10.1098/rstb.2019.0181] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Mitochondria provide the vast majority of cellular energy available to eukaryotes. Therefore, adjustments in mitochondrial function through genetic changes in mitochondrial or nuclear-encoded genes might underlie environmental adaptation. Environmentally induced plasticity in mitochondrial function is also common, especially in response to thermal acclimation in aquatic systems. Here, we examined mitochondrial function in mayfly larvae (Baetis and Drunella spp.) from high and low elevation mountain streams during thermal acclimation to ecologically relevant temperatures. A multi-substrate titration protocol was used to evaluate different respiratory states in isolated mitochondria, along with cytochrome oxidase and citrate synthase activities. In general, maximal mitochondrial respiratory capacity and oxidative phosphorylation coupling efficiency decreased during acclimation to higher temperatures, suggesting montane insects may be especially vulnerable to rapid climate change. Consistent with predictions of the climate variability hypothesis, mitochondria from Baetis collected at a low elevation site with highly variable daily and seasonal temperatures exhibited greater thermal tolerance than Baetis from a high elevation site with comparatively stable temperatures. However, mitochondrial phenotypes were more resilient than whole-organism phenotypes in the face of thermal stress. These results highlight the complex relationships between mitochondrial and organismal genotypes, phenotypes and environmental adaptation. This article is part of the theme issue 'Linking the mitochondrial genotype to phenotype: a complex endeavour'.
Collapse
Affiliation(s)
- Justin C Havird
- Department of Integrative Biology, University of Texas at Austin, Austin, TX 78712, USA
| | - Alisha A Shah
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| | - Adam J Chicco
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
12
|
Leo E, Graeve M, Storch D, Pörtner HO, Mark FC. Impact of ocean acidification and warming on mitochondrial enzymes and membrane lipids in two Gadoid species. Polar Biol 2019. [DOI: 10.1007/s00300-019-02600-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
13
|
Blanco-Rayón E, Ivanina AV, Sokolova IM, Marigómez I, Izagirre U. Food-type may jeopardize biomarker interpretation in mussels used in aquatic toxicological experimentation. PLoS One 2019; 14:e0220661. [PMID: 31381612 PMCID: PMC6681955 DOI: 10.1371/journal.pone.0220661] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 07/20/2019] [Indexed: 12/26/2022] Open
Abstract
To assess the influence of food type on biomarkers, mussels (Mytilus galloprovincialis) were maintained under laboratory conditions and fed using 4 different microalgae diets ad libitum for 1 week: (a) Isochrysis galbana; (b) Tetraselmis chuii; (c) a mixture of I. galbana and T. chuii; and (d) a commercial food (Microalgae Composed Diet, Acuinuga). Different microalgae were shown to present different distribution and fate in the midgut. I. galbana (≈4 μm Ø) readily reached digestive cells to be intracellularly digested. T. chuii (≈10 μm Ø and hardly digestible) was retained in stomach and digestive ducts for long times and extracellularly digested. Based on these findings, it appeared likely that the presence of large amounts of microalgal enzymes and metabolites might interfere with biochemical determinations of mussel's biomarkers and/or that the diet-induced alterations of mussels' digestion could modulate lysosomal and tissue-level biomarkers. To test these hypotheses, a battery of common biochemical, cytological and tissue-level biomarkers were determined in the gills (including activities of pyruvate kinase, phosphoenolpyruvate carboxykinase and cytochrome c oxidase) and the digestive gland of the mussels (including protein, lipid, free glucose and glycogen total content, lysosomal structural changes and membrane stability, intracellular accumulation of neutral lipids and lipofuscins, changes in cell type composition and epithelial thinning, as well as altered tissue integrity). The type of food was concluded to be a major factor influencing biomarkers in short-term experiments though not all the microalgae affected biomarkers and their responsiveness in the same way. T. chuii seemed to alter the nutritional status, oxidative stress and digestion processes, thus interfering with a variety of biomarkers. On the other hand, the massive presence of I. galbana within digestive cells hampered the measurement of cytochemical biomarkers and rendered less reliable the results of biochemical biomarkers (as these could be attributed to both the mussel and the microalgae). Research to optimize dietary food type, composition, regime and rations for toxicological experimentation is urgently needed. Meanwhile, a detailed description of the food type and feeding conditions should be always provided when reporting aquatic toxicological experiments with mussels, as a necessary prerequisite to compare and interpret the biological responses elicited by pollutants.
Collapse
Affiliation(s)
- Esther Blanco-Rayón
- CBET Research Group, Department of Zoology and Animal Cell Biology, University of the Basque Country (UPV/EHU), Leioa, Basque Country, Spain
- Research Centre for Experimental Marine Biology and Biotechnology (Plentzia Marine Station; PiE-UPV/EHU), University of the Basque Country, Plentzia, Basque Country, Spain
| | - Anna V. Ivanina
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, North Carolina, United States of America
| | - Inna M. Sokolova
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, North Carolina, United States of America
- Department of Marine Biology, Institute for Biosciences and Department of Maritime Systems, Interdisciplinary Faculty, University of Rostock, Rostock, Germany
| | - Ionan Marigómez
- CBET Research Group, Department of Zoology and Animal Cell Biology, University of the Basque Country (UPV/EHU), Leioa, Basque Country, Spain
- Research Centre for Experimental Marine Biology and Biotechnology (Plentzia Marine Station; PiE-UPV/EHU), University of the Basque Country, Plentzia, Basque Country, Spain
- * E-mail:
| | - Urtzi Izagirre
- CBET Research Group, Department of Zoology and Animal Cell Biology, University of the Basque Country (UPV/EHU), Leioa, Basque Country, Spain
- Research Centre for Experimental Marine Biology and Biotechnology (Plentzia Marine Station; PiE-UPV/EHU), University of the Basque Country, Plentzia, Basque Country, Spain
| |
Collapse
|
14
|
Zak MA, Manzon RG. Expression and activity of lipid and oxidative metabolism enzymes following elevated temperature exposure and thyroid hormone manipulation in juvenile lake whitefish (Coregonus clupeaformis). Gen Comp Endocrinol 2019; 275:51-64. [PMID: 30721659 DOI: 10.1016/j.ygcen.2019.02.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 01/11/2019] [Accepted: 02/01/2019] [Indexed: 01/08/2023]
Abstract
Temperature has unequivocal effects on several aspects of fish physiology, but the full extent of its interaction with key endocrine signaling systems to influence metabolic function remains unknown. The aim of the current study was to assess the individual and combined effects of elevated temperature and hyperthyroidism on hepatic metabolism in juvenile lake whitefish by quantifying mRNA abundance and activity of key metabolic enzymes. Fish were exposed to 13 (control), 17 or 21 °C for 0, 4, 8 or 24 days in the presence or absence of low-T4 (1 µg × g body weight-1) or high-T4 (10 µg × g body weight-1) treatment. Our results demonstrate moderate sensitivity to elevated temperature in this species, characterized by short-term changes in mRNA abundance of several metabolic enzymes and long-term declines in citrate synthase (CS) and cytochrome c oxidase (COX) activities. T4-induced hyperthyroidism also had several short-term effects on mRNA abundance of metabolic transcripts, including depressions in acetyl-coA carboxylase β (accβ) and carnitine palmitoyltransferase 1β (cpt1β), and stabilization of cs mRNA levels; however, these effects were primarily limited to elevated temperature groups, indicating temperature-dependent effects of exogenous T4 treatment in this species. In contrast, maximal CS and COX activities were not altered by hyperthyroidism at any temperature. Collectively, our data suggest that temperature has the potential to manipulate thyroid hormone physiology in juvenile lake whitefish and, under warm-conditions, hyperthyroidism may suppress certain elements of the β-oxidation pathway without substantial impacts on overall cellular oxidative capacity.
Collapse
Affiliation(s)
- Megan A Zak
- Department of Biology, University of Regina, 3737 Wascana Parkway, Regina, SK S4S 0A2, Canada
| | - Richard G Manzon
- Department of Biology, University of Regina, 3737 Wascana Parkway, Regina, SK S4S 0A2, Canada.
| |
Collapse
|
15
|
Falfushynska H, Sokolov EP, Haider F, Oppermann C, Kragl U, Ruth W, Stock M, Glufke S, Winkel EJ, Sokolova IM. Effects of a common pharmaceutical, atorvastatin, on energy metabolism and detoxification mechanisms of a marine bivalve Mytilus edulis. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 208:47-61. [PMID: 30610964 DOI: 10.1016/j.aquatox.2018.12.022] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 12/27/2018] [Accepted: 12/28/2018] [Indexed: 05/20/2023]
Abstract
Biologically active compounds from pharmaceuticals cause concern due to their common occurrence in water and sediments of urbanized coasts and potential threat to marine organisms. Atorvastatin (ATO), a globally prescribed drug, is environmentally stable and bioavailable to marine organisms; however, the physiological and toxic effects of this drug on ecologically important coastal species are yet to be elucidated. We studied the effect of ATO (˜1.2 μg L-1) on bioenergetics (including whole-organism and mitochondrial respiration, as well as tissue energy reserves and mRNA expression of genes involved in mitochondrial biogenesis and fatty acid metabolism in the gills and the digestive gland) of a keystone bivalve Mytulis edulis (the blue mussel) from the Baltic Sea. Xenobiotic detoxification systems including activity and mRNA expression of P-glycoprotein, and Phase I and II biotransformation enzymes (cytochrome P450 monooxygenase CYP1A and glutathione transferase, GST) were also assessed in the gill and digestive gland of the mussels. Exposure to ATO caused rapid uptake and biotransformation of the drug by the mussels. Standard metabolic rate of ATO-exposed mussels increased by 56% indicating higher maintenance costs, yet no changes were detected in the respiratory capacity of isolated mitochondria. ATO exposure led to ˜60% decrease in the lysosomal membrane stability of hemocytes and ˜3-fold decrease in the whole-organism P-glycoprotein-driven and diffusional efflux of xenobiotics indicating altered membrane properties. The digestive gland was a major target of ATO toxicity in the mussels. Exposure of mussels to ATO led to depletion of lipid, carbohydrate and protein pools, and suppressed transcription of key enzymes involved in mitochondrial biogenesis (peroxisome proliferator-activated receptor gamma coactivator 1-alpha PGC-1α) and fatty acid metabolism (acetyl-CoA carboxylase and CYP4Y1) in the digestive gland. No bioenergetic disturbances were observed in the gills of ATO-exposed mussels, and elevated GST activity indicated enhanced ATO detoxification in this tissue. These data demonstrate that ATO can act as a metabolic disruptor and chemosensitizer in keystone marine bivalves and warrant further investigations of statins as emerging pollutants of concern in coastal marine ecosystems.
