1
|
Vringer M, Bijlenga D, Zhou J, Meijer OC, Vinkers CH, Lammers GJ, Fronczek R. Physiological and psychological stress reactivity in narcolepsy type 1. Sleep 2025; 48:zsae265. [PMID: 39546396 PMCID: PMC11893539 DOI: 10.1093/sleep/zsae265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 10/08/2024] [Indexed: 11/17/2024] Open
Abstract
STUDY OBJECTIVES Narcolepsy type 1 (NT1) is a chronic sleep-wake disorder, characterized by a loss of hypocretin production. Unexpectedly, in postmortem tissue of people with NT1, there is a loss of corticotrophin-releasing hormone (CRH) in the paraventricular nucleus. CRH is known as an activator of the hypothalamic-pituitary-adrenal axis in response to stress. This activation results in the release of the stress hormones adrenocorticotropic hormone (ACTH) and cortisol. We hypothesize an altered physiological and psychological stress response in NT1. METHODS Participants were people with NT1 (n = 14) and matched healthy controls (n = 12). The Trier Social Stress Test for Groups (TSST-G), a validated socially evaluated stress test in controlled settings, induced acute stress. We measured ACTH and cortisol levels in the blood before and at three timepoints after the TSST-G. We also measured subjective stress and heart rate levels. RESULTS In both groups, acute stress led to increases in ACTH (p = .006), cortisol (p < .001), heart rate (p < .001), and subjective stress (p < .001). Subjectively, people with NT1 experienced more stress than controls (p < .001). No differences were found in heart rate, cortisol, and ACTH between people with NT1 and controls at any timepoint. Secondary analyses showed that men with NT1 had lower cortisol levels immediately after stress induction than men in the control group (p = .002). CONCLUSIONS People with NT1 show an increased subjective stress response, but no changes in their endocrine or cardiovascular stress reactivity. Further research is required to determine the impact of reduced CRH production and gender in NT1.
Collapse
Affiliation(s)
- Marieke Vringer
- Stichting Epilepsie Instellingen Nederland (SEIN), Sleep-Wake Center, Heemstede, The Netherlands
- Department of Neurology, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Denise Bijlenga
- Stichting Epilepsie Instellingen Nederland (SEIN), Sleep-Wake Center, Heemstede, The Netherlands
- Department of Neurology, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Jingru Zhou
- Stichting Epilepsie Instellingen Nederland (SEIN), Sleep-Wake Center, Heemstede, The Netherlands
- Department of Neurology, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Onno C Meijer
- Department of Neuroendocrinology, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Christiaan H Vinkers
- Department of Psychiatry and Department of Anatomy & Neurosciences, Amsterdam University Medical Center (AUMC), Amsterdam, The Netherlands
- Amsterdam Neuroscience, Mood, Anxiety, Psychosis, Stress & Sleep Program, Amsterdam, The Netherlands
- Amsterdam Public Health, Mental Health Program, Amsterdam, The Netherlands
- GGZ InGeest, Academic Working Place Depression, Amsterdam, The Netherlands
| | - Gert Jan Lammers
- Stichting Epilepsie Instellingen Nederland (SEIN), Sleep-Wake Center, Heemstede, The Netherlands
- Department of Neurology, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Rolf Fronczek
- Stichting Epilepsie Instellingen Nederland (SEIN), Sleep-Wake Center, Heemstede, The Netherlands
- Department of Neurology, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| |
Collapse
|
2
|
Precocious puberty in narcolepsy type 1: Orexin loss and/or neuroinflammation, which is to blame? Sleep Med Rev 2022; 65:101683. [PMID: 36096986 DOI: 10.1016/j.smrv.2022.101683] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 07/20/2022] [Accepted: 07/25/2022] [Indexed: 10/14/2022]
Abstract
Narcolepsy type 1 (NT1) is a rare neurological sleep disorder triggered by postnatal loss of the orexin/hypocretin neuropeptides. Overweight/obesity and precocious puberty are highly prevalent comorbidities of NT1, with a close temporal correlation with disease onset, suggesting a common origin. However, the underlying mechanisms remain unknown and merit further investigation. The main question we address in this review is whether the occurrence of precocious puberty in NT1 is due to the lack of orexin/hypocretin or rather to a wider hypothalamic dysfunction in the context of neuroinflammation, which is likely to accompany the disease given its autoimmune origins. Our analysis suggests that the suspected generalized neuroinflammation of the hypothalamus in NT1 would tend to delay puberty rather than hastening it. In contrast, that the brutal loss of orexin/hypocretin would favor an early reactivation of gonadotropin-releasing hormone (GnRH) secretion during the prepubertal period in vulnerable children, leading to early puberty onset. Orexin/hypocretin replacement could thus be envisaged as a potential treatment for precocious puberty in NT1. Additionally, we put forward an alternative hypothesis regarding the concomitant occurrence of sleepiness, weight gain and early puberty in NT1.
Collapse
|
3
|
Fujisawa S, Komatsubara M, Tsukamoto-Yamauchi N, Iwata N, Nada T, Wada J, Otsuka F. Orexin A Enhances Pro-Opiomelanocortin Transcription Regulated by BMP-4 in Mouse Corticotrope AtT20 Cells. Int J Mol Sci 2021; 22:4553. [PMID: 33925368 PMCID: PMC8123825 DOI: 10.3390/ijms22094553] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/24/2021] [Accepted: 04/25/2021] [Indexed: 11/16/2022] Open
Abstract
Orexin is expressed mainly in the hypothalamus and is known to activate the hypothalamic-pituitary-adrenal (HPA) axis that is involved in various stress responses and its resilience. However, the effects of orexin on the endocrine function of pituitary corticotrope cells remain unclear. In this study, we investigated the roles of orexin A in pro-opiomelanocortin (POMC) transcription using mouse corticotrope AtT20 cells, focusing on the bone morphogenetic protein (BMP) system expressed in the pituitary. Regarding the receptors for orexin, type 2 (OXR2) rather than type 1 (OX1R) receptor mRNA was predominantly expressed in AtT20 cells. It was found that orexin A treatment enhanced POMC expression, induced by corticotropin-releasing hormone (CRH) stimulation through upregulation of CRH receptor type-1 (CRHR1). Orexin A had no direct effect on the POMC transcription suppressed by BMP-4 treatment, whereas it suppressed Smad1/5/9 phosphorylation and Id-1 mRNA expression induced by BMP-4. It was further revealed that orexin A had no significant effect on the expression levels of type I and II BMP receptors but upregulated inhibitory Smad6/7 mRNA and protein levels in AtT20 cells. The results demonstrated that orexin A upregulated CRHR signaling and downregulated BMP-Smad signaling, leading to an enhancement of POMC transcription by corticotrope cells.
Collapse
Affiliation(s)
- Satoshi Fujisawa
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kitaku, Okayama 700-8558, Japan; (S.F.); (M.K.); (N.T.-Y.); (J.W.)
| | - Motoshi Komatsubara
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kitaku, Okayama 700-8558, Japan; (S.F.); (M.K.); (N.T.-Y.); (J.W.)
| | - Naoko Tsukamoto-Yamauchi
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kitaku, Okayama 700-8558, Japan; (S.F.); (M.K.); (N.T.-Y.); (J.W.)
| | - Nahoko Iwata
- Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kitaku, Okayama 700-8558, Japan; (N.I.); (T.N.)
| | - Takahiro Nada
- Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kitaku, Okayama 700-8558, Japan; (N.I.); (T.N.)
| | - Jun Wada
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kitaku, Okayama 700-8558, Japan; (S.F.); (M.K.); (N.T.-Y.); (J.W.)
| | - Fumio Otsuka
- Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kitaku, Okayama 700-8558, Japan; (N.I.); (T.N.)
| |
Collapse
|
4
|
Fujisawa S, Komatsubara M, Ogura-Ochi K, Tsukamoto-Yamauchi N, Toma K, Inagaki K, Wada J, Otsuka F. Orexin A modulates prolactin production by regulating BMP-4 activity in rat pituitary lactotorope cells. Peptides 2019; 113:35-40. [PMID: 30721716 DOI: 10.1016/j.peptides.2019.01.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 01/09/2019] [Accepted: 01/28/2019] [Indexed: 02/06/2023]
Abstract
The impact of orexins on anterior pituitary function has yet to be clarified. We studied the effects of orexin A and its interaction with the bone morphogenetic protein (BMP) system on the regulatory role of prolactin synthesis using rat lactotrope GH3 cells expressing BMP-4. Orexin type 1 receptor (OX1R), but not type 2 receptor (OX2R), was predominantly expressed in GH3 cells. Orexin A suppressed forskolin-induced, but not basal, prolactin mRNA expression without reducing cAMP levels. Of note, orexin A suppressed BMP-4-induced prolactin mRNA and cAMP synthesis. Impairment of the effects of orexin by chemical inhibitors suggested involvement of the P38 pathway in the OX1R activity that suppresses BMP-4-induced PRL expression. Given that inhibition of BMP-receptor signaling reduced prolactin mRNA levels, endogenous BMP action is likely to be linked to the activation of prolactin synthesis by GH3 cells. Orexin A was revealed to suppress Smad1/5/9 phosphorylation and Id-1 transcription induced by BMP-4, which was restored in the presence of orexin-receptor antagonists, suggesting that the inhibitory effect of orexin A occurred via OX1R. Orexin A also reduced ALK-3 expression but increased inhibitory Smad6/7 expression, while BMP-4 treatment downregulated OX1R expression. These results indicated that orexin A plays an inhibitory role in prolactin production through suppression of endogenous BMP activity in GH3 cells, suggesting that a new functional role of the interaction between orexin and BMP-4 is modulation of prolactin levels in lactotrope cells.
