1
|
Svensson K, Gennings C, Hagenäs L, Wolk A, Håkansson N, Wikström S, Bornehag CG. Maternal nutrition during mid-pregnancy and children's body composition at 7 years of age in the SELMA study. Br J Nutr 2023; 130:1982-1992. [PMID: 37232113 PMCID: PMC10632724 DOI: 10.1017/s0007114523000983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 03/24/2023] [Accepted: 04/12/2023] [Indexed: 05/27/2023]
Abstract
Optimal nutrition during pregnancy is vital for both maternal and child health. Our objective was to explore if prenatal diet is associated with children's height and body fat. Nutrient intake was assessed through a FFQ from 808 pregnant women and summarised to a nutrition index, 'My Nutrition Index' (MNI). The association with children's height and body fat (bioimpedance) was assessed with linear regression models. Secondary analysis was performed with BMI, trunk fat and skinfolds. Overall, higher MNI score was associated with greater height (β = 0·47; (95 % CI 0·00, 0·94), among both sexes. Among boys, higher MNI was associated with 0·15 higher BMI z-scores, 0·12 body fat z-scores, 0·11 trunk fat z-scores, and larger triceps, and triceps + subscapular skinfolds (β = 0·05 and β = 0·06; on the log2 scale) (P-value < 0·05). Among girls, the opposite associations were found with 0·12 lower trunk fat z-scores, and smaller subscapular and suprailiac skinfolds (β = -0·07 and β = -0·10; on the log2 scale) (P-value < 0·05). For skinfold measures, this would represent a ± 1·0 millimetres difference. Unexpectedly, a prenatal diet in line with recommended nutrient intake was associated with higher measures of body fat for boys and opposite to girls at a pre-pubertal stage of development.
Collapse
Affiliation(s)
| | - Chris Gennings
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Lars Hagenäs
- Department of Women’s and Children’s Health, Karolinska Institutet, Stockholm, Sweden
| | - Alicja Wolk
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Niclas Håkansson
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Sverre Wikström
- Department of Health Sciences, Karlstad University, Karlstad, Sweden
- Centre for Clinical Research and Education, County Council of Värmland, Värmland County, Sweden
| | - Carl-Gustaf Bornehag
- Department of Health Sciences, Karlstad University, Karlstad, Sweden
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, USA
| |
Collapse
|
2
|
Elías-López AL, Vázquez-Mena O, Sferruzzi-Perri AN. Mitochondrial dysfunction in the offspring of obese mothers and it's transmission through damaged oocyte mitochondria: Integration of mechanisms. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166802. [PMID: 37414229 DOI: 10.1016/j.bbadis.2023.166802] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/23/2023] [Accepted: 06/29/2023] [Indexed: 07/08/2023]
Abstract
In vivo and in vitro studies demonstrate that mitochondria in the oocyte, are susceptible to damage by suboptimal pre/pregnancy conditions, such as obesity. These suboptimal conditions have been shown to induce mitochondrial dysfunction (MD) in multiple tissues of the offspring, suggesting that mitochondria of oocytes that pass from mother to offspring, can carry information that can programme mitochondrial and metabolic dysfunction of the next generation. They also suggest that transmission of MD could increase the risk of obesity and other metabolic diseases in the population inter- and trans-generationally. In this review, we examined whether MD observed in offspring tissues of high energetic demand, is the result of the transmission of damaged mitochondria from the oocytes of obese mothers to the offspring. The contribution of genome-independent mechanisms (namely mitophagy) in this transmission were also explored. Finally, potential interventions aimed at improving oocyte/embryo health were investigated, to see if they may provide an opportunity to halter the generational effects of MD.
Collapse
Affiliation(s)
- A L Elías-López
- Dirección de Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición "Salvador Zubirán", México.
| | | | - A N Sferruzzi-Perri
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, UK.
| |
Collapse
|
3
|
Kelly A, Chan J, Powell TL, Cox LA, Jansson T, Rosario FJ. Maternal obesity alters the placental transcriptome in a fetal sex-dependent manner. Front Cell Dev Biol 2023; 11:1178533. [PMID: 37397247 PMCID: PMC10309565 DOI: 10.3389/fcell.2023.1178533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 05/16/2023] [Indexed: 07/04/2023] Open
Abstract
Infants born to obese mothers have an increased risk of developing obesity and metabolic diseases in childhood and adulthood. Although the molecular mechanisms linking maternal obesity during pregnancy to the development of metabolic diseases in offspring are poorly understood, evidence suggests that changes in the placental function may play a role. Using a mouse model of diet-induced obesity with fetal overgrowth, we performed RNA-seq analysis at embryonic day 18.5 to identify genes differentially expressed in the placentas of obese and normal-weight dams (controls). In male placentas, 511 genes were upregulated and 791 genes were downregulated in response to maternal obesity. In female placentas, 722 genes were downregulated and 474 genes were upregulated in response to maternal obesity. The top canonical pathway downregulated in maternal obesity in male placentas was oxidative phosphorylation. In contrast, sirtuin signaling, NF-kB signaling, phosphatidylinositol, and fatty acid degradation were upregulated. In female placentas, the top canonical pathways downregulated in maternal obesity were triacylglycerol biosynthesis, glycerophospholipid metabolism, and endocytosis. In contrast, bone morphogenetic protein, TNF, and MAPK signaling were upregulated in the female placentas of the obese group. In agreement with RNA-seq data, the expression of proteins associated with oxidative phosphorylation was downregulated in male but not female placentas of obese mice. Similarly, sex-specific changes in the protein expression of mitochondrial complexes were found in placentas collected from obese women delivering large-for-gestational-age (LGA) babies. In conclusion, maternal obesity with fetal overgrowth differentially regulates the placental transcriptome in male and female placentas, including genes involved in oxidative phosphorylation.
Collapse
Affiliation(s)
- Amy Kelly
- Department of Surgery, University of Arizona College of Medicine, Tucson, AZ, United States
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Jeannie Chan
- Center for Precision Medicine, Department of Internal Medicine, Section of Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Theresa L. Powell
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Section of Neonatology, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Laura A. Cox
- Center for Precision Medicine, Department of Internal Medicine, Section of Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Thomas Jansson
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Fredrick J. Rosario
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
4
|
Mićić B, Djordjevic A, Veličković N, Kovačević S, Martić T, Macut D, Vojnović Milutinović D. AMPK Activation as a Protective Mechanism to Restrain Oxidative Stress in the Insulin-Resistant State in Skeletal Muscle of Rat Model of PCOS Subjected to Postnatal Overfeeding. Biomedicines 2023; 11:1586. [PMID: 37371678 DOI: 10.3390/biomedicines11061586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/21/2023] [Accepted: 05/27/2023] [Indexed: 06/29/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) is a common endocrinopathy in women of reproductive age, often associated with obesity and insulin resistance. Childhood obesity is an important predisposing factor for the development of PCOS later in life. Being particularly interested in the interplay between prepubertal obesity and hyperandrogenemia, we investigated the effects of early postnatal overfeeding, accomplished by reducing litter size during the period of suckling, on energy sensing and insulin signaling pathways in the gastrocnemius muscle of a rat model of PCOS-induced by 5α-dihydrotestosterone (DHT). The combination of overfeeding and DHT treatment caused hyperinsulinemia and decreased systemic insulin sensitivity. Early postnatal overfeeding induced defects at critical nodes of the insulin signaling pathway in skeletal muscle, which was associated with reduced glucose uptake in the presence of hyperandrogenemia. In this setting, under a combination of overfeeding and DHT treatment, skeletal muscle switched to mitochondrial β-oxidation of fatty acids, resulting in oxidative stress and inflammation that stimulated AMP-activated protein kinase (AMPK) activity and its downstream targets involved in mitochondrial biogenesis and antioxidant protection. Overall, a combination of overfeeding and hyperandrogenemia resulted in a prooxidative and insulin-resistant state in skeletal muscle. This was accompanied by the activation of AMPK, which could represent a potential therapeutic target in insulin-resistant PCOS patients.
Collapse
Affiliation(s)
- Bojana Mićić
- Department of Biochemistry, Institute for Biological Research "Siniša Stanković"-National Institute of the Republic of Serbia, University of Belgrade, 142 Despot Stefan Blvd, 11060 Belgrade, Serbia
| | - Ana Djordjevic
- Department of Biochemistry, Institute for Biological Research "Siniša Stanković"-National Institute of the Republic of Serbia, University of Belgrade, 142 Despot Stefan Blvd, 11060 Belgrade, Serbia
| | - Nataša Veličković
- Department of Biochemistry, Institute for Biological Research "Siniša Stanković"-National Institute of the Republic of Serbia, University of Belgrade, 142 Despot Stefan Blvd, 11060 Belgrade, Serbia
| | - Sanja Kovačević
- Department of Biochemistry, Institute for Biological Research "Siniša Stanković"-National Institute of the Republic of Serbia, University of Belgrade, 142 Despot Stefan Blvd, 11060 Belgrade, Serbia
| | - Teodora Martić
- Department of Biochemistry, Institute for Biological Research "Siniša Stanković"-National Institute of the Republic of Serbia, University of Belgrade, 142 Despot Stefan Blvd, 11060 Belgrade, Serbia
| | - Djuro Macut
- Clinic for Endocrinology, Diabetes and Metabolic Diseases University Clinical Centre of Serbia, Faculty of Medicine, University of Belgrade, Doktora Subotića 13, 11000 Belgrade, Serbia
| | - Danijela Vojnović Milutinović
- Department of Biochemistry, Institute for Biological Research "Siniša Stanković"-National Institute of the Republic of Serbia, University of Belgrade, 142 Despot Stefan Blvd, 11060 Belgrade, Serbia
| |
Collapse
|
5
|
Developmental programming of mitochondrial substrate metabolism in skeletal muscle of adult sheep by cortisol exposure before birth. J Dev Orig Health Dis 2023; 14:77-87. [PMID: 35822505 DOI: 10.1017/s204017442200040x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Prenatal glucocorticoid overexposure causes adult metabolic dysfunction in several species but its effects on adult mitochondrial function remain largely unknown. Using respirometry, this study examined mitochondrial substrate metabolism of fetal and adult ovine biceps femoris (BF) and semitendinosus (ST) muscles after cortisol infusion before birth. Physiological increases in fetal cortisol concentrations pre-term induced muscle- and substrate-specific changes in mitochondrial oxidative phosphorylation capacity in adulthood. These changes were accompanied by muscle-specific alterations in protein content, fibre composition and abundance of the mitochondrial electron transfer system (ETS) complexes. In adult ST, respiration using palmitoyl-carnitine and malate was increased after fetal cortisol treatment but not with other substrate combinations. There were also significant increases in protein content and reductions in the abundance of all four ETS complexes, but not ATP synthase, in the ST of adults receiving cortisol prenatally. In adult BF, intrauterine cortisol treatment had no effect on protein content, respiratory rates, ETS complex abundances or ATP synthase. Activity of citrate synthase, a marker of mitochondrial content, was unaffected by intrauterine treatment in both adult muscles. In the ST but not BF, respiratory rates using all substrate combinations were significantly lower in the adults than fetuses, predominantly in the saline-infused controls. The ontogenic and cortisol-induced changes in mitochondrial function were, therefore, more pronounced in the ST than BF muscle. Collectively, the results show that fetal cortisol overexposure programmes mitochondrial substrate metabolism in specific adult muscles with potential consequences for adult metabolism and energetics.
Collapse
|
6
|
Programming by maternal obesity: a pathway to poor cardiometabolic health in the offspring. Proc Nutr Soc 2022; 81:227-242. [DOI: 10.1017/s0029665122001914] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
There is an ever increasing prevalence of maternal obesity worldwide such that in many populations over half of women enter pregnancy either overweight or obese. This review aims to summarise the impact of maternal obesity on offspring cardiometabolic outcomes. Maternal obesity is associated with increased risk of adverse maternal and pregnancy outcomes. However, beyond this exposure to maternal obesity during development also increases the risk of her offspring developing long-term adverse cardiometabolic outcomes throughout their adult life. Both human studies and those in experimental animal models have shown that maternal obesity can programme increased risk of offspring developing obesity and adipose tissue dysfunction; type 2 diabetes with peripheral insulin resistance and β-cell dysfunction; CVD with impaired cardiac structure and function and hypertension via impaired vascular and kidney function. As female offspring themselves are therefore likely to enter pregnancy with poor cardiometabolic health this can lead to an inter-generational cycle perpetuating the transmission of poor cardiometabolic health across generations. Maternal exercise interventions have the potential to mitigate some of the adverse effects of maternal obesity on offspring health, although further studies into long-term outcomes and how these translate to a clinical context are still required.
Collapse
|
7
|
Sandovici I, Fernandez-Twinn DS, Hufnagel A, Constância M, Ozanne SE. Sex differences in the intergenerational inheritance of metabolic traits. Nat Metab 2022; 4:507-523. [PMID: 35637347 DOI: 10.1038/s42255-022-00570-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 04/05/2022] [Indexed: 02/02/2023]
Abstract
Strong evidence suggests that early-life exposures to suboptimal environmental factors, including those in utero, influence our long-term metabolic health. This has been termed developmental programming. Mounting evidence suggests that the growth and metabolism of male and female fetuses differ. Therefore, sexual dimorphism in response to pre-conception or early-life exposures could contribute to known sex differences in susceptibility to poor metabolic health in adulthood. However, until recently, many studies, especially those in animal models, focused on a single sex, or, often in the case of studies performed during intrauterine development, did not report the sex of the animal at all. In this review, we (a) summarize the evidence that male and females respond differently to a suboptimal pre-conceptional or in utero environment, (b) explore the potential biological mechanisms that underlie these differences and (c) review the consequences of these differences for long-term metabolic health, including that of subsequent generations.
Collapse
Affiliation(s)
- Ionel Sandovici
- Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
- Department of Obstetrics and Gynaecology and National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge, UK
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Denise S Fernandez-Twinn
- Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Antonia Hufnagel
- Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Miguel Constância
- Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK.
- Department of Obstetrics and Gynaecology and National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge, UK.
