1
|
Simpson A, Pilotto AM, Brocca L, Mazzolari R, Rosier BT, Carda-Diéguez M, Casas-Agustench P, Bescos R, Porcelli S, Mira A, Easton C, Henriquez FL, Burleigh M. Eight weeks of high-intensity interval training alters the tongue microbiome and impacts nitrate and nitrite levels in previously sedentary men. Free Radic Biol Med 2025; 231:11-22. [PMID: 39923866 DOI: 10.1016/j.freeradbiomed.2025.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 01/24/2025] [Accepted: 02/06/2025] [Indexed: 02/11/2025]
Abstract
Nitric oxide (∗NO) is a key signalling molecule, produced enzymatically via ∗NO synthases (NOS) or following the stepwise reduction of nitrate to nitrite via oral bacteria. Exercise training upregulates NOS expression and improves systemic health, but its effect on oral health, and more particularly the oral microbiome, has not been investigated. We used an exercise training study design to investigate changes in the tongue dorsum microbiome, and in nitrate and nitrite levels in the saliva, plasma and muscle, before, during and after an exercise training period. Eleven untrained males (age 25 ± 5 years, mass 64.0 ± 11.2 kg, stature 171 ± 6 cm, V˙ O2peak 2.25 ± 0.42 l min-1) underwent 8-weeks of high-intensity interval training (HIIT), followed by 12-weeks of detraining. The tongue dorsum microbiome was examined using Pac-Bio long-read 16S rRNA sequencing. Nitrate and nitrite levels were quantified with high-performance liquid chromatography. Grouped nitrite-producing species did not change between any timepoints. However, HIIT led to changes in the microbiome composition, increasing the relative abundance of some, but not all, nitrite-producing species. These changes included a decrease in the relative abundance of nitrite-producing Rothia and a decrease in Neisseria, alongside changes in 6 other bacteria at the genus level (all p ≤ 0.05). At the species level, the abundance of 9 bacteria increased post-training (all p ≤ 0.05), 5 of which have nitrite-producing capacity, including Rothia mucilaginosa and Streptococcus salivarius. Post-detraining, 6 nitrite-producing species remained elevated relative to baseline. Nitrate increased in plasma (p = 0.03) following training. Nitrite increased in the saliva after training (p = 0.02) but decreased in plasma (p = 0.03) and muscle (p = 0.002). High-intensity exercise training increased the abundance of several nitrite-producing bacteria and altered nitrate and nitrite levels in saliva, plasma, and muscle. Post-detraining, several nitrite-producing bacteria remained elevated relative to baseline, but no significant differences were detected in nitrate or nitrite levels. Switching from a sedentary to an active lifestyle alters both the microbiome of the tongue and the bioavailability of nitrate and nitrite, with potential implications for oral and systemic health.
Collapse
Affiliation(s)
- Annabel Simpson
- Sport and Physical Activity Research Institute, University of the West of Scotland, Blantyre, Scotland, UK
| | - Andrea M Pilotto
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Lorenza Brocca
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Raffaele Mazzolari
- Department of Sport Science, University of Innsbruck, Innsbruck, Austria
| | - Bob T Rosier
- Department of Genomics and Health, FISABIO Foundation, Centre for Advanced Research in Public Health, Valencia, Spain
| | - Miguel Carda-Diéguez
- Department of Genomics and Health, FISABIO Foundation, Centre for Advanced Research in Public Health, Valencia, Spain
| | | | - Raul Bescos
- School of Health Professions, Faculty of Health, University of Plymouth, Plymouth, England, UK
| | - Simone Porcelli
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Alex Mira
- Department of Genomics and Health, FISABIO Foundation, Centre for Advanced Research in Public Health, Valencia, Spain
| | - Chris Easton
- Institute of Life and Earth Sciences, Heriot-Watt University, Edinburgh, Scotland, UK
| | - Fiona L Henriquez
- Sport and Physical Activity Research Institute, University of the West of Scotland, Blantyre, Scotland, UK
| | - Mia Burleigh
- Sport and Physical Activity Research Institute, University of the West of Scotland, Blantyre, Scotland, UK.
| |
Collapse
|
2
|
Poon ETC, Iu JCK, Sum WMK, Wong PS, Lo KKH, Ali A, Burns SF, Trexler ET. Dietary Nitrate Supplementation and Exercise Performance: An Umbrella Review of 20 Published Systematic Reviews with Meta-analyses. Sports Med 2025:10.1007/s40279-025-02194-6. [PMID: 40085422 DOI: 10.1007/s40279-025-02194-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/20/2025] [Indexed: 03/16/2025]
Abstract
BACKGROUND Dietary nitrate (NO3-) supplementation is purported to benefit exercise performance. However, previous studies have evaluated this nutritional strategy with various performance outcomes, exercise tasks, and dosing regimens, often yielding inconsistent results that limit the generalizability of the findings. OBJECTIVE We aimed to synthesize the available evidence regarding the effect of NO3- supplementation on 11 domains of exercise performance. METHODS An umbrella review was reported in accordance with the Preferred Reporting Items for Overviews of Reviews guideline. Seven databases (MEDLINE, EMBASE, Cochrane Database, CINAHL, Scopus, SPORTDiscus, and Web of Science) were searched from inception until July 2024. Systematic reviews with meta-analyses comparing NO3- supplementation and placebo-controlled conditions were included. Literature search, data extraction, and methodological quality assessment (A Measurement Tool to Assess Systematic Reviews Assessing the Methodological quality of SysTemAtic Review [AMSTAR-2]) were conducted independently by two reviewers. RESULTS Twenty systematic reviews with meta-analyses, representing 180 primary studies and 2672 unique participants, met the inclusion criteria. Our meta-analyses revealed mixed effects of NO3- supplementation. It improved time-to-exhaustion tasks [standardized mean difference (SMD): 0.33; 95% confidence interval (CI) 0.19-0.47] with subgroup analyses indicating more pronounced improvements when a minimum dose of 6 mmoL/day (372 mg/day) and chronic (> 3 days) supplementation protocol was implemented. Additionally, ergogenic effects of NO3- supplementation were observed for total distance covered (SMD: 0.42; 95% CI 0.09-0.76), muscular endurance (SMD: 0.48; 95% CI 0.23-0.74), peak power output (PPO; SMD: 0.25; 95% CI 0.10 to 0.39), and time to PPO (SMD: - 0.76; 95% CI - 1.18, - 0.33). However, no significant improvements were found for other performance outcomes (all p > 0.05). The AMSTAR-2 ratings of most included reviews ranged from low to critically low. CONCLUSIONS This novel umbrella review with a large-scale meta-analysis provides an updated synthesis of evidence on the effects of NO3- supplementation across various aspects of exercise performance. Our review also highlights significant methodological quality issues that future systematic reviews in this field should address to enhance the reliability of evidence. CLINICAL TRIAL REGISTRATION This study was registered in the International Prospective Register of Systematic Review (PROSPERO) database (registration number: CRD42024577461).
Collapse
Affiliation(s)
- Eric Tsz-Chun Poon
- Department of Sports Science and Physical Education, The Chinese University of Hong Kong, Shatin, Hong Kong.
| | - Jason Chun-Kit Iu
- Department of Sports Science and Physical Education, The Chinese University of Hong Kong, Shatin, Hong Kong
- Department of Education, Hong Kong College of Technology, Sha Tin, Hong Kong
| | - Wesley Man-Kuk Sum
- Department of Sports Science and Physical Education, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Po-San Wong
- Department of Sports Science and Physical Education, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Kenneth Ka-Hei Lo
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Hong Kong
| | - Ajmol Ali
- School of Sport, Exercise and Nutrition, Massey University, Auckland, 0745, New Zealand
| | - Stephen F Burns
- Physical Education and Sports Science, National Institute of Education, Nanyang Technological University, 1 Nanyang Walk, Singapore, 637616, Singapore
| | - Eric T Trexler
- Department of Evolutionary Anthropology, Duke University, Durham, NC, USA
| |
Collapse
|
3
|
Li J, Liu G, Zhang D, Zhang K, Cao C. Physiological Mechanisms Driving Microcirculatory Enhancement: the Impact of Physical Activity. Rev Cardiovasc Med 2025; 26:25302. [PMID: 40026510 PMCID: PMC11868893 DOI: 10.31083/rcm25302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/03/2024] [Accepted: 09/20/2024] [Indexed: 03/05/2025] Open
Abstract
Background Physical activity induces many beneficial adaptive changes to blood vessel microcirculation, ultimately improving both health and exercise performance. This positions it an effective non-pharmacological therapeutic approach for the rehabilitation of patients with various chronic diseases. Understanding the impact of different types of physical activities on microcirculation and elucidating their physiological mechanisms is crucial for optimizing clinical practice. Methods A comprehensive literature search was performed across multiple databases including PubMed, EBSCO, ProQuest, and Web of Science. Following a rigorous screening process, 48 studies were selected for inclusion into the study. Results Existing studies demonstrate that various forms of physical activity facilitate multiple positive adaptive changes at the microcirculation level. These include enhanced microvascular dilation-driven by endothelial cell factors and mechanical stress on blood vessels-as well as increased capillary density. The physiological mechanisms behind these improvements involve the neurohumoral regulation of endothelial cell factors and hormones, which are crucial for these positive effects. Physical activity also ameliorates inflammation markers and oxidative stress levels, upregulates the expression of silent information regulator 2 homolog 3, genes for hypoxia-inducible factors under hypoxic conditions, and induces favorable changes in multiple hemodynamic and hemorheological parameters. These structural and functional adaptations optimize myocardial blood flow regulation during exercise and improve both oxygen transport and utilization capacity, which are beneficial for the rehabilitation of chronic disease patients. Conclusions Our provides a reference for using physical activity as a non-pharmacological intervention for patients with chronic conditions. This framework includes recommendations on exercise types, intensity, frequency, and duration. Additionally, we summarize the physiological mechanisms through which physical activity improves microcirculation, which can inform clinical decision-making.
Collapse
Affiliation(s)
- Jianyu Li
- Division of Sports Science and Physical Education Tsinghua University, Tsinghua University, 100084 Beijing, China
| | - Guochun Liu
- Division of Sports Science and Physical Education Tsinghua University, Tsinghua University, 100084 Beijing, China
- College of Exercise Medicine, Chongqing Medical University, 400331 Chongqing, China
| | - Dong Zhang
- Institute of Artificial Intelligence in Sports, Capital University of Physical Education and Sports, 100091 Beijing, China
| | - Keying Zhang
- Department of Physical Education, Southeast University, 210012 Nanjing, Jiangsu, China
| | - Chunmei Cao
- Division of Sports Science and Physical Education Tsinghua University, Tsinghua University, 100084 Beijing, China
| |
Collapse
|
4
|
Bescos R, Gallardo-Alfaro L, Ashor A, Rizzolo-Brime L, Siervo M, Casas-Agustench P. Nitrate and nitrite bioavailability in plasma and saliva: Their association with blood pressure - A systematic review and meta-analysis. Free Radic Biol Med 2025; 226:70-83. [PMID: 39522567 DOI: 10.1016/j.freeradbiomed.2024.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 10/29/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
In this study, we conducted a systematic review and meta-analysis to determine plasma and salivary nitrate (NO3-) and nitrite (NO2-) concentrations under resting and fasting conditions in different type of individuals and their association with blood pressure levels. A total of 77 studies, involving 1918 individuals aged 19-74 years (males = 906; females = 1012), which measured plasma and/or salivary NO3- and NO2- using the chemiluminescence technique, were included. Mean plasma NO3- and NO2- concentrations were 33.9 μmol/L and 158.3 nmol/L, respectively. Subgroup analyses revealed lower plasma NO3- and NO2- concentrations in individuals with cardiometabolic risk (NO3-: 21.2 μmol/L; 95 % CI, 13.4-29.0; NO2-: 122.8 nmol/L; 95 % CI, 75.3-138.9) compared to healthy (NO3-: 33.9 μmol/L; 95 % CI, 29.9-37.9; NO2-: 159.5 nmol/L; 95 % CI, 131.8-187.1; P < 0.01) and trained individuals (NO3-: 43.0 μmol/L; 95 % CI, 13.2-72.9; NO2-: 199.3 nmol/L; 95 % CI, 117.6-281; P < 0.01). Mean salivary NO3- and NO2- concentrations were 546.2 μmol/L and 197.8 μmol/L, respectively. Salivary NO3-, but no NO2-, concentrations were higher in individuals with cardiometabolic risk (680.0 μmol/L; 95 % CI, 510.2-849.8; P = 0.001) compared to healthy individuals (535.9 μmol/L; 95 % CI, 384.2-687.6). A significant positive association (coefficient, 15.4 [95 % CI, 0.255 to 30.5], P = 0.046) was observed between salivary NO3- and diastolic blood pressure (DBP). These findings suggest that the health status is positively associated with plasma NO3- and NO2- concentrations, but the circulatory levels of these anions are not associated with blood pressure. Only salivary NO3- showed a significant positive association with DBP.
Collapse
Affiliation(s)
- Raul Bescos
- School of Health Professions, Faculty of Health, University of Plymouth, Plymouth, PL4 6AB, United Kingdom.
| | - Laura Gallardo-Alfaro
- Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain; RICAPPS- Red de Investigación Cooperativa de Atención Primaria y Promoción de la Salud - Carlos III Health Institute (ISCIII), Madrid, Spain
| | - Ammar Ashor
- Department of Internal Medicine, College of Medicine, University of Al-Mustansiriyah, Baghdad, Iraq
| | - Lucia Rizzolo-Brime
- Unit of Nutrition and Cancer, Catalan Institute of Oncology-ICO, 08908, L'Hospitalet de Llobregat, Barcelona, Spain; Nutrition and Cancer Group, Epidemiology, Public Health, Cancer Prevention and Palliative Care Program, Bellvitge Biomedical Research Institute-IDIBELL, 08908, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Mario Siervo
- School of Population Health, Curtin University, Perth, WA, Australia
| | - Patricia Casas-Agustench
- School of Health Professions, Faculty of Health, University of Plymouth, Plymouth, PL4 6AB, United Kingdom
| |
Collapse
|
5
|
Gilsanz L, Del Coso J, Jiménez-Saiz SL, Pareja-Galeano H. Effect of Caffeine and Nitrates Combination on Exercise Performance, Heart Rate and Oxygen Uptake: A Systematic Review and Meta-Analysis. Nutrients 2024; 16:3352. [PMID: 39408319 PMCID: PMC11478677 DOI: 10.3390/nu16193352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 09/26/2024] [Accepted: 09/30/2024] [Indexed: 10/20/2024] Open
Abstract
BACKGROUND The evidence about the synergy of combining caffeine (CAF) and nitrates on exercise performance has not been summarized, although there is a possibility of additive/synergistic effects of the co-ingestion of these substances given their different mechanisms of action in central (CAF) and peripheral tissues (nitrates). OBJECTIVES The aim was to analyze the effects of co-supplementation of CAF and nitrates on sports performance in comparison to the isolated ingestion of these substances. METHODS The databases of PubMed, Web of Science, Medline, CiNAHL and SPORTDiscus were used until June 2024 following PRISMA guidelines. Randomized controlled trials, at least one single-blind trial, conducted in adults were considered. A meta-analysis was performed using the random effects model to calculate the standardized mean difference estimated by Hedges' g and 95% confidence intervals (CIs) for studies with four arms. RESULTS Six studies were included (N = 95). The meta-analysis revealed that caffeine and nitrates supplementation (CAF+nitrates) did not enhance performance in time trials (TTs) over the CAF alone (g = -0.06; 95% CI = -0.46 to 0.35; p = 0.78) or nitrates alone (g = 0.29; 95% CI = -0.12 to 0.70; p = 0.17). CAF+nitrates did not affect heart rate during submaximal exercise trials over CAF alone (g = 0.04; 95% CI = -0.31 to 0.40; p = 0.80) or nitrates alone (g = -0.15; 95% CI = -0.50 to 0.20; p = 0.40). Likewise, CAF+nitrates did not affect oxygen uptake during submaximal exercise trials over CAF alone (g = -0.04; 95% CI = -0.45 to 0.37; p = 0.84) or nitrates alone (g = -0.29; 95% CI = -0.70 to 0.12; p = 0.16). CONCLUSIONS CAF+nitrates did not offer further benefits on exercise performance or physiological variables from the isolated intake of CAF and nitrates.
