1
|
de Sousa ME, Gusmao DO, Dos Santos WO, Moriya HT, de Lima FF, List EO, Kopchick JJ, Donato J. Fasting and prolonged food restriction differentially affect GH secretion independently of GH receptor signaling in AgRP neurons. J Neuroendocrinol 2024; 36:e13254. [PMID: 36964750 DOI: 10.1111/jne.13254] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 03/02/2023] [Accepted: 03/03/2023] [Indexed: 03/14/2023]
Abstract
Growth hormone (GH) receptor (GHR) is abundantly expressed in neurons that co-release the agouti-related protein (AgRP) and neuropeptide Y (NPY) in the arcuate nucleus of the hypothalamus (ARH). Since ARHAgRP/NPY neurons regulate several hypothalamic-pituitary-endocrine axes, this neuronal population possibly modulates GH secretion via a negative feedback loop, particularly during food restriction, when ARHAgRP/NPY neurons are highly active. The present study aims to determine the importance of GHR signaling in ARHAgRP/NPY neurons on the pattern of GH secretion in fed and food-deprived male mice. Additionally, we compared the effect of two distinct situations of food deprivation: 16 h of fasting or four days of food restriction (40% of usual food intake). Overnight fasting strongly suppressed both basal and pulsatile GH secretion. Animals lacking GHR in ARHAgRP/NPY neurons (AgRP∆GHR mice) did not exhibit differences in GH secretion either in the fed or fasted state, compared to control mice. In contrast, four days of food restriction increased GH pulse frequency, basal GH secretion, and pulse irregularity/complexity (measured by sample entropy), whereas pulsatile GH secretion was not affected in both control and AgRP∆GHR mice. Hypothalamic Ghrh mRNA levels were unaffected by fasting or food restriction, but Sst expression increased in acutely fasted mice, but decreased after prolonged food restriction in both control and AgRP∆GHR mice. Our findings indicate that short-term fasting and prolonged food restriction differentially affect the pattern of GH secretion, independently of GHR signaling in ARHAgRP/NPY neurons.
Collapse
Affiliation(s)
- Maria E de Sousa
- Department of Physiology and Biophysics, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo, 05508-000, Brazil
| | - Daniela O Gusmao
- Department of Physiology and Biophysics, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo, 05508-000, Brazil
| | - Willian O Dos Santos
- Department of Physiology and Biophysics, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo, 05508-000, Brazil
| | - Henrique T Moriya
- Biomedical Engineering Laboratory, Escola Politecnica, Universidade de Sao Paulo, Sao Paulo, 05508-010, Brazil
| | - Felipe F de Lima
- Biomedical Engineering Laboratory, Escola Politecnica, Universidade de Sao Paulo, Sao Paulo, 05508-010, Brazil
| | - Edward O List
- Edison Biotechnology Institute and Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio, 45701, USA
| | - John J Kopchick
- Edison Biotechnology Institute and Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio, 45701, USA
| | - Jose Donato
- Department of Physiology and Biophysics, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo, 05508-000, Brazil
| |
Collapse
|
2
|
Gusmao DO, de Sousa ME, Tavares MR, Donato J. Increased GH Secretion and Body Growth in Mice Carrying Ablation of IGF-1 Receptor in GH-releasing Hormone Cells. Endocrinology 2022; 163:6696879. [PMID: 36099517 DOI: 10.1210/endocr/bqac151] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Indexed: 11/19/2022]
Abstract
Growth hormone (GH) secretion is controlled by short and long negative feedback loops. In this regard, both GH (short-loop feedback) and insulin-like growth factor 1 (IGF-1; long-loop feedback) can target somatotropic cells of the pituitary gland and neuroendocrine hypothalamic neurons to regulate the GH/IGF-1 axis. GH-releasing hormone (GHRH)-expressing neurons play a fundamental role in stimulating pituitary GH secretion. However, it is currently unknown whether IGF-1 action on GHRH-expressing cells is required for the control of the GH/IGF-1/growth axis. In the present study, we investigated the phenotype of male and female mice carrying ablation of IGF-1 receptor (IGF1R) exclusively in GHRH cells. After weaning, both male and female GHRHΔIGF1R mice exhibited increases in body weight, lean body mass, linear growth, and length of long bones (tibia, femur, humerus, and radius). In contrast, the percentage of body fat was similar between control and GHRHΔIGF1R mice. The higher body growth of GHRHΔIGF1R mice can be explained by increases in mean GH levels, GH pulse amplitude, and pulse frequency, calculated from 36 blood samples collected from each animal at 10-minute intervals. GHRHΔIGF1R mice also showed increased hypothalamic Ghrh mRNA levels, pituitary Gh mRNA expression, hepatic Igf1 expression, and serum IGF-1 levels compared with control animals. Furthermore, GHRHΔIGF1R mice displayed significant alterations in the sexually dimorphic hepatic gene expression profile, with a prevailing feminization in most genes analyzed. In conclusion, our findings indicate that GHRH neurons represent a key and necessary site for the long-loop negative feedback that controls the GH/IGF-1 axis and body growth.
Collapse
Affiliation(s)
- Daniela O Gusmao
- Department of Physiology and Biophysics, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo, SP 05508-000, Brazil
| | - Maria E de Sousa
- Department of Physiology and Biophysics, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo, SP 05508-000, Brazil
| | - Mariana R Tavares
- Department of Physiology and Biophysics, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo, SP 05508-000, Brazil
| | - Jose Donato
- Department of Physiology and Biophysics, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo, SP 05508-000, Brazil
| |
Collapse
|
3
|
Chaves FM, Wasinski F, Tavares MR, Mansano NS, Frazao R, Gusmao DO, Quaresma PGF, Pedroso JAB, Elias CF, List EO, Kopchick JJ, Szawka RE, Donato J. Effects of the Isolated and Combined Ablation of Growth Hormone and IGF-1 Receptors in Somatostatin Neurons. Endocrinology 2022; 163:bqac045. [PMID: 35395079 PMCID: PMC9070500 DOI: 10.1210/endocr/bqac045] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Indexed: 11/19/2022]
Abstract
Hypophysiotropic somatostatin (SST) neurons in the periventricular hypothalamic area express growth hormone (GH) receptor (GHR) and are frequently considered as the key neuronal population that mediates the negative feedback loop controlling the hypothalamic-GH axis. Additionally, insulin-like growth factor-1 (IGF-1) may also act at the hypothalamic level to control pituitary GH secretion via long-loop negative feedback. However, to the best of our knowledge, no study so far has tested whether GHR or IGF-1 receptor (IGF1R) signaling specifically in SST neurons is required for the homeostatic control of GH secretion. Here we show that GHR ablation in SST neurons did not impact the negative feedback mechanisms that control pulsatile GH secretion or body growth in male and female mice. The sex difference in hepatic gene expression profile was only mildly affected by GHR ablation in SST neurons. Similarly, IGF1R ablation in SST neurons did not affect pulsatile GH secretion, body growth, or hepatic gene expression. In contrast, simultaneous ablation of both GHR and IGF1R in SST-expressing cells increased mean GH levels and pulse amplitude in male and female mice, and partially disrupted the sex differences in hepatic gene expression. Despite the increased GH secretion in double knockout mice, no alterations in body growth and serum or liver IGF-1 levels were observed. In summary, GHR and IGF1R signaling in SST neurons play a redundant role in the control of GH secretion. Furthermore, our results reveal the importance of GH/IGF-1 negative feedback mechanisms on SST neurons for the establishment of sex differences in hepatic gene expression profile.