Collapse
Affiliation(s)
- Halina Falfushynska
- Department of Marine Biology, Institute of Biological Sciences, University of Rostock, Rostock, Germany; Department of Human Health, Physical Rehabilitation and Vital Activity, Ternopil V. Hnatiuk National Pedagogical University, Ternopil, Ukraine
| | - Eugene P Sokolov
- Leibniz Institute for Baltic Sea Research, Leibniz ScienceCampus Phosphorus Research Rostock, Warnemünde, Germany
| | - Fouzia Haider
- Department of Marine Biology, Institute of Biological Sciences, University of Rostock, Rostock, Germany
| | - Christina Oppermann
- Department of Industrial Chemistry, Institute of Chemistry, University of Rostock, Rostock, Germany
| | - Udo Kragl
- Department of Industrial Chemistry, Institute of Chemistry, University of Rostock, Rostock, Germany
| | - Wolfgang Ruth
- Department of Industrial Chemistry, Institute of Chemistry, University of Rostock, Rostock, Germany
| | - Marius Stock
- Department of Marine Biology, Institute of Biological Sciences, University of Rostock, Rostock, Germany
| | - Sabrina Glufke
- Department of Marine Biology, Institute of Biological Sciences, University of Rostock, Rostock, Germany
| | - Eileen J Winkel
- Department of Marine Biology, Institute of Biological Sciences, University of Rostock, Rostock, Germany
| | - Inna M Sokolova
- Department of Marine Biology, Institute of Biological Sciences, University of Rostock, Rostock, Germany; Department of Maritime Systems, Interdisciplinary Faculty, University of Rostock, Rostock, Germany.
| |
Collapse
|
16
|
Tripp-Valdez MA, Bock C, Lannig G, Koschnick N, Pörtner HO, Lucassen M. Assessment of muscular energy metabolism and heat shock response of the green abalone Haliotis fulgens (Gastropoda: Philipi) at extreme temperatures combined with acute hypoxia and hypercapnia. Comp Biochem Physiol B Biochem Mol Biol 2018; 227:1-11. [PMID: 30195088 DOI: 10.1016/j.cbpb.2018.08.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 08/24/2018] [Accepted: 08/29/2018] [Indexed: 10/28/2022]
Abstract
The interaction between ocean warming, hypoxia and hypercapnia, suggested by climate projections, may push an organism earlier to the limits of its thermal tolerance window. In a previous study on juveniles of green abalone (Haliotis fulgens), combined exposure to hypoxia and hypercapnia during heat stress induced a lowered critical thermal maximum (CTmax), indicated by constrained oxygen consumption, muscular spams and loss of attachment. Thus, the present study investigated the cell physiology in foot muscle of H. fulgens juveniles exposed to acute warming (18 °C to 32 °C at +3 °C day-1) under hypoxia (50% air saturation) and hypercapnia (~1000 μatm PCO2), alone and in combination, to decipher the mechanisms leading to functional loss in this tissue. Under exposure to either hypoxia or hypercapnia, citrate synthase (CS) activity decreased with initial warming, in line with thermal compensation, but returned to control levels at 32 °C. The anaerobic enzymes lactate and tauropine dehydrogenase increased only under hypoxia at 32 °C. Under the combined treatment, CS overcame thermal compensation and remained stable overall, indicating active mitochondrial regulation under these conditions. Limited accumulation of anaerobic metabolites indicates unchanged mode of energy production. In all treatments, upregulation of Hsp70 mRNA was observed already at 30 °C. However, lack of evidence for Hsp70 protein accumulation provides only limited support to thermal denaturation of proteins. We conclude that under combined hypoxia and hypercapnia, metabolic depression allowed the H. fulgens musculature to retain an aerobic mode of metabolism in response to warming but may have contributed to functional loss.
Collapse
Affiliation(s)
- Miguel A Tripp-Valdez
- Integrative Ecophysiology, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Am Handelshafen 12, D-27570 Bremerhaven, Germany.
| | - Christian Bock
- Integrative Ecophysiology, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Am Handelshafen 12, D-27570 Bremerhaven, Germany
| | - Gisela Lannig
- Integrative Ecophysiology, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Am Handelshafen 12, D-27570 Bremerhaven, Germany
| | - Nils Koschnick
- Integrative Ecophysiology, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Am Handelshafen 12, D-27570 Bremerhaven, Germany
| | - Hans O Pörtner
- Integrative Ecophysiology, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Am Handelshafen 12, D-27570 Bremerhaven, Germany; University Bremen, Bibliothekstraße 1, 28359, Germany
| | - Magnus Lucassen
- Integrative Ecophysiology, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Am Handelshafen 12, D-27570 Bremerhaven, Germany
| |
Collapse
|
17
|
O'Brien KM, Crockett EL, Philip J, Oldham CA, Hoffman M, Kuhn DE, Barry R, McLaughlin J. The loss of hemoglobin and myoglobin does not minimize oxidative stress in Antarctic icefishes. ACTA ACUST UNITED AC 2018; 221:jeb.162503. [PMID: 29361578 DOI: 10.1242/jeb.162503] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 12/11/2017] [Indexed: 01/07/2023]
Abstract
The unusual pattern of expression of hemoglobin (Hb) and myoglobin (Mb) among Antarctic notothenioid fishes provides an exceptional model system for assessing the impact of these proteins on oxidative stress. We tested the hypothesis that the lack of oxygen-binding proteins may reduce oxidative stress. Levels and activity of pro-oxidants and small-molecule and enzymatic antioxidants, and levels of oxidized lipids and proteins in the liver, oxidative skeletal muscle and heart ventricle were quantified in five species of notothenioid fishes differing in the expression of Hb and Mb. Levels of ubiquitinated proteins and rates of protein degradation by the 20S proteasome were also quantified. Although levels of oxidized proteins and lipids, ubiquitinated proteins, and antioxidants were higher in red-blooded fishes than in Hb-less icefishes in some tissues, this pattern did not persist across all tissues. Expression of Mb was not associated with oxidative damage in the heart ventricle, whereas the activity of citrate synthase and the contents of heme were positively correlated with oxidative damage in most tissues. Despite some tissue differences in levels of protein carbonyls among species, rates of degradation by the 20S proteasome were not markedly different, suggesting either alternative pathways for eliminating oxidized proteins or that redox tone varies among species. Together, our data indicate that the loss of Hb and Mb does not correspond with a clear pattern of either reduced oxidative defense or oxidative damage.
Collapse
Affiliation(s)
- Kristin M O'Brien
- Institute of Arctic Biology, University of Alaska, Fairbanks, Alaska, 99775, USA
| | | | - Jacques Philip
- Center for Alaska Native Health Research, University of Alaska, Fairbanks, Alaska, 99775, USA
| | - Corey A Oldham
- Institute of Arctic Biology, University of Alaska, Fairbanks, Alaska, 99775, USA
| | - Megan Hoffman
- Institute of Arctic Biology, University of Alaska, Fairbanks, Alaska, 99775, USA
| | - Donald E Kuhn
- Department of Biological Sciences, Ohio University, Athens, Ohio, 45701, USA
| | - Ronald Barry
- Department of Mathematics and Statistics, University of Alaska, Fairbanks, Alaska, 99775, USA
| | - Jessica McLaughlin
- Institute of Arctic Biology, University of Alaska, Fairbanks, Alaska, 99775, USA
| |
Collapse
|
18
|
Metabolic and regulatory responses involved in cold acclimation in Atlantic killifish, Fundulus heteroclitus. J Comp Physiol B 2016; 187:463-475. [PMID: 27787665 DOI: 10.1007/s00360-016-1042-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 08/30/2016] [Accepted: 10/13/2016] [Indexed: 01/08/2023]
Abstract
Ectotherms often respond to prolonged cold exposure by increasing mitochondrial capacity via elevated mitochondrial volume density [V V(mit,f)]. In fish, higher V V(mit,f) is typically associated with increased expression of nuclear respiratory factor 1 (Nrf1), a transcription factor that induces expression of nuclear-encoded respiratory genes. To examine if nrf1 expression or the expression of other genes that regulate mitochondrial biogenesis contribute to changes in whole-organism metabolic rate during cold acclimation, we examined the time course of changes in the expression of these genes and in metabolic rate in Atlantic killifish, Fundulus heteroclitus. Cold acclimation rapidly decreased metabolic rate, but increased the expression of nrf1 more gradually, with a time course that depended on how rapidly the fish were transitioned to low temperature. Cold-induced nrf1 expression was not associated with increases in biochemical indicators of mitochondrial respiratory capacity, suggesting that cold-induced mitochondrial biogenesis may occur without increases in oxidative capacity in this species. These observations imply that changes in nrf1 expression and metabolic rate due to cold acclimation occur through different physiological mechanisms, and that increases in V V(mit,f) are likely not directly related to changes in metabolic rate with cold acclimation in this species. However, nrf1 expression differed between northern and southern killifish subspecies regardless of acclimation temperature, consistent with observed differences in metabolic rate and V V(mit,f) at 5 °C between these subspecies. Taken together, these results reveal substantial complexity in the regulation of V V(mit,f) and mitochondrial capacity with temperature in fish and the relationship of these parameters to metabolic rate.