Collapse
Affiliation(s)
- Laura Gilsanz
- Department of Physical Education, Sport and Human Movement, Universidad Autónoma de Madrid, 28049 Madrid, Spain;
| | - Juan Del Coso
- Sport Sciences Research Centre, Universidad Rey Juan Carlos, Fuenlabrada, 28942 Madrid, Spain; (J.D.C.); (S.L.J.-S.)
| | - Sergio L. Jiménez-Saiz
- Sport Sciences Research Centre, Universidad Rey Juan Carlos, Fuenlabrada, 28942 Madrid, Spain; (J.D.C.); (S.L.J.-S.)
| | - Helios Pareja-Galeano
- Department of Physical Education, Sport and Human Movement, Universidad Autónoma de Madrid, 28049 Madrid, Spain;
| |
Collapse
|
6
|
Blackwood SJ, Tischer D, van de Ven MPF, Pontén M, Edman S, Horwath O, Apró W, Röja J, Ekblom MM, Moberg M, Katz A. Elevated heart rate and decreased muscle endothelial nitric oxide synthase in early development of insulin resistance. Am J Physiol Endocrinol Metab 2024; 327:E172-E182. [PMID: 38836779 DOI: 10.1152/ajpendo.00148.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/29/2024] [Accepted: 05/30/2024] [Indexed: 06/06/2024]
Abstract
Insulin resistance (IR) is a risk factor for the development of several major metabolic diseases. Muscle fiber composition is established early in life and is associated with insulin sensitivity. Hence, muscle fiber composition was used to identify early defects in the development of IR in healthy young individuals in the absence of clinical manifestations. Biopsies were obtained from the thigh muscle, followed by an intravenous glucose tolerance test. Indices of insulin action were calculated and cardiovascular measurements, analyses of blood and muscle were performed. Whole body insulin sensitivity (SIgalvin) was positively related to expression of type I muscle fibers (r = 0.49; P < 0.001) and negatively related to resting heart rate (HR, r = -0.39; P < 0.001), which was also negatively related to expression of type I muscle fibers (r = -0.41; P < 0.001). Muscle protein expression of endothelial nitric oxide synthase (eNOS), whose activation results in vasodilation, was measured in two subsets of subjects expressing a high percentage of type I fibers (59 ± 6%; HR = 57 ± 9 beats/min; SIgalvin = 1.8 ± 0.7 units) or low percentage of type I fibers (30 ± 6%; HR = 71 ± 11; SIgalvin = 0.8 ± 0.3 units; P < 0.001 for all variables vs. first group). eNOS expression was 1) higher in subjects with high type I expression; 2) almost twofold higher in pools of type I versus II fibers; 3) only detected in capillaries surrounding muscle fibers; and 4) linearly associated with SIgalvin. These data demonstrate that an altered function of the autonomic nervous system and a compromised capacity for vasodilation in the microvasculature occur early in the development of IR.NEW & NOTEWORTHY Insulin resistance (IR) is a risk factor for the development of several metabolic diseases. In healthy young individuals, an elevated heart rate (HR) correlates with low insulin sensitivity and high expression of type II skeletal muscle fibers, which express low levels of endothelial nitric oxide synthase (eNOS) and, hence, a limited capacity to induce vasodilation in response to insulin. Early targeting of the autonomic nervous system and microvasculature may attenuate development of diseases stemming from insulin resistance.
Collapse
Affiliation(s)
- Sarah J Blackwood
- Åstrand Laboratory, Department of Physiology, Nutrition and Biomechanics, The Swedish School of Sport and Health Sciences, Stockholm, Sweden
| | - Dominik Tischer
- Åstrand Laboratory, Department of Physiology, Nutrition and Biomechanics, The Swedish School of Sport and Health Sciences, Stockholm, Sweden
| | - Myrthe P F van de Ven
- Åstrand Laboratory, Department of Physiology, Nutrition and Biomechanics, The Swedish School of Sport and Health Sciences, Stockholm, Sweden
| | - Marjan Pontén
- Åstrand Laboratory, Department of Physiology, Nutrition and Biomechanics, The Swedish School of Sport and Health Sciences, Stockholm, Sweden
| | - Sebastian Edman
- Åstrand Laboratory, Department of Physiology, Nutrition and Biomechanics, The Swedish School of Sport and Health Sciences, Stockholm, Sweden
| | - Oscar Horwath
- Åstrand Laboratory, Department of Physiology, Nutrition and Biomechanics, The Swedish School of Sport and Health Sciences, Stockholm, Sweden
| | - William Apró
- Åstrand Laboratory, Department of Physiology, Nutrition and Biomechanics, The Swedish School of Sport and Health Sciences, Stockholm, Sweden
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Julia Röja
- Åstrand Laboratory, Department of Physiology, Nutrition and Biomechanics, The Swedish School of Sport and Health Sciences, Stockholm, Sweden
| | - Maria M Ekblom
- Department of Physical Activity and Health, The Swedish School of Sport and Health Sciences, Stockholm, Sweden
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Marcus Moberg
- Åstrand Laboratory, Department of Physiology, Nutrition and Biomechanics, The Swedish School of Sport and Health Sciences, Stockholm, Sweden
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Abram Katz
- Åstrand Laboratory, Department of Physiology, Nutrition and Biomechanics, The Swedish School of Sport and Health Sciences, Stockholm, Sweden
| |
Collapse
|
7
|
Vasquez-Bonilla AA, Brazo-Sayavera J, Timón R, Olcina G. Monitoring Muscle Oxygen Asymmetry as a Strategy to Prevent Injuries in Footballers. RESEARCH QUARTERLY FOR EXERCISE AND SPORT 2023; 94:609-617. [PMID: 35442862 DOI: 10.1080/02701367.2022.2026865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 12/30/2021] [Indexed: 06/14/2023]
Abstract
Purpose: It has been hypothesized that sports injury risk is explained by muscle metabolism. The objective was to evaluate the muscle oxygen saturation slopes (ΔSmO2 slopes) and muscle oxygenation asymmetry (MO2Asy) at rest and to study their associations with injuries during the pre-season. Methods: A total of 16 male and 10 female footballers participated in this study. Injuries were diagnosed and classified by level of severity during the pre-season. The workload was also evaluated using the rate of perceived exertion × training time, from which the accumulated loads. The SmO2 was measured at rest in the gastrocnemius muscle using the arterial occlusion method in the dominant and non-dominant legs. The repeated measures ANOVA, relative risk, and binary logistic regression were applied to assess the probability of injury with SmO2 and workload. Results: Higher MO2Asy and ΔSmO2 Slope 2 were found among footballer who suffered high-severity injuries and those who presented no injuries. In addition, an MO2Asy greater than 15% and an increase in accumulated load were variables that explained a greater probability of injury. Conclusion: This study presents the new concept of muscle oxygenation asymmetry in sports science and its possible application in injury prevention through the measurement of SmO2 at rest.
Collapse
|
8
|
Tan R, Baranauskas MN, Karl ST, Ortiz de Zevallos J, Shei RJ, Paris HL, Wiggins CC, Bailey SJ. Effects of dietary nitrate supplementation on peak power output: Influence of supplementation strategy and population. Nitric Oxide 2023; 138-139:105-119. [PMID: 37438201 DOI: 10.1016/j.niox.2023.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Increasing evidence indicates that dietary nitrate supplementation has the potential to increase muscular power output during skeletal muscle contractions. However, there is still a paucity of data characterizing the impact of different nitrate dosing regimens on nitric oxide bioavailability and its potential ergogenic effects across various population groups. This review discusses the potential influence of different dietary nitrate supplementation strategies on nitric oxide bioavailability and muscular peak power output in healthy adults, athletes, older adults and some clinical populations. Effect sizes were calculated for peak power output and absolute and/or relative nitrate doses were considered where applicable. There was no relationship between the effect sizes of peak power output change following nitrate supplementation and when nitrate dosage when considered in absolute or relative terms. Areas for further research are also recommended including a focus on nitrate dosing regimens that optimize nitric oxide bioavailability for enhancing peak power at times of increased muscular work in a variety of healthy and disease populations.
Collapse
Affiliation(s)
- Rachel Tan
- Department of Sports Medicine, Pepperdine University, Malibu, CA, 90263, USA.
| | - Marissa N Baranauskas
- Department of Human Physiology & Nutrition, University of Colorado, Colorado Springs, CO, 80918, USA
| | - Sean T Karl
- Department of Sports Medicine, Pepperdine University, Malibu, CA, 90263, USA
| | | | - Ren-Jay Shei
- Indiana University Alumni Association, Indiana University, Bloomington, IN, 47408, USA
| | - Hunter L Paris
- Department of Sports Medicine, Pepperdine University, Malibu, CA, 90263, USA
| | - Chad C Wiggins
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, USA
| | - Stephen J Bailey
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, LE11 3TU, UK
| |
Collapse
|
9
|
Baum O, Huber-Abel FAM, Flück M. nNOS Increases Fiber Type-Specific Angiogenesis in Skeletal Muscle of Mice in Response to Endurance Exercise. Int J Mol Sci 2023; 24:ijms24119341. [PMID: 37298293 DOI: 10.3390/ijms24119341] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/23/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
We studied the relationship between neuronal NO synthase (nNOS) expression and capillarity in the tibialis anterior (TA) muscle of mice subjected to treadmill training. The mRNA (+131%) and protein (+63%) levels of nNOS were higher (p ≤ 0.05) in the TA muscle of C57BL/6 mice undergoing treadmill training for 28 days than in those of littermates remaining sedentary, indicating an up-regulation of nNOS by endurance exercise. Both TA muscles of 16 C57BL/6 mice were subjected to gene electroporation with either the pIRES2-ZsGreen1 plasmid (control plasmid) or the pIRES2-ZsGreen1-nNOS gene-inserted plasmid (nNOS plasmid). Subsequently, one group of mice (n = 8) underwent treadmill training for seven days, while the second group of mice (n = 8) remained sedentary. At study end, 12-18% of TA muscle fibers expressed the fluorescent reporter gene ZsGreen1. Immunofluorescence for nNOS was 23% higher (p ≤ 0.05) in ZsGreen1-positive fibers than ZsGreen1-negative fibers from the nNOS-transfected TA muscle of mice subjected to treadmill training. Capillary contacts around myosin heavy-chain (MHC)-IIb immunoreactive fibers (14.2%; p ≤ 0.05) were only higher in ZsGreen1-positive fibers than ZsGreen1-negative fibers in the nNOS-plasmid-transfected TA muscles of trained mice. Our observations are in line with an angiogenic effect of quantitative increases in nNOS expression, specifically in type-IIb muscle fibers after treadmill training.
Collapse
Affiliation(s)
- Oliver Baum
- Institute of Physiology, Charité-Universitätsmedizin, 10117 Berlin, Germany
| | | | - Martin Flück
- Heart Repair and Regeneration Laboratory, Department EMC, Faculty of Science and Medicine, University of Fribourg, 1700 Fribourg, Switzerland
| |
Collapse
|
10
|
Tan R, Baranauskas MN, Karl ST, Ortiz de Zevallos J, Shei RJ, Paris HL, Wiggins CC, Bailey SJ. Effects of dietary nitrate supplementation on muscular power output: Influence of supplementation strategy and population. Nitric Oxide 2023:S1089-8603(23)00047-2. [PMID: 37244391 DOI: 10.1016/j.niox.2023.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 05/18/2023] [Indexed: 05/29/2023]
Abstract
Increasing evidence indicates that dietary nitrate supplementation has the potential to increase muscular power output during skeletal muscle contractions. However, there is still a paucity of data characterizing the impact of different nitrate dosing regimens on nitric oxide bioavailability its potential ergogenic effects across various population groups. This narrative review discusses the potential influence of different dietary nitrate supplementation strategies on nitric oxide bioavailability and muscular power output in healthy adults, athletes, older adults and some clinical populations. Areas for further research are also recommended including a focus individualized nitrate dosing regimens to optimize nitric oxide bioavailability and to promote muscular power enhancements in different populations.