Collapse
Affiliation(s)
- Fernanda M Chaves
- Departamento de Fisiologia e Biofisica, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo, SP, 05508-000, Brazil
| | - Frederick Wasinski
- Departamento de Fisiologia e Biofisica, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo, SP, 05508-000, Brazil
| | - Mariana R Tavares
- Departamento de Fisiologia e Biofisica, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo, SP, 05508-000, Brazil
| | - Naira S Mansano
- Departamento de Anatomia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo, 05508-900, Brazil
| | - Renata Frazao
- Departamento de Anatomia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo, 05508-900, Brazil
| | - Daniela O Gusmao
- Departamento de Fisiologia e Biofisica, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo, SP, 05508-000, Brazil
| | - Paula G F Quaresma
- Departamento de Fisiologia e Biofisica, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo, SP, 05508-000, Brazil
| | - João A B Pedroso
- Departamento de Fisiologia e Biofisica, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo, SP, 05508-000, Brazil
| | - Carol F Elias
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109-5622, USA
| | - Edward O List
- Edison Biotechnology Institute and Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, 45701USA
| | - John J Kopchick
- Edison Biotechnology Institute and Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, 45701USA
| | - Raphael E Szawka
- Departamento de Fisiologia e Biofisica, Instituto de Ciencias Biologicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Jose Donato
- Departamento de Fisiologia e Biofisica, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo, SP, 05508-000, Brazil
| |
Collapse
|
4
|
MacGregor DJ, Leng G. Network and Population Function in Neuroendocrine Systems. SYSTEMS MEDICINE 2021. [DOI: 10.1016/b978-0-12-801238-3.11371-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
5
|
van Esdonk MJ, Burggraaf J, van der Graaf PH, Stevens J. Model informed quantification of the feed-forward stimulation of growth hormone by growth hormone-releasing hormone. Br J Clin Pharmacol 2020; 86:1575-1584. [PMID: 32087619 PMCID: PMC7373696 DOI: 10.1111/bcp.14265] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 09/27/2019] [Accepted: 11/05/2019] [Indexed: 12/21/2022] Open
Abstract
Aims Growth hormone (GH) secretion is pulsatile and secretion varies highly between individuals. To understand and ultimately predict GH secretion, it is important to first delineate and quantify the interaction and variability in the biological processes underlying stimulated GH secretion. This study reports on the development of a population nonlinear mixed effects model for GH stimulation, incorporating individual GH kinetics and the stimulation of GH by GH‐releasing hormone (GHRH). Methods Literature data on the systemic circulation, the median eminence, and the anterior pituitary were included as system parameters in the model. Population parameters were estimated on data from 8 healthy normal weight and 16 obese women who received a 33 μg recombinant human GH dose. The next day, a bolus injection of 100 μg GHRH was given to stimulate GH secretion. Results The GH kinetics were best described with the addition of 2 distribution compartments with a bodyweight dependent clearance (increasing linearly from 24.7 L/h for a 60‐kg subject to 32.1 L/h for a 100‐kg subject). The model described the data adequately with high parameter precision and significant interindividual variability on the GH clearance and distribution volume. Additionally, high variability in the amount of secreted GH, driven by GHRH receptor activation, was identified (coefficient of variation = 90%). Conclusion The stimulation of GH by GHRH was quantified and significant interindividual variability was identified on multiple parameters. This model sets the stage for further development of by inclusion of additional physiological components to quantify GH secretion in humans.
Collapse
Affiliation(s)
- Michiel J van Esdonk
- Division of Systems Biomedicine and Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands.,Centre for Human Drug Research, Leiden, The Netherlands
| | - Jacobus Burggraaf
- Division of Systems Biomedicine and Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands.,Centre for Human Drug Research, Leiden, The Netherlands
| | - Piet H van der Graaf
- Division of Systems Biomedicine and Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands.,Certara QSP, Canterbury, UK
| | - Jasper Stevens
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| |
Collapse
|
6
|
Leng G, MacGregor DJ. Models in neuroendocrinology. Math Biosci 2018; 305:29-41. [DOI: 10.1016/j.mbs.2018.07.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 07/20/2018] [Accepted: 07/24/2018] [Indexed: 12/18/2022]
|
7
|
Somatostatin triggers rhythmic electrical firing in hypothalamic GHRH neurons. Sci Rep 2016; 6:24394. [PMID: 27072430 PMCID: PMC4829871 DOI: 10.1038/srep24394] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 03/29/2016] [Indexed: 12/12/2022] Open
Abstract
Hypothalamic growth hormone-releasing hormone (GHRH) neurons orchestrate body growth/maturation and have been implicated in feeding responses and ageing. However, the electrical patterns that dictate GHRH neuron functions have remained elusive. Since the inhibitory neuropeptide somatostatin (SST) is considered to be a primary oscillator of the GH axis, we examined its acute effects on GHRH neurons in brain slices from male and female GHRH-GFP mice. At the cellular level, SST irregularly suppressed GHRH neuron electrical activity, leading to slow oscillations at the population level. This resulted from an initial inhibitory action at the GHRH neuron level via K+ channel activation, followed by a delayed, sst1/sst2 receptor-dependent unbalancing of glutamatergic and GABAergic synaptic inputs. The oscillation patterns induced by SST were sexually dimorphic, and could be explained by differential actions of SST on both GABAergic and glutamatergic currents. Thus, a tripartite neuronal circuit involving a fast hyperpolarization and a dual regulation of synaptic inputs appeared sufficient in pacing the activity of the GHRH neuronal population. These “feed-forward loops” may represent basic building blocks involved in the regulation of GHRH release and its downstream sexual specific functions.
Collapse
|
8
|
Kasuya E. Secretory pattern and regulatory mechanism of growth hormone in cattle. Anim Sci J 2015; 87:178-82. [PMID: 26260675 PMCID: PMC5042056 DOI: 10.1111/asj.12418] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 03/02/2015] [Accepted: 03/03/2015] [Indexed: 11/30/2022]
Abstract
The ultradian rhythm of growth hormone (GH) secretion has been known in several animal species for years and has recently been observed in cattle. Although the physiological significance of the rhythm is not yet fully understood, it appears essential for normal growth. In this review, previous studies concerning the GH secretory pattern in cattle, including its ultradian rhythm, are introduced and the regulatory mechanism is discussed on the basis of recent findings.
Collapse
Affiliation(s)
- Etsuko Kasuya
- Animal Physiology Research Unit, Division of Animal Sciences, National Institute of Agrobiological Sciences, Tsukuba, Japan
| |
Collapse
|
9
|
Biran J, Tahor M, Wircer E, Levkowitz G. Role of developmental factors in hypothalamic function. Front Neuroanat 2015. [PMID: 25954163 DOI: 10.3389/fnana.2015.00047.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The hypothalamus is a brain region which regulates homeostasis by mediating endocrine, autonomic and behavioral functions. It is comprised of several nuclei containing distinct neuronal populations producing neuropeptides and neurotransmitters that regulate fundamental body functions including temperature and metabolic rate, thirst and hunger, sexual behavior and reproduction, circadian rhythm, and emotional responses. The identity, number and connectivity of these neuronal populations are established during the organism's development and are of crucial importance for normal hypothalamic function. Studies have suggested that developmental abnormalities in specific hypothalamic circuits can lead to obesity, sleep disorders, anxiety, depression and autism. At the molecular level, the development of the hypothalamus is regulated by transcription factors (TF), secreted growth factors, neuropeptides and their receptors. Recent studies in zebrafish and mouse have demonstrated that some of these molecules maintain their expression in the adult brain and subsequently play a role in the physiological functions that are regulated by hypothalamic neurons. Here, we summarize the involvement of some of the key developmental factors in hypothalamic development and function by focusing on the mouse and zebrafish genetic model organisms.
Collapse
Affiliation(s)
- Jakob Biran
- Departments of Molecular Cell Biology, Weizmann Institute of Science Rehovot, Israel
| | - Maayan Tahor
- Departments of Molecular Cell Biology, Weizmann Institute of Science Rehovot, Israel
| | - Einav Wircer
- Departments of Molecular Cell Biology, Weizmann Institute of Science Rehovot, Israel
| | - Gil Levkowitz
- Departments of Molecular Cell Biology, Weizmann Institute of Science Rehovot, Israel
| |
Collapse
|
10
|
Biran J, Tahor M, Wircer E, Levkowitz G. Role of developmental factors in hypothalamic function. Front Neuroanat 2015; 9:47. [PMID: 25954163 PMCID: PMC4404869 DOI: 10.3389/fnana.2015.00047] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 03/27/2015] [Indexed: 12/13/2022] Open
Abstract
The hypothalamus is a brain region which regulates homeostasis by mediating endocrine, autonomic and behavioral functions. It is comprised of several nuclei containing distinct neuronal populations producing neuropeptides and neurotransmitters that regulate fundamental body functions including temperature and metabolic rate, thirst and hunger, sexual behavior and reproduction, circadian rhythm, and emotional responses. The identity, number and connectivity of these neuronal populations are established during the organism’s development and are of crucial importance for normal hypothalamic function. Studies have suggested that developmental abnormalities in specific hypothalamic circuits can lead to obesity, sleep disorders, anxiety, depression and autism. At the molecular level, the development of the hypothalamus is regulated by transcription factors (TF), secreted growth factors, neuropeptides and their receptors. Recent studies in zebrafish and mouse have demonstrated that some of these molecules maintain their expression in the adult brain and subsequently play a role in the physiological functions that are regulated by hypothalamic neurons. Here, we summarize the involvement of some of the key developmental factors in hypothalamic development and function by focusing on the mouse and zebrafish genetic model organisms.