Collapse
Affiliation(s)
- Satoshi Fujisawa
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Motoshi Komatsubara
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Kanako Ogura-Ochi
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Naoko Tsukamoto-Yamauchi
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Kishio Toma
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Kenichi Inagaki
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Jun Wada
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Fumio Otsuka
- Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kitaku, Okayama, 700-8558, Japan.
| |
Collapse
|
5
|
Abstract
Orexin/hypocretin peptide (orexin-A and orexin-B) signaling is believed to take place via the two G-protein-coupled receptors (GPCRs), named OX1 and OX2 orexin receptors, as described in the previous chapters. Signaling of orexin peptides has been investigated in diverse endogenously orexin receptor-expressing cells - mainly neurons but also other types of cells - and in recombinant cells expressing the receptors in a heterologous manner. Findings in the different systems are partially convergent but also indicate cellular background-specific signaling. The general picture suggests an inherently high degree of diversity in orexin receptor signaling.In the current chapter, I present orexin signaling on the cellular and molecular levels. Discussion of the connection to (potential) physiological orexin responses is only brief since these are in focus of other chapters in this book. The same goes for the post-synaptic signaling mechanisms, which are dealt with in Burdakov: Postsynaptic actions of orexin. The current chapter is organized according to the tissue type, starting from the central nervous system. Finally, receptor signaling pathways are discussed across tissues, cell types, and even species.
Collapse
Affiliation(s)
- Jyrki P Kukkonen
- Biochemistry and Cell Biology, Department of Veterinary Biosciences, University of Helsinki, POB 66, FIN-00014, Helsinki, Finland.
| |
Collapse
|
6
|
Hypocretin/Orexin Peptides Excite Rat Neuroendocrine Dopamine Neurons through Orexin 2 Receptor-Mediated Activation of a Mixed Cation Current. Sci Rep 2017; 7:41535. [PMID: 28145492 PMCID: PMC5286397 DOI: 10.1038/srep41535] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 12/19/2016] [Indexed: 11/11/2022] Open
Abstract
Hypocretin/Orexin (H/O) neurons of the lateral hypothalamus are compelling modulator candidates for the chronobiology of neuroendocrine output and, as a consequence, hormone release from the anterior pituitary. Here we investigate the effects of H/O peptides upon tuberoinfundibular dopamine (TIDA) neurons – cells which control, via inhibition, the pituitary secretion of prolactin. In whole cell recordings performed in male rat hypothalamic slices, application of H/O-A, as well as H/O-B, excited oscillating TIDA neurons, inducing a reversible depolarising switch from phasic to tonic discharge. The H/O-induced inward current underpinning this effect was post-synaptic (as it endured in the presence of tetrodotoxin), appeared to be carried by a Na+-dependent transient receptor potential-like channel (as it was blocked by 2-APB and was diminished by removal of extracellular Na+), and was a consequence of OX2R receptor activation (as it was blocked by the OX2R receptor antagonist TCS OX2 29, but not the OX1R receptor antagonist SB 334867). Application of the hormone, melatonin, failed to alter TIDA membrane potential or oscillatory activity. This first description of the electrophysiological effects of H/Os upon the TIDA network identifies cellular mechanisms that may contribute to the circadian rhythmicity of prolactin secretion.
Collapse
|
7
|
Messina A, De Fusco C, Monda V, Esposito M, Moscatelli F, Valenzano A, Carotenuto M, Viggiano E, Chieffi S, De Luca V, Cibelli G, Monda M, Messina G. Role of the Orexin System on the Hypothalamus-Pituitary-Thyroid Axis. Front Neural Circuits 2016; 10:66. [PMID: 27610076 PMCID: PMC4997012 DOI: 10.3389/fncir.2016.00066] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Accepted: 08/08/2016] [Indexed: 12/25/2022] Open
Abstract
Hypocretin/orexin (ORX) are two hypothalamic neuropeptides discovered in 1998. Since their discovery, they have been one of the most studied neuropeptide systems because of their projecting fields innervating various brain areas. The orexinergic system is tied to sleep-wakefulness cycle, and narcolepsy is a consequence of their system hypofunction. Orexinergic system is also involved in many other autonomic functions such as feeding, thermoregulation, cardiovascular and neuroendocrine regulation. The main aim of this mini review article is to investigate the relationship between ORX and thyroid system regulation. Although knowledge about the ORX system is evolving, its putative effects on hypothalamic-pituitary-thyroid (HPT) axis still appear unclear. We analyzed some studies about ORX control of HPT axis to know better the relationship between them. The studies that were analyzed suggest Hypocretin/ORX to modulate the thyroid regulation, but the nature (excitatory or inhibitory) of this possible interaction remains actually unclear and needs to be confirmed.
Collapse
Affiliation(s)
- Antonietta Messina
- Department of Experimental Medicine, Section of Human Physiology and Unit of Dietetic and Sport Medicine, Second University of Naples Naples, Italy
| | - Carolina De Fusco
- Department of Experimental Medicine, Section of Human Physiology and Unit of Dietetic and Sport Medicine, Second University of Naples Naples, Italy
| | - Vincenzo Monda
- Department of Experimental Medicine, Section of Human Physiology and Unit of Dietetic and Sport Medicine, Second University of Naples Naples, Italy
| | - Maria Esposito
- Neapolitan Brain Group (NBG), Clinic of Child and Adolescent Neuropsychiatry, Department of Mental, Physical Health and Preventive Medicine, Second University of Naples Naples, Italy
| | - Fiorenzo Moscatelli
- Department of Clinical and Experimental Medicine, University of Foggia Foggia, Italy
| | - Anna Valenzano
- Department of Clinical and Experimental Medicine, University of Foggia Foggia, Italy
| | - Marco Carotenuto
- Neapolitan Brain Group (NBG), Clinic of Child and Adolescent Neuropsychiatry, Department of Mental, Physical Health and Preventive Medicine, Second University of Naples Naples, Italy
| | - Emanuela Viggiano
- Department of Experimental Medicine, Section of Human Physiology and Unit of Dietetic and Sport Medicine, Second University of Naples Naples, Italy
| | - Sergio Chieffi
- Department of Experimental Medicine, Section of Human Physiology and Unit of Dietetic and Sport Medicine, Second University of Naples Naples, Italy
| | - Vincenzo De Luca
- Department of Psychiatry, University of Toronto Toronto, ON, Canada
| | - Giuseppe Cibelli
- Department of Clinical and Experimental Medicine, University of Foggia Foggia, Italy
| | - Marcellino Monda
- Department of Experimental Medicine, Section of Human Physiology and Unit of Dietetic and Sport Medicine, Second University of Naples Naples, Italy
| | - Giovanni Messina
- Department of Experimental Medicine, Section of Human Physiology and Unit of Dietetic and Sport Medicine, Second University of NaplesNaples, Italy; Department of Clinical and Experimental Medicine, University of FoggiaFoggia, Italy
| |
Collapse
|
8
|
Liu F, Weng SJ, Yang XL, Zhong YM. Orexin-A potentiates L-type calcium/barium currents in rat retinal ganglion cells. Neuroscience 2015; 305:225-37. [PMID: 26259903 DOI: 10.1016/j.neuroscience.2015.08.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 07/27/2015] [Accepted: 08/04/2015] [Indexed: 01/07/2023]
Abstract
Two neuropeptides, orexin-A and orexin-B (also called hypocretin-1 and -2), have been implicated in sleep/wake regulation, feeding behaviors via the activation of two subtypes of G-protein-coupled receptors: orexin 1 and orexin 2 receptors (OX1R and OX2R). While the expression of orexins and orexin receptors is immunohistochemically revealed in retinal neurons, the function of these peptides in the retina is largely unknown. Using whole-cell patch-clamp recordings in rat retinal slices, we demonstrated that orexin-A increased L-type-like barium currents (IBa,L) in ganglion cells (GCs), and the effect was blocked by the selective OX1R antagonist SB334867, but not by the OX2R antagonist TCS OX2 29. The orexin-A effect was abolished by intracellular dialysis of GDP-β-S/GPAnt-2A, a Gq protein inhibitor, suggesting the mediation of Gq. Additionally, during internal dialysis of the phosphatidylinositol (PI)-phospholipase C (PLC) inhibitor U73122, orexin-A did not change the IBa,L of GCs, whereas the orexin-A effect persisted in the presence of the phosphatidylcholine (PC)-PLC inhibitor D609. The orexin-A-induced potentiation was not seen with internal infusion of Ca(2+)-free solution or when inositol 1,4,5-trisphosphate (IP3)-sensitive Ca(2+) release from intracellular stores was blocked by heparin/xestospongins-C. Moreover, the orexin-A effect was mimicked by the protein kinase C (PKC) activator phorbol 12-myristate 13-acetate, but was eliminated when PKC was inhibited by bisindolylmaleimide IV (Bis-IV)/Gö6976. Neither adenosine 3',5'-cyclic monophosphate (cAMP)-protein kinase A (PKA) nor guanosine 3',5'-cyclic monophosphate (cGMP)-protein kinase G (PKG) signaling pathway was likely involved, as orexin-A persisted to potentiate the IBa,L of GCs no matter these two pathways were activated or inhibited. These results suggest that, by activating OX1R, orexin-A potentiates the IBa,L of rat GCs through a distinct Gq/PI-PLC/IP3/Ca(2+)/PKC signaling pathway.