Collapse
Affiliation(s)
- Rachel Tan
- Department of Sports Medicine, Pepperdine University, Malibu, CA, 90263, USA.
| | - Marissa N Baranauskas
- Department of Human Physiology & Nutrition, University of Colorado, Colorado Springs, CO, 80918, USA
| | - Sean T Karl
- Department of Sports Medicine, Pepperdine University, Malibu, CA, 90263, USA
| | | | - Ren-Jay Shei
- Indiana University Alumni Association, Indiana University, Bloomington, IN, 47408, USA
| | - Hunter L Paris
- Department of Sports Medicine, Pepperdine University, Malibu, CA, 90263, USA
| | - Chad C Wiggins
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, USA
| | - Stephen J Bailey
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, LE11 3TU, UK
| |
Collapse
|
11
|
Mosaad YO, Hussein MA, Ateyya H, Mohamed AH, Ali AA, Ramadan Youssuf A, Wink M, El-Kholy AA. Vanin 1 Gene Role in Modulation of iNOS/MCP-1/TGF-β1 Signaling Pathway in Obese Diabetic Patients. J Inflamm Res 2022; 15:6745-6759. [PMID: 36540060 PMCID: PMC9760040 DOI: 10.2147/jir.s386506] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 11/23/2022] [Indexed: 01/15/2024] Open
Abstract
INTRODUCTION Cysteamine, a powerful endogenous antioxidant, is produced mostly by the vanin-1 with pantetheinase activity. With regard to glycemic, inflammatory, and redox factors, the current study sought to evaluate the association between the expression of the vanin-1 gene, oxidative stress, and inflammatory and iNOS signaling pathway in obese diabetic patients. METHODS We enrolled 67 male subjects with an average age of 53.5 ± 5.0 years, divided into 4 groups according to the WHO guideline. We determined their plasma levels of glucose, insulin, IRI, HbA1c, TC, TG, HDL-C, TNF- α, MCP-1, TGF-β1, SOD, CAT, and TBARs, as well as expression of the iNOS and Vanin1 genes. RESULTS Overweight and obese class I and II diabetics had significantly higher levels of plasma glucose, insulin, HbA1c, TNF-α, MCP-1, TGF-β1, CAT, and TBAR as well as iNOS and vanin-1 gene expression compared to healthy control individuals. In addition, as compared to healthy control individuals, overweight obese class I and II diabetics' plasma HDL-C levels and blood SOD activity were significantly lower. In addition, ultrasound and computed tomography showed that the presence of a mild obscuring fatty liver with mild hepatic echogenicity appeared in overweight, class I and II obese diabetic patients. CONCLUSION These findings provide important information for understanding the correlation between Vanin 1 and glycemic, inflammatory, and redox factors in obese patients. Furthermore, US and CT analysis were performed to visualize the observed images of fatty liver due to obesity.
Collapse
Affiliation(s)
- Yasser O Mosaad
- Department of Pharmacy, Practice & Clinical Pharmacy, Faculty of Pharmacy, Future University, Cairo, Egypt
| | - Mohammed Abdalla Hussein
- Department of Biotechnology, Faculty of Applied Health Science, October 6th University, October 6th City, Egypt
| | - Hayam Ateyya
- Department of Medical Pharmacology, Faculty of Medicine, Cairo University, Cairo, Egypt
- Department of Pharmacy Practice and Clinical Pharmacy, Faculty of Pharmacy, Future University, Cairo, Egypt
| | - Ahmed H Mohamed
- Department of Radiology and Medical Imaging, Faculty of Applied Health Science Technology, October 6th University, October 6th City, Egypt
| | - Ali A Ali
- Food Sciences Department, Faculty of Agriculture, Ain Shams University, Cairo, Egypt
| | - Alaa Ramadan Youssuf
- Consultant and Head of Cardiology Department, AL-AHRAR Teaching Hospital, Zagazig University, Zagazig, Egypt
| | - Michael Wink
- Heidelberg University, Institute of Pharmacy and Molecular Biotechnology, Heidelberg, Germany
| | - Amal A El-Kholy
- Department of Clinical Pharmacy, Faculty of Pharmacy, Ain-Shams University, Cairo, Egypt
| |
Collapse
|
12
|
Skeletal muscle as a reservoir for nitrate and nitrite: The role of xanthine oxidase reductase (XOR). Nitric Oxide 2022; 129:102-109. [DOI: 10.1016/j.niox.2022.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 09/16/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022]
|
13
|
Oue A, Iimura Y, Shinagawa A, Miyakoshi Y, Ota M. Acute dietary nitrate supplementation does not change venous volume and compliance in healthy young adults. Am J Physiol Regul Integr Comp Physiol 2022; 323:R331-R339. [PMID: 35816716 DOI: 10.1152/ajpregu.00083.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In this randomized single-blind, placebo-controlled, crossover study, we investigated the influence of inorganic nitrate (NO3-) supplementation on venous volume and compliance in the resting forearm and calf. Twenty healthy young adults were assigned to receive an NO3--rich beverage (beetroot juice [BRJ]: 140 mL; ~8 mmol NO3-) or an NO3¯-depleted control beverage (prune juice [CON]: 166 mL; < 0.01 mmol NO3-). Two hours after consuming the allocated beverage, each participant rested in the supine position for 20 min. Cuffs were then placed around the right upper arm and right thigh, inflated to 60 mmHg for 8 min, and then decreased to 0 mmHg at a rate of 1 mmHg/s. During inflation and deflation of cuff pressure, changes in venous volume in the forearm and calf were measured by venous occlusion plethysmography. Venous compliance was calculated as the numerical derivative of the cuff pressure‒venous volume curve in the limbs. The plasma NO3- concentration was elevated by intake of BRJ (before, 15.5 ± 5.8 µM; after, 572.0 ± 116.1 µM, P < 0.05) but not by CON (before, 14.8 ± 7.2 µM; after, 15.3 ± 7.4 µM, P > 0.05). On the other hand, there was no significant difference in venous volume or compliance in the forearm or calf between BRJ and CON. These findings suggest that although acute inorganic NO3- supplementation may enhance the activity of nitric oxide (NO) via NO3- → nitrite → NO pathway, it does not influence venous volume or compliance in the limbs in healthy young adults.
Collapse
Affiliation(s)
- Anna Oue
- Faculty of Food and Nutritional Sciences, Toyo University, Gunma, Japan
| | - Yasuhiro Iimura
- Graduate School of Food and Nutritional Sciences, Toyo University, Gunma, Japan
| | - Akiho Shinagawa
- Graduate School of Food and Nutritional Sciences, Toyo University, Gunma, Japan
| | - Yuichi Miyakoshi
- Faculty of Food and Nutritional Sciences, Toyo University, Gunma, Japan
| | - Masako Ota
- Faculty of Food and Nutritional Sciences, Toyo University, Gunma, Japan
| |
Collapse
|
14
|
Silva KVC, Costa BD, Gomes AC, Saunders B, Mota JF. Factors that Moderate the Effect of Nitrate Ingestion on Exercise Performance in Adults: A Systematic Review with Meta-Analyses and Meta-Regressions. Adv Nutr 2022; 13:1866-1881. [PMID: 35580578 PMCID: PMC9526841 DOI: 10.1093/advances/nmac054] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 11/16/2021] [Accepted: 05/09/2022] [Indexed: 01/28/2023] Open
Abstract
To identify how variables such as exercise condition, supplementation strategy, participant characteristics and demographics, and practices that control oral microbiota diversity could modify the effect of inorganic nitrate ingestion (as nitrate salt supplements, beetroot juice, and nitrate-rich vegetables) on exercise performance, we conducted a systematic review with meta-analysis. Studies were identified in PubMed, Embase, and Cochrane databases. Eligibility criteria included randomized controlled trials assessing the effect of inorganic nitrate on exercise performance in healthy adults. To assess the variation in effect size, we used meta-regression models for continuous variables and subgroup analysis for categorical variables. A total of 123 studies were included in this meta-analysis, comprising 1705 participants. Nitrate was effective for improving exercise performance (standardized mean difference [SMD]: 0.101; 95% CI: 0.051, 0.151, P <0.001, I2 = 0%), although nitrate salts supplementation was not as effective (P = 0.629) as ingestion via beetroot juice (P <0.001) or a high-nitrate diet (P = 0.005). Practices that control oral microbiota diversity influenced the nitrate effect, with practices harmful to oral bacteria decreasing the ergogenic effect of nitrate. The ingestion of nitrate was most effective for exercise lasting between 2 and 10 min (P <0.001). An inverse dose-response relation between the fraction of inspired oxygen and the effect size (coefficient: -0.045, 95% CI: -0.085, -0.005, P = 0.028) suggests that nitrate was more effective in increasingly hypoxic conditions. There was a dose-response relation for acute administration (P = 0.049). The most effective acute dose was between 5 and 14.9 mmol provided ≥150 min prior to exercise (P <0.001). An inverse dose-response for protocols ≥2 d was observed (P = 0.025), with the optimal dose between 5 and 9.9 mmol·d-1 (P <0.001). Nitrate, via beetroot juice or a high-nitrate diet, improved exercise performance, in particular, in sessions lasting between 2 and 10 min. Ingestion of 5-14.9 mmol⋅d-1 taken ≥150 min prior to exercise appears optimal for performance gains and athletes should be aware that practices controlling oral microbiota diversity may decrease the effect of nitrate.
Collapse
Affiliation(s)
| | - Breno Duarte Costa
- Applied Physiology and Nutrition Research Group, Rheumatology Division, Faculty of Medicine, School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil
| | - Aline Corado Gomes
- Faculty of Nutrition, Federal University of Goiás (UFG), Goiania, Goiás, Brazil
| | - Bryan Saunders
- Applied Physiology and Nutrition Research Group, Rheumatology Division, Faculty of Medicine, School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil
- Institute of Orthopaedics and Traumatology, Faculty of Medicine FMUSP, University of São Paulo, São Paulo, Brazil
| | | |
Collapse
|
15
|
Córdova-Martínez A, Caballero-García A, Bello HJ, Pons-Biescas A, Noriega DC, Roche E. l-Arginine and Beetroot Extract Supplementation in the Prevention of Sarcopenia. Pharmaceuticals (Basel) 2022; 15:ph15030290. [PMID: 35337088 PMCID: PMC8954952 DOI: 10.3390/ph15030290] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/19/2022] [Accepted: 02/24/2022] [Indexed: 12/13/2022] Open
Abstract
Aging is associated with a significant decline in neuromuscular function, leading to a reduction in muscle mass and strength. The aim of the present report was to evaluate the effect of supplementation with nitric oxide precursors (l-arginine and beetroot extract) in muscular function during a training period of 6 weeks in elderly men and women. The study (double-blind, placebo-controlled) involved 66 subjects randomly divided into three groups: placebo, arginine-supplemented and beetroot extract-supplemented. At the end of this period, no changes in anthropometric parameters were observed. Regarding other circulating parameters, urea levels were significantly (p < 0.05) lower in women of the beetroot-supplemented group (31.6 ± 5.9 mg/dL) compared to placebo (41.3 ± 8.5 mg/dL) after 6 weeks of training. In addition, the circulating creatine kinase activity, as an index of muscle functionality, was significantly (p < 0.05) higher in women of the arginine- (214.1 ± 162.2 mIU/L) compared to the beetroot-supplemented group (84.4 ± 36.8 mIU/L) at the end of intervention. No significant effects were noticed with l-arginine or beetroot extract supplementation regarding strength, endurance and SPPB index. Only beetroot extract supplementation improved physical fitness significantly (p < 0.05) in the sprint exercise in men after 6 weeks (2.33 ± 0.59 s) compared to the baseline (2.72 ± 0.41 s). In conclusion, beetroot seems to be more efficient during short-term training while supplementing, preserving muscle functionality in women (decreased levels of circulating creatine kinase) and with modest effects in men.
Collapse
Affiliation(s)
- Alfredo Córdova-Martínez
- Biochemistry, Molecular Biology and Physiology, Faculty of Health Sciences, GIR Physical Exercise and Aging, University of Valladolid, Campus Duques de Soria, 42004 Soria, Spain
- Correspondence: (A.C.-M.); (E.R.)
| | - Alberto Caballero-García
- Department of Anatomy and Radiology, Faculty of Health Sciences, GIR Physical Exercise and Aging, University of Valladolid, Campus Los Pajaritos, 42004 Soria, Spain;
| | - Hugo J. Bello
- Department of Mathematics, School of Forestry, Agronomy and Bioenergy Engineering, GIR Physical Exercise and Aging, University of Valladolid, Campus Los Pajaritos, 42004 Soria, Spain;
| | - Antoni Pons-Biescas
- Research Group on Community Nutrition and Oxidative Stress, University of Balearic Islands, 07122 Palma de Mallorca, Balearic Islands, Spain;
| | - David C. Noriega
- Department of Surgery, Ophthalmology, Otorhinolaryngology and Physiotherapy, Faculty of Medicine, Hospital Clínico Universitario de Valladolid, 03010 Valladolid, Spain;
| | - Enrique Roche
- Department of Mathematics, School of Forestry, Agronomy and Bioenergy Engineering, GIR Physical Exercise and Aging, University of Valladolid, Campus Los Pajaritos, 42004 Soria, Spain;
- Department of Applied Biology-Nutrition, Institute of Bioengineering, University Miguel Hernández, 03202 Elche, Spain
- Alicante Institute for Health and Biomedical Research (ISABIAL Foundation), 03010 Alicante, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
- Correspondence: (A.C.-M.); (E.R.)
| |
Collapse
|
16
|
Gonzalez AM, Accetta MR, Spitz RW, Mangine GT, Ghigiarelli JJ, Sell KM. Red Spinach Extract Supplementation Improves Cycle Time Trial Performance in Recreationally Active Men and Women. J Strength Cond Res 2021; 35:2541-2545. [PMID: 31136549 DOI: 10.1519/jsc.0000000000003173] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Adam M Gonzalez
- Department of Health Professions, Hofstra University, Hempstead, New York; and
| | - Matthew R Accetta
- Department of Health Professions, Hofstra University, Hempstead, New York; and
| | - Robert W Spitz
- Department of Health Professions, Hofstra University, Hempstead, New York; and
| | - Gerald T Mangine
- Department of Exercise Science and Sport Management, Kennesaw State University, Kennesaw, Georgia
| | - Jamie J Ghigiarelli
- Department of Health Professions, Hofstra University, Hempstead, New York; and
| | - Katie M Sell
- Department of Health Professions, Hofstra University, Hempstead, New York; and
| |
Collapse
|
17
|
Rokkedal-Lausch T, Franch J, Poulsen MK, Thomsen LP, Weitzberg E, Kamavuako EN, Karbing DS, Larsen RG. Multiple-day high-dose beetroot juice supplementation does not improve pulmonary or muscle deoxygenation kinetics of well-trained cyclists in normoxia and hypoxia. Nitric Oxide 2021; 111-112:37-44. [PMID: 33831566 DOI: 10.1016/j.niox.2021.03.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 03/24/2021] [Accepted: 03/31/2021] [Indexed: 10/21/2022]
Abstract
Dietary nitrate (NO3-) supplementation via beetroot juice (BR) has been reported to lower oxygen cost (i.e., increased exercise efficiency) and speed up oxygen uptake (VO2) kinetics in untrained and moderately trained individuals, particularly during conditions of low oxygen availability (i.e., hypoxia). However, the effects of multiple-day, high dose (12.4 mmol NO3- per day) BR supplementation on exercise efficiency and VO2 kinetics during normoxia and hypoxia in well-trained individuals are not resolved. In a double-blinded, randomized crossover study, 12 well-trained cyclists (66.4 ± 5.3 ml min-1∙kg-1) completed three transitions from rest to moderate-intensity (~70% of gas exchange threshold) cycling in hypoxia and normoxia with supplementation of BR or nitrate-depleted BR as placebo. Continuous measures of VO2 and muscle (vastus lateralis) deoxygenation (ΔHHb, using near-infrared spectroscopy) were acquired during all transitions. Kinetics of VO2 and deoxygenation (ΔHHb) were modeled using mono-exponential functions. Our results showed that BR supplementation did not alter the primary time constant for VO2 or ΔHHb during the transition from rest to moderate-intensity cycling. While BR supplementation lowered the amplitude of the VO2 response (2.1%, p = 0.038), BR did not alter steady state VO2 derived from the fit (p = 0.258), raw VO2 data (p = 0.231), moderate intensity exercise efficiency (p = 0.333) nor steady state ΔHHb (p = 0.224). Altogether, these results demonstrate that multiple-day, high-dose BR supplementation does not alter exercise efficiency or oxygen uptake kinetics during normoxia and hypoxia in well-trained athletes.