Collapse
|
19
|
Enzymatic regulation of seasonal glycogen cycling in the freeze-tolerant wood frog, Rana sylvatica. J Comp Physiol B 2016; 186:1045-1058. [PMID: 27424164 DOI: 10.1007/s00360-016-1012-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Revised: 06/20/2016] [Accepted: 07/09/2016] [Indexed: 10/21/2022]
Abstract
Liver glycogen is an important energy store in vertebrates, and in the freeze-tolerant wood frog, Rana sylvatica, this carbohydrate also serves as a major source of the cryoprotectant glucose. We investigated how variation in the levels of the catalytic subunit of protein kinase A (PKAc), glycogen phosphorylase (GP), and glycogen synthase (GS) relates to seasonal glycogen cycling in a temperate (Ohioan) and subarctic (Alaskan) populations of this species. In spring, Ohioan frogs had reduced potential for glycogen synthesis, as evidenced by low GS activity and high PKAc protein levels. In addition, glycogen levels in spring were the lowest of four seasonal samples, as energy input was likely directed towards metabolism and somatic growth during this period. Near-maximal glycogen levels were reached by mid-summer, and remained unchanged in fall and winter, suggesting that glycogenesis was curtailed during this period. Ohioan frogs had a high potential for glycogenolysis and glycogenesis in winter, as evidenced by large glycogen reserves, high levels of GP and GS proteins, and high GS activity, which likely allows for rapid mobilization of cryoprotectant during freezing and replenishing of glycogen reserves during thawing. Alaskan frogs also achieved a near-maximal liver glycogen concentration by summer and displayed high glycogenic and glycogenolytic potential in winter, but, unlike Ohioan frogs, started replenishing their energy reserves early in spring. We conclude that variation in levels of both glycogenolytic and glycogenic enzymes likely happens in response to seasonal changes in energetic strategies and demands, with winter survival being a key component to understanding the regulation of glycogen cycling in this species.
Collapse
|
20
|
Papetti C, Lucassen M, Pörtner HO. Integrated studies of organismal plasticity through physiological and transcriptomic approaches: examples from marine polar regions. Brief Funct Genomics 2016; 15:365-72. [PMID: 27345433 DOI: 10.1093/bfgp/elw024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Transcriptomic methods are now widely used in functional genomic research. The vast amount of information received from these studies comes along with the challenge of developing a precise picture of the functional consequences and the characteristic regulatory mechanisms. Here we assess recent studies in marine species and their adaptation to polar (and seasonal) cold and explore how they have been able to draw reliable conclusions from transcriptomic patterns on functional consequences in the organisms. Our analysis indicates that the interpretation of transcriptomic data suffers from insufficient understanding of the consequences for whole organism performance and fitness and comes with the risk of supporting only preliminary and superficial statements.We propose that the functional understanding of transcriptomic data may be improved by their tighter integration into overarching physiological concepts that support the more specific interpretation of the 'omics' data and, at the same time, can be developed further through embedding the transcriptomic phenomena observed. Such possibilities have not been fully exploited.In the context of thermal adaptation and limitation, we explore preliminary evidence that the concept of oxygen and capacity limited thermal tolerance (OCLTT) may provide sufficient complexity to guide the integration of such data and the development of associated functional hypotheses. At the same time, we identify a lack of methodological approaches linking genes and function to higher levels of integration, in terms of organism and ecosystem functioning, at temporal and geographical scales, to support more reliable conclusions and be predictive with respect to the effects of global changes.
Collapse
|
21
|
Martinez E, Porreca A, Colombo R, Menze M. Tradeoffs of warm adaptation in aquatic ectotherms: Live fast, die young? Comp Biochem Physiol A Mol Integr Physiol 2016; 191:209-215. [DOI: 10.1016/j.cbpa.2015.07.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 07/23/2015] [Accepted: 07/27/2015] [Indexed: 10/23/2022]
|
22
|
Liao K, Yan J, Mai K, Ai Q. Dietary lipid concentration affects liver mitochondrial DNA copy number, gene expression and DNA methylation in large yellow croaker (Larimichthys crocea). Comp Biochem Physiol B Biochem Mol Biol 2015; 193:25-32. [PMID: 26692128 DOI: 10.1016/j.cbpb.2015.11.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Revised: 11/05/2015] [Accepted: 11/05/2015] [Indexed: 12/29/2022]
Abstract
In response to changes in energy demand and nutrient supply, the organism regulates mitochondrial metabolic status to coordinate ATP production. To survey mitochondrial metabolic adaptation in response to dietary lipid concentration, citrate synthase (EC 2.3.3.1, CS) activity, the expression of several mitochondrial transcription factors, mitochondrial DNA (mtDNA) copy number, mitochondrial gene expression, mtDNA methylation, and oxidative stress parameters were analyzed in the liver of large yellow croaker fed one of three diets with a low (6%), moderate (12%, the control diet) or high (18%) crude lipid content for 70 d. MtDNA copy number was significantly increased in the low- and high-lipid groups compared to the control. The transcription of cytochrome c oxidase 1 (COX1), COX2, COX3, ATP synthase 6 (ATPase 6), 12S rRNA and 16S rRNA was also significantly increased in the low-lipid group compared with the control, while the transcription of these genes in the high-lipid group was unchanged. Moreover, D-loop (displacement loop) methylation in the high-lipid group was significantly higher than the control. The increase in mtDNA copy number and mitochondrial transcription might be a compensatory mechanism that matches ATP supply to demand under a low-lipid diet, while the increase of mtDNA copy number with unchanged mitochondrial transcription in the high-lipid group probably came from the increase of D-loop methylation.
Collapse
Affiliation(s)
- Kai Liao
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture) and the Key Laboratory of Mariculture (Education Ministry of China), Ocean University of China, Qingdao 266003, PR China
| | - Jing Yan
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture) and the Key Laboratory of Mariculture (Education Ministry of China), Ocean University of China, Qingdao 266003, PR China
| | - Kangsen Mai
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture) and the Key Laboratory of Mariculture (Education Ministry of China), Ocean University of China, Qingdao 266003, PR China
| | - Qinghui Ai
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture) and the Key Laboratory of Mariculture (Education Ministry of China), Ocean University of China, Qingdao 266003, PR China.
| |
Collapse
|
23
|
Holmbeck MA, Rand DM. Dietary Fatty Acids and Temperature Modulate Mitochondrial Function and Longevity in Drosophila. J Gerontol A Biol Sci Med Sci 2015; 70:1343-54. [PMID: 25910846 PMCID: PMC4612386 DOI: 10.1093/gerona/glv044] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 03/20/2015] [Indexed: 12/11/2022] Open
Abstract
Fluctuations in temperature and resource availability are conditions many organisms contend with in nature. Specific dietary nutrients such as fatty acids play an essential role in reproduction, cold adaptation, and metabolism in a variety of organisms. The present study characterizes how temperature and diet interact to modulate Drosophila physiology and life span. Flies were raised on media containing specific saturated, monounsaturated, or polyunsaturated fatty acids supplements at low concentrations and were placed in varied thermal environments. We found that dietary long-chain polyunsaturated fatty acids improve chill coma recovery and modulate mitochondrial function. Additionally, monounsaturated and polyunsaturated fatty acid food supplements were detrimental to life span regardless of temperature, and antioxidants were able to partially rescue this effect. This study provides insight into environmental modulation of Drosophila physiology and life span.