Collapse
Affiliation(s)
- F Liu
- Institute of Neurobiology, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
| | - S-J Weng
- Institute of Neurobiology, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
| | - X-L Yang
- Institute of Neurobiology, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
| | - Y-M Zhong
- Institute of Neurobiology, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China.
| |
Collapse
|
9
|
Li J, Hu Z, de Lecea L. The hypocretins/orexins: integrators of multiple physiological functions. Br J Pharmacol 2014; 171:332-50. [PMID: 24102345 DOI: 10.1111/bph.12415] [Citation(s) in RCA: 186] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2013] [Revised: 07/16/2013] [Accepted: 08/02/2013] [Indexed: 12/28/2022] Open
Abstract
The hypocretins (Hcrts), also known as orexins, are two peptides derived from a single precursor produced in the posterior lateral hypothalamus. Over the past decade, the orexin system has been associated with numerous physiological functions, including sleep/arousal, energy homeostasis, endocrine, visceral functions and pathological states, such as narcolepsy and drug abuse. Here, we review the discovery of Hcrt/orexins and their receptors and propose a hypothesis as to how the orexin system orchestrates these multifaceted physiological functions.
Collapse
Affiliation(s)
- Jingcheng Li
- Department of Physiology, Third Military Medical University, Chongqing, China
| | | | | |
Collapse
|
10
|
Martynska L, Wolinska-Witort E, Chmielowska M, Kalisz M, Baranowska B, Bik W. Effect of orexin A on the release of GnRH-stimulated gonadotrophins from cultured pituitary cells of immature and mature female rats. Neuropeptides 2014; 48:199-205. [PMID: 24931296 DOI: 10.1016/j.npep.2014.05.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 04/27/2014] [Accepted: 05/20/2014] [Indexed: 11/17/2022]
Abstract
Orexin A (OxA), also known as hypocretin 1, is a regulatory neuropeptide involved in the control of various autonomic and neuroendocrine functions. It appears to have a significant impact on the regulation of trophic hormones secretion by influencing the hypothalamus and the pituitary. Orexin A acts through two types of receptor found in the pituitary. This suggests the possibility of direct action of OxA at the adenohypophysis level. The aim of this study was to investigate the direct effect of OxA on GnRH (gonadotrophin-releasing hormone)-stimulated LH and FSH secretion from cultured pituitary cells of sexually immature and mature female rats. Anterior pituitary cells obtained from immature and mature female rats (ovariectomized, and ovariectomized and treated with estradiol) were incubated with 10(-10)M or 10(-7)M orexin A for 1 hour and 4h and the effect on GnRH-stimulated (10(-9)M or 10(-6)M) LH and FSH release was examined. The concentrations of secreted gonadotrophins in the culture media were determined by RIA methods. Orexin A significantly inhibited GnRH-stimulated FSH release from pituitary cells isolated from immature female rats, whereas in cells of mature ovariectomized animals, the effect of OxA was dependent on the stimulatory dose of GnRH. When the cells were stimulated with a low dose of GnRH, orexin A inhibited the secretion of gonadotrophins, but when a high dose of GnRH was used, orexin A increased mainly the release of LH. In cultured pituitary cells from ovariectomized, estrogenized mature rats, orexin A inhibited the secretion of LH if the cells were stimulated with a high dose of GnRH. In conclusion, the results of this study revealed that orexin A may modify the sensitivity of gonadotrophic cells to GnRH, and its effect depends on the maturity and estrogen status of the rats from which the cells are isolated.
Collapse
Affiliation(s)
- L Martynska
- Department of Clinical Neuroendocrinology, The Centre of Postgraduate Medical Education, Warsaw, Poland
| | - E Wolinska-Witort
- Department of Clinical Neuroendocrinology, The Centre of Postgraduate Medical Education, Warsaw, Poland
| | - M Chmielowska
- Department of Clinical Neuroendocrinology, The Centre of Postgraduate Medical Education, Warsaw, Poland
| | - M Kalisz
- Department of Clinical Neuroendocrinology, The Centre of Postgraduate Medical Education, Warsaw, Poland
| | - B Baranowska
- Department of Clinical Physiology, The Centre of Postgraduate Medical Education, Warsaw, Poland
| | - W Bik
- Department of Clinical Neuroendocrinology, The Centre of Postgraduate Medical Education, Warsaw, Poland.
| |
Collapse
|
11
|
The effect of the estrous cycle on the expression of prepro-orexin gene and protein and the levels of orexin A and B in the porcine pituitary. Animal 2014; 8:300-7. [DOI: 10.1017/s1751731113002152] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
12
|
Leonard CS, Kukkonen JP. Orexin/hypocretin receptor signalling: a functional perspective. Br J Pharmacol 2014; 171:294-313. [PMID: 23848055 PMCID: PMC3904253 DOI: 10.1111/bph.12296] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Revised: 06/17/2013] [Accepted: 07/03/2013] [Indexed: 10/26/2022] Open
Abstract
Multiple homeostatic systems are regulated by orexin (hypocretin) peptides and their two known GPCRs. Activation of orexin receptors promotes waking and is essential for expression of normal sleep and waking behaviour, with the sleep disorder narcolepsy resulting from the absence of orexin signalling. Orexin receptors also influence systems regulating appetite/metabolism, stress and reward, and are found in several peripheral tissues. Nevertheless, much remains unknown about the signalling pathways and targets engaged by native receptors. In this review, we integrate knowledge about the orexin receptor signalling capabilities obtained from studies in expression systems and various native cell types (as presented in Kukkonen and Leonard, this issue of British Journal of Pharmacology) with knowledge of orexin signalling in different tissues. The tissues reviewed include the CNS, the gastrointestinal tract, the pituitary gland, pancreas, adrenal gland, adipose tissue and the male reproductive system. We also summarize the findings in different native and recombinant cell lines, especially focusing on the different cascades in CHO cells, which is the most investigated cell line. This reveals that while a substantial gap exists between what is known about orexin receptor signalling and effectors in recombinant systems and native systems, mounting evidence suggests that orexin receptor signalling is more diverse than originally thought. Moreover, rather than being restricted to orexin receptor 'overexpressing' cells, this signalling diversity may be utilized by native receptors in a site-specific manner.