Collapse
Affiliation(s)
- Torben Rokkedal-Lausch
- Sport Sciences - Performance and Technology, Department of Health Science and Technology, Aalborg University, DK-9220, Aalborg, Denmark.
| | - Jesper Franch
- Sport Sciences - Performance and Technology, Department of Health Science and Technology, Aalborg University, DK-9220, Aalborg, Denmark
| | - Mathias K Poulsen
- Respiratory and Critical Care Group, Department of Health Science and Technology, Aalborg University, DK-9220, Aalborg, Denmark
| | - Lars P Thomsen
- Respiratory and Critical Care Group, Department of Health Science and Technology, Aalborg University, DK-9220, Aalborg, Denmark
| | - Eddie Weitzberg
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Ernest N Kamavuako
- Center for Robotics Research, Department of Engineering, King's College London, London, United Kingdom
| | - Dan S Karbing
- Respiratory and Critical Care Group, Department of Health Science and Technology, Aalborg University, DK-9220, Aalborg, Denmark
| | - Ryan G Larsen
- Sport Sciences - Performance and Technology, Department of Health Science and Technology, Aalborg University, DK-9220, Aalborg, Denmark
| |
Collapse
|
18
|
Jones AM, Vanhatalo A, Seals DR, Rossman MJ, Piknova B, Jonvik KL. Dietary Nitrate and Nitric Oxide Metabolism: Mouth, Circulation, Skeletal Muscle, and Exercise Performance. Med Sci Sports Exerc 2021; 53:280-294. [PMID: 32735111 DOI: 10.1249/mss.0000000000002470] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Nitric oxide (NO) is a gaseous signaling molecule that plays an important role in myriad physiological processes, including the regulation of vascular tone, neurotransmission, mitochondrial respiration, and skeletal muscle contractile function. NO may be produced via the canonical NO synthase-catalyzed oxidation of l-arginine and also by the sequential reduction of nitrate to nitrite and then NO. The body's nitrate stores can be augmented by the ingestion of nitrate-rich foods (primarily green leafy vegetables). NO bioavailability is greatly enhanced by the activity of bacteria residing in the mouth, which reduce nitrate to nitrite, thereby increasing the concentration of circulating nitrite, which can be reduced further to NO in regions of low oxygen availability. Recent investigations have focused on promoting this nitrate-nitrite-NO pathway to positively affect indices of cardiovascular health and exercise tolerance. It has been reported that dietary nitrate supplementation with beetroot juice lowers blood pressure in hypertensive patients, and sodium nitrite supplementation improves vascular endothelial function and reduces the stiffening of large elastic arteries in older humans. Nitrate supplementation has also been shown to enhance skeletal muscle function and to improve exercise performance in some circumstances. Recently, it has been established that nitrate concentration in skeletal muscle is much higher than that in blood and that muscle nitrate stores are exquisitely sensitive to dietary nitrate supplementation and deprivation. In this review, we consider the possibility that nitrate represents an essential storage form of NO and discuss the integrated function of the oral microbiome, circulation, and skeletal muscle in nitrate-nitrite-NO metabolism, as well as the practical relevance for health and performance.
Collapse
Affiliation(s)
- Andrew M Jones
- Department of Sport and Health Sciences, University of Exeter, Exeter, UNITED KINGDOM
| | - Anni Vanhatalo
- Department of Sport and Health Sciences, University of Exeter, Exeter, UNITED KINGDOM
| | - Douglas R Seals
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO
| | - Matthew J Rossman
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO
| | - Barbora Piknova
- Molecular Medicine Branch, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD
| | | |
Collapse
|
19
|
Beetroot Juice - Legal Doping for Athletes? CENTRAL EUROPEAN JOURNAL OF SPORT SCIENCES AND MEDICINE 2021. [DOI: 10.18276/cej.2021.3-06] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
20
|
Gheibi S, Ghasemi A. Insulin secretion: The nitric oxide controversy. EXCLI JOURNAL 2020; 19:1227-1245. [PMID: 33088259 PMCID: PMC7573190 DOI: 10.17179/excli2020-2711] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 08/31/2020] [Indexed: 12/14/2022]
Abstract
Nitric oxide (NO) is a gas that serves as a ubiquitous signaling molecule participating in physiological activities of various organ systems. Nitric oxide is produced in the endocrine pancreas and contributes to synthesis and secretion of insulin. The potential role of NO in insulin secretion is disputable - both stimulatory and inhibitory effects have been reported. Available data indicate that effects of NO critically depend on its concentration. Different isoforms of NO synthase (NOS) control this and have the potential to decrease or increase insulin secretion. In this review, the role of NO in insulin secretion as well as the possible reasons for discrepant findings are discussed. A better understanding of the role of NO system in the regulation of insulin secretion may facilitate the development of new therapeutic strategies in the management of diabetes.
Collapse
Affiliation(s)
- Sevda Gheibi
- Department of Clinical Sciences in Malmö, Unit of Molecular Metabolism, Lund University Diabetes Centre, Clinical Research Center, Malmö University Hospital, Lund University, Malmö, Sweden
| | - Asghar Ghasemi
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
21
|
Oue A, Iimura Y, Maeda K, Yoshizaki T. Association between vegetable consumption and calf venous compliance in healthy young adults. J Physiol Anthropol 2020; 39:18. [PMID: 32787933 PMCID: PMC7425150 DOI: 10.1186/s40101-020-00231-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 08/02/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Venous compliance decreases with aging and/or physical inactivity, which is thought to be involved partly in the pathogenesis of cardiovascular disease such as hypertension. This suggests that it is important to maintain high venous compliance from a young age in order to prevent cardiovascular disease. Both nutrient and exercise could play an important role in the improvement and maintenance of vascular health. Indeed, habitual endurance exercise is known to improve the venous compliance, although little is known about the effect of diet on venous compliance. Considering that higher consumption of vegetables could contribute to the arterial vascular health and the decreased blood pressure, it is hypothesized that venous compliance may be greater as vegetable intake is higher. Thus, the purpose of this study was to clarify the association between vegetable intake and venous compliance in healthy young adults. METHODS Dietary intake was assessed in 94 subjects (male: n = 44, female: n = 50) using a self-administered diet history questionnaire (DHQ). Intakes of nutrients and food groups that were obtained from the DHQ were adjusted according to total energy intake using the residual method. Based on the adjusted intake of food groups, total vegetable intake was calculated as the sum of green/yellow and white vegetables consumed. Calf volume was measured using venous occlusion plethysmography with a cuff deflation protocol. Calf venous compliance was calculated as the numerical derivative of the cuff pressure-calf volume curve. In addition, circulatory responses (heart rate and systolic and diastolic blood pressure) at resting and maximal oxygen uptake were assessed in all subjects. RESULTS Mean value of total vegetables intake was 162.2 ± 98.2 g/day. Simple linear regression analysis showed that greater venous compliance was significantly associated with higher total vegetable consumption (r = 0.260, P = 0.011) and green/yellow vegetable intake (r = 0.351, P = 0.001) but not white vegetable intake (r = 0.013, P = 0.902). These significant associations did not change in the multivariate linear regression models which were adjusted by sex and maximal oxygen uptake. CONCLUSION These findings suggest that higher consumption of vegetables, especially of the green/yellow vegetables, may be associated with greater venous compliance in young healthy adults.
Collapse
Affiliation(s)
- Anna Oue
- Faculty of Food and Nutritional Sciences, Toyo University, 1-1-1 Izumino, Itakura-machi, Ora-gun, Gunma, 374-0193, Japan.
| | - Yasuhiro Iimura
- Graduate School of Food and Nutritional Sciences, Toyo University, Gunma, 374-0193, Japan
| | - Kotose Maeda
- Graduate School of Food and Nutritional Sciences, Toyo University, Gunma, 374-0193, Japan
| | - Takahiro Yoshizaki
- Faculty of Food and Nutritional Sciences, Toyo University, 1-1-1 Izumino, Itakura-machi, Ora-gun, Gunma, 374-0193, Japan
| |
Collapse
|
22
|
Kapil V, Khambata RS, Jones DA, Rathod K, Primus C, Massimo G, Fukuto JM, Ahluwalia A. The Noncanonical Pathway for In Vivo Nitric Oxide Generation: The Nitrate-Nitrite-Nitric Oxide Pathway. Pharmacol Rev 2020; 72:692-766. [PMID: 32576603 DOI: 10.1124/pr.120.019240] [Citation(s) in RCA: 140] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025] Open
Abstract
In contrast to nitric oxide, which has well established and important roles in the regulation of blood flow and thrombosis, neurotransmission, the normal functioning of the genitourinary system, and the inflammation response and host defense, its oxidized metabolites nitrite and nitrate have, until recently, been considered to be relatively inactive. However, this view has been radically revised over the past decade and more. Much evidence has now accumulated demonstrating that nitrite serves as a storage form of nitric oxide, releasing nitric oxide preferentially under acidic and/or hypoxic conditions but also occurring under physiologic conditions: a phenomenon that is catalyzed by a number of distinct mammalian nitrite reductases. Importantly, preclinical studies demonstrate that reduction of nitrite to nitric oxide results in a number of beneficial effects, including vasodilatation of blood vessels and lowering of blood pressure, as well as cytoprotective effects that limit the extent of damage caused by an ischemia/reperfusion insult, with this latter issue having been translated more recently to the clinical setting. In addition, research has demonstrated that the other main metabolite of the oxidation of nitric oxide (i.e., nitrate) can also be sequentially reduced through processing in vivo to nitrite and then nitrite to nitric oxide to exert a range of beneficial effects-most notably lowering of blood pressure, a phenomenon that has also been confirmed recently to be an effective method for blood pressure lowering in patients with hypertension. This review will provide a detailed description of the pathways involved in the bioactivation of both nitrate and nitrite in vivo, their functional effects in preclinical models, and their mechanisms of action, as well as a discussion of translational exploration of this pathway in diverse disease states characterized by deficiencies in bioavailable nitric oxide. SIGNIFICANCE STATEMENT: The past 15 years has seen a major revision in our understanding of the pathways for nitric oxide synthesis in the body with the discovery of the noncanonical pathway for nitric oxide generation known as the nitrate-nitrite-nitric oxide pathway. This review describes the molecular components of this pathway, its role in physiology, potential therapeutics of targeting this pathway, and their impact in experimental models, as well as the clinical translation (past and future) and potential side effects.
Collapse
Affiliation(s)
- V Kapil
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University London, London, United Kingdom (V.K., R.S.K., D.A.J., K.R., C.P., G.M., A.A.) and Department of Chemistry, Sonoma State University, Rohnert Park, California (J.M.F.)
| | - R S Khambata
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University London, London, United Kingdom (V.K., R.S.K., D.A.J., K.R., C.P., G.M., A.A.) and Department of Chemistry, Sonoma State University, Rohnert Park, California (J.M.F.)
| | - D A Jones
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University London, London, United Kingdom (V.K., R.S.K., D.A.J., K.R., C.P., G.M., A.A.) and Department of Chemistry, Sonoma State University, Rohnert Park, California (J.M.F.)
| | - K Rathod
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University London, London, United Kingdom (V.K., R.S.K., D.A.J., K.R., C.P., G.M., A.A.) and Department of Chemistry, Sonoma State University, Rohnert Park, California (J.M.F.)
| | - C Primus
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University London, London, United Kingdom (V.K., R.S.K., D.A.J., K.R., C.P., G.M., A.A.) and Department of Chemistry, Sonoma State University, Rohnert Park, California (J.M.F.)
| | - G Massimo
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University London, London, United Kingdom (V.K., R.S.K., D.A.J., K.R., C.P., G.M., A.A.) and Department of Chemistry, Sonoma State University, Rohnert Park, California (J.M.F.)
| | - J M Fukuto
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University London, London, United Kingdom (V.K., R.S.K., D.A.J., K.R., C.P., G.M., A.A.) and Department of Chemistry, Sonoma State University, Rohnert Park, California (J.M.F.)
| | - A Ahluwalia
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University London, London, United Kingdom (V.K., R.S.K., D.A.J., K.R., C.P., G.M., A.A.) and Department of Chemistry, Sonoma State University, Rohnert Park, California (J.M.F.)
| |
Collapse
|
23
|
Berry MJ, Miller GD, Kim-Shapiro DB, Fletcher MS, Jones CG, Gauthier ZD, Collins SL, Basu S, Heinrich TM. A randomized controlled trial of nitrate supplementation in well-trained middle and older-aged adults. PLoS One 2020; 15:e0235047. [PMID: 32574223 PMCID: PMC7310701 DOI: 10.1371/journal.pone.0235047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 06/05/2020] [Indexed: 12/22/2022] Open
Abstract
Purpose Nitrate (NO3-), through its conversion to nitrite (NO2-) and nitric oxide, has been shown to increase exercise tolerance in healthy younger adults and older diseased patients. Nitrate’s effect in well-trained middle to older-aged adults has not been studied. Therefore, the purpose of this investigation was to examine the effects of a NO3- rich beverage on submaximal constant work rate exercise time in well-trained middle to older-aged adults. Methods This was a randomized controlled cross-over trial with 15 well-trained middle to older-aged adults, 41–64 year-old, who received one of two treatments (NO3- rich beverage then placebo or placebo then NO3- rich beverage), after which an exercise test at 75 percent of the subject’s maximal work rate was completed. Results The NO3- rich beverage increased plasma NO3- and NO2- levels by 260 μM and 0.47 μM, respectively (p<0.001). Exercise time was not significantly different (p = 0.31) between the NO3- rich versus placebo conditions (1130±151 vs 1060±132 sec, respectively). Changes in exercise time between the two conditions ranged from a 55% improvement to a 40% decrease with the NO3- rich beverage. Oxygen consumption and rating of perceived exertion were not significantly different between the two conditions. Conclusion In middle to older-aged well-trained adults, NO3- supplementation has non-significant, albeit highly variable, effects on exercise tolerance. ClinicalTrials.gov Identifier: NCT03371966
Collapse
Affiliation(s)
- Michael J. Berry
- Health and Exercise Department, Wake Forest University, Winston-Salem, North Carolina, United States of America
- * E-mail:
| | - Gary D. Miller
- Health and Exercise Department, Wake Forest University, Winston-Salem, North Carolina, United States of America
| | - Daniel B. Kim-Shapiro
- Physics Department, Wake Forest University, Winston-Salem, North Carolina, United States of America
| | - Macie S. Fletcher
- Health and Exercise Department, Wake Forest University, Winston-Salem, North Carolina, United States of America
| | - Caleb G. Jones
- Health and Exercise Department, Wake Forest University, Winston-Salem, North Carolina, United States of America
| | - Zachary D. Gauthier
- Health and Exercise Department, Wake Forest University, Winston-Salem, North Carolina, United States of America
| | - Summer L. Collins
- Health and Exercise Department, Wake Forest University, Winston-Salem, North Carolina, United States of America
| | - Swati Basu
- Physics Department, Wake Forest University, Winston-Salem, North Carolina, United States of America
| | - Timothy M. Heinrich
- Health and Exercise Department, Wake Forest University, Winston-Salem, North Carolina, United States of America
| |
Collapse
|
24
|
Parise G, Murrant CL, Cocks M, Snijders T, Baum O, Plyley MJ. Capillary facilitation of skeletal muscle function in health and disease. Appl Physiol Nutr Metab 2020; 45:453-462. [DOI: 10.1139/apnm-2019-0416] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Skeletal muscle is highly vascularized, with perfusion being tightly regulated to meet wide-ranging metabolic demands. For decades, the capillary supply has been explored mainly in terms of evaluating the capillary numbers and their function in the supply of oxygen and substrates and the removal of metabolic byproducts. This review will focus on recent discoveries concerning the role played by capillaries in facilitating other aspects of cell regulation and maintenance, in health and disease, as well as alterations during the aging process. Novelty Capillaries play a central role in the coordination of the vascular response that controls blood flow during contraction and the cellular responses to which they feed into. Nitric oxide is an important regulatory compound within the cardiovascular system, and a significant contributor to skeletal muscle capillary angiogenesis and vasodilatory response to agonists. The microvascular network between muscle fibres may play a critical role in the distribution of signalling factors necessary for optimal muscle satellite cell function.