Collapse
Affiliation(s)
- Marissa A Holmbeck
- Department of Ecology and Evolutionary Biology, Brown University, Providence, Rhode Island.
| | - David M Rand
- Department of Ecology and Evolutionary Biology, Brown University, Providence, Rhode Island
| |
Collapse
|
24
|
Bermejo-Nogales A, Calduch-Giner JA, Pérez-Sánchez J. Unraveling the molecular signatures of oxidative phosphorylation to cope with the nutritionally changing metabolic capabilities of liver and muscle tissues in farmed fish. PLoS One 2015; 10:e0122889. [PMID: 25875231 PMCID: PMC4398389 DOI: 10.1371/journal.pone.0122889] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 02/24/2015] [Indexed: 01/05/2023] Open
Abstract
Mitochondrial oxidative phosphorylation provides over 90% of the energy produced by aerobic organisms, therefore the regulation of mitochondrial activity is a major issue for coping with the changing environment and energy needs. In fish, there is a large body of evidence of adaptive changes in enzymatic activities of the OXPHOS pathway, but less is known at the transcriptional level and the first aim of the present study was to define the molecular identity of the actively transcribed subunits of the mitochondrial respiratory chain of a livestock animal, using gilthead sea bream as a model of farmed fish with a high added value for European aquaculture. Extensive BLAST searches in our transcriptomic database (www.nutrigroup-iats.org/seabreamdb) yielded 97 new sequences with a high coverage of catalytic, regulatory and assembly factors of Complex I to V. This was the basis for the development of a PCR array for the simultaneous profiling of 88 selected genes. This new genomic resource allowed the differential gene expression of liver and muscle tissues in a model of 10 fasting days. A consistent down-regulated response involving 72 genes was made by the liver, whereas an up-regulated response with 29 and 10 differentially expressed genes was found in white skeletal muscle and heart, respectively. This differential regulation was mostly mediated by nuclear-encoded genes (skeletal muscle) or both mitochondrial- and nuclear-encoded genes (liver, heart), which is indicative of a complex and differential regulation of mitochondrial and nuclear genomes, according to the changes in the lipogenic activity of liver and the oxidative capacity of glycolytic and highly oxidative muscle tissues. These insights contribute to the identification of the most responsive elements of OXPHOS in each tissue, which is of relevance for the appropriate gene targeting of nutritional and/or environmental metabolic disturbances in livestock animals.
Collapse
Affiliation(s)
- Azucena Bermejo-Nogales
- Nutrigenomics and Fish Growth Endocrinology Group, Institute of Aquaculture Torre de la Sal (CSIC-IATS), Ribera de Cabanes, Castellón, Spain
| | - Josep Alvar Calduch-Giner
- Nutrigenomics and Fish Growth Endocrinology Group, Institute of Aquaculture Torre de la Sal (CSIC-IATS), Ribera de Cabanes, Castellón, Spain
| | - Jaume Pérez-Sánchez
- Nutrigenomics and Fish Growth Endocrinology Group, Institute of Aquaculture Torre de la Sal (CSIC-IATS), Ribera de Cabanes, Castellón, Spain
- * E-mail:
| |
Collapse
|
25
|
Vanderplancke G, Claireaux G, Quazuguel P, Huelvan C, Corporeau C, Mazurais D, Zambonino-Infante JL. Exposure to chronic moderate hypoxia impacts physiological and developmental traits of European sea bass (Dicentrarchus labrax) larvae. FISH PHYSIOLOGY AND BIOCHEMISTRY 2015; 41:233-42. [PMID: 25487612 DOI: 10.1007/s10695-014-0019-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 12/01/2014] [Indexed: 05/26/2023]
Abstract
Since European sea bass (Dicentrarchus labrax) larvae occurred in coastal and estuarine waters at early life stages, they are likely to be exposed to reduced dissolved oxygen waters at a sensitive developmental stage. However, the effects of hypoxia at larval stage, which depend in part on fish species, remain very poorly documented in European sea bass. In the present study, the impacts of an experimental exposure to a chronic moderate hypoxia (40 % air saturation) between 30 and 38 days post-hatching on the physiological and developmental traits of European sea bass larvae were assessed. This study was based on the investigation of survival and growth rates, parameters related to energy metabolism [Citrate Synthase (CS) and Cytochrome-c Oxidase (COX) activities], and biological indicators of the maturation of digestive function [pancreatic (trypsin, amylase) and intestinal (Alkaline Phosphatase "AP" and Aminopeptidase-N "N-LAP") enzymes activities]. While condition of hypoxia exposure did not induce any significant mortality event, lower growth rate as well as CS/COX activity ratio was observed in the Hypoxia Treatment group. In parallel, intestinal enzyme activities were also lower under hypoxia. Altogether, the present data suggest that sea bass larvae cope with moderate hypoxia by (1) reducing processes that are costly in energy and (2) regulating mitochondria functions in order to respond to energy-demand conditions. Both these effects are associated with a delay in the maturation of the digestive function.
Collapse
Affiliation(s)
- Gwenaëlle Vanderplancke
- Ifremer, LEMAR UMR 6539 CNRS-UBO-IRD-Ifremer, ZI de la Pointe du Diable, CS 10070, 29280, Plouzané, France
| | | | | | | | | | | | | |
Collapse
|
26
|
Flouris AD, Piantoni C. Links between thermoregulation and aging in endotherms and ectotherms. Temperature (Austin) 2014; 2:73-85. [PMID: 27226994 PMCID: PMC4843886 DOI: 10.4161/23328940.2014.989793] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 10/21/2014] [Accepted: 11/13/2014] [Indexed: 01/22/2023] Open
Abstract
While the link between thermoregulation and aging is generally accepted, much further research, reflection, and debate is required to elucidate the physiological and molecular pathways that generate the observed thermal-induced changes in lifespan. Our aim in this review is to present, discuss, and scrutinize the thermoregulatory mechanisms that are implicated in the aging process in endotherms and ectotherms. Our analysis demonstrates that low body temperature benefits lifespan in both endothermic and ectothermic organisms. Research in endotherms has delved deeper into the physiological and molecular mechanisms linking body temperature and longevity. While research in ectotherms has been steadily increasing during the past decades, further mechanistic work is required in order to fully elucidate the underlying phenomena. What is abundantly clear is that both endotherms and ectotherms have a specific temperature zone at which they function optimally. This zone is defended through both physiological and behavioral means and plays a major role on organismal senescence. That low body temperature may be beneficial for lifespan is contrary to conventional medical theory where reduced body temperature is usually considered as a sign of underlying pathology. Regardless, this phenomenon has been targeted by scientists with the expectation that advancements may compress morbidity, as well as lower disease and mortality risk. The available evidence suggests that lowered body temperature may prolong life span, yet finding the key to temperature regulation remains the problem. While we are still far from a complete understanding of the mechanisms linking body temperature and longevity, we are getting closer.
Collapse
Affiliation(s)
- Andreas D Flouris
- FAME Laboratory; Department of Exercise Science; University of Thessaly ; Trikala, Greece
| | - Carla Piantoni
- University of Sao Paulo; Department of Physiology ; Sao Paulo, Brazil
| |
Collapse
|
27
|
Karamushko LI. Growth, production, metabolism, and adaptations of high-latitude marine fish. DOKLADY BIOLOGICAL SCIENCES : PROCEEDINGS OF THE ACADEMY OF SCIENCES OF THE USSR, BIOLOGICAL SCIENCES SECTIONS 2014; 455:116-118. [PMID: 24795186 DOI: 10.1134/s0012496614020124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Indexed: 06/03/2023]
Affiliation(s)
- L I Karamushko
- Murmansk Marine Biological Institute, Kola Scientific Center, Russian Academy of Sciences, Murmansk, Russia,
| |
Collapse
|
28
|
Huth TJ, Place SP. De novo assembly and characterization of tissue specific transcriptomes in the emerald notothen, Trematomus bernacchii. BMC Genomics 2013; 14:805. [PMID: 24252228 PMCID: PMC3840625 DOI: 10.1186/1471-2164-14-805] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Accepted: 11/15/2013] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND The notothenioids comprise a diverse group of fishes that rapidly radiated after isolation by the Antarctic Circumpolar Current approximately 14-25 million years ago. Given that evolutionary adaptation has led to finely tuned traits with narrow physiological limits in these organisms, this system provides a unique opportunity to examine physiological trade-offs and limits of adaptive responses to environmental perturbation. As such, notothenioids have a rich history with respect to studies attempting to understand the vulnerability of polar ecosystems to the negative impacts associated with global climate change. Unfortunately, despite being a model system for understanding physiological adaptations to extreme environments, we still lack fundamental molecular tools for much of the Nototheniidae family. RESULTS Specimens of the emerald notothen, Trematomus bernacchii, were acclimated for 28 days in flow-through seawater tanks maintained near ambient seawater temperatures (-1.5°C) or at +4°C. Following acclimation, tissue specific cDNA libraries for liver, gill and brain were created by pooling RNA from n = 5 individuals per temperature treatment. The tissue specific libraries were bar-coded and used for 454 pyrosequencing, which yielded over 700 thousand sequencing reads. A de novo assembly and annotation of these reads produced a functional transcriptome library of T. bernacchii containing 30,107 unigenes, 13,003 of which possessed significant homology to a known protein product. Digital gene expression analysis of these extremely cold adapted fish reinforced the loss of an inducible heat shock response and allowed the preliminary exploration into other elements of the cellular stress response. CONCLUSIONS Preliminary exploration of the transcriptome of T. bernacchii under elevated temperatures enabled a semi-quantitative comparison to prior studies aimed at characterizing the thermal response of this endemic fish whose size, abundance and distribution has established it as a pivotal species in polar research spanning several decades. The comparison of these findings to previous studies demonstrates the efficacy of transcriptomics and digital gene expression analysis as tools in future studies of polar organisms and has greatly increased the available genomic resources for the suborder Notothenioidei, particularly in the Trematominae subfamily.