Collapse
Affiliation(s)
- C S Leonard
- Department of Physiology, New York Medical College, Valhalla, NY, USA
| | | |
Collapse
|
13
|
Steiner MA, Sciarretta C, Brisbare-Roch C, Strasser DS, Studer R, Jenck F. Examining the role of endogenous orexins in hypothalamus-pituitary-adrenal axis endocrine function using transient dual orexin receptor antagonism in the rat. Psychoneuroendocrinology 2013; 38:560-71. [PMID: 22917622 DOI: 10.1016/j.psyneuen.2012.07.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Revised: 07/24/2012] [Accepted: 07/25/2012] [Indexed: 11/25/2022]
Abstract
The orexin neuropeptide system regulates wakefulness and contributes to physiological and behavioral stress responses. Moreover, a role for orexins in modulating hypothalamus-pituitary-adrenal (HPA) axis activity has been proposed. Brain penetrating dual orexin receptor (OXR) antagonists such as almorexant decrease vigilance and have emerged as a novel therapeutic class for the treatment of insomnia. Almorexant was used here as a pharmacological tool to examine the role of endogenous orexin signaling in HPA axis endocrine function under natural conditions. After confirming the expression of prepro-orexin and OXR-1 and OXR-2 mRNA in hypothalamus, pituitary and adrenal glands, the effects of systemic almorexant were investigated on peripheral HPA axis hormone release in the rat under baseline, stress and pharmacological challenge conditions. Almorexant did not alter basal or stress-induced corticosterone release despite affecting wake and sleep stages (detected by radiotelemetric electroencephalography/electromyography) during the stress exposure. Moreover, almorexant did not affect the release of adrenocorticotropin (ACTH) and corticosterone at different time points along the diurnal rhythm, nor corticotrophin-releasing hormone (CRH)- and ACTH-stimulated neuroendocrine responses, measured in vivo under stress-free conditions. These results illustrate that dual OXR antagonists, despite modulating stress-induced wakefulness, do not interfere with endocrine HPA axis function in the rat. They converge to suggest that endogenous orexin signaling plays a minor role in stress hormone release under basal conditions and under challenge.
Collapse
Affiliation(s)
- Michel A Steiner
- Actelion Pharmaceuticals Ltd., Gewerbestrasse 16, 4123 Allschwil, Switzerland.
| | | | | | | | | | | |
Collapse
|
14
|
Kukkonen JP. Physiology of the orexinergic/hypocretinergic system: a revisit in 2012. Am J Physiol Cell Physiol 2012; 304:C2-32. [PMID: 23034387 DOI: 10.1152/ajpcell.00227.2012] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The neuropeptides orexins and their G protein-coupled receptors, OX(1) and OX(2), were discovered in 1998, and since then, their role has been investigated in many functions mediated by the central nervous system, including sleep and wakefulness, appetite/metabolism, stress response, reward/addiction, and analgesia. Orexins also have peripheral actions of less clear physiological significance still. Cellular responses to the orexin receptor activity are highly diverse. The receptors couple to at least three families of heterotrimeric G proteins and other proteins that ultimately regulate entities such as phospholipases and kinases, which impact on neuronal excitation, synaptic plasticity, and cell death. This article is a 10-year update of my previous review on the physiology of the orexinergic/hypocretinergic system. I seek to provide a comprehensive update of orexin physiology that spans from the molecular players in orexin receptor signaling to the systemic responses yet emphasizing the cellular physiological aspects of this system.
Collapse
Affiliation(s)
- Jyrki P Kukkonen
- Dept. of Veterinary Biosciences, University of Helsinki, Finland.
| |
Collapse
|
15
|
Kaminski T, Smolinska N. Expression of orexin receptors in the pituitary. VITAMINS AND HORMONES 2012; 89:61-73. [PMID: 22640608 DOI: 10.1016/b978-0-12-394623-2.00004-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Orexin receptors type 1 (OX1R) and type 2 (OX2R) are G protein-coupled receptors whose structure is highly conserved in mammals. OX1R is selective for orexin A, and OX2R binds orexin A and orexin B with similar affinity. Orexin receptor expression was observed in human, rat, porcine, sheep as well as Xenopus laevis pituitaries, both in the adenohypophysis and in the neurohypophysis. The expression level is regulated by gonadal steroid hormones and GnRH. The majority of orexins reaching the pituitary originate from the lateral hypothalamus, but due to the presence of the receptors and the local production of orexins in the pituitary, orexins could deliver an auto/paracrine effect within the gland. Cumulative data indicate that orexins are involved in the regulation of LH, GH, PRL, ACTH, and TSH secretion by pituitary cells, pointing to orexins' effect on the functioning of the endocrine axes. Those hormones may also serve as a signal linking metabolic status with endocrine control of sleep, arousal, and reproduction processes.
Collapse
Affiliation(s)
- Tadeusz Kaminski
- Department of Animal Physiology, University of Warmia and Mazury in Olsztyn, Olsztyn-Kortowo, Poland
| | | |
Collapse
|
16
|
Abstract
In 1998, our group discovered a cDNA that encoded the precursor of two putative neuropeptides that we called hypocretins for their hypothalamic expression and their similarity to the secretin family of neuropeptides. In the past 15 years, numerous studies have placed the hypocretin system as an integrator of homeostatic functions with a crucial, nonredundant function as an arousal stabilizer. Here, we discuss some of the data that have accumulated over the years on the integrating capacity of these hypothalamic neurons and their role on sleep-to-wake transitions.
Collapse
Affiliation(s)
- Luis de Lecea
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, CA, USA.
| |
Collapse
|
17
|
López M, Tena-Sempere M, Diéguez C. Cross-talk between orexins (hypocretins) and the neuroendocrine axes (hypothalamic-pituitary axes). Front Neuroendocrinol 2010; 31:113-27. [PMID: 19654017 DOI: 10.1016/j.yfrne.2009.07.001] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2008] [Revised: 07/28/2009] [Accepted: 07/29/2009] [Indexed: 02/06/2023]
Abstract
Lesioning and electrical stimulation experiments carried out during the first half of the twentieth century showed that the lateral hypothalamic area (LHA) is involved in the neuroendocrine control of hormone secretion. However, the molecular basis of this phenomenon remained unclear until fifty years later when in 1998, two different laboratories discovered a new family of hypothalamic neuropeptides, the orexins or hypocretins (OX-A/Hcrt1 and OX-B/Hcrt2). Since then, remarkable evidence has revealed that orexins/hypocretins play a prominent role in regulating virtually all the neuroendocrine axes, acting as pivotal signals in the coordination of endocrine responses with regards to sleep, arousal and energy homeostasis. The clinical relevance of these actions is supported by human data showing impairment of virtually all the neuroendocrine axes in orexin/hypocretin-deficient narcoleptic patients. Here, we summarize more than ten years of knowledge about the orexins/hypocretins with particular focus on their role as neuroendocrine regulators. Understanding this aspect of orexin/hypocretin physiology could open new therapeutic possibilities in the treatment of sleep, energy homeostasis and endocrine pathologies.
Collapse
Affiliation(s)
- Miguel López
- Department of Physiology, School of Medicine, University of Santiago de Compostela - Instituto de Investigación Sanitaria, Santiago de Compostela 15782, Spain.
| | | | | |
Collapse
|
18
|
López M, Nogueiras R, Tena-Sempere M, Diéguez C. Orexins (hypocretins) actions on the GHRH/somatostatin-GH axis. Acta Physiol (Oxf) 2010; 198:325-34. [PMID: 19769635 DOI: 10.1111/j.1748-1716.2009.02042.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The secretion of growth hormone (GH) is regulated through a complex neuroendocrine control system that includes two major hypothalamic regulators, namely GH-releasing hormone (GHRH) and somatostatin (SST) that stimulate and inhibit, respectively, GH release. Classical experiments involving damage and electrical stimulation suggested that the lateral hypothalamic area (LHA) modulated the somatotropic axis, but the responsible molecular mechanisms were unclear. Evidence obtained during the last decade has demonstrated that orexins/hypocretins, a family of peptides expressed in the LHA controlling feeding and sleep, play an important regulatory role on GH, by inhibiting its secretion modulating GHRH and SST neurones. Considering that GH release is closely linked to the sleep-wake cycle and feeding state, understanding orexin/hypocretin physiology could open new therapeutic possibilities in the treatment of sleep, energy homeostasis and GH-related pathologies, such as GH deficiency.