Collapse
Affiliation(s)
- Gianni Parise
- McMaster University, Departments of Kinesiology and Medical Physics & Applied Radiation Science, Hamilton, ON L8S 4K1, Canada
| | - Coral L. Murrant
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Matthew Cocks
- Liverpool John Moores University, Research Institute for Sport and Exercise Sciences, Liverpool, L3 5UG, UK
| | - Tim Snijders
- Maastricht University, NUTRIM School of Nutrition and Translational Research in Metabolism, Department of Human Biology, Maastricht 6200 MD, the Netherlands
| | - Oliver Baum
- Institute of Physiology, Charité-Universitäts medizin Berlin, Berlin D-10117, Germany
| | - Michael J. Plyley
- Brock University, Department of Kinesiology, St. Catharines, ON L2S 3A1, Canada
| |
Collapse
|
25
|
Gheibi S, Samsonov AP, Gheibi S, Vazquez AB, Kashfi K. Regulation of carbohydrate metabolism by nitric oxide and hydrogen sulfide: Implications in diabetes. Biochem Pharmacol 2020; 176:113819. [PMID: 31972170 DOI: 10.1016/j.bcp.2020.113819] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 01/15/2020] [Indexed: 12/19/2022]
Abstract
Nitric oxide (NO) and hydrogen sulfide (H2S) are two gasotransmitters that are produced in the human body and have a key role in many of the physiological activities of the various organ systems. Decreased NO bioavailability and deficiency of H2S are involved in the pathophysiology of type 2 diabetes and its complications. Restoration of NO levels have favorable metabolic effects in diabetes. The role of H2S in pathophysiology of diabetes is however controversial; H2S production is decreased during development of obesity, diabetes, and its complications, suggesting the potential therapeutic effects of H2S. On the other hand, increased H2S levels disturb the pancreatic β-cell function and decrease insulin secretion. In addition, there appear to be important interactions between NO and H2S at the levels of both biosynthesis and signaling pathways, yet clear an insight into this relationship is lacking. H2S potentiates the effects of NO in the cardiovascular system as well as NO release from its storage pools. Likewise, NO increases the activity and the expression of H2S-generating enzymes. Inhibition of NO production leads to elimination/attenuation of the cardioprotective effects of H2S. Regarding the increasing interest in the therapeutic applications of NO or H2S-releasing molecules in a variety of diseases, particularly in the cardiovascular disorders, much is to be learned about their function in glucose/insulin metabolism, especially in diabetes. The aim of this review is to provide a better understanding of the individual and the interactive roles of NO and H2S in carbohydrate metabolism.
Collapse
Affiliation(s)
- Sevda Gheibi
- Department of Clinical Sciences in Malmö, Unit of Molecular Metabolism, Lund University Diabetes Centre, Clinical Research Center, Malmö University Hospital, Lund University, Malmö, Sweden.
| | - Alan P Samsonov
- Department of Molecular, Cellular and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, New York, NY, USA
| | - Shahsanam Gheibi
- Maternal and Childhood Obesity Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Alexandra B Vazquez
- Department of Molecular, Cellular and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, New York, NY, USA
| | - Khosrow Kashfi
- Department of Molecular, Cellular and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, New York, NY, USA; Graduate Program in Biology, City University of New York Graduate Center, New York, NY, USA.
| |
Collapse
|
26
|
Urbaniak A, Skarpańska-Stejnborn A. Effect of pomegranate fruit supplementation on performance and various markers in athletes and active subjects: A systematic review. INT J VITAM NUTR RES 2019; 91:547-561. [PMID: 31512981 DOI: 10.1024/0300-9831/a000601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The aim of the study was to review recent findings on the use of POM supplements in athletes of various disciplines and physically active participants. Eleven articles published between 2010 and 2018 were included, where the total number of investigated subjects was 176. Male participants constituted the majority of the group (n = 155), as compared to females (n = 21). 45% of research described was conducted on athletes, whereas the remaining studies were based on highly active participants. Randomised, crossover, double-blind study designs constituted the majority of the experimental designs used. POM supplementation varied in terms of form (pills/juice), dosage (50 ml-500 ml) and time of intervention (7 days-2 months) between studies. Among the reviewed articles, POM supplementation had an effect on the improvement of the following: whole body strength; feeling of vitality; acute and delayed muscle fatigue and soreness; increase in vessel diameter; blood flow and serum level of TAC; reduction in the rate of increase for HR, SBP, CK and LDH; support in the recovery of post-training CK, LDH, CRP and ASAT to their baseline levels; reduction of MMP2, MMP9, hsCRP and MDA; and increased activity of antioxidant enzymes (glutathione peroxidase and superoxide dismutase). In the majority of reviewed articles POM supplementation had a positive effect on a variety of parameters studied and the authors recommended it as a supplement for athletes and physically active bodies.
Collapse
Affiliation(s)
- Alicja Urbaniak
- Department of Morphological Sciences, Biology and Health Sciences, Faculty of Physical Culture in Gorzów Wlkp., University School of Physical Education in Poznań, Poland
| | - Anna Skarpańska-Stejnborn
- Department of Morphological Sciences, Biology and Health Sciences, Faculty of Physical Culture in Gorzów Wlkp., University School of Physical Education in Poznań, Poland
| |
Collapse
|
27
|
Abstract
Nitric oxide (NO) plays a plethora of important roles in the human body. Insufficient production of NO (for example, during older age and in various disease conditions) can adversely impact health and physical performance. In addition to its endogenous production through the oxidation of l-arginine, NO can be formed nonenzymatically via the reduction of nitrate and nitrite, and the storage of these anions can be augmented by the consumption of nitrate-rich foodstuffs such as green leafy vegetables. Recent studies indicate that dietary nitrate supplementation, administered most commonly in the form of beetroot juice, can ( a) improve muscle efficiency by reducing the O2 cost of submaximal exercise and thereby improve endurance exercise performance and ( b) enhance skeletal muscle contractile function and thereby improve muscle power and sprint exercise performance. This review describes the physiological mechanisms potentially responsible for these effects, outlines the circumstances in which ergogenic effects are most likely to be evident, and discusses the effects of dietary nitrate supplementation on physical performance in a range of human populations.
Collapse
Affiliation(s)
- Andrew M Jones
- Department of Sport and Health Sciences, University of Exeter, Exeter EX1 2LU, United Kingdom;
| | - Christopher Thompson
- Department of Sport and Health Sciences, University of Exeter, Exeter EX1 2LU, United Kingdom;
| | - Lee J Wylie
- Department of Sport and Health Sciences, University of Exeter, Exeter EX1 2LU, United Kingdom;
| | - Anni Vanhatalo
- Department of Sport and Health Sciences, University of Exeter, Exeter EX1 2LU, United Kingdom;
| |
Collapse
|
28
|
Pawlak-Chaouch M, Boissière J, Munyaneza D, Gamelin FX, Cuvelier G, Berthoin S, Aucouturier J. Beetroot Juice Does Not Enhance Supramaximal Intermittent Exercise Performance in Elite Endurance Athletes. J Am Coll Nutr 2019; 38:729-738. [DOI: 10.1080/07315724.2019.1601601] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Mehdi Pawlak-Chaouch
- Sport, Health and Society, URePSSS–Pluridisciplinary Research Unit, Lille University, Lille, France
| | - Julien Boissière
- Sport, Health and Society, URePSSS–Pluridisciplinary Research Unit, Lille University, Lille, France
| | - Désiré Munyaneza
- Sport, Health and Society, URePSSS–Pluridisciplinary Research Unit, Lille University, Lille, France
| | - François-Xavier Gamelin
- Sport, Health and Society, URePSSS–Pluridisciplinary Research Unit, Lille University, Lille, France
| | - Grégory Cuvelier
- Laboratory of Exercise and Movement, Provincial School of Hainaut (HEPH)-Condorcet, Tournai, Belgium
| | - Serge Berthoin
- Sport, Health and Society, URePSSS–Pluridisciplinary Research Unit, Lille University, Lille, France
| | - Julien Aucouturier
- Sport, Health and Society, URePSSS–Pluridisciplinary Research Unit, Lille University, Lille, France
| |
Collapse
|
29
|
Nitrate supplementation improves physical performance specifically in non-athletes during prolonged open-ended tests: a systematic review and meta-analysis. Br J Nutr 2019; 119:636-657. [PMID: 29553034 DOI: 10.1017/s0007114518000132] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Nitrate (NO3 -) is an ergogenic nutritional supplement that is widely used to improve physical performance. However, the effectiveness of NO3 - supplementation has not been systematically investigated in individuals with different physical fitness levels. The present study analysed whether different fitness levels (non-athletes v. athletes or classification of performance levels), duration of the test used to measure performance (short v. long duration) and the test protocol (time trials v. open-ended tests v. graded-exercise tests) influence the effects of NO3 - supplementation on performance. This systematic review and meta-analysis was conducted and reported according to the guidelines outlined in the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) statement. A systematic search of electronic databases, including PubMed, Web of Science, SPORTDiscus and ProQuest, was performed in August 2017. On the basis of the search and inclusion criteria, fifty-four and fifty-three placebo-controlled studies evaluating the effects of NO3 - supplementation on performance in humans were included in the systematic review and meta-analysis, respectively. NO3 - supplementation was ergogenic in non-athletes (mean effect size (ES) 0·25; 95 % CI 0·11, 0·38), particularly in evaluations of performance using long-duration open-ended tests (ES 0·47; 95 % CI 0·23, 0·71). In contrast, NO3 - supplementation did not enhance the performance of athletes (ES 0·04; 95 % CI -0·05, 0·15). After objectively classifying the participants into different performance levels, the frequency of trials showing ergogenic effects in individuals classified at lower levels was higher than that in individuals classified at higher levels. Thus, the present study indicates that dietary NO3 - supplementation improves physical performance in non-athletes, particularly during long-duration open-ended tests.
Collapse
|
30
|
Normal increases in insulin-stimulated glucose uptake after ex vivo contraction in neuronal nitric oxide synthase mu (nNOSμ) knockout mice. Pflugers Arch 2019; 471:961-969. [DOI: 10.1007/s00424-019-02268-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 02/20/2019] [Accepted: 02/26/2019] [Indexed: 11/25/2022]
|
31
|
Jo E, Fischer M, Auslander AT, Beigarten A, Daggy B, Hansen K, Kessler L, Osmond A, Wang H, Wes R. The Effects of Multi-Day vs. Single Pre-exercise Nitrate Supplement Dosing on Simulated Cycling Time Trial Performance and Skeletal Muscle Oxygenation. J Strength Cond Res 2019; 33:217-224. [PMID: 28445231 DOI: 10.1519/jsc.0000000000001958] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Jo, E, Fischer, M, Auslander, AT, Beigarten, A, Daggy, B, Hansen, K, Kessler, L, Osmond, A, Wang, H, and Wes, R. The effects of multiday vs. single pre-exercise nitrate supplement dosing on simulated cycling time trial performance and skeletal muscle oxygenation. J Strength Cond Res 33(1): 217-224, 2019-A transient augmentation in the metabolic efficiency of skeletal muscle is the purported basis for dietary nitrate supplementation amongst competitive and recreational athletes alike. Previous studies support the ergogenic effects of nitrate supplementation, as findings indicated improved microvascular blood flow, exercise economy, and performance with relatively short-term supplementation. As with most ergogenic aids, the optimum duration of supplementation before performance or competition, i.e., loading phase, is a critical determinant for efficacy. Therefore, the purpose of this study was to investigate the effects of long-term vs. single dosing nitrate supplementation on skeletal muscle oxygenation and cycling performance. In a randomized, placebo controlled, double blind, parallel design study, healthy, recreationally active men (n = 15) and women (n = 14) subjects (age = 18-29 years) completed an 8 km (5 mi) simulated cycling time trial before and after a 14-day supplementation period with either a nitrate supplement (Multi-Day Dosing Group) (n = 14) or placebo (Single Pre-Exercise Dosing Group; SD) (n = 15). Both groups consumed a single dose of the nitrate supplement 2 hours before the post-treatment time trial. In addition, skeletal muscle oxygenation was measured via near-infrared spectroscopy during each time trial. Multiday nitrate supplementation significantly decreased time to completion (p = 0.01) and increased average power (p = 0.04) and speed (p = 0.02) from pre-to post-treatment, while a single dosing produced no significant changes to these measures. There were no significant differences over time and across treatments for any other measures including muscle oxygenation variables. Overall, long-term nitrate supplementation appears to have an advantage over a single pre-exercise dosing on cycling performance and metabolic efficiency as indicated by an increase in power output with no change in oxygenation.