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK.
| | - Susan E Ozanne
- Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK.
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK.
| |
Collapse
|
8
|
Grilo LF, Tocantins C, Diniz MS, Gomes RM, Oliveira PJ, Matafome P, Pereira SP. Metabolic Disease Programming: From Mitochondria to Epigenetics, Glucocorticoid Signalling and Beyond. Eur J Clin Invest 2021; 51:e13625. [PMID: 34060076 DOI: 10.1111/eci.13625] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/22/2021] [Accepted: 05/24/2021] [Indexed: 12/11/2022]
Abstract
Embryonic and foetal development are critical periods of development in which several environmental cues determine health and disease in adulthood. Maternal conditions and an unfavourable intrauterine environment impact foetal development and may programme the offspring for increased predisposition to metabolic diseases and other chronic pathologic conditions throughout adult life. Previously, non-communicable chronic diseases were only associated with genetics and lifestyle. Now the origins of non-communicable chronic diseases are associated with early-life adaptations that produce long-term dysfunction. Early-life environment sets the long-term health and disease risk and can span through multiple generations. Recent research in developmental programming aims at identifying the molecular mechanisms responsible for developmental programming outcomes that impact cellular physiology and trigger adulthood disease. The identification of new therapeutic targets can improve offspring's health management and prevent or overcome adverse consequences of foetal programming. This review summarizes recent biomedical discoveries in the Developmental Origins of Health and Disease (DOHaD) hypothesis and highlight possible developmental programming mechanisms, including prenatal structural defects, metabolic (mitochondrial dysfunction, oxidative stress, protein modification), epigenetic and glucocorticoid signalling-related mechanisms suggesting molecular clues for the causes and consequences of programming of increased susceptibility of offspring to metabolic disease after birth. Identifying mechanisms involved in DOHaD can contribute to early interventions in pregnancy or early childhood, to re-set the metabolic homeostasis and break the chain of subsequent events that could lead to the development of disease.
Collapse
Affiliation(s)
- Luís F Grilo
- CNC - Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal.,PhD Programme in Experimental Biology and Biomedicine (PDBEB), Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Coimbra, Portugal
| | - Carolina Tocantins
- CNC - Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Mariana S Diniz
- CNC - Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Rodrigo Mello Gomes
- Department of Physiological Sciences, Biological Sciences Institute, Federal University of Goiás, Goiânia, Brazil
| | - Paulo J Oliveira
- CNC - Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Paulo Matafome
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal.,Coimbra Institute for Clinical and Biomedical Research (iCBR) and Institute of Physiology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal.,Department of Complementary Sciences, Instituto Politécnico de Coimbra, Coimbra Health School (ESTeSC), Coimbra, Portugal
| | - Susana P Pereira
- CNC - Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal.,Laboratory of Metabolism and Exercise (LametEx), Research Centre in Physical Activity, Health and Leisure (CIAFEL), Laboratory for Integrative and Translational Research in Population Health (ITR), Faculty of Sport, University of Porto, Porto, Portugal
| |
Collapse
|
9
|
Furse S, Fernandez-Twinn DS, Chiarugi D, Koulman A, Ozanne SE. Lipid Metabolism Is Dysregulated before, during and after Pregnancy in a Mouse Model of Gestational Diabetes. Int J Mol Sci 2021; 22:7452. [PMID: 34299070 PMCID: PMC8306994 DOI: 10.3390/ijms22147452] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 07/06/2021] [Accepted: 07/07/2021] [Indexed: 12/29/2022] Open
Abstract
The aim of the current study was to test the hypothesis that maternal lipid metabolism was modulated during normal pregnancy and that these modulations are altered in gestational diabetes mellitus (GDM). We tested this hypothesis using an established mouse model of diet-induced obesity with pregnancy-associated loss of glucose tolerance and a novel lipid analysis tool, Lipid Traffic Analysis, that uses the temporal distribution of lipids to identify differences in the control of lipid metabolism through a time course. Our results suggest that the start of pregnancy is associated with several changes in lipid metabolism, including fewer variables associated with de novo lipogenesis and fewer PUFA-containing lipids in the circulation. Several of the changes in lipid metabolism in healthy pregnancies were less apparent or occurred later in dams who developed GDM. Some changes in maternal lipid metabolism in the obese-GDM group were so late as to only occur as the control dams' systems began to switch back towards the non-pregnant state. These results demonstrate that lipid metabolism is modulated in healthy pregnancy and the timing of these changes is altered in GDM pregnancies. These findings raise important questions about how lipid metabolism contributes to changes in metabolism during healthy pregnancies. Furthermore, as alterations in the lipidome are present before the loss of glucose tolerance, they could contribute to the development of GDM mechanistically.
Collapse
Affiliation(s)
- Samuel Furse
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome-MRC Institute of Metabolic Science, University of Cambridge, Addenbrooke’s Treatment Centre, Keith Day Road, Cambridge CB2 0QQ, UK; (S.F.); (D.S.F.-T.)
- Core Metabolomics and Lipidomics Laboratory, Wellcome-MRC Institute of Metabolic Science, University of Cambridge, Addenbrooke’s Treatment Centre, Keith Day Road, Cambridge CB2 0QQ, UK
- Biological Chemistry Group, Jodrell Laboratory, Royal Botanic Gardens Kew, London TW9 3AD, UK
| | - Denise S. Fernandez-Twinn
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome-MRC Institute of Metabolic Science, University of Cambridge, Addenbrooke’s Treatment Centre, Keith Day Road, Cambridge CB2 0QQ, UK; (S.F.); (D.S.F.-T.)
| | - Davide Chiarugi
- Bioinformatics and Biostatistics Core, Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Addenbrooke’s Treatment Centre, Keith Day Road, Cambridge CB2 0QQ, UK;
| | - Albert Koulman
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome-MRC Institute of Metabolic Science, University of Cambridge, Addenbrooke’s Treatment Centre, Keith Day Road, Cambridge CB2 0QQ, UK; (S.F.); (D.S.F.-T.)
- Core Metabolomics and Lipidomics Laboratory, Wellcome-MRC Institute of Metabolic Science, University of Cambridge, Addenbrooke’s Treatment Centre, Keith Day Road, Cambridge CB2 0QQ, UK
| | - Susan E. Ozanne
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome-MRC Institute of Metabolic Science, University of Cambridge, Addenbrooke’s Treatment Centre, Keith Day Road, Cambridge CB2 0QQ, UK; (S.F.); (D.S.F.-T.)
| |
Collapse
|
10
|
Raji SR, Nandini RJ, Ashok S, Anand CR, Vivek VP, Jayakumar K, Harikrishnan VS, Manjunatha S, Gopala S. Diminished substrate-mediated cardiac mitochondrial respiration and elevated autophagy in adult male offspring of gestational diabetic rats. IUBMB Life 2021; 73:676-689. [PMID: 33481330 DOI: 10.1002/iub.2449] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 12/27/2020] [Accepted: 12/28/2020] [Indexed: 12/15/2022]
Abstract
Heart diseases are common in the offspring of diabetic mother (ODM). Defects in mitochondrial metabolism and autophagy may, in part, be responsible for the adverse structural and functional alterations in the heart. The principal objective of this study was to investigate cardiac mitochondrial respiration and autophagy in male and female offspring of diabetic pregnancy at two different developmental stages of life, weaning and adult. Male and female offspring of rats with streptozotocin-induced gestational diabetes were used for the study and compared with offspring of control (non-diabetic) mother (OCM) rats. High-resolution respirometry was used to measure substrate-mediated respiration in mitochondria isolated from ventricular tissues of ODM and OCM. Expression of proteins associated with autophagy and oxidative stress was examined by western blot analysis. Mitochondrial complex I and complex II respiration was significantly reduced in adult male ODM while it was unaltered or less affected in weaning male, adult and weaning female ODM. Elevated autophagy was observed in adult male but not in adult female ODM. Expression of oxidative stress markers was observed to be similar in all the groups. Altered cardiac mitochondrial respiration and autophagy were observed in adult male ODM compared to OCM, while the male and female offspring at weaning stage were less affected. The results of the study show that maternal hyperglycemia affects mitochondrial respiration and autophagy in the ODM heart, which may potentially be responsible for the cardiovascular complications observed in adult life.
Collapse
Affiliation(s)
- Sasikala Rajendran Raji
- Department of Biochemistry, Sree Chitra Tirunal Institute for Medical Sciences & Technology, Thiruvananthapuram, India
| | - Ravikumar Jayakumari Nandini
- Department of Biochemistry, Sree Chitra Tirunal Institute for Medical Sciences & Technology, Thiruvananthapuram, India
| | - Sivasailam Ashok
- Department of Biochemistry, Sree Chitra Tirunal Institute for Medical Sciences & Technology, Thiruvananthapuram, India
| | - Chellappan Reghuvaran Anand
- Department of Biochemistry, Sree Chitra Tirunal Institute for Medical Sciences & Technology, Thiruvananthapuram, India
| | - Velayudhan Pillai Vivek
- Department of Cardiovascular and Thoracic Surgery, Sree Chitra Tirunal Institute for Medical Sciences & Technology, Thiruvananthapuram, India
| | - Karunakaran Jayakumar
- Department of Cardiovascular and Thoracic Surgery, Sree Chitra Tirunal Institute for Medical Sciences & Technology, Thiruvananthapuram, India
| | | | - Shankarappa Manjunatha
- Division of Endocrinology, Diabetes, Metabolism, Nutrition, Mayo Clinic, Rochester, Minnesota, USA
| | - Srinivas Gopala
- Department of Biochemistry, Sree Chitra Tirunal Institute for Medical Sciences & Technology, Thiruvananthapuram, India
| |
Collapse
|
11
|
A maternal high-fat/low-fiber diet impairs glucose tolerance and induces the formation of glycolytic muscle fibers in neonatal offspring. Eur J Nutr 2021; 60:2709-2718. [PMID: 33386892 DOI: 10.1007/s00394-020-02461-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 12/07/2020] [Indexed: 12/19/2022]
Abstract
PURPOSE In our previous study, the maternal high-fat/low-fiber (HF-LF) diet was suggested to induce metabolic disorders and placental dysfunction of the dam, but the effects of this diet on glucose metabolism of neonatal offspring remain largely unknown. Here, a neonatal pig model was used to evaluate the effects of maternal HF-LF diet during pregnancy on glucose tolerance, transition of skeletal muscle fiber types, and mitochondrial function in offspring. METHODS A total of 66 pregnant gilts (Guangdong Small-ear Spotted pig) at day 60 of gestation were randomly divided into two groups: control group (CON group; 2.86% crude fat, 9.37% crude fiber), and high-fat/low-fiber diet group (HF-LF group; 5.99% crude fat, 4.13% crude fiber). RESULTS The maternal HF-LF diet was shown to impair the glucose tolerance of neonatal offspring, downregulate the protein level of slow-twitch fiber myosin heavy chain I (MyHC I), and upregulate the protein levels of fast-twitch fiber myosin heavy chain IIb (MyHC IIb) and IIx (MyHC IIx) in soleus muscle. Additionally, compared with the CON group, the HF-LF offspring showed inhibition of insulin signaling pathway and decrease in mitochondrial function in liver and soleus muscle. CONCLUSION Maternal HF-LF diet during pregnancy impairs glucose tolerance, induces the formation of glycolytic muscle fibers, and decreases the hepatic and muscular mitochondrial function in neonatal piglets.
Collapse
|
12
|
Louwagie EJ, Larsen TD, Wachal AL, Gandy TCT, Eclov JA, Rideout TC, Kern KA, Cain JT, Anderson RH, Mdaki KS, Baack ML. Age and Sex Influence Mitochondria and Cardiac Health in Offspring Exposed to Maternal Glucolipotoxicity. iScience 2020; 23:101746. [PMID: 33225249 PMCID: PMC7666357 DOI: 10.1016/j.isci.2020.101746] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/29/2020] [Accepted: 10/24/2020] [Indexed: 02/07/2023] Open
Abstract
Infants of diabetic mothers are at risk of cardiomyopathy at birth and myocardial infarction in adulthood, but prevention is hindered because mechanisms remain unknown. We previously showed that maternal glucolipotoxicity increases the risk of cardiomyopathy and mortality in newborn rats through fuel-mediated mitochondrial dysfunction. Here we demonstrate ongoing cardiometabolic consequences by cross-fostering and following echocardiography, cardiomyocyte bioenergetics, mitochondria-mediated turnover, and cell death following metabolic stress in aged adults. Like humans, cardiac function improves by weaning with no apparent differences in early adulthood but declines again in aged diabetes-exposed offspring. This is preceded by impaired oxidative phosphorylation, exaggerated age-related increase in mitochondrial number, and higher oxygen consumption. Prenatally exposed male cardiomyocytes have more mitolysosomes indicating high baseline turnover; when exposed to metabolic stress, mitophagy cannot increase and cardiomyocytes have faster mitochondrial membrane potential loss and mitochondria-mediated cell death. Details highlight age- and sex-specific roles of mitochondria in developmentally programmed adult heart disease. Fetal exposures disrupt mitochondria, bioenergetics, & cardiac function at birth First, bioenergetics & function improve until greater reliance on OXPHOS with age At 6MO, poor respiration incites biogenesis & mitophagy, and then functional decline Fetal exposures cause faster mitochondria-mediated cell death in aged adult hearts
Collapse
Affiliation(s)
- Eli J Louwagie
- University of South Dakota Sanford School of Medicine, Sioux Falls, SD 57105, USA.,Environmental Influences on Health and Disease Group, Sanford Research, Sioux Falls, SD 57104, USA
| | - Tricia D Larsen
- Environmental Influences on Health and Disease Group, Sanford Research, Sioux Falls, SD 57104, USA
| | - Angela L Wachal
- Environmental Influences on Health and Disease Group, Sanford Research, Sioux Falls, SD 57104, USA
| | - Tyler C T Gandy
- Environmental Influences on Health and Disease Group, Sanford Research, Sioux Falls, SD 57104, USA
| | - Julie A Eclov
- Environmental Influences on Health and Disease Group, Sanford Research, Sioux Falls, SD 57104, USA
| | - Todd C Rideout
- Department of Exercise and Nutrition Sciences, State University of New York, Buffalo, NY 14214, USA
| | - Katherine A Kern
- Department of Exercise and Nutrition Sciences, State University of New York, Buffalo, NY 14214, USA
| | - Jacob T Cain
- Environmental Influences on Health and Disease Group, Sanford Research, Sioux Falls, SD 57104, USA
| | - Ruthellen H Anderson
- University of South Dakota Sanford School of Medicine, Sioux Falls, SD 57105, USA.,Environmental Influences on Health and Disease Group, Sanford Research, Sioux Falls, SD 57104, USA
| | - Kennedy S Mdaki
- Environmental Influences on Health and Disease Group, Sanford Research, Sioux Falls, SD 57104, USA
| | - Michelle L Baack
- University of South Dakota Sanford School of Medicine, Sioux Falls, SD 57105, USA.,Environmental Influences on Health and Disease Group, Sanford Research, Sioux Falls, SD 57104, USA.,Boekelheide Neonatal Intensive Care Unit, Sanford Children's Hospital, Sioux Falls, SD 57117, USA
| |
Collapse
|
13
|
Sertie R, Kang M, Antipenko JP, Liu X, Maianu L, Habegger K, Garvey WT. In utero nutritional stress as a cause of obesity: Altered relationship between body fat, leptin levels and caloric intake in offspring into adulthood. Life Sci 2020; 254:117764. [PMID: 32407841 PMCID: PMC8513136 DOI: 10.1016/j.lfs.2020.117764] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/05/2020] [Accepted: 05/05/2020] [Indexed: 12/13/2022]
Abstract
AIMS Emerging evidence suggests that during gestation the in utero environment programs metabolism and can increase risk of obesity in adult offspring. Our aim was to study how alterations in maternal diets during gestation might alter body weight evolution, circulating leptin levels and caloric intake in offspring, leading to changes in body composition. MATERIALS AND METHODS We fed gestating rats either a control diet (CD), high fat diet (HFD) or an isocaloric low protein diet (LPD), and examined the repercussions in offspring fed similar diets post-weaning on birth weight, body weight evolution, body composition, insulin sensitivity, glucose tolerance and in the relationship between plasma leptin concentration and caloric intake in offspring during growth and development. KEY FINDS Offspring from dams fed LPD maintained reduced body weight with greater % lean mass and consumed fewer calories despite having leptin levels similar to controls. On the other hand, offspring from dams fed a HFD were insulin resistant and maintained increased body weight and % fat mass, while consuming more calories than controls despite elevated leptin concentrations. Therefore the uterine environment, modulated primarily through maternal nutrition, modified the relationship between circulating leptin levels, body fat, and caloric intake in the offspring, and dams fed a HFD produced offspring with excess adiposity, insulin resistance, and leptin resistance into adulthood. SIGNIFICANCE Our data indicates that in utero environmental factors affected by maternal diet program alterations in the set point around which leptin regulates body weight in offspring into adulthood contributing to obesity.
Collapse
Affiliation(s)
- Rogerio Sertie
- Department of Nutrition Sciences, University of Alabama at Birmingham, United States of America
| | - Minsung Kang
- Department of Nutrition Sciences, University of Alabama at Birmingham, United States of America.
| | - Jessica P Antipenko
- Department of Medicine, University of Alabama at Birmingham, United States of America
| | - Xiaobing Liu
- Department of Nutrition Sciences, University of Alabama at Birmingham, United States of America
| | - Lidia Maianu
- Department of Nutrition Sciences, University of Alabama at Birmingham, United States of America
| | - Kirk Habegger
- Department of Medicine, University of Alabama at Birmingham, United States of America
| | - W Timothy Garvey
- Department of Nutrition Sciences, University of Alabama at Birmingham, United States of America; Birmingham Veterans Affairs Medical Center, Birmingham, AL, United States of America
| |
Collapse
|
14
|
Prats-Puig A, García-Retortillo S, Puig-Parnau M, Vasileva F, Font-Lladó R, Xargay-Torrent S, Carreras-Badosa G, Mas-Parés B, Bassols J, López-Bermejo A. DNA Methylation Reorganization of Skeletal Muscle-Specific Genes in Response to Gestational Obesity. Front Physiol 2020; 11:938. [PMID: 32848869 PMCID: PMC7412435 DOI: 10.3389/fphys.2020.00938] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 07/13/2020] [Indexed: 12/25/2022] Open
Abstract
The goals were to investigate in umbilical cord tissue if gestational obesity: (1) was associated with changes in DNA methylation of skeletal muscle-specific genes; (2) could modulate the co-methylation interactions among these genes. Additionally, we assessed the associations between DNA methylation levels and infant's variables at birth and at age 6. DNA methylation was measured in sixteen pregnant women [8-gestational obesity group; 8-control group] in umbilical cord using the Infinium Methylation EPIC Bead Chip microarray. Differentially methylated CpGs were identified with Beta Regression Models [false discovery rate (FDR) < 0.05 and an Odds Ratio > 1.5 or < 0.67]. DNA methylation interactions between CpGs of skeletal muscle-specific genes were studied using data from Pearson correlation matrices. In order to quantify the interactions within each network, the number of links was computed. This identification analysis reported 38 differential methylated CpGs within skeletal muscle-specific genes (comprising 4 categories: contractibility, structure, myokines, and myogenesis). Compared to control group, gestational obesity (1) promotes hypermethylation in highly methylated genes and hypomethylation in low methylated genes; (2) CpGs in regions close to transcription sites and with high CpG density are hypomethylated while regions distant to transcriptions sites and with low CpG density are hypermethylated; (3) diminishes the number of total interactions in the co-methylation network. Interestingly, the associations between infant's fasting glucose at age 6 and MYL6, MYH11, TNNT3, TPM2, CXCL2, and NCAM1 were still relevant after correcting for multiple testing. In conclusion, our study showed a complex interaction between gestational obesity and the epigenetic status of muscle-specific genes in umbilical cord tissue. Additionally, gestational obesity may alter the functional co-methylation connectivity of CpG within skeletal muscle-specific genes interactions, our results revealing an extensive reorganization of methylation in response to maternal overweight. Finally, changes in methylation levels of skeletal muscle specific genes may have persistent effects on the offspring of mothers with gestational obesity.
Collapse
Affiliation(s)
- Anna Prats-Puig
- University School of Health and Sport (EUSES), University of Girona, Girona, Spain
| | - Sergi García-Retortillo
- University School of Health and Sport (EUSES), University of Girona, Girona, Spain
- Complex Systems in Sport, National Institute of Physical Education and Sport of Catalonia (INEFC), Universitat de Barcelona (UB), Barcelona, Spain
| | - Miquel Puig-Parnau
- University School of Health and Sport (EUSES), University of Girona, Girona, Spain
| | - Fidanka Vasileva
- Faculty of Physical Education, Sport and Health, Ss. Cyril and Methodius University, Skopje, North Macedonia
| | - Raquel Font-Lladó
- University School of Health and Sport (EUSES), University of Girona, Girona, Spain
| | - Sílvia Xargay-Torrent
- Pediatric Endocrinology, Girona Institute for Biomedical Research, Dr. Josep Trueta Hospital, Girona, Spain
| | - Gemma Carreras-Badosa
- Pediatric Endocrinology, Girona Institute for Biomedical Research, Dr. Josep Trueta Hospital, Girona, Spain
| | - Berta Mas-Parés
- Maternal & Fetal Metabolic Research, Girona Institute for Biomedical Research, Salt, Spain
| | - Judit Bassols
- Maternal & Fetal Metabolic Research, Girona Institute for Biomedical Research, Salt, Spain
| | - Abel López-Bermejo
- Pediatric Endocrinology, Girona Institute for Biomedical Research, Dr. Josep Trueta Hospital, Girona, Spain
| |
Collapse
|
15
|
Campodonico-Burnett W, Hetrick B, Wesolowski SR, Schenk S, Takahashi DL, Dean TA, Sullivan EL, Kievit P, Gannon M, Aagaard K, Friedman JE, McCurdy CE. Maternal Obesity and Western-Style Diet Impair Fetal and Juvenile Offspring Skeletal Muscle Insulin-Stimulated Glucose Transport in Nonhuman Primates. Diabetes 2020; 69:1389-1400. [PMID: 32354857 PMCID: PMC7306120 DOI: 10.2337/db19-1218] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 04/28/2020] [Indexed: 12/12/2022]
Abstract
Infants born to mothers with obesity have a greater risk for childhood obesity and metabolic diseases; however, the underlying biological mechanisms remain poorly understood. We used a Japanese macaque model to investigate whether maternal obesity combined with a Western-style diet (WSD) impairs offspring muscle insulin action. Adult females were fed a control or WSD prior to and during pregnancy through lactation, and offspring subsequently weaned to a control or WSD. Muscle glucose uptake and signaling were measured ex vivo in fetal (n = 5-8/group) and juvenile (n = 8/group) offspring. In vivo signaling was evaluated after an insulin bolus just prior to weaning (n = 4-5/group). Maternal WSD reduced insulin-stimulated glucose uptake and impaired insulin signaling at the level of Akt phosphorylation in fetal muscle. In juvenile offspring, insulin-stimulated glucose uptake was similarly reduced by both maternal and postweaning WSD and corresponded to modest reductions in insulin-stimulated Akt phosphorylation relative to controls. We conclude that maternal WSD leads to a persistent decrease in offspring muscle insulin-stimulated glucose uptake even in the absence of increased offspring adiposity or markers of systemic insulin resistance. Switching offspring to a healthy diet did not reverse the effects of maternal WSD on muscle insulin action, suggesting earlier interventions may be warranted.
Collapse
Affiliation(s)
- William Campodonico-Burnett
- Department of Human Physiology, University of Oregon, Eugene, OR
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO
| | - Byron Hetrick
- Department of Human Physiology, University of Oregon, Eugene, OR
| | | | - Simon Schenk
- Department of Orthopaedic Surgery, University of California, San Diego, La Jolla, CA
- Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, CA
| | - Diana L Takahashi
- Division of Cardiometabolic Health, Oregon National Primate Research Center, Oregon Health Science University, Beaverton, OR
| | - Tyler A Dean
- Division of Cardiometabolic Health, Oregon National Primate Research Center, Oregon Health Science University, Beaverton, OR
| | - Elinor L Sullivan
- Department of Human Physiology, University of Oregon, Eugene, OR
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health Science University, Beaverton, OR
- Department of Psychiatry, Oregon Health Science University, Portland, OR
- Department of Behavioral Sciences, Oregon Health Science University, Portland, OR
| | - Paul Kievit
- Division of Cardiometabolic Health, Oregon National Primate Research Center, Oregon Health Science University, Beaverton, OR
| | - Maureen Gannon
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Kjersti Aagaard
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX
| | - Jacob E Friedman
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Carrie E McCurdy
- Department of Human Physiology, University of Oregon, Eugene, OR
| |
Collapse
|
16
|
Puttabyatappa M, Sargis RM, Padmanabhan V. Developmental programming of insulin resistance: are androgens the culprits? J Endocrinol 2020; 245:R23-R48. [PMID: 32240982 PMCID: PMC7219571 DOI: 10.1530/joe-20-0044] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 04/02/2020] [Indexed: 02/06/2023]
Abstract
Insulin resistance is a common feature of many metabolic disorders. The dramatic rise in the incidence of insulin resistance over the past decade has enhanced focus on its developmental origins. Since various developmental insults ranging from maternal disease, stress, over/undernutrition, and exposure to environmental chemicals can all program the development of insulin resistance, common mechanisms may be involved. This review discusses the possibility that increases in maternal androgens associated with these various insults are key mediators in programming insulin resistance. Additionally, the intermediaries through which androgens misprogram tissue insulin sensitivity, such as changes in inflammatory, oxidative, and lipotoxic states, epigenetic, gut microbiome and insulin, as well as data gaps to be filled are also discussed.
Collapse
Affiliation(s)
| | - Robert M. Sargis
- Department of Medicine, University of Illinois at Chicago, Chicago, IL
| | | |
Collapse
|
17
|
Gyllenhammer LE, Entringer S, Buss C, Wadhwa PD. Developmental programming of mitochondrial biology: a conceptual framework and review. Proc Biol Sci 2020; 287:20192713. [PMID: 32345161 PMCID: PMC7282904 DOI: 10.1098/rspb.2019.2713] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Research on mechanisms underlying the phenomenon of developmental programming of health and disease has focused primarily on processes that are specific to cell types, organs and phenotypes of interest. However, the observation that exposure to suboptimal or adverse developmental conditions concomitantly influences a broad range of phenotypes suggests that these exposures may additionally exert effects through cellular mechanisms that are common, or shared, across these different cell and tissue types. It is in this context that we focus on cellular bioenergetics and propose that mitochondria, bioenergetic and signalling organelles, may represent a key cellular target underlying developmental programming. In this review, we discuss empirical findings in animals and humans that suggest that key structural and functional features of mitochondrial biology exhibit developmental plasticity, and are influenced by the same physiological pathways that are implicated in susceptibility for complex, common age-related disorders, and that these targets of mitochondrial developmental programming exhibit long-term temporal stability. We conclude by articulating current knowledge gaps and propose future research directions to bridge these gaps.
Collapse
Affiliation(s)
- Lauren E Gyllenhammer
- Development, Health and Disease Research Program, School of Medicine, Irvine, CA, USA.,Department of Pediatrics, School of Medicine, Irvine, CA, USA
| | - Sonja Entringer
- Development, Health and Disease Research Program, School of Medicine, Irvine, CA, USA.,Department of Pediatrics, School of Medicine, Irvine, CA, USA.,Charité-Universitätsmedizin Berlin, Institute of Medical Psychology, Berlin, Germany
| | - Claudia Buss
- Development, Health and Disease Research Program, School of Medicine, Irvine, CA, USA.,Department of Pediatrics, School of Medicine, Irvine, CA, USA.,Charité-Universitätsmedizin Berlin, Institute of Medical Psychology, Berlin, Germany
| | - Pathik D Wadhwa
- Development, Health and Disease Research Program, School of Medicine, Irvine, CA, USA.,Department of Pediatrics, School of Medicine, Irvine, CA, USA.,Department of Psychiatry and Human Behaviour, School of Medicine, Irvine, CA, USA.,Department of Obstetrics and Gynecology, School of Medicine, Irvine, CA, USA.,Department of Epidemiology, University of California, School of Medicine, Irvine, CA, USA
| |
Collapse
|
18
|
Rezuş E, Burlui A, Cardoneanu A, Rezuş C, Codreanu C, Pârvu M, Rusu Zota G, Tamba BI. Inactivity and Skeletal Muscle Metabolism: A Vicious Cycle in Old Age. Int J Mol Sci 2020; 21:592. [PMID: 31963330 PMCID: PMC7014434 DOI: 10.3390/ijms21020592] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 12/19/2019] [Accepted: 01/07/2020] [Indexed: 12/12/2022] Open
Abstract
Aging is an inevitable and gradually progressive process affecting all organs and systems. The musculoskeletal system makes no exception, elderly exhibit an increased risk of sarcopenia (low muscle mass),dynapenia (declining muscle strength), and subsequent disability. Whereas in recent years the subject of skeletal muscle metabolic decline in the elderly has been gathering interest amongst researchers, as well as medical professionals, there are many challenges yet to be solved in order to counteract the effects of aging on muscle function efficiently. Noteworthy, it has been shown that aging individuals exhibit a decline in skeletal muscle metabolism, a phenomenon which may be linked to a number of predisposing (risk) factors such as telomere attrition, epigenetic changes, mitochondrial dysfunction, sedentary behavior (leading to body composition alterations), age-related low-grade systemic inflammation (inflammaging), hormonal imbalance, as well as a hypoproteic diet (unable to counterbalance the repercussions of the age-related increase in skeletal muscle catabolism). The present review aims to discuss the relationship between old age and muscle wasting in an effort to highlight the modifications in skeletal muscle metabolism associated with aging and physical activity.
Collapse
Affiliation(s)
- Elena Rezuş
- Department of Rheumatology and Physiotherapy, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iaşi, Romania; (E.R.); (A.C.)
| | - Alexandra Burlui
- Department of Rheumatology and Physiotherapy, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iaşi, Romania; (E.R.); (A.C.)
| | - Anca Cardoneanu
- Department of Rheumatology and Physiotherapy, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iaşi, Romania; (E.R.); (A.C.)
| | - Ciprian Rezuş
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iaşi, Romania;
| | - Cătălin Codreanu
- Center for Rheumatic Diseases, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| | - Mirela Pârvu
- Department of Rheumatology and Physiotherapy,“George Emil Palade” University of Medicine, Pharmacy, Science and Technology, 540139 Târgu Mureş, Romania;
| | - Gabriela Rusu Zota
- Department of Pharmacology, Clinical Pharmacology and Algesiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iaşi, Romania;
| | - Bogdan Ionel Tamba
- Advanced Center for Research and Development in Experimental Medicine (CEMEX), “Grigore T. Popa” University of Medicine and Pharmacy, 700454 Iaşi, Romania;
| |
Collapse
|
19
|
Furse S, Snowden SG, Olga L, Prentice P, Ong KK, Hughes IA, Acerini CL, Dunger DB, Koulman A. Evidence from 3-month-old infants shows that a combination of postnatal feeding and exposures in utero shape lipid metabolism. Sci Rep 2019; 9:14321. [PMID: 31586083 PMCID: PMC6778076 DOI: 10.1038/s41598-019-50693-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 09/17/2019] [Indexed: 12/13/2022] Open
Abstract
We tested the hypothesis that both postnatal feeding and conditions in utero affect lipid metabolism in infants. Infants who experienced restrictive growth conditions in utero and others exposed to maternal hyperglycaemia were compared to a control group with respect to feeding mode. Dried blood spots were collected from a pilot subset of infant participants of the Cambridge Baby Growth Study at 3mo. Groups: (a) a normal gestation (control, n = 40), (b) small for gestational age (SGA, n = 34) and (c) whose mothers developed hyperglycaemia (n = 59). These groups were further stratified by feeding mode; breastfed, formula-fed or received a mixed intake. Their phospholipid, glyceride and sterol fractions were profiled using direct infusion mass spectrometry. Statistical tests were used to identify molecular species that indicated differences in lipid metabolism. The abundance of several phospholipids identified by multivariate analysis, PC(34:1), PC(34:2) and PC-O(34:1), was 30-100% higher across all experimental groups. SM(39:1) was around half as abundant in in utero groups among breastfed infants only. The evidence from this pilot study shows that phospholipid metabolism is modulated by both conditions in utero and postnatal feeding in a cohort of 133 Caucasian infants, three months post partum.
Collapse
Affiliation(s)
- Samuel Furse
- Core Metabolomics and Lipidomics Laboratory, Metabolic Research Laboratories, Institute of Metabolic Science, University of Cambridge, Level 4 Pathology, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
| | - Stuart G Snowden
- Core Metabolomics and Lipidomics Laboratory, Metabolic Research Laboratories, Institute of Metabolic Science, University of Cambridge, Level 4 Pathology, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
| | - Laurentya Olga
- Department of Paediatrics, University of Cambridge, Box 116, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
| | - Philippa Prentice
- Department of Paediatrics, University of Cambridge, Box 116, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
| | - Ken K Ong
- Department of Paediatrics, University of Cambridge, Box 116, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
- MRC Epidemiology Unit, Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
| | - Ieuan A Hughes
- Department of Paediatrics, University of Cambridge, Box 116, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
| | - Carlo L Acerini
- Department of Paediatrics, University of Cambridge, Box 116, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
| | - David B Dunger
- Department of Paediatrics, University of Cambridge, Box 116, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
| | - Albert Koulman
- Core Metabolomics and Lipidomics Laboratory, Metabolic Research Laboratories, Institute of Metabolic Science, University of Cambridge, Level 4 Pathology, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK.
- MRC Epidemiology Unit, Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK.
| |
Collapse
|
20
|
George G, Draycott SAV, Muir R, Clifford B, Elmes MJ, Langley-Evans SC. Exposure to maternal obesity during suckling outweighs in utero exposure in programming for post-weaning adiposity and insulin resistance in rats. Sci Rep 2019; 9:10134. [PMID: 31300679 PMCID: PMC6626015 DOI: 10.1038/s41598-019-46518-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 06/27/2019] [Indexed: 12/11/2022] Open
Abstract
Exposure to maternal obesity during early development programmes adverse metabolic health in rodent offspring. We assessed the relative contributions of obesity during pregnancy and suckling on metabolic health post-weaning. Wistar rat offspring exposed to control (C) or cafeteria diet (O) during pregnancy were cross-fostered to dams on the same (CC, OO) or alternate diet during suckling (CO, OC) and weaned onto standard chow. Measures of offspring metabolic health included growth, adipose tissue mass, and 12-week glucose and insulin concentrations during an intraperitoneal glucose tolerance test (ipGTT). Exposure to maternal obesity during lactation was a driver for reduced offspring weight post-weaning, higher fasting blood glucose concentrations and greater gonadal adiposity (in females). Males displayed insulin resistance, through slower glucose clearance despite normal circulating insulin and lower mRNA expression of PIK3R1 and PIK3CB in gonadal fat and liver respectively. In contrast, maternal obesity during pregnancy up-regulated the insulin signalling genes IRS2, PIK3CB and SREBP1-c in skeletal muscle and perirenal fat, favouring insulin sensitivity. In conclusion exposure to maternal obesity during lactation programmes offspring adiposity and insulin resistance, overriding exposure to an optimal nutritional environment in utero, which cannot be alleviated by a nutritionally balanced post-weaning diet.
Collapse
Affiliation(s)
- Grace George
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, LE12 5RD, UK
| | - Sally A V Draycott
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, LE12 5RD, UK
| | - Ronan Muir
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, LE12 5RD, UK
| | - Bethan Clifford
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, LE12 5RD, UK
| | - Matthew J Elmes
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, LE12 5RD, UK.
| | - Simon C Langley-Evans
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, LE12 5RD, UK
| |
Collapse
|
21
|
Furse S, Koulman A. The Lipid and Glyceride Profiles of Infant Formula Differ by Manufacturer, Region and Date Sold. Nutrients 2019; 11:E1122. [PMID: 31137537 PMCID: PMC6567151 DOI: 10.3390/nu11051122] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 05/13/2019] [Accepted: 05/16/2019] [Indexed: 12/26/2022] Open
Abstract
We tested the hypothesis that the lipid composition of infant formula is consistent between manufacturers, countries and target demographic. We developed techniques to profile the lipid and glyceride fraction of milk and formula in a high throughput fashion. Formula from principal brands in the UK (2017-2019; bovine-, caprine-, soya-based), the Netherlands (2018; bovine-based) and South Africa (2018; bovine-based) were profiled along with fresh British animal and soya milk and skimmed milk powder. We found that the lipid and glyceride composition of infant formula differed by region, manufacturer and date of manufacture. The formulations within some brands, aimed at different target age ranges, differed considerably where others were similar across the range. Soya lecithin and milk lipids had characteristic phospholipid profiles. Particular sources of fat, such as coconut oil, were also easy to distinguish. Docosahexaenoic acid is typically found in triglycerides rather than phospholipids in formula. The variety by region, manufacturer, date of manufacture and sub-type for target demographics lead to an array of lipid profiles in formula. This makes it impossible to predict its molecular profile. Without detailed profile of the formula fed to infants, it is difficult to characterise the relationship between infant nutrition and their growth and development.
Collapse
Affiliation(s)
- Samuel Furse
- Core Metabolomics and Lipidomics Laboratory, Wellcome Trust-MRL Institute of Metabolic Science, University of Cambridge, Level 4 Addenbrooke's Treatment Centre, Keith Day Road, Cambridge CB2 0QQ, UK.
| | - Albert Koulman
- Core Metabolomics and Lipidomics Laboratory, Wellcome Trust-MRL Institute of Metabolic Science, University of Cambridge, Level 4 Addenbrooke's Treatment Centre, Keith Day Road, Cambridge CB2 0QQ, UK.
| |
Collapse
|
22
|
Maternal Roux-en-Y gastric bypass impairs insulin action and endocrine pancreatic function in male F1 offspring. Eur J Nutr 2019; 59:1067-1079. [DOI: 10.1007/s00394-019-01968-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 04/10/2019] [Indexed: 12/26/2022]
|
23
|
Abstract
The prevalence of age-associated disease is increasing at a striking rate globally and there is evidence to suggest that the ageing process may actually begin before birth. It has been well-established that the status of both the maternal and early postnatal environments into which an individual is exposed can have huge implications for the risk of developing age-associated disease, including cardiovascular disease (CVD), type-2 diabetes (T2D) and obesity in later life. Therefore, the dissection of underlying molecular mechanisms to explain this phenomenon, known as 'developmental programming' is a highly investigated area of research. This book chapter will examine the epidemiological evidence and the animal models of suboptimal maternal and early postnatal environments and will discuss the progress being made in the development of safe and effective intervention strategies which ultimately could target those 'programmed' individuals who are known to be at-risk of age-associated disease.
Collapse
Affiliation(s)
- Jane L Tarry-Adkins
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Treatment Centre, Addenbrooke's Hospital, Cambridge, UK.
| | - Susan E Ozanne
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Treatment Centre, Addenbrooke's Hospital, Cambridge, UK
| |
Collapse
|
24
|
Khamoui AV, Desai M, Ross MG, Rossiter HB. Sex-specific effects of maternal and postweaning high-fat diet on skeletal muscle mitochondrial respiration. J Dev Orig Health Dis 2018; 9:670-677. [PMID: 30111387 PMCID: PMC6363897 DOI: 10.1017/s2040174418000594] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Exposure to maternal over-nutrition in utero is linked with developmental programming of obesity, metabolic syndrome and cardiovascular disease in offspring, which may be exacerbated by postnatal high-fat (HF) diet. Skeletal muscle mitochondrial function contributes to substrate metabolism and is impaired in metabolic disease. We examined muscle mitochondrial respiration in male and female mice exposed to maternal HF diet in utero, followed by postweaning HF diet until middle age. After in utero exposure to maternal control (Con) or HF diet (45% kcal fat; 39.4% lard, 5.5% soybean oil), offspring were weaned to Con or HF, creating four groups: Con/Con (male/female (m/f), n=8/8), Con/HF (m/f, n=7/4), HF/Con (m/f, n=9/6) and HF/HF (m/f, n=4/4). Oxidative phosphorylation (OXPHOS) and electron transfer system (ETS) capacity were measured in permeabilized gastrocnemius bundles. Maternal HF diet increased fasting glucose and lean body mass in males and body fat percentage in both sexes (P⩽0.05). Maximal adenosine diphosphate-stimulated respiration (complex I OXPHOS) was decreased by maternal HF diet in female offspring (-21%, P=0.053), but not in male (-0%, P>0.05). Sexually divergent responses were exacerbated in offspring weaned to HF diet. In females, OXPHOS capacity was lower (-28%, P=0.041) when weaned to high-fat (HF/HF) v. control diet (HF/Con). In males, OXPHOS (+33%, P=0.009) and ETS (+42%, P=0.016) capacity increased. Our data suggest that maternal lard-based HF diet, rich in saturated fat, affects offspring skeletal muscle respiration in a sex-dependent manner, and these differences are exacerbated by HF diet in adulthood.
Collapse
Affiliation(s)
- Andy V. Khamoui
- Rehabilitation Clinical Trials Center, Division of Respiratory and Critical Care Physiology and Medicine, Department of Medicine, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, California 90502, USA
- Department of Exercise Science and Health Promotion, Florida Atlantic University, Boca Raton, Florida 33431, USA
| | - Mina Desai
- Perinatal Research Laboratories, Department of Obstetrics and Gynecology, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, California 90502, USA
| | - Michael G. Ross
- Perinatal Research Laboratories, Department of Obstetrics and Gynecology, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, California 90502, USA
| | - Harry B. Rossiter
- Rehabilitation Clinical Trials Center, Division of Respiratory and Critical Care Physiology and Medicine, Department of Medicine, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, California 90502, USA
- Faculty of Biological Sciences, University of Leeds, Leeds, LS1 9JT, United Kingdom
| |
Collapse
|
25
|
Talbot CPJ, Dolinsky VW. Sex differences in the developmental origins of cardiometabolic disease following exposure to maternal obesity and gestational diabetes 1. Appl Physiol Nutr Metab 2018; 44:687-695. [PMID: 30500266 DOI: 10.1139/apnm-2018-0667] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Over the past 30 years, the worldwide prevalence of obesity has nearly doubled. In addition, more and more women in their child-bearing years are overweight or obese, which increases the risk of gestational diabetes mellitus (GDM). It is increasingly accepted by the scientific community that early life exposure to environmental stress influences the long-term health of an individual, which has been termed the Developmental Origins of Health and Disease theory. Evidence from human cohorts and epidemiological and animal studies has shown that maternal obesity and GDM condition the offspring for cardiometabolic disease development. These effects are most likely regulated by epigenetic mechanisms; however, biological sex is an important factor in defining the risk of the development of several metabolic health disorders. The aim of this review is to describe the current evidence from human cohort and animal model studies that implicates sex differences in the developmental origins of cardiometabolic disease following exposure to maternal obesity and GDM. In addition, this review addresses the potential mechanisms involved in these sex differences. In many studies, sex is ignored as an important variable in disease development; however, the results presented in this review highlight important differences between sexes in the developmental programming of biological responses to exposures during the fetal stage. This knowledge will ultimately help in the development of effective therapeutic strategies for the treatment of cardiometabolic diseases that exhibit sexual dimorphism.
Collapse
Affiliation(s)
- Charlotte Pauline Joëlle Talbot
- a Department of Pharmacology and Therapeutics, Children's Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB R3E 3P4, Canada.,b Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) Research Theme of the Children's Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB R3E 3P4, Canada.,c Manitoba Developmental Origins of Chronic Diseases in Children Network (DEVOTION), University of Manitoba, Winnipeg, MB R3E 3P4, Canada
| | - Vernon Wayne Dolinsky
- a Department of Pharmacology and Therapeutics, Children's Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB R3E 3P4, Canada.,b Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) Research Theme of the Children's Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB R3E 3P4, Canada.,c Manitoba Developmental Origins of Chronic Diseases in Children Network (DEVOTION), University of Manitoba, Winnipeg, MB R3E 3P4, Canada
| |
Collapse
|
26
|
Protein expression in submandibular glands of young rats is modified by a high-fat/high-sugar maternal diet. Arch Oral Biol 2018; 96:87-95. [PMID: 30205238 DOI: 10.1016/j.archoralbio.2018.08.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 08/30/2018] [Accepted: 08/31/2018] [Indexed: 11/23/2022]
Abstract
OBJECTIVE Maternal diet has consequences on many organs of the offspring, but salivary glands have received little attention despite the importance of the saliva secretory function in oral health and control of food intake. The objective of this work was therefore to document in rats the impact of maternal high-fat/high-sugar diet (Western Diet) on submandibular glands of the progeny. DESIGN Sprague-Dawley rat dams were fed either a Western diet or control diet during gestation and lactation and their pups were sacrificed 25 days after birth. The pups' submandibular gland protein content was characterized by means of 2D-electrophoresis followed by LC-MS/MS. Data were further analyzed by Gene Ontology enrichment analysis and protein-protein interactions mapping. The expression of two specific proteins was also evaluated using immunohistochemistry. RESULTS Combining both male and female pups (n = 18), proteome analysis revealed that proteins involved in protein quality control (e.g. heat shock proteins, proteasome sub-units) and microtubule proteins were over-expressed in Western diet conditions, which may translate intense metabolic activity. A cluster of proteins controlling oxidative stress (e.g. Glutathione peroxidases, peroxiredoxin) and enhancement of the antioxidant activity molecular function were also characteristic of maternal Western diet as well as under-expression of annexin A5. The down-regulating effect of maternal Western diet on Annexin A5 expression was significant only for males (p < 0.05). CONCLUSIONS A maternal Western diet modifies the protein composition of the offspring's salivary glands, which may have consequences on the salivary function.
Collapse
|
27
|
Agarwal P, Morriseau TS, Kereliuk SM, Doucette CA, Wicklow BA, Dolinsky VW. Maternal obesity, diabetes during pregnancy and epigenetic mechanisms that influence the developmental origins of cardiometabolic disease in the offspring. Crit Rev Clin Lab Sci 2018; 55:71-101. [DOI: 10.1080/10408363.2017.1422109] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Prasoon Agarwal
- Department of Pharmacology & Therapeutics, University of Manitoba, Winnipeg, Canada
- Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) Research Theme of the Children’s Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, Canada
- Manitoba Developmental Origins of Chronic Diseases in Children Network (DEVOTION), University of Manitoba, Winnipeg, Canada
| | - Taylor S. Morriseau
- Department of Pharmacology & Therapeutics, University of Manitoba, Winnipeg, Canada
- Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) Research Theme of the Children’s Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, Canada
- Manitoba Developmental Origins of Chronic Diseases in Children Network (DEVOTION), University of Manitoba, Winnipeg, Canada
| | - Stephanie M. Kereliuk
- Department of Pharmacology & Therapeutics, University of Manitoba, Winnipeg, Canada
- Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) Research Theme of the Children’s Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, Canada
- Manitoba Developmental Origins of Chronic Diseases in Children Network (DEVOTION), University of Manitoba, Winnipeg, Canada
| | - Christine A. Doucette
- Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) Research Theme of the Children’s Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, Canada
- Manitoba Developmental Origins of Chronic Diseases in Children Network (DEVOTION), University of Manitoba, Winnipeg, Canada
- Department of Physiology & Pathophysiology, University of Manitoba, Winnipeg, Canada
| | - Brandy A. Wicklow
- Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) Research Theme of the Children’s Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, Canada
- Manitoba Developmental Origins of Chronic Diseases in Children Network (DEVOTION), University of Manitoba, Winnipeg, Canada
- Department of Pediatrics & Child Health, University of Manitoba, Winnipeg, Canada
| | - Vernon W. Dolinsky
- Department of Pharmacology & Therapeutics, University of Manitoba, Winnipeg, Canada
- Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) Research Theme of the Children’s Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, Canada
- Manitoba Developmental Origins of Chronic Diseases in Children Network (DEVOTION), University of Manitoba, Winnipeg, Canada
| |
Collapse
|
28
|
A maternal high-fat, high-sucrose diet alters insulin sensitivity and expression of insulin signalling and lipid metabolism genes and proteins in male rat offspring: effect of folic acid supplementation. Br J Nutr 2017; 118:580-588. [PMID: 29056104 DOI: 10.1017/s0007114517002501] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A maternal high-fat, high-sucrose (HFS) diet alters offspring glucose and lipid homoeostasis through unknown mechanisms and may be modulated by folic acid. We investigated the effect of a maternal HFS diet on glucose homoeostasis, expression of genes and proteins associated with insulin signalling and lipid metabolism and the effect of prenatal folic acid supplementation (HFS/F) in male rat offspring. Pregnant Sprague-Dawley rats were randomly fed control (CON), HFS or HFS/F diets. Offspring were weaned on CON; at postnatal day 70, fasting plasma insulin and glucose and liver and skeletal muscle gene and protein expression were measured. Treatment effects were assessed by one-way ANOVA. Maternal HFS diet induced higher fasting glucose in offspring v. HFS/F (P=0·027) and down-regulation (P<0·05) of genes coding for v-Akt murine thymoma viral oncogene homolog 2, resistin and v-Raf-1 murine leukaemia viral oncogene homolog 1 (Raf1) in offspring skeletal muscle and acetyl-CoA carboxylase (Acaca), fatty acid synthase and phosphatidylinositol-4,5-biphosphate 3-kinase, catalytic subunit β in offspring liver. Skeletal muscle neuropeptide Y and hepatic Kruppel-like factor 10 were up-regulated in HFS v. CON offspring (P<0·05). Compared with CON, Acaca and Raf1 protein expression levels were significantly lower in HFS offspring. Maternal HFS induced higher homoeostasis model of assessment index of insulin resistance v. CON (P=0·030) and HFS/F was associated with higher insulin (P=0·016) and lower glucose (P=0·025). Maternal HFS diet alters offspring insulin sensitivity and de novo hepatic lipogenesis via altered gene and protein expression, which appears to be potentiated by folate supplementation.
Collapse
|
29
|
Tarry-Adkins JL, Ozanne SE. Nutrition in early life and age-associated diseases. Ageing Res Rev 2017; 39:96-105. [PMID: 27594376 DOI: 10.1016/j.arr.2016.08.003] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 03/24/2016] [Accepted: 08/05/2016] [Indexed: 02/06/2023]
Abstract
The prevalence of age-associated disease is increasing at a striking rate globally. It is known that a strong association exists between a suboptimal maternal and/or early-life environment and increased propensity of developing age-associated disease, including cardiovascular disease (CVD), type-2 diabetes (T2D) and obesity. The dissection of underlying molecular mechanisms to explain this phenomenon, which is known as 'developmental programming' is still emerging; however three common mechanisms have emerged in many models of developmental programming. These mechanisms are (a) changes in tissue structure, (b) epigenetic regulation and (c) accelerated cellular ageing. This review will examine the epidemiological evidence and the animal models of suboptimal maternal environments, focusing upon these molecular mechanisms and will discuss the progress being made in the development of safe and effective intervention strategies which ultimately could target those 'programmed' individuals who are known to be at-risk of age-associated disease.
Collapse
Affiliation(s)
- Jane L Tarry-Adkins
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Institute of Metabolic Science, Level 4, Box 289, Addenbrooke's Treatment Centre, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 OQQ, UK.
| | - Susan E Ozanne
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Institute of Metabolic Science, Level 4, Box 289, Addenbrooke's Treatment Centre, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 OQQ, UK.
| |
Collapse
|
30
|
Nakamura K, Ohsawa I, Masuzawa R, Konno R, Watanabe A, Kawano F. Running training experience attenuates disuse atrophy in fast-twitch skeletal muscles of rats. J Appl Physiol (1985) 2017; 123:902-913. [PMID: 28775067 DOI: 10.1152/japplphysiol.00289.2017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 06/26/2017] [Accepted: 07/28/2017] [Indexed: 11/22/2022] Open
Abstract
Responsiveness to physiological stimuli, such as exercise and muscular inactivation, differs in individuals. However, the mechanisms responsible for these individual differences remain poorly understood. We tested whether a prior experience of exercise training affects the responses of skeletal muscles to unloading. Young rats were assigned to perform daily running training with a treadmill for 8 wk. After an additional 8 wk of normal habitation, the rats were hindlimb unloaded by tail suspension for 1 wk. Fast-twitch plantaris, gastrocnemius, and tibialis anterior muscles did not atrophy after unloading in rats with training experience, although soleus muscle lost weight similar to sedentary rats. We also analyzed the transcriptome in plantaris muscle with RNA sequencing followed by hierarchical clustering analysis and found that a subset of genes that were generally upregulated in sedentary rats after unloading were less responsive in rats with training experience. The distribution of histone 3 was diminished at the loci of these genes during the training period. Although the deposition of histone 3 was restored after an additional period of normal habitation, the incorporation of H3.3 variant was promoted in rats with training experience. This remodeling of nucleosomes closely correlated to the conformational changes of chromatin and suppressed gene expression in response to unloading. These results suggest that exercise training stimulated the early turnover of histone components, which may alter the responsiveness of gene transcription to physiological stimuli.NEW & NOTEWORTHY The present study demonstrates that disuse atrophy was suppressed in fast-twitch skeletal muscles of rats with training experience in early life. We also found a subset of genes that were less responsive to unloading in the muscle of rats with training experience. It was further determined that exercise training caused an early turnover of nucleosome components, which may alter the responsiveness of genes to stimulus in later life.
Collapse
Affiliation(s)
- Keisuke Nakamura
- Department of Sports and Health Science, Faculty of Human Health Science, Matsumoto University, Niimura, Matsumoto City, Nagano, Japan
| | - Ikumi Ohsawa
- Department of Sports and Health Science, Faculty of Human Health Science, Matsumoto University, Niimura, Matsumoto City, Nagano, Japan
| | - Ryo Masuzawa
- Graduate School of Health Sciences, Matsumoto University, Niimura, Matsumoto City, Nagano, Japan
| | - Ryotaro Konno
- Department of Sports and Health Science, Faculty of Human Health Science, Matsumoto University, Niimura, Matsumoto City, Nagano, Japan
| | - Atsuya Watanabe
- Graduate School of Health Sciences, Matsumoto University, Niimura, Matsumoto City, Nagano, Japan
| | - Fuminori Kawano
- Department of Sports and Health Science, Faculty of Human Health Science, Matsumoto University, Niimura, Matsumoto City, Nagano, Japan; .,Graduate School of Health Sciences, Matsumoto University, Niimura, Matsumoto City, Nagano, Japan
| |
Collapse
|
31
|
Kereliuk SM, Brawerman GM, Dolinsky VW. Maternal Macronutrient Consumption and the Developmental Origins of Metabolic Disease in the Offspring. Int J Mol Sci 2017; 18:E1451. [PMID: 28684678 PMCID: PMC5535942 DOI: 10.3390/ijms18071451] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 06/14/2017] [Accepted: 06/30/2017] [Indexed: 12/18/2022] Open
Abstract
Recent research aimed at understanding the rise in obesity and cardiometabolic disease in children suggests that suboptimal maternal nutrition conditions organ systems and physiological responses in the offspring contributing to disease development. Understanding the mechanisms by which the macronutrient composition of the maternal diet during pregnancy or lactation affects health outcomes in the offspring may lead to new maternal nutrition recommendations, disease prevention strategies and therapies that reduce the increasing incidence of cardiometabolic disease in children. Recent mechanistic animal model research has identified how excess fats and sugars in the maternal diet alter offspring glucose tolerance, insulin signaling and metabolism. Maternal nutrition appears to influence epigenetic alterations in the offspring and the programming of gene expression in key metabolic pathways. This review is focused on experimental studies in animal models that have investigated mechanisms of how maternal consumption of macronutrients affects cardiometabolic disease development in the offspring. Future research using "-omic" technologies is essential to elucidate the mechanisms of how altered maternal macronutrient consumption influences the development of disease in the offspring.
Collapse
Affiliation(s)
- Stephanie M Kereliuk
- Department of Pharmacology & Therapeutics, University of Manitoba, Winnipeg, MB R3E 3P4, Canada.
- Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) Research Theme of the Children's Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB R3E 3P4, Canada.
| | - Gabriel M Brawerman
- Department of Pharmacology & Therapeutics, University of Manitoba, Winnipeg, MB R3E 3P4, Canada.
- Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) Research Theme of the Children's Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB R3E 3P4, Canada.
| | - Vernon W Dolinsky
- Department of Pharmacology & Therapeutics, University of Manitoba, Winnipeg, MB R3E 3P4, Canada.
- Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) Research Theme of the Children's Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB R3E 3P4, Canada.
| |
Collapse
|
32
|
Kodde A, van der Beek EM, Phielix E, Engels E, Schipper L, Oosting A. Supramolecular structure of dietary fat in early life modulates expression of markers for mitochondrial content and capacity in adipose tissue of adult mice. Nutr Metab (Lond) 2017; 14:37. [PMID: 28616059 PMCID: PMC5469001 DOI: 10.1186/s12986-017-0191-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 05/31/2017] [Indexed: 01/26/2023] Open
Abstract
Background Previous studies have shown that early life nutrition can modulate the development of white adipose tissue and thereby affect the risk on obesity and metabolic disease later in life. For instance, postnatal feeding with a concept infant milk formula with large, phospholipid coated lipid droplets (Concept, Nuturis®), resulted in reduced adiposity in adult mice. The present study investigated whether differences in cell energy metabolism, using markers of mitochondrial content and capacity, may contribute to the observed effects. Methods C57Bl/6j male mice were exposed to a rodent diet containing the Concept (Concept) or standard (CTRL) infant milk formula from postnatal day 16 until postnatal day 42, followed by a western style diet challenge until postnatal day 98. Markers for mitochondrial content and capacity were analyzed in retroperitoneal white adipose tissue and gene expression of metabolic markers was measured in both retroperitoneal white adipose tissue and muscle tibialis (M. tibialis) at postnatal day 98. Results In retroperitoneal white adipose tissue, the Concept group showed higher citrate synthase activity and mitochondrial DNA expression compared to the CTRL group (p < 0.05). In addition, protein expression of mitochondrial cytochrome c oxidase subunit I of the oxidative phosphorylation pathway/cascade was increased in the Concept group compared to CTRL (p < 0.05). In the M. tibialis, gene expression of uncoupling protein 3 was higher in the Concept compared to the CTRL group. Other gene and protein expression markers for mitochondrial oxidative capacity were not different between groups. Conclusion Postnatal feeding with large, phospholipid coated lipid droplets generating a different supramolecular structure of dietary lipids enhances adult gene and protein expression of specific mitochondrial oxidative capacity markers, indicative of increased substrate oxidation in white adipose tissue and skeletal muscle. Although functional mitochondrial capacity was not measured, these results may suggest that adaptations in mitochondrial function via early feeding with a more physiological structure of dietary lipids, could underlie the observed beneficial effects on later life adiposity. Electronic supplementary material The online version of this article (doi:10.1186/s12986-017-0191-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Andrea Kodde
- Earl Life Nutrition Division, Nutricia Research, P.O. Box 80141, 3508 TC Utrecht, The Netherlands
| | - Eline M van der Beek
- Earl Life Nutrition Division, Nutricia Research, P.O. Box 80141, 3508 TC Utrecht, The Netherlands.,Department of Pediatrics, University Medical Centre Groningen, Groningen, The Netherlands
| | - Esther Phielix
- Department of Human Biology, Maastricht University, Maastricht, The Netherlands
| | - Eefje Engels
- Earl Life Nutrition Division, Nutricia Research, P.O. Box 80141, 3508 TC Utrecht, The Netherlands
| | - Lidewij Schipper
- Earl Life Nutrition Division, Nutricia Research, P.O. Box 80141, 3508 TC Utrecht, The Netherlands
| | - Annemarie Oosting
- Earl Life Nutrition Division, Nutricia Research, P.O. Box 80141, 3508 TC Utrecht, The Netherlands
| |
Collapse
|
33
|
Epigenetic regulation of skeletal muscle metabolism. Clin Sci (Lond) 2017; 130:1051-63. [PMID: 27215678 DOI: 10.1042/cs20160115] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 03/15/2016] [Indexed: 01/04/2023]
Abstract
Normal skeletal muscle metabolism is essential for whole body metabolic homoeostasis and disruptions in muscle metabolism are associated with a number of chronic diseases. Transcriptional control of metabolic enzyme expression is a major regulatory mechanism for muscle metabolic processes. Substantial evidence is emerging that highlights the importance of epigenetic mechanisms in this process. This review will examine the importance of epigenetics in the regulation of muscle metabolism, with a particular emphasis on DNA methylation and histone acetylation as epigenetic control points. The emerging cross-talk between metabolism and epigenetics in the context of health and disease will also be examined. The concept of inheritance of skeletal muscle metabolic phenotypes will be discussed, in addition to emerging epigenetic therapies that could be used to alter muscle metabolism in chronic disease states.
Collapse
|
34
|
Pileggi CA, Hedges CP, Segovia SA, Markworth JF, Durainayagam BR, Gray C, Zhang XD, Barnett MPG, Vickers MH, Hickey AJR, Reynolds CM, Cameron-Smith D. Maternal High Fat Diet Alters Skeletal Muscle Mitochondrial Catalytic Activity in Adult Male Rat Offspring. Front Physiol 2016; 7:546. [PMID: 27917127 PMCID: PMC5114294 DOI: 10.3389/fphys.2016.00546] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 10/28/2016] [Indexed: 12/29/2022] Open
Abstract
A maternal high-fat (HF) diet during pregnancy can lead to metabolic compromise, such as insulin resistance in adult offspring. Skeletal muscle mitochondrial dysfunction is one mechanism contributing to metabolic impairments in insulin resistant states. Therefore, the present study aimed to investigate whether mitochondrial dysfunction is evident in metabolically compromised offspring born to HF-fed dams. Sprague-Dawley dams were randomly assigned to receive a purified control diet (CD; 10% kcal from fat) or a high fat diet (HFD; 45% kcal from fat) for 10 days prior to mating, throughout pregnancy and during lactation. From weaning, all male offspring received a standard chow diet and soleus muscle was collected at day 150. Expression of the mitochondrial transcription factors nuclear respiratory factor-1 (NRF1) and mitochondrial transcription factor A (mtTFA) were downregulated in HF offspring. Furthermore, genes encoding the mitochondrial electron transport system (ETS) respiratory complex subunits were suppressed in HF offspring. Moreover, protein expression of the complex I subunit, NDUFB8, was downregulated in HF offspring (36%), which was paralleled by decreased maximal catalytic linked activity of complex I and III (40%). Together, these results indicate that exposure to a maternal HF diet during development may elicit lifelong mitochondrial alterations in offspring skeletal muscle.
Collapse
Affiliation(s)
| | - Christopher P Hedges
- College of Sport and Exercise Science, Institute of Sport, Exercise and Active Living, Victoria UniversityMelbourne, VIC, Australia; Applied Surgery and Metabolism Laboratory, School of Biological Sciences, University of AucklandAuckland, New Zealand
| | - Stephanie A Segovia
- Liggins Institute, University of AucklandAuckland, New Zealand; Gravida: National Centre for Growth and Development, University of AucklandAuckland, New Zealand
| | | | | | - Clint Gray
- Liggins Institute, University of AucklandAuckland, New Zealand; Gravida: National Centre for Growth and Development, University of AucklandAuckland, New Zealand
| | - Xiaoyuan D Zhang
- Liggins Institute, University of AucklandAuckland, New Zealand; Gravida: National Centre for Growth and Development, University of AucklandAuckland, New Zealand
| | - Matthew P G Barnett
- Food Nutrition and Health Team, Food and Bio-based Products Group, AgResearch Grasslands Palmerston North, New Zealand
| | - Mark H Vickers
- Liggins Institute, University of AucklandAuckland, New Zealand; Gravida: National Centre for Growth and Development, University of AucklandAuckland, New Zealand
| | - Anthony J R Hickey
- Applied Surgery and Metabolism Laboratory, School of Biological Sciences, University of Auckland Auckland, New Zealand
| | - Clare M Reynolds
- Liggins Institute, University of AucklandAuckland, New Zealand; Gravida: National Centre for Growth and Development, University of AucklandAuckland, New Zealand
| | | |
Collapse
|
35
|
Alfaradhi MZ, Kusinski LC, Fernandez-Twinn DS, Pantaleão LC, Carr SK, Ferland-McCollough D, Yeo GSH, Bushell M, Ozanne SE. Maternal Obesity in Pregnancy Developmentally Programs Adipose Tissue Inflammation in Young, Lean Male Mice Offspring. Endocrinology 2016; 157:4246-4256. [PMID: 27583789 PMCID: PMC5086532 DOI: 10.1210/en.2016-1314] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Obesity during pregnancy has a long-term effect on the health of the offspring including risk of developing the metabolic syndrome. Using a mouse model of maternal diet-induced obesity, we employed a genome-wide approach to investigate the microRNA (miRNA) and miRNA transcription profile in adipose tissue to understand mechanisms through which this occurs. Male offspring of diet-induced obese mothers, fed a control diet from weaning, showed no differences in body weight or adiposity at 8 weeks of age. However, offspring from the obese dams had up-regulated cytokine (Tnfα; P < .05) and chemokine (Ccl2 and Ccl7; P < .05) signaling in their adipose tissue. This was accompanied by reduced expression of miR-706, which we showed can directly regulate translation of the inflammatory proteins IL-33 (41% up-regulated; P < .05) and calcium/calmodulin-dependent protein kinase 1D (30% up-regulated; P < .01). We conclude that exposure to obesity during development primes an inflammatory environment in adipose tissue that is independent of offspring adiposity. Programming of adipose tissue miRNAs that regulate expression of inflammatory signaling molecules may be a contributing mechanism.
Collapse
|
36
|
Costa SMR, Isganaitis E, Matthews TJ, Hughes K, Daher G, Dreyfuss JM, da Silva GAP, Patti ME. Maternal obesity programs mitochondrial and lipid metabolism gene expression in infant umbilical vein endothelial cells. Int J Obes (Lond) 2016; 40:1627-1634. [PMID: 27531045 PMCID: PMC5101152 DOI: 10.1038/ijo.2016.142] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 05/24/2016] [Accepted: 06/25/2016] [Indexed: 01/04/2023]
Abstract
BACKGROUND/OBJECTIVES Maternal obesity increases risk for childhood obesity, but molecular mechanisms are not well understood. We hypothesized that primary umbilical vein endothelial cells (HUVEC) from infants of overweight and obese mothers would harbor transcriptional patterns reflecting offspring obesity risk. SUBJECTS/METHODS In this observational cohort study, we recruited 13 lean (pre-pregnancy body mass index (BMI) <25.0 kg m-2) and 24 overweight-obese ('ov-ob', BMI⩾25.0 kg m-2) women. We isolated primary HUVEC, and analyzed both gene expression (Primeview, Affymetrix) and cord blood levels of hormones and adipokines. RESULTS A total of 142 transcripts were differentially expressed in HUVEC from infants of overweight-obese mothers (false discovery rate, FDR<0.05). Pathway analysis revealed that genes involved in mitochondrial and lipid metabolism were negatively correlated with maternal BMI (FDR<0.05). To test whether these transcriptomic patterns were associated with distinct nutrient exposures in the setting of maternal obesity, we analyzed the cord blood lipidome and noted significant increases in the levels of total free fatty acids (lean: 95.5±37.1 μg ml-1, ov-ob: 124.1±46.0 μg ml-1, P=0.049), palmitate (lean: 34.5±12.7 μg ml-1, ov-ob: 46.3±18.4 μg ml-1, P=0.03) and stearate (lean: 20.8±8.2 μg ml-1, ov-ob: 29.7±17.2 μg ml-1, P=0.04), in infants of overweight-obese mothers. CONCLUSIONS Prenatal exposure to maternal obesity alters HUVEC expression of genes involved in mitochondrial and lipid metabolism, potentially reflecting developmentally programmed differences in oxidative and lipid metabolism.
Collapse
Affiliation(s)
- S M R Costa
- Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil.,Research Division, Joslin Diabetes Center, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - E Isganaitis
- Research Division, Joslin Diabetes Center, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - T J Matthews
- Research Division, Joslin Diabetes Center, Boston, MA, USA
| | - K Hughes
- Research Division, Joslin Diabetes Center, Boston, MA, USA
| | - G Daher
- Research Division, Joslin Diabetes Center, Boston, MA, USA
| | - J M Dreyfuss
- Research Division, Joslin Diabetes Center, Boston, MA, USA
| | - G A P da Silva
- Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | - M-E Patti
- Research Division, Joslin Diabetes Center, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| |
Collapse
|
37
|
Sharples AP, Stewart CE, Seaborne RA. Does skeletal muscle have an 'epi'-memory? The role of epigenetics in nutritional programming, metabolic disease, aging and exercise. Aging Cell 2016; 15:603-16. [PMID: 27102569 PMCID: PMC4933662 DOI: 10.1111/acel.12486] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/24/2016] [Indexed: 12/17/2022] Open
Abstract
Skeletal muscle mass, quality and adaptability are fundamental in promoting muscle performance, maintaining metabolic function and supporting longevity and healthspan. Skeletal muscle is programmable and can ‘remember’ early‐life metabolic stimuli affecting its function in adult life. In this review, the authors pose the question as to whether skeletal muscle has an ‘epi’‐memory? Following an initial encounter with an environmental stimulus, we discuss the underlying molecular and epigenetic mechanisms enabling skeletal muscle to adapt, should it re‐encounter the stimulus in later life. We also define skeletal muscle memory and outline the scientific literature contributing to this field. Furthermore, we review the evidence for early‐life nutrient stress and low birth weight in animals and human cohort studies, respectively, and discuss the underlying molecular mechanisms culminating in skeletal muscle dysfunction, metabolic disease and loss of skeletal muscle mass across the lifespan. We also summarize and discuss studies that isolate muscle stem cells from different environmental niches in vivo (physically active, diabetic, cachectic, aged) and how they reportedly remember this environment once isolated in vitro. Finally, we will outline the molecular and epigenetic mechanisms underlying skeletal muscle memory and review the epigenetic regulation of exercise‐induced skeletal muscle adaptation, highlighting exercise interventions as suitable models to investigate skeletal muscle memory in humans. We believe that understanding the ‘epi’‐memory of skeletal muscle will enable the next generation of targeted therapies to promote muscle growth and reduce muscle loss to enable healthy aging.
Collapse
Affiliation(s)
- Adam P. Sharples
- Stem Cells, Ageing and Molecular Physiology (SCAMP) Research Unit Exercise Metabolism and Adaptation Research Group (EMARG) Research Institute for Sport and Exercise Sciences (RISES) Liverpool John Moores University Liverpool UK
| | - Claire E. Stewart
- Stem Cells, Ageing and Molecular Physiology (SCAMP) Research Unit Exercise Metabolism and Adaptation Research Group (EMARG) Research Institute for Sport and Exercise Sciences (RISES) Liverpool John Moores University Liverpool UK
| | - Robert A. Seaborne
- Stem Cells, Ageing and Molecular Physiology (SCAMP) Research Unit Exercise Metabolism and Adaptation Research Group (EMARG) Research Institute for Sport and Exercise Sciences (RISES) Liverpool John Moores University Liverpool UK
| |
Collapse
|
38
|
Mitochondrial biogenesis is decreased in skeletal muscle of pig fetuses exposed to maternal high-energy diets. Animal 2016; 11:54-60. [PMID: 27349347 DOI: 10.1017/s1751731116001269] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Mitochondria plays an important role in the regulation of energy homeostasis. Moreover, mitochondrial biogenesis accompanies skeletal myogenesis, and we previously reported that maternal high-energy diet repressed skeletal myogenesis in pig fetuses. Therefore, the aim of this study was to evaluate the effects of moderately increased maternal energy intake on skeletal muscle mitochondrial biogenesis and function of the pig fetuses. Primiparous purebred Large White sows were allocated to a normal energy intake group (NE) as recommended by the National Research Council (NRC) and a high energy intake group (HE, 110% of NRC recommendations). On day 90 of gestation, fetal umbilical vein blood and longissimus (LM) muscle were collected. Results showed that the weight gain of sows fed HE diet was higher than NE sows on day 90 of gestation (P<0.05). Maternal HE diet increased fetal umbilical vein serum triglyceride and insulin concentrations (P<0.05), and tended to increase the homeostasis model assessment index (P=0.08). Furthermore, HE fetuses exhibited increased malondialdehyde concentration (P<0.05), and decreased activities of antioxidative enzymes (P<0.05) and intracellular NAD+ level (P<0.05) in LM muscle. These alterations in metabolic traits of HE fetuses were accompanied by reduced mitochondrial DNA amount (P<0.05) and down-regulated messenger RNA expression levels of genes responsible for mitochondrial biogenesis and function (P<0.05). Our results suggest that moderately increased energy supply during gestation decreases mitochondrial biogenesis, function and antioxidative capacity in skeletal muscle of pig fetuses.
Collapse
|
39
|
Williams MJ, Klockars A, Eriksson A, Voisin S, Dnyansagar R, Wiemerslage L, Kasagiannis A, Akram M, Kheder S, Ambrosi V, Hallqvist E, Fredriksson R, Schiöth HB. The Drosophila ETV5 Homologue Ets96B: Molecular Link between Obesity and Bipolar Disorder. PLoS Genet 2016; 12:e1006104. [PMID: 27280443 PMCID: PMC4900636 DOI: 10.1371/journal.pgen.1006104] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 05/13/2016] [Indexed: 12/24/2022] Open
Abstract
Several reports suggest obesity and bipolar disorder (BD) share some physiological and behavioural similarities. For instance, obese individuals are more impulsive and have heightened reward responsiveness, phenotypes associated with BD, while bipolar patients become obese at a higher rate and earlier age than people without BD; however, the molecular mechanisms of such an association remain obscure. Here we demonstrate, using whole transcriptome analysis, that Drosophila Ets96B, homologue of obesity-linked gene ETV5, regulates cellular systems associated with obesity and BD. Consistent with a role in obesity and BD, loss of nervous system Ets96B during development increases triacylglyceride concentration, while inducing a heightened startle-response, as well as increasing hyperactivity and reducing sleep. Of notable interest, mouse Etv5 and Drosophila Ets96B are expressed in dopaminergic-rich regions, and loss of Ets96B specifically in dopaminergic neurons recapitulates the metabolic and behavioural phenotypes. Moreover, our data indicate Ets96B inhibits dopaminergic-specific neuroprotective systems. Additionally, we reveal that multiple SNPs in human ETV5 link to body mass index (BMI) and BD, providing further evidence for ETV5 as an important and novel molecular intermediate between obesity and BD. We identify a novel molecular link between obesity and bipolar disorder. The Drosophila ETV5 homologue Ets96B regulates the expression of cellular systems with links to obesity and behaviour, including the expression of a conserved endoplasmic reticulum molecular chaperone complex known to be neuroprotective. Finally, a connection between the obesity-linked gene ETV5 and bipolar disorder emphasizes a functional relationship between obesity and BD at the molecular level. The World Health Organization suggests obesity is a major cause of poor health and is becoming the leading public health concern. Likewise, mood-based disorders, such as bipolar disorder, are one of the top ten causes of disability worldwide. There is evidence that obesity and bipolar disorder may be linked and that obesity may exacerbate bipolar disorder symptoms. For the first time, our work evidences a molecular-link between obesity and bipolar disorder. In humans the obesity-linked gene ETV5 was also associated with bipolar disorder. Using the model organism Drosophila melanogaster (the fruit fly) we show that the ETV5 homologue Ets96B regulates a series of genes known to be neuroprotective and inhibiting the expression of Ets96 in dopaminergic neurons induces phenotypes linked to obesity and bipolar disorder, including increased lipid storage, increased anxiety and reduced sleep. Our work will help to further the understanding of how these to disorders may interact.
Collapse
Affiliation(s)
- Michael J. Williams
- Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden
- * E-mail:
| | - Anica Klockars
- Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Anders Eriksson
- Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Sarah Voisin
- Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Rohit Dnyansagar
- Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Lyle Wiemerslage
- Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Anna Kasagiannis
- Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Mehwish Akram
- Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Sania Kheder
- Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Valerie Ambrosi
- Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Emilie Hallqvist
- Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Robert Fredriksson
- Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Helgi B. Schiöth
- Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden
| |
Collapse
|
40
|
Nicholas LM, Morrison JL, Rattanatray L, Zhang S, Ozanne SE, McMillen IC. The early origins of obesity and insulin resistance: timing, programming and mechanisms. Int J Obes (Lond) 2016; 40:229-38. [PMID: 26367335 DOI: 10.1038/ijo.2015.178] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 08/06/2015] [Accepted: 08/13/2015] [Indexed: 02/07/2023]
Abstract
Maternal obesity is associated with an increased risk of developing gestational diabetes mellitus and it also results in an increased risk of giving birth to a large baby with increased fat mass. Furthermore, it is also contributes to an increased risk of obesity and insulin resistance in the offspring in childhood, adolescence and adult life. It has been proposed that exposure to maternal obesity may therefore result in an 'intergenerational cycle' of obesity and insulin resistance. There is significant interest in whether exposure to maternal obesity around the time of conception alone contributes directly to poor metabolic outcomes in the offspring and whether dieting in the obese mother before pregnancy or around the time of conception has metabolic benefits for the offspring. This review focusses on experimental and clinical studies that have investigated the specific impact of exposure to maternal obesity during the periconceptional period alone or extending beyond conception on adipogenesis, lipogenesis and on insulin signalling pathways in the fat, liver and muscle of the offspring. Findings from these studies highlight the need for a better evidence base for the development of dietary interventions in obese women before pregnancy and around the time of conception to maximize the metabolic benefits and minimize the metabolic costs for the next generation.
Collapse
Affiliation(s)
- L M Nicholas
- Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA, Australia
| | - J L Morrison
- Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA, Australia
| | - L Rattanatray
- Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA, Australia.,Discipline of Physiology, School of Molecular and Life Sciences, University of Adelaide, Adelaide, SA, Australia
| | - S Zhang
- Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA, Australia
| | - S E Ozanne
- Department of Clinical Biochemistry, Institute of Metabolic Science-Metabolic Research Laboratories, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| | - I C McMillen
- Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA, Australia.,The Chancellery, University of Newcastle, Callaghan, NSW, Australia
| |
Collapse
|
41
|
Penfold NC, Ozanne SE. Developmental programming by maternal obesity in 2015: Outcomes, mechanisms, and potential interventions. Horm Behav 2015; 76:143-52. [PMID: 26145566 DOI: 10.1016/j.yhbeh.2015.06.015] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 06/23/2015] [Accepted: 06/24/2015] [Indexed: 02/06/2023]
Abstract
This article is part of a Special Issue "SBN 2014". Obesity in women of child-bearing age is a growing problem in developed and developing countries. Evidence from human studies indicates that maternal BMI correlates with offspring adiposity from an early age and predisposes to metabolic disease in later life. Thus the early life environment is an attractive target for intervention to improve public health. Animal models have been used to investigate the specific physiological outcomes and mechanisms of developmental programming that result from exposure to maternal obesity in utero. From this research, targeted intervention strategies can be designed. In this review we summarise recent progress in this field, with a focus on cardiometabolic disease and central control of appetite and behaviour. We highlight key factors that may mediate programming by maternal obesity, including leptin, insulin, and ghrelin. Finally, we explore potential lifestyle and pharmacological interventions in humans and the current state of evidence from animal models.
Collapse
Affiliation(s)
- Naomi C Penfold
- University of Cambridge, Metabolic Research Laboratories MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge CB2 0QQ, United Kingdom.
| | - Susan E Ozanne
- University of Cambridge, Metabolic Research Laboratories MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge CB2 0QQ, United Kingdom
| |
Collapse
|
42
|
Sharples AP, Polydorou I, Hughes DC, Owens DJ, Hughes TM, Stewart CE. Skeletal muscle cells possess a 'memory' of acute early life TNF-α exposure: role of epigenetic adaptation. Biogerontology 2015; 17:603-17. [PMID: 26349924 DOI: 10.1007/s10522-015-9604-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 08/27/2015] [Indexed: 12/20/2022]
Abstract
Sufficient quantity and quality of skeletal muscle is required to maintain lifespan and healthspan into older age. The concept of skeletal muscle programming/memory has been suggested to contribute to accelerated muscle decline in the elderly in association with early life stress such as fetal malnutrition. Further, muscle cells in vitro appear to remember the in vivo environments from which they are derived (e.g. cancer, obesity, type II diabetes, physical inactivity and nutrient restriction). Tumour-necrosis factor alpha (TNF-α) is a pleiotropic cytokine that is chronically elevated in sarcopenia and cancer cachexia. Higher TNF-α levels are strongly correlated with muscle loss, reduced strength and therefore morbidity and earlier mortality. We have extensively shown that TNF-α impairs regenerative capacity in mouse and human muscle derived stem cells [Meadows et al. (J Cell Physiol 183(3):330-337, 2000); Foulstone et al. (J Cell Physiol 189(2):207-215, 2001); Foulstone et al. (Exp Cell Res 294(1):223-235, 2004); Stewart et al. (J Cell Physiol 198(2):237-247, 2004); Al-Shanti et al. (Growth factors (Chur, Switzerland) 26(2):61-73, 2008); Saini et al. (Growth factors (Chur, Switzerland) 26(5):239-253, 2008); Sharples et al. (J Cell Physiol 225(1):240-250, 2010)]. We have also recently established an epigenetically mediated mechanism (SIRT1-histone deacetylase) regulating survival of myoblasts in the presence of TNF-α [Saini et al. (Exp Physiol 97(3):400-418, 2012)]. We therefore wished to extend this work in relation to muscle memory of catabolic stimuli and the potential underlying epigenetic modulation of muscle loss. To enable this aim; C2C12 myoblasts were cultured in the absence or presence of early TNF-α (early proliferative lifespan) followed by 30 population doublings in the absence of TNF-α, prior to the induction of differentiation in low serum media (LSM) in the absence or presence of late TNF-α (late proliferative lifespan). The cells that received an early plus late lifespan dose of TNF-α exhibited reduced morphological (myotube number) and biochemical (creatine kinase activity) differentiation vs. control cells that underwent the same number of proliferative divisions but only a later life encounter with TNF-α. This suggested that muscle cells had a morphological memory of the acute early lifespan TNF-α encounter. Importantly, methylation of myoD CpG islands were increased in the early TNF-α cells, 30 population doublings later, suggesting that even after an acute encounter with TNF-α, the cells have the capability of retaining elevated methylation for at least 30 cellular divisions. Despite these fascinating findings, there were no further increases in myoD methylation or changes in its gene expression when these cells were exposed to a later TNF-α dose suggesting that this was not directly responsible for the decline in differentiation observed. In conclusion, data suggest that elevated myoD methylation is retained throughout muscle cells proliferative lifespan as result of early life TNF-α treatment and has implications for the epigenetic control of muscle loss.
Collapse
Affiliation(s)
- Adam P Sharples
- Stem Cells, Ageing and Molecular Physiology Unit, Exercise Metabolism and Adaptation Research Group, Research Institute for Sport and Exercise Sciences (RISES), School of Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK.
| | - Ioanna Polydorou
- Department of Neuropediatrics and NeuroCure Clinical Research Center, Charité-Universitätsmedizin Berlin, Berlin, Germany.,UFR des Sciences de la Santé, Université de Versailles Saint-Quentin-en-Yvelines, Montigny-Le-Bretonneux, France
| | - David C Hughes
- Stem Cells, Ageing and Molecular Physiology Unit, Exercise Metabolism and Adaptation Research Group, Research Institute for Sport and Exercise Sciences (RISES), School of Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK.,Department of Neurobiology, Physiology and Behavior, University of California, Davis, CA, USA
| | - Daniel J Owens
- Stem Cells, Ageing and Molecular Physiology Unit, Exercise Metabolism and Adaptation Research Group, Research Institute for Sport and Exercise Sciences (RISES), School of Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK
| | - Thomas M Hughes
- Sterrenkundig Observatorium, Universiteit Gent, Krijgslaan, Ghent, Belgium.,Instituto de Física y Astronomía, Universidad de Valparaíso, Valparaiso, Chile
| | - Claire E Stewart
- Stem Cells, Ageing and Molecular Physiology Unit, Exercise Metabolism and Adaptation Research Group, Research Institute for Sport and Exercise Sciences (RISES), School of Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK
| |
Collapse
|
43
|
Gårdebjer EM, Anderson ST, Pantaleon M, Wlodek ME, Moritz KM. Maternal alcohol intake around the time of conception causes glucose intolerance and insulin insensitivity in rat offspring, which is exacerbated by a postnatal high‐fat diet. FASEB J 2015; 29:2690-701. [DOI: 10.1096/fj.14-268979] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 02/03/2015] [Indexed: 01/09/2023]
Affiliation(s)
| | | | - Marie Pantaleon
- Biomedical SciencesThe University of QueenslandSt. LuciaQueenslandAustralia
| | - Mary E. Wlodek
- The Department of PhysiologyThe University of MelbourneParkvilleVictoriaAustralia
| | - Karen M. Moritz
- Biomedical SciencesThe University of QueenslandSt. LuciaQueenslandAustralia
| |
Collapse
|
44
|
Effects of pregnancy on obesity-induced inflammation in a mouse model of fetal programming. Int J Obes (Lond) 2014; 38:1282-9. [PMID: 24785102 DOI: 10.1038/ijo.2014.69] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Revised: 04/07/2014] [Accepted: 04/14/2014] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Maternal obesity is associated with increased risk of metabolic dysfunction in the offspring. It is not clear whether it is the metabolic changes or chronic low-grade inflammation in the obese state that causes this metabolic programming. We therefore investigated whether low-grade inflammation was present in obese dams compared with controls dams at gestation day 18 (GD18). METHODS Female mice were fed either a standard chow diet or a highly palatable obesogenic diet for 6 weeks before conception. Mice were either kileed before mating (n=12 in each group) or on GD18 (n=8 in each group). Blood and tissues were collected for analysis. RESULTS The obesogenic diet increased body weight and decreased insulin sensitivity before conception, while there was no difference between the groups at GD18. Local inflammation was assayed by macrophage count in adipose tissue (AT) and liver. Macrophage count in the AT was increased significantly by the obesogenic diet, and the hepatic count also showed a tendency to increased macrophage infiltration before gestation. This was further supported by a decreased population of monocytes in the blood of the obese animals, which suggested that monocytes are being recruited from the blood to the liver and AT in the obese animals. Gestation reversed macrophage infiltration, such that obese dams showed a lower AT macrophage count at the end of gestation compared with pre-pregnancy obese mice, and there were no longer a tendency toward increased hepatic macrophage count. Placental macrophage count was also similar in the two groups. CONCLUSION At GD18, obese dams were found to have similar macrophage infiltration in placenta, AT and liver as lean dams, despite an incipient infiltration before gestation. Thus, the obesity-induced inflammation was reversed during gestation.
Collapse
|
45
|
Hellgren LI, Jensen RI, Waterstradt MS, Quistorff B, Lauritzen L. Acute and perinatal programming effects of a fat-rich diet on rat muscle mitochondrial function and hepatic lipid accumulation. Acta Obstet Gynecol Scand 2014; 93:1170-80. [DOI: 10.1111/aogs.12458] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 07/17/2014] [Indexed: 01/02/2023]
Affiliation(s)
- Lars I. Hellgren
- Center for Biological Sequence Analysis; Department of Systems Biology; Technical University of Denmark; Kongens Lyngby Denmark
| | - Runa I. Jensen
- Department of Human Nutrition; Faculty of Life Science; University of Copenhagen; Frederiksberg Denmark
| | - Michelle S.G. Waterstradt
- Center for Biological Sequence Analysis; Department of Systems Biology; Technical University of Denmark; Kongens Lyngby Denmark
| | - Bjørn Quistorff
- Department of Biomedical Science; NMR Center; Faculty of Health and Medical Sciences; University of Copenhagen; Copenhagen Denmark
| | - Lotte Lauritzen
- Department of Human Nutrition; Faculty of Life Science; University of Copenhagen; Frederiksberg Denmark
| |
Collapse
|
46
|
Abstract
Individuals exposed in utero to maternal obesity have increased risk of developing type 2 diabetes mellitus and obesity in adulthood. The molecular mechanisms underlying this association are unknown. We have therefore used a murine model of maternal obesity, in which the offspring of obese dams develop hyperinsulinaemia by 3 months of age indicative of insulin resistance. Here, we investigate the effects of maternal diet-induced obesity on the expression/phosphorylation of key hepatic insulin signalling proteins and the expression of anti-oxidant enzymes in male offspring. At 3 months of age, offspring of obese dams had decreased levels of insulin receptor substrate (IRS) 1 (P < 0.01), whereas the ratio of phosphorylated IRS1 Ser307 to total IRS1 was significantly increased (P < 0.001), suggesting that it was less active. Protein expression of the PI3K p85α subunit was decreased (P < 0.01) and there was a tendency for phosphorylation of Akt at Ser473 to be reduced (P = 0.08) in the offspring of obese dams. protein kinase Cζ (P < 0.001) and glycogen synthase kinase 3β (P < 0.05) levels were increased in these animals in comparison with controls. Maternal obesity also resulted in increased phosphorylation of p38 mitogen-activated protein kinase at Thr180/Tyr182 (P < 0.01) and raised c-Jun N-terminal kinase 1 expression (P < 0.5) in the offspring. The expression of antioxidant enzymes was also affected by maternal obesity with CuZnSOD (P < 0.001) and glutathione reductase (P < 0.05) being increased, whereas glutathione peroxidase 1 was reduced (P < 0.05) in the offspring. We conclude that maternal obesity leads to alterations in hepatic insulin signalling protein expression and phosphorylation. These molecular changes may contribute to the development of insulin resistance.
Collapse
|
47
|
The effects of prenatal exposure to a 'junk food' diet on offspring food preferences and fat deposition can be mitigated by improved nutrition during lactation. J Dev Orig Health Dis 2014; 4:348-57. [PMID: 24970728 DOI: 10.1017/s2040174413000330] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Exposure to a maternal junk food (JF) diet in utero and during the suckling period has been demonstrated to increase the preference for palatable food and increase the susceptibility to diet-induced obesity in adult offspring. We aimed to determine whether the effects of prenatal exposure to JF could be ameliorated by cross-fostering offspring onto dams consuming a standard rodent chow during the suckling period. We report here that when all offspring were given free access to the JF diet for 7 weeks from 10 weeks of age, male offspring of control (C) or JF dams that were cross-fostered at birth onto JF dams (C-JF, JF-JF), exhibited higher fat (C-C: 12.3 ± 0.34 g/kg/day; C-JF: 14.7 ± 1.04 g/kg/day; JF-C: 11.5 ± 0.41 g/kg/day; JF-JF: 14.0 ± 0.44 g/kg/day; P < 0.05) and overall energy intake (C-C: 930.1 ± 18.56 kJ/kg/day; C-JF: 1029.0 ± 82.9 kJ/kg/day; JF-C: 878.3 ± 19.5 kJ/kg/day; JF-JF: 1003.4 ± 25.97 kJ/kg/day; P < 0.05) than offspring exposed to the JF diet only before birth (JF-C) or not at all (C-C). Female offspring suckled by JF dams, despite no differences in food intake, had increased fat mass as percentage of body weight (C-C: 19.9 ± 1.33%; C-JF: 22.8 ± 1.57%; JF-C: 17.4 ± 1.03%; JF-JF: 22.0 ± 1.0%; P < 0.05) after 3 weeks on the JF diet. No difference in fat mass was observed in male offspring. These findings suggest that the effects of prenatal exposure to a JF diet on food preferences in females and susceptibility to diet-induced obesity in males can be prevented by improved nutrition during the suckling period.
Collapse
|
48
|
Alfaradhi MZ, Fernandez-Twinn DS, Martin-Gronert MS, Musial B, Fowden A, Ozanne SE. Oxidative stress and altered lipid homeostasis in the programming of offspring fatty liver by maternal obesity. Am J Physiol Regul Integr Comp Physiol 2014; 307:R26-34. [PMID: 24789994 PMCID: PMC4080277 DOI: 10.1152/ajpregu.00049.2014] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 04/29/2014] [Indexed: 12/19/2022]
Abstract
Changes in the maternal nutritional environment during fetal development can influence offspring's metabolic risk in later life. Animal models have demonstrated that offspring of diet-induced obese dams develop metabolic complications, including nonalcoholic fatty liver disease. In this study we investigated the mechanisms in young offspring that lead to the development of nonalcoholic fatty liver disease (NAFLD). Female offspring of C57BL/6J dams fed either a control or obesogenic diet were studied at 8 wk of age. We investigated the roles of oxidative stress and lipid metabolism in contributing to fatty liver in offspring. There were no differences in body weight or adiposity at 8 wk of age; however, offspring of obese dams were hyperinsulinemic. Oxidative damage markers were significantly increased in their livers, with reduced levels of the antioxidant enzyme glutathione peroxidase-1. Mitochondrial complex I and II activities were elevated, while levels of mitochondrial cytochrome c were significantly reduced and glutamate dehydrogenase was significantly increased, suggesting mitochondrial dysfunction. Offspring of obese dams also had significantly greater hepatic lipid content, associated with increased levels of PPARγ and reduced triglyceride lipase. Liver glycogen and protein content were concomitantly reduced in offspring of obese dams. In conclusion, offspring of diet-induced obese dams have disrupted liver metabolism and develop NAFLD prior to any differences in body weight or body composition. Oxidative stress may play a mechanistic role in the progression of fatty liver in these offspring.
Collapse
Affiliation(s)
- Maria Z Alfaradhi
- University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, United Kingdom; and
| | - Denise S Fernandez-Twinn
- University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, United Kingdom; and
| | - Malgorzata S Martin-Gronert
- University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, United Kingdom; and
| | - Barbara Musial
- Department of Physiology, Development and Neuroscience, Centre for Trophoblast Research, University of Cambridge, Cambridge, United Kingdom
| | - Abigail Fowden
- Department of Physiology, Development and Neuroscience, Centre for Trophoblast Research, University of Cambridge, Cambridge, United Kingdom
| | - Susan E Ozanne
- University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, United Kingdom; and
| |
Collapse
|
49
|
Ojha S, Saroha V, Symonds ME, Budge H. Excess nutrient supply in early life and its later metabolic consequences. Clin Exp Pharmacol Physiol 2014; 40:817-23. [PMID: 23350968 DOI: 10.1111/1440-1681.12061] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Revised: 01/17/2013] [Accepted: 01/20/2013] [Indexed: 12/20/2022]
Abstract
Suboptimal nutrition in early life, both in utero and during infancy, is linked to increased risk of adult obesity and its associated adverse metabolic health problems. Excess nutrient supply during early life can lead to metabolic programming in the offspring. Such overnutrition can occur in the offspring of obese mothers, the offspring of mothers who gain excess weight during gestation, infants of diabetic mothers and infants who undergo rapid growth, particularly weight gain, during early infancy. Postnatal overnutrition is particularly detrimental for infants who are born small for gestational age, who are overfed to attain 'catch-up growth'. Potential mechanisms underlying metabolic programming that results from excess nutrition during early life include resetting of hypothalamic energy sensing and appetite regulation, altered adipose tissue insulin sensitivity and impaired brown adipose tissue function. More detailed understanding of the mechanisms involved in metabolic programming could enable the development of therapeutic strategies for ameliorating its ill effects. Research in this field could potentially identify optimal and appropriate preventative interventions for a burgeoning population at risk of increased mortality and morbidity from obesity and its concomitant metabolic conditions.
Collapse
Affiliation(s)
- Shalini Ojha
- The Early Life Nutrition Research Unit, Academic Division of Child Health, School of Clinical Sciences, University Hospital, The University of Nottingham, Nottingham, UK
| | | | | | | |
Collapse
|
50
|
Zambrano E, Nathanielsz PW. Mechanisms by which maternal obesity programs offspring for obesity: evidence from animal studies. Nutr Rev 2014; 71 Suppl 1:S42-54. [PMID: 24147924 DOI: 10.1111/nure.12068] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Maternal obesity can profoundly affect offspring phenotype and predisposition to obesity and metabolic disease. Carefully controlled studies in precocial and altricial mammalian species provide insights into the involved mechanisms. These include programming of hypothalamic appetite-regulating centers to increase orexigenic relative to anorexigenic drive; increasing maternal, fetal, and offspring adrenal and peripheral tissue glucocorticoid production; and increasing maternal oxidative stress. Outcomes often show offspring sex differences that may play a role in the differential susceptibility of males and females to later-life obesity and other related metabolic diseases.
Collapse
Affiliation(s)
- Elena Zambrano
- Department of Reproductive Biology, Instituto Nacional de Ciencias Médicas y Nutrición, Salvador Zubirán, Mexico
| | | |
Collapse
|