Collapse
Affiliation(s)
- Jakob Biran
- Departments of Molecular Cell Biology, Weizmann Institute of Science Rehovot, Israel
| | - Maayan Tahor
- Departments of Molecular Cell Biology, Weizmann Institute of Science Rehovot, Israel
| | - Einav Wircer
- Departments of Molecular Cell Biology, Weizmann Institute of Science Rehovot, Israel
| | - Gil Levkowitz
- Departments of Molecular Cell Biology, Weizmann Institute of Science Rehovot, Israel
| |
Collapse
|
11
|
Abstract
The somatostatin (SRIF) system, which includes the SRIF ligand and receptors, regulates anterior pituitary gland function, mainly inhibiting hormone secretion and to some extent pituitary tumor cell growth. SRIF-14 via its cognate G-protein-coupled receptors (subtypes 1-5) activates multiple cellular signaling pathways including adenylate cyclase/cAMP, MAPK, ion channel-dependent pathways, and others. In addition, recent data have suggested SRIF-independent constitutive SRIF receptor activity responsible for GH and ACTH inhibition in vitro. This review summarizes current knowledge on ligand-dependent and independent SRIF receptor molecular and functional effects on hormone-secreting cells in the anterior pituitary gland.
Collapse
Affiliation(s)
- Tamar Eigler
- Division of EndocrinologyDiabetes and Metabolism, Department of Medicine, Pituitary Center, Cedars Sinai Medical Center, Davis Building, Room 3066, 8700 Beverly Boulevard, Los Angeles, California 90048, USA
| | - Anat Ben-Shlomo
- Division of EndocrinologyDiabetes and Metabolism, Department of Medicine, Pituitary Center, Cedars Sinai Medical Center, Davis Building, Room 3066, 8700 Beverly Boulevard, Los Angeles, California 90048, USA
| |
Collapse
|
12
|
Wańkowska M, Polkowska J, Misztal T, Romanowicz K. The influence of ovarian factors on the somatostatin-growth hormone system during the postnatal growth and sexual development in lambs. Anim Reprod Sci 2012; 133:77-85. [PMID: 22766111 DOI: 10.1016/j.anireprosci.2012.05.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Revised: 05/27/2012] [Accepted: 05/30/2012] [Indexed: 10/28/2022]
Abstract
The aim of the study was to elucidate the effects of ovarian hormones on somatostatin in the hypothalamic neurons and growth hormone (GH) secretion during the postnatal growth and development of sheep. The study was performed on 9-week-old (infantile) lambs that were ovary-intact (OVI) or ovariectomized (OVX) at 39 days of age, and on 16-week-old (juvenile) lambs that were OVI or OVX at 88 days of age. Hormones in neurons and somatotropic cells were assayed with immunohistochemistry and radioimmunoassay. Following ovariectomy, immunoreactive somatostatin was more abundant (p<0.05) in the hypothalamus of infantile lambs, whereas in juvenile lambs it was more abundant (p<0.05) in the periventricular nucleus but reduced (p<0.01) in the median eminence. In contrast to somatostatin in the hypothalamus, the content of immunoreactive GH in the hypophysis was less in OVX infantile lambs, but greater in OVX juvenile lambs (p<0.05). Basal blood serum concentrations of GH were greater (p<0.05) in OVX infantile lambs, whereas in OVX juvenile lambs, mean and basal concentrations of GH and amplitude of GH pulses were less than in OVI lambs (p<0.05). The postnatal increase in body weight was greatest in middle-late infancy (p<0.01). The body weight did not differ (p>0.05) between OVI and OVX lambs. In conclusion, ovarian factors may inhibit the GH secretion in infantile lambs but enhance the GH secretion in juvenile lambs. Transition to puberty, as related to the growth rate, appears to be due mainly to change in gonadal influence on the somatostatin neurosecretion. A stimulation of somatostatin output in the median eminence by gonadal factors in infancy is followed by a stimulation of somatostatin accumulation after infancy. Thus, ovarian factors modulate mechanisms within the somatotropic system of lambs to synchronize the somatic growth with sexual development.
Collapse
Affiliation(s)
- Marta Wańkowska
- Department of Endocrinology, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka, Jabłonna, Poland.
| | | | | | | |
Collapse
|
13
|
Wańkowska M. Influence of testicular hormones on the somatostatin-GH system during the growth promoted transition to puberty in sheep. Theriogenology 2011; 77:615-27. [PMID: 22056019 DOI: 10.1016/j.theriogenology.2011.08.038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Revised: 08/25/2011] [Accepted: 08/30/2011] [Indexed: 11/25/2022]
Abstract
The aim of the present study was to investigate whether the growth promoted transition to puberty in lambs involved changes in the effects of testicular hormones on somatostatin in hypothalamic neurons and GH secretion. The study was performed in infants (9-week-old) testis-intact (TEI) and orchidectomized (ORCHX) at the sixth week of age, and pubertal lambs (16-week-old) TEI and ORCHX at the 12th week of age (n = 20). In TEI lambs, the changes included a pubertal increase in immunoreactive somatostatin in the periventricular nucleus and median eminence with simultaneous neuropeptide depletion in the median eminence, and a decrease in the percentage of the hypophyseal area (PA) occupied by GH-immunoreactive cells (P < 0.05). The mean concentration of GH in the peripheral blood plasma was greater (P < 0.001) in early infancy (5 wk), because of the greater (P < 0.0001) pulse amplitude, and then uniformly low until puberty. The postnatal increase in the body weight (BW) was prominent (P < 0.01) in middle-late infancy (9-12 wk) because of the large daily live-weight gain. After orchidectomy somatostatin was abundant. This effect on nerve terminals in the median eminence was greater (P < 0.01) in infancy and lesser (P < 0.05) in puberty. Conversely, the PA occupied by GH cells was lower in the ORCHX pubertal lambs compared to TEI lambs (P < 0.05). The GH concentration and pulse characteristics were less (P < 0.05) in the infantile and pubertal ORCHX lambs compared to the TEI lambs. However, this effect was weak (P < 0.05) until middle infancy because of no influence on the GH basal concentration, and strong (P < 0.001) after late infancy. The BW did not differ (P > 0.05) between TEI and ORCHX lambs. Findings suggest activation of GH negative autofeedback loop in middle infancy. Testicular factors may play an inhibitory role in regulating somatostatin accumulation and a stimulatory role in GH secretion until puberty. The start of puberty is related to an attenuation in the stimulatory role of gonadal factors in regulating somatostatin depletion in nerve terminals associated with an intensification of the stimulatory role of gonadal factors in regulating GH secretion. From a somatic perspective of growth rate, these mechanisms do not seem to be important. Thus, testicular factors modulate mechanisms within the somatostatin-GH system to integrate somatotropic and gonadotropic functions at the time of growth-promoted sexual maturation in sheep.
Collapse
Affiliation(s)
- Marta Wańkowska
- The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Jabłonna, Poland.
| |
Collapse
|
14
|
Ben-Shlomo A, Melmed S. Pituitary somatostatin receptor signaling. Trends Endocrinol Metab 2010; 21:123-33. [PMID: 20149677 PMCID: PMC2834886 DOI: 10.1016/j.tem.2009.12.003] [Citation(s) in RCA: 149] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2009] [Revised: 12/09/2009] [Accepted: 12/10/2009] [Indexed: 12/27/2022]
Abstract
Somatotropin-release inhibitory factor (SRIF) is a major regulator of pituitary function, mostly inhibiting hormone secretion and to a lesser extent pituitary cell growth. Five SRIF receptor subtypes (SSTR1-5) are ubiquitously expressed G-protein coupled receptors. In the pituitary, SSTR1, 2, 3 and 5 are expressed, with SSTR2 and SSTR5 predominating. As new SRIF analogs have recently been introduced for treatment of pituitary disease, we evaluate the current knowledge of cell-specific pituitary SRIF receptor signaling and highlight areas of future research for comprehensive understanding of these mechanisms. Elucidating pituitary SRIF receptor signaling enables understanding of pituitary hormone secretion and cell growth, and also encourages future therapeutic development for pituitary disorders.