Collapse
Affiliation(s)
- Edward Jo
- Human Performance Research Laboratory, Department of Kinesiology and Health Promotion, California State Polytechnic University, Pomona, Pomona, California
| | - Michelle Fischer
- Human Performance Research Laboratory, Department of Kinesiology and Health Promotion, California State Polytechnic University, Pomona, Pomona, California
| | - Alexandra T Auslander
- Human Performance Research Laboratory, Department of Kinesiology and Health Promotion, California State Polytechnic University, Pomona, Pomona, California
| | - Alan Beigarten
- Human Performance Research Laboratory, Department of Kinesiology and Health Promotion, California State Polytechnic University, Pomona, Pomona, California
| | - Bruce Daggy
- Research and Development, Shaklee Corporation, Pleasanton, California
| | - Ken Hansen
- Human Performance Research Laboratory, Department of Kinesiology and Health Promotion, California State Polytechnic University, Pomona, Pomona, California
| | - Lisa Kessler
- Department of Human Nutrition and Food Science, California State Polytechnic University, Pomona, Pomona, California
| | - Adam Osmond
- Human Performance Research Laboratory, Department of Kinesiology and Health Promotion, California State Polytechnic University, Pomona, Pomona, California
| | - Hong Wang
- Research and Development, Shaklee Corporation, Pleasanton, California
| | - Rachel Wes
- Human Performance Research Laboratory, Department of Kinesiology and Health Promotion, California State Polytechnic University, Pomona, Pomona, California
| |
Collapse
|
32
|
Chronic high-dose beetroot juice supplementation improves time trial performance of well-trained cyclists in normoxia and hypoxia. Nitric Oxide 2019; 85:44-52. [PMID: 30685420 DOI: 10.1016/j.niox.2019.01.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 01/14/2019] [Accepted: 01/18/2019] [Indexed: 11/21/2022]
Abstract
Dietary nitrate (NO3-) supplementation via beetroot juice (BR) is known to improve endurance performance in untrained and moderately trained individuals. However, conflicting results exist in well-trained individuals. Evidence suggests that the effects of NO3- are augmented during conditions of reduced oxygen availability (e.g., hypoxia), thereby increasing the probability of performance improvements for well-trained athletes in hypoxia vs. normoxia. This randomized, double-blinded, counterbalanced-crossover study examined the effects of 7 days of BR supplementation with 12.4 mmol NO3- per day on 10-km cycling time trial (TT) performance in 12 well-trained cyclists in normoxia (N) and normobaric hypoxia (H). Linear mixed models for repeated measures revealed increases in plasma NO3- and NO2- after supplementation with BR (both p < 0.001). Further, TT performance increased with BR supplementation (∼1.6%, p < 0.05), with no difference between normoxia and hypoxia (p = 0.92). For respiratory variables there were significant effects of supplementation on VO2 (p < 0.05) and VE (p < 0.05) such that average VO2 and VE during the TT increased with BR, with no difference between normoxia and hypoxia (p ≥ 0.86). We found no effect of supplementation on heart rate, oxygen saturation or muscle oxygenation during the TT. Our results provide new evidence that chronic high-dose NO3- supplementation improves cycling performance of well-trained cyclists in both normoxia and hypoxia.
Collapse
|
33
|
Time-Trial Performance in World-Class Speed Skaters After Chronic Nitrate Ingestion. Int J Sports Physiol Perform 2018; 13:1317-1323. [PMID: 29745787 DOI: 10.1123/ijspp.2017-0724] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
PURPOSE Nitrate supplementation can increase tolerance to high-intensity work rates; however, limited data exist on the recovery of performance. The authors tested whether 5 d of nitrate supplementation could improve repeated time-trial performance in speed skating. METHODS Using a double-blind, placebo-controlled, crossover design, 9 international-level short-track speed skaters ingested 1 high (juice blend, ∼6.5 mmol nitrate; HI) or low dose (juice blend, ∼1 mmol nitrate; LO) per day on days 1-4. After a double dose of either HI or LO on day 5, athletes performed 2 on-ice 1000-m time trials, separated by 35 min, to simulate competition races. Differences between HI and LO were compared with the smallest practically important difference. RESULTS Salivary [nitrate] and [nitrite] were higher in HI than LO before the first (nitrate: 81%, effect size [ES]: 1.76; nitrite: 72%, ES: 1.73) and second pursuits (nitrate: 81%, ES: 1.92; nitrite: 71%, ES: 1.78). However, there was no difference in performance in the first (LO: 90.92 [4.08] s; HI: 90.95 [4.06] s, ES: 0.01) or the second time trial (LO: 91.16 [4.06] s; HI: 91.55 [4.40] s, ES: 0.09). Plasma [lactate] measured after the trials (LO: 14.8 [1.1] mM; HI: 14.8 [1.2] mM, ES: 0.01) and at the end of the recovery period (LO: 9.8 [2.1] mM; HI: 10.2 [1.9] mM, ES: 0.05) was not different between treatments. CONCLUSION Five days of high-dose nitrate supplementation did not change physiological responses and failed to improve single and repeated time-trial performances in world-class short-track speed skaters. These data suggest that nitrate ingestion up to 6.5 mmol does not enhance recovery from supramaximal exercise in world-class athletes.
Collapse
|
34
|
Van De Walle GP, Vukovich MD. The Effect of Nitrate Supplementation on Exercise Tolerance and Performance: A Systematic Review and Meta-Analysis. J Strength Cond Res 2018; 32:1796-1808. [PMID: 29786633 DOI: 10.1519/jsc.0000000000002046] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Van De Walle, GP and Vukovich, MD. The effect of nitrate supplementation on exercise tolerance and performance: a systematic review and meta-analysis. J Strength Cond Res 32(6): 1796-1808, 2018-The purpose of this article was to systematically review the current literature and evaluate the overall efficacy of nitrate supplementation on exercise tolerance and performance by meta-analysis. Studies were eligible for inclusion if they met the following criteria: (a) were an experimental trial published in an English peer-reviewed journal; (b) compared the effects of inorganic nitrate consumption with a non-bioactive supplement control or placebo; (c) used a quantifiable measure of exercise performance; and (d) was carried out in apparently healthy participants without disease. A total of 29 studies were identified that investigated the effects of nitrate supplementation on exercise tolerance or performance in accordance with the criteria outlined. Analysis using time to exhaustion as the outcome variable revealed a significant effect of nitrate supplementation on exercise tolerance (ES = 0.28; 95% confidence interval [CI]: 0.08-0.47; p = 0.006) compared with placebo. Analysis using time to complete a specific distance as the outcome variable revealed no significant effect of nitrate supplementation on exercise performance (ES = -0.05; 95% CI: -0.28 to 0.17; p = 0.64) compared with placebo. Nitrate supplementation is likely to improve exercise tolerance and capacity that may improve exercise performance. More research is required to determine the optimal dose and duration of nitrate supplementation. It would also be important to consider the type of athlete performing the exercise and the duration, intensity, and mode of the exercise performed because these factors are likely to influence the efficacy of nitrate supplementation.
Collapse
Affiliation(s)
- Gavin P Van De Walle
- Department of Health and Nutritional Sciences, South Dakota State University, Brookings, South Dakota
| | | |
Collapse
|
35
|
Dombernowsky NW, Ölmestig JNE, Witting N, Kruuse C. Role of neuronal nitric oxide synthase (nNOS) in Duchenne and Becker muscular dystrophies - Still a possible treatment modality? Neuromuscul Disord 2018; 28:914-926. [PMID: 30352768 DOI: 10.1016/j.nmd.2018.09.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 08/07/2018] [Accepted: 09/05/2018] [Indexed: 02/08/2023]
Abstract
Neuronal nitric oxide synthase (nNOS) is involved in nitric oxide (NO) production and suggested to play a crucial role in blood flow regulation of skeletal muscle. During activation of the muscle, NO helps attenuate the sympathetic vasoconstriction to accommodate increased metabolic demands, a phenomenon known as functional sympatholysis. In inherited myopathies such as the dystrophinopathies Duchenne and Becker muscle dystrophies (DMD and BMD), nNOS is lost from the sarcolemma. The loss of nNOS may cause functional ischemia contributing to skeletal and cardiac muscle cell injury. Effects of NO is augmented by inhibiting degradation of the second messenger cyclic guanosine monophosphate (cGMP) using sildenafil and tadalafil, both of which inhibit the enzyme phosphodiesterase 5 (PDE5). In animal models of DMD, PDE5-inhibitors prevent functional ischemia, reduce post-exercise skeletal muscle pathology and fatigue, show amelioration of cardiac muscle cell damage and increase cardiac performance. However, effect on clinical outcomes in DMD and BMD patients have been disappointing with minor effects on upper limb performance and none on ambulation. This review aims to summarize the current knowledge of nNOS function related to functional sympatholysis in skeletal muscle and studies on PDE5-inhibitor treatment in nNOS-deficient animal models and patients.
Collapse
Affiliation(s)
- Nanna W Dombernowsky
- Department of Neurology, Rigshospitalet Glostrup, University of Copenhagen, Denmark
| | - Joakim N E Ölmestig
- Department of Neurology, Neurovascular Research Unit, Herlev Gentofte Hospital, University of Copenhagen, Denmark
| | - Nanna Witting
- Department of Neurology, Rigshospitalet Glostrup, University of Copenhagen, Denmark
| | - Christina Kruuse
- Department of Neurology, Neurovascular Research Unit, Herlev Gentofte Hospital, University of Copenhagen, Denmark; PDE Research Group, Lundbeck Foundation Center for Neurovascular Research (LUCENS), Denmark.
| |
Collapse
|
36
|
Richard P, Billaut F. Combining Chronic Ischemic Preconditioning and Inspiratory Muscle Warm-Up to Enhance On-Ice Time-Trial Performance in Elite Speed Skaters. Front Physiol 2018; 9:1036. [PMID: 30108521 PMCID: PMC6079196 DOI: 10.3389/fphys.2018.01036] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Accepted: 07/12/2018] [Indexed: 02/02/2023] Open
Abstract
Elite athletes in varied sports typically combine ergogenic strategies in the hope of enhancing physiological responses and competitive performance, but the scientific evidence for such practices is very scarce. The peculiar characteristics of speed skating contribute to impede blood flow and exacerbate deoxygenation in the lower limbs (especially the right leg). We investigated whether combining preconditioning strategies could modify muscular oxygenation and improve performance in that sport. Using a randomized, single-blind, placebo-controlled, crossover design, seven male elite long-track speed skaters performed on-ice 600-m time trials, preceded by either a combination of preconditioning strategies (COMBO) or a placebo condition (SHAM). COMBO involved performing remote ischemic preconditioning (RIPC) of the upper limbs (3 × 5-min compression at 180 mmHg and 5-min reperfusion) over 3 days (including an acute treatment before trials), with the addition of an inspiratory muscle warm-up [IMW: 2 × 30 inspirations at 40% maximal inspiratory pressure (MIP)] on the day of testing. SHAM followed the same protocol with lower intensities (10 mmHg for RIPC and 15% MIP). Changes in tissue saturation index (TSI), oxyhemoglobin–oxymyoglobin ([O2HbMb]), deoxyhemoglobin–deoxymyoglobin ([HHbMb]), and total hemoglobin–myoglobin ([THbMb]) in the right vastus lateralis muscle were monitored by near-infrared spectroscopy (NIRS). Differences between COMBO and SHAM were analyzed using Cohen’s effect size (ES) and magnitude-based inferences. Compared with SHAM, COMBO had no worthwhile effect on performance time while mean Δ[HHbMb] (2.7%, ES 0.48; -0.07, 1.03) and peak Δ[HHbMb] (1.8%, ES 0.23; -0.10, 0.57) were respectively likely and possibly higher in the last section of the race. These results indicate that combining ischemic preconditioning and IMW has no practical ergogenic impact on 600-m speed-skating performance in elite skaters. The low-sitting position in this sport might render difficult enhancing these physiological responses.
Collapse
Affiliation(s)
- Philippe Richard
- Département de kinésiologie, Université Laval, Quebec, QC, Canada
| | - François Billaut
- Département de kinésiologie, Université Laval, Quebec, QC, Canada
| |
Collapse
|
37
|
Oskarsson J, McGawley K. No individual or combined effects of caffeine and beetroot-juice supplementation during submaximal or maximal running. Appl Physiol Nutr Metab 2018; 43:697-703. [DOI: 10.1139/apnm-2017-0547] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Dietary supplements such as caffeine and beetroot juice are used by athletes in an attempt to optimize performance and therefore gain an advantage in competition. The aim of this study was to investigate the individual and combined effects of caffeine and beetroot-juice supplementation during submaximal and maximal treadmill running. Seven males (maximal oxygen uptake: 59.0 ± 2.9 mL·kg–1·min–1) and 2 females (maximal oxygen uptake: 53.1 ± 11.4 mL·kg–1·min–1) performed a preliminary trial followed by 4 experimental test sessions. Each test session consisted of two 5-min submaximal running bouts (at ∼70% and 80% of maximal oxygen uptake) and a maximal 1-km time trial (TT) in a laboratory. Participants ingested 70 mL of concentrated beetroot juice containing either 7.3 mmol of nitrate (BR) or no nitrate (PBR) 2.5 h prior to each test session, then either caffeine (C) at 4.8 ± 0.4 (4.3–5.6) mg/kg of body mass or a caffeine placebo (PC) 45 min before each test session. The 4 test sessions (BR-C, BR-PC, PBR-C, and PBR-PC) were presented in a counterbalanced and double-blind manner. No significant differences were identified between the 4 interventions regarding relative oxygen uptake, running economy, respiratory exchange ratio, heart rate (HR), or rating of perceived exertion (RPE) at the 2 submaximal intensities (P > 0.05). Moreover, there were no significant differences in performance, maximum HR, peak blood lactate concentration, or RPE during the maximal TT when comparing the interventions (P > 0.05). In conclusion, no beneficial effects of supplementing with typical doses of caffeine, beetroot juice, or a combination of the two were observed for physiological, perceptual, or performance responses during submaximal or maximal treadmill running exercise.