Collapse
Affiliation(s)
- Troy J Huth
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA
| | - Sean P Place
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA
- Environment and Sustainability Program, University of South Carolina, Columbia, SC, USA
| |
Collapse
|
29
|
Dupoué A, Brischoux F, Lourdais O, Angelier F. Influence of temperature on the corticosterone stress-response: an experiment in the Children's python (Antaresia childreni). Gen Comp Endocrinol 2013; 193:178-84. [PMID: 23948369 DOI: 10.1016/j.ygcen.2013.08.004] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Revised: 07/31/2013] [Accepted: 08/05/2013] [Indexed: 10/26/2022]
Abstract
To cope with environmental challenges, organisms have to adjust their behaviours and their physiology to the environmental conditions they face (i.e. allostasis). In vertebrates, such adjustments are often mediated through the secretion of glucocorticoids (GCs) that are well-known to activate and/or inhibit specific physiological and behavioural traits. In ectothermic species, most processes are temperature-dependent and according to previous studies, low external temperatures should be associated with low GC concentrations (both baseline and stress-induced concentrations). In this study, we experimentally tested this hypothesis by investigating the short term influence of temperature on the GC stress response in a squamate reptile, the Children's python (Antaresia childreni). Snakes were maintained in contrasting conditions (warm and cold groups), and their corticosterone (CORT) stress response was measured (baseline and stress-induced CORT concentrations), within 48h of treatment. Contrary to our prediction, baseline and stress-induced CORT concentrations were higher in the cold versus the warm treatment. In addition, we found a strong negative relationship between CORT concentrations (baseline and stress-induced) and temperature within the cold treatment. Although it remains unclear how cold temperatures can mechanistically result in increased CORT concentrations, we suggest that, at suboptimal temperature, high CORT concentrations may help the organism to maintain an alert state.
Collapse
Affiliation(s)
- Andréaz Dupoué
- Centre d'Etudes Biologiques de Chizé, CEBC-CNRS UPR 1934, 79360 Villiers en Bois, France; Université de Poitiers, 40 Avenue du recteur Pineau, 86022 Poitiers, France.
| | | | | | | |
Collapse
|
30
|
Sheen P, Lozano K, Gilman RH, Valencia HJ, Loli S, Fuentes P, Grandjean L, Zimic M. pncA gene expression and prediction factors on pyrazinamide resistance in Mycobacterium tuberculosis. Tuberculosis (Edinb) 2013; 93:515-22. [PMID: 23867321 DOI: 10.1016/j.tube.2013.03.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Revised: 03/01/2013] [Accepted: 03/23/2013] [Indexed: 10/26/2022]
Abstract
Mutations in the pyrazinamidase (PZAse) coding gene, pncA, have been considered as the main cause of pyrazinamide (PZA) resistance in Mycobacterium tuberculosis. However, recent studies suggest there is no single mechanism of resistance to PZA. The pyrazinoic acid (POA) efflux rate is the basis of the PZA susceptibility Wayne test, and its quantitative measurement has been found to be a highly sensitive and specific predictor of PZA resistance. Based on biological considerations, the POA efflux rate is directly determined by the PZAse activity, the level of pncA expression, and the efficiency of the POA efflux pump system. This study analyzes the individual and the adjusted contribution of PZAse activity, pncA expression and POA efflux rate on PZA resistance. Thirty M. tuberculosis strains with known microbiological PZA susceptibility or resistance were analyzed. For each strain, PZAse was recombinantly produced and its enzymatic activity measured. The level of pncA mRNA was estimated by quantitative RT-PCR, and the POA efflux rate was determined. Mutations in the pncA promoter were detected by DNA sequencing. All factors were evaluated by multiple regression analysis to determine their adjusted effects on the level of PZA resistance. Low level of pncA expression associated to mutations in the pncA promoter region was observed in pncA wild type resistant strains. POA efflux rate was the best predictor after adjusting for the other factors, followed by PZAse activity. These results suggest that tests which rely on pncA mutations or PZAse activity are likely to be less predictive of real PZA resistance than tests which measure the rate of POA efflux. This should be further analyzed in light of the development of alternate assays to determine PZA resistance.
Collapse
Affiliation(s)
- Patricia Sheen
- Unidad de Bioinformática y Biología Molecular, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Av. Honorio Delgado 430, SMP, Lima, Peru
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Alderman SL, Klaiman JM, Deck CA, Gillis TE. Effect of cold acclimation on troponin I isoform expression in striated muscle of rainbow trout. Am J Physiol Regul Integr Comp Physiol 2012; 303:R168-76. [DOI: 10.1152/ajpregu.00127.2012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In vertebrates each of the three striated muscle types (fast skeletal, slow skeletal, and cardiac) contain distinct isoforms of a number of different contractile proteins including troponin I (TnI). The functional characteristics of these proteins have a significant influence on muscle function and contractility. The purpose of this study was to characterize which TnI gene and protein isoforms are expressed in the different muscle types of rainbow trout ( Oncorhynchus mykiss) and to determine whether isoform expression changes in response to cold acclimation (4°C). Semiquantitative real-time PCR was used to characterize the expression of seven different TnI genes. The sequence of these genes, cloned from Atlantic salmon ( Salmo salar) and rainbow trout, were obtained from the National Center for Biotechnology Information databases. One-dimensional gel electrophoresis and tandem mass spectrometry were used to identify the TnI protein isoforms expressed in each muscle type. Interestingly, the results indicate that each muscle type expresses the gene transcripts of up to seven TnI isoforms. There are significant differences, however, in the expression pattern of these genes between muscle types. In addition, cold acclimation was found to increase the expression of specific gene transcripts in each muscle type. The proteomics analysis demonstrates that fast skeletal and cardiac muscle contain three TnI isoforms, whereas slow skeletal muscle contains four. No other vertebrate muscle to date has been found to express as many TnI protein isoforms. Overall this study underscores the complex molecular composition of teleost striated muscle and suggests there is an adaptive value to the unique TnI profiles of each muscle type.
Collapse
Affiliation(s)
- Sarah L. Alderman
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
| | - Jordan M. Klaiman
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
| | - Courtney A. Deck
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
| | - Todd E. Gillis
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
32
|
Mark FC, Lucassen M, Strobel A, Barrera-Oro E, Koschnick N, Zane L, Patarnello T, Pörtner HO, Papetti C. Mitochondrial function in Antarctic nototheniids with ND6 translocation. PLoS One 2012; 7:e31860. [PMID: 22363756 PMCID: PMC3283701 DOI: 10.1371/journal.pone.0031860] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Accepted: 01/13/2012] [Indexed: 12/02/2022] Open
Abstract
Fish of the suborder Notothenioidei have successfully radiated into the Southern Ocean and today comprise the dominant fish sub-order in Antarctic waters in terms of biomass and species abundance. During evolution in the cold and stable Antarctic climate, the Antarctic lineage of notothenioids developed several unique physiological adaptations, which make them extremely vulnerable to the rapid warming of Antarctic waters currently observed. Only recently, a further phenomenon exclusive to notothenioid fish was reported: the translocation of the mitochondrial gene encoding the NADH Dehydrogenase subunit 6 (ND6), an indispensable part of complex I in the mitochondrial electron transport system.This study investigated the potential physiological consequences of ND6 translocation for the function and thermal sensitivity of the electron transport system in isolated liver mitochondria of the two nototheniid species Notothenia coriiceps and Notothenia rossii, with special attention to the contributions of complex I (NADH DH) and complex II (Succinate DH) to oxidative phosphorylation. Furthermore, enzymatic activities of NADH:Cytochrome c Oxidoreductase and Cytochrome C Oxidase were measured in membrane-enriched tissue extracts.During acute thermal challenge (0-15°C), capacities of mitochondrial respiration and enzymatic function in the liver could only be increased until 9°C. Mitochondrial complex I (NADH Dehydrogenase) was fully functional but displayed a higher thermal sensitivity than the other complexes of the electron transport system, which may specifically result from its unique amino acid composition, revealing a lower degree of stability in notothenioids in general. We interpret the translocation of ND6 as functionally neutral but the change in amino acid sequence as adaptive and supportive of cold stenothermy in Antarctic nototheniids. From these findings, an enhanced sensitivity to ocean warming can be deduced for Antarctic notothenioid fish.
Collapse
Affiliation(s)
- Felix C Mark
- Alfred Wegener Institute for Polar and Marine Research, Bremerhaven, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Dickinson GH, Ivanina AV, Matoo OB, Pörtner HO, Lannig G, Bock C, Beniash E, Sokolova IM. Interactive effects of salinity and elevated CO2 levels on juvenile eastern oysters, Crassostrea virginica. J Exp Biol 2012; 215:29-43. [DOI: 10.1242/jeb.061481] [Citation(s) in RCA: 188] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
SUMMARY
Rising levels of atmospheric CO2 lead to acidification of the ocean and alter seawater carbonate chemistry, which can negatively impact calcifying organisms, including mollusks. In estuaries, exposure to elevated CO2 levels often co-occurs with other stressors, such as reduced salinity, which enhances the acidification trend, affects ion and acid–base regulation of estuarine calcifiers and modifies their response to ocean acidification. We studied the interactive effects of salinity and partial pressure of CO2 (PCO2) on biomineralization and energy homeostasis in juveniles of the eastern oyster, Crassostrea virginica, a common estuarine bivalve. Juveniles were exposed for 11 weeks to one of two environmentally relevant salinities (30 or 15 PSU) either at current atmospheric PCO2 (∼400 μatm, normocapnia) or PCO2 projected by moderate IPCC scenarios for the year 2100 (∼700–800 μatm, hypercapnia). Exposure of the juvenile oysters to elevated PCO2 and/or low salinity led to a significant increase in mortality, reduction of tissue energy stores (glycogen and lipid) and negative soft tissue growth, indicating energy deficiency. Interestingly, tissue ATP levels were not affected by exposure to changing salinity and PCO2, suggesting that juvenile oysters maintain their cellular energy status at the expense of lipid and glycogen stores. At the same time, no compensatory upregulation of carbonic anhydrase activity was found under the conditions of low salinity and high PCO2. Metabolic profiling using magnetic resonance spectroscopy revealed altered metabolite status following low salinity exposure; specifically, acetate levels were lower in hypercapnic than in normocapnic individuals at low salinity. Combined exposure to hypercapnia and low salinity negatively affected mechanical properties of shells of the juveniles, resulting in reduced hardness and fracture resistance. Thus, our data suggest that the combined effects of elevated PCO2 and fluctuating salinity may jeopardize the survival of eastern oysters because of weakening of their shells and increased energy consumption.