Collapse
Affiliation(s)
- Anat Ben-Shlomo
- Pituitary Center, Department of Medicine, Cedars Sinai Medical Center, Los Angeles, California 90048, USA
| | | |
Collapse
|
15
|
Gan EH, Quinton R. Physiological Significance of the Rhythmic Secretion of Hypothalamic and Pituitary Hormones. PROGRESS IN BRAIN RESEARCH 2010; 181:111-26. [DOI: 10.1016/s0079-6123(08)81007-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
16
|
Farhy LS, McCall AL. Pancreatic network control of glucagon secretion and counterregulation. Methods Enzymol 2009; 467:547-581. [PMID: 19897107 PMCID: PMC3072828 DOI: 10.1016/s0076-6879(09)67021-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Glucagon counterregulation (GCR) is a key protection against hypoglycemia compromised in insulinopenic diabetes by an unknown mechanism. In this work, we present an interdisciplinary approach to the analysis of the GCR control mechanisms. Our results indicate that a pancreatic network which unifies a few explicit interactions between the major islet peptides and blood glucose (BG) can replicate the normal GCR axis and explain its impairment in diabetes. A key and novel component of this network is an alpha-cell auto-feedback, which drives glucagon pulsatility and mediates triggering of pulsatile GCR by hypoglycemia via a switch-off of the beta-cell suppression of the alpha-cells. We have performed simulations based on our models of the endocrine pancreas which explain the in vivo GCR response to hypoglycemia of the normal pancreas and the enhancement of defective pulsatile GCR in beta-cell deficiency by switch-off of intrapancreatic alpha-cell suppressing signals. The models also predicted that reduced insulin secretion decreases and delays the GCR. In conclusion, based on experimental data we have developed and validated a model of the normal GCR control mechanisms and their dysregulation in insulin deficient diabetes. One advantage of this construct is that all model components are clinically measurable, thereby permitting its transfer, validation, and application to the study of the GCR abnormalities of the human endocrine pancreas in vivo.
Collapse
Affiliation(s)
- Leon S. Farhy
- Departments of Medicine, Center for Biomathematical Technology, Center, Box 800735, University of Virginia, Charlottesville, Virginia, 22908, 434-924-2496, 434-982-3878 (fax),
| | - Anthony L. McCall
- Departments of Medicine, Center, Box 801407, University of Virginia, Charlottesville, Virginia, 22908, 434-243-9373, 434-982-3796 (fax),
| |
Collapse
|
17
|
Farhy LS, McCall AL. System-level control to optimize glucagon counterregulation by switch-off of α-cell suppressing signals in β-cell deficiency. J Diabetes Sci Technol 2009; 3:21-33. [PMID: 20046648 PMCID: PMC2769841 DOI: 10.1177/193229680900300104] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
BACKGROUND Glucagon counterregulation (GCR) is a key protection against hypoglycemia that is compromised in diabetes. In β-cell-deficient rats, GCR pulsatility can be amplified if insulin (INS) or somatostatin (SS) are infused in the pancreatic artery and then switched off during hypoglycemia. The data indicate that these signals act by different mechanisms, and here we analyze the differences between the two switch offs (SOs) and predict the GCR-amplifying effect of their individual or combined application. METHODS A minimal control network (MCN) of α/δ-cell interactions is approximated by differential equations to explain the GCR response to a SO and test in silico the hypotheses: (i) INS SO suppresses basal and pulsatile, while SS SO blocks only pulsatile glucagon release and (ii) simultaneous application of the two switch offs will augment the individual GCR response. RESULTS The mechanism postulated in (i) explains the differences in the GCR responses between the SOs. The MCN predicts that simultaneous application of INS and SS decreases basal glucagon but increases post-SO amplitude, thus doubling the response of GCR achieved by each of the individual signals. CONCLUSION The current analyses predict that INS and SS SOs improve defective GCR in β-cell deficiency through different but complementary mechanisms and suggest SO strategies to maximally enhance GCR in type 1 diabetes by simultaneous manipulation of the network control. These results are clinically relevant, as they could have application to design of an artificial pancreas by providing ways to augment GCR that would not require glucagon infusion.
Collapse
Affiliation(s)
- Leon S Farhy
- Department of Medicine, Center for Biomathematical Technology, University of Virginia, Charlottesville, Virginia 22908, USA.
| | | |
Collapse
|
18
|
Veldhuis JD, Keenan DM, Pincus SM. Motivations and methods for analyzing pulsatile hormone secretion. Endocr Rev 2008; 29:823-64. [PMID: 18940916 PMCID: PMC2647703 DOI: 10.1210/er.2008-0005] [Citation(s) in RCA: 156] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2008] [Accepted: 09/16/2008] [Indexed: 01/05/2023]
Abstract
Endocrine glands communicate with remote target cells via a mixture of continuous and intermittent signal exchange. Continuous signaling allows slowly varying control, whereas intermittency permits large rapid adjustments. The control systems that mediate such homeostatic corrections operate in a species-, gender-, age-, and context-selective fashion. Significant progress has been made in understanding mechanisms of adaptive interglandular signaling in vivo. Principal goals are to understand the physiological origins, significance, and mechanisms of pulsatile hormone secretion. Key analytical issues are: 1) to quantify the number, size, shape, and uniformity of pulses, nonpulsatile (basal) secretion, and elimination kinetics; 2) to evaluate regulation of the axis as a whole; and 3) to reconstruct dose-response interactions without disrupting hormone connections. This review will focus on the motivations driving and the methodologies used for such analyses.
Collapse
Affiliation(s)
- Johannes D Veldhuis
- Endocrine Research Unit, Department of Internal Medicine, Mayo Medical School, Mayo School of Graduate Medical Education, Center for Translational Science Activities, Mayo Clinic, Rochester, Minnesota 55905, USA.
| | | | | |
Collapse
|
19
|
Farhy LS, Du Z, Zeng Q, Veldhuis PP, Johnson ML, Brayman KL, McCall AL. Amplification of pulsatile glucagon counterregulation by switch-off of alpha-cell-suppressing signals in streptozotocin-treated rats. Am J Physiol Endocrinol Metab 2008; 295:E575-E585. [PMID: 18577688 PMCID: PMC2536740 DOI: 10.1152/ajpendo.90372.2008] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2008] [Accepted: 06/23/2008] [Indexed: 02/08/2023]
Abstract
Glucagon counterregulation (GCR) is a key protection against hypoglycemia that is compromised in diabetes via an unknown mechanism. To test the hypothesis that alpha-cell-inhibiting signals that are switched off during hypoglycemia amplify GCR, we studied streptozotocin (STZ)-treated male Wistar rats and estimated the effect on GCR of intrapancreatic infusion and termination during hypoglycemia of saline, insulin, and somatostatin. Times 10 min before and 45 min after the switch-off were analyzed. Insulin and somatostatin, but not saline, switch-off significantly increased the glucagon levels (P = 0.03), and the fold increases relative to baseline were significantly higher (P < 0.05) in the insulin and somatostatin groups vs. the saline group. The peak concentrations were also higher in the insulin (368 pg/ml) and somatostatin (228 pg/ml) groups vs. the saline (114 pg/ml) group (P < 0.05). GCR was pulsatile in most animals, indicating a feedback regulation. After the switch-off, the number of secretory events and the total pulsatile production were lower in the saline group vs. the insulin and somatostatin groups (P < 0.05), indicating enhancement of glucagon pulsatile activity by insulin and somatostatin compared with saline. Network modeling analysis demonstrates that reciprocal interactions between alpha- and delta-cells can explain the amplification by interpreting the GCR as a rebound response to the switch-off. The model justifies experimental designs to further study the intrapancreatic network in relation to the switch-off phenomenon. The results of this proof-of-concept interdisciplinary study support the hypothesis that GCR develops as a rebound pulsatile response of the intrapancreatic endocrine feedback network to switch-off of alpha-cell-inhibiting islet signals.