Collapse
Affiliation(s)
- Johanna Oskarsson
- Swedish Winter Sports Research Centre, Department of Health Sciences, Mid Sweden University, 831 25 Östersund, Sweden
- Swedish Winter Sports Research Centre, Department of Health Sciences, Mid Sweden University, 831 25 Östersund, Sweden
| | - Kerry McGawley
- Swedish Winter Sports Research Centre, Department of Health Sciences, Mid Sweden University, 831 25 Östersund, Sweden
- Swedish Winter Sports Research Centre, Department of Health Sciences, Mid Sweden University, 831 25 Östersund, Sweden
| |
Collapse
|
38
|
Neuronal nitric oxide synthase regulation of skeletal muscle functional hyperemia: exercise training and moderate compensated heart failure. Nitric Oxide 2017; 74:1-9. [PMID: 29288804 DOI: 10.1016/j.niox.2017.12.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Revised: 11/15/2017] [Accepted: 12/24/2017] [Indexed: 11/22/2022]
Abstract
Nitric oxide (NO) modulates oxygen delivery-utilization matching in resting and contracting skeletal muscle. Recent reports indicate that neuronal NO synthase (nNOS)-mediated vasoregulation during contractions is enhanced with exercise training and impaired with chronic heart failure (HF). Consequently, we tested the hypothesis that selective nNOS inhibition (S-methyl-l-thiocitrulline; SMTC, 2.1 μmol/kg) would produce attenuated reductions in muscle blood flow during moderate/heavy submaximal exercise in sedentary HF rats compared to their healthy counterparts. In addition, SMTC was expected to evoke greater reductions in exercising muscle blood flow in trained compared to sedentary healthy and HF rats. Blood flow during submaximal treadmill running (20 min/m, 5% grade) was determined via radiolabeled microspheres pre- and post-SMTC administration in healthy sedentary (Healthy + Sed, n = 8), healthy exercise trained (Healthy + ExT, n = 8), HF sedentary (HF + Sed, left ventricular end-diastolic pressure (LVEDP) = 12 ± 1 mmHg, n = 8), and HF exercise trained (HF + ExT, LVEDP = 16 ± 2 mmHg, n = 7) rats. nNOS contribution to exercising total hindlimb blood flow (ml/min/100 g) was not increased by training in either healthy or HF groups (Healthy + Sed: 105 ± 11 vs. 108 ± 16; Healthy + ExT: 96 ± 9 vs. 91 ± 7; HF + Sed: 124 ± 6 vs. 110 ± 12; HF + ExT: 107 ± 13 vs. 101 ± 8; control vs. SMTC, respectively; p > .05 for all). Similarly, SMTC did not reduce exercising blood flow in the majority of individual hindlimb muscles in any group (p > .05 for all, except for the semitendinosus and adductor longus in HF + Sed and the adductor longus in HF + ExT; p < .05). Contrary to our hypothesis, we find no support for either upregulation of nNOS function contributing to exercise hyperemia after training or its dysregulation with chronic HF.
Collapse
|
39
|
Zhang X, Hiam D, Hong YH, Zulli A, Hayes A, Rattigan S, McConell GK. Nitric oxide is required for the insulin sensitizing effects of contraction in mouse skeletal muscle. J Physiol 2017; 595:7427-7439. [PMID: 29071734 DOI: 10.1113/jp275133] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 10/18/2017] [Indexed: 01/15/2023] Open
Abstract
KEY POINTS People with insulin resistance or type 2 diabetes can substantially increase their skeletal muscle glucose uptake during exercise and insulin sensitivity after exercise. Skeletal muscle nitric oxide (NO) is important for glucose uptake during exercise, although how prior exercise increases insulin sensitivity is unclear. In the present study, we examined whether NO is necessary for normal increases in skeletal muscle insulin sensitivity after contraction ex vivo in mouse muscle. The present study uncovers, for the first time, a novel role for NO in the insulin sensitizing effects of ex vivo contraction, which is independent of blood flow. ABSTRACT The factors regulating the increase in skeletal muscle insulin sensitivity after exercise are unclear. We examined whether nitric oxide (NO) is required for the increase in insulin sensitivity after ex vivo contractions. Isolated C57BL/6J mouse EDL muscles were contracted for 10 min or remained at rest (basal) with or without the NO synthase (NOS) inhibition (NG -monomethyl-l-arginine; l-NMMA; 100 μm). Then, 3.5 h post contraction/basal, muscles were exposed to saline or insulin (120 μU ml-1 ) with or without l-NMMA during the last 30 min. l-NMMA had no effect on basal skeletal muscle glucose uptake. The increase in muscle glucose uptake with insulin (57%) was significantly (P < 0.05) greater after prior contraction (140% increase). NOS inhibition during the contractions had no effect on this insulin-sensitizing effect of contraction, whereas NOS inhibition during insulin prevented the increase in skeletal muscle insulin sensitivity post-contraction. Soluble guanylate cyclase inhibition, protein kinase G (PKG) inhibition or cyclic nucleotide phosphodiesterase inhibition each had no effect on the insulin-sensitizing effect of prior contraction. In conclusion, NO is required for increases in insulin sensitivity several hours after contraction of mouse skeletal muscle via a cGMP/PKG independent pathway.
Collapse
Affiliation(s)
- Xinmei Zhang
- Institute of Sport, Exercise and Active Living (ISEAL), College of Sport and Exercise Science, Victoria University, Melbourne, VIC, Australia.,School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC, Australia
| | - Danielle Hiam
- Institute of Sport, Exercise and Active Living (ISEAL), College of Sport and Exercise Science, Victoria University, Melbourne, VIC, Australia
| | - Yet-Hoi Hong
- Institute of Sport, Exercise and Active Living (ISEAL), College of Sport and Exercise Science, Victoria University, Melbourne, VIC, Australia
| | - Anthony Zulli
- College of Health and Biomedicine, Victoria University, Melbourne, VIC, Australia
| | - Alan Hayes
- Institute of Sport, Exercise and Active Living (ISEAL), College of Sport and Exercise Science, Victoria University, Melbourne, VIC, Australia.,College of Health and Biomedicine, Victoria University, Melbourne, VIC, Australia
| | - Stephen Rattigan
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - Glenn K McConell
- Institute of Sport, Exercise and Active Living (ISEAL), College of Sport and Exercise Science, Victoria University, Melbourne, VIC, Australia.,College of Health and Biomedicine, Victoria University, Melbourne, VIC, Australia
| |
Collapse
|
40
|
Nybäck L, Glännerud C, Larsson G, Weitzberg E, Shannon OM, McGawley K. Physiological and performance effects of nitrate supplementation during roller-skiing in normoxia and normobaric hypoxia. Nitric Oxide 2017; 70:1-8. [DOI: 10.1016/j.niox.2017.08.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 07/31/2017] [Accepted: 08/02/2017] [Indexed: 11/29/2022]
|
41
|
Ghiarone T, Ataide-Silva T, Bertuzzi R, McConell GK, Lima-Silva AE. Effect of acute nitrate ingestion on V̇O2 response at different exercise intensity domains. Appl Physiol Nutr Metab 2017; 42:1127-1134. [DOI: 10.1139/apnm-2017-0198] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
While nitrate supplementation influences oxygen uptake (V̇O2) response to exercise, this effect may be intensity dependent. The purpose of this study was to investigate the effect of acute nitrate supplementation on V̇O2 response during different exercise intensity domains in humans. Eleven men ingested 10 mg·kg−1 body mass (8.76 ± 1.35 mmol) of sodium nitrate or sodium chloride (placebo) 2.5 h before cycling at moderate (90% of gas exchange threshold; GET), heavy (GET + 40% of the difference between GET and peak oxygen uptake (V̇O2peak), Δ 40) or severe (GET + 80% of the difference between GET and V̇O2peak, Δ 80) exercise intensities. Volunteers performed exercise for 10 min (moderate), 15 min (heavy) or until exhaustion (severe). Acute nitrate supplementation had no effect on any V̇O2 response parameters during moderate and severe exercise intensities. However, the V̇O2 slow amplitude (nitrate: 0.93 ± 0.36 L·min−1 vs. placebo: 1.13 ± 0.59 L·min−1, p = 0.04) and V̇O2 slow gain (nitrate: 5.81 ± 2.37 mL·min–1·W−1 vs. placebo: 7.09 ± 3.67 mL·min–1·W−1, p = 0.04) were significantly lower in nitrate than in placebo during the heavy exercise intensity. There was no effect of nitrate on plasma lactate during any exercise intensity (p > 0.05). Time to exhaustion during the severe exercise intensity was also not affected by nitrate (p > 0.05). In conclusion, acute nitrate supplementation reduced the slow component of V̇O2 only when performing heavy-intensity exercise, which might indicate an intensity-dependent effect of nitrate on V̇O2 response.
Collapse
Affiliation(s)
- Thaysa Ghiarone
- Sport Science Research Group, Department of Physical Education and Sports Science, Academic Center of Vitoria, Federal University of Pernambuco, Vitoria de Santo Antao, Pernambuco 55608680, Brazil
| | - Thays Ataide-Silva
- Sport Science Research Group, Department of Physical Education and Sports Science, Academic Center of Vitoria, Federal University of Pernambuco, Vitoria de Santo Antao, Pernambuco 55608680, Brazil
| | - Romulo Bertuzzi
- Endurance Performance Research Group (GEDAE-USP), University of Sao Paulo, Sao Paulo 05508-030, Brazil
| | - Glenn Kevin McConell
- Institute of Sport, Exercise and Active Living, Victoria University, Melbourne, Victoria 3011, Australia
| | - Adriano Eduardo Lima-Silva
- Sport Science Research Group, Department of Physical Education and Sports Science, Academic Center of Vitoria, Federal University of Pernambuco, Vitoria de Santo Antao, Pernambuco 55608680, Brazil
- Human Performance Research Group, Technological Federal University of Parana, Parana 81310900, Brazil
| |
Collapse
|
42
|
Ishida A, Ashihara A, Nakashima K, Katsumata M. Expression of cationic amino acid transporters in pig skeletal muscles during postnatal development. Amino Acids 2017; 49:1805-1814. [PMID: 28803359 DOI: 10.1007/s00726-017-2478-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 08/01/2017] [Indexed: 11/24/2022]
Abstract
The cationic amino acid transporter (CAT) protein family transports lysine and arginine in cellular amino acid pools. We hypothesized that CAT expression changes in pig skeletal muscles during rapid pig postnatal development. We aimed to investigate the tissue distribution and changes in the ontogenic expression of CATs in pig skeletal muscles during postnatal development. Six piglets at 1, 12, 26, 45, and 75 days old were selected from six litters, and their longissimus dorsi (LD), biceps femoris (BF), and rhomboideus (RH) muscles, and their stomach, duodenum, jejunum, ileum, colon, liver, kidney, heart, and cerebrum were collected. CAT-1 was expressed in all the 12 tissues investigated. CAT-2 (CAT-2A isoform) expression was highest in the skeletal muscle and liver and lowest in the jejunum, ileum, kidney, and heart. CAT-3 was expressed mainly in the colon and detected in the jejunum, ileum, and cerebrum. The CAT-1 expression was higher in the skeletal muscle of day 1 pigs than in that of older pigs (P < 0.05). The CAT-2 mRNA level was lowest at day 1, but increased with postnatal development (P < 0.05). There was no significant change in CAT-1 expression among the LD, BF, and RH during postnatal development (P > 0.05); however, there was a change in CAT-2 expression. The CAT-2 expression was highest in the LD of 12-, 26-, 45-, and 75-day-old pigs, followed by the BF and RH (P < 0.05). These results suggest that CAT-1 and CAT-2 play different roles in pig skeletal muscles during postnatal development.
Collapse
Affiliation(s)
- Aiko Ishida
- Institute of Livestock and Grassland Science, NARO, Tsukuba, Ibaraki, 305-0901, Japan.
| | - Akane Ashihara
- Institute of Livestock and Grassland Science, NARO, Tsukuba, Ibaraki, 305-0901, Japan
| | - Kazuki Nakashima
- Institute of Livestock and Grassland Science, NARO, Tsukuba, Ibaraki, 305-0901, Japan
| | - Masaya Katsumata
- Institute of Livestock and Grassland Science, NARO, Tsukuba, Ibaraki, 305-0901, Japan.,School of Veterinary Science, Azabu University, Sagamihara, Kanagawa, 252-5201, Japan
| |
Collapse
|
43
|
Molecular mechanisms of ROS production and oxidative stress in diabetes. Biochem J 2017; 473:4527-4550. [PMID: 27941030 DOI: 10.1042/bcj20160503c] [Citation(s) in RCA: 570] [Impact Index Per Article: 71.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 10/07/2016] [Accepted: 10/10/2016] [Indexed: 12/18/2022]
Abstract
Oxidative stress and chronic inflammation are known to be associated with the development of metabolic diseases, including diabetes. Oxidative stress, an imbalance between oxidative and antioxidative systems of cells and tissues, is a result of over production of oxidative-free radicals and associated reactive oxygen species (ROS). One outcome of excessive levels of ROS is the modification of the structure and function of cellular proteins and lipids, leading to cellular dysfunction including impaired energy metabolism, altered cell signalling and cell cycle control, impaired cell transport mechanisms and overall dysfunctional biological activity, immune activation and inflammation. Nutritional stress, such as that caused by excess high-fat and/or carbohydrate diets, promotes oxidative stress as evident by increased lipid peroxidation products, protein carbonylation and decreased antioxidant status. In obesity, chronic oxidative stress and associated inflammation are the underlying factors that lead to the development of pathologies such as insulin resistance, dysregulated pathways of metabolism, diabetes and cardiovascular disease through impaired signalling and metabolism resulting in dysfunction to insulin secretion, insulin action and immune responses. However, exercise may counter excessive levels of oxidative stress and thus improve metabolic and inflammatory outcomes. In the present article, we review the cellular and molecular origins and significance of ROS production, the molecular targets and responses describing how oxidative stress affects cell function including mechanisms of insulin secretion and action, from the point of view of possible application of novel diabetic therapies based on redox regulation.
Collapse
|
44
|
Crum EM, Che Muhamed AM, Barnes M, Stannard SR. The effect of acute pomegranate extract supplementation on oxygen uptake in highly-trained cyclists during high-intensity exercise in a high altitude environment. J Int Soc Sports Nutr 2017; 14:14. [PMID: 28572749 PMCID: PMC5452353 DOI: 10.1186/s12970-017-0172-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Accepted: 05/26/2017] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Recent research has indicated that pomegranate extract (POMx) may improve performance during aerobic exercise by enhancing the matching of vascular oxygen (O2) provision to muscular requirements. POMx is rich in ellagitannin polyphenols and nitrates (NO3-), which are both associated with improvements in blood flow and O2 delivery. Primarily, this study aimed to determine whether POMx improves performance in a cycling time trial to exhaustion at 100%VO2max (TTE100%) in highly-trained cyclists. In addition, we investigated if the O2 cost (VO2) of submaximal exercise was lower with POMx, and whether any changes were greater at high altitude where O2 delivery is impaired. METHODS Eight cyclists exercised at three submaximal intensities before completing a TTE100% at sea-level (SEA) and at 1657 m of altitude (ALT), with pre-exercise consumption of 1000 mg of POMx or a placebo (PLAC) in a randomized, double-blind, crossover design. Data were analysed using a three way (treatment x altitude x intensity) or two-way (treatment x altitude) repeated measures ANOVA with a Fisher's LSD post-hoc analysis. Significance was set at p ≤ 0.05. The effect size of significant interactions was calculated using Cohen's d. RESULTS TTE100% performance was reduced in ALT but was not influenced by POMx (p > 0.05). Plasma NO3- were 10.3 μmol greater with POMx vs. PLAC (95% CI, 0.8, 19.7,F1,7 = 7.83, p < 0.04). VO2 measured at five minutes into the TTE100% was significantly increased in ALTPOMx vs. ALTPLAC (+3.8 ml.min-1kg-1, 95% CI, -5.7, 9.5, F1,7 = 29.2, p = 0.001, ES = 0.6) but unchanged in SEAPOMx vs. SEAPLAC (p > 0.05). Submaximal VO2 values were not affected by POMx (p ≥ 0.05). CONCLUSIONS The restoration of SEA VO2 values at ALT is likely driven by the high polyphenol content of POMx, which is proposed to improve nitric oxide bioavailability. Despite an increase in VO2, no change in exercise performance occurred and therefore this study does not support the use of POMx as an ergogenic supplement.