Collapse
Affiliation(s)
- Gary H. Dickinson
- Department of Oral Biology, University of Pittsburgh, 589 Salk Hall, 3501 Terrace Street, Pittsburgh, PA 15261, USA
| | - Anna V. Ivanina
- Department of Biology, University of North Carolina at Charlotte, 9201 University City Blvd, Charlotte, NC 28223, USA
| | - Omera B. Matoo
- Department of Biology, University of North Carolina at Charlotte, 9201 University City Blvd, Charlotte, NC 28223, USA
| | - Hans O. Pörtner
- Integrative Ecophysiology, Alfred Wegener Institute for Polar and Marine Research in the Hermann von Helmholtz Association of National Research Centers e.V. (HGF), Am Handelshafen 12, 27570 Bremerhaven, Germany
| | - Gisela Lannig
- Integrative Ecophysiology, Alfred Wegener Institute for Polar and Marine Research in the Hermann von Helmholtz Association of National Research Centers e.V. (HGF), Am Handelshafen 12, 27570 Bremerhaven, Germany
| | - Christian Bock
- Integrative Ecophysiology, Alfred Wegener Institute for Polar and Marine Research in the Hermann von Helmholtz Association of National Research Centers e.V. (HGF), Am Handelshafen 12, 27570 Bremerhaven, Germany
| | - Elia Beniash
- Department of Oral Biology, University of Pittsburgh, 589 Salk Hall, 3501 Terrace Street, Pittsburgh, PA 15261, USA
| | - Inna M. Sokolova
- Department of Biology, University of North Carolina at Charlotte, 9201 University City Blvd, Charlotte, NC 28223, USA
| |
Collapse
|
34
|
Windisch HS, Kathöver R, Pörtner HO, Frickenhaus S, Lucassen M. Thermal acclimation in Antarctic fish: transcriptomic profiling of metabolic pathways. Am J Physiol Regul Integr Comp Physiol 2011; 301:R1453-66. [PMID: 21865546 DOI: 10.1152/ajpregu.00158.2011] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
It is widely accepted that adaptation to the extreme cold has evolved at the expense of high thermal sensitivity. However, recent studies have demonstrated significant capacities for warm acclimation in Antarctic fishes. Here, we report on hepatic metabolic reorganization and its putative molecular background in the Antarctic eelpout (Pachycara brachycephalum) during warm acclimation to 5°C over 6 wk. Elevated capacities of cytochrome c oxidase suggest the use of warm acclimation pathways different from those in temperate fish. The capacity of this enzyme rose by 90%, while citrate synthase (CS) activity fell by 20% from the very beginning. The capacity of lipid oxidation by hydroxyacyl-CoA dehydrogenase remained constant, whereas phosphoenolpyruvate carboxykinase as a marker for gluconeogenesis displayed 40% higher activities. These capacities in relation to CS indicate a metabolic shift from lipid to carbohydrate metabolism. The finding was supported by large rearrangements of the related transcriptome, both functional genes and potential transcription factors. A multivariate analysis (canonical correspondence analyses) of various transcripts subdivided the incubated animals in three groups, one control group and two responding on short and long timescales, respectively. A strong dichotomy in the expression of peroxisome proliferator-activated receptors-1α and -β receptors was most striking and has not previously been reported. Altogether, we identified a molecular network, which responds sensitively to warming beyond the realized ecological niche. The shift from lipid to carbohydrate stores and usage may support warm hardiness, as the latter sustain anaerobic metabolism and may prepare for hypoxemic conditions that would develop upon warming beyond the present acclimation temperature.
Collapse
|
35
|
Abstract
Summary
Mitochondrial biogenesis is induced in response to cold temperature in many organisms. The effect is particularly pronounced in ectotherms such as fishes, where acclimation to cold temperature increases mitochondrial density. Some polar fishes also have exceptionally high densities of mitochondria. The net effect of increasing mitochondrial density is threefold. First, it increases the concentration of aerobic metabolic enzymes per gram of tissue, maintaining ATP production. Second, it elevates the density of mitochondrial membrane phospholipids, enhancing rates of intracellular oxygen diffusion. Third, it reduces the diffusion distance for oxygen and metabolites between capillaries and mitochondria. Although cold-induced mitochondrial biogenesis has been well documented in fishes, little is known about the molecular pathway governing it. In mammals, the co-transcriptional activator peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC-1α) is thought to coordinate the three components of mitochondrial biogenesis: the synthesis of mitochondrial proteins, the synthesis of phospholipids and the replication of mitochondrial DNA. Some components of the mitochondrial biogenic pathway are conserved between fishes and mammals, yet the pathway appears more versatile in fishes. In some tissues of cold-acclimated fishes, the synthesis of mitochondrial proteins increases in the absence of an increase in phospholipids, whereas in some polar fishes, densities of mitochondrial phospholipids increase in the absence of an increase in proteins. The ability of cold-bodied fishes to fine-tune the mitochondrial biogenic pathway may allow them to modify mitochondrial characteristics to meet the specific needs of the cell, whether it is to increase ATP production or enhance oxygen diffusion.
Collapse
Affiliation(s)
- Kristin M. O'Brien
- University of Alaska Fairbanks, Institute of Arctic Biology, PO Box 757000, Fairbanks, AK 99775, USA
| |
Collapse
|
36
|
Ivanina AV, Froelich B, Williams T, Sokolov EP, Oliver JD, Sokolova IM. Interactive effects of cadmium and hypoxia on metabolic responses and bacterial loads of eastern oysters Crassostrea virginica Gmelin. CHEMOSPHERE 2011; 82:377-389. [PMID: 20971492 DOI: 10.1016/j.chemosphere.2010.09.075] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Revised: 09/20/2010] [Accepted: 09/26/2010] [Indexed: 05/30/2023]
Abstract
Pollution by toxic metals including cadmium (Cd) and hypoxia are important stressors in estuaries and coastal waters which may interactively affect sessile benthic organisms, such as oysters. We studied metabolic responses to prolonged hypoxic acclimation (2 weeks at 5% O2) in control and Cd-exposed (30 d at 50 μg L(-1) Cd) oysters Crassostrea virginica, and analyzed the effects of these stressors on abundance of Vibrio spp. in oysters. Hypoxia-acclimated oysters retained normal standard metabolic rates (SMR) at 5% O2, in contrast to a decline of SMR observed during acute hypoxia. However, oysters spent more time actively ventilating in hypoxia than normoxia resulting in enhanced Cd uptake and 2.7-fold higher tissue Cd burdens in hypoxia. Cd exposure led to a significant decrease in tissue glycogen stores, increase in free glucose levels and elevated activity of glycolytic enzymes (hexokinase and aldolase) indicating a greater dependence on carbohydrate catabolism. A compensatory increase in activities of two key mitochondrial enzymes (citrate synthase and cytochrome c oxidase) was found during prolonged hypoxia in control oysters but suppressed in Cd-exposed ones. Cd exposure also resulted in a significant increase in abundance of Vibrio parahaemolyticus and Vibrio vulnificus levels during normoxia and hypoxia, respectively. Overall, Cd- and hypoxia-induced changes in metabolic profile, Cd accumulation and bacterial flora of oysters indicate that these stressors can synergistically impact energy homeostasis, performance and survival of oysters in polluted estuaries and have significant consequences for transfer of Cd and bacterial pathogens to the higher levels of the food chain.
Collapse
Affiliation(s)
- Anna V Ivanina
- Biology Department, University of North Carolina at Charlotte, 9201 University City Blvd., Charlotte, NC 28223, United States
| | | | | | | | | | | |
Collapse
|
37
|
Seebacher F, Brand MD, Else PL, Guderley H, Hulbert AJ, Moyes CD. Plasticity of oxidative metabolism in variable climates: molecular mechanisms. Physiol Biochem Zool 2010; 83:721-32. [PMID: 20586603 DOI: 10.1086/649964] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Converting food to chemical energy (ATP) that is usable by cells is a principal requirement to sustain life. The rate of ATP production has to be sufficient for housekeeping functions, such as protein synthesis and maintaining membrane potentials, as well as for growth and locomotion. Energy metabolism is temperature sensitive, and animals respond to environmental variability at different temporal levels, from within-individual to evolutionary timescales. Here we review principal molecular mechanisms that underlie control of oxidative ATP production in response to climate variability. Nuclear transcription factors and coactivators control expression of mitochondrial proteins and abundance of mitochondria. Fatty acid and phospholipid concentrations of membranes influence the activity of membrane-bound proteins as well as the passive leak of protons across the mitochondrial membrane. Passive proton leak as well as protein-mediated proton leak across the inner mitochondrial membrane determine the efficacy of ATP production but are also instrumental in endothermic heat production and as a defense against reactive oxygen species. Both transcriptional mechanisms and membrane composition interact with environmental temperature and diet, and this interaction between diet and temperature in determining mitochondrial function links the two major environmental variables that are affected by changing climates. The limits to metabolic plasticity could be set by the production of reactive oxygen species leading to cellular damage, limits to substrate availability in mitochondria, and a disproportionally large increase in proton leak over ATP production.