Collapse
Affiliation(s)
- Leon S Farhy
- University of Virginia Health System, Charlottesville, VA 22908, USA.
| | | | | | | | | | | | | |
Collapse
|
20
|
Liu PY, Iranmanesh A, Keenan DM, Pincus SM, Veldhuis JD. A noninvasive measure of negative-feedback strength, approximate entropy, unmasks strong diurnal variations in the regularity of LH secretion. Am J Physiol Endocrinol Metab 2007; 293:E1409-15. [PMID: 17848633 DOI: 10.1152/ajpendo.00365.2007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The secretion of anterior-pituitary hormones is subject to negative feedback. Whether negative feedback evolves dynamically over 24 h is not known. Conventional experimental paradigms to test this concept may induce artifacts due to nonphysiological feedback. These limitations might be overcome by a noninvasive methodology to quantify negative feedback continuously over 24 h without disrupting the axis. The present study exploits a recently validated model-free regularity statistic, approximate entropy (ApEn), which monitors feedback changes with high sensitivity and specificity (both >90%; Pincus SM, Hartman ML, Roelfsema F, Thorner MO, Veldhuis JD. Am J Physiol Endocrinol Metab 273: E948-E957, 1999). A time-incremented moving window of ApEn was applied to LH time series obtained by intensive (10-min) blood sampling for four consecutive days (577 successive measurements) in each of eight healthy men. Analyses unveiled marked 24-h variations in ApEn with daily maxima (lowest feedback) at 1100 +/- 1.7 h (mean +/- SE) and minima (highest feedback) at 0430 +/- 1.9 h. The mean difference between maximal and minimal 24-h LH ApEn was 0.348 +/- 0.018, which differed by P < 0.001 from all three of randomly shuffled versions of the same LH time series, simulated pulsatile data and assay noise. Analyses artificially limited to 24-h rather than 96-h data yielded reproducibility coefficients of 3.7-9.0% for ApEn maxima and minima. In conclusion, a feedback-sensitive regularity statistic unmasks strong and consistent 24-h rhythmicity of the orderliness of unperturbed pituitary-hormone secretion. These outcomes suggest that ApEn may have general utility in probing dynamic mechanisms mediating feedback in other endocrine systems.
Collapse
Affiliation(s)
- Peter Y Liu
- Endocrine Research Unit, Mayo School of Graduate Medical Education, General Clinical Research Center, Mayo Clinic, Rochester, MN 55905, USA
| | | | | | | | | |
Collapse
|
21
|
Claret M, Smith MA, Batterham RL, Selman C, Choudhury AI, Fryer LG, Clements M, Al-Qassab H, Heffron H, Xu AW, Speakman JR, Barsh GS, Viollet B, Vaulont S, Ashford ML, Carling D, Withers DJ. AMPK is essential for energy homeostasis regulation and glucose sensing by POMC and AgRP neurons. J Clin Invest 2007; 117:2325-36. [PMID: 17671657 PMCID: PMC1934578 DOI: 10.1172/jci31516] [Citation(s) in RCA: 394] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2007] [Accepted: 04/24/2007] [Indexed: 01/13/2023] Open
Abstract
Hypothalamic AMP-activated protein kinase (AMPK) has been suggested to act as a key sensing mechanism, responding to hormones and nutrients in the regulation of energy homeostasis. However, the precise neuronal populations and cellular mechanisms involved are unclear. The effects of long-term manipulation of hypothalamic AMPK on energy balance are also unknown. To directly address such issues, we generated POMC alpha 2KO and AgRP alpha 2KO mice lacking AMPK alpha2 in proopiomelanocortin- (POMC-) and agouti-related protein-expressing (AgRP-expressing) neurons, key regulators of energy homeostasis. POMC alpha 2KO mice developed obesity due to reduced energy expenditure and dysregulated food intake but remained sensitive to leptin. In contrast, AgRP alpha 2KO mice developed an age-dependent lean phenotype with increased sensitivity to a melanocortin agonist. Electrophysiological studies in AMPK alpha2-deficient POMC or AgRP neurons revealed normal leptin or insulin action but absent responses to alterations in extracellular glucose levels, showing that glucose-sensing signaling mechanisms in these neurons are distinct from those pathways utilized by leptin or insulin. Taken together with the divergent phenotypes of POMC alpha 2KO and AgRP alpha 2KO mice, our findings suggest that while AMPK plays a key role in hypothalamic function, it does not act as a general sensor and integrator of energy homeostasis in the mediobasal hypothalamus.
Collapse
Affiliation(s)
- Marc Claret
- Centre for Diabetes and Endocrinology, Rayne Institute, University College London, London, United Kingdom.
Neurosciences Institute, Pathology and Neuroscience Division, Ninewells Hospital and Medical School, University of Dundee, Dundee, United Kingdom.
Cellular Stress Group, MRC Clinical Sciences Centre, Imperial College London, London, United Kingdom.
Department of Genetics and Department of Pediatrics, Stanford University School of Medicine, Stanford, California, USA.
Aberdeen Centre for Energy Regulation and Obesity, University of Aberdeen, Aberdeen, United Kingdom.
INSERM U567, CNRS, UMR 8104, Institut Cochin, Université René Descartes, Paris, France
| | - Mark A. Smith
- Centre for Diabetes and Endocrinology, Rayne Institute, University College London, London, United Kingdom.
Neurosciences Institute, Pathology and Neuroscience Division, Ninewells Hospital and Medical School, University of Dundee, Dundee, United Kingdom.
Cellular Stress Group, MRC Clinical Sciences Centre, Imperial College London, London, United Kingdom.
Department of Genetics and Department of Pediatrics, Stanford University School of Medicine, Stanford, California, USA.
Aberdeen Centre for Energy Regulation and Obesity, University of Aberdeen, Aberdeen, United Kingdom.
INSERM U567, CNRS, UMR 8104, Institut Cochin, Université René Descartes, Paris, France
| | - Rachel L. Batterham
- Centre for Diabetes and Endocrinology, Rayne Institute, University College London, London, United Kingdom.
Neurosciences Institute, Pathology and Neuroscience Division, Ninewells Hospital and Medical School, University of Dundee, Dundee, United Kingdom.
Cellular Stress Group, MRC Clinical Sciences Centre, Imperial College London, London, United Kingdom.
Department of Genetics and Department of Pediatrics, Stanford University School of Medicine, Stanford, California, USA.
Aberdeen Centre for Energy Regulation and Obesity, University of Aberdeen, Aberdeen, United Kingdom.
INSERM U567, CNRS, UMR 8104, Institut Cochin, Université René Descartes, Paris, France
| | - Colin Selman
- Centre for Diabetes and Endocrinology, Rayne Institute, University College London, London, United Kingdom.
Neurosciences Institute, Pathology and Neuroscience Division, Ninewells Hospital and Medical School, University of Dundee, Dundee, United Kingdom.
Cellular Stress Group, MRC Clinical Sciences Centre, Imperial College London, London, United Kingdom.
Department of Genetics and Department of Pediatrics, Stanford University School of Medicine, Stanford, California, USA.
Aberdeen Centre for Energy Regulation and Obesity, University of Aberdeen, Aberdeen, United Kingdom.
INSERM U567, CNRS, UMR 8104, Institut Cochin, Université René Descartes, Paris, France
| | - Agharul I. Choudhury
- Centre for Diabetes and Endocrinology, Rayne Institute, University College London, London, United Kingdom.
Neurosciences Institute, Pathology and Neuroscience Division, Ninewells Hospital and Medical School, University of Dundee, Dundee, United Kingdom.
Cellular Stress Group, MRC Clinical Sciences Centre, Imperial College London, London, United Kingdom.
Department of Genetics and Department of Pediatrics, Stanford University School of Medicine, Stanford, California, USA.
Aberdeen Centre for Energy Regulation and Obesity, University of Aberdeen, Aberdeen, United Kingdom.
INSERM U567, CNRS, UMR 8104, Institut Cochin, Université René Descartes, Paris, France
| | - Lee G.D. Fryer
- Centre for Diabetes and Endocrinology, Rayne Institute, University College London, London, United Kingdom.
Neurosciences Institute, Pathology and Neuroscience Division, Ninewells Hospital and Medical School, University of Dundee, Dundee, United Kingdom.
Cellular Stress Group, MRC Clinical Sciences Centre, Imperial College London, London, United Kingdom.
Department of Genetics and Department of Pediatrics, Stanford University School of Medicine, Stanford, California, USA.
Aberdeen Centre for Energy Regulation and Obesity, University of Aberdeen, Aberdeen, United Kingdom.
INSERM U567, CNRS, UMR 8104, Institut Cochin, Université René Descartes, Paris, France
| | - Melanie Clements
- Centre for Diabetes and Endocrinology, Rayne Institute, University College London, London, United Kingdom.
Neurosciences Institute, Pathology and Neuroscience Division, Ninewells Hospital and Medical School, University of Dundee, Dundee, United Kingdom.
Cellular Stress Group, MRC Clinical Sciences Centre, Imperial College London, London, United Kingdom.
Department of Genetics and Department of Pediatrics, Stanford University School of Medicine, Stanford, California, USA.
Aberdeen Centre for Energy Regulation and Obesity, University of Aberdeen, Aberdeen, United Kingdom.
INSERM U567, CNRS, UMR 8104, Institut Cochin, Université René Descartes, Paris, France
| | - Hind Al-Qassab
- Centre for Diabetes and Endocrinology, Rayne Institute, University College London, London, United Kingdom.
Neurosciences Institute, Pathology and Neuroscience Division, Ninewells Hospital and Medical School, University of Dundee, Dundee, United Kingdom.
Cellular Stress Group, MRC Clinical Sciences Centre, Imperial College London, London, United Kingdom.
Department of Genetics and Department of Pediatrics, Stanford University School of Medicine, Stanford, California, USA.
Aberdeen Centre for Energy Regulation and Obesity, University of Aberdeen, Aberdeen, United Kingdom.
INSERM U567, CNRS, UMR 8104, Institut Cochin, Université René Descartes, Paris, France
| | - Helen Heffron
- Centre for Diabetes and Endocrinology, Rayne Institute, University College London, London, United Kingdom.
Neurosciences Institute, Pathology and Neuroscience Division, Ninewells Hospital and Medical School, University of Dundee, Dundee, United Kingdom.
Cellular Stress Group, MRC Clinical Sciences Centre, Imperial College London, London, United Kingdom.
Department of Genetics and Department of Pediatrics, Stanford University School of Medicine, Stanford, California, USA.
Aberdeen Centre for Energy Regulation and Obesity, University of Aberdeen, Aberdeen, United Kingdom.
INSERM U567, CNRS, UMR 8104, Institut Cochin, Université René Descartes, Paris, France
| | - Allison W. Xu
- Centre for Diabetes and Endocrinology, Rayne Institute, University College London, London, United Kingdom.
Neurosciences Institute, Pathology and Neuroscience Division, Ninewells Hospital and Medical School, University of Dundee, Dundee, United Kingdom.
Cellular Stress Group, MRC Clinical Sciences Centre, Imperial College London, London, United Kingdom.
Department of Genetics and Department of Pediatrics, Stanford University School of Medicine, Stanford, California, USA.
Aberdeen Centre for Energy Regulation and Obesity, University of Aberdeen, Aberdeen, United Kingdom.
INSERM U567, CNRS, UMR 8104, Institut Cochin, Université René Descartes, Paris, France
| | - John R. Speakman
- Centre for Diabetes and Endocrinology, Rayne Institute, University College London, London, United Kingdom.
Neurosciences Institute, Pathology and Neuroscience Division, Ninewells Hospital and Medical School, University of Dundee, Dundee, United Kingdom.
Cellular Stress Group, MRC Clinical Sciences Centre, Imperial College London, London, United Kingdom.
Department of Genetics and Department of Pediatrics, Stanford University School of Medicine, Stanford, California, USA.
Aberdeen Centre for Energy Regulation and Obesity, University of Aberdeen, Aberdeen, United Kingdom.
INSERM U567, CNRS, UMR 8104, Institut Cochin, Université René Descartes, Paris, France
| | - Gregory S. Barsh
- Centre for Diabetes and Endocrinology, Rayne Institute, University College London, London, United Kingdom.
Neurosciences Institute, Pathology and Neuroscience Division, Ninewells Hospital and Medical School, University of Dundee, Dundee, United Kingdom.
Cellular Stress Group, MRC Clinical Sciences Centre, Imperial College London, London, United Kingdom.
Department of Genetics and Department of Pediatrics, Stanford University School of Medicine, Stanford, California, USA.
Aberdeen Centre for Energy Regulation and Obesity, University of Aberdeen, Aberdeen, United Kingdom.
INSERM U567, CNRS, UMR 8104, Institut Cochin, Université René Descartes, Paris, France
| | - Benoit Viollet
- Centre for Diabetes and Endocrinology, Rayne Institute, University College London, London, United Kingdom.
Neurosciences Institute, Pathology and Neuroscience Division, Ninewells Hospital and Medical School, University of Dundee, Dundee, United Kingdom.
Cellular Stress Group, MRC Clinical Sciences Centre, Imperial College London, London, United Kingdom.
Department of Genetics and Department of Pediatrics, Stanford University School of Medicine, Stanford, California, USA.
Aberdeen Centre for Energy Regulation and Obesity, University of Aberdeen, Aberdeen, United Kingdom.
INSERM U567, CNRS, UMR 8104, Institut Cochin, Université René Descartes, Paris, France
| | - Sophie Vaulont
- Centre for Diabetes and Endocrinology, Rayne Institute, University College London, London, United Kingdom.
Neurosciences Institute, Pathology and Neuroscience Division, Ninewells Hospital and Medical School, University of Dundee, Dundee, United Kingdom.
Cellular Stress Group, MRC Clinical Sciences Centre, Imperial College London, London, United Kingdom.
Department of Genetics and Department of Pediatrics, Stanford University School of Medicine, Stanford, California, USA.
Aberdeen Centre for Energy Regulation and Obesity, University of Aberdeen, Aberdeen, United Kingdom.
INSERM U567, CNRS, UMR 8104, Institut Cochin, Université René Descartes, Paris, France
| | - Michael L.J. Ashford
- Centre for Diabetes and Endocrinology, Rayne Institute, University College London, London, United Kingdom.
Neurosciences Institute, Pathology and Neuroscience Division, Ninewells Hospital and Medical School, University of Dundee, Dundee, United Kingdom.
Cellular Stress Group, MRC Clinical Sciences Centre, Imperial College London, London, United Kingdom.
Department of Genetics and Department of Pediatrics, Stanford University School of Medicine, Stanford, California, USA.
Aberdeen Centre for Energy Regulation and Obesity, University of Aberdeen, Aberdeen, United Kingdom.
INSERM U567, CNRS, UMR 8104, Institut Cochin, Université René Descartes, Paris, France
| | - David Carling
- Centre for Diabetes and Endocrinology, Rayne Institute, University College London, London, United Kingdom.
Neurosciences Institute, Pathology and Neuroscience Division, Ninewells Hospital and Medical School, University of Dundee, Dundee, United Kingdom.
Cellular Stress Group, MRC Clinical Sciences Centre, Imperial College London, London, United Kingdom.
Department of Genetics and Department of Pediatrics, Stanford University School of Medicine, Stanford, California, USA.
Aberdeen Centre for Energy Regulation and Obesity, University of Aberdeen, Aberdeen, United Kingdom.
INSERM U567, CNRS, UMR 8104, Institut Cochin, Université René Descartes, Paris, France
| | - Dominic J. Withers
- Centre for Diabetes and Endocrinology, Rayne Institute, University College London, London, United Kingdom.
Neurosciences Institute, Pathology and Neuroscience Division, Ninewells Hospital and Medical School, University of Dundee, Dundee, United Kingdom.
Cellular Stress Group, MRC Clinical Sciences Centre, Imperial College London, London, United Kingdom.
Department of Genetics and Department of Pediatrics, Stanford University School of Medicine, Stanford, California, USA.
Aberdeen Centre for Energy Regulation and Obesity, University of Aberdeen, Aberdeen, United Kingdom.
INSERM U567, CNRS, UMR 8104, Institut Cochin, Université René Descartes, Paris, France
| |
Collapse
|
22
|
Haus E. Chronobiology in the endocrine system. Adv Drug Deliv Rev 2007; 59:985-1014. [PMID: 17804113 DOI: 10.1016/j.addr.2007.01.001] [Citation(s) in RCA: 139] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2006] [Accepted: 01/15/2007] [Indexed: 12/13/2022]
Abstract
Biological signaling occurs in a complex web with participation and interaction of the central nervous system, the autonomous nervous system, the endocrine glands, peripheral endocrine tissues including the intestinal tract and adipose tissue, and the immune system. All of these show an intricate time structure with rhythms and pulsatile variations in multiple frequencies. Circadian (about 24-hour) and circannual (about 1-year) rhythms are kept in step with the cyclic environmental surrounding by the timing and length of the daily light span. Rhythmicity of many endocrine variables is essential for their efficacy and, even in some instances, for the qualitative nature of their effects. Indeed, the continuous administration of certain hormones and their synthetic analogues may show substantially different effects than expected. In the design of drug-delivery systems and treatment schedules involving directly or indirectly the endocrine system, consideration of the human time organization is essential. A large amount of information on the endocrine time structure has accumulated, some of which is discussed in this review.