Collapse
Affiliation(s)
- M López
- Department of Physiology, School of Medicine, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain.
| | | | | | | |
Collapse
|
19
|
Abstract
The neuropeptides orexin A and B (hypocretin-1 and -2) are involved in numerous central regulation processes such as energy homeostasis, sleeping behaviour and addiction. The expression of orexins and orexin receptors in a variety of tissues outside the brain and the presence of orexin A in the circulation indicate the existence of an additional peripheral orexin system. Furthermore, it is well established that orexins exert an influence on the regulation of the hypothalamus-pituitary-adrenal axis, acting both on its central and peripheral branch. In rat and human adrenal cortices the expression of both orexin receptors has been verified with a predominance of OX(2)R. The local expression of orexin receptors was observed to be gender specific and to be modified by plasma glucose and insulin concentrations, nutritional status as well as gonadal steroids. Various studies consistently demonstrated orexin A to enhance glucocorticoid secretion of rat and human adrenal cortices, while orexin B was found to be either less potent or ineffective. On the contrary, the influence of orexins on adrenocortical aldosterone production and cell proliferation is still more controversial. Recent findings indicate that orexins stimulate adrenocortical steroidogenesis by augmenting transcription of selective steroidogenic enzymes and proteins such as steroidogenic acute regulatory protein. Both, G(q) and G(s), signalling pathways with a downstream activation of MAP kinases appear to be involved in this regulation.
Collapse
Affiliation(s)
- S M Kagerer
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck, Germany
| | | |
Collapse
|
20
|
Expression of orexin receptors 1 (OX1R) and 2 (OX2R) in the porcine pituitary during the oestrous cycle. Anim Reprod Sci 2010; 117:111-8. [DOI: 10.1016/j.anireprosci.2009.03.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2008] [Revised: 02/12/2009] [Accepted: 03/17/2009] [Indexed: 10/21/2022]
|
21
|
Wenzel J, Grabinski N, Knopp CA, Dendorfer A, Ramanjaneya M, Randeva HS, Ehrhart-Bornstein M, Dominiak P, Jöhren O. Hypocretin/orexin increases the expression of steroidogenic enzymes in human adrenocortical NCI H295R cells. Am J Physiol Regul Integr Comp Physiol 2009; 297:R1601-9. [PMID: 19793950 DOI: 10.1152/ajpregu.91034.2008] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hypocretins/orexins act through two receptor subtypes: OX(1) and OX(2). Outside the brain, orexin receptors are expressed in adrenal glands, where orexins stimulate the release of glucocorticoids. To further address the regulation of steroidogenesis, we analyzed the effect of orexins on the expression of steroidogenic enzymes in human adrenocortical National Cancer Institute (NCI) H295R cells by qPCR. In NCI H295R cells, OX(2) receptors were highly expressed, as they were in human adrenal glands. After treatment of NCI H295R cells with orexin A for 12-24 h, the cortisol synthesis rate was significantly increased, whereas 30 min of treatment showed no effect. While CYP11B1 and CYP11B2 mRNA levels were increased already at earlier time points, the expression of HSD3B2 and CYP21 mRNA was significantly up-regulated after treatment with orexin A for 12 h. Likewise, orexin B increased CYP21 and HSD3B2 mRNA levels showing, however, a lower potency compared with orexin A. The mRNA levels of CYP11A and CYP17 were unaffected by orexin A. OX(2) receptor mRNA levels were down-regulated after 12 and 24 h of orexin A treatment. Orexin A increased intracellular Ca(2+) but not cAMP concentrations in NCI H295R cells. Furthermore, inhibition of PKC and MAPK kinase/ERK kinase (MEK1/2) prevented the increase of HSD3B2 expression by orexin A. Accordingly, orexin A treatment of NCI H295R cells markedly enhanced ERK1/2 phosphorylation that was prevented by PKC and, in part, PKA inhibition. In conclusion, orexins may influence adrenal steroidogenesis by differential regulation of the expression of steroidogenic enzymes involving Ca(2+), as well as PKC-ERK1/2 signaling.
Collapse
Affiliation(s)
- Jan Wenzel
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Samson WK, Bagley SL, Ferguson AV, White MM. Hypocretin/orexin type 1 receptor in brain: role in cardiovascular control and the neuroendocrine response to immobilization stress. Am J Physiol Regul Integr Comp Physiol 2007; 292:R382-7. [PMID: 16902182 DOI: 10.1152/ajpregu.00496.2006] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hypocretin/orexin acts pharmacologically in the hypothalamus to stimulate stress hormone secretion at least in part by an action in the hypothalamic paraventricular nucleus, where the peptide's receptors have been localized. In addition, orexin acts in the brain to increase sympathetic tone and, therefore, mean arterial pressure and heart rate. We provide evidence for the role of endogenously produced hypocretin/orexin in the physiological response to immobilization stress and identify the receptor subtype responsible for this action of the peptide. Antagonism of the orexin type 1 receptor (OX1R) in the brain prevented the ACTH-stimulating effect of centrally administered hypocretin/orexin. Furthermore, pretreatment of animals with the OX1R antagonist blocked the ACTH response to immobilization/restraint stress. The OX1R antagonist did not, however, block the pharmacological or physiological release of prolactin in these two models. Antagonism of the OX1R also blocked the central action of orexin to elevate mean arterial pressures and heart rates in conscious rats. These data suggest receptor subtype-selective responses to hypocretin/orexin and provide further evidence for the importance of endogenously produced peptide in the physiological control of stress hormone secretion.
Collapse
Affiliation(s)
- Willis K Samson
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, St. Louis, MO 63104, USA.
| | | | | | | |
Collapse
|
23
|
Jöhren O, Gremmels JAF, Qadri F, Dendorfer A, Dominiak P. Adrenal expression of orexin receptor subtypes is differentially regulated in experimental streptozotocin induced type-1 diabetes. Peptides 2006; 27:2764-9. [PMID: 16822588 DOI: 10.1016/j.peptides.2006.05.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2006] [Revised: 05/10/2006] [Accepted: 05/10/2006] [Indexed: 10/24/2022]
Abstract
Orexins (hypocretins) are involved in the regulation of energy homeostasis and sleeping behavior. Orexins were also implicated in the regulation of neuroendocrine and autonomic functions. Recent data show the expression of orexin receptors within the hypothalamic-pituitary-adrenal (HPA) axis and suggest specific actions of orexins at the pituitary and adrenal glands. To further evaluate the role of orexin in the HPA axis, we investigated the mRNA expression of prepro-orexin (PPO) and orexin receptors within the HPA axis of streptozotocin-injected (STZ) rats showing type-1 like diabetes. PPO, as well as OX(1) and OX(2) receptor levels were analyzed by quantitative real-time PCR (qPCR). STZ rats were characterized by decreased body weight, plasma insulin, and leptin levels and by increased plasma glucose. Hypothalamic PPO mRNA levels were significantly reduced in STZ compared to non-diabetic control rats. No differences were found in the mRNA levels of hypothalamic or pituitary OX(1) and OX(2) receptors between control and STZ rats. In adrenals, OX(1) receptor mRNA levels were significantly elevated in STZ rats while OX(2) receptors were significantly reduced. Our results imply distinct functions of adrenal orexin receptor subtypes during type-1 like diabetes.
Collapse
Affiliation(s)
- Olaf Jöhren
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Ratzeburger Allee 160, D-23538 Lübeck, Germany.
| | | | | | | | | |
Collapse
|
24
|
Abstract
Increases in neuronal activity of hypocretin (HCRT), a peptide involved in arousal, and in HCRT-1 receptor mRNA expression have recently been identified in association with lactation. HCRT is released within brain regions regulating maternal behaviour and it is possible that increased HCRT neurotransmission during lactation supports maternal care. The present study examined for the first time the behavioural effects of HCRT on lactating mice. At intermediate doses, intracerebroventricular (i.c.v.) injections of HCRT-1 (0.06 and 0.1 microg) elevated levels of licking and grooming of pups (but not self-grooming) and number of nursing bouts without affecting other behaviours. At the highest dose, HCRT-1 (0.3 microg, i.c.v) delayed latency to nurse, decreased nursing, increased time off nest, and decreased maternal aggression. Intraperitoneal injections of the HCRT-1 receptor antagonist, SB-334867, exhibited a general trend towards increasing time spent low-arched back nursing (P = 0.053) and decreasing licking and grooming of pups while high-arched back nursing (P = 0.052). This suggests that the endogenous release of HCRT, working independently or dependently with other neuromodulators, may be necessary for full maternal behaviour expression. Possible sites of HCRT action in enhancing and impairing maternal care were identified via examinations of c-Fos immunoreactivity in association with i.c.v. HCRT injections. Together, these finding support the idea of HCRT modulating maternal behaviour, with intermediate levels (0.06 and 0.1 microg) supporting (even augmenting) some behaviours, but with levels that are too high (0.3 microg HCRT, i.c.v.), maternal behaviour and aggression are suppressed.