Collapse
Affiliation(s)
- Frank Seebacher
- School of Biological Sciences, University of Sydney, Sydney, New South Wales 2006, Australia.
| | | | | | | | | | | |
Collapse
|
38
|
Intraspecific variation in the mitochondrial genome among local populations of Medaka Oryzias latipes. Gene 2010; 457:13-24. [DOI: 10.1016/j.gene.2010.02.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Revised: 02/19/2010] [Accepted: 02/23/2010] [Indexed: 11/30/2022]
|
39
|
Orczewska JI, Hartleben G, O'Brien KM. The molecular basis of aerobic metabolic remodeling differs between oxidative muscle and liver of threespine sticklebacks in response to cold acclimation. Am J Physiol Regul Integr Comp Physiol 2010; 299:R352-64. [PMID: 20427717 DOI: 10.1152/ajpregu.00189.2010] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
We sought to determine the molecular basis of elevations in aerobic metabolic capacity in the oxidative muscle and liver of Gasterosteus aculeatus in response to cold acclimation. Fishes were cold- or warm-acclimated for 9 wk and harvested on days 1, 2, and 3 and weeks 1, 4, and 9 of cold acclimation at 8 degrees C, and on day 1 and week 9 of warm acclimation at 20 degrees C. Mitochondrial volume density was quantified using transmission electron microscopy and stereological techniques in warm- and cold-acclimated fishes harvested after 9 wk at 20 or 8 degrees C. Changes in aerobic metabolic capacity were assessed by measuring the maximal activity of citrate synthase (CS) and cytochrome-c oxidase (COX) in fishes harvested throughout the acclimation period. Transcript levels of the aerobic metabolic genes CS, COXIII, and COXIV, and known regulators of mitochondrial biogenesis, including peroxisome proliferator-activated receptor-gamma coactivators-1alpha and -1beta (PGC-1alpha and PGC-1beta), nuclear respiratory factor-1 (NRF-1), and mitochondrial transcription factor-A were measured in fishes harvested throughout the acclimation period using quantitative real-time PCR. The maximal activities of CS and COX increased in response to cold acclimation in both tissues, but mitochondrial volume density only increased in oxidative muscle (P < 0.05). The time course for changes in aerobic metabolic capacity differed between liver and muscle. The expression of CS increased within 1 wk of cold acclimation in liver and was correlated with an increase in mRNA levels of NRF-1 and PGC-1beta. Transcript levels of aerobic metabolic genes increased later in oxidative muscle, between weeks 4 and 9 of cold acclimation and were correlated with an increase in mRNA levels of NRF-1 and PGC-1alpha. These results show that aerobic metabolic remodeling differs between liver and muscle in response to cold acclimation and may be triggered by different stimuli.
Collapse
Affiliation(s)
- J I Orczewska
- Institute of Arctic Biology and Department of Biology and Wildlife, University of Alaska Fairbanks, Fairbanks, Alaska 99775, USA
| | | | | |
Collapse
|
40
|
Grim JM, Miles DRB, Crockett EL. Temperature acclimation alters oxidative capacities and composition of membrane lipids without influencing activities of enzymatic antioxidants or susceptibility to lipid peroxidation in fish muscle. ACTA ACUST UNITED AC 2010; 213:445-52. [PMID: 20086129 DOI: 10.1242/jeb.036939] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cold acclimation of ectotherms results typically in enhanced oxidative capacities and lipid remodeling, changes that should increase the risk of lipid peroxidation (LPO). It is unclear whether activities of antioxidant enzymes may respond in a manner to mitigate the increased potential for LPO. The current study addresses these questions using killifish (Fundulus heteroclitus macrolepidotus) and bluegill (Lepomis macrochirus) acclimated to 5 and 25 degrees C for 9 days and 2 months, respectively. Because the effects of temperature acclimation on pro- and antioxidant metabolism may be confounded by variable activity levels among temperature groups, one species (killifish) was also subjected to a 9-day exercise acclimation. Oxidative capacity of glycolytic (skeletal) muscle (indicated by the activity of cytochrome c oxidase) was elevated by 1.5-fold in killifish, following cold acclimation, but was unchanged in cardiac muscle and also unaffected by exercise acclimation in either tissue. No changes in citrate synthase activity were detected in either tissue following temperature acclimation. Enzymatic antioxidants (catalase and superoxide dismutase) of either muscle type were unaltered by temperature or exercise acclimation. Mitochondria from glycolytic muscle of cold-acclimated killifish were enriched in highly oxidizable polyunsaturated fatty acids (PUFA), including diacyl phospholipids (total carbons:total double bonds) 40:8 and 44:12. Increased oxidative capacity, coupled with elevated PUFA content in mitochondria from cold-acclimated animals did not, however, impact LPO susceptibility when measured with C11-BODIPY. The apparent mismatch between oxidative capacity and enzymatic antioxidants following temperature acclimation will be addressed in future studies.
Collapse
Affiliation(s)
- J M Grim
- Department of Biological Science, Irvine Hall, Ohio University, Athens, OH 45701, USA.
| | | | | |
Collapse
|
41
|
Doucet-Beaupré H, Dubé C, Breton S, Pörtner HO, Blier PU. Thermal sensitivity of metabolic enzymes in subarctic and temperate freshwater mussels (Bivalvia: Unionoida). J Therm Biol 2010. [DOI: 10.1016/j.jtherbio.2009.10.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
42
|
Al-Johany AM, Haffor AS. Effects of Cadmium Exposure on the Ultrastructural Pathology of Different Pulmonary Cells, Leukocyte Count, and Activity of Glutathione Peroxidase and Lactate Dehydrogenase in Relation to Free Radical Production inUromastyx aegyptius. Ultrastruct Pathol 2009; 33:39-47. [DOI: 10.1080/01913120902751312] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
43
|
Schwartz TS, Murray S, Seebacher F. Novel reptilian uncoupling proteins: molecular evolution and gene expression during cold acclimation. Proc Biol Sci 2008; 275:979-85. [PMID: 18230589 DOI: 10.1098/rspb.2007.1761] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Many animals upregulate metabolism in response to cold. Uncoupling proteins (UCPs) increase proton conductance across the mitochondrial membrane and can thereby alleviate damage from reactive oxygen species that may form as a result of metabolic upregulation. Our aim in this study was to determine whether reptiles (Crocodylus porosus) possess UCP genes. If so, we aimed to place reptilian UCP genes within a phylogenetic context and to determine whether the expression of UCP genes is increased during cold acclimation. We provide the first evidence that UCP2 and UCP3 genes are present in reptiles. Unlike in other vertebrates, UCP2 and UPC3 are expressed in liver and skeletal muscle of the crocodile, and both are upregulated in liver during cold acclimation but not in muscle. We identified two transcripts of UCP3, one of which produces a truncated protein similar to the UCP3S transcript in humans, and the resulting protein lacks the predicted nucleotide-binding regulatory domain. Our molecular phylogeny suggests that uncoupling protein 1 (UCP1) is ancestral and has been lost in archosaurs. In birds, UCP3 may have assumed a similar function as UCP1 in mammals, which has important ramifications for understanding endothermic heat production.
Collapse
Affiliation(s)
- Tonia S Schwartz
- School of Biological Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | | | | |
Collapse
|
44
|
Pörtner HO, Peck L, Somero G. Thermal limits and adaptation in marine Antarctic ectotherms: an integrative view. Philos Trans R Soc Lond B Biol Sci 2008; 362:2233-58. [PMID: 17553776 PMCID: PMC2443174 DOI: 10.1098/rstb.2006.1947] [Citation(s) in RCA: 191] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
A cause and effect understanding of thermal limitation and adaptation at various levels of biological organization is crucial in the elaboration of how the Antarctic climate has shaped the functional properties of extant Antarctic fauna. At the same time, this understanding requires an integrative view of how the various levels of biological organization may be intertwined. At all levels analysed, the functional specialization to permanently low temperatures implies reduced tolerance of high temperatures, as a trade-off. Maintenance of membrane fluidity, enzyme kinetic properties (Km and k(cat)) and protein structural flexibility in the cold supports metabolic flux and regulation as well as cellular functioning overall. Gene expression patterns and, even more so, loss of genetic information, especially for myoglobin (Mb) and haemoglobin (Hb) in notothenioid fishes, reflect the specialization of Antarctic organisms to a narrow range of low temperatures. The loss of Mb and Hb in icefish, together with enhanced lipid membrane densities (e.g. higher concentrations of mitochondria), becomes explicable by the exploitation of high oxygen solubility at low metabolic rates in the cold, where an enhanced fraction of oxygen supply occurs through diffusive oxygen flux. Conversely, limited oxygen supply to tissues upon warming is an early cause of functional limitation. Low standard metabolic rates may be linked to extreme stenothermy. The evolutionary forces causing low metabolic rates as a uniform character of life in Antarctic ectothermal animals may be linked to the requirement for high energetic efficiency as required to support higher organismic functioning in the cold. This requirement may result from partial compensation for the thermal limitation of growth, while other functions like hatching, development, reproduction and ageing are largely delayed. As a perspective, the integrative approach suggests that the patterns of oxygen- and capacity-limited thermal tolerance are linked, on one hand, with the capacity and design of molecules and membranes, and, on the other hand, with life-history consequences and lifestyles typically seen in the permanent cold. Future research needs to address the detailed aspects of these interrelationships.