Collapse
Affiliation(s)
- Emma May Crum
- School of Sport and Exercise, Massey University (New Zealand), Palmerston North, New Zealand
| | | | - Matthew Barnes
- School of Sport and Exercise, Massey University (New Zealand), Palmerston North, New Zealand
| | - Stephen Robert Stannard
- School of Sport and Exercise, Massey University (New Zealand), Palmerston North, New Zealand
| |
Collapse
|
45
|
Christensen PM, Shirai Y, Ritz C, Nordsborg NB. Caffeine and Bicarbonate for Speed. A Meta-Analysis of Legal Supplements Potential for Improving Intense Endurance Exercise Performance. Front Physiol 2017; 8:240. [PMID: 28536531 PMCID: PMC5422435 DOI: 10.3389/fphys.2017.00240] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 04/05/2017] [Indexed: 12/13/2022] Open
Abstract
A 1% change in average speed is enough to affect medal rankings in intense Olympic endurance events lasting ~45 s to 8 min which for example includes 100 m swimming and 400 m running (~1 min), 1,500 m running and 4000 m track cycling (~4 min) and 2,000 m rowing (~6-8 min). To maximize the likelihood of winning, athletes utilizes legal supplements with or without scientifically documented beneficial effects on performance. Therefore, a continued systematic evidence based evaluation of the possible ergogenic effects is of high importance. A meta-analysis was conducted with a strict focus on closed-end performance tests in humans in the time domain from 45 s to 8 min. These test include time-trials or total work done in a given time. This selection criterion results in a high relevance for athletic performance. Only peer-reviewed placebo controlled studies were included. The often applied and potentially ergogenic supplements beta-alanine, bicarbonate, caffeine and nitrate were selected for analysis. Following a systematic search in Pubmed and SportsDiscuss combined with evaluation of cross references a total of 7 (beta-alanine), 25 (bicarbonate), 9 (caffeine), and 5 (nitrate) studies was included in the meta-analysis. For each study, performance was converted to an average speed (km/h) from which an effect size (ES; Cohens d with 95% confidence intervals) was calculated. A small effect and significant performance improvement relative to placebo was observed for caffeine (ES: 0.41 [0.15–0.68], P = 0.002) and bicarbonate (ES: 0.40 [0.27–0.54], P < 0.001). Trivial and non-significant effects on performance was observed for nitrate (ES: 0.19 [−0.03–0.40], P = 0.09) and beta-alanine (ES: 0.17 [−0.12–0.46], P = 0.24). Thus, caffeine's and bicarbonate's ergogenic effect is clearly documented for intense endurance performance. Importantly, for all supplements an individualized approach may improve the ergogenic effect on performance.
Collapse
Affiliation(s)
- Peter M Christensen
- Section of Integrated Physiology, Department of Nutrition, Exercise and Sports, University of CopenhagenCopenhagen, Denmark.,Team DanmarkCopenhagen, Denmark
| | - Yusuke Shirai
- Section of Integrated Physiology, Department of Nutrition, Exercise and Sports, University of CopenhagenCopenhagen, Denmark
| | - Christian Ritz
- Section of Integrated Physiology, Department of Nutrition, Exercise and Sports, University of CopenhagenCopenhagen, Denmark
| | - Nikolai B Nordsborg
- Section of Integrated Physiology, Department of Nutrition, Exercise and Sports, University of CopenhagenCopenhagen, Denmark
| |
Collapse
|
46
|
Deane CS, Wilkinson DJ, Phillips BE, Smith K, Etheridge T, Atherton PJ. "Nutraceuticals" in relation to human skeletal muscle and exercise. Am J Physiol Endocrinol Metab 2017; 312:E282-E299. [PMID: 28143855 PMCID: PMC5406990 DOI: 10.1152/ajpendo.00230.2016] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 01/25/2017] [Accepted: 01/25/2017] [Indexed: 12/16/2022]
Abstract
Skeletal muscles have a fundamental role in locomotion and whole body metabolism, with muscle mass and quality being linked to improved health and even lifespan. Optimizing nutrition in combination with exercise is considered an established, effective ergogenic practice for athletic performance. Importantly, exercise and nutritional approaches also remain arguably the most effective countermeasure for muscle dysfunction associated with aging and numerous clinical conditions, e.g., cancer cachexia, COPD, and organ failure, via engendering favorable adaptations such as increased muscle mass and oxidative capacity. Therefore, it is important to consider the effects of established and novel effectors of muscle mass, function, and metabolism in relation to nutrition and exercise. To address this gap, in this review, we detail existing evidence surrounding the efficacy of a nonexhaustive list of macronutrient, micronutrient, and "nutraceutical" compounds alone and in combination with exercise in relation to skeletal muscle mass, metabolism (protein and fuel), and exercise performance (i.e., strength and endurance capacity). It has long been established that macronutrients have specific roles and impact upon protein metabolism and exercise performance, (i.e., protein positively influences muscle mass and protein metabolism), whereas carbohydrate and fat intakes can influence fuel metabolism and exercise performance. Regarding novel nutraceuticals, we show that the following ones in particular may have effects in relation to 1) muscle mass/protein metabolism: leucine, hydroxyl β-methylbutyrate, creatine, vitamin-D, ursolic acid, and phosphatidic acid; and 2) exercise performance: (i.e., strength or endurance capacity): hydroxyl β-methylbutyrate, carnitine, creatine, nitrates, and β-alanine.
Collapse
Affiliation(s)
- Colleen S Deane
- Medical Research Council-Arthritis Research UK Centre of Excellence for Musculoskeletal Ageing Research and Clinical, Metabolic, and Molecular Physiology, University of Nottingham, Royal Derby Hospital, Derby, United Kingdom
- Faculty of Health and Social Science, Bournemouth University, Bournemouth, United Kingdom; and
- Department of Sport and Health Science, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Daniel J Wilkinson
- Medical Research Council-Arthritis Research UK Centre of Excellence for Musculoskeletal Ageing Research and Clinical, Metabolic, and Molecular Physiology, University of Nottingham, Royal Derby Hospital, Derby, United Kingdom
| | - Bethan E Phillips
- Medical Research Council-Arthritis Research UK Centre of Excellence for Musculoskeletal Ageing Research and Clinical, Metabolic, and Molecular Physiology, University of Nottingham, Royal Derby Hospital, Derby, United Kingdom
| | - Kenneth Smith
- Medical Research Council-Arthritis Research UK Centre of Excellence for Musculoskeletal Ageing Research and Clinical, Metabolic, and Molecular Physiology, University of Nottingham, Royal Derby Hospital, Derby, United Kingdom
| | - Timothy Etheridge
- Department of Sport and Health Science, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Philip J Atherton
- Medical Research Council-Arthritis Research UK Centre of Excellence for Musculoskeletal Ageing Research and Clinical, Metabolic, and Molecular Physiology, University of Nottingham, Royal Derby Hospital, Derby, United Kingdom;
| |
Collapse
|
47
|
Christensen PM, Petersen NK, Friis SN, Weitzberg E, Nybo L. Effects of nitrate supplementation in trained and untrained muscle are modest with initial high plasma nitrite levels. Scand J Med Sci Sports 2017; 27:1616-1626. [DOI: 10.1111/sms.12848] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/26/2017] [Indexed: 01/18/2023]
Affiliation(s)
- P. M. Christensen
- Department of Nutrition, Exercise and Sports; Section of Integrated Physiology; University of Copenhagen; Copenhagen Denmark
- Team Danmark (Danish elite sport organization); Copenhagen Denmark
| | - N. K. Petersen
- Department of Nutrition, Exercise and Sports; Section of Integrated Physiology; University of Copenhagen; Copenhagen Denmark
| | - S. N. Friis
- Department of Nutrition, Exercise and Sports; Section of Integrated Physiology; University of Copenhagen; Copenhagen Denmark
| | - E. Weitzberg
- Department of Physiology and Pharmacology; Swedish School of Sport and Health Sciences; Karolinska Institutet; Stockholm Sweden
| | - L. Nybo
- Department of Nutrition, Exercise and Sports; Section of Integrated Physiology; University of Copenhagen; Copenhagen Denmark
| |
Collapse
|
48
|
Shannon OM, Duckworth L, Barlow MJ, Woods D, Lara J, Siervo M, O'Hara JP. Dietary nitrate supplementation enhances high-intensity running performance in moderate normobaric hypoxia, independent of aerobic fitness. Nitric Oxide 2016; 59:63-70. [DOI: 10.1016/j.niox.2016.08.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 07/25/2016] [Accepted: 08/11/2016] [Indexed: 12/31/2022]
|
49
|
Curtis KJ, O’Brien KA, Tanner RJ, Polkey JI, Minnion M, Feelisch M, Polkey MI, Edwards LM, Hopkinson NS. Acute Dietary Nitrate Supplementation and Exercise Performance in COPD: A Double-Blind, Placebo-Controlled, Randomised Controlled Pilot Study. PLoS One 2015; 10:e0144504. [PMID: 26698120 PMCID: PMC4689520 DOI: 10.1371/journal.pone.0144504] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 11/18/2015] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Dietary nitrate supplementation can enhance exercise performance in healthy people, but it is not clear if it is beneficial in COPD. We investigated the hypotheses that acute nitrate dosing would improve exercise performance and reduce the oxygen cost of submaximal exercise in people with COPD. METHODS We performed a double-blind, placebo-controlled, cross-over single dose study. Subjects were randomised to consume either nitrate-rich beetroot juice (containing 12.9 mmoles nitrate) or placebo (nitrate-depleted beetroot juice) 3 hours prior to endurance cycle ergometry, performed at 70% of maximal workload assessed by a prior incremental exercise test. After a minimum washout period of 7 days the protocol was repeated with the crossover beverage. RESULTS 21 subjects successfully completed the study (age 68 ± 7 years; BMI 25.2 ± 5.5 kg/m2; FEV1 percentage predicted 50.1 ± 21.6%; peak VO2 18.0 ± 5.9 ml/min/kg). Resting diastolic blood pressure fell significantly with nitrate supplementation compared to placebo (-7 ± 8 mmHg nitrate vs. -1 ± 8 mmHg placebo; p = 0.008). Median endurance time did not differ significantly; nitrate 5.65 (3.90-10.40) minutes vs. placebo 6.40 (4.01-9.67) minutes (p = 0.50). However, isotime oxygen consumption (VO2) was lower following nitrate supplementation (16.6 ± 6.0 ml/min/kg nitrate vs. 17.2 ± 6.0 ml/min/kg placebo; p = 0.043), and consequently nitrate supplementation caused a significant lowering of the amplitude of the VO2-percentage isotime curve. CONCLUSIONS Acute administration of oral nitrate did not enhance endurance exercise performance; however the observation that beetroot juice caused reduced oxygen consumption at isotime suggests that further investigation of this treatment approach is warranted, perhaps targeting a more hypoxic phenotype. TRIAL REGISTRATION ISRCTN Registry ISRCTN66099139.
Collapse
Affiliation(s)
- Katrina J. Curtis
- NIHR Respiratory Biomedical Research Unit, Royal Brompton & Harefield NHS Trust and Imperial College, London, United Kingdom
| | - Katie A. O’Brien
- Centre of Human & Aerospace Physiological Sciences, King’s College London, London, United Kingdom
| | - Rebecca J. Tanner
- NIHR Respiratory Biomedical Research Unit, Royal Brompton & Harefield NHS Trust and Imperial College, London, United Kingdom
| | - Juliet I. Polkey
- NIHR Respiratory Biomedical Research Unit, Royal Brompton & Harefield NHS Trust and Imperial College, London, United Kingdom
| | - Magdalena Minnion
- Faculty of Medicine, Clinical and Experimental Sciences, University of Southampton, and Southampton NIHR Respiratory Biomedical Research Unit, Southampton General Hospital, Southampton, United Kingdom
| | - Martin Feelisch
- Faculty of Medicine, Clinical and Experimental Sciences, University of Southampton, and Southampton NIHR Respiratory Biomedical Research Unit, Southampton General Hospital, Southampton, United Kingdom
| | - Michael I. Polkey
- NIHR Respiratory Biomedical Research Unit, Royal Brompton & Harefield NHS Trust and Imperial College, London, United Kingdom
| | - Lindsay M. Edwards
- Centre of Human & Aerospace Physiological Sciences, King’s College London, London, United Kingdom
| | - Nicholas S. Hopkinson
- NIHR Respiratory Biomedical Research Unit, Royal Brompton & Harefield NHS Trust and Imperial College, London, United Kingdom
- * E-mail:
| |
Collapse
|
50
|
Shenkman BS, Nemirovskaya TL, Lomonosova YN. No-dependent signaling pathways in unloaded skeletal muscle. Front Physiol 2015; 6:298. [PMID: 26582991 PMCID: PMC4628111 DOI: 10.3389/fphys.2015.00298] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 10/09/2015] [Indexed: 01/22/2023] Open
Abstract
The main focus of the current review is the nitric oxide (NO)-mediated signaling mechanism in unloaded skeletal. Review of the published data describing muscles during physical activity and inactivity demonstrates that NO is an essential trigger of signaling processes, which leads to structural and metabolic changes of the muscle fibers. The experiments with modulation of NO-synthase (NOS) activity during muscle unloading demonstrate the ability of an activated enzyme to stabilize degradation processes and prevent development of muscle atrophy. Various forms of muscle mechanical activity, i.e., plantar afferent stimulation, resistive exercise and passive chronic stretch increase the content of neural NOS (nNOS) and thus may facilitate an increase in NO production. Recent studies demonstrate that NO-synthase participates in the regulation of protein and energy metabolism in skeletal muscle by fine-tuning and stabilizing complex signaling systems which regulate protein synthesis and degradation in the fibers of inactive muscle.
Collapse
Affiliation(s)
- Boris S Shenkman
- Institute of Biomedical Problems, Russian Academy of Sciences Moscow, Russia
| | - Tatiana L Nemirovskaya
- Institute of Biomedical Problems, Russian Academy of Sciences Moscow, Russia ; Faculty of Fundamental Medicine, Lomonosov Moscow State University Moscow, Russia
| | - Yulia N Lomonosova
- Institute of Biomedical Problems, Russian Academy of Sciences Moscow, Russia
| |
Collapse
|