Collapse
Affiliation(s)
- K L D'Anna
- Department of Zoology, University of Wisconsin, Madison, WI, USA.
| | | |
Collapse
|
25
|
Winsky-Sommerer R, Boutrel B, de Lecea L. Stress and arousal: the corticotrophin-releasing factor/hypocretin circuitry. Mol Neurobiol 2006; 32:285-94. [PMID: 16385142 DOI: 10.1385/mn:32:3:285] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2005] [Accepted: 05/31/2005] [Indexed: 11/11/2022]
Abstract
The hypocretins (also know as orexins) are two neuropeptides now commonly described as critical components for maintaining and regulating the stability of arousal. Several lines of evidence have raised the hypothesis that hypocretin-producing neurons are part of the circuitries that mediate the hypothalamic response to acute stress. New data indicate that the corticotrophin-releasing factor (CRF) peptidergic system directly innervates hypocretin-expressing neurons. CRF depolarizes hypocretin neurons, and this effect is blocked by a CRF-R1 antagonist. Furthermore, activation of hypocretinergic neurons by stress is impaired in CRF-R1 knockout mice. These data suggest that CRF-R1 receptor mediates the stress-induced activation of the hypocretinergic system. A significant amount of evidence also indicates that hypocretin cells connect reciprocally to the CRF system. We propose that upon stressor stimuli, CRF activates the hypocretin system, which relays these signals to brain stem nuclei involved in the modulation of arousal as well as to the extended amygdala, a structure involved in the negative motivational state that drives addiction.
Collapse
|
26
|
Huesa G, van den Pol AN, Finger TE. Differential distribution of hypocretin (orexin) and melanin-concentrating hormone in the goldfish brain. J Comp Neurol 2005; 488:476-91. [PMID: 15973685 DOI: 10.1002/cne.20610] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The orexigenic peptides hypocretin (orexin) and melanin-concentrating hormone (MCH) are involved in the control of food intake and in other homeostatic functions including sleep and arousal. In this article we study the distribution of these peptides in the brain of the goldfish (Carassius auratus), focusing on those regions particularly related to feeding, sleep, and arousal. Although the general distribution of these peptides in goldfish shows many similarities to those described previously in other species, we observed some noteworthy differences. As in other vertebrates, the peptidergic somata lie in the anterolateral hypothalamus. In goldfish, both hypocretin and MCH immunoreactive cell bodies project fibers to the ventral telencephalon, thalamus, and hypothalamus. At mesencephalic levels fibers reach the deep layers of the optic tectum and also course sparsely through the mesencephalic tegmentum. In contrast to the strong innervation of locus coeruleus and raphe in mammal, the MCH and hypocretin systems in goldfish barely innervate these aminergic populations related to the regulation of sleep and arousal. MCH, but not hypocretin, immunoreactive fibers terminate substantially in the sensory layer of the vagal gustatory lobe of goldfish, while both peptidergic systems distribute to the primary visceral sensory areas of the medulla and pons. The strong involvement of these peptidergic systems with the hypothalamus and general visceral nuclei, but not with locus coeruleus or raphe nuclei support the view that these peptides originally played a role in regulation of energy balance and evolved secondarily to influence sleep-wakefulness systems in amniote vertebrates.
Collapse
Affiliation(s)
- Gema Huesa
- Department of Cell and Developmental Biology, University of Colorado at Denver, Health Sciences Center, Aurora, Colorado 80045, USA
| | | | | |
Collapse
|
27
|
Murai Y, Akaike T. Orexins cause depolarization via nonselective cationic and K+ channels in isolated locus coeruleus neurons. Neurosci Res 2005; 51:55-65. [PMID: 15596241 DOI: 10.1016/j.neures.2004.09.005] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2004] [Accepted: 09/28/2004] [Indexed: 11/15/2022]
Abstract
The locus coeruleus (LC) contains noradrenergic neurons that are innervated by orexin (ORX)-like immunoreactive axons and express both orexin receptor-1 and -2. We studied effects of ORX-A and -B (ORX-A/B) on dissociated LC neurons by using whole-cell patch clamp techniques. In current-clamp mode, LC neurons were depolarized by application of ORX-A (10(-7) M) [53% of neurons tested; 9.0+/-0.2 mV (n=5)], or ORX-B (10(-7) M) [38% of neurons tested; 4.0+/-0.1 mV (n=5)]. Firing frequencies of action potentials increased during application [1.1+/-0.2 Hz (n=5) in ORX-A; 0.8+/-0.2 Hz (n=5) in ORX-B] and returned to the control level [0.2+/-0.1 Hz (n=5)] after removal. The ORX-A/B-induced depolarization was well maintained in the presence of TTX (3x10(-7) M), CNQX (10(-6) M) and AP5 (10(-5) M). In voltage-clamp mode, removal of external Na+ suppressed both ORX-A/B-induced currents and shifted their reversal potentials from approximately -45 mV to -60 mV. In addition, ORX-A/B inhibited sustained K+ currents. These results suggest that ORX-A/B increase the firing frequency of LC neurons through the depolarization probably produced by both augmentation of the nonselective cationic conductance and inhibition of the sustained K+ conductance.
Collapse
Affiliation(s)
- Yoshinaka Murai
- Department of Oral Functional Science (Physiology), Graduate School of Dental Medicine, Hokkaido University, Kita 13 Nishi 7, Kita-ku, Sapporo 060-8586, Japan.
| | | |
Collapse
|
28
|
Winsky-Sommerer R, Yamanaka A, Diano S, Borok E, Roberts AJ, Sakurai T, Kilduff TS, Horvath TL, de Lecea L. Interaction between the corticotropin-releasing factor system and hypocretins (orexins): a novel circuit mediating stress response. J Neurosci 2004; 24:11439-48. [PMID: 15601950 PMCID: PMC6730356 DOI: 10.1523/jneurosci.3459-04.2004] [Citation(s) in RCA: 364] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2004] [Revised: 11/04/2004] [Accepted: 11/10/2004] [Indexed: 12/31/2022] Open
Abstract
The hypothalamic neuropeptides hypocretins (orexins) play a crucial role in the stability of arousal and alertness. We tested whether the hypocretinergic system is a critical component of the stress response activated by the corticotropin-releasing factor (CRF). Our results show that CRF-immunoreactive terminals make direct contact with hypocretin-expressing neurons in the lateral hypothalamus and that numerous hypocretinergic neurons express the CRF-R1/2 receptors. We also demonstrate that application of CRF to hypothalamic slices containing identified hypocretin neurons depolarizes membrane potential and increases firing rate in a subpopulation of hypocretinergic cells. CRF-induced depolarization was tetrodotoxin insensitive and was blocked by the peptidergic CRF-R1 antagonist astressin. Moreover, activation of hypocretinergic neurons in response to acute stress was severely impaired in CRF-R1 knock-out mice. Together, our data provide evidence of a direct neuroanatomical and physiological input from CRF peptidergic system onto hypocretin neurons. We propose that, after stressor stimuli, CRF stimulates the release of hypocretins and that this circuit contributes to activation and maintenance of arousal associated with the stress response.
Collapse
|
29
|
Chen C, Xu R. The in vitro regulation of growth hormone secretion by orexins. Endocrine 2003; 22:57-66. [PMID: 14610299 DOI: 10.1385/endo:22:1:57] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2003] [Accepted: 08/04/2003] [Indexed: 11/11/2022]
Abstract
Orexins, orexigenic neuropeptides, have recently been discovered in lateral hypothalamus and play an important role in the regulation of pituitary hormone secretion. Two subtypes of orexin receptors (orexin-1 and orexin-2) have been demonstrated in pituitaries. In this experiment, the effects of orexins on voltage-gated Ca2+ currents and the GH release in primary cultured ovine somatotropes were examined. Voltage-gated Ca2+ currents were isolated in ovine somatotropes as L, T, and N currents using whole-cell patch-clamp techniques and specific Ca2+ channel blocker and toxin. Application of orexin-A or orexin-B (100 nM) significantly, dose-dependently, and reversibly increased only nifedipine-sensitive L-type Ca2+ current. Inhibitors of PKC (calphostin C, PKC inhibitory peptide) but not inhibitors of PKA (H89, PKA inhibitory peptide) cancelled the increase in the L current by orexins. Co-administration of orexin-A and GHRH (10 nM) showed an additive effect on the L current. Specific intracellular Ca2+-store-depleting reagent, thapsigargin (1 microM), did not affect the orexin-induced increase in the L current. Orexin-B alone slightly increased GH release and co-administration of orexin-A and GHRH synergistically stimulated GH secretion in vitro. It is therefore suggested that orexins may play an important role in regulating GHRH-stimulated GH secretion through an increase in the L-type Ca2+ current and the PKC-mediated signaling pathways in ovine somatotropes.
Collapse
Affiliation(s)
- Chen Chen
- Prince Henry's Institute of Medical Research, and Department of Physiology, PO Box 5152, Monash University, Clayton, Victoria 3168, Australia.
| | | |
Collapse
|
30
|
Excitatory effects of orexin-A on nucleus tractus solitarius neurons are mediated by phospholipase C and protein kinase C. J Neurosci 2003. [PMID: 12867505 DOI: 10.1523/jneurosci.23-15-06215.2003] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Orexin (ORX)-A is a 33-amino acid peptide with demonstrated roles in the regulation of energy metabolism, autonomic control, and sleep. Orexin receptors (OXRs), OX1R and OX2R, and immunoreactive axons are present in the nucleus tractus solitarius (NTS). We demonstrated previously that bath application of ORX-A depolarizes NTS neurons through activation of a nonselective cationic conductance (NSCC) and inhibition of a sustained potassium current (IK). The present study examined the signaling pathways underlying the excitatory effects of ORX-A on NTS neurons using whole-cell patch-clamp recording techniques. Inclusion of guanosine 5'-O-(2-thiodiphosphate) in the internal pipette solution abolished the effects of ORX-A, confirming that the actions of ORX-A are mediated by G-protein-coupled receptors. The responses of ORX-A were also blocked by a phospholipase C (PLC) inhibitor, D609, and by a nonselective protein kinase (PK) inhibitor, H7, demonstrating the involvement of PLC and protein kinases. However, PKA appears not to play a role, because the depolarizing effects of ORX-A were still observed when the PKA inhibitor peptide (6-22) was included in the pipette solution, and bath application of 8-bromo-cAMP (a PKA agonist) was without effect on NTS neurons. In contrast, 12-O-tetradecanoylphorbol-13-acetate (a PKC agonist) depolarized NTS neurons, and bisindolylmaleimide (BIS), a PKC inhibitor, abolished the depolarizing effects of ORX-A. Finally, voltage-clamp experiments demonstrated that BIS also blocked the activation of NSCC and inhibition of IK by ORX-A in NTS neurons. These results therefore show that the excitatory effects of ORX-A on NTS neurons are mediated through activation of the PLC-PKC-NSCC and -IK signaling pathways, which probably result from OXR-coupled activation of Gq.
Collapse
|
31
|
Ferguson AV, Samson WK. The orexin/hypocretin system: a critical regulator of neuroendocrine and autonomic function. Front Neuroendocrinol 2003; 24:141-50. [PMID: 14596809 DOI: 10.1016/s0091-3022(03)00028-1] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The hypocretins/orexins are hypothalamic peptides most recognized for their significant effects on feeding and arousal. Indeed, loss of the peptides results in a cataplexy quite similar to that observed canine models of human narcolepsy. However, neurons producing these peptides project to numerous brain sites known to be important in neuroendocrine regulation of pituitary function and autonomic centers as well. Results from numerous laboratories have suggested broad physiological roles for the hypocretins/orexins in neuroendocrine and autonomic regulation as a consequence of actions in the dorsal vagal complex, paraventricular nucleus, and pituitary. This review focuses upon evidence for potential physiologic roles for the peptides in these sites.
Collapse
|
32
|
Affiliation(s)
- W A Cupples
- Lady Davis Institute, SMBD-Jewish General Hospital, Montreal, Quebec, Canada H3T 1E2.
| |
Collapse
|
33
|
Abstract
The unfolding of pubertal growth and maturation entails multisystem collaboration. Most notably, the outflow of gonadotropins and growth hormone (GH) proceeds both independently and jointly. The current update highlights this unique dependency in the human.
Collapse
|
34
|
Cheng SB, Kuchiiwa S, Gao HZ, Kuchiiwa T, Nakagawa S. Morphological study of orexin neurons in the hypothalamus of the Long-Evans rat, with special reference to co-expression of orexin and NADPH-diaphorase or nitric oxide synthase activities. Neurosci Res 2003; 46:53-62. [PMID: 12725912 DOI: 10.1016/s0168-0102(03)00026-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Orexins, novel neuropeptides, are exclusively localized in the hypothalamus and implicated in the regulation of a variety of activities, including food intake and energy balance. Nitric oxide (NO), an unconventional neurotransmitter, is widely present in numerous brain regions including the hypothalamus, and has similar physiological roles to those of the orexins. The present study was undertaken to examine the distribution of orexin neurons and the presence of neuronal nitric oxide synthase (nNOS) in the orexin neurons to clarify whether NO interacts with the orexins in the neuronal regulation activities in the Long-Evans rat. We used two double-labeling methods: nicotinamide adenine dinucleotide phosphate-diaphorase (NADPH-d) histochemistry in combination with orexin immunohistochemistry, and double-labeling fluorescent immunohistochemistry for orexin and nNOS. The majority of the orexin immunoreactive neurons were localized mainly in the areas of the dorsomedial hypothalamic nucleus (DMN), the dorsal part of the perifornical nucleus (PEF) and lateral hypothalamic area. The orexin immunoreactive cell bodies were medium in size, and triangular, round, elliptic, and fusiform in shape. The sizes and shapes of orexin neurons in the different parts were similar. Cell bodies coexpressing the orexin and nNOS or NADPH-d were present in the areas of the DMN and the PEF, and the nerve fibers containing orexin and nNOS were distributed in the DMN and PEF, arcuate nucleus (ARN) and ventromedial hypothalamic nucleus (VMH). These results provide morphological evidence that there exists a population of nNOS- or NADPH-d-/orexin-coexpressing neurons in the orexinergic cell group in the hypothalamus, and taken together with previous findings, suggest that NO may play a role in the mechanisms by which orexin neurons regulate food intake and energy balance.
Collapse
Affiliation(s)
- Shi-Bin Cheng
- Department of Anatomy, Faculty of Medicine, Kagoshima University, Sakuragaoka 8-35-1, Kagoshima 890-8520, Japan
| | | | | | | | | |
Collapse
|
35
|
Yang B, Ferguson AV. Orexin-A depolarizes nucleus tractus solitarius neurons through effects on nonselective cationic and K+ conductances. J Neurophysiol 2003; 89:2167-75. [PMID: 12611968 DOI: 10.1152/jn.01088.2002] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The nucleus tractus solitarius (NTS) plays central roles in a number of autonomic functions including cardiovascular control. Orexin (ORX)-A is a 33-amino-acid peptide implicated in the central regulation of energy metabolism, sleep, and the cardiovascular system. Studies demonstrate the presence of ORX-immunoreactive axons and both OX(1)R (orexin receptor) and OX(2)R mRNA within NTS. In this study, whole cell patch-clamp recordings were obtained from NTS neurons in rat medullary slices. Current-clamp studies showed that bath application of various concentrations of ORX-A depolarized 90.7% (78 of 86) of neurons tested while the remaining cells were either unaffected or showed small hyperpolarizations in response to peptide administration. Depolarizing effects were maintained in the presence of 5 microM TTX, and were concentration dependent. Using voltage-clamp techniques, we also identified modulatory actions of ORX-A on specific ion channels. Our results demonstrate that not only does ORX-A inhibit a specific potassium conductance (the sustained K(+) current) in NTS neurons, but it also activates a nonselective cationic conductance (NSCC). These data suggest that ORX-A effects on central cardiovascular control may result from direct actions on NTS neurons and also highlight the ability of this peptide to influence neuronal excitability as a consequence of concurrent modulation of multiple ion channels.
Collapse
Affiliation(s)
- Bo Yang
- Department of Physiology, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | | |
Collapse
|
36
|
Jöhren O, Brüggemann N, Dendorfer A, Dominiak P. Gonadal steroids differentially regulate the messenger ribonucleic acid expression of pituitary orexin type 1 receptors and adrenal orexin type 2 receptors. Endocrinology 2003; 144:1219-25. [PMID: 12639903 DOI: 10.1210/en.2002-0030] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Hypothalamic prepro-orexin as well as pituitary and adrenal orexin receptors are gender-specifically expressed. To assess the regulation by gonadal steroids, we investigated the effect of 17beta-estradiol in female and of testosterone in male rats on prepro-orexin and orexin receptor mRNA expression. Rats were either sham-operated or gonadectomized and subsequently treated with placebo, 17beta-estradiol, or testosterone for 21 d. Tissue mRNA levels of prepro-orexin, orexin type-1 (OX(1)), and orexin type-2 (OX(2)) receptors were measured using quantitative real-time RT-PCR. In female rats, pituitary OX(1) receptor mRNA levels were increased 12-fold after ovariectomy compared with sham- operated rats. The increase of pituitary OX(1) receptor mRNA was inhibited by treatment with 17beta-estradiol. Adrenal mRNA levels of OX(2) receptors in ovariectomized rats were increased 2-fold compared with sham-operated rats and were also reduced by treatment with 17beta-estradiol. In male rats, orchidectomy increased the mRNA levels of pituitary OX(1) receptors compared with sham-operated rats. In contrast, adrenal OX(2) receptor mRNA was reduced after orchidectomy. Testosterone treatment reversed the effect of orchidectomy on pituitary OX(1) and adrenal OX(2) receptors. In the hypothalamus, no differences were found in the mRNA levels of prepro-orexin, OX(1), and OX(2) receptors between sham-operated, placebo-treated, and steroid-treated female or male rats. Our results indicate that gonadal steroids differentially regulate pituitary OX(1) receptors and adrenal OX(2) receptors in male and female rats and may contribute to specific sex- dependent neuroendocrine and endocrine actions of orexins.
Collapse
Affiliation(s)
- Olaf Jöhren
- Institute of Experimental and Clinical Pharmacology and Toxicology, University Clinic Lübeck, D-23538 Lübeck, Germany.
| | | | | | | |
Collapse
|
37
|
Affiliation(s)
- W A Cupples
- Lady Davis Institute, SMBD-Jewish General Hospital, 3755 Cote-Ste-Catherine, Montreal, Quebec, Canada H3T 1E2.
| |
Collapse
|
38
|
Abstract
Although it is clear that the orexin/hypocretin peptides have a significant, physiologically relevant role in sleep/wakefulness, a broader picture has emerged indicating metabolic actions that may depend upon both neural and endocrine mechanisms for their manifestation. The ability of exogenous peptide to activate sympathetic tone, increase locomotor activity, and alter feeding behavior, together with the observed alterations in those functions in knockout animals, strongly suggests important neural actions of the endogenous orexins/hypocretins. Likewise, the action of exogenously administered peptides to alter endocrine function, in particular corticotropin release, has now been mirrored by potential endocrinopathies in knockout animals. Thus these pluripotent peptides hold great potential not only for the treatment of human narcolepsy but also to provide insight into the coordinated regulation of multiple physiological systems.
Collapse
Affiliation(s)
- Meghan M Taylor
- Pharmacological and Physiological Science, St. Louis University School of Medicine, Missouri 63104, USA
| | | |
Collapse
|
39
|
Follwell MJ, Ferguson AV. Cellular mechanisms of orexin actions on paraventricular nucleus neurones in rat hypothalamus. J Physiol 2002; 545:855-67. [PMID: 12482891 PMCID: PMC2290730 DOI: 10.1113/jphysiol.2002.030049] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Using whole-cell patch clamp techniques we have examined the cellular mechanisms underlying the effects of orexin A (OX-A) on electrophysiologically identified magnocellular and parvocellular neurones in the rat hypothalamic paraventricular nucleus (PVN). The majority of magnocellular neurones (67 %) showed concentration-dependent, reversible depolarizations in response to OX-A. These effects were abolished in tetrodotoxin (TTX), suggesting them to be indirect effects on this population of neurones. OX-A also caused increases in excitatory postsynaptic current (EPSC) frequency and amplitude in magnocellular neurones. The former effects were again blocked in TTX while increases in mini-EPSC amplitude remained. Depolarizing effects of OX-A on magnocellular neurones were also found to be abolished by kynurenic acid, supporting the conclusion that these effects were the result of activation of a glutamate interneurone. Parvocellular neurones (73 % of those tested) also showed concentration-dependent, reversible depolarizations in response to OX-A. In contrast to magnocellular neurones, these effects were maintained in TTX, indicating direct effects of OX-A on this population of neurones. Voltage clamp analysis using slow voltage ramps demonstrated that OX-A enhanced a non-selective cationic conductance with a reversal potential of -40 mV in parvocellular neurones, effects which probably explain the depolarizing effects of this peptide in this subpopulation of PVN neurones. These studies have identified separate cellular mechanisms through which OX-A influences the excitability of magnocellular and parvocellular PVN neurones.
Collapse
Affiliation(s)
- Matthew J Follwell
- Department of Physiology, Queen's University, Kingston, Ontario, Canada K7L 3N6
| | | |
Collapse
|
40
|
Kukkonen JP, Holmqvist T, Ammoun S, Akerman KEO. Functions of the orexinergic/hypocretinergic system. Am J Physiol Cell Physiol 2002; 283:C1567-91. [PMID: 12419707 DOI: 10.1152/ajpcell.00055.2002] [Citation(s) in RCA: 209] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Orexin A and orexin B are hypothalamic peptides that act on their targets via two G protein-coupled receptors (OX1 and OX2 receptors). In the central nervous system, the cell bodies producing orexins are localized in a narrow region within the lateral hypothalamus and project mainly to regions involved in feeding, sleep, and autonomic functions. Via putative pre- and postsynaptic effects, orexins increase synaptic activity in these regions. In isolated neurons and cells expressing recombinant receptors orexins cause Ca2+ elevation, which is mainly dependent on influx. The activity of orexinergic cells appears to be controlled by feeding- and sleep-related signals via a variety of neurotransmitters/hormones from the brain and other tissues. Orexins and orexin receptors are also found outside the central nervous system, particularly in organs involved in feeding and energy metabolism, e.g., gastrointestinal tract, pancreas, and adrenal gland. In the present review we focus on the physiological properties of the cells that secrete or respond to orexins.
Collapse
Affiliation(s)
- Jyrki P Kukkonen
- Laboratory of Cell Physiology, Department of Neuroscience, Division of Physiology, Uppsala University, Biomedical Center, SE-75123 Uppsala, Sweden.
| | | | | | | |
Collapse
|
41
|
Abstract
The neuropeptides orexin A and B are expressed in the lateral hypothalamic area and are involved in the regulation of energy homeostasis and arousal. Recent results showed gender differences in the expression of orexin receptor subtypes in rats. In the present study, we analyzed the mRNA expression of prepro-orexin (PPO) in the hypothalamus of male and female rats using quantitative real-time PCR. We found significantly higher levels of PPO mRNA in the hypothalamus of female rats compared to male rats. Our study indicates a sex-dependent regulation of hypothalamic PPO expression and suggests gender-specific functions of orexins.
Collapse
Affiliation(s)
- Olaf Jöhren
- Institute of Experimental and Clinical Pharmacology and Toxicology, University Clinic Lübeck, Ratzeburger Allee 160, D-23538, Lübeck, Germany.
| | | | | | | |
Collapse
|
42
|
Abstract
Over a short period in the late 1990s, three groups converged on the discovery of a neuropeptide system, centred in the dorsolateral hypothalamus, that regulates arousal states, influences feeding and is implicated in the sleep disorder narcolepsy. Subsequent studies have illuminated many aspects of the circuitry of the hypocretin (also called orexin) system, which also influences hormone secretion and autonomic homeostasis, and have led to the hypothesis that most human narcolepsies result from an autoimmune attack against the hypocretin-producing neurons. The biochemical, physiological and anatomical components that regulate the switch between waking and sleeping are becoming clear. The rapidity with which the hypocretin story has emerged is a testament to both the conceptual and the technical evolution of genomic science in the past two decades.
Collapse
Affiliation(s)
- J Gregor Sutcliffe
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, California 92037, USA.
| | | |
Collapse
|
43
|
de Lecea L, Sutcliffe JG, Fabre V. Hypocretins/orexins as integrators of physiological information: lessons from mutant animals. Neuropeptides 2002; 36:85-95. [PMID: 12359500 DOI: 10.1054/npep.2002.0892] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The hypocretins/orexins (hcrts) are two recently described neuropeptides derived from the same precursor and expressed in a few thousand neurons in the perifornical area of the lateral hypothalamus, which project throughout the brain. The hypocretins bind to two G-protein coupled receptors with different selective affinities. Positional cloning of the gene responsible for a canine model of narcolepsy revealed that this disease is caused by mutations in hypocretin receptor type 2. Parallel studies with hypocretin/orexin knockout mice showed behavioral arrests reminiscent of narcolepsy-like attacks. Narcoleptic patients have decreased hypocretin-containing neurons suggesting that narcolepsy in humans is caused by selective neurodegeneration of hypocretinergic neurons. Additional functions for the hypocretins on regulation of energy balance neuroendocrine release and sympathetic outflow have been described. Here we review studies in humans and mutant animals that have provided clues about the functions of the hypocretinergic system, which appear to involve the coherent regulation of networks that dictate the states of arousal.
Collapse
Affiliation(s)
- Luis de Lecea
- Departments of Molecular Biology and Neuropharmacology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | | | | |
Collapse
|