Collapse
Affiliation(s)
- Erhard Haus
- Department of Laboratory Medicine and Pathology, University of Minnesota, Health Partners Medical Group, Regions Hospital, 640 Jackson Street, St. Paul, Minnesota 55101, USA.
| |
Collapse
|
23
|
Farhy LS, Bowers CY, Veldhuis JD. Model-projected mechanistic bases for sex differences in growth hormone regulation in humans. Am J Physiol Regul Integr Comp Physiol 2007; 292:R1577-93. [PMID: 17185408 DOI: 10.1152/ajpregu.00584.2006] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Models of physiological systems facilitate rational experimental design, inference, and prediction. A recent construct of regulated growth hormone (GH) secretion interlinks the actions of GH-releasing hormone (GHRH), somatostatin (SRIF), and GH secretagogues (GHS) with GH feedback in the rat (Farhy LS, Veldhuis JD. Am J Physiol Regul Integr Comp Physiol 288: R1649–R1663, 2005). In contrast, no comparable formalism exists to explicate GH dynamics in any other species. The present analyses explore whether a unifying model structure can represent species- and sex-defined distinctions in the human and rodent. The consensus principle that GHRH and GHS synergize in vivo but not in vitro was explicable by assuming that GHS 1) evokes GHRH release from the brain, 2) opposes inhibition by SRIF both in the hypothalamus and on the pituitary gland, and 3) stimulates pituitary GH release directly and additively with GHRH. The gender-selective principle that GH pulses are larger and more irregular in women than men was conferrable by way of 4) higher GHRH potency and 5) greater GHS efficacy. The overall construct predicts GHRH/GHS synergy in the human only in the presence of SRIF when the brain-pituitary nexus is intact, larger and more irregular GH pulses in women, and observed gender differences in feedback by GH and the single and paired actions of GHRH, GHS, and SRIF. The proposed model platform should enhance the framing and interpretation of novel clinical hypotheses and create a basis for interspecies generalization of GH-axis regulation.
Collapse
Affiliation(s)
- Leon S Farhy
- Division of Endocrinology and Metabolism, Department of Internal Medicine, School of Medicine, University of Virginia, Charlottesville, Virginia, USA
| | | | | |
Collapse
|
24
|
Jostel A, Shalet SM. Prospects for the Development of Long-Acting Formulations of Human Somatropin. ACTA ACUST UNITED AC 2006; 5:139-45. [PMID: 16677056 DOI: 10.2165/00024677-200605030-00002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
In healthy humans, growth hormone (GH) is secreted in distinct pulses with an underlying nyctohemeral pattern. Current forms of somatropin replacement are unable to closely mimic such a release pattern, but are still able to exert the beneficial action of GH. A limited number of short-term studies in rodents and humans suggest that longitudinal growth may be superior when somatropin is given with a pulsatile mode of administration, whereas hepatic insulin-like growth factor-I generation and beneficial changes in body composition appear to be equal or even enhanced with continuous somatropin administration.Recent developments in drug delivery technology have allowed the use of slow-release preparations of somatropin in humans. The most successful technology so far has been the encapsulation of somatropin molecules in poly(D,L-lactic-co-glycolic acid) biodegradable microspheres. Pharmacokinetic and pharmacodynamic data have been published on two such preparations; Nutropin Depot((R)) and hGH-Biosphere((R)). The latter has a superior release profile, but outcomes data from multicenter trials in both children and adults have been presented for the former: catch-up growth was observed in children, although to a lesser degree than historic comparative data obtained with the use of daily somatropin injections and the effects on metabolic derangements in GH-deficient patients appeared similar to those observed with daily injections. Improved sustained-release somatropin preparations will need further study of their long-term efficacy, but, if successful, will be highly attractive in terms of patient compliance and convenience.
Collapse
Affiliation(s)
- Andreas Jostel
- Department of Endocrinology, Christie Hospital, Manchester, UK
| | | |
Collapse
|
25
|
Veldhuis JD, Keenan DM, Mielke K, Miles JM, Bowers CY. Testosterone supplementation in healthy older men drives GH and IGF-I secretion without potentiating peptidyl secretagogue efficacy. Eur J Endocrinol 2005; 153:577-86. [PMID: 16189179 DOI: 10.1530/eje.1.02001] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
OBJECTIVE Testosterone supplementation increases GH and IGF-I concentrations in healthy older men via unknown mechanisms. We examine the hypotheses that (i) testosterone amplifies stimulation of GH secretion by GH-releasing peptide (GHRP)-2 or GH-releasing hormone (GHRH) infused with l-arginine to limit somatostatin outflow (i.e. upregulates each agonistic pathway), (ii) testosterone augments the effect of both peptidyl secretagogues infused together (i.e. reduces opposition by hypothalamic somatostatin) and (iii) abdominal visceral fat (AVF) mass is a negative determinant of specific secretagogue-stimulated GH secretion. DESIGN Randomized double-blind crossover design of placebo versus testosterone administration in healthy older men. METHODS Deconvolution analysis was used to estimate basal GH secretion and the mass (integral) and waveform (time-shape) of GH secretory bursts. RESULTS Statistical contrasts revealed that administration of testosterone compared with placebo in seven men aged 60-77 years increased fasting concentrations of GH (P < 0.01) and IGF-I (P = 0.003), and basal (P < 0.005) and pulsatile (P < 0.01) GH secretion. Testosterone did not alter the absolute value or rank order of secretagogue efficacy: l-arginine/GHRP-2 (23-fold effect over saline) = GHRH/GHRP-2 (20-fold) > l-arginine/GHRH (7.5-fold). Waveform reconstruction indicated that each stimulus pair accelerated initial GH secretion within a burst (P < 0.01). Regression analysis disclosed a significant inverse association between GH secretory-burst mass and computer tomography-estimated AVF following stimulation with l-arginine/GHRH after testosterone supplementation (R(2) = 0.54, P = 0.015). CONCLUSION Supraphysiological testosterone concentrations augment GH and IGF-I production in the elderly male without altering maximal somatotrope responses to single and combined GHRH and GHRP-2 drive, thus predicting multifactorial mechanisms of testosterone upregulation.
Collapse
Affiliation(s)
- Johannes D Veldhuis
- Department of Internal Medicine, Mayo Medical and Graduate Schools of Medicine, General Clinical Research Center, Mayo Clinic, Rochester, MN 55905, USA.
| | | | | | | | | |
Collapse
|
26
|
Farhy LS, Veldhuis JD. Deterministic construct of amplifying actions of ghrelin on pulsatile growth hormone secretion. Am J Physiol Regul Integr Comp Physiol 2005; 288:R1649-63. [PMID: 15718392 DOI: 10.1152/ajpregu.00451.2004] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ghrelin is a native ligand for the growth hormone secretagogue (GHS) receptor that stimulates pulsatile GH secretion markedly. At present, no formal construct exists to unify ensemble effects of ghrelin, GH-releasing hormone (GHRH), somatostatin (SRIF), and GH feedback. To model such interactions, we have assumed that ghrelin can stimulate pituitary GH secretion directly, antagonize inhibition of pituitary GH release by SRIF, oppose suppression of GHRH neurons in the arcuate nucleus (ArC) by SRIF, and induce GHRH secretion from ArC. The dynamics of such connectivity yield self-renewable GH pulse patterns mirroring those in the adult male and female rat and explicate the following key experimental observations. 1) Constant GHS infusion stimulates pulsatile GH secretion. 2) GHS and GHRH display synergy in vivo. 3) A systemic pulse of GHS stimulates GH secretion in the female rat at any time and in the male more during a spontaneous peak than during a trough. 4) Transgenetic silencing of the neuronal GHS receptor blunts GH pulses in the female. 5) Intracerebroventricular administration of GHS induces GH secretion. The minimal construct of GHS-GHRH-SRIF-GH interactions should aid in integrating physiological data, testing regulatory hypotheses, and forecasting innovative experiments.
Collapse
Affiliation(s)
- Leon S Farhy
- Division of Endocrinology and Metabolism, Department of Internal Medicine, School of Medicine, University of Virginia, Charlottesville, USA
| | | |
Collapse
|
27
|
Veldhuis JD, Farhy L, Weltman AL, Kuipers J, Weltman J, Wideman L. Gender modulates sequential suppression and recovery of pulsatile growth hormone secretion by physiological feedback signals in young adults. J Clin Endocrinol Metab 2005; 90:2874-81. [PMID: 15728217 PMCID: PMC1289268 DOI: 10.1210/jc.2004-1363] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The basic mechanisms that drive the renewal of GH pulses in the human are not understood. Recent ensemble models predict that pulse regeneration requires quenching of an ongoing GH pulse by somatostatin outflow and evocation of a new burst by rebound GHRH release. We reasoned that related principles might explain why women consistently maintain higher-amplitude GH secretory bursts than men. Accordingly, the present study tests the hypothesis that gender modulates the successive dynamics of GH feedback and escape in the morning fasting, when GH pulses are larger in women. To this end, we infused single iv pulses of recombinant human (rh) GH (0, 1, and 3 microg/kg) in eight young men and six women on separate randomly ordered mornings fasting and quantitated serial inhibition and recovery of GH secretion by frequent sampling, immunochemiluminometry, a deconvolution procedure, and regularity analysis. Statistical contrasts revealed gender-comparable peak concentrations and kinetics of rhGH. However, women differed from men by way of: (1) 3.5- and 4.0-fold less feedback suppression of GH secretory-burst mass; (2) more irregular patterns of GH release during negative feedback; and (3) 12-and 14-fold greater postnadir rebound-like GH secretion after rhGH pulses. Mechanistic analyses based on a minimal feedback construct predicted that women generate higher endogenous secretagogue stimulation per unit somatostatin outflow than men. In summary, negative feedback induced by near-physiological GH pulses unmasks prominent gender-related contrasts in hypothalamo-pituitary autoregulation in young adults. A frugal but sufficient explanation of the ensemble outcomes is that women sustain greater hypothalamo-pituitary agonist input than men.
Collapse
Affiliation(s)
- Johannes D Veldhuis
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Mayo School of Graduate Medical Education, General Clinical Research Center, Mayo Clinic, Rochester, Minnesota 55905, USA.
| | | | | | | | | | | |
Collapse
|
28
|
Soares-Welch C, Farhy L, Mielke KL, Mahmud FH, Miles JM, Bowers CY, Veldhuis JD. Complementary secretagogue pairs unmask prominent gender-related contrasts in mechanisms of growth hormone pulse renewal in young adults. J Clin Endocrinol Metab 2005; 90:2225-32. [PMID: 15634714 PMCID: PMC1289271 DOI: 10.1210/jc.2004-1365] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The present study examines the thesis that pulsatile GH secretion is controlled simultaneously by three principal signals; viz., GHRH, GH-releasing peptide (GHRP, ghrelin), and somatostatin (SS). According to this ensemble notion, no single regulatory peptide acts alone or can be interpreted in isolation. Therefore, to investigate gender-specific control of pulsatile GH secretion, we designed dual-effector stimulation paradigms in eight young men and six women as follows: 1) L-arginine/GHRH (to clamp low SS and high GHRH input); 2) L-arginine/GHRP-2 (to clamp low SS and high GHRP drive); 3) GHRH/GHRP-2 (to clamp high GHRH and high GHRP feedforward); vs. 4) saline (unclamped). Statistical comparisons revealed that: 1) fasting pulsatile GH secretion was 7.6-fold higher in women than men (P < 0.001); 2) L-arginine/GHRH and L-arginine/GHRP-2 evoked, respectively, 4.6- and 2.2-fold greater burst-like GH release in women than men (P < 0.001 and P = 0.015); and 3) GHRH/GHRP-2 elicited comparable GH secretion by gender. In the combined cohorts, estradiol concentrations positively predicted responses to L-arginine/GHRP-2 (r2= 0.49, P = 0.005), whereas testosterone negatively predicted those to L-arginine/GHRH (r2= 0.56, P = 0.002). Based upon a simplified biomathematical model of three-peptide control, the current outcomes suggest that women maintain greater GHRH potency, GHRP efficacy, and opposing SS outflow than men. This inference upholds recent clinical precedence and yields valid predictions of sex differences in self-renewable GH pulsatility.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Johannes D. Veldhuis
- Address all correspondence and requests for reprints to: Johannes D. Veldhuis, Division of Endocrinology and Metabolism, Departments of Internal Medicine and Pediatrics, Mayo School of Graduate Medical Education, General Clinical Research Center, Mayo Clinic, Rochester, Minnesota 55905. E-mail:
| |
Collapse
|
29
|
Erickson D, Keenan DM, Farhy L, Mielke K, Bowers CY, Veldhuis JD. Determinants of dual secretagogue drive of burst-like growth hormone secretion in premenopausal women studied under a selective estradiol clamp. J Clin Endocrinol Metab 2005; 90:1741-51. [PMID: 15613434 PMCID: PMC1236972 DOI: 10.1210/jc.2004-1621] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The present study tests the hypothesis that estradiol (E(2)), compared with placebo (Pl), amplifies combined-secretagogue stimulation of GH secretion in premenopausal women studied at comparable IGF-I and testosterone concentrations. To this end, 13 women underwent GnRH agonist-induced gonadal down-regulation followed by graded transdermal addback of E(2) or Pl and randomly ordered iv infusions of saline or paired secretagogues on separate morning fasting. GH secretion was assessed by frequent blood sampling, immunochemiluminometry, and variable-waveform deconvolution analysis. Two-way ANOVA revealed that specific secretagogue combination (P < 0.001), E(2) status (P = 0.012), and their interaction (P = 0.038) jointly determined GH secretory-burst mass. Compared with Pl, the E(2)-clamped milieu elevated mean fasting GH concentrations (P = 0.032), the mass of GH secreted in bursts (P = 0.037), and maximal stimulation by paired l-arginine/GH-releasing peptide (GHRP)-2 (P = 0.028). E(2) also markedly accelerated the initial release of GH induced by GHRH/GHRP-2 (P < 0.001) and l-arginine/GHRH (P < 0.01). By linear regression analysis, E(2) concentrations positively forecast 41% of intersubject variability in GH secretion stimulated by combined l-arginine/GHRP-2 (P = 0.018), whereas abdominal visceral-fat mass negatively predicted 49% of that due to l-arginine/GHRH (P = 0.012). These data indicate that pulsatile GH secretion in young women studied at constant IGF-I and testosterone concentrations is dictated 3-fold jointly by secretagogue pair, E(2) availability, and intraabdominal adiposity. Moreover, the rapidity of GH release is controlled 2-fold jointly by E(2) and GHRH.
Collapse
Affiliation(s)
| | | | | | | | | | - Johannes D. Veldhuis
- Address all correspondence and requests for reprints to: Johannes D. Veldhuis, Endocrine Research Unit, Department of Internal Medicine, Mayo School of Graduate Medical Education, General Clinical Research Center, Mayo Clinic, Rochester, Minnesota 55905. E-mail:
| |
Collapse
|
30
|
van Aken MO, Pereira AM, Frölich M, Romijn JA, Pijl H, Veldhuis JD, Roelfsema F. Growth hormone secretion in primary adrenal Cushing's syndrome is disorderly and inversely correlated with body mass index. Am J Physiol Endocrinol Metab 2005; 288:E63-70. [PMID: 15328071 DOI: 10.1152/ajpendo.00317.2004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To evaluate the impact on the somatotropic axis of endogenous cortisol excess in the absence of primary pituitary disease, we investigated spontaneous 24-h growth hormone (GH) secretion in 12 adult patients with ACTH-independent hypercortisolism. Plasma GH concentration profiles (10-min samples) were analyzed by deconvolution to reconstruct secretion and approximate entropy to quantitate orderliness of the release process. Comparisons were made with a body mass index (BMI)-, age-, and gender-matched control group and an age- and gender-matched lean control group. GH secretion rates did not differ from BMI-matched controls but were twofold lower compared with lean subjects, mainly due to a 2.5-fold attenuation of the mean secretory burst mass (P = 0.001). In hypercortisolemic patients, GH secretion was negatively correlated with BMI (R = -0.55, P = 0.005) but not cortisol secretion. Total serum IGF-I concentrations were similar in the three groups. Approximate entropy (ApEn) was increased in patients with Cushing's syndrome compared with both control groups (vs. BMI-matched, P = 0.04; vs. lean, P = 0.001), denoting more irregular GH secretion patterns. ApEn in patients correlated directly with cortisol secretion (R = 0.77, P = 0.003). Synchrony between cortisol and GH concentration series was analyzed by cross-correlation, cross-ApEn, and copulsatility analyses. Patients showed loss of pattern synchrony compared with BMI-matched controls, but copulsatility was unchanged. We conclude that hyposomatotropism in primary adrenal hypercortisolism is only partly explained (approximately 30%) by increased body weight and that increased GH secretory irregularity and loss of synchrony suggest altered coordinate regulation of GH release.
Collapse
Affiliation(s)
- Maarten O van Aken
- Department of Endocrinology and Metabolic Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | | | | | | | | |
Collapse
|