Collapse
Affiliation(s)
- Hans O Pörtner
- Alfred-Wegener-Institut für Polar- und Meeresforschung, Physiologie mariner Tiere, 27515, Bremerhaven, Germany.
| | | | | |
Collapse
|
45
|
Stefanni S, Porteiro FM, Bettencourt R, Gavaia PJ, Santos RS. Molecular insights indicate that Pachycara thermophilum () and P. saldanhai () (Perciformes: Zoarcidae) from the Mid-Atlantic Ridge are synonymous species. Mol Phylogenet Evol 2007; 45:423-6. [PMID: 17448690 DOI: 10.1016/j.ympev.2007.02.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2007] [Revised: 01/31/2007] [Accepted: 02/01/2007] [Indexed: 11/27/2022]
Affiliation(s)
- S Stefanni
- IMAR, Department of Oceanography and Fisheries, University of the Azores - 9901-862, Horta, Azores, Portugal.
| | | | | | | | | |
Collapse
|
46
|
Al-Johany A, Haffor A. Effects of Cold Temperature on the Activities of Glutathione Peroxidase, Lactate Dehydrogenase and Free Radicals Production in Uromastyx aegyptius. JOURNAL OF MEDICAL SCIENCES 2007. [DOI: 10.3923/jms.2007.408.412] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
47
|
Zakhartsev M, Lucassen M, Kulishova L, Deigweiher K, Smirnova YA, Zinov'eva RD, Mugue N, Baklushinskaya I, Pörtner HO, Ozernyuk ND. Differential expression of duplicated LDH-A genes during temperature acclimation of weatherfish Misgurnus fossilis. FEBS J 2007; 274:1503-13. [PMID: 17480202 DOI: 10.1111/j.1742-4658.2007.05692.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Temperature acclimation in poikilotherms entails metabolic rearrangements provided by variations in enzyme properties. However, in most cases the underlying molecular mechanisms that result in structural changes in the enzymes are obscure. This study reports that acclimation to low (5 degrees C) and high (18 degrees C) temperatures leads to differential expression of alternative forms of the LDH-A gene in white skeletal muscle of weatherfish, Misgurnus fossilis. Two isoforms of LDH-A mRNA were isolated and characterized: a short isoform (= 1332 bp) and a long isoform ( = 1550 bp), which both have 5'-UTRs and ORFs of the same length (333 amino acid residues), but differ in the length of the 3'-UTR. In addition, these two mRNAs have 44 nucleotide point mismatches of an irregular pattern along the complete sequence, resulting in three amino acid mismatches (Gly214Val; Val304Ile and Asp312Glu) between protein products from the short and long mRNA forms, correspondingly LDH-A(alpha) and LDH-A(beta) subunits. It is expected that the beta-subunit is more aliphatic due to the properties of the mismatched amino acids and therefore sterically more restricted. According to molecular modelling of M. fossilis LDH-A, the Val304Ile mismatch is located in the subunit contact area of the tetramer, whereas the remaining two mismatches surround the contact area; this is expected to manifest in the kinetic and thermodynamic properties of the assembled tetramer. In warm-acclimated fish the relative expression between alpha and beta isoforms of the LDH-A mRNA is around 5 : 1, whereas in cold-acclimated fish expression of is reduced almost to zero. This indicates that at low temperature the pool of total tetrameric LDH-A is more homogeneous in terms of alpha/beta-subunit composition. The temperature acclimation pattern of proportional pooling of subunits with different kinetic and thermodynamic properties of the tetrameric enzyme may result in fine-tuning of the properties of skeletal LDH-A, which is in line with previously observed kinetic and thermodynamic differences between 'cold' and 'warm' LDH-A purified from weatherfish. Also, an irregular pattern of nucleotide mismatches indicates that these mRNAs are the products of two independently evolving genes, i.e. paralogues. Karyotype analysis has confirmed that the experimental population of M. fossilis is tetraploid (2n = 100), therefore gene duplication, possibly through tetraploidy, may contribute to the adaptability towards temperature variation.
Collapse
Affiliation(s)
- Maxim Zakhartsev
- Alfred Wegener Institute for Polar and Marine Research, Am Handelshaven 12, 27570 Bremerhaven, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
McClelland GB, Craig PM, Dhekney K, Dipardo S. Temperature- and exercise-induced gene expression and metabolic enzyme changes in skeletal muscle of adult zebrafish (Danio rerio). J Physiol 2006; 577:739-51. [PMID: 16990399 PMCID: PMC1890438 DOI: 10.1113/jphysiol.2006.119032] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Both exercise training and cold acclimatization induce muscle remodelling in vertebrates, producing a more aerobic phenotype. In ectothermic species exercise training and cold-acclimatization represent distinct stimuli. It is currently unclear if these stimuli act through a common mechanism or if different mechanisms lead to a common phenotype. The goal of this study was to survey responses that represent potential mechanisms responsible for contraction- and temperature-induced muscle remodelling, using an ectothermic vertebrate. Separate groups of adult zebrafish (Danio rerio) were either swim trained or cold acclimatized for 4 weeks. We found that the mitochondrial marker enzyme citrate synthase (CS) was increased by 1.5x in cold and by 1.3x with exercise (P<0.05). Cytochrome c oxidase (COx) was increased by 1.2x following exercise training (P<0.05) and 1.2x (P=0.07) with cold acclimatization. However, only cold acclimatization increased beta-hydroxyacyl-CoA dehydrogenase (HOAD) compared to exercise-trained (by 1.3x) and pyruvate kinase (PK) relative to control zebrafish. We assessed the whole-animal performance outcomes of these treatments. Maximum absolute sustained swimming speed (Ucrit) was increased in the exercise trained group but not in the cold acclimatized group. Real-time PCR analysis indicated that increases in CS are primarily transcriptionally regulated with exercise but not with cold treatments. Both treatments showed increases in nuclear respiratory factor (NRF)-1 mRNA which was increased by 2.3x in cold-acclimatized and 4x in exercise-trained zebrafish above controls. In contrast, peroxisome proliferator-activated receptor (PPAR)-alpha mRNA levels were decreased in both experimental groups while PPAR-beta1 declined in exercise training only. Moreover, PPAR-gamma coactivator (PGC)-1alpha mRNA was not changed by either treatment. In zebrafish, both temperature and exercise produce a more aerobic phenotype, but there are stimulus-dependent responses (i.e. HOAD and PK activities). While similar changes in NRF-1 mRNA suggest that common responses might underlie aerobic muscle remodelling there are distinct changes (i.e. CS and PPAR-beta1 mRNA) that contribute to specific temperature- and exercise-induced phenotypes.
Collapse
Affiliation(s)
- Grant B McClelland
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada.
| | | | | | | |
Collapse
|
49
|
Lyons CN, Mathieu-Costello O, Moyes CD. Regulation of skeletal muscle mitochondrial content during aging. J Gerontol A Biol Sci Med Sci 2006; 61:3-13. [PMID: 16456189 DOI: 10.1093/gerona/61.1.3] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Mitochondrial content of skeletal muscle varies among fiber types, and changes in complex ways during aging. We evaluated the regulatory origins of differences in mitochondrial content among muscles of varied fiber type in F344xBNF1 rats, and how these regulatory patterns are altered with aging. In adult (12 month) animals we found that units citrate synthase (CS)/g tissue, a marker for mitochondrial content, varied approximately 3-fold among 10 skeletal muscles. Stoichiometric relationships between CS and isocitrate dehydrogenase, aconitase, and cytochrome c oxidase were generally preserved across fiber types. Among the 10 muscles of adult rats, CS content correlated with nuclear content (R2= 0.36). Muscles differed widely in CS messenger RNA (mRNA)/DNA (an index of variation in transcriptional regulations) and units CS/CS mRNA (an index of variation in posttranscriptional regulations). All muscles of aged rats (35 months) showed an increase in mg DNA/g, suggestive of atrophy. Age-dependent declines in units CS/DNA were accompanied by reductions in CS mRNA/DNA and/or units CS/CS mRNA, depending on muscle fiber type. Thus, declines in units CS/DNA with age appeared to be due to transcriptional as well as translational variations. Differences in mitochondrial content among muscle fiber types and age groups may arise from variations in nuclear content and posttranscriptional processes, as well as transcriptional regulation.
Collapse
Affiliation(s)
- Carrie N Lyons
- Department of Biology, Queen's University, Kingston, Ontario, Canada, K7L 3N6
| | | | | |
Collapse
|
50
|
Mark FC, Hirse T, Pörtner HO. Thermal sensitivity of cellular energy budgets in some Antarctic fish hepatocytes. Polar Biol 2005. [DOI: 10.1007/s00300-005-0